-
Notifications
You must be signed in to change notification settings - Fork 92
/
model.py
125 lines (99 loc) · 4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.nn as nn
class AttrProxy(object):
"""
Translates index lookups into attribute lookups.
To implement some trick which able to use list of nn.Module in a nn.Module
see https://discuss.pytorch.org/t/list-of-nn-module-in-a-nn-module/219/2
"""
def __init__(self, module, prefix):
self.module = module
self.prefix = prefix
def __getitem__(self, i):
return getattr(self.module, self.prefix + str(i))
class Propogator(nn.Module):
"""
Gated Propogator for GGNN
Using LSTM gating mechanism
"""
def __init__(self, state_dim, n_node, n_edge_types):
super(Propogator, self).__init__()
self.n_node = n_node
self.n_edge_types = n_edge_types
self.reset_gate = nn.Sequential(
nn.Linear(state_dim*3, state_dim),
nn.Sigmoid()
)
self.update_gate = nn.Sequential(
nn.Linear(state_dim*3, state_dim),
nn.Sigmoid()
)
self.tansform = nn.Sequential(
nn.Linear(state_dim*3, state_dim),
nn.Tanh()
)
def forward(self, state_in, state_out, state_cur, A):
A_in = A[:, :, :self.n_node*self.n_edge_types]
A_out = A[:, :, self.n_node*self.n_edge_types:]
a_in = torch.bmm(A_in, state_in)
a_out = torch.bmm(A_out, state_out)
a = torch.cat((a_in, a_out, state_cur), 2)
r = self.reset_gate(a)
z = self.update_gate(a)
joined_input = torch.cat((a_in, a_out, r * state_cur), 2)
h_hat = self.tansform(joined_input)
output = (1 - z) * state_cur + z * h_hat
return output
class GGNN(nn.Module):
"""
Gated Graph Sequence Neural Networks (GGNN)
Mode: SelectNode
Implementation based on https://arxiv.org/abs/1511.05493
"""
def __init__(self, opt):
super(GGNN, self).__init__()
assert (opt.state_dim >= opt.annotation_dim, \
'state_dim must be no less than annotation_dim')
self.state_dim = opt.state_dim
self.annotation_dim = opt.annotation_dim
self.n_edge_types = opt.n_edge_types
self.n_node = opt.n_node
self.n_steps = opt.n_steps
for i in range(self.n_edge_types):
# incoming and outgoing edge embedding
in_fc = nn.Linear(self.state_dim, self.state_dim)
out_fc = nn.Linear(self.state_dim, self.state_dim)
self.add_module("in_{}".format(i), in_fc)
self.add_module("out_{}".format(i), out_fc)
self.in_fcs = AttrProxy(self, "in_")
self.out_fcs = AttrProxy(self, "out_")
# Propogation Model
self.propogator = Propogator(self.state_dim, self.n_node, self.n_edge_types)
# Output Model
self.out = nn.Sequential(
nn.Linear(self.state_dim + self.annotation_dim, self.state_dim),
nn.Tanh(),
nn.Linear(self.state_dim, 1)
)
self._initialization()
def _initialization(self):
for m in self.modules():
if isinstance(m, nn.Linear):
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
def forward(self, prop_state, annotation, A):
for i_step in range(self.n_steps):
in_states = []
out_states = []
for i in range(self.n_edge_types):
in_states.append(self.in_fcs[i](prop_state))
out_states.append(self.out_fcs[i](prop_state))
in_states = torch.stack(in_states).transpose(0, 1).contiguous()
in_states = in_states.view(-1, self.n_node*self.n_edge_types, self.state_dim)
out_states = torch.stack(out_states).transpose(0, 1).contiguous()
out_states = out_states.view(-1, self.n_node*self.n_edge_types, self.state_dim)
prop_state = self.propogator(in_states, out_states, prop_state, A)
join_state = torch.cat((prop_state, annotation), 2)
output = self.out(join_state)
output = output.sum(2)
return output