-
Notifications
You must be signed in to change notification settings - Fork 19
/
benchmark_jump3D.tex
35 lines (30 loc) · 1.02 KB
/
benchmark_jump3D.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
This benchmark is taken from \textcite{sedu23}
but is taken from \textcite{kigr16} (2016).
It is a three dimensional problem in $[-1,1]^3$
and the viscosity is given by
$\eta(x,y)=\eta_1$ if $r\le r_I$
and $\eta(x,y)=\eta_2$ if $r > r_I$
where $r=|\vec\upnu|_2$ and $r_I=2/3$.
The analytical solution is given by
\begin{equation}
\vec\upnu = \alpha(r) \exp(-r^2) (-y,x,0)
\qquad
p = x^3 +\lambda(r)
\end{equation}
where
\begin{align}
\alpha(r) &= 1/\eta_1 & if \; r\le r_I \\
&= 1/\eta_2 + (1/\eta_1-1/\eta_2)\exp (r^2-r_I^2) & if \; r> r_I
\end{align}
and
\begin{align}
\lambda(r) &= 10 & if \; r\le r_I \\
&= 0 & if \; r> r_I
\end{align}
Dirichlet boundary conditions, corresponding to the analytical solution, are imposed in whole boundary
of $\Omega$.
\begin{center}
\includegraphics[width=15cm]{images/mms/sedu23b}\\
{\captionfont Taken from \cite{sedu23}. From left to right:
$u$, $v$, $w$, $|\vec\upnu|$, $p$, for $\eta_1=1$ and $\eta=10^{2}.$}
\end{center}