-
Notifications
You must be signed in to change notification settings - Fork 0
/
matrix_factorization.py
65 lines (56 loc) · 1.82 KB
/
matrix_factorization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# -*- coding:utf-8 -*-
'''
An implementation of matrix factorization
@INPUT:
R : a matrix to be factorized, dimension N x M
P : an initial matrix of dimension N x K
Q : an initial matrix of dimension M x K
K : the number of latent features
steps : the maximum number of steps to perform the optimisation
alpha : the learning rate
beta : the regularization parameter
@OUTPUT:
the final matrices P and Q
'''
###############################################################################
try:
import numpy
except:
print "This implementation requires the numpy module."
exit(0)
def matrix_factorization(R, P, Q, K, steps=5000, alpha=0.0002, beta=0.02):
Q = Q.T
for step in xrange(steps):
for i in xrange(len(R)):
for j in xrange(len(R[i])):
if R[i][j] > 0:
eij = R[i][j] - numpy.dot(P[i,:],Q[:,j])
for k in xrange(K):
P[i][k] = P[i][k] + alpha * (2 * eij * Q[k][j] - beta * P[i][k])
Q[k][j] = Q[k][j] + alpha * (2 * eij * P[i][k] - beta * Q[k][j])
eR = numpy.dot(P,Q)
e = 0
for i in xrange(len(R)):
for j in xrange(len(R[i])):
if R[i][j] > 0:
e = e + pow(R[i][j] - numpy.dot(P[i,:],Q[:,j]), 2)
for k in xrange(K):
e = e + (beta/2) * ( pow(P[i][k],2) + pow(Q[k][j],2) )
if e < 0.001:
break
return P, Q.T
if __name__ == "__main__":
R = [
[5,3,0,1],
[4,0,0,1],
[1,1,0,5],
[1,0,0,4],
[0,1,5,4],
]
R = numpy.array(R)
N = len(R)
M = len(R[0])
K = 2
P = numpy.random.rand(N,K)
Q = numpy.random.rand(M,K)
nP, nQ = matrix_factorization(R, P, Q, K)