-
Notifications
You must be signed in to change notification settings - Fork 19
/
app_mineralparameters.tex
162 lines (141 loc) · 8.26 KB
/
app_mineralparameters.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
\subsection{Olivine}
\begin{tabular}{|l|llll|llll|p{4cm}|}
\hline
& Wet & & & & Dry & & & &\\
ref. & $A$ & Q (kJ/mol) & $V$& $n$ & $A$ & Q (kJ/mol) & $V$ ($\mu m^3/mol$) & $n$ & comment\\
\hline\hline
\cite{gumb08} & $3.91\cdot 10^{3}MPa^{-n}/s$ & 430 & 0 & 3 & $2.42\times 10^5MPa^{-n}/s$ & 540 & & 3.5 & refers to \cite{kawu93}\\
& $=3.91\cdot 10^{-15}Pa^{-n}/s$ &&&& $=2.42\times 10^{-16}Pa^{-n}/s$ &&& \\
\cite{cube11} & $3.91\cdot 10^{-15}Pa^{-n}/s$ & 430 & 0 & 3 & &&& & refers to \cite{kawu93}\\
\cite{hube03} & & & & & $2.4\times10^{-16}Pa^{-n}/s$ & 540 & $25$& 3.5 & refers to \cite{kawu93} \\
\cite{hube07} & & & 0 & & $2.42\times10^{-15}Pa^{-n}/s$ & 540 & $25$& 3.5 & refers to \cite{kawu93} \\
\cite{kawu93} & $3.906\cdot10^{-15}Pa^{-n}/s$& 430 & 10-20 & 3 &$2.4169\cdot10^{-16}Pa^{-n}/s$ & 540 & 15-25 & 3.5 & dislocation creep\\
\hline
\cite{jahu12} & & & 0 & & $1.43\times10^{-15}Pa^{-n}/s$ & 65 & $25$& 3.5 & refers to \cite{kawu93} \\
\cite{grpy12} & $4.89\cdot10^{-15}Pa^{-n}/s$ & 515 & & 3.5 &&&&& refers to \cite{hiko96} \\
\cite{pybf02} & $4.89\cdot10^{-15}Pa^{-n}/s$ & 515 & & 3.5 & $4.85\times10^{-17}Pa^{-n}/s$ & 535 & & 3.5& refers to \cite{hiko96} \\
\cite{hiko96} & $4.89\cdot10^{-15}Pa^{-n}/s$ & 515 & & 3.5 & $4.85\times10^{-17}Pa^{-n}/s$ & 535 & & 3.5& \\
\cite{kaju03} & &&&& $10^{6.1}MPa^{-n}/s$ & $510\pm30$ & $-14\pm2$& $3\pm0.1$& dislocation creep \\
& &&&& $=1.26\cdot10^{-12}Pa^{-n}/s$ &&&&\\
\cite{ranalli} & $2\times10^3 MPa^{-n}/s$ & $471\pm31$ & & $4\pm0.1$ & $2.5\times10^4 MPa^{-n}/s$ & $532\pm52$ & $17\pm4$ & $3.5\pm0.5$ & refers to \cite{kikr87}. described as
empirical average power-law creep parameters\\
& $=2\cdot10^{-21}Pa^{-n}/s$ &&&& $=2.5\cdot 10^{-17}Pa^{-n}/s$ &&&&\\
\cite{tebu12} & $5.33\cdot10^{-19}$ & 480 & 11 & 3.5 &&&&& (dislocation) refers to \cite{hiko03}\\
\cite{tebu12} & $1.5\cdot10^{-18}$ & 335 & 4 & 1 &&&&& (diffusion) refers to \cite{hiko03}\\
\hline
\cite{kako09} & &&&& $10^{5.04}MPa^{-n}/s$ & 530 & 15-20 & 3.5 & dislocation creep\\
& &&&& $=1.1\cdot10^{-16}Pa^{-n}/s$ &&&& \\
\cite{liwr06} & &&&& & 470 & $0\pm5$ & 3 & dislocation creep\\
\hline
\cite{hiko03} & $3.58\cdot10^{-16}Pa^{-n}/s$& $480\pm40$& 11& $3.5\pm 0.3$& $1.1\cdot10^{-16}Pa^{-n}/s$ & $530\pm4$& 14-23 & $3.5\pm0.3$& dislocation\\
\cite{hiko03} & $8\cdot10^{-9}Pa^{-n}/s$& $335\pm75$& 4 &1 & $1.2\cdot 10^{-8}Pa^{-n}/s$& $375\pm50$ & 2-10& 1 & diffusion \\
\hline\hline
ELEFANT & &&&&&&&&\\
{\tt wetolivine1} & $3.9063\cdot10^{-15}Pa^{-n}/s$& 430 & 15 & 3 &&&&& dislocation creep \cite{kawu93}\\
{\tt dryolivine1} & &&& &$2.4169\cdot10^{-16}Pa^{-n}/s$ & 540 & 20 & 3.5 & dislocation creep \cite{kawu93}\\
{\tt wetolivine2} & $4.89\cdot10^{-15}Pa^{-n}/s$ & 515 & & 3.5 & &&&& dislocation creep \cite{hiko96}\\
{\tt dryolivine2} & &&& & $4.85\times10^{-17}Pa^{-n}/s$ & 535 & & 3.5 & dislocation creep \cite{hiko96}\\
\hline
\end{tabular}
\newpage
%---------------------------------------
%---------------------------------------
%---------------------------------------
\subsection{Quartz}
\begin{tabular}{|l|llll|llll|p{4cm}|}
\hline
& Wet & & & & Dry & & & &\\
ref. & $A$ & Q (kJ/mol) & $V$ () & $n$ & $A$ & Q (kJ/mol) & $V$ () & $n$ & comment\\
\hline\hline
\cite{gumb08} & $3.2\times 10^{-4}MPa^{-n}/s$ & 154 & & 2.3 & & & & & refers to \cite{rana00} (ok)\\
& $=5.072\cdot10^{-18}Pa^{-n}/s$ &&&&&&&&\\
\cite{tebu12} & $8.57\cdot10^{-28}Pa^{-n}/s$ & 223 & 0 & 4 &&&&& refers to \cite{gltu95}\\
& $\rightarrow 1.1\cdot10^{-28}Pa^{-n}/s$ &&&&&&&& \\
\cite{jahu12} & $8.574\times10^{-28}Pa^{-s}/s$ & 26.8 & 0 & 4 &&&&& refers to \cite{gltu95}\\
& $\rightarrow 1.1\cdot10^{-28}Pa^{-n}/s$ &&&&&&&& \\
\cite{hube03,hube07,cube11,grpy12} & $1.10\times10^{-28}Pa^{-s}/s$ & 223 & 0 & 4 &&&&& refers to \cite{gltu95}\\
\cite{bemh00} & $2.91\times10^{-3}$ & 151 & & 1.8 &&&&& refers to \cite{jatk84} \\
\cite{gltu95} & $1.8\cdot10^{-8\pm2}MPa^{-n}/s$ & $137\pm34$ & 0 & $4\pm0.9$ &&&&& with melt \\
& $=1.8\cdot10^{-32\pm2} Pa^{-n}/s$ &&&&&&&&\\
& $1.1\cdot10^{-4\pm2}MPa^{-n}/s$ & $223\pm56$ & 0 & $4\pm0.9$ &&&&& no melt\\
& $=1.1\cdot10^{-28\pm2} Pa^{-n}/s$ &&&&&&&&\\
\hline\hline
ELEFANT & &&&&&&&&\\
{\tt wetquartz1} & $1.1\cdot10^{-28\pm2} Pa^{-n}/s$ & $223\pm56$ & 0 & $4\pm0.9$ &&&&& no melt\\
\hline
\end{tabular}
note that Buiter in \cite{tebu12} says that 8.57 value is alreay scaled. Same for \cite{jahu12}.
There are indeed, because for $n=4$ the multiplicative factor is approx. 7.794, and
8.574/7.794=1.1 as in \cite{gltu95}.
%---------------------------------------
%---------------------------------------
%---------------------------------------
\subsection{Plagioclase}
\begin{tabular}{|l|llll|llll|p{4cm}|}
\hline
& Wet & & & & Dry & & & &\\
ref. & $A$ & Q (kJ/mol) & $V$ () & $n$ & $A $ & Q (kJ/mol) & $V$ () & $n$ & comment\\
\hline\hline
\cite{rana00} & & & & & $3.2\times10^{-4}MPa^{-n}/s$ & 238 & & 3.2 & \\
& & & & & $=3.2\times10^{-23.2}Pa^{-n}/s$ & 238 & & 3.2 & \\
& & & & & $=2.02\times10^{-23}Pa^{-n}/s$ & 238 & & 3.2 & \\
\hline\hline
ELEFANT & &&&&&&&&\\
{\tt dryplagioclase1} & & & & & $2.02\times10^{-23}Pa^{-n}/s$ & 238 & & 3.2 & \\
\hline
\end{tabular}
%---------------------------------------
%---------------------------------------
%---------------------------------------
\subsection{Peridotite}
\begin{tabular}{|l|llll|llll|p{4cm}|}
\hline
& Wet & & & & Dry & & & &\\
ref. & $A$ & Q (kJ/mol) & $V$ () & $n$ & $A (Pa^{-n})$ & Q (kJ/mol) & $V$ () & $n$ & comment\\
\hline\hline
\cite{rana00} & $2.0\times10^3$ & 471 & & 4 & $2.5\times10^{4}$ & 532 & & 3.5 & \\
\hline\hline
ELEFANT & &&&&&&&&\\
{\tt peridotite} & $2.0\times10^3$ & 471 & & 4 & $2.5\times10^{4}$ & 532 & & 3.5 & \\
\hline
\end{tabular}
%---------------------------------------
%---------------------------------------
%---------------------------------------
\subsection{Diabase}
\begin{tabular}{|l|llll|llll|p{4cm}|}
\hline
& Wet & & & & Dry & & & &\\
ref. & $A$ & Q (kJ/mol) & $V$ () & $n$ & $A (Pa^{-n})$ & Q (J/mol) & $V$ () & $n$ & comment\\
\hline\hline
\cite{cube11,grpy12} & & & & & $5.04\times10^{-28}$ & 485 & & 4.7 & refers to \cite{mazk98}\\
\cite{mazk98} & & & & & & $485\pm30$ & & $4.7\pm0.6$ & \\
\hline\hline
ELEFANT & &&&&&&&&\\
\hline
\end{tabular}
%---------------------------------------
%---------------------------------------
%---------------------------------------
\subsection{Gabbro}
\begin{tabular}{|l|llll|llll|p{4cm}|}
\hline
ref. & $A$ & Q (kJ/mol) & $V$ () & $n$ & & & & & comment\\
\hline\hline
\cite{tebu12} & $1.12\cdot10^{-10}Pa^{-n}/s$ & 497 & 0 & 3.4 &&&&& refers to \cite{wica90}\\
\hline\hline
ELEFANT & &&&&&&&&\\
\hline
\end{tabular}
Looking in \cite{wica90} , can't find the number !?!
%---------------------------------------
%---------------------------------------
%---------------------------------------
\subsection{Serpentine}
\begin{tabular}{|l|llll|llll|p{4cm}|}
\hline
ref. & $A$ & Q (kJ/mol) & $V$ () & $n$ & & & & & comment\\
\hline\hline
\cite{hirw07} & $4.47\cdot10^{-38}Pa^{-n}/s$ & 8.9 & $3.2cm^3$ & 3.8 &&&&& \\
\hline
\end{tabular}