-
Notifications
You must be signed in to change notification settings - Fork 1
/
time-series-visualization.R
80 lines (55 loc) · 2.52 KB
/
time-series-visualization.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
## Time-Series Visualization
## RESOURCES
## ------------------------------------------------------------
# R charts with links to resources
browseURL("https://www.r-graph-gallery.com/time-series.html")
# Data vis considerations
browseURL("https://www.data-to-viz.com/caveats.html")
## PACKAGES
## ------------------------------------------------------------
library(tidyverse)
library(lubridate)
library(timetk) # newer package for visualizing time-series data
library(TraMineR
## Convert UTC time to datetime index variable ---------------
lubridate::as.Date(df$`UTC time`)
# If date time varialb e variable is character type
as.POSIXct(df$`UTC time`, format = '%Y-%m-%d %H:%M:%S')
# Note
# Time-series data needs to have a time index for many base R functions to work
## Base R Approach
## ------------------------------------------------------------
## Univariate -------------------------------------------------
# Make more complex time-series plots (supports base R arguements)
ts.plot()
## Multivariate -----------------------------------------------
# Take a look using cor matrix of scatter plots
pairs(data.table,
lower.panel = NULL,
main = "main title")
# More comprehensive approach to visualizing cor matrices
corrplot()
# example
corrplot(data.table,
method = "number",
type = "upper")
## Heatmap -----------
# Notes:
# heatmap is useful when you have many more than 2 variables
# Make sure to subset data into a correlation matrix
corrplot(cor_mat, method = "color", type = "upper", order = "vec")
## ggplot2 approach
## ------------------------------------------------------------
## Heatmap approach--------------------------------------------
# Some resources on coding a heatmap for time series data
browseURL("https://www.r-graph-gallery.com/283-the-hourly-heatmap.html")
## Time TK Approach
## ------------------------------------------------------------
# Post on using `timetk` package
browseURL("https://www.r-bloggers.com/just-released-timetk-2-0-0-visualize-time-series-data-in-1-line-of-code/")
## Sequence Plotting Approach (for Digital Phenotype Data?)
## ------------------------------------------------------------
## Using the TraMineR package
browseURL("http://traminer.unige.ch/doc/seqplot.html") # website
browseURL("https://cran.r-project.org/web/packages/TraMineR/vignettes/TraMineR-state-sequence.pdf") # Article
browseURL("http://mephisto.unige.ch/pub/TraMineR/doc/TraMineR-Users-Guide.pdf") # User Guide to the package