-
Notifications
You must be signed in to change notification settings - Fork 70
/
train.lua
222 lines (184 loc) · 7.2 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
require 'torch'
require 'cutorch'
require 'optim'
require 'xlua'
require 'nn'
dofile './provider.lua'
opt_string = [[
-h,--help print help
-s,--save (default "logs") subdirectory to save logs
-b,--batchSize (default 64) batch size
-r,--learningRate (default 0.01) learning rate
--learningRateDecay (default 1e-7) learning rate decay
--weigthDecay (default 0.0005) weight decay
-m,--momentum (default 0.9) mementum
--epoch_step (default 20) epoch step
-g,--gpu_index (default 0) GPU index (start from 0)
--max_epoch (default 200) maximum number of epochs
--jitter_step (default 2) jitter augmentation step size
--model (default 3dnin_fc) model name (voxnet, 3dnin, 3dnin_fc, subvolume_sup, aniprobing)
--train_data (default "data/modelnet40_60x/train_data.txt") txt file containing train h5 filenames
--test_data (default "data/modelnet40_60x/test_data.txt") txt file containing test h5 filenames
]]
opt = lapp(opt_string)
-- print help or chosen options
if opt.help == true then
print('Usage: th train.lua')
print('Options:')
print(opt_string)
os.exit()
else
print(opt)
end
-- set gpu
cutorch.setDevice(opt.gpu_index+1)
-- load model
local model, criterion = dofile('torch_models/'..opt.model..'.lua')
model = model:cuda()
model:zeroGradParameters()
parameters, gradParameters = model:getParameters()
print(model)
-- set criterion
if not criterion then
criterion = nn.CrossEntropyCriterion():cuda()
end
-- load training and testing files
train_files = getDataFiles(opt.train_data)
test_files = getDataFiles(opt.test_data)
print(train_files)
print(test_files)
-- config for SGD solver
optimState = {
learningRate = opt.learningRate,
weightDecay = opt.weigthDecay,
momentum = opt.momentum,
learningRateDecay = opt.learningRateDecay,
}
-- config logging
testLogger = optim.Logger(paths.concat(opt.save, 'test.log'))
testLogger:setNames{'% mean class accuracy (train set)', '% mean class accuracy (test set)'}
testLogger.showPlot = false
-- confusion matrix
confusion = optim.ConfusionMatrix(40)
------------------------------------
-- Training routine
--
function train()
model:training()
epoch = epoch or 1 -- if epoch not defined, assign it as 1
if epoch % opt.epoch_step == 0 then optimState.learningRate = optimState.learningRate/2 end
-- shuffle train files
local train_file_indices = torch.randperm(#train_files)
local tic = torch.tic()
for fn = 1, #train_files do
current_data, current_label = loadDataFile(train_files[train_file_indices[fn]])
current_data = jitter_chunk(current_data, opt.jitter_step)
local filesize = (#current_data)[1]
local targets = torch.CudaTensor(opt.batchSize)
local indices = torch.randperm(filesize):long():split(opt.batchSize)
-- remove last mini-batch so that all the batches have equal size
indices[#indices] = nil
for t, v in ipairs(indices) do
-- print progress bar :D
xlua.progress(t, #indices)
local inputs = current_data:index(1,v):cuda()
targets:copy(current_label:index(1,v))
-- a function that takes single input and return f(x) and df/dx
local feval = function(x)
if x ~= parameters then parameters:copy(x) end
gradParameters:zero()
local outputs = model:forward(inputs)
local f = criterion:forward(outputs, targets)
local df_do = criterion:backward(outputs, targets)
model:backward(inputs, df_do) -- gradParameters in model have been updated
if torch.type(outputs) == 'table' then -- multiple outputs, take the last one
confusion:batchAdd(outputs[#outputs], targets)
else
confusion:batchAdd(outputs, targets)
end
return f, gradParameters
end
-- use SGD optimizer: parameters as input to feval will be updated
optim.sgd(feval, parameters, optimState)
end
end
confusion:updateValids()
print(('Train accuracy: '..'%.2f'..' %%\t time: %.2f s'):format(
confusion.totalValid * 100, torch.toc(tic)))
train_acc = confusion.totalValid * 100
confusion:zero()
epoch = epoch + 1
end
-------------------------------------
-- Test routine
--
function test()
model:evaluate()
for fn = 1, #test_files do
current_data, current_label = loadDataFile(test_files[fn])
-- notice: volumetric batchnorm requires that both
-- train and test are of the same ndim.
local filesize = (#current_data)[1]
local indices = torch.randperm(filesize):long():split(opt.batchSize)
for t, v in ipairs(indices) do
local inputs = current_data:index(1,v):cuda()
local targets = current_label:index(1,v)
local outputs = model:forward(inputs)
if torch.type(outputs) == 'table' then -- multiple outputs, take the last one
confusion:batchAdd(outputs[#outputs], targets)
else
confusion:batchAdd(outputs, targets)
end
end
end
confusion:updateValids()
print('Test accuracy:', confusion.totalValid * 100)
-- logging test result to txt and html files
if testLogger then
paths.mkdir(opt.save)
testLogger:add{train_acc, confusion.totalValid * 100}
testLogger:style{'-','-'}
testLogger:plot()
local base64im
do
os.execute(('convert -density 200 %s/test.log.eps %s/test.png'):format(opt.save,opt.save))
os.execute(('openssl base64 -in %s/test.png -out %s/test.base64'):format(opt.save,opt.save))
local f = io.open(opt.save..'/test.base64')
if f then base64im = f:read'*all' end
end
local file = io.open(opt.save..'/report.html','w')
file:write(([[
<!DOCTYPE html>
<html>
<body>
<title>%s - %s</title>
<img src="data:image/png;base64,%s">
<h4>optimState:</h4>
<table>
]]):format(opt.save,epoch,base64im))
for k,v in pairs(optimState) do
if torch.type(v) == 'number' then
file:write('<tr><td>'..k..'</td><td>'..v..'</td></tr>\n')
end
end
file:write'</table><pre>\n'
file:write(tostring(confusion)..'\n')
file:write(tostring(model)..'\n')
file:write'</pre></body></html>'
file:close()
end
-- save model every 10 epochs
if epoch % 10 == 0 then
local filename = paths.concat(opt.save, 'model.net')
print('==> saving model to '..filename)
torch.save(filename, model:clearState())
end
confusion:zero()
end
-----------------------------------------
-- Start training
--
for i = 1,opt.max_epoch do
train()
test()
end