-
Notifications
You must be signed in to change notification settings - Fork 0
/
ball_tracking.py
120 lines (106 loc) · 3.67 KB
/
ball_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# -*- coding: utf-8 -*-
# import the necessary packages
#http://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
from collections import deque
import time
import datetime
import numpy as np
import argparse
import imutils
import cv2 #Video Library
import pymysql #for mySQL DB connection
import requests #for POST request
db = pymysql.connect(host="localhost",
user="root",
passwd="goal",
db="goal")
cur = db.cursor()
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-b", "--buffer", type=int, default=64,
help="max buffer size")
args = vars(ap.parse_args())
# define the lower and upper boundaries of the "green"
# ball in the HSV color space, then initialize the
# list of tracked points
#greenLower = (16, 86, 6)
greenLower = (22, 57, 168)
greenUpper = (64, 255, 255)
pts = deque(maxlen=args["buffer"])
# if a video path was not supplied, grab the reference to the webcam
#Logitech 1920x1080;1280*720;640x360
camera = cv2.VideoCapture(0)
camera.set(3,480) #Breite
camera.set(4,270) #Länge
#camera.set(5,1) #FPS
table_ID1=1
# keep looping
while True:
# grab the current frame
(grabbed, frame) = camera.read()
# if we are viewing a video and we did not grab a frame,
# then we have reached the end of the video
#if args.get("video") and not grabbed:
#break
# resize the frame, blur it, and convert it to the HSV
# color space
#frame = imutils.resize(frame, width=400)
blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# construct a mask for the color "green", then perform
# a series of dilations and erosions to remove any small
# blobs left in the mask
mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
# find contours in the mask and initialize the current
# (x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
# only proceed if at least one contour was found
if len(cnts) > 0:
# find the largest contour in the mask, then use
# it to compute the minimum enclosing circle and
# centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
time_xy= datetime.datetime.now()
print(x,y,time_xy)
# ausgabe x,y Werte und speichern in der DB
#print(x,y,time_xy)
x2 = str(round(x,4))
y2 = str(round(y,4))
cur.execute("INSERT INTO xy(table_ID,x,y,timestamp) VALUES (%s,%s,%s,%s)",(table_ID1,x2,y2,time_xy))
db.commit()
#time.sleep(.05)
#only proceed if the radius meets a minimum size
if radius > 8:
# draw the circle and centroid on the frame,
# then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),
(0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 255), -1)
# update the points queue
pts.appendleft(center)
# loop over the set of tracked points
for i in range(1, len(pts)):
# if either of the tracked points are None, ignore
# them
if pts[i - 1] is None or pts[i] is None:
continue
# otherwise, compute the thickness of the line and
# draw the connecting lines
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)
# show the frame to our screen
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the 'q' key is pressed, stop the loop
if key == ord("q"):
break
# cleanup the camera and close any open windows
camera.release()
cv2.destroyAllWindows()