-
Notifications
You must be signed in to change notification settings - Fork 7
/
CDistance_matrix.h
811 lines (641 loc) · 24.2 KB
/
CDistance_matrix.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
/* BaitFisher (version 1.2.7) a program for designing DNA target enrichment baits
* Copyright 2013-2016 by Christoph Mayer
*
* This source file is part of the BaitFisher-package.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with BaitFisher. If not, see <http://www.gnu.org/licenses/>.
*
*
* For any enquiries send an Email to Christoph Mayer
*
* When publishing work that is based on the results please cite:
* Mayer et al. 2016: BaitFisher: A software package for multi-species target DNA enrichment probe design
*
*/
#ifndef CDISTANCE_MATRIX_H
#define CDISTANCE_MATRIX_H
#include <iostream>
#include <map>
#include "faststring2.h"
#include <list>
#include <iterator>
#include <set>
typedef unsigned long index_distance_map;
//************************************************
// Usage-Restrictions:
//
// Minimum number of entries:
// CDistanceCollection: Number of objects >= 0. Note: 0 and 1 Objects cannot be distinguished.
// CDistance_Cluster: Number of objects > 1. 2 Objects: remains to be tested.
//************************************************
//************************************************
// Part I: Distance indices
// In order to index pairs of sequences we do the following:
// If we have two sequence numbers we assume they are smaller than short integers (16 bits).
// We can combine the two short numbers to a 32 bit index of both. This index is unique if
// we put the smaller sequence index into the higher bits and the larger index into the lower bits.
// Distance indices are of type unsigned and must be 32 bits in size in order to work.
//
// The following routines handle the index conversions:
// makeIndex creates an unsigned combined index from 2 short numbers.
// first_index and second_index extract the first and the second index of a pair.
//
// Note: Initial indices of sequnces: These should be the indices of the sequnces in the file.
// They have to be unique in the range 0...taxaNum-1.
// During the clustering we create new indices of cluster nodes.
// In contrast to the distance indices, cluster indices are of type short.
//
// How the clustering is done:
// cluster_node is the main data structure in the clustering method.
// The hierachy of clustering steps are stored in the cluster_hierarchy,
// a vector of cluster nodes.
// The cluster_hierarchy has a very special form:
// The index of each node coincides with the this_nodes_index.
// This makes it efficient to obtain the cluster hierachy without
// having to search for the correct index.
//
//
//==============
// Algorithm:
//==============
// We start by adding all pairwise distances to the dist_map.
// The indices of the pairwise distances are added to the current_cluster_indices
// as well as the all_cluster_indices.
//
// Initially the pairwise distances are added as terminal nodes to the cluster_hierarchy.
// This is done by adding the indices of the pairwise distances to the cluster_hierarchy.
// Internally, they have children set to -1 and distance 0, indicating that they
// do not represent clustering steps.
// Note: The cluster_hierarchy is only used to keep track of the clustering steps.
// The next step in the algorithm is determined from the sorted_distances,
// a list of iterators to the current_cluster_indices. The list of
// sorted_distances keeps a list of iterators in accending order of the
// distances associated with the index.
// Later we add cluster_nodes that have other cluster_nodes as children.
// Distances that have been clustered are marked for deletion and are erased permanently later. (For details, read the code.)
//************************************************
inline unsigned makeIndex(short i1, short i2)
{
unsigned res;
if (i1 > i2)
{
res = i2;
res <<= 16;
res += i1;
return res;
}
else
{
res = i1;
res <<= 16;
res += i2;
return res;
}
}
inline short first_index(unsigned i)
{
i >>= 16;
return (short) i;
}
inline short second_index(unsigned i)
{
return (short) i;
}
// CDistanceCollection collects distance of indexed objects, i.e. objects are referred to by their index.
// Distances are stored in a map, which is useful (i) if new objects are introduced regularly, or (ii) if not
// all distances are specified.
class CDistanceCollection
{
public:
typedef std::map<index_distance_map, double> CDistanceCollection_map;
typedef std::map<index_distance_map, double>::iterator CDistanceCollection_map_iterator;
protected:
CDistanceCollection_map dist_map;
public:
void clear()
{
dist_map.clear();
}
void add(short i1, short i2, double d)
{
dist_map[makeIndex(i1, i2)] = d;
}
void print(std::ostream &os)
{
CDistanceCollection_map_iterator it = dist_map.begin();
CDistanceCollection_map_iterator it_end = dist_map.end();
unsigned u;
double d;
while (it != it_end)
{
u = it->first;
d = it->second;
os << "d("<< first_index(u) << "," << second_index(u) << ")="<<d << std::endl;
++it;
}
}
double max_distance()
{
CDistanceCollection_map_iterator it = dist_map.begin();
CDistanceCollection_map_iterator it_end = dist_map.end();
double d, d_max;
if (it == it_end)
return 0;
d_max = it->second;
while (it != it_end)
{
d = it->second;
d_max = (d_max > d ? d_max:d);
++it;
}
return d_max;
}
};
struct less_than_distance_iterator
{
bool operator()(CDistanceCollection::CDistanceCollection_map_iterator it1, CDistanceCollection::CDistanceCollection_map_iterator it2)
{
return it1->second < it2->second;
}
};
struct cluster_node
{
short this_nodes_index; // The index of this node in the cluster_hierarchy vector, but also the index of the node that has the following two children.
short child1;
short child2;
double dist;
bool unused;
// constructor
cluster_node(short index_this, short ch1, short ch2, double d):
this_nodes_index(index_this),child1(ch1), child2(ch2), dist(d), unused(false)
{}
// constructor - terminal node
// This node only represents itself and it has no children. So these indices are -1.
cluster_node(short index):
this_nodes_index(index),child1(-1), child2(-1), dist(0), unused(false)
{}
// cluster_node(): unused(true)
// {}
bool is_terminal()
{
return (child1 == -1);
}
bool is_unused()
{
return unused;
}
};
class CDistance_Cluster : public CDistanceCollection
{
std::list<CDistanceCollection_map_iterator> sorted_distances;
// Sets of indices that are known:
std::set<short> current_cluster_indices; // Indices of objects added to clustering. (Not indices of distances.)
// Keeps track of remaining indices that need to be clustered.
// Indices that have been clustered are removed.
std::set<short> all_cluster_indices; // Keeps track of all cluster indices that have ever been created.
std::vector< cluster_node > cluster_hierarchy;
unsigned verbosity;
public:
CDistance_Cluster(unsigned p_verbosity=0):verbosity(p_verbosity)
{}
void clear(unsigned newverbosity=-1u)
{
sorted_distances.clear();
current_cluster_indices.clear();
all_cluster_indices.clear();
cluster_hierarchy.clear();
CDistanceCollection::clear();
if (newverbosity != -1u)
verbosity = newverbosity;
}
// At the end of the clustering this is the number of clusters.
unsigned get_num_groups_in_current_cluster()
{
return current_cluster_indices.size();
}
void sort()
{
less_than_distance_iterator lti;
sorted_distances.sort(lti);
}
// Add terminal node to cluster hierarchy
void addto_cluster_hierarchy(short index)
{
cluster_hierarchy.push_back(cluster_node(index));
// The index of this new node should be equal to index.
short i = cluster_hierarchy.size();
if ((i-1) != index)
{
std::cerr << "Error: Indices must be passed consecutively and 0 based to the cluster hierarchy" << std::endl;
}
}
// Add terminal node to cluster hierarchy
void addto_cluster_hierarchy(short index, short child1, short child2, double d)
{
cluster_hierarchy.push_back(cluster_node(index, child1, child2, d));
// The index of this new node should be equal to index.
short i = cluster_hierarchy.size();
if ((i-1) != index)
{
std::cerr << "Error: Indices must be passed consecutively and 0 based to the cluster hierarchy" << std::endl;
}
}
void add_singleton(short i)
{
current_cluster_indices.insert(i);
all_cluster_indices.insert(i);
}
void add(short i1, short i2, double d)
{
if (i1 == i2)
{
std::cerr << "Distances of indices to itself cannot be added to the distance matrix. They will always be assumed to be 0" << std::endl;
exit(-2);
}
std::pair<CDistanceCollection_map_iterator,bool> ret;
ret = dist_map.insert(std::make_pair(makeIndex(i1, i2), d));
if (ret.second)
sorted_distances.push_back(ret.first);
current_cluster_indices.insert(i1);
current_cluster_indices.insert(i2);
all_cluster_indices.insert(i1);
all_cluster_indices.insert(i2);
}
// Do not enter the indices to the sets.
// This can be done later.
void add_partial(short i1, short i2, double d)
{
if (i1 == i2)
{
std::cerr << "Distances of indices to itself cannot be added to the distance matrix. They will always be assumed to be 0" << std::endl;
exit(-2);
}
std::pair<CDistanceCollection_map_iterator,bool> ret;
ret = dist_map.insert(std::make_pair(makeIndex(i1, i2), d));
if (ret.second)
sorted_distances.push_back(ret.first);
}
void print_sorted(std::ostream &os)
{
sort();
std::list<CDistanceCollection_map_iterator>::iterator it, it_end;
it = sorted_distances.begin();
it_end = sorted_distances.end();
unsigned u;
double d;
while (it != it_end)
{
u = (*it)->first;
d = (*it)->second;
os << "d("<< first_index(u) << "," << second_index(u) << ")="<<d << std::endl;
++it;
}
}
void print_current_cluster_indices(std::ostream &os)
{
std::set<short>::iterator it_cluster_indices = current_cluster_indices.begin();
std::set<short>::iterator it_cluster_indices_end = current_cluster_indices.end();
while (it_cluster_indices != it_cluster_indices_end)
{
os << *it_cluster_indices << ",";
++it_cluster_indices;
}
os << std::endl;
}
void run_clustering(double distance_limit)
{
std::set<short>::iterator it_cluster_indices = current_cluster_indices.begin();
std::set<short>::iterator it_cluster_indices_end = current_cluster_indices.end();
// Add all indices as terminal nodes in cluster_hierarchy.
// The cluster_hierarchy is only used to keep track of the clustering steps.
while (it_cluster_indices != it_cluster_indices_end)
{
addto_cluster_hierarchy(*it_cluster_indices);
++it_cluster_indices;
}
if(verbosity > 10)
{
faststring cluster_string;
std::cerr << "Initial cluster string:" << std::endl;
get_cluster_string2(cluster_string);
std::cerr << cluster_string << std::endl;
}
// The next step in the algorithm is determined from the "sorted_distances",
// a list of iterators to the current_cluster_indices. The list of
// sorted_distances keeps a list of iterators in accending order of the
// distances associated with the index.
std::list<CDistanceCollection_map_iterator>::iterator it, it_end;
// sorted_distances is a list of iterators of type CDistanceCollection_map_iterator.
// We sort this iterator list such that the iterators to the dist_map (index->distance)
// is sorted according to the distance. Smaller distances come first.
sort();
it = sorted_distances.begin();
it_end = sorted_distances.end();
unsigned u;
short index1;
short index2;
short tmp_index;
short new_cluster_index;
// We continue to cluster pairs of indices while we still find distances which are less than the threshold
while (sorted_distances.size() > 0 && (*it)->second <= distance_limit)
{
// The pair with the smalles distance is the first one in the sorted_distances list.
// We cluster the pair of indices it is pointing to:
u = (*it)->first;
index1 = first_index(u);
index2 = second_index(u);
// Obsolete: cluster_hierarchy.push_back(std::make_pair(index1, index2));
// Determine a new unique index for the next cluster node.
new_cluster_index = all_cluster_indices.size();
if (verbosity > 10)
std::cerr << "Outer loop -- Clustering: " << index1 << ", " << index2 << " to " << new_cluster_index << std::endl;
// Eliminate all distances of index pairs for which one index is equal to index1 or index2.
it_cluster_indices = current_cluster_indices.begin();
it_cluster_indices_end = current_cluster_indices.end();
// Save within distance of new cluster:
double within_distance = dist_map[makeIndex(index1, index2)];
// Add new cluster to hierarchy.
addto_cluster_hierarchy(new_cluster_index, index1, index2, within_distance);
// Eliminate distance pair index1, index2:
dist_map[makeIndex(index1, index2)] = -1; // Mark as unused
if (verbosity > 10)
std::cerr << "Mark unused: " << index1 << " , " << index2 << std::endl;
// Move through all indices that are not in the new cluster.
while (it_cluster_indices != it_cluster_indices_end)
{
tmp_index = *it_cluster_indices;
if (verbosity > 10)
std::cerr << "**Loop index: " << tmp_index << std::endl;
if (tmp_index != index1 && tmp_index != index2)
{
if (verbosity > 10)
std::cerr << "**Treat index: " << tmp_index << std::endl;
double dist1 = dist_map[makeIndex(index1, tmp_index)];
double dist2 = dist_map[makeIndex(index2, tmp_index)];
double max_dist = dist1;
// short max_index = index1;
if (dist2 > max_dist)
{
// max_index = index2;
max_dist = dist2;
}
// Add distance between new cluster and tmp_index
add_partial(tmp_index, new_cluster_index, max_dist);
/////// dist_map[makeIndex(tmp_index, new_cluster_index)] = max_dist;
// The distance between tmp_index (!=index1, != index2) and index1 and index2 are not needed any more.
dist_map[makeIndex(tmp_index, index1)] = -1; // Mark as unused
dist_map[makeIndex(tmp_index, index2)] = -1; // Mark as unused
if (verbosity > 10)
{
std::cerr << "New distance: " << tmp_index << " , " << new_cluster_index << " " << max_dist << std::endl;
std::cerr << "Mark unused: " << tmp_index << " , " << index1 << std::endl;
std::cerr << "Mark unused: " << tmp_index << " , " << index2 << std::endl;
}
}
++it_cluster_indices;
} // END while (it_cluster_indices != it_cluster_indices_end)
// Remove index1 and index2 from cluster indices. Add new cluster index.
if (verbosity > 10)
{
std::cerr << "Insert new cluster index: " << new_cluster_index << std::endl;
std::cerr << "Erase index: " << index1 << std::endl;
std::cerr << "Erase index: " << index2 << std::endl;
}
// Now we add the new cluster index to the sets.
all_cluster_indices.insert(new_cluster_index);
current_cluster_indices.insert(new_cluster_index);
// We remove the indices we clustered from the current_cluster_indices
current_cluster_indices.erase(index1);
current_cluster_indices.erase(index2);
// Adjust sorted_distances:
sort();
it = sorted_distances.begin();
it_end = sorted_distances.end();
// TODO: can be done a bit faster:
// Delete items marked for deletion.
// Delete them from sorted_distances as well as from the distance_map.
// Remember: Distances are sorted from small to large, so the distances
// marked for deletion which have distance -1 come first.
// If we passed those with distance -1 we are done. (see loop condition)
while (it != it_end && (*it)->second == -1)
{
unsigned u = (*it)->first;
if (verbosity > 10)
std::cerr << "Erase permanently: " << first_index(u) << " " << second_index(u) << std::endl;
dist_map.erase(*it); // it points to the iterator in the dist_map. That is the object we want to remove.
sorted_distances.erase(it);
// Next iteration step:
// The next distance with distance -1, if present, should be at the beginning again.
it = sorted_distances.begin();
// All iterators that are not removed should keep their validity.
// it_end = sorted_distances.end();
}
// This completes this clustering step:
if(verbosity > 10)
{
faststring cluster_string;
std::cerr << "Cluster string after this step: " << new_cluster_index << std::endl;
get_cluster_string2(cluster_string);
std::cerr << cluster_string << std::endl;
}
// See above:
// Iteration statement: it = sorted_distances.begin();
} // END while (sorted_distances.size() > 1 && (*it)->second < distance_limit)
} // run_clustering(double distance_limit)
void append_to_cluster_string(short node, faststring &str, const std::vector<faststring> &names)
{
short child1 = cluster_hierarchy[node].child1;
short child2 = cluster_hierarchy[node].child2;
double within_distance = cluster_hierarchy[node].dist;
bool isterminal = cluster_hierarchy[node].is_terminal();
bool use_names = false;
if (names.size() > 0)
use_names = true;
if (cluster_hierarchy[node].this_nodes_index != node)
{
std::cerr << "Error in cluster hierarchy" << std::endl;
exit(-1);
}
if (isterminal)
{
str.append("("); // Bracket terminal nodes. This makes parsing easier.
if (use_names)
{
str.append( names[node] );
}
else
{
str.append(faststring(node));
}
str.append(")");
}
else
{
str.append("(");
append_to_cluster_string(child1, str, names);
str.append(",");
append_to_cluster_string(child2, str, names);
str.append("):");
str.append(faststring(within_distance));
}
}
void get_cluster_string(faststring &str, const std::vector<faststring> &names)
{
std::set<short>::iterator it_cluster_indices = current_cluster_indices.begin();
std::set<short>::iterator it_cluster_indices_end = current_cluster_indices.end();
short tmp_index;
short count = 0;
unsigned remaining_cluster_indices = current_cluster_indices.size();
if (remaining_cluster_indices > 1)
str.append("{");
else
str.append("(");
while (it_cluster_indices != it_cluster_indices_end)
{
if (count > 0)
str.append(",");
tmp_index = *it_cluster_indices;
append_to_cluster_string(tmp_index, str, names);
++it_cluster_indices;
++count;
} // END while (it_cluster_indices != it_cluster_indices_end)
if (remaining_cluster_indices > 1)
str.append("}:");
else
str.append("):");
str.append(faststring(max_distance()));
}
void append_to_cluster_string2(short node, faststring &str)
{
short child1 = cluster_hierarchy[node].child1;
short child2 = cluster_hierarchy[node].child2;
double within_distance = cluster_hierarchy[node].dist;
bool isterminal = cluster_hierarchy[node].is_terminal();
if (cluster_hierarchy[node].this_nodes_index != node)
{
std::cerr << "Error in cluster hierarchy" << std::endl;
exit(-1);
}
if (isterminal)
{
str.append("("); // Bracket terminal nodes. This makes parsing easier.
str.append(faststring(node));
str.append(")");
}
else
{
str.append("(");
append_to_cluster_string2(child1, str);
str.append(",");
append_to_cluster_string2(child2, str);
str.append("):");
str.append(faststring(within_distance));
}
}
// As above, but uses indices as names.
void get_cluster_string2(faststring &str)
{
std::set<short>::iterator it_cluster_indices = current_cluster_indices.begin();
std::set<short>::iterator it_cluster_indices_end = current_cluster_indices.end();
short tmp_index;
short count = 0;
unsigned remaining_cluster_indices = current_cluster_indices.size();
if (remaining_cluster_indices > 1)
str.append("{");
else
str.append("(");
// Each (remaining) index in current_cluster_indices
// specifies its own cluster which we now print
// in hierarchical form.
// The current_cluster_indices are the starting point.
// Its sub-clusters will be obtained from the cluster_hierarchy
// vector.
while (it_cluster_indices != it_cluster_indices_end)
{
if (count > 0)
str.append(",");
tmp_index = *it_cluster_indices;
append_to_cluster_string2(tmp_index, str);
++it_cluster_indices;
++count;
} // END while (it_cluster_indices != it_cluster_indices_end)
if (remaining_cluster_indices > 1)
str.append("}:");
else
str.append("):");
str.append(faststring(max_distance()));
}
void print_debug(std::ostream &os)
{
os << "***Debug-stats************************************" << std::endl;
os << "sorted_distances.size() " << sorted_distances.size() << std::endl;
os << "current_cluster_indices.size() " << current_cluster_indices.size() << std::endl;
os << "all_cluster_indices.size() " << all_cluster_indices.size() << std::endl;
os << "cluster_hierarchy.size() " << cluster_hierarchy.size() << std::endl;
os << "dist_map.size() " << dist_map.size() << std::endl;
os << "Sorted distances:" << std::endl;
print_sorted(os);
os << "Remaining cluster indices:" << std::endl;
print_current_cluster_indices(os);
os << "**************************************************" << std::endl;
}
// How to write an adapter to get the clustering result:
// The vector current_cluster_indices contains all "umbrella" indices.
// There is one cluster for each entry in this vector.
// Some entries might not be clustered. Remember: We stopped clustering
// if the remaining distances are above the threshold.
// Starting from the indices in current_cluster_indices, we obtain
// the subclusters from following the cluster_hierarchy.
// Gets one cluster by index. Returns false if the index is out of range.
// Returns true if in range.
void add_to_set(short node, std::set<short> &cluster, double &max_distance)
{
short child1 = cluster_hierarchy[node].child1;
short child2 = cluster_hierarchy[node].child2;
double within_distance = cluster_hierarchy[node].dist;
bool isterminal = cluster_hierarchy[node].is_terminal();
if (cluster_hierarchy[node].this_nodes_index != node)
{
std::cerr << "Error in cluster hierarchy" << std::endl;
exit(-1);
}
if (isterminal)
{
cluster.insert(node);
}
else
{
add_to_set(child1, cluster, max_distance);
add_to_set(child2, cluster, max_distance);
if (within_distance > max_distance)
max_distance = within_distance;
// str.append(faststring(within_distance));
}
}
// The index must be 0 based.
bool get_cluster_by_index(short i, std::set<short> &cluster, double &max_dist)
{
std::set<short>::iterator it_cluster_indices = current_cluster_indices.begin();
std::set<short>::iterator it_cluster_indices_end = current_cluster_indices.end();
advance(it_cluster_indices, i);
if (it_cluster_indices == it_cluster_indices_end)
return false;
cluster.clear();
max_dist = 0;
add_to_set(*it_cluster_indices, cluster, max_dist);
return true;
}
};
#endif