-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
337 lines (293 loc) · 13.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Jingyuan LI Personal Website</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 0;
padding: 0;
scroll-behavior: smooth;
background-color: #f4f4f4;
}
nav {
background-color: #333;
padding: 10px 0;
position: fixed;
width: 100%;
top: 0;
z-index: 100;
}
nav ul {
margin: 0;
padding: 0;
list-style: none;
display: flex;
justify-content: center;
}
nav ul li {
margin: 0 20px;
}
nav ul li a {
color: white;
text-decoration: none;
font-weight: bold;
}
nav ul li a:hover {
text-decoration: underline;
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: 1px 20px;
}
/* Home Section with Background Image */
#home {
background: url('background-image.jpg') no-repeat center center/cover;
height: 60%;
display: flex;
align-items: center;
justify-content: center;
color: white;
}
#home h1 {
margin-top: 60px;
font-size: 2.5rem;
}
#home p {
font-size: 1.2rem;
margin-top: 0 px;
}
/* About Section */
#about {
padding: 10px 0;
background-color: #f8f9fa;
}
#about h2 {
text-align: center;
margin-bottom: 10px;
}
#about p {
text-align: left;
max-width: 800px;
margin: 10pt auto;
line-height: 1.6;
color: #333;
}
/* Projects Section */
#projects {
padding: 10px 0;
}
#projects h2 {
text-align: center;
margin-bottom: 10px;
}
.project {
display: flex;
flex-wrap: wrap;
background-color: #fff;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
margin-bottom: 20px;
overflow: hidden;
}
.project img {
max-width: 30%;
border-radius: 8px 0 0 8px;
}
.project-details {
padding: 10px;
flex: 1;
}
.project-details h3 {
margin-top: 0;
}
.project-details p {
line-height: 1;
color: #333;
margin-bottom: 0 px;
padding: 0 px;
margin: 0 px;
}
.tech-stack {
margin-top: 0.5px;
color: #666;
font-size: 14px;
}
.github-link {
display: inline-block;
margin-top: 0.5px;
padding: 10px 20px;
background-color: #007bff;
color: #fff;
text-decoration: none;
border-radius: 5px;
}
.github-link:hover {
background-color: #0056b3;
}
/* Contact Section */
#contact {
padding: 60px 0;
background-color: #333;
color: white;
}
#contact h2 {
text-align: center;
margin-bottom: 40px;
}
#contact form {
max-width: 600px;
margin: 0 auto;
}
#contact form input, #contact form textarea {
width: 100%;
padding: 10px;
margin: 10px 0;
border-radius: 5px;
border: none;
}
#contact form input[type="submit"] {
background-color: #007bff;
color: white;
cursor: pointer;
}
#contact form input[type="submit"]:hover {
background-color: #0056b3;
}
footer {
text-align: center;
padding: 20px;
background-color: #222;
color: white;
}
</style>
</head>
<body>
<!-- Navigation Bar -->
<nav>
<ul>
<li><a href="#home">Home</a></li>
<li><a href="#about">About</a></li>
<li><a href="#projects">Publications</a></li>
<li><a href="#contact">Contact</a></li>
</ul>
</nav>
<!-- Home Section with Background Image -->
<section id="home">
<div class="container">
<div style="display: flex; align-items: center; justify-content: center;">
<!-- Personal Photo -->
<div style="margin-right: 20px;">
<img src="personal-image2.jpg" alt="Your Photo" style="border-radius: 50%; width: 150px; height: 150px; object-fit: cover;">
</div>
<!-- Introduction Text -->
<div style="text-align: center; color: black;">
<h1>Hello, I'm Jingyuan Li</h1>
<p> Fifth year PhD @ University of Washington </p>
<p class="tm-margin-b-5"> <a class="tm-margin-b-10" href="[email protected]"> [Email:[email protected]] </a>
<!-- <a class="tm-margin-b-10" href="https://github.com/christincha"> [GitHub]</a> -->
<a class="tm-margin-b-10" href="https://scholar.google.com/citations?user=BEhp15IAAAAJ&hl=zh-CN"> [Scholar] </a>
<a class="tm-margin-b-10" href="https://www.linkedin.com/in/jingyuan-li-898225175/"> [LinkedIn] </a></p>
</div>
<!-- Social Icons -->
</div>
</div>
</section>
<!-- About Section -->
<section id="about">
<div class="container">
<h2>About Me</h2>
<p>I am a PhD student at NeuroAI Lab, <a class="tm-margin-b-10" href="https://www.washington.edu/">University of Washihngton</a> , Seattle, advised by <a class="tm-margin-b-10" href="https://faculty.washington.edu/shlizee/">Prof.Eli Shlizerman</a>. Before I join the University of Washington, I worked with <a class="tm-margin-b-10" href="https://www.cnbc.cmu.edu/~tai/">Prof.Tai Sing Lee</a> at Carnegie Mellon University (CMU).</p>
<p> My primary interest lies in general understanding of time-series data, particular to time-series neural signals and time-series behavior recordings.
<br>In terms of method, I focus on deep learning based method, such as Recurrent Neural Network, Graph Neural Network and Transformer.
<br>My research topics include <b>Semi(Un)-supervised Learning</b>, <b>Representation Learning</b>, <b>Computational Neuroscience</b>, <b>Brain Computer Interface</b>, <b>Robust and Uncertainty Evaluation</b>.</p>
</div>
</section>
<!-- Projects Section -->
<section id="projects">
<div class="container">
<h2>Publications</h2>
<!-- Project 1 -->
<div class="project">
<img src="publications/DCoND.jpg" alt="Project 1 Figure">
<div class="project-details">
<h3>Brain-to-Text Decoding with Context-Aware Neural Representations and Large Language Models</h3>
<p>Authors: <u>Jingyuan Li</u>, Trung Le, Chaofei Fan, Mingfei Chen, Eli Shlizerman. <br><i>In submission to ICLR 2025</i></p>
<p>I developed DCoND-LIFT, a method that leverages large language models to translate neural signals into text, reducing the word error rate from 9.93% to 5.77% compared to the baseline.</p>
<p class="tech-stack">Keywords:<b>Brain-Computer Interface</b>, <b>Brain-to-Text</b>, <b>Large Language Model</b>, <b>Phoneme Decoding</b></p>
<!-- <p class="tech-stack">Tech stack: Python, TensorFlow, Keras</p> -->
<!-- <a class="github-link" href="https://github.com/yourusername/project1" target="_blank">View on GitHub</a> -->
</div>
</div>
<!-- Project 2 -->
<div class="project">
<img src="publications/icassp.jpg" alt="Project 2 Figure">
<div class="project-details">
<h3>Translating Mental Imaginations into Characters with Codebooks and Dynamics-Enhanced Decoding</h3>
<p>Authors: <u>Jingyuan Li</u>,Yansen Wang, Nie Lin, Dongsheng Li. <br> <i>In submission to ICASSP 2025</i> <br> <a class="tm-margin-b-10" href="https://arxiv.org/abs/2409.16816">Preprint</a> </p>
<p>I introduced four mental tasks that map EEG recordings to 35 characters, including letters and numbers, with high accuracy, significantly improving over direct character imagination by aounrd 8.5%.</p>
<p class="tech-stack">Keywords: EEG, Brain-Computer Interface, Brain-to-Character, GRU, CNN</p>
</div>
</div>
<!-- Project 3 -->
<div class="project">
<img src="publications/cosyne20242.jpg" alt="Project 2 Figure">
<div class="project-details">
<h3>Self-supervised behavior modeling with dense keypoint tracking</h3>
<p>Authors: Ying Yu*, <u>Jingyuan Li</u>*, Kun Su, Anna Bowen, Carlos Campos. *Equal contribution. <br><i>Cosyne 2024 Oral </i> <br><a class="tm-margin-b-10" href="https://www.youtube.com/watch?v=Kq5f36OwFKU">Talk</a> </p>
<p>I presented 2D to 3D mapping of animal posture, from which behavior segment can be retrieved with one-shot example.</p>
<p class="tech-stack">Keywords: Posture modeling, Behavior segmentation</p>
</div>
</div>
<!-- Project 4 -->
<div class="project">
<img src="publications/amag.jpg" alt="Project 2 Figure">
<div class="project-details">
<h3>AMAG: Additive, Multiplicative and Adaptive Graph Neural Network For Forecasting Neural Activity</h3>
<p>Authors: <u>Jingyuan Li</u>, Leo Scholl, Trung Le, Pavithra Rajeswaran, Amy Orsborn, Eli Shlizerman. <br> <i> NeurIPS 2023 </i><br> <a class="tm-margin-b-10" href="https://openreview.net/forum?id=7ntI4kcoqG">Paper</a> </p>
<p>I introduce a Graph Neural Network for predicting future neural signals, which helps to recover the underlying neural dependencies.</p>
<p class="tech-stack">Keywords: intracortical recordings, Brain-Computer Interface, Graph Neural Networks</p>
</div>
</div>
<!-- Project 5 -->
<div class="project">
<img src="publications/alsar.jpg" alt="Project 2 Figure">
<div class="project-details">
<h3>AL-SAR: Active Learning for Skeleton-based Action Recognition</h3>
<p>Authors: <u>Jingyuan Li</u>, Trung Le, Eli Shlizerman. <br><i>IEEE TNNLS, 2023</i> <br><a class="tm-margin-b-10" href="https://pubmed.ncbi.nlm.nih.gov/37581978/">Paper</a> </p>
<p>I proposed an active learning method for semi-supervised behavior recognition, achieving strong action recognition performance under the circumstances when only a limited number of annotated samples are available.</p>
<p class="tech-stack">Keywords: Active Learning, semi-supervised Learning, Action Recognition</p>
</div>
</div>
<!-- Project 3 -->
<div class="project">
<img src="publications/openlabcluster.jpg" alt="Project 2 Figure">
<div class="project-details">
<h3>OpenLabCluster: Active Learning Based Clustering and Classification of Animal Behaviors in Videos Based on Automatically Extracted Kinematic Body Keypoints</h3>
<p>Authors: <u>Jingyuan Li</u>, Moishe Keselman, Eli Shlizerman. <br> <i>arXiv, 2022 </i><br> <a class="tm-margin-b-10" href="https://www.biorxiv.org/content/10.1101/2022.10.10.511660v1.full.pdf">Preprint</a>
<a class="tm-margin-b-10" href="https://github.com/shlizee/OpenLabCluster">GitHub</a> </p>
<p>I implemented an active learning pipeline for animal behavior recognition requiring a few of labeled animal behavior examples, a GUI was introduced for general uses.</p>
<p class="tech-stack">Keywords: Animal Behavior Recognition, Active Learning, Graphic User Interface</p>
</div>
</div>
<!-- Contact Section -->
<section id="contact">
<div class="container">
<h2>Contact Me</h2>
<form action="https://formspree.io/f/xqakkjze" method="POST">
<input type="text" name="name" placeholder="Your Name" required>
<input type="email" name="email" placeholder="Your Email" required>
<textarea name="message" placeholder="Your Message" required></textarea>
<input type="submit" value="Send Message">
</form>
</div>
</section>
<!-- Footer -->
<footer>
<p>© 2024 Jingyuan Li. All rights reserved.</p>
</footer>
</body>
</html>