forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.h
165 lines (139 loc) · 4.96 KB
/
utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#pragma once
#include <ATen/Parallel.h>
#include <ATen/cpu/vec/vec.h>
#include <c10/util/llvmMathExtras.h>
#ifdef USE_FBGEMM
#include <fbgemm/Fbgemm.h>
#endif
namespace at {
namespace native {
inline namespace CPU_CAPABILITY {
template <typename T>
inline T data_index_init(T offset) {
return offset;
}
template <typename T, typename... Args>
inline T data_index_init(T offset, T& x, const T& X, Args&&... args) {
offset = data_index_init(offset, std::forward<Args>(args)...);
x = offset % X;
return offset / X;
}
inline bool data_index_step() {
return true;
}
template <typename T, typename... Args>
inline bool data_index_step(T& x, const T& X, Args&&... args) {
if (data_index_step(std::forward<Args>(args)...)) {
x = ((x + 1) == X) ? 0 : (x + 1);
return x == 0;
}
return false;
}
// Helper struct for bfloat16 vectorization
// Useful when you need float as immediate dtype or accumulate dtype
using namespace vec;
struct Vec2 {
Vectorized<float> val0, val1;
Vec2(Vectorized<float> v0, Vectorized<float> v1) : val0(v0), val1(v1) {}
Vec2(float v) : val0(v), val1(v) {}
static Vec2 loadu(const BFloat16* ptr) {
Vectorized<float> v0, v1;
std::tie(v0, v1) = convert_bfloat16_float(Vectorized<BFloat16>::loadu(ptr));
return {v0, v1};
}
void store(BFloat16* ptr) const {
Vectorized<BFloat16> val = convert_float_bfloat16(val0, val1);
val.store(ptr);
}
};
inline Vec2 operator+(const Vec2& a, const Vec2& b) { return {a.val0 + b.val0, a.val1 + b.val1}; }
inline Vec2 operator*(const Vec2& a, const Vec2& b) { return {a.val0 * b.val0, a.val1 * b.val1}; }
template <typename scalar_t> struct VectorizedType { using type = Vectorized<scalar_t>; };
template <> struct VectorizedType<BFloat16> { using type = Vec2; };
template <typename scalar_t> using VecType = typename VectorizedType<scalar_t>::type;
// Helper for mixed data type parameter Vec::load
inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const BFloat16* ptr) {
return convert_bfloat16_float(Vectorized<BFloat16>::loadu(ptr));
}
inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const float* ptr) {
using Vec = Vectorized<float>;
return std::make_tuple(Vec::loadu(ptr), Vec::loadu(ptr + Vec::size()));
}
inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const BFloat16* ptr, int64_t count) {
return convert_bfloat16_float(Vectorized<BFloat16>::loadu(ptr, count));
}
inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const float* ptr, int64_t count) {
using Vec = Vectorized<float>;
if (count > Vec::size()) {
return std::make_tuple(Vec::loadu(ptr), Vec::loadu(ptr + Vec::size(), count - Vec::size()));
} else {
return std::make_tuple(Vec::loadu(ptr, count), Vec(0));
}
}
} // namespace
namespace utils {
template <typename T>
T CeilLog2(const T& x) {
if (x <= 2) {
return 1;
}
// Last set bit is floor(log2(x)), floor + 1 is ceil
// except when x is an exact powers of 2, so subtract 1 first
return static_cast<T>(llvm::findLastSet(static_cast<uint64_t>(x) - 1)) + 1;
}
// matrix transpose:
// src has shape of M by N, with leading dimension of ld_src
// dst has shape of N by M, with leading dimension of ld_dst
template <typename T>
inline void transpose(int64_t M, int64_t N, const T* src, int64_t ld_src, T* dst, int64_t ld_dst) {
for (int64_t j = 0; j < N; j++) {
for (int64_t i = 0; i < M; i++) {
dst[j * ld_dst + i] = src[i * ld_src + j];
}
}
}
#ifdef USE_FBGEMM
template <>
inline void transpose<float>(int64_t M, int64_t N, const float* src, int64_t ld_src, float* dst, int64_t ld_dst) {
TORCH_CHECK(fbgemm::fbgemmSupportedCPU(), "Your CPU does not support FBGEMM.");
fbgemm::transpose_simd<float>(M, N, src, ld_src, dst, ld_dst);
}
#endif
template <typename index_t, typename F>
inline void parallel_sparse_csr(
const TensorAccessor<index_t, 1>& crow_acc,
const int64_t M,
const int64_t nnz,
const F& f) {
TORCH_CHECK(crow_acc.size(0) == M + 1);
// directly parallel on `M` may lead to load imbalance,
// statically determine thread partition here to average payload
// for each thread.
int num_threads = at::get_num_threads();
std::vector<int64_t> thread_splits(num_threads + 1, M);
int64_t thread_averge_payload = std::max((int64_t)1, divup(nnz, num_threads));
thread_splits[0] = 0;
int64_t sum = 0;
int64_t t = 1;
for (const auto m : c10::irange(M)) {
int64_t row_start = crow_acc[m];
int64_t row_end = crow_acc[m + 1];
sum += row_end - row_start;
if (sum > t * thread_averge_payload) {
thread_splits[t] = m;
t++;
}
}
// need to restore the last index,
// due to rounding error when calculating `thread_averge_payload`.
thread_splits[num_threads] = M;
at::parallel_for(0, num_threads, 1, [&](int64_t cbegin, int64_t cend) {
int tid = at::get_thread_num();
int64_t begin = thread_splits[tid];
int64_t end = thread_splits[tid + 1];
f(begin, end);
});
}
} // namespace utils
} // namespace native
} // namespace at