diff --git a/DESCRIPTION b/DESCRIPTION index 8b80431c..f149e29e 100755 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -53,7 +53,6 @@ Imports: vctrs, waldo Suggests: - covidcast, devtools, epidatr, knitr, diff --git a/data-raw/jhu_csse_county_level_subset.R b/data-raw/jhu_csse_county_level_subset.R index faed75e8..d64e3f4a 100644 --- a/data-raw/jhu_csse_county_level_subset.R +++ b/data-raw/jhu_csse_county_level_subset.R @@ -1,10 +1,8 @@ library(epidatr) -library(covidcast) library(epiprocess) library(dplyr) -# Use covidcast::county_census to get the county and state names -y <- covidcast::county_census %>% +y <- read_csv("https://github.com/cmu-delphi/covidcast/raw/c89e4d295550ba1540d64d2cc991badf63ad04e5/Python-packages/covidcast-py/covidcast/geo_mappings/county_census.csv") %>% filter(STNAME %in% c("Massachusetts", "Vermont"), STNAME != CTYNAME) %>% select(geo_value = FIPS, county_name = CTYNAME, state_name = STNAME) diff --git a/vignettes/aggregation.Rmd b/vignettes/aggregation.Rmd index 9d205f53..a627a441 100644 --- a/vignettes/aggregation.Rmd +++ b/vignettes/aggregation.Rmd @@ -14,12 +14,11 @@ COVID-19 cases in MA and VT. ```{r, message = FALSE, eval= FALSE, warning= FALSE} library(epidatr) -library(covidcast) library(epiprocess) library(dplyr) # Use covidcast::county_census to get the county and state names -y <- covidcast::county_census %>% +y <- y <- read_csv("https://github.com/cmu-delphi/covidcast/raw/c89e4d295550ba1540d64d2cc991badf63ad04e5/Python-packages/covidcast-py/covidcast/geo_mappings/county_census.csv") %>% filter(STNAME %in% c("Massachusetts", "Vermont"), STNAME != CTYNAME) %>% select(geo_value = FIPS, county_name = CTYNAME, state_name = STNAME) @@ -41,7 +40,6 @@ The data contains 16,212 rows and 5 columns. ```{r, echo=FALSE, warning=FALSE, message=FALSE} library(epidatr) -library(covidcast) library(epiprocess) library(dplyr)