forked from theblackcat102/edgedict
-
Notifications
You must be signed in to change notification settings - Fork 2
/
optimizer.py
399 lines (338 loc) · 15.9 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import torch
from torch.optim import Optimizer
class SM3(Optimizer):
"""Implements SM3 algorithm.
It has been proposed in `Memory-Efficient Adaptive Optimization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): coefficient that scale delta before it is applied
to the parameters (default: 0.1)
momentum (float, optional): coefficient used to scale prior updates
before adding. This drastically increases memory usage if
`momentum > 0.0`. This is ignored if the parameter's gradient
is sparse. (default: 0.0)
beta (float, optional): coefficient used for exponential moving
averages (default: 0.0)
eps (float, optional): Term added to square-root in denominator to
improve numerical stability (default: 1e-30)
.. _Memory-Efficient Adaptive Optimization:
https://arxiv.org/abs/1901.11150
"""
def __init__(self, params, lr=0.1, momentum=0.0, beta=0.0, eps=1e-30):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {0}".format(lr))
if not 0.0 <= momentum < 1.0:
raise ValueError("Invalid momentum: {0}".format(momentum))
if not 0.0 <= beta < 1.0:
raise ValueError("Invalid beta: {0}".format(beta))
if not 0.0 <= eps:
raise ValueError("Invalid eps: {0}".format(eps))
defaults = {'lr': lr, 'momentum': momentum, 'beta': beta, 'eps': eps}
super(SM3, self).__init__(params, defaults)
@torch.no_grad()
def step(self, closure=None):
"""Performs single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
momentum = group['momentum']
beta = group['beta']
eps = group['eps']
for p in group['params']:
if p is None:
continue
grad = p.grad
state = self.state[p]
shape = grad.shape
rank = len(shape)
# State initialization
if len(state) == 0:
state['step'] = 0
state['momentum_buffer'] = 0.
_add_initial_accumulators(state, grad)
if grad.is_sparse:
# the update is non-linear so indices must be unique
grad.coalesce()
grad_indices = grad._indices()
grad_values = grad._values()
# Transform update_values into sparse tensor
def make_sparse(values):
constructor = grad.new
if grad_indices.dim() == 0 or values.dim() == 0:
return constructor().resize_as_(grad)
return constructor(grad_indices, values, grad.size())
acc = state[_key(0)]
update_values = _compute_sparse_update(beta, acc, grad_values, grad_indices)
self._update_sparse_accumulator(beta, acc, make_sparse(update_values))
# Add small amount for numerical stability
update_values.add_(eps).rsqrt_().mul_(grad_values)
update = make_sparse(update_values)
else:
# Get previous accumulators mu_{t-1}
if rank > 1:
acc_list = [state[_key(i)] for i in range(rank)]
else:
acc_list = [state[_key(0)]]
# Get update from accumulators and gradients
update = _compute_update(beta, acc_list, grad)
# Update accumulators.
self._update_accumulator(beta, acc_list, update)
# Add small amount for numerical stability
update.add_(eps).rsqrt_().mul_(grad)
if momentum > 0.:
m = state['momentum_buffer']
update.mul_(1. - momentum).add_(momentum, m)
state['momentum_buffer'] = update.detach()
p.sub_(group['lr'], update)
state['step'] += 1
return loss
def _update_accumulator(self, beta, acc_list, update):
for i, acc in enumerate(acc_list):
nu_max = _max_reduce_except_dim(update, i)
if beta > 0.:
torch.max(acc, nu_max, out=acc)
else:
# No need to compare - nu_max is bigger because of grad ** 2
acc.copy_(nu_max)
def _update_sparse_accumulator(self, beta, acc, update):
nu_max = _max_reduce_except_dim(update.to_dense(), 0).squeeze()
if beta > 0.:
torch.max(acc, nu_max, out=acc)
else:
# No need to compare - nu_max is bigger because of grad ** 2
acc.copy_(nu_max)
def _compute_sparse_update(beta, acc, grad_values, grad_indices):
# In the sparse case, a single accumulator is used.
update_values = torch.gather(acc, 0, grad_indices[0])
if beta > 0.:
update_values.mul_(beta)
update_values.addcmul_(1. - beta, grad_values, grad_values)
return update_values
def _compute_update(beta, acc_list, grad):
rank = len(acc_list)
update = acc_list[0].clone()
for i in range(1, rank):
# We rely on broadcasting to get the proper end shape.
# Note that torch.min is currently (as of 1.23.2020) not commutative -
# the order matters for NaN values.
update = torch.min(update, acc_list[i])
if beta > 0.:
update.mul_(beta)
update.addcmul_(1. - beta, grad, grad)
return update
def _key(i):
# Returns key used for accessing accumulators
return 'accumulator_' + str(i)
def _add_initial_accumulators(state, grad):
# Creates initial accumulators. For a dense tensor of shape (n1, n2, n3),
# then our initial accumulators are of shape (n1, 1, 1), (1, n2, 1) and
# (1, 1, n3). For a sparse tensor of shape (n, *), we use a single
# accumulator of shape (n,).
shape = grad.shape
rank = len(shape)
defaults = {'device': grad.device, 'dtype': grad.dtype}
acc = {}
if grad.is_sparse:
acc[_key(0)] = torch.zeros(shape[0], **defaults)
elif rank == 0:
# The scalar case is handled separately
acc[_key(0)] = torch.zeros(shape, **defaults)
else:
for i in range(rank):
acc_shape = [1] * i + [shape[i]] + [1] * (rank - 1 - i)
acc[_key(i)] = torch.zeros(acc_shape, **defaults)
state.update(acc)
def _max_reduce_except_dim(tensor, dim):
# Computes max along all dimensions except the given dim.
# If tensor is a scalar, it returns tensor.
rank = len(tensor.shape)
result = tensor
if rank > 0:
assert dim < rank
for d in range(rank):
if d != dim:
result = result.max(dim=d, keepdim=True).values
return result
import torch
from torch.optim import Optimizer
import math
class AdamW(Optimizer):
"""Implements AdamW algorithm.
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
Adam: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, amsgrad=amsgrad)
super(AdamW, self).__init__(params, defaults)
def __setstate__(self, state):
super(AdamW, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
amsgrad = group['amsgrad']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group['eps'])
else:
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
p.data.add_(-step_size, torch.mul(p.data, group['weight_decay']).addcdiv_(1, exp_avg, denom) )
return loss
class Novograd(Optimizer):
"""
Implements Novograd algorithm.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.95, 0))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
grad_averaging: gradient averaging
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
"""
def __init__(self, params, lr=1e-3, betas=(0.95, 0), eps=1e-8,
weight_decay=0, grad_averaging=False, amsgrad=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay,
grad_averaging=grad_averaging,
amsgrad=amsgrad)
super(Novograd, self).__init__(params, defaults)
def __setstate__(self, state):
super(Novograd, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Sparse gradients are not supported.')
amsgrad = group['amsgrad']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
norm = torch.sum(torch.pow(grad, 2))
if exp_avg_sq == 0:
exp_avg_sq.copy_(norm)
else:
exp_avg_sq.mul_(beta2).add_(1 - beta2, norm)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group['eps'])
else:
denom = exp_avg_sq.sqrt().add_(group['eps'])
grad.div_(denom)
if group['weight_decay'] != 0:
grad.add_(group['weight_decay'], p.data)
if group['grad_averaging']:
grad.mul_(1 - beta1)
exp_avg.mul_(beta1).add_(grad)
p.data.add_(-group['lr'], exp_avg)
return loss