diff --git a/Books/BabyRudin/Chapter01/ex03.gapry.tex b/Books/BabyRudin/Chapter01/ex03.gapry.tex new file mode 100644 index 0000000..418cc4d --- /dev/null +++ b/Books/BabyRudin/Chapter01/ex03.gapry.tex @@ -0,0 +1,44 @@ +\subsection*{Exercise 03 (Gapry)} + +\subsubsection*{1.15 Proposition (a)} +As we know $x \neq 0$ +\begin{flalign*} + xy &= xz &\\ + \frac{1}{x}{x}{y} &= \frac{1}{x}{x}{z} \text{ (by 1.12 (M5))} &\\ + {x}\frac{1}{x}{y} &= {x}\frac{1}{x}{z} \text{ (by 1.12 (M2))} &\\ + 1 \cdot {y} &= 1 \cdot {z} \text{ (by 1.12 (M5))} &\\ + {y} \cdot 1 &= {z} \cdot 1 \text{ (by 1.12 (M2))} &\\ + {y} &= {z} \text{ (by 1.12 (M4))} +\end{flalign*} + +\subsubsection*{1.15 Proposition (b)} +As we know $x \neq 0$ +\begin{flalign*} + xy &= x &\\ + \frac{1}{x}{x}{y} &= \frac{1}{x}{x} \text{ (by 1.12 (M5))} &\\ + {x}\frac{1}{x}{y} &= {x}\frac{1}{x} \text{ (by 1.12 (M2))} &\\ + 1 \cdot {y} &= 1 \text{ (by 1.12 (M5))} &\\ + {y} \cdot 1 &= 1 \text{ (by 1.12 (M2))} &\\ + {y} &= 1 \text{ (by 1.12 (M4))} +\end{flalign*} + +\subsubsection*{1.15 Proposition (c)} +As we know $x \neq 0$ +\begin{flalign*} + xy &= 1 &\\ + \frac{1}{x}{x}{y} &= \frac{1}{x} \cdot 1 \text{ (by 1.12 (M5))} &\\ + {x}\frac{1}{x}{y} &= \frac{1}{x} \cdot 1 \text{ (by 1.12 (M2))} &\\ + 1 \cdot {y} &= \frac{1}{x} \cdot 1 \text{ (by 1.12 (M5))} &\\ + {y} \cdot 1 &= \frac{1}{x} \cdot 1 \text{ (by 1.12 (M2))} &\\ + {y} &= \frac{1}{x} \text{ (by 1.12 (M4))} +\end{flalign*} + +\subsubsection*{1.15 Proposition (d)} +We know that $x \in F$ and $x \neq 0$. According to 1.12, there must exist an inverse element $\frac{1}{x} \in F$ such that $x \cdot \frac{1}{x} = 1$. Similarly, since $\frac{1}{x} \in F$, there must exist an inverse element $\frac{1}{\frac{1}{x}} \in F$ such that $\frac{1}{x} \cdot \frac{1}{\frac{1}{x}} = 1$. +\begin{flalign*} + \frac{1}{x} \cdot \frac{1}{\frac{1}{x}} &= 1 \text{ } &\\ + x \cdot \frac{1}{x} \cdot \frac{1}{\frac{1}{x}} &= x \cdot 1 \text{ } &\\ + 1 \cdot \frac{1}{\frac{1}{x}} &= x \cdot 1 \text{ (by 1.12 (M5))} &\\ + \frac{1}{\frac{1}{x}} \cdot 1 &= x \cdot 1 \text{ (by 1.12 (M2))} &\\ + \frac{1}{\frac{1}{x}} &= x \text{ (by 1.12 (M4))} +\end{flalign*}