-
Notifications
You must be signed in to change notification settings - Fork 146
/
ec2.go
133 lines (119 loc) · 4.09 KB
/
ec2.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
package bls12381
import "github.com/cloudflare/circl/ecc/bls12381/ff"
func doubleAndLine(P *G2, l *line) {
// Reference:
// "Faster Pairing Computations on Curves with High-Degree Twists" by
// Costello-Lange-Naehrig. [Sec. 5] (eprint.iacr.org/2009/615).
// "Complete addition formulas for prime order elliptic curves" by
// Costello-Renes-Batina. [Alg.9] (eprint.iacr.org/2015/1060).
var R G2
X, Y, Z := &P.x, &P.y, &P.z
X3, Y3, Z3 := &R.x, &R.y, &R.z
isDoubLine := l != nil
_3B := &g2Params._3b
var A, B, C, D, E, F, G, T ff.Fp2
B.Sqr(Y) // 1. B = Y1^2
C.Sqr(Z) // 2. C = Z1^2
D.Mul(_3B, &C) // 3. D = 3b*C
F.Add(Y, Z) // 4. F = (Y1+Z1)
F.Sqr(&F) // F = (Y1+Z1)^2
F.Sub(&F, &B) // F = (Y1+Z1)^2-B
F.Sub(&F, &C) // F = (Y1+Z1)^2-B-C
if isDoubLine {
A.Sqr(X) // 5. A = X1^2
E.Add(X, Y) // E = (X1+Y1)
E.Sqr(&E) // E = (X1+Y1)^2
E.Sub(&E, &A) // E = (X1+Y1)^2-A
E.Sub(&E, &B) // E = (X1+Y1)^2-A-B = 2X*Y
l[0].Add(&A, &A) // 5a. l0 = 2A
l[0].Add(&l[0], &A) // l0 = 3A = 3X1^2
l[1] = F // 5b. l1 = F
l[1].Neg() // l1 = -F = -2Y1Z1
l[2].Sub(&D, &B) // 5c. l2 = D-B = 3b*Z1^2-Y1^2
} else {
E.Mul(X, Y) // 5. E = X*Y
E.Add(&E, &E) // E = 2X*Y
}
T.Add(&D, &D) // 6. T = 2D
G.Add(&T, &D) // 7. G = 3D
X3.Sub(&B, &G) // 8. X3 = (B-G)
X3.Mul(X3, &E) // X3 = E*(B-G)
T.Sqr(&T) // 9 . T = 4D^2
Y3.Add(&B, &G) // 10. Y3 = (B+G)
Y3.Sqr(Y3) // Y3 = (B+G)^2
Y3.Sub(Y3, &T) // Y3 = (B+G)^2-4D^2
Y3.Sub(Y3, &T) // Y3 = (B+G)^2-8D^2
Y3.Sub(Y3, &T) // Y3 = (B+G)^2-12D^2
Z3.Mul(&B, &F) // 11. Z3 = B*F
Z3.Add(Z3, Z3) // Z3 = 2B*F
Z3.Add(Z3, Z3) // Z3 = 4B*F
*P = R
}
func addAndLine(PQ, P, Q *G2, l *line) {
// Reference:
// "Faster Pairing Computations on Curves with High-Degree Twists" by
// Costello-Lange-Naehrig. [Sec. 5] (eprint.iacr.org/2009/615).
// "Complete addition formulas for prime order elliptic curves" by
// Costello-Renes-Batina. [Alg.7] (eprint.iacr.org/2015/1060).
var R G2
X1, Y1, Z1 := &P.x, &P.y, &P.z
X2, Y2, Z2 := &Q.x, &Q.y, &Q.z
X3, Y3, Z3 := &R.x, &R.y, &R.z
_3B := &g2Params._3b
isAddLine := l != nil
var X1X2, Y1Y2, Z1Z2, _3bZ1Z2 ff.Fp2
var A, B, C, D, E, F, G ff.Fp2
t0, t1 := &ff.Fp2{}, &ff.Fp2{}
X1X2.Mul(X1, X2)
Y1Y2.Mul(Y1, Y2)
Z1Z2.Mul(Z1, Z2)
_3bZ1Z2.Mul(&Z1Z2, _3B)
A.Add(&X1X2, &X1X2) // A = 2X1X2
A.Add(&A, &X1X2) // = 3X1X2
B.Add(&Y1Y2, &_3bZ1Z2) // B = Y1Y2+3bZ1Z2
C.Sub(&Y1Y2, &_3bZ1Z2) // C = Y1Y2-3bZ1Z2
t0.Add(X1, Y1) // t0 = (X1 + Y1)
D.Add(X2, Y2) // D = (X2 + Y2)
D.Mul(&D, t0) // = X1X2 + X1Y2 + X2Y1 + Y1Y2
D.Sub(&D, &X1X2) // = X1Y2 + X2Y1 + Y1Y2
D.Sub(&D, &Y1Y2) // = X1Y2 + X2Y1
if isAddLine {
var EE, FF ff.Fp2
t0.Mul(Y1, Z2) // t0 = Y1Z2
t1.Mul(Y2, Z1) // t1 = Y2Z1
E.Add(t0, t1) // E = Y1Z2 + Y2Z1
EE.Sub(t0, t1) // EE = Y1Z2 - Y2Z1
t0.Mul(X1, Z2) // t0 = X1Z2
t1.Mul(X2, Z1) // t1 = X2Z1
F.Add(t0, t1) // F = X1Z2 + X2Z1
FF.Sub(t0, t1) // FF = X1Z2 - X2Z1
l[0].Mul(&EE, Z2) // l0 = (Y1Z2 - Y2Z1)*Z2
l[0].Neg() // = -(Y1Z2 - Y2Z1)*Z2
l[1].Mul(&FF, Z2) // l1 = (X1Z2 - X2Z1)*Z2
t0.Mul(&FF, Y2) // t0 = (X1Z2 - X2Z1)*Y2
l[2].Mul(&EE, X2) // l2 = (Y1Z2 - Y2Z1)*X2
l[2].Sub(&l[2], t0) // = (Y1Z2 - Y2Z1)*X2 - (X1Z2 - X2Z1)*Y2
} else {
t0.Add(Y1, Z1) // t0 = (Y1 + Z1)
t1.Add(Y2, Z2) // t1 = (Y2 + Z2)
E.Mul(t0, t1) // E = Y1Y2 + Y1Z2 + Y2Z1 + Z1Z2
E.Sub(&E, &Y1Y2) // = Y1Z2 + Y2Z1 + Z1Z2
E.Sub(&E, &Z1Z2) // = Y1Z2 + Y2Z1
t0.Add(X1, Z1) // t0 = (X1 + Z1)
t1.Add(X2, Z2) // t1 = (X2 + Z2)
F.Mul(t0, t1) // F = X1X2 + X1Z2 + X2Z1 + Z1Z2
F.Sub(&F, &X1X2) // = X1Z2 + X2Z1 + Z1Z2
F.Sub(&F, &Z1Z2) // = X1Z2 + X2Z1
}
G.Mul(&F, _3B) // G = 3b*F
t0.Mul(&E, &G) // t0 = E*G
X3.Mul(&D, &C) // X3 = D*C
X3.Sub(X3, t0) // = D*C - E*G
t0.Mul(&A, &G) // t0 = A*G
Y3.Mul(&B, &C) // Y3 = B*C
Y3.Add(Y3, t0) // = B*C + A*G
t0.Mul(&A, &D) // t0 = A*D
Z3.Mul(&E, &B) // Z3 = E*B
Z3.Add(Z3, t0) // = E*B + A*D
*PQ = R
}