From d3df2c9f2929339a8837c3af5a393796ac148cb2 Mon Sep 17 00:00:00 2001 From: rachlobay <42976509+rachlobay@users.noreply.github.com> Date: Sat, 16 Sep 2023 01:02:06 -0700 Subject: [PATCH] Document --- R/epi_recipe.R | 2 ++ man/add_frosting.Rd | 4 +++- man/adjust_epi_recipe.Rd | 2 ++ man/arx_fcast_epi_workflow.Rd | 12 ++++++++---- man/arx_forecaster.Rd | 12 ++++++++---- man/create_layer.Rd | 6 +++--- man/dist_quantiles.Rd | 2 +- man/extrapolate_quantiles.Rd | 8 +++++--- man/fit-epi_workflow.Rd | 2 +- man/flatline.Rd | 6 ++++-- man/frosting.Rd | 4 ++-- man/layer_add_forecast_date.Rd | 12 +++++++----- man/layer_add_target_date.Rd | 6 ++++-- man/layer_population_scaling.Rd | 29 ++++++++++++++++++----------- man/layer_predict.Rd | 6 +++--- man/nested_quantiles.Rd | 4 ++-- man/smooth_quantile_reg.Rd | 27 +++++++++++++++------------ man/step_epi_shift.Rd | 2 +- man/step_growth_rate.Rd | 4 +++- man/step_lag_difference.Rd | 4 +++- man/step_population_scaling.Rd | 26 ++++++++++++++++---------- man/step_training_window.Rd | 9 ++++++--- 22 files changed, 117 insertions(+), 72 deletions(-) diff --git a/R/epi_recipe.R b/R/epi_recipe.R index 8209ad53d..d192dd2b5 100644 --- a/R/epi_recipe.R +++ b/R/epi_recipe.R @@ -340,6 +340,8 @@ update_epi_recipe <- function(x, recipe, ..., blueprint = NULL) { #' #' @param ... Used to input a parameter adjustment #' +#' @param blueprint A hardhat blueprint used for fine tuning the preprocessing. +#' #' @return #' `x`, updated with the adjustment to the specified `epi_recipe` step. #' diff --git a/man/add_frosting.Rd b/man/add_frosting.Rd index ff415965f..084758d26 100644 --- a/man/add_frosting.Rd +++ b/man/add_frosting.Rd @@ -38,7 +38,9 @@ latest <- jhu \%>\% dplyr::filter(time_value >= max(time_value) - 14) # Add frosting to a workflow and predict -f <- frosting() \%>\% layer_predict() \%>\% layer_naomit(.pred) +f <- frosting() \%>\% + layer_predict() \%>\% + layer_naomit(.pred) wf1 <- wf \%>\% add_frosting(f) p1 <- predict(wf1, latest) p1 diff --git a/man/adjust_epi_recipe.Rd b/man/adjust_epi_recipe.Rd index ba736a22e..bd2b63cd4 100644 --- a/man/adjust_epi_recipe.Rd +++ b/man/adjust_epi_recipe.Rd @@ -18,6 +18,8 @@ adjust_epi_recipe(x, step_num, ..., blueprint = default_epi_recipe_blueprint()) \item{step_num}{the number of the step to adjust} \item{...}{Used to input a parameter adjustment} + +\item{blueprint}{A hardhat blueprint used for fine tuning the preprocessing.} } \value{ \code{x}, updated with the adjustment to the specified \code{epi_recipe} step. diff --git a/man/arx_fcast_epi_workflow.Rd b/man/arx_fcast_epi_workflow.Rd index fdd309959..7a6b66305 100644 --- a/man/arx_fcast_epi_workflow.Rd +++ b/man/arx_fcast_epi_workflow.Rd @@ -41,12 +41,16 @@ use \code{\link[=quantile_reg]{quantile_reg()}}) but can be omitted. jhu <- case_death_rate_subset \%>\% dplyr::filter(time_value >= as.Date("2021-12-01")) -arx_fcast_epi_workflow(jhu, "death_rate", - c("case_rate", "death_rate")) +arx_fcast_epi_workflow( + jhu, "death_rate", + c("case_rate", "death_rate") +) arx_fcast_epi_workflow(jhu, "death_rate", - c("case_rate", "death_rate"), trainer = quantile_reg(), - args_list = arx_args_list(levels = 1:9 / 10)) + c("case_rate", "death_rate"), + trainer = quantile_reg(), + args_list = arx_args_list(levels = 1:9 / 10) +) } \seealso{ \code{\link[=arx_forecaster]{arx_forecaster()}} diff --git a/man/arx_forecaster.Rd b/man/arx_forecaster.Rd index d4866aa0e..e121f272c 100644 --- a/man/arx_forecaster.Rd +++ b/man/arx_forecaster.Rd @@ -41,12 +41,16 @@ that it estimates a model for a particular target horizon. jhu <- case_death_rate_subset \%>\% dplyr::filter(time_value >= as.Date("2021-12-01")) -out <- arx_forecaster(jhu, "death_rate", - c("case_rate", "death_rate")) +out <- arx_forecaster( + jhu, "death_rate", + c("case_rate", "death_rate") +) out <- arx_forecaster(jhu, "death_rate", - c("case_rate", "death_rate"), trainer = quantile_reg(), - args_list = arx_args_list(levels = 1:9 / 10)) + c("case_rate", "death_rate"), + trainer = quantile_reg(), + args_list = arx_args_list(levels = 1:9 / 10) +) } \seealso{ \code{\link[=arx_fcast_epi_workflow]{arx_fcast_epi_workflow()}}, \code{\link[=arx_args_list]{arx_args_list()}} diff --git a/man/create_layer.Rd b/man/create_layer.Rd index 399d62efa..d36385fb2 100644 --- a/man/create_layer.Rd +++ b/man/create_layer.Rd @@ -20,9 +20,9 @@ fill in the name of the layer, and open the file. \examples{ \dontrun{ - # Note: running this will write `layer_strawberry.R` to - # the `R/` directory of your current project - create_layer("strawberry") +# Note: running this will write `layer_strawberry.R` to +# the `R/` directory of your current project +create_layer("strawberry") } } diff --git a/man/dist_quantiles.Rd b/man/dist_quantiles.Rd index 50f00dc32..739bae5a8 100644 --- a/man/dist_quantiles.Rd +++ b/man/dist_quantiles.Rd @@ -15,7 +15,7 @@ dist_quantiles(x, tau) A distribution parameterized by a set of quantiles } \examples{ -dstn <- dist_quantiles(list(1:4, 8:11), list(c(.2,.4,.6,.8))) +dstn <- dist_quantiles(list(1:4, 8:11), list(c(.2, .4, .6, .8))) quantile(dstn, p = c(.1, .25, .5, .9)) median(dstn) diff --git a/man/extrapolate_quantiles.Rd b/man/extrapolate_quantiles.Rd index 985d7cae8..cc6cb2c3c 100644 --- a/man/extrapolate_quantiles.Rd +++ b/man/extrapolate_quantiles.Rd @@ -24,12 +24,14 @@ library(distributional) dstn <- dist_normal(c(10, 2), c(5, 10)) extrapolate_quantiles(dstn, p = c(.25, 0.5, .75)) -dstn <- dist_quantiles(list(1:4, 8:11), list(c(.2,.4,.6,.8))) +dstn <- dist_quantiles(list(1:4, 8:11), list(c(.2, .4, .6, .8))) # because this distribution is already quantiles, any extra quantiles are # appended extrapolate_quantiles(dstn, p = c(.25, 0.5, .75)) -dstn <- c(dist_normal(c(10, 2), c(5, 10)), - dist_quantiles(list(1:4, 8:11), list(c(.2,.4,.6,.8)))) +dstn <- c( + dist_normal(c(10, 2), c(5, 10)), + dist_quantiles(list(1:4, 8:11), list(c(.2, .4, .6, .8))) +) extrapolate_quantiles(dstn, p = c(.25, 0.5, .75)) } diff --git a/man/fit-epi_workflow.Rd b/man/fit-epi_workflow.Rd index fb1c3af28..3dfa0029a 100644 --- a/man/fit-epi_workflow.Rd +++ b/man/fit-epi_workflow.Rd @@ -29,7 +29,7 @@ preprocessing the data and fitting the underlying parsnip model. } \examples{ jhu <- case_death_rate_subset \%>\% -filter(time_value > "2021-11-01", geo_value \%in\% c("ak", "ca", "ny")) + filter(time_value > "2021-11-01", geo_value \%in\% c("ak", "ca", "ny")) r <- epi_recipe(jhu) \%>\% step_epi_lag(death_rate, lag = c(0, 7, 14)) \%>\% diff --git a/man/flatline.Rd b/man/flatline.Rd index a396cfeb9..c353ff163 100644 --- a/man/flatline.Rd +++ b/man/flatline.Rd @@ -38,8 +38,10 @@ This is an internal function that is used to create a \code{\link[parsnip:linear model. It has somewhat odd behaviour (see below). } \examples{ -tib <- data.frame(y = runif(100), - expand.grid(k = letters[1:4], j = letters[5:9], time_value = 1:5)) \%>\% +tib <- data.frame( + y = runif(100), + expand.grid(k = letters[1:4], j = letters[5:9], time_value = 1:5) +) \%>\% dplyr::group_by(k, j) \%>\% dplyr::mutate(y2 = dplyr::lead(y, 2)) # predict 2 steps ahead flat <- flatline(y2 ~ j + k + y, tib) # predictions for 20 locations diff --git a/man/frosting.Rd b/man/frosting.Rd index 83a8d6a9d..362c40a4f 100644 --- a/man/frosting.Rd +++ b/man/frosting.Rd @@ -24,8 +24,8 @@ The arguments are currently placeholders and must be NULL \examples{ # Toy example to show that frosting can be created and added for postprocessing - f <- frosting() - wf <- epi_workflow() \%>\% add_frosting(f) +f <- frosting() +wf <- epi_workflow() \%>\% add_frosting(f) # A more realistic example jhu <- case_death_rate_subset \%>\% diff --git a/man/layer_add_forecast_date.Rd b/man/layer_add_forecast_date.Rd index 421978eb5..4e173d662 100644 --- a/man/layer_add_forecast_date.Rd +++ b/man/layer_add_forecast_date.Rd @@ -46,15 +46,17 @@ wf <- epi_workflow(r, parsnip::linear_reg()) \%>\% fit(jhu) latest <- jhu \%>\% dplyr::filter(time_value >= max(time_value) - 14) - # Don't specify `forecast_date` (by default, this should be last date in latest) -f <- frosting() \%>\% layer_predict() \%>\% - layer_naomit(.pred) +# Don't specify `forecast_date` (by default, this should be last date in latest) +f <- frosting() \%>\% + layer_predict() \%>\% + layer_naomit(.pred) wf0 <- wf \%>\% add_frosting(f) p0 <- predict(wf0, latest) p0 # Specify a `forecast_date` that is greater than or equal to `as_of` date -f <- frosting() \%>\% layer_predict() \%>\% +f <- frosting() \%>\% + layer_predict() \%>\% layer_add_forecast_date(forecast_date = "2022-05-31") \%>\% layer_naomit(.pred) wf1 <- wf \%>\% add_frosting(f) @@ -73,7 +75,7 @@ p2 <- predict(wf2, latest) p2 # Do not specify a forecast_date - f3 <- frosting() \%>\% +f3 <- frosting() \%>\% layer_predict() \%>\% layer_add_forecast_date() \%>\% layer_naomit(.pred) diff --git a/man/layer_add_target_date.Rd b/man/layer_add_target_date.Rd index 58ff7770f..3c2884e10 100644 --- a/man/layer_add_target_date.Rd +++ b/man/layer_add_target_date.Rd @@ -48,7 +48,8 @@ wf <- epi_workflow(r, parsnip::linear_reg()) \%>\% fit(jhu) latest <- get_test_data(r, jhu) # Use ahead + forecast date -f <- frosting() \%>\% layer_predict() \%>\% +f <- frosting() \%>\% + layer_predict() \%>\% layer_add_forecast_date(forecast_date = "2022-05-31") \%>\% layer_add_target_date() \%>\% layer_naomit(.pred) @@ -59,7 +60,8 @@ p # Use ahead + max time value from pre, fit, post # which is the same if include `layer_add_forecast_date()` -f2 <- frosting() \%>\% layer_predict() \%>\% +f2 <- frosting() \%>\% + layer_predict() \%>\% layer_add_target_date() \%>\% layer_naomit(.pred) wf2 <- wf \%>\% add_frosting(f2) diff --git a/man/layer_population_scaling.Rd b/man/layer_population_scaling.Rd index e841e9a50..179d6862c 100644 --- a/man/layer_population_scaling.Rd +++ b/man/layer_population_scaling.Rd @@ -78,13 +78,15 @@ jhu <- epiprocess::jhu_csse_daily_subset \%>\% dplyr::filter(time_value > "2021-11-01", geo_value \%in\% c("ca", "ny")) \%>\% dplyr::select(geo_value, time_value, cases) -pop_data = data.frame(states = c("ca", "ny"), value = c(20000, 30000)) +pop_data <- data.frame(states = c("ca", "ny"), value = c(20000, 30000)) r <- epi_recipe(jhu) \%>\% - step_population_scaling(df = pop_data, - df_pop_col = "value", - by = c("geo_value" = "states"), - cases, suffix = "_scaled") \%>\% + step_population_scaling( + df = pop_data, + df_pop_col = "value", + by = c("geo_value" = "states"), + cases, suffix = "_scaled" + ) \%>\% step_epi_lag(cases_scaled, lag = c(0, 7, 14)) \%>\% step_epi_ahead(cases_scaled, ahead = 7, role = "outcome") \%>\% step_epi_naomit() @@ -93,9 +95,11 @@ f <- frosting() \%>\% layer_predict() \%>\% layer_threshold(.pred) \%>\% layer_naomit(.pred) \%>\% - layer_population_scaling(.pred, df = pop_data, - by = c("geo_value" = "states"), - df_pop_col = "value") + layer_population_scaling(.pred, + df = pop_data, + by = c("geo_value" = "states"), + df_pop_col = "value" + ) wf <- epi_workflow(r, parsnip::linear_reg()) \%>\% fit(jhu) \%>\% @@ -104,9 +108,12 @@ wf <- epi_workflow(r, parsnip::linear_reg()) \%>\% latest <- get_test_data( recipe = r, x = epiprocess::jhu_csse_daily_subset \%>\% - dplyr::filter(time_value > "2021-11-01", - geo_value \%in\% c("ca", "ny")) \%>\% - dplyr::select(geo_value, time_value, cases)) + dplyr::filter( + time_value > "2021-11-01", + geo_value \%in\% c("ca", "ny") + ) \%>\% + dplyr::select(geo_value, time_value, cases) +) predict(wf, latest) } diff --git a/man/layer_predict.Rd b/man/layer_predict.Rd index 1326dfe75..03473053f 100644 --- a/man/layer_predict.Rd +++ b/man/layer_predict.Rd @@ -62,9 +62,9 @@ jhu <- case_death_rate_subset \%>\% filter(time_value > "2021-11-01", geo_value \%in\% c("ak", "ca", "ny")) r <- epi_recipe(jhu) \%>\% - step_epi_lag(death_rate, lag = c(0, 7, 14)) \%>\% - step_epi_ahead(death_rate, ahead = 7) \%>\% - step_epi_naomit() + step_epi_lag(death_rate, lag = c(0, 7, 14)) \%>\% + step_epi_ahead(death_rate, ahead = 7) \%>\% + step_epi_naomit() wf <- epi_workflow(r, parsnip::linear_reg()) \%>\% fit(jhu) latest <- jhu \%>\% filter(time_value >= max(time_value) - 14) diff --git a/man/nested_quantiles.Rd b/man/nested_quantiles.Rd index 1a2824041..c4b578c1a 100644 --- a/man/nested_quantiles.Rd +++ b/man/nested_quantiles.Rd @@ -16,8 +16,8 @@ a list-col Turn a vector of quantile distributions into a list-col } \examples{ -edf <- case_death_rate_subset[1:3,] -edf$q <- dist_quantiles(list(1:5, 2:4, 3:10), list(1:5/6, 2:4/5, 3:10/11)) +edf <- case_death_rate_subset[1:3, ] +edf$q <- dist_quantiles(list(1:5, 2:4, 3:10), list(1:5 / 6, 2:4 / 5, 3:10 / 11)) edf_nested <- edf \%>\% dplyr::mutate(q = nested_quantiles(q)) edf_nested \%>\% tidyr::unnest(q) diff --git a/man/smooth_quantile_reg.Rd b/man/smooth_quantile_reg.Rd index 293999876..6cc2dfc82 100644 --- a/man/smooth_quantile_reg.Rd +++ b/man/smooth_quantile_reg.Rd @@ -39,9 +39,10 @@ only supported engine is \code{\link[smoothqr:smooth_qr]{smoothqr::smooth_qr()}} tib <- data.frame( y1 = rnorm(100), y2 = rnorm(100), y3 = rnorm(100), y4 = rnorm(100), y5 = rnorm(100), y6 = rnorm(100), - x1 = rnorm(100), x2 = rnorm(100)) + x1 = rnorm(100), x2 = rnorm(100) +) qr_spec <- smooth_quantile_reg(tau = c(.2, .5, .8), outcome_locations = 1:6) -ff <- qr_spec \%>\% fit(cbind(y1, y2 , y3 , y4 , y5 , y6) ~ ., data = tib) +ff <- qr_spec \%>\% fit(cbind(y1, y2, y3, y4, y5, y6) ~ ., data = tib) p <- predict(ff, new_data = tib) x <- -99:99 / 100 * 2 * pi @@ -50,21 +51,23 @@ fd <- x[length(x) - 20] XY <- smoothqr::lagmat(y[1:(length(y) - 20)], c(-20:20)) XY <- tibble::as_tibble(XY) qr_spec <- smooth_quantile_reg(tau = c(.2, .5, .8), outcome_locations = 20:1) -tt <- qr_spec \%>\% fit_xy(x = XY[,21:41], y = XY[,1:20]) +tt <- qr_spec \%>\% fit_xy(x = XY[, 21:41], y = XY[, 1:20]) library(tidyr) library(dplyr) pl <- predict( - object = tt, - new_data = XY[max(which(complete.cases(XY[,21:41]))), 21:41] - ) + object = tt, + new_data = XY[max(which(complete.cases(XY[, 21:41]))), 21:41] +) pl <- pl \%>\% - unnest(.pred) \%>\% - mutate(distn = nested_quantiles(distn)) \%>\% - unnest(distn) \%>\% - mutate(x = x[length(x) - 20] + ahead / 100 * 2 * pi, - ahead = NULL) \%>\% - pivot_wider(names_from = tau, values_from = q) + unnest(.pred) \%>\% + mutate(distn = nested_quantiles(distn)) \%>\% + unnest(distn) \%>\% + mutate( + x = x[length(x) - 20] + ahead / 100 * 2 * pi, + ahead = NULL + ) \%>\% + pivot_wider(names_from = tau, values_from = q) plot(x, y, pch = 16, xlim = c(pi, 2 * pi), col = "lightgrey") curve(sin(x), add = TRUE) abline(v = fd, lty = 2) diff --git a/man/step_epi_shift.Rd b/man/step_epi_shift.Rd index ca8609b1e..bf135346e 100644 --- a/man/step_epi_shift.Rd +++ b/man/step_epi_shift.Rd @@ -90,7 +90,7 @@ are always set to \code{"ahead_"} and \code{"epi_ahead"} respectively, while for \examples{ r <- epi_recipe(case_death_rate_subset) \%>\% step_epi_ahead(death_rate, ahead = 7) \%>\% - step_epi_lag(death_rate, lag = c(0,7,14)) + step_epi_lag(death_rate, lag = c(0, 7, 14)) r } \seealso{ diff --git a/man/step_growth_rate.Rd b/man/step_growth_rate.Rd index 0449b887c..b409135b1 100644 --- a/man/step_growth_rate.Rd +++ b/man/step_growth_rate.Rd @@ -87,7 +87,9 @@ r <- epi_recipe(case_death_rate_subset) \%>\% step_growth_rate(case_rate, death_rate) r -r \%>\% recipes::prep() \%>\% recipes::bake(case_death_rate_subset) +r \%>\% + recipes::prep() \%>\% + recipes::bake(case_death_rate_subset) } \seealso{ Other row operation steps: diff --git a/man/step_lag_difference.Rd b/man/step_lag_difference.Rd index d69c25faa..b06abe43c 100644 --- a/man/step_lag_difference.Rd +++ b/man/step_lag_difference.Rd @@ -59,7 +59,9 @@ r <- epi_recipe(case_death_rate_subset) \%>\% step_lag_difference(case_rate, death_rate, horizon = c(7, 14)) r -r \%>\% recipes::prep() \%>\% recipes::bake(case_death_rate_subset) +r \%>\% + recipes::prep() \%>\% + recipes::bake(case_death_rate_subset) } \seealso{ Other row operation steps: diff --git a/man/step_population_scaling.Rd b/man/step_population_scaling.Rd index 2964c6912..1a9564563 100644 --- a/man/step_population_scaling.Rd +++ b/man/step_population_scaling.Rd @@ -104,13 +104,15 @@ jhu <- epiprocess::jhu_csse_daily_subset \%>\% dplyr::filter(time_value > "2021-11-01", geo_value \%in\% c("ca", "ny")) \%>\% dplyr::select(geo_value, time_value, cases) -pop_data = data.frame(states = c("ca", "ny"), value = c(20000, 30000)) +pop_data <- data.frame(states = c("ca", "ny"), value = c(20000, 30000)) r <- epi_recipe(jhu) \%>\% - step_population_scaling(df = pop_data, - df_pop_col = "value", - by = c("geo_value" = "states"), - cases, suffix = "_scaled") \%>\% + step_population_scaling( + df = pop_data, + df_pop_col = "value", + by = c("geo_value" = "states"), + cases, suffix = "_scaled" + ) \%>\% step_epi_lag(cases_scaled, lag = c(0, 7, 14)) \%>\% step_epi_ahead(cases_scaled, ahead = 7, role = "outcome") \%>\% step_epi_naomit() @@ -119,9 +121,11 @@ f <- frosting() \%>\% layer_predict() \%>\% layer_threshold(.pred) \%>\% layer_naomit(.pred) \%>\% - layer_population_scaling(.pred, df = pop_data, - by = c("geo_value" = "states"), - df_pop_col = "value") + layer_population_scaling(.pred, + df = pop_data, + by = c("geo_value" = "states"), + df_pop_col = "value" + ) wf <- epi_workflow(r, parsnip::linear_reg()) \%>\% fit(jhu) \%>\% @@ -130,8 +134,10 @@ wf <- epi_workflow(r, parsnip::linear_reg()) \%>\% latest <- get_test_data( recipe = r, epiprocess::jhu_csse_daily_subset \%>\% - dplyr::filter(time_value > "2021-11-01", - geo_value \%in\% c("ca", "ny")) \%>\% + dplyr::filter( + time_value > "2021-11-01", + geo_value \%in\% c("ca", "ny") + ) \%>\% dplyr::select(geo_value, time_value, cases) ) diff --git a/man/step_training_window.Rd b/man/step_training_window.Rd index 7861f27ea..ce7c0fc74 100644 --- a/man/step_training_window.Rd +++ b/man/step_training_window.Rd @@ -50,9 +50,12 @@ after any filtering step. tib <- tibble::tibble( x = 1:10, y = 1:10, - time_value = rep(seq(as.Date("2020-01-01"), by = 1, - length.out = 5), times = 2), - geo_value = rep(c("ca", "hi"), each = 5)) \%>\% + time_value = rep(seq(as.Date("2020-01-01"), + by = 1, + length.out = 5 + ), times = 2), + geo_value = rep(c("ca", "hi"), each = 5) +) \%>\% as_epi_df() epi_recipe(y ~ x, data = tib) \%>\%