You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When I run train_db.sh , i meet the following error messege:
(scaffold_gs) root@autodl-container-1b3442a671-d472fe41:~/autodl-tmp/Scaffold-GS# bash train_db.sh
0
Setting up [LPIPS] perceptual loss: trunk [vgg], v[0.1], spatial [off]
/root/miniconda3/envs/scaffold_gs/lib/python3.7/site-packages/torchvision/models/_utils.py:209: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and will be removed in 0.15, please use 'weights' instead.
f"The parameter '{pretrained_param}' is deprecated since 0.13 and will be removed in 0.15, "
/root/miniconda3/envs/scaffold_gs/lib/python3.7/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or None for 'weights' are deprecated since 0.13 and will be removed in 0.15. The current behavior is equivalent to passing weights=VGG16_Weights.IMAGENET1K_V1. You can also use weights=VGG16_Weights.DEFAULT to get the most up-to-date weights.
warnings.warn(msg)
Loading model from: /root/miniconda3/envs/scaffold_gs/lib/python3.7/site-packages/lpips/weights/v0.1/vgg.pth
not found tf board
2024-10-29 13:04:00,513 - INFO: args: Namespace(add_color_dist=False, add_cov_dist=False, add_opacity_dist=False, appearance_dim=0, appearance_lr_delay_mult=0.01, appearance_lr_final=0.0005, appearance_lr_init=0.05, appearance_lr_max_steps=30000, checkpoint_iterations=[], compute_cov3D_python=False, convert_SHs_python=False, data_device='cuda', debug=False, debug_from=-1, densify_grad_threshold=0.0002, detect_anomaly=False, ds=1, eval=True, feat_dim=32, feature_lr=0.0075, gpu='-1', images='images', ip='127.0.0.1', iterations=30000, lambda_dssim=0.2, lod=0, lowpoly=False, min_opacity=0.005, mlp_color_lr_delay_mult=0.01, mlp_color_lr_final=5e-05, mlp_color_lr_init=0.008, mlp_color_lr_max_steps=30000, mlp_cov_lr_delay_mult=0.01, mlp_cov_lr_final=0.004, mlp_cov_lr_init=0.004, mlp_cov_lr_max_steps=30000, mlp_featurebank_lr_delay_mult=0.01, mlp_featurebank_lr_final=1e-05, mlp_featurebank_lr_init=0.01, mlp_featurebank_lr_max_steps=30000, mlp_opacity_lr_delay_mult=0.01, mlp_opacity_lr_final=2e-05, mlp_opacity_lr_init=0.002, mlp_opacity_lr_max_steps=30000, model_path='outputs/blending/playroom/baseline/2024-10-29_13:03:54', n_offsets=10, offset_lr_delay_mult=0.01, offset_lr_final=0.0001, offset_lr_init=0.01, offset_lr_max_steps=30000, opacity_lr=0.02, percent_dense=0.01, port=10765, position_lr_delay_mult=0.01, position_lr_final=0.0, position_lr_init=0.0, position_lr_max_steps=30000, quiet=False, ratio=1, resolution=-1, rotation_lr=0.002, save_iterations=[30000, 30000], scaling_lr=0.007, sh_degree=3, source_path='data/blending/playroom', start_checkpoint=None, start_stat=500, success_threshold=0.8, test_iterations=[30000], undistorted=False, update_depth=3, update_from=1500, update_hierachy_factor=4, update_init_factor=16, update_interval=100, update_until=15000, use_feat_bank=False, use_wandb=False, voxel_size=0.005, warmup=False, white_background=False)
Backup Finished!
2024-10-29 13:04:00,741 - INFO: Optimizing outputs/blending/playroom/baseline/2024-10-29_13:03:54
Output folder: outputs/blending/playroom/baseline/2024-10-29_13:03:54 [29/10 13:04:00]
Tensorboard not available: not logging progress [29/10 13:04:00]
Traceback (most recent call last):
File "train.py", line 527, in
training(lp.extract(args), op.extract(args), pp.extract(args), dataset, args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, wandb, logger)
File "train.py", line 87, in training
scene = Scene(dataset, gaussians, ply_path=ply_path, shuffle=False)
File "/root/autodl-tmp/Scaffold-GS/scene/init.py", line 50, in init
assert False, "Could not recognize scene type!"
AssertionError: Could not recognize scene type!
Could you give me some advice about how to solve it?
The text was updated successfully, but these errors were encountered:
When I run train_db.sh , i meet the following error messege:
(scaffold_gs) root@autodl-container-1b3442a671-d472fe41:~/autodl-tmp/Scaffold-GS# bash train_db.sh
0
Setting up [LPIPS] perceptual loss: trunk [vgg], v[0.1], spatial [off]
/root/miniconda3/envs/scaffold_gs/lib/python3.7/site-packages/torchvision/models/_utils.py:209: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and will be removed in 0.15, please use 'weights' instead.
f"The parameter '{pretrained_param}' is deprecated since 0.13 and will be removed in 0.15, "
/root/miniconda3/envs/scaffold_gs/lib/python3.7/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or
None
for 'weights' are deprecated since 0.13 and will be removed in 0.15. The current behavior is equivalent to passingweights=VGG16_Weights.IMAGENET1K_V1
. You can also useweights=VGG16_Weights.DEFAULT
to get the most up-to-date weights.warnings.warn(msg)
Loading model from: /root/miniconda3/envs/scaffold_gs/lib/python3.7/site-packages/lpips/weights/v0.1/vgg.pth
not found tf board
2024-10-29 13:04:00,513 - INFO: args: Namespace(add_color_dist=False, add_cov_dist=False, add_opacity_dist=False, appearance_dim=0, appearance_lr_delay_mult=0.01, appearance_lr_final=0.0005, appearance_lr_init=0.05, appearance_lr_max_steps=30000, checkpoint_iterations=[], compute_cov3D_python=False, convert_SHs_python=False, data_device='cuda', debug=False, debug_from=-1, densify_grad_threshold=0.0002, detect_anomaly=False, ds=1, eval=True, feat_dim=32, feature_lr=0.0075, gpu='-1', images='images', ip='127.0.0.1', iterations=30000, lambda_dssim=0.2, lod=0, lowpoly=False, min_opacity=0.005, mlp_color_lr_delay_mult=0.01, mlp_color_lr_final=5e-05, mlp_color_lr_init=0.008, mlp_color_lr_max_steps=30000, mlp_cov_lr_delay_mult=0.01, mlp_cov_lr_final=0.004, mlp_cov_lr_init=0.004, mlp_cov_lr_max_steps=30000, mlp_featurebank_lr_delay_mult=0.01, mlp_featurebank_lr_final=1e-05, mlp_featurebank_lr_init=0.01, mlp_featurebank_lr_max_steps=30000, mlp_opacity_lr_delay_mult=0.01, mlp_opacity_lr_final=2e-05, mlp_opacity_lr_init=0.002, mlp_opacity_lr_max_steps=30000, model_path='outputs/blending/playroom/baseline/2024-10-29_13:03:54', n_offsets=10, offset_lr_delay_mult=0.01, offset_lr_final=0.0001, offset_lr_init=0.01, offset_lr_max_steps=30000, opacity_lr=0.02, percent_dense=0.01, port=10765, position_lr_delay_mult=0.01, position_lr_final=0.0, position_lr_init=0.0, position_lr_max_steps=30000, quiet=False, ratio=1, resolution=-1, rotation_lr=0.002, save_iterations=[30000, 30000], scaling_lr=0.007, sh_degree=3, source_path='data/blending/playroom', start_checkpoint=None, start_stat=500, success_threshold=0.8, test_iterations=[30000], undistorted=False, update_depth=3, update_from=1500, update_hierachy_factor=4, update_init_factor=16, update_interval=100, update_until=15000, use_feat_bank=False, use_wandb=False, voxel_size=0.005, warmup=False, white_background=False)
Backup Finished!
2024-10-29 13:04:00,741 - INFO: Optimizing outputs/blending/playroom/baseline/2024-10-29_13:03:54
Output folder: outputs/blending/playroom/baseline/2024-10-29_13:03:54 [29/10 13:04:00]
Tensorboard not available: not logging progress [29/10 13:04:00]
Traceback (most recent call last):
File "train.py", line 527, in
training(lp.extract(args), op.extract(args), pp.extract(args), dataset, args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, wandb, logger)
File "train.py", line 87, in training
scene = Scene(dataset, gaussians, ply_path=ply_path, shuffle=False)
File "/root/autodl-tmp/Scaffold-GS/scene/init.py", line 50, in init
assert False, "Could not recognize scene type!"
AssertionError: Could not recognize scene type!
Could you give me some advice about how to solve it?
The text was updated successfully, but these errors were encountered: