-
Notifications
You must be signed in to change notification settings - Fork 2
/
i2c_tcb.c
561 lines (506 loc) · 16.7 KB
/
i2c_tcb.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
// interface for I2C devices using service queue and transaction control blocks (TCBs)
#include <math.h>
#include <stdlib.h>
#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <compat/twi.h>
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
#include "i2c_tcb.h"
#include "config.h"
#ifdef MCP23017_PRESENT
#include "MCP23017.h"
#endif
// this hack is supposed to help avr-gcc do 8-bit instead of 16-bit ops
static inline uint8_t only8 (uint8_t x) { return x; }
volatile uint8_t twi_state;
uint8_t twi_slarw;
static volatile uint8_t twi_masterBufferIndex;
static uint8_t twi_masterBufferLength;
static uint8_t* twi_masterBufferPtr;
uint8_t twi_reg_bytes;
uint8_t twi_reg_cnt;
uint8_t* twi_regs;
uint8_t* twi_rmw_mask;
static volatile uint8_t twi_error;
// forward declarations
void start_transaction(struct tcb* tran);
int8_t twi_readGeneric(uint8_t dev_addr, uint8_t* reg_addr_spec, uint8_t* data, int8_t length);
int8_t twi_writeGeneric(uint8_t dev_addr, uint8_t* reg_addr_spec, uint8_t* data, int8_t length);
// this fields is fixed , so we give it a label:
//struct tcb {
// uint8_t flags
//};
// remainder of block is an ordered sequence of data items; however items may be
// absent from the sequence if their values are implied by the flag byte
// uint8_t device_addr // 7-bit convention
// uint8_t register_MSB
// uint8_t register_LSB
// uint8_t data_length_bytes
// uint8_t literal data(in place in tcb) - one byte read or write only
// uint8_t mask_byte - one byte write only
// uint8_t data_pointer_MSB
// uint8_t data_pointer_LSB
//#define WELL_KNOWN_TRANSACTIONS
//(supported if compile option set) well known transaction is defined by a byte array:
// uint8_t flags; // the predefined flag bits 7..3 applying to this transaction
// uint8_t sequence_bits; // selects local vs tcb source of data for transaction execution
// e.g. 0b10000000 would take device_addr from local table, rest from tcb
// followed by local table
// uint8_t device_addr
// uint8_t register_MSB
// [...]
volatile struct quickread quickreads[] = {
{0, 0, MCP23017_UNIT0, {1, MCP23017_GPIOA}}
};
#define QR_END (struct quickread*)((uint8_t*)quickreads + sizeof(quickreads))
// All non-quickread transactions share a single round-robin fifo
uint8_t twi_fifo_write_pointer;
uint8_t twi_fifo_read_pointer;
#define TWI_FIFO_SIZE 8
struct tcb* twi_fifo[TWI_FIFO_SIZE];
#ifdef WELL_KNOWN_TRANSACTIONS
/******** well known transactions ***********/
// masked write to GPIOB, first MCP23017
uint8_t W_MCP0_PORTB[] = {
TCB_WRT_MASKED | 1<<TCB_REG_SHIFT | TCB_INPLACE, // flags
0b11000000, // seq: use preset for device addr, register addr
MCP23017_UNIT0,
MCP23017_OLATB,
};
//
uint8_t* wellknown_table[8] = {
W_MCP0_PORTB
};
#endif
struct tcb* tcb_in_progress;
// assumption: this is the only way I2C activity gets initiated (no mutexes needed)
// only call this if you know twi_state is TWI_READY.
void twi_process_queue() {
// mark last transaction as complete
if (tcb_in_progress != NULL) {
tcb_in_progress->flags &= ~TCB_COMPL;
tcb_in_progress = NULL;
}
// quickread entries are highest priority before FIFO queues
volatile struct quickread * qr;
for(qr = quickreads; qr!=QR_END; qr++) {
if(qr->pending) {
twi_readGeneric(qr->device, (uint8_t*)qr->reg_spec, (uint8_t*)(&qr->data), 1);
if(--(qr->pending)) { qr->pending=1; }
return;
}
}
// now process fifo
struct tcb* transaction = NULL;
if (twi_fifo_write_pointer == twi_fifo_read_pointer) {
return; // fifo is empty
}
transaction = twi_fifo[twi_fifo_read_pointer];
if((twi_fifo_read_pointer++)==TWI_FIFO_SIZE) {
twi_fifo_read_pointer=0; // wrap pointer
}
start_transaction(transaction);
return;
}
#ifdef WELL_KNOWN_TRANSACTIONS
struct {
uint8_t sequence_map;
uint8_t sequence_pointer;
uint8_t* tcb_byte;
uint8_t* presets_byte;
} tcb_feeder;
uint8_t* next_tcb_byte () {
if(tcb_feeder.sequence_pointer&tcb_feeder.sequence_map) {
return tcb_feeder.presets_byte++;
}
else {
return tcb_feeder.tcb_byte++;
}
tcb_feeder.sequence_pointer >>= 1;
}
#else
uint8_t* tcb_byte;
inline uint8_t* next_tcb_byte () {
return tcb_byte++;
}
#endif
uint8_t reg_addr_spec[3]; // addr width(0..2), MSB, LSB
void start_transaction(struct tcb* tran) {
if (tran==NULL) { return; }
uint8_t flags = tran->flags;
if (only8(flags&TCB_COMPL)==TCB_IDLE) { return; } // cancelled
#ifdef WELL_KNOWN_TRANSACTIONS
tcb_feeder.sequence_map = 0;
tcb_feeder.sequence_pointer = 0x80;
tcb_feeder.tcb_byte = (uint8_t*)(tran+1); // start of tcb variant section
if (only8(flags & TCB_RWW)==TCB_WK) { //read/write/wellknown flags
// well known transaction
tcb_feeder.presets_byte = wellknown_table[only8(flags & TCB_WKID)>>TCB_WK_SHIFT];
flags = *tcb_feeder.presets_byte++;
tcb_feeder.sequence_map = *tcb_feeder.presets_byte++;
}
#else
tcb_byte = (uint8_t*)(tran+1); // start of tcb variant section
#endif
// get device and register addresses
uint8_t dev_addr = *next_tcb_byte();
reg_addr_spec[0] = only8(flags&TCB_REG)>>TCB_REG_SHIFT; // number of register address bytes
if(reg_addr_spec[0]) {
reg_addr_spec[1] = *next_tcb_byte();
if(reg_addr_spec[0]==2) {
reg_addr_spec[2] = *next_tcb_byte();
}
}
// get length & data pointer
int8_t length;
uint8_t* data;
if(flags&TCB_INPLACE) { // in-place
length = 1;
data = next_tcb_byte();
// if (masked_write) {next_tcb_byte();} would need to skip mask, but this is last field
} else {
length = (int8_t)(*next_tcb_byte());
uint16_t data_t = (*next_tcb_byte() << 8);
data_t |= *next_tcb_byte();
data = (uint8_t*)data_t;
}
// start the transaction
if(only8(flags&TCB_RWW)==TCB_READ) { // read
twi_readGeneric(dev_addr, reg_addr_spec, data, length);
} else { // write
if (only8(flags&TCB_RWW)==TCB_WRT_MASKED) { // write masked
length = -length;
}
twi_writeGeneric(dev_addr, reg_addr_spec, data, length);
}
// set completion status
uint8_t newflags = tran->flags & ~TCB_COMPL;
newflags |= TCB_SERVICING;
tran->flags = newflags;
tcb_in_progress = tran; // save tcb pointer for final completion report
}
int8_t queue_TWI(struct tcb* control_block) {
uint8_t wrt = twi_fifo_write_pointer + 1;
if(wrt==TWI_FIFO_SIZE) {
wrt=0;
}
if(wrt == twi_fifo_read_pointer) {
return -1; // fail, queue full
}
twi_fifo[twi_fifo_write_pointer]=control_block;
twi_fifo_write_pointer = wrt;
uint8_t newflags = control_block->flags & ~TCB_COMPL;
newflags |= TCB_QUEUED;
control_block->flags = newflags;
if(twi_state==TWI_READY) {
twi_process_queue();
}
return 0; // success
}
inline void queue_quickread(uint8_t i) {
quickreads[i].pending++;
if(twi_state==TWI_READY) {
twi_process_queue();
}
}
/*** TBD:
int8_t setbit_TWI(struct tcb* control_block, uint8_t bitmask, uint8_t sync_mode) {
// sync_modes queue: wait on availability or return regardless
// completion: wait on service start, wait on completion,
// or return regardless
// timeout value if wait
return 0; //dummy
}
int8_t clearbit_TWI(struct tcb* control_block, uint8_t bitmask, uint8_t sync_mode) {
//TBD
return 0; //dummy
}
***/
int8_t twi_readGeneric(uint8_t dev_addr, uint8_t* reg_addr_spec, uint8_t* data, int8_t length)
{
if(TWI_READY != twi_state){
return -1; // busy
}
// reset error state (0xFF.. no error occured)
twi_error = 0xFF;
// initialize buffer iteration vars
twi_masterBufferPtr=data;
twi_masterBufferIndex = 0;
twi_masterBufferLength = length-1; // This is not intuitive, read on...
// On receive, the previously configured ACK/NACK setting is transmitted in
// response to the received byte before the interrupt is signalled.
// Therefor we must actually set NACK when the _next_ to last byte is
// received, causing that NACK to be sent in response to receiving the last
// expected byte of data.
twi_reg_bytes = reg_addr_spec[0];
twi_reg_cnt = 0;
if(twi_reg_bytes) {
// initialize register spec
twi_regs = reg_addr_spec+1;
twi_state = TWI_MTRX;
twi_slarw = TW_WRITE;
} else { // no register, simple read
twi_state = TWI_MRX;
twi_slarw = TW_READ;
}
twi_slarw |= dev_addr << 1;
// send start condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);
return 0; // success
}
int8_t twi_writeGeneric(uint8_t dev_addr, uint8_t* reg_addr_spec, uint8_t* data, int8_t length) {
if(TWI_READY != twi_state){
return -1; // busy
}
// negative length means do masked write; mask data immediately follows source data
if (length<0) {
twi_state = TWI_M_RMW;
length = -length;
twi_rmw_mask = data + length;
} else {
twi_state = TWI_MTX;
}
twi_slarw = TW_WRITE; // we change this if doing masked write with no register addr
// reset error state (0xFF.. no error occured)
twi_error = 0xFF;
twi_reg_bytes = reg_addr_spec[0];
twi_regs = reg_addr_spec+1;
twi_reg_cnt = 0;
twi_masterBufferPtr=data; // modified data is built in caller's data buffer during read
twi_masterBufferIndex = 0;
twi_masterBufferLength = length;
if (twi_state==TWI_M_RMW) {
twi_masterBufferLength -= 1; // adjust for read operation's NAK timing
if (twi_reg_bytes==0) {
twi_slarw = TW_READ;
}
}
// build sla+w, slave device address + w bit
twi_slarw |= dev_addr << 1;
// send start condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);
return 0; // success
}
/*
* Function twi_init
* Desc readys twi pins and sets twi bitrate
* Input none
* Output none
*/
void twi_init(void)
{
// initialize state
twi_state = TWI_READY;
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega8__) || defined(__AVR_ATmega328P__)
// activate internal pull-ups for twi
// as per note from atmega8 manual pg167
sbi(PORTC, 4);
sbi(PORTC, 5);
#else
// activate internal pull-ups for twi
// as per note from atmega128 manual pg204
sbi(PORTD, 0);
sbi(PORTD, 1);
#endif
// initialize twi prescaler and bit rate
cbi(TWSR, TWPS0);
cbi(TWSR, TWPS1);
TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;
/* twi bit rate formula from atmega128 manual pg 204
SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))
note: TWBR should be 10 or higher for master mode
It is 72 for a 16mhz Wiring board with 100kHz TWI */
// initialize transaction queue
twi_fifo_init();
// enable twi module, acks, and twi interrupt
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA);
}
void twi_fifo_init() {
// clear all pending quickreads
volatile struct quickread* qr;
for(qr = quickreads; qr!=QR_END; qr++) {
qr->pending=0;
}
// set fifo empty
twi_fifo_write_pointer=twi_fifo_read_pointer=0;
// set last transaction pointer NULL
tcb_in_progress = NULL;
}
/************** low level interrupt service routines ****************/
/*
* Function twi_reply
* Desc sends byte or readys receive line
* Input ack: byte indicating to ack or to nack
* Output none
*/
void twi_reply(uint8_t ack)
{
// transmit master read ready signal, with or without ack
if(ack){
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT) | _BV(TWEA);
}else{
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT);
}
}
/*
* Function twi_stop
* Desc relinquishes bus master status
* Input none
* Output none
*/
void twi_stop(void)
{
// send stop condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO);
// wait for stop condition to be exectued on bus
// TWINT is not set after a stop condition!
while(TWCR & _BV(TWSTO)){
continue;
}
// update twi state
twi_state = TWI_READY;
// proceed with any queued transactions
twi_process_queue();
}
/*
* Function twi_releaseBus
* Desc releases bus control
* Input none
* Output none
*/
void twi_releaseBus(void)
{
// release bus
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT);
// update twi state
twi_state = TWI_READY;
}
SIGNAL(TWI_vect)
{
switch(TW_STATUS){
// All Master
case TW_START: // sent start condition
case TW_REP_START: // sent repeated start condition
// copy device address and r/w bit to output register and ack
TWDR = twi_slarw;
twi_reply(1); // ack
break;
// Master Transmitter
case TW_MT_SLA_ACK: // slave receiver acked address
case TW_MT_DATA_ACK: // slave receiver acked data
if(twi_reg_cnt < twi_reg_bytes) {
TWDR = twi_regs[twi_reg_cnt++];
twi_reply(1);
break;
}
if(twi_state==TWI_MTRX || twi_state==TWI_M_RMW) {
// finished writing register address, now do a repeated start and read
// timing problem with repeated start? send stop/start
// send stop condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO);
while(TWCR & _BV(TWSTO)){
continue;
}
twi_slarw |= TW_READ;
// now start
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);
break;
}
// if there is data to send, send it, otherwise stop
if(twi_masterBufferIndex < twi_masterBufferLength){
// copy data to output register and ack
TWDR = *(twi_masterBufferPtr+twi_masterBufferIndex++);
twi_reply(1); // ack
}else {
twi_stop();
}
break;
case TW_MT_SLA_NACK: // address sent, nack received
twi_error = TW_MT_SLA_NACK;
twi_stop();
break;
case TW_MT_DATA_NACK: // data sent, nack received
twi_error = TW_MT_DATA_NACK;
twi_stop();
break;
case TW_MT_ARB_LOST: // lost bus arbitration
twi_error = TW_MT_ARB_LOST;
twi_releaseBus();
break;
// Master Receiver
case TW_MR_DATA_ACK: // data received, ack sent
if(twi_state != TWI_M_RMW) {
// put byte into buffer
*(twi_masterBufferPtr+twi_masterBufferIndex++) = TWDR;
} else { // using tmi_rmw_data as buffer
twi_masterBufferPtr[twi_masterBufferIndex] =
(twi_masterBufferPtr[twi_masterBufferIndex] & twi_rmw_mask[twi_masterBufferIndex])
| (TWDR & ~twi_rmw_mask[twi_masterBufferIndex]);
twi_masterBufferIndex++;
}
case TW_MR_SLA_ACK: // address sent, ack received
// ack if more bytes are expected, otherwise nack
if(twi_masterBufferIndex < twi_masterBufferLength){
twi_reply(1); // ack
}else{
twi_reply(0); // nack; next byte recvd will be last
}
break;
case TW_MR_DATA_NACK: // data received, nack sent
if(twi_state != TWI_M_RMW) {
// put final byte into buffer
*(twi_masterBufferPtr+twi_masterBufferIndex++) = TWDR;
} else {
twi_masterBufferPtr[twi_masterBufferIndex] =
(twi_masterBufferPtr[twi_masterBufferIndex] & twi_rmw_mask[twi_masterBufferIndex])
| (TWDR & ~twi_rmw_mask[twi_masterBufferIndex]);
// finished read/modify phase of read-modify-write operation;
// reset pointers
twi_masterBufferIndex = 0;
twi_masterBufferLength++; // read mode used decremented length
twi_reg_cnt = 0;
twi_state = TWI_MTX;
twi_slarw &= ~TW_READ; // reset to WRITE mode & send repeated start
// timing problem with repeated start? send stop/start
// send stop condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO);
while(TWCR & _BV(TWSTO)){
continue;
}
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);
break;
}
case TW_MR_SLA_NACK: // address sent, nack received
twi_stop();
break;
// TW_MR_ARB_LOST handled by TW_MT_ARB_LOST case
// Slave Receiver
case TW_SR_SLA_ACK: // addressed, returned ack
case TW_SR_GCALL_ACK: // addressed generally, returned ack
case TW_SR_ARB_LOST_SLA_ACK: // lost arbitration, returned ack
case TW_SR_ARB_LOST_GCALL_ACK: // lost arbitration, returned ack
case TW_SR_DATA_ACK: // data received, returned ack
case TW_SR_GCALL_DATA_ACK: // data received generally, returned ack
case TW_SR_STOP: // stop or repeated start condition received
case TW_SR_DATA_NACK: // data received, returned nack
case TW_SR_GCALL_DATA_NACK: // data received generally, returned nack
case TW_ST_SLA_ACK: // addressed, returned ack
case TW_ST_ARB_LOST_SLA_ACK: // arbitration lost, returned ack
case TW_ST_DATA_ACK: // byte sent, ack returned
case TW_ST_DATA_NACK: // received nack, we are done
case TW_ST_LAST_DATA: // received ack, but we are done already!
// All
case TW_NO_INFO: // no state information
break;
case TW_BUS_ERROR: // bus error, illegal stop/start
twi_error = TW_BUS_ERROR;
twi_stop();
break;
}
}