-
Notifications
You must be signed in to change notification settings - Fork 19
/
benchmark_laplace_plate.tex
153 lines (126 loc) · 4.16 KB
/
benchmark_laplace_plate.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
\begin{flushright} {\tiny {\color{gray} benchmark\_laplace\_plate.tex}} \end{flushright}
This experiment is based on a 2nd year mathematics lecture I give at Utrecht University.
One wishes to solve the Laplace equation for temperature on the following plate subject
to the indicated boundary conditions:
\begin{center}
\includegraphics[width=3.5cm]{images/benchmark_lapplate/laplace2.png}
\end{center}
The temperature satisfies the 2D Laplace equation inside the plate:
\begin{equation}
\frac{\partial^2 T}{\partial x^2}
+ \frac{\partial^2 T}{\partial y^2} = 0
\end{equation}
We could try to solve the equation by using a tentative solution of the form:
\begin{equation}
T(x,y)=\theta(x) \Phi(y)
\end{equation}
\includegraphics[width=.5cm]{images/benchmark_lapplate/warning.png}
We do not {\it know} the solution is of this form.
We substitute (2) into (1) and obtain:
\[
\Phi \frac{\partial^2 \theta}{\partial x^2} +
\theta \frac{\partial^2 \Phi}{\partial y^2} = 0
\]
Dividing by $\theta\Phi$ gives:
\[
\frac{1}{\theta} \frac{\partial^2 \theta}{\partial x^2} +
\frac{1}{\Phi} \frac{\partial^2 \Phi}{\partial y^2} = 0
\]
Separation of variables: we say that each term is a constant because the first term is a function of $x$ only
and the second a function of $y$ only.
We then write
\[
\frac{1}{\theta} \frac{\partial^2 \theta}{\partial x^2} = - \frac{1}{\Phi} \frac{\partial^2 \Phi}{\partial y^2} = -k^2
\]
where $k$ is called the separation constant.
This leads to
\[
\frac{\partial^2 \theta}{\partial x^2} + k^2 \theta = 0
\]
\[
\frac{\partial^2 \Phi}{\partial y^2} - k^2 \Phi =0
\]
\begin{itemize}
\item The solution to the first one is $\theta(x)=\sin kx$ or $\theta(x)=\cos kx$
\item The solution to the second one is $\Phi(x)=e^{kx}$ or $\Phi(x)=e^{-kx}$
\end{itemize}
The general solution writes:
\[
T(x,y)=\theta(x) \Phi(y)=
\left\{
\begin{array}{c}
\sin kx \\ \cos kx
\end{array}
\right\}
\left\{
\begin{array}{c}
e^{ky} \\ e^{-ky}
\end{array}
\right\}
\]
We can now use the b.c. to find the solution to the Laplace equation.
\begin{itemize}
\item Since $T\rightarrow 0$ when $y\rightarrow \infty$ then $e^{ky}$ unacceptable.
\item Since $T=0$ when $x=0$ then $\cos kx$ unacceptable.
\end{itemize}
so
\[
T(x,y)=
\sin (kx) \;
e^{-kx}
\]
We finally use $T=0$ at $x=10$ which leads to $10k=n \pi$, i.e.:
\[
T(x,y)=\sin (\frac{n\pi x}{10}) \; e^{-n\pi y/10}
\]
\includegraphics[width=.5cm]{images/benchmark_lapplate/warning.png}
Problem: the solution does not satisfy $T(x,0)=100$.
However, a linear combination of solutions is still a solution !
Let's find such a combination which satisfies the b.c. at $y=0$ :
\[
T(x,y) = \sum_{n=1}^\infty b_n \sin (\frac{n\pi x}{10}) \; e^{-n\pi y/10}
\]
We impose then $T(x,0)=100$:
\[
100 = \sum_{n=1}^\infty b_n \sin (\frac{n\pi x}{10})
\]
This is the Fourier sine series of $f(x)=100$ with $l=10$ (chapter 7.9 of Boas).
The coefficient $b_n$ is then given by
\[
b_n=\frac{2}{l} \int_0^l f(x) \sin\frac{n \pi x}{l} dx
=\frac{2}{10} \int_0^l 100 \sin\frac{n \pi x}{10} dx
=
\left\{
\begin{array}{ll}
400/n\pi & {\rm odd \; n} \\
0 & {\rm even \; n} \\
\end{array}
\right.
\]
Finally (!):
\[
T(x,y) =
\frac{400}{\pi}
\left(
e^{-\pi y/10} \sin (\frac{\pi x}{10})
+\frac{1}{3}
\sin (\frac{3\pi x}{10}) \; e^{-3\pi y/10}
+ \dots
\right)
\]
The simulation has been run with a 10x50 domain. All coefficients of the temperature equation are
set to 1, and the Stokes equation is not solved. The timestep is fixed to $dt=0.1$. Resolution
is 32x160.
\begin{center}
a)
\includegraphics[width=1.8cm]{images/benchmark_lapplate/temper0000.png}
\includegraphics[width=1.8cm]{images/benchmark_lapplate/temper0010.png}
\includegraphics[width=1.8cm]{images/benchmark_lapplate/temper0020.png}
\includegraphics[width=1.8cm]{images/benchmark_lapplate/temper0030.png}
\includegraphics[width=1.8cm]{images/benchmark_lapplate/temper0040.png}
\includegraphics[width=1.8cm]{images/benchmark_lapplate/temper0050.png}
\includegraphics[width=1cm]{images/benchmark_lapplate/colourscale.png}
\hspace{.2cm}
b)\includegraphics[width=1.8cm]{images/benchmark_lapplate/temper_analytical.png}\\
{\captionfont a) time evolution of the temperature field; b) analytical steady state solution}
\end{center}