diff --git a/mmtbx/process_predicted_model.py b/mmtbx/process_predicted_model.py index 1cd1c746ad..6b04a05a20 100644 --- a/mmtbx/process_predicted_model.py +++ b/mmtbx/process_predicted_model.py @@ -31,12 +31,14 @@ .help = Remove low-confidence residues (based on minimum lddt or \ maximum_rmsd, whichever is specified) .short_caption = Remove low-confidence residues + .expert_level = 3 split_model_by_compact_regions = True .type = bool .help = Split model into compact regions after removing \ low-confidence residues. .short_caption = Split model into compact regions + .expert_level = 3 maximum_domains = 3 .type = int @@ -44,7 +46,7 @@ the closest domains at the end of splitting the model. Make\ it bigger (and optionally make domain_size smaller) to \ get more domains. - .short_caption = Maximum domains (optional) + .short_caption = Maximum domains domain_size = 15 .type = float @@ -81,13 +83,14 @@ .help = The B-factor field in predicted models can be LDDT \ (confidence, 0-1 or 0-100) or rmsd (A) or a B-factor .short_caption = Contents of B-value field (required) + .expert_level = 3 input_lddt_is_fractional = None .type = bool .help = You can specify if the input lddt values (in B-factor field) \ are fractional (0-1) or not (0-100). By default if all \ values are between 0 and 1 it is fractional. - .short_caption = Input lddt is fractional (optional) + .short_caption = Input lddt is fractional minimum_lddt = None .type = float @@ -96,7 +99,7 @@ define both). A minimum lddt of 0.70 corresponds to a maximum rmsd \ of 1.5. Minimum lddt values are fractional or not depending on \ the value of input_lddt_is_fractional. - .short_caption = Minimum lddt (optional) + .short_caption = Minimum lddt maximum_rmsd = 1.5 @@ -106,7 +109,7 @@ define both). A minimum lddt of 0.70 corresponds to a maximum rmsd \ of 1.5. Minimum lddt values are fractional or not depending on \ the value of input_lddt_is_fractional. - .short_caption = Maximum rmsd (optional) + .short_caption = Maximum rmsd default_maximum_rmsd = 1.5 .type = float @@ -863,7 +866,7 @@ def split_model_into_compact_units( # Assign all CA in model to a region regions_list = assign_ca_to_region(co_info, m_ca, minimum_domain_length, - close_distance, + close_distance, maximum_domains = maximum_domains, maximum_fraction_close = maximum_fraction_close, log = log)