PolyGNN is an implementation of the paper PolyGNN: Polyhedron-based Graph Neural Network for 3D Building Reconstruction from Point Clouds. PolyGNN learns a piecewise planar occupancy function, supported by polyhedral decomposition, for efficient and scalable 3D building reconstruction.
Clone the repository:
git clone https://github.com/chenzhaiyu/polygnn && cd polygnn
Create a conda environment with all dependencies:
conda env create -f environment.yml && conda activate polygnn
Still easy! Create a conda environment and install mamba for faster parsing:
conda create --name polygnn python=3.10 && conda activate polygnn
conda install mamba -c conda-forge
Install the required dependencies:
mamba install pytorch torchvision sage=10.0 pytorch-cuda=11.7 pyg=2.3 pytorch-scatter pytorch-sparse pytorch-cluster torchmetrics rtree -c pyg -c pytorch -c nvidia -c conda-forge
pip install abspy hydra-core hydra-colorlog omegaconf trimesh tqdm wandb plyfile
Download the mini dataset and pretrained weights:
python download.py dataset=mini
In case you encounter issues (e.g., Google Drive limits), manually download the data and weights here, then extract them into ./checkpoints/mini
and ./data/mini
, respectively.
The mini dataset contains 200 random instances (~0.07% of the full dataset).
Train PolyGNN on the mini dataset:
python train.py dataset=mini
The data will be automatically preprocessed the first time you initiate training.
Evaluate PolyGNN with option to save predictions:
python test.py dataset=mini evaluate.save=true
Generate meshes from predictions:
python reconstruct.py dataset=mini reconstruct.type=mesh
Remap meshes to their original CRS:
python remap.py dataset=mini
Generate reconstruction statistics:
python stats.py dataset=mini
# check available configurations for training
python train.py --cfg job
# check available configurations for evaluation
python test.py --cfg job
Alternatively, review the configuration file: conf/config.yaml
.
The Munich dataset is available for download on Zenodo. Note that it requires 332 GB of storage when decompressed.
PolyGNN requires polyhedron-based graphs as input. To prepare this from your own point clouds:
- Extract planar primitives using tools such as Easy3D or GoCoPP, preferably in VertexGroup format.
- Build CellComplex from the primitives using abspy. Example code:
Alternatively, you can modify
from abspy import VertexGroup, CellComplex vertex_group = VertexGroup(vertex_group_path, quiet=True) cell_complex = CellComplex(vertex_group.planes, vertex_group.aabbs, vertex_group.points_grouped, build_graph=True, quiet=True) cell_complex.prioritise_planes(prioritise_verticals=True) cell_complex.construct() cell_complex.save(complex_path)
CityDataset
orTestOnlyDataset
to accept inputs directly from VertexGroup or VertexGroupReference. - Structure your dataset similarly to the provided mini dataset:
YOUR_DATASET_NAME └── raw ├── 03_meshes │ ├── DEBY_LOD2_104572462.obj │ ├── DEBY_LOD2_104575306.obj │ └── DEBY_LOD2_104575493.obj ├── 04_pts │ ├── DEBY_LOD2_104572462.npy │ ├── DEBY_LOD2_104575306.npy │ └── DEBY_LOD2_104575493.npy ├── 05_complexes │ ├── DEBY_LOD2_104572462.cc │ ├── DEBY_LOD2_104575306.cc │ └── DEBY_LOD2_104575493.cc ├── testset.txt └── trainset.txt
- To train or evaluate PolyGNN using your dataset, run the following commands:
For evaluation only, you can instantiate your dataset as a
# start training python train.py dataset=YOUR_DATASET_NAME # start evaluation python test.py dataset=YOUR_DATASET_NAME
TestOnlyDataset
, as in this line.
- Demo with mini data and pretrained weights
- Short tutorial for getting started
- Host the full dataset
If you use PolyGNN in a scientific work, please consider citing the paper:
@article{chen2024polygnn,
title = {PolyGNN: Polyhedron-based graph neural network for 3D building reconstruction from point clouds},
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
volume = {218},
pages = {693-706},
year = {2024},
issn = {0924-2716},
doi = {https://doi.org/10.1016/j.isprsjprs.2024.09.031},
url = {https://www.sciencedirect.com/science/article/pii/S0924271624003691},
author = {Zhaiyu Chen and Yilei Shi and Liangliang Nan and Zhitong Xiong and Xiao Xiang Zhu},
}
You might also want to check out abspy for 3D adaptive binary space partitioning and Points2Poly for reconstruction with deep implicit fields.