-
Notifications
You must be signed in to change notification settings - Fork 41
/
circ_ktest.m
54 lines (47 loc) · 1.32 KB
/
circ_ktest.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
function [pval, f] = circ_ktest(alpha1, alpha2)
% [pval, f] = circ_ktest(alpha1, alpha2)
%
% A parametric two-sample test to determine whether two concentration
% parameters are different.
%
% H0: The two concentration parameters are equal.
% HA: The two concentration parameters are different.
%
% Input:
% alpha1 fist sample (in radians)
% alpha2 second sample (in radians)
%
% Output:
% pval p-value that samples have different concentrations
% f f-statistic calculated
%
% Assumptions: both samples are drawn from von Mises type distributions
% and their joint resultant vector length should be > .7
%
% References:
% Batschelet, 1980, section 6.9, pg 122-124
%
% Circular Statistics Toolbox for Matlab
% By Marc J. Velasco, 2009
alpha1 = alpha1(:);
alpha2 = alpha2(:);
n1 = length(alpha1);
n2 = length(alpha2);
R1 = n1*circ_r(alpha1);
R2 = n2*circ_r(alpha2);
% make sure that rbar > .7
rbar = (R1+R2)/(n1+n2);
if rbar < .7
warning('CIRCSTAT:circ_ktest:vectorTooShort', ...
'Resultant vector length should be > 0.7') %#ok<WNTAG>
end
% calculate test statistic
f = ((n2-1)*(n1-R1))/((n1-1)*(n2-R2));
if f > 1
pval = 2*(1-fcdf(f, n1, n2));
else
f = 1/f;
pval = 2*(1-fcdf(f, n2, n1));
end
end