From 364ab30052fc26381fc6f148f14d8d47bad2321f Mon Sep 17 00:00:00 2001 From: ceciliachan1979 <75919064+ceciliachan1979@users.noreply.github.com> Date: Sat, 10 Feb 2024 07:32:51 -0800 Subject: [PATCH] Improved problem 3 --- Exams/Rutgers-Analysis/midterm.cecilia.tex | 41 +++++++++++++++------- 1 file changed, 28 insertions(+), 13 deletions(-) diff --git a/Exams/Rutgers-Analysis/midterm.cecilia.tex b/Exams/Rutgers-Analysis/midterm.cecilia.tex index edb9e82..973d679 100644 --- a/Exams/Rutgers-Analysis/midterm.cecilia.tex +++ b/Exams/Rutgers-Analysis/midterm.cecilia.tex @@ -1,4 +1,5 @@ \documentclass{article} +\usepackage{amsmath} \usepackage{amssymb} \usepackage{nth} \usepackage[utf8]{inputenc} @@ -64,22 +65,36 @@ \section*{Problem 2} \end{eqnarray} \section*{Problem 3} -Let $ \delta = \min (1, \frac{\epsilon}{8}) $, note that $ 0 < \delta < 1 $, so $ 0 < \delta^2 < \delta $. +Let $ \delta = \min (\sqrt{\frac{\epsilon}{2}}, \frac{\epsilon}{8}) $. -Whenever $ | x - 1 | < \delta $, we have +On one hand, we have: -\begin{eqnarray*} - -\delta &< x - 1 &< \delta \\ - 2 -\delta &< x + 1 &< 2 + \delta \\ - (2 -\delta)^2 &< (x + 1)^2 &< (2 + \delta)^2 \\ - 4 - 4\delta + \delta^2 &< x^2 + 2x + 1 &< 4 + 4\delta + \delta^2 \\ - -4\delta + \delta^2 &< (x^2 + 2x + 1) - 4 &< 4\delta + \delta^2 \\ - -4\delta &< (x^2 + 2x + 1) - 4 &< 5\delta \\ - -\frac{\epsilon}{2} &< (x^2 + 2x + 1) - 4 &< \frac{5\epsilon}{8} \\ - -\epsilon &< (x^2 + 2x + 1) - 4 &< \epsilon -\end{eqnarray*} +\begin{align*} + |x - 1| &< \delta \\ + |x - 1| &< \sqrt{\frac{\epsilon}{2}} \\ + |(x-1)^2| &< \frac{\epsilon}{2} &\text{square is okay because LHS $\ge$ 0} \\ +\end{align*} + +On the other hand, we have: + +\begin{align*} + |x - 1| &< \delta \\ + |x - 1| &< \frac{\epsilon}{8} \\ + |4(x-1)| &< \frac{\epsilon}{2} \\ +\end{align*} + +Therefore, by the triangle inequality, we have: + +\begin{align*} + & |x^2 + 2x + 1 - 4 | \\ + =& |x^2 - 2x + 1 + 4x - 4| \\ + =& |(x-1)^2 + 4(x-1)| \\ + <& |(x-1)^2| + |4(x-1)| \\ + <& \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ + =& \epsilon +\end{align*} -So we conclude that $ \lim_{x \to 1} x^2 + 2x + 1 = 4 $. +Therefore we proved that $ \lim\limits_{x \to 1} x^2 + 2x + 1 = 4 $ by the definition of the limit, it is possible to find a $ \delta $ such that $ |x - 1| < \delta $ implies $ |x^2 + 2x + 1 - 4| < \epsilon $. \section*{Problem 4}