forked from chenyuntc/pytorch-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
45 lines (34 loc) · 1.42 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# coding:utf8
import warnings
import torch as t
class DefaultConfig(object):
env = 'default' # visdom 环境
vis_port =8097 # visdom 端口
model = 'SqueezeNet' # 使用的模型,名字必须与models/__init__.py中的名字一致
train_data_root = './data/train/' # 训练集存放路径
test_data_root = './data/test1' # 测试集存放路径
load_model_path = None # 加载预训练的模型的路径,为None代表不加载
batch_size = 32 # batch size
use_gpu = True # user GPU or not
num_workers = 4 # how many workers for loading data
print_freq = 20 # print info every N batch
debug_file = '/tmp/debug' # if os.path.exists(debug_file): enter ipdb
result_file = 'result.csv'
max_epoch = 10
lr = 0.001 # initial learning rate
lr_decay = 0.5 # when val_loss increase, lr = lr*lr_decay
weight_decay = 0e-5 # 损失函数
def _parse(self, kwargs):
"""
根据字典kwargs 更新 config参数
"""
for k, v in kwargs.items():
if not hasattr(self, k):
warnings.warn("Warning: opt has not attribut %s" % k)
setattr(self, k, v)
opt.device =t.device('cuda') if opt.use_gpu else t.device('cpu')
print('user config:')
for k, v in self.__class__.__dict__.items():
if not k.startswith('_'):
print(k, getattr(self, k))
opt = DefaultConfig()