-
Notifications
You must be signed in to change notification settings - Fork 3
/
logarithms.tex
2275 lines (2206 loc) · 75.5 KB
/
logarithms.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%+*** 111,112document.tex
% arara: indent: {overwrite: on, trace: on, localSettings: yes}
%===================================
%
% Last edited: Hughes
% 11/18/12 (v9)
%
%===================================
\chapter{Logarithms}
\minitoc
\section{Logarithmic functions}
In our chapter on exponential functions we considered applications that
lead to equations such as
\[
10^x=19
\]
We can approximate solutions to such equations using graphical and
numerical techniques. How can we solve these equations \emph{algebraically}
though? The answer is to use \emph{logarithmic} functions.
\begin{pccdefinition}[The logarithm function]\label{log:def:logfunctions}
The logarithmic function, base $b$, where $b>0$ and $b\ne 1$, is
defined by
\[
y=\log_b(x)
\]
if, and only if,
\[
b^y=x
\]
The domain of the logarithmic function $y=\log_b(x)$ is $(0,\infty)$, and
the range is $(-\infty,\infty)$.
\end{pccdefinition}
\Cref{log:def:logfunctions} says that if we are given a \emph{logarithmic}
expression then we can convert it into an equivalent \emph{exponential}
expression. This is useful when evaluating logarithmic expressions.
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{pccexample}
Use a sentence to describe each of the following logarithmic expressions, and
then evaluate each expression
\begin{multicols}{4}
\begin{enumerate}
\item $\log_2(32)$
\item $\log_3(81)$
\item $\log_5(25)$
\item $\log_{73}(1)$
\end{enumerate}
\end{multicols}
\begin{pccsolution}
\begin{enumerate}
\item The logarithm, base $2$, of $32$. In order to evaluate the expression, we need
to answer the question: what power do we raise $2$ to get $32$? The answer is $5$, so
\[
\log_2(32)=5
\]
\item The logarithm, base $3$, of $81$. What power do we raise $3$ to get $81$? The
answer is $4$, so
\[
\log_3(81)=4
\]
\item The logarithm, base $5$, of $25$. What power do we raise $5$ to get $25$? The
answer is $2$, so
\[
\log_5(25)=2
\]
\item The logarithm, base $73$, of $1$. We need to raise $73$ to the power $0$
to get $1$, so
\[
\log_{73}(1)=0
\]
\end{enumerate}
\end{pccsolution}
\end{pccexample}
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{pccexample}
Convert each of the following exponential equations into their equivalent logarithm form
\begin{multicols}{4}
\begin{enumerate}
\item $3^{5}=243$
\item $7^{0}=1$
\item $16^{\nicefrac{1}{2}}=4$
\item $33^{-1}=\frac{1}{33}$
\end{enumerate}
\end{multicols}
\begin{pccsolution}
\begin{enumerate}
\item $3^{5}=243$ is equivalent to
\[
\log_3(243)=5
\]
\item $7^{0}=1$ is equivalent to
\[
\log_7(1)=0
\]
\item $16^{\nicefrac{1}{2}}=4$ is equivalent to
\[
\log_{16}(4)=\frac{1}{2}
\]
\item $33^{-1}=\frac{1}{33}$ is equivalent to
\[
\log_{33}\left( \frac{1}{33} \right)=-1
\]
\end{enumerate}
\end{pccsolution}
\end{pccexample}
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{pccexample}
Convert each of the following logarithmic equations into their equivalent exponential form
\begin{multicols}{4}
\begin{enumerate}
\item $\log_4\left( \frac{1}{4} \right)=-1$
\item $\log_{6}(36)=2$
\item $\log_{\frac{1}{2}}(4)=-2$
\item $\log_{e}(e^8)=8$
\end{enumerate}
\end{multicols}
\begin{pccsolution}
\begin{enumerate}
\item $\log_4\left( \frac{1}{4} \right)=-1$ is equivalent to
\[
4^{-1}=\frac{1}{4}
\]
\item $\log_{6}(36)=2$ is equivalent to
\[
6^2=36
\]
\item $\log_{\frac{1}{2}}(4)=-2$ is equivalent to
\[
\left(\frac{1}{2}\right)^{-2}=4
\]
\item $\log_{e}(e^8)=8$ is equivalent to
\[
e^8=e^8
\]
In fact when evaluating a logarithm base $e$ we use a special notation, as we'll soon
see.
\end{enumerate}
\mbox{}
\end{pccsolution}
\end{pccexample}
We have been able to perform all of our calculations so far using our knowledge of
arithmetic and exponents. When faced with a
logarithmic calculation that goes beyond this, we need to use a calculator
to compute the value. Most modern calculators can work in any base,
but of all the possible choices that we have available there are
two bases that are particularly important.
\begin{pccdefinition}[The common and natural logarithm functions]
When working with logarithmic functions that have base $b$ and formula $y=\log_b(x)$,
\begin{itemize}
\item the \emph{common} logarithmic function has base $10$ and is
written as
\[
y=\log(x)
\]
\item the \emph{natural} logarithmic function has base $e$ and is
written as
\[
y=\ln(x)
\]
It may help to recall from \vref{exp:def:e} that $e$ is called the \emph{natural} base.
\end{itemize}
\end{pccdefinition}
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{pccexample}[Domain]
Find the domain of each the functions implied by the following formulas
\begin{multicols}{2}
\begin{enumerate}
\item $f(x)=\log(x)$
\item $g(x)=\log_3(2+x)$
\item $h(x)=\ln(4x-5)$
\item $j(x)=\log_7(x^2)$
\end{enumerate}
\end{multicols}
\begin{pccsolution}
\begin{enumerate}
\item The domain of $f$ is $(0,\infty)$. Note that the base of $f$ is $10$;
$f$ is the common logarithmic function.
\item To find the domain of $g$ we need to solve the inequality $2+x>0$.
The domain of $g$ is, therefore, $(-2,\infty)$.
\item To find the domain of $h$ we need to solve the inequality $4x-5>0$.
The domain of $h$ is $\left( \frac{5}{4},\infty \right)$. Note that the
base of $h$ is $e$; $h$ is the natural logarithmic function.
\item To find the domain of $j$ we need to solve the inequality $x^2>0$.
The domain of $g$ is therefore $(-\infty,0)\cup (0,\infty)$.
\end{enumerate}
\end{pccsolution}
\end{pccexample}
One of the implications of \cref{log:def:logfunctions} is that there is
a relationship between logarithmic functions and exponential functions.
Explicitly, if $f$ is the exponential function that has formula
\[
f(x)=b^x
\]
then the inverse function, $f^{-1}$, has formula
\[
f^{-1}(x)=\log_b(x)
\]
We can use our knowledge of inverse functions (see \fixthis{insert vref reference to inverse function
section- doesn't exist yet!}) to help us graph logarithmic functions.
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{pccexample}[Graphing]\label{log:ex:graphing}
Use your knowledge of the function $f$ that has formula $f(x)=2^x$
to help you graph its inverse function, $f^{-1}$, that has formula
$f^{-1}(x)=\log_2(x)$.
\begin{pccsolution}
Let's start by constructing a table of values of the function $f$ in
\cref{log:tab:fandinverse}. We can easily construct a table of
values of $f^{-1}(x)$ by simply swapping the input and output values,
which we have done in \cref{log:tab:finverse}.
\begin{table}[!htb]
\renewcommand{\arraystretch}{1.25}
\begin{minipage}{.5\textwidth}
\centering
\caption{$f$}
\label{log:tab:fandinverse}
\begin{tabular}{S[table-format=1.0]S[table-format=1.0]}
\beforeheading
\heading{$x$} & \heading{$f(x)$} \\ \afterheading
\afterheading
-3 & \num{1/8} \\\normalline
-2 & \num{1/4} \\\normalline
-1 & \num{1/2} \\\normalline
0 & 1 \\\normalline
1 & 2 \\\normalline
2 & 4 \\\normalline
3 & 8 \\\lastline
\end{tabular}
\end{minipage}%
\begin{minipage}{.5\textwidth}
\centering
\caption{$f^{-1}$}
\label{log:tab:finverse}
\begin{tabular}{S[table-format=1.0]S[table-format=1.0]}
\beforeheading
\heading{$x$} & \heading{$f^{-1}(x)$} \\
\afterheading
\num{1/8} & -3 \\\normalline
\num{1/4} & -2 \\\normalline
\num{1/2} & -1 \\\normalline
1 & 0 \\\normalline
2 & 1 \\\normalline
4 & 2 \\\normalline
8 & 3 \\\lastline
\end{tabular}
\end{minipage}
\end{table}
If we plot the values we obtained in \cref{log:tab:fandinverse,log:tab:finverse}
and connect them using a smooth curve, then we obtain the curves given in \cref{log:fig:fandinverse}.
\begin{figure}[!htb]
\centering
\begin{tikzpicture}
\begin{axis}[
xmin=-10,xmax=10,
ymin=-10,ymax=10,
width=.5\textwidth,
]
\addplot expression[domain=-10:3.32192]{2^x}node[axisnode,anchor=north west]{$y=2^x$};
\addplot[soldot] coordinates{(-3,1/8)(-2,1/4)(-1,1/2)(0,1)(1,2)(2,4)(3,8)};
\addplot[pccplot] expression[domain=0.001:10,samples=100]{ln(x)/ln(2)}node[axisnode,anchor=south east]{$y=\log_2(x)$};
\addplot[soldot] coordinates{(1/8,-3)(1/4,-2)(1/2,-1)(1,0)(2,1)(4,2)(8,3)};
\addplot[pccplot,dashed] expression[domain=-10:10]{x}node[axisnode,anchor=east,pos=0.2]{$y=x$};
\end{axis}
\end{tikzpicture}
\caption{}
\label{log:fig:fandinverse}
\end{figure}
There are a few more observations that we can make about $f$ and its inverse, using \cref{log:fig:fandinverse}
as a guide:
\begin{itemize}
\item the domain of $f$ is $(-\infty,\infty)$, and the range of $f$ is $(0,\infty)$; this means
that the domain of $f^{-1}$ is $(0,\infty)$, and the range of $f^{-1}$ is $(-\infty,\infty)$;
\item the function $f$ has a \emph{horizontal} asymptote with equation $y=0$; this necessarily
means that the function $f^{-1}$ has a \emph{vertical} asymptote with equation $x=0$;
\item the function $f$ does not have a \emph{vertical} asymptote| this therefore
implies that the function $f^{-1}$ does not have a \emph{horizontal} asymptote;
\item the curves of $f$ and $f^{-1}$ are symmetric about the line $y=x$.
\end{itemize}
\end{pccsolution}
\end{pccexample}
\begin{doyouunderstand}
\begin{problem}
Repeat \cref{log:ex:graphing} using the function $f$ that has formula $f(x)=3^x$.
\begin{shortsolution}
\begin{tabular}[t]{S[table-format=1.0]S[table-format=2.0]}
\beforeheading
\heading{$x$} & \heading{$f(x)$} \\
\afterheading
-3 & \num{1/27} \\\normalline
-2 & \num{1/9} \\\normalline
-1 & \num{1/3} \\\normalline
0 & 1 \\\normalline
1 & 3 \\\normalline
2 & 9 \\\normalline
3 & 27 \\\lastline
\end{tabular}
\begin{tabular}{S[table-format=1.0]S[table-format=1.0]}
\beforeheading
\heading{$x$} & \heading{$f^{-1}(x)$} \\
\afterheading
\num{1/27} & -3 \\\normalline
\num{1/9} & -2 \\\normalline
\num{1/3} & -1 \\\normalline
1 & 0 \\\normalline
3 & 1 \\\normalline
9 & 2 \\\normalline
27 & 3 \\\lastline
\end{tabular}
\begin{tikzpicture}
\begin{axis}[
xmin=-5,xmax=5,
ymin=-30,ymax=30,
]
\addplot expression[domain=-5:3.0959]{3^x}node[axisnode,anchor=north west]{$y=3^x$};
\addplot[soldot] coordinates{(-3,1/27)(-2,1/9)(-1,1/3)(0,1)(1,3)(2,9)(3,27)};
\addplot[pccplot] expression[domain=0.0000000001:5,samples=100]{ln(x)/ln(3)}node[axisnode,pos=0,anchor=south west]{$y=\log_3(x)$};
\addplot[soldot] coordinates{(1/27,-3)(1/9,-2)(1/3,-1)(1,0)(3,1)(9,2)(27,3)};
\end{axis}
\end{tikzpicture}
\end{shortsolution}
\end{problem}
\end{doyouunderstand}
There is a strong relationship between the logarithmic function $f$ that has formula
$f(x)=\log_b(x)$ and its inverse exponential function $f^{-1}$ that has formula
$f^{-1}(x)=b^x$. We can think of both functions as a type of \emph{mapping} from
their domains to their respective ranges. There are many possible ways to visualize
the mapping| one such image is shown in \cref{log:fig:mapping}. Notice that
the mapping lends itself well to highlighting \cref{log:prop:inv1,log:prop:inv2},
which detail the composition of logarithmic and exponential functions
\[
(f\circ f^{-1})(x)=(f^{-1}\circ f)(x)=x
\]
\begin{figure}[!htb]
\centering
\begin{tikzpicture}
% set up nodes
\node (domain) at (0,0){$(0,\infty)$};
\node (range) at (7,0){$(-\infty,\infty)$};
\node[text=blue] (f) at (3.5,2) {$f$};
\node[text=red] (finv) at (3.5,-2) {$f^{-1}$};
% connect them
\draw[blue,very thick] (domain) to[bend left=25] (f);
\draw[->,very thick,blue] (f) to[bend left=25] (range);
\draw[red,very thick] (range) to[bend left=25] (finv);
\draw[->,red,very thick] (finv) to[bend left=25] (domain);
\end{tikzpicture}
\caption{Visualizing the mappings of $f$ and $f^{-1}$, where $f$
has formula $f(x)=\log_b(x)$ and $f^{-1}$ has formula $f^{-1}(x)=b^x$.}
\label{log:fig:mapping}
\end{figure}
Our examples so far have concentrated on familiarizing ourselves
with logarithmic functions but we have yet to see an application.
The logarithmic functions have a myriad of applications| in particular,
they can be used to help us study examples that otherwise could
only be attempted from a graphical or numerical perpesctive.
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{pccexample}
The number of radioactive atoms in a sample of Carbon-14 decays according to the model
\[
Q(t)= Q_0\,e^{-0.000120968t},
\]
where $Q_0$ is the initial mass of the radioactive atoms and $Q(t)$ is the mass of radioactive atoms $t$ years after the sample was established.
What is the half-life of the sample?
\begin{pccsolution}
We need to find the value of $t$ that satisfies the equation $Q(t)=\frac{Q_0}{2}$.
We proceed using the following steps
\begin{align*}
\frac{Q_0}{2}=Q_0\,e^{-0.000120968t} & \Rightarrow \frac{1}{2}=e^{-0.000120968t} \\
& \Rightarrow \ln\left( \frac{1}{2} \right) = -0.000120968t \\
& \Rightarrow t = -\frac{1}{-0.000120968}\ln\left( \frac{1}{2} \right) \\
& \phantom{ {}\Rightarrow t} = 5370
\end{align*}
We conclude that the half-life of the sample is $5370$ years.
\end{pccsolution}
\end{pccexample}
%===================================
% Author: Neft (Hughes)
% Date: August 2012
%===================================
\begin{pccexample}[The RC circuit]
A \emph{capacitor} is a device that stores electrical energy in the form of charged particles.
The \emph{voltage} on the capacitor is a result of the electric field created by the particles and
is proportional to the amount of charge stored. A \emph{resistor} is a device that dissipates
electrical energy. If a capacitor is charged up and then connected across a resistor, the
capacitor discharges and the voltage drops.
The voltage (in \si{\volt}), on the capacitor as it is being discharged is modeled by the
function $V$ that has formula
\[
V(t)=V_0e^{-\frac{t}{RC}}
\]
where $V_0$ is the initial capacitor voltage, $R$ is the value of the
resistor (in \si{\ohm}), $C$ is the value of the capacitor (in \si{\farad}) and $t$ is time (in \si{\second}).
\begin{enumerate}
\item Suppose that a $1.0\times 10^{-6}$-farad capacitor, initially charged to
$\SI{12}{\volt}$, is connected across a $\SI{10,000}{\ohm}$-resistor.
How long will it take for the voltage on the capacitor to drop to half
of its original value?
\item Suppose the capacitor is initially charged to $\SI{20}{\volt}$. How long
will it take for the voltage to drop to one half of its original value?
\item Suppose the capacitor is initially charged up to $\SI{100}{\volt}$. How
long will it take for the voltage to drop to one half of its original value?
\item What effect will doubling the \emph{resistance} have on the time it takes for the voltage to
drop to one half of its initial value?
\end{enumerate}
\begin{pccsolution}
\begin{enumerate}
\item We need to solve the equation $\frac{1}{2}V_0=V_0e^{-\frac{t}{RC}}$:
\begin{align*}
6 = 12 e^{-100t} & \Rightarrow \frac{1}{2}=e^{-100t} \\
& \Rightarrow \ln\left(\frac{1}{2}\right)=-100t \\
& \Rightarrow t=-\frac{1}{100}\ln\left(\frac{1}{2}\right) \\
& \phantom{ {}\Rightarrow t}\approx 0.007
\end{align*}
It takes about $\SI{0.007}{\second}$ for the voltage of the capacitor to
reach one half of its initial value.
\item We need to solve the equation $\frac{1}{2}V_0=V_0e^{-\frac{t}{RC}}$:
\begin{align*}
10 = 20 e^{-100t} & \Rightarrow \frac{1}{2}=e^{-100t} \\
& \Rightarrow \ln\left(\frac{1}{2}\right)=-100t \\
& \Rightarrow t=-\frac{1}{100}\ln\left(\frac{1}{2}\right) \\
& \phantom{ {}\Rightarrow t}\approx 0.007
\end{align*}
It takes about $\SI{0.007}{\second}$ for the voltage of the capacitor to
reach one half of its initial value. Does this sound familiar?
\item We need to solve the equation $\frac{1}{2}V_0=V_0e^{-\frac{t}{RC}}$:
\begin{align*}
50 = 100 e^{-100t} & \Rightarrow \frac{1}{2}=e^{-100t} \\
& \Rightarrow \ln\left(\frac{1}{2}\right)=-100t \\
& \Rightarrow t=-\frac{1}{100}\ln\left(\frac{1}{2}\right) \\
& \phantom{ {}\Rightarrow t}\approx 0.007
\end{align*}
It takes about $\SI{0.007}{\second}$ for the voltage of the capacitor to
reach one half of its initial value. There seems to be a pattern here\ldots
\item If we double the resistance to $\SI{20,000}{\ohm}$ then we need
to solve the equation $\frac{1}{2}V_0=V_0e^{-50t}$; note that the value of $V_0$
does not affect our calculations
\begin{align*}
\frac{1}{2}V_0 = V_0 e^{-50t} & \Rightarrow \frac{1}{2}=e^{-50t} \\
& \Rightarrow \ln\left(\frac{1}{2}\right)=-50t \\
& \Rightarrow t=-\frac{1}{50}\ln\left(\frac{1}{2}\right) \\
& \phantom{ {}\Rightarrow t}\approx 0.014
\end{align*}
We conclude that doubling the resistance doubles the time it takes (to about $\SI{0.014}{\second}$)
for the voltage on the capacitor to reach half of its initial value.
\end{enumerate}
\end{pccsolution}
\end{pccexample}
\begin{exercises}
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{problem}[Domain]
Find the domain of each of the functions implied by the following formulas.
\begin{multicols}{4}
\begin{subproblem}
$f(x)=\log_4(x+7)$
\begin{shortsolution}
$(-7,\infty)$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$g(x)=\log_9(x-2)$
\begin{shortsolution}
$(2,\infty)$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$h(x)=5\log(3x)$
\begin{shortsolution}
$(0,\infty)$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$j(x)=8-\log_2(4x+3)$
\begin{shortsolution}
$\left( -\frac{3}{4},\infty \right)$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$k(x)=\log_6(x^2-9)$
\begin{shortsolution}
$(-\infty,-3)\cup (3,\infty)$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$l(x)=3\log_8(4-2x^2)$
\begin{shortsolution}
$(-\sqrt{2},\sqrt{2})$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$m(x)=\ln(2^x)$
\begin{shortsolution}
$(-\infty,\infty)$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$n(x)=2^{\log(x)}$
\begin{shortsolution}
$(0,\infty)$
\end{shortsolution}
\end{subproblem}
\end{multicols}
\end{problem}
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{problem}[Transformations: given the formula, describe the transformation]
Describe each of the functions $g$, $h$, $j$, and $k$ in terms of transformations
of the logarithmic function $f$ that has formula $f(x)=\log(x)$. State the domain
of each function.
\begin{multicols}{4}
\begin{subproblem}
$g(x)=\log(x+3)$
\begin{shortsolution}
$g$ is the function $f$ shifted to the left by $3$ units. The domain
of $g$ is $(-3,\infty)$.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$h(x)=\log(x-5)$
\begin{shortsolution}
$h$ is the function $f$ shifted to the right by $5$ units. The domain
of $h$ is $(5,\infty)$.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$j(x)=\log(2(x+7))$
\begin{shortsolution}
$j$ is the function $f$ horizontally compressed by a factor of $2$,
and shifted to the left by $7$ units. The domain of $j$ is $(-7,\infty)$.
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$k(x)=5\log(-x)$
\begin{shortsolution}
$k$ is the function $f$ reflected across the vertical axis, and vertically
stretched by a factor of $5$. The domain of $k$ is $(-\infty,0)$.
\end{shortsolution}
\end{subproblem}
\end{multicols}
\end{problem}
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{problem}[Transformations: given the transformation, find the formula]
Let $f$ be the function that has formula $f(x)=\log(x)$. In each of the following
problems apply the given transformation to the function $f$ and
write a formula for the transformed version of $f$.
\begin{multicols}{2}
\begin{subproblem}
Shift $f$ to the right by $2$ units.
\begin{shortsolution}
$f(x-2)=\log(x-2)$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
Shift $f$ to the left by $5$ units.
\begin{shortsolution}
$f(x+5)=\log(x+5)$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
Shift $f$ up by 11 units.
\begin{shortsolution}
$f(x)+11=\log(x)+11$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
Shift $f$ down by 1 unit.
\begin{shortsolution}
$f(x)-1=\log(x)-1$
\end{shortsolution}
\end{subproblem}
\end{multicols}
\end{problem}
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{problem}[Find the base from graphs]\label{log:prob:findbase}
Consider the functions graphed in \cref{log:fig:findbase}. Each function
has a formula of the form $y=\log_b(x+a)$, where $b$ is the base, and
$a$ is given for each function. Use the ordered pair given in each graph to find the base, $b$.
\begin{shortsolution}
\begin{itemize}
\item \Vref{log:fig:findbase1}: $b=2$, so $y=\log_2(x)$;
\item \Vref{log:fig:findbase2}: $b=4$, so $y=\log_4(x+3)$;
\item \Vref{log:fig:findbase3}: $b=\frac{1}{2}$, so $y=\log_{\frac{1}{2}}(x-4)$;
\item \Vref{log:fig:findbase4}: $b=\frac{1}{3}$, so $y=\log_{\frac{1}{3}}(x+2)$.
\end{itemize}
\end{shortsolution}
\begin{figure}[htb]
\begin{widepage}
\begin{subfigure}{.2\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
framed,
minor xtick={-8,-4,4,8},
xtick={-4},
minor ytick={-8,-4,4,8},
ytick={4},
grid=both,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
]
\addplot expression[domain=0.001:10,samples=50]{ln(x)/ln(2)};
\addplot[soldot]coordinates{(8,3)}node[axisnode,anchor=south]{$(8,3)$};
\end{axis}
\end{tikzpicture}
\caption{$y=\log_b(x)$}
\label{log:fig:findbase1}
\end{subfigure}%
\hfill
\begin{subfigure}{.2\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
framed,
minor xtick={-8,-4,4,8},
xtick={4},
minor ytick={-8,-4,4,8},
ytick={-4},
grid=both,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
]
\addplot expression[domain=-2.999999:10,samples=100]{ln(x+3)/ln(4)};
\addplot[soldot]coordinates{(-1,1/2)}node[axisnode,anchor=south east]{$\left(-1,\frac{1}{2}\right)$};
\end{axis}
\end{tikzpicture}
\caption{$y=\log_b(x+3)$}
\label{log:fig:findbase2}
\end{subfigure}%
\hfill
\begin{subfigure}{.2\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
framed,
minor xtick={-8,-4,4,8},
xtick={-4},
minor ytick={-8,-4,4,8},
ytick={4},
grid=both,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
]
\addplot expression[domain=4.001:10,samples=50]{ln(x-4)/ln(1/2)};
\addplot[soldot]coordinates{(6,-1)}node[axisnode,anchor=north]{$(6,-1)$};
\end{axis}
\end{tikzpicture}
\caption{$y=\log_b(x-4)$}
\label{log:fig:findbase3}
\end{subfigure}%
\hfill
\begin{subfigure}{.2\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
framed,
minor xtick={-8,-4,4,8},
xtick={-4},
minor ytick={-8,-4,4,8},
ytick={-4},
grid=both,
xmin=-10,xmax=10,
ymin=-10,ymax=10,
]
\addplot expression[domain=-1.99997:10,samples=100]{ln(x+2)/ln(1/3)};
\addplot[soldot]coordinates{(7,-2)}node[axisnode,anchor=north]{$(7,-2)$};
\end{axis}
\end{tikzpicture}
\caption{$y=\log_b(x+2)$}
\label{log:fig:findbase4}
\end{subfigure}%
\caption{Graphs for \cref{log:prob:findbase}}
\label{log:fig:findbase}
\end{widepage}
\end{figure}
\end{problem}
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{problem}[Solving exponential equations with base $10$ and base $e$]
Use \cref{log:def:logfunctions} to solve each of the following equations. Give both
the exact and an approximate solution.
\begin{multicols}{4}
\begin{subproblem}
$e^x=7$
\begin{shortsolution}
$x=\ln(7)\approx 1.95$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$e^x+5=10$
\begin{shortsolution}
$x=\ln(5)\approx 1.61$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$e^{x+5}=10$
\begin{shortsolution}
$x=\ln(10)-5\approx -2.70$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$e^{5x+7}-4=2$
\begin{shortsolution}
$x=\frac{1}{5}(\ln(6)-7)\approx -1.04$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$10^x=1$
\begin{shortsolution}
$x=0$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$10^{x+1}=11$
\begin{shortsolution}
$x=\log(11)-1\approx 0.04$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$10^{2x}=4$
\begin{shortsolution}
$x=\frac{\log(4)}{2}\approx 0.30$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$10^{4-x}=21$
\begin{shortsolution}
$x=4-\log(21)\approx 2.68$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$5e^{2x}+1=10$
\begin{shortsolution}
$x=\frac{1}{2}\ln\left( \frac{9}{5} \right)\approx 0.29$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$8-7e^{-3x}=-10$
\begin{shortsolution}
$x=-\frac{1}{3}\ln\left( \frac{18}{7} \right)\approx -0.31$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$9e^{5-x}-1=0$
\begin{shortsolution}
$x=5-\ln\left( \frac{1}{9} \right)\approx 7.20$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$e^{3x}-4=-5e^{3x}$
\begin{shortsolution}
$x=\frac{1}{3}\ln\left( \frac{2}{3} \right)\approx -0.14$
\end{shortsolution}
\end{subproblem}
\end{multicols}
\end{problem}
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{problem}[Solving logarithmic equations with base $10$ and base $e$]
Use \cref{log:def:logfunctions} to solve each of the following equations. Give both
the exact and an approximate solution.
\begin{multicols}{4}
\begin{subproblem}
$\ln(x)=7$
\begin{shortsolution}
$x=e^7\approx 1096.63$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$2\ln(x)=-3$
\begin{shortsolution}
$x=e^{-\nicefrac{3}{2}}\approx 0.22$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$5-4\ln(2x)=13$
\begin{shortsolution}
$x=\frac{e^{-2}}{2}\approx 0.07$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$(\ln(x))^2=5$
\begin{shortsolution}
$x=e^{\sqrt{5}}\approx 9.36$ and $x=e^{-\sqrt{5}}\approx 0.11$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$\log(x)=7$
\begin{shortsolution}
$x=10^7$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$3-\log(x)=0$
\begin{shortsolution}
$x=1000$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$\log(5x+2)=-3$
\begin{shortsolution}
$x=\frac{1}{5}\left( 10^{-3}-2 \right)\approx -0.40$
\end{shortsolution}
\end{subproblem}
\begin{subproblem}
$\log(5-x)=\log_2(8)$
\begin{shortsolution}
$x=-995$
\end{shortsolution}
\end{subproblem}
\end{multicols}
\end{problem}
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{problem}[Find the base from tables]\label{log:prob:findbasetabs}
\Crefrange{log:tab:findbase1}{log:tab:findbase4} show values of four
different functions; each function has the form $y=\log_b(ax)$ where
$b$ is the base, and $a$ is given for each function.
Use any ordered pair you wish from each table to find the base, $b$,
for each function.
\begin{shortsolution}
\begin{itemize}
\item \Vref{log:tab:findbase1}: $b=2$, so $y=\log_2(3x)$;
\item \Vref{log:tab:findbase2}: $b=3$, so $y=\log_3(5x)$;
\item \Vref{log:tab:findbase3}: $b=\frac{1}{4}$, so $y=\log_{\frac{1}{4}}(x)$;
\item \Vref{log:tab:findbase4}: $b=\frac{1}{3}$, so $y=\log_{\frac{2}{3}}(-2x)$.
\end{itemize}
\end{shortsolution}
\end{problem}
\begin{table}[htb]
\renewcommand{\arraystretch}{1.25}
\begin{widepage}
\caption{Tables for \cref{log:prob:findbasetabs}}
\label{log:tab:findbase}
\begin{subtable}{.2\textwidth}
\centering
\caption{$y=\log_b(3x)$}
\label{log:tab:findbase1}
\begin{tabular}{S[table-format=1.0]S[table-format=1.0]}
\beforeheading
\heading{$x$} & \heading{$y$} \\
\afterheading
\num{1/16} & 1 \\ \normalline
\num{1/3} & 0 \\ \normalline
\num{2/3} & 1 \\ \normalline
\num{4/3} & 2 \\ \normalline
\num{8/3} & 3 \\ \lastline
\end{tabular}
\end{subtable}%
\hfill
\begin{subtable}{.2\textwidth}
\centering
\caption{$y=\log_b(5x)$}
\label{log:tab:findbase2}
\begin{tabular}{S[table-format=1.0]S[table-format=1.0]}
\beforeheading
\heading{$x$} & \heading{$y$} \\
\afterheading
\num{1/135} & -3 \\ \normalline
\num{1/45} & -2 \\ \normalline
\num{1/15} & -1 \\ \normalline
\num{1/5} & 0 \\ \normalline
\num{3/5} & 1 \\ \lastline
\end{tabular}
\end{subtable}%
\hfill
\begin{subtable}{.2\textwidth}
\centering
\caption{$y=\log_b(x)$}
\label{log:tab:findbase3}
\begin{tabular}{S[table-format=1.0]S[table-format=1.0]}
\beforeheading
\heading{$x$} & \heading{$y$} \\
\afterheading
16 & -2 \\ \normalline
4 & -1 \\ \normalline
1 & 0 \\ \normalline
\num{1/4} & 1 \\ \normalline
\num{1/16} & 2 \\ \lastline
\end{tabular}
\end{subtable}%
\hfill
\begin{subtable}{.2\textwidth}
\centering
\caption{$y=\log_b(-2x)$}
\label{log:tab:findbase4}
\begin{tabular}{S[table-format=1.0]S[table-format=1.0]}
\beforeheading
\heading{$x$} & \heading{$y$} \\
\afterheading
\num{-9/8} & -2 \\ \normalline
\num{-3/4} & -1 \\ \normalline
-1 & 0 \\ \normalline
\num{-1/3} & 1 \\ \normalline
\num{-2/9} & 2 \\ \lastline
\end{tabular}
\end{subtable}%
\end{widepage}
\end{table}
%===================================
% Author: Hughes
% Date: July 2012
%===================================
\begin{problem}[Inverse functions]
Let $f$ be the function that has formula $f(x)=4^x$.
\begin{subproblem}\label{log:prob:invconstruct}
Construct a table of values of $f$, allowing $x$ to take integer values on the interval $[-3,3]$.
\begin{shortsolution}
\begin{tabular}[t]{S[table-format=1.0]S[table-format=1.0]}
\beforeheading
\heading{$x$} & \heading{$f(x)$} \\
\afterheading
-3 & \num{1/64} \\\normalline
-2 & \num{1/16} \\\normalline
-1 & \num{1/4} \\\normalline
0 & 1 \\\normalline
1 & 4 \\\normalline
2 & 16 \\\normalline
3 & 64 \\\lastline
\end{tabular}
\end{shortsolution}
\end{subproblem}
\begin{subproblem}\label{log:prob:invconstructuse}
Use your answer to \cref{log:prob:invconstruct} to construct a table of values
of the function $f^{-1}$.
\begin{shortsolution}
\begin{tabular}[t]{S[table-format=1.0]S[table-format=1.0]}
\beforeheading
\heading{$x$} & \heading{$f^{-1}(x)$} \\
\afterheading
\num{1/64} & -3 \\\normalline
\num{1/16} & -2 \\\normalline
\num{1/4} & -1 \\\normalline
1 & 0 \\\normalline
4 & 1 \\\normalline