diff --git a/src/uciwweihr_fit.jl b/src/uciwweihr_fit.jl index 85c1295..b48a049 100644 --- a/src/uciwweihr_fit.jl +++ b/src/uciwweihr_fit.jl @@ -29,9 +29,9 @@ function uciwweihr_fit( params::uciwweihr_model_params ) println("Using uciwweihr_model with wastewater!!!") - obstimes_hosp = convert(Vector{Float64}, obstimes_hosp) - obstimes_wastewater = convert(Vector{Float64}, obstimes_wastewater) - param_change_times = convert(Vector{Float64}, param_change_times) + obstimes_hosp = convert(Vector{Int64}, obstimes_hosp) + obstimes_wastewater = convert(Vector{Int64}, obstimes_wastewater) + param_change_times = convert(Vector{Int64}, param_change_times) my_model = uciwweihr_model( @@ -63,8 +63,8 @@ function uciwweihr_fit( params::uciwweihr_model_params ) println("Using uciwweihr_model without wastewater!!!") - obstimes_hosp = convert(Vector{Float64}, obstimes_hosp) - param_change_times = convert(Vector{Float64}, param_change_times) + obstimes_hosp = convert(Vector{Int64}, obstimes_hosp) + param_change_times = convert(Vector{Int64}, param_change_times) my_model = uciwweihr_model( diff --git a/src/uciwweihr_model.jl b/src/uciwweihr_model.jl index 54f6d5e..b6196aa 100644 --- a/src/uciwweihr_model.jl +++ b/src/uciwweihr_model.jl @@ -104,40 +104,36 @@ The defaults for this fuction will follow those of the default simulation in gen extra_ode_precision = false abstol = extra_ode_precision ? 1e-11 : 1e-9 reltol = extra_ode_precision ? 1e-8 : 1e-6 - sol = solve(prob, Tsit5(); callback=param_callback, saveat=obstimes, save_start=true, + sol = solve(prob, Tsit5(); callback=param_callback, saveat=0.0:max_obstime_end, save_start=true, verbose=false, abstol=abstol, reltol=reltol, u0=u0, p=p0, tspan=(0.0, obstimes[end])) # If the ODE solver fails, reject the sample by adding -Inf to the likelihood if sol.retcode != :Success Turing.@addlogprob! -Inf return end + obstimes_hosp_indices = Int.(obstimes_hosp) + obstimes_wastewater_indices = Int.(obstimes_wastewater) sol_array = Array(sol) - I_comp_sol = clamp.(sol_array[2, 2:end], 1, 1e10) - sol_hosp = clamp.(sol_array[3, 2:end], 1, 1e10) - obstime_to_index = Dict(i => t for (i, t) in enumerate(obstimes)) + I_comp_sol = clamp.(sol_array[2,2:end],1, 1e10) + full_log_genes_mean = log.(I_comp_sol) .+ log(rho_gene) + H_comp_sol = clamp.(sol_array[3,2:end], 1, 1e10) + H_means = H_comp_sol[obstimes_hosp_indices] + log_W_means = full_log_genes_mean[obstimes_wastewater_indices] - # Likelihood ------------------------- - h_sol_vals = Float64[] - log_genes_mean_vals = Float64[] - for t in obstimes_hosp - if haskey(obstime_to_index, t) - index = convert(Int64, obstime_to_index[t]) - sol_hosp_value = Float64(sol_hosp[index]) - push!(h_sol_vals, sol_hosp_value) - data_hosp[index] ~ NegativeBinomial2(sol_hosp_value, sigma_hosp) - end + # W-W means-------------------------- + # E - 1 // I - 2 // H - 3 // R - 4 + # Likelihood calculations------------ + for i in 1:l_obs_ww + data_wastewater[i] ~ GeneralizedTDist(log_W_means[i], tau, df) end - - for t in obstimes_wastewater - if haskey(obstime_to_index, t) - index = convert(Int64, obstime_to_index[t]) - log_genes_mean = log(Float64(I_comp_sol[index])) + log(rho_gene) - push!(log_genes_mean_vals, log_genes_mean) - data_wastewater[index] ~ GeneralizedTDist(log_genes_mean, tau, df) - end + for i in 1:l_obs_hosp + data_hosp[i] ~ NegativeBinomial2(H_means[i], sigma_hosp) end + + + # Generated quantities rt_vals = alpha_t_no_init / nu rt_init = alpha_init / nu @@ -157,8 +153,8 @@ The defaults for this fuction will follow those of the default simulation in gen tau = tau, df = df, sigma_hosp = sigma_hosp, - H = h_sol_vals, - log_genes_mean = log_genes_mean_vals, + H = H_means, + log_genes_mean = log_W_means, rt_init = rt_init, w_init = w_init )