-
Notifications
You must be signed in to change notification settings - Fork 50
/
architecture.cc
1547 lines (1362 loc) · 52.9 KB
/
architecture.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* ###
* IP: GHIDRA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Set up decompiler for specific architectures
#include "coreaction.hh"
#include "flow.hh"
#ifdef CPUI_RULECOMPILE
#include "rulecompile.hh"
#endif
#ifdef CPUI_STATISTICS
#include <cmath>
#endif
namespace ghidra {
#ifdef CPUI_STATISTICS
using std::sqrt;
#endif
vector<ArchitectureCapability *> ArchitectureCapability::thelist;
const uint4 ArchitectureCapability::majorversion = 6;
const uint4 ArchitectureCapability::minorversion = 0;
AttributeId ATTRIB_ADDRESS = AttributeId("address",148);
AttributeId ATTRIB_ADJUSTVMA = AttributeId("adjustvma",103);
AttributeId ATTRIB_ENABLE = AttributeId("enable",104);
AttributeId ATTRIB_GROUP = AttributeId("group",105);
AttributeId ATTRIB_GROWTH = AttributeId("growth",106);
AttributeId ATTRIB_KEY = AttributeId("key",107);
AttributeId ATTRIB_LOADERSYMBOLS = AttributeId("loadersymbols",108);
AttributeId ATTRIB_PARENT = AttributeId("parent",109);
AttributeId ATTRIB_REGISTER = AttributeId("register",110);
AttributeId ATTRIB_REVERSEJUSTIFY = AttributeId("reversejustify",111);
AttributeId ATTRIB_SIGNEXT = AttributeId("signext",112);
AttributeId ATTRIB_STYLE = AttributeId("style",113);
ElementId ELEM_ADDRESS_SHIFT_AMOUNT = ElementId("address_shift_amount",130);
ElementId ELEM_AGGRESSIVETRIM = ElementId("aggressivetrim",131);
ElementId ELEM_COMPILER_SPEC = ElementId("compiler_spec",132);
ElementId ELEM_DATA_SPACE = ElementId("data_space",133);
ElementId ELEM_DEFAULT_MEMORY_BLOCKS = ElementId("default_memory_blocks",134);
ElementId ELEM_DEFAULT_PROTO = ElementId("default_proto",135);
ElementId ELEM_DEFAULT_SYMBOLS = ElementId("default_symbols",136);
ElementId ELEM_EVAL_CALLED_PROTOTYPE = ElementId("eval_called_prototype",137);
ElementId ELEM_EVAL_CURRENT_PROTOTYPE = ElementId("eval_current_prototype",138);
ElementId ELEM_EXPERIMENTAL_RULES = ElementId("experimental_rules",139);
ElementId ELEM_FLOWOVERRIDELIST = ElementId("flowoverridelist",140);
ElementId ELEM_FUNCPTR = ElementId("funcptr",141);
ElementId ELEM_GLOBAL = ElementId("global",142);
ElementId ELEM_INCIDENTALCOPY = ElementId("incidentalcopy",143);
ElementId ELEM_INFERPTRBOUNDS = ElementId("inferptrbounds",144);
ElementId ELEM_MODELALIAS = ElementId("modelalias",145);
ElementId ELEM_NOHIGHPTR = ElementId("nohighptr",146);
ElementId ELEM_PROCESSOR_SPEC = ElementId("processor_spec",147);
ElementId ELEM_PROGRAMCOUNTER = ElementId("programcounter",148);
ElementId ELEM_PROPERTIES = ElementId("properties",149);
ElementId ELEM_PROPERTY = ElementId("property",150);
ElementId ELEM_READONLY = ElementId("readonly",151);
ElementId ELEM_REGISTER_DATA = ElementId("register_data",152);
ElementId ELEM_RULE = ElementId("rule",153);
ElementId ELEM_SAVE_STATE = ElementId("save_state",154);
ElementId ELEM_SEGMENTED_ADDRESS = ElementId("segmented_address",155);
ElementId ELEM_SPACEBASE = ElementId("spacebase",156);
ElementId ELEM_SPECEXTENSIONS = ElementId("specextensions",157);
ElementId ELEM_STACKPOINTER = ElementId("stackpointer",158);
ElementId ELEM_VOLATILE = ElementId("volatile",159);
/// This builds a list of just the ArchitectureCapability extensions
void ArchitectureCapability::initialize(void)
{
thelist.push_back(this);
}
/// Given a specific file, find an ArchitectureCapability that can handle it.
/// \param filename is the path to the file
/// \return an ArchitectureCapability that can handle it or NULL
ArchitectureCapability *ArchitectureCapability::findCapability(const string &filename)
{
for(uint4 i=0;i<thelist.size();++i) {
ArchitectureCapability *capa = thelist[i];
if (capa->isFileMatch(filename))
return capa;
}
return (ArchitectureCapability *)0;
}
/// Given a parsed XML document, find an ArchitectureCapability that can handle it.
/// \param doc is the parsed XML document
/// \return an ArchitectureCapability that can handle it or NULL
ArchitectureCapability *ArchitectureCapability::findCapability(Document *doc)
{
for(uint4 i=0;i<thelist.size();++i) {
ArchitectureCapability *capa = thelist[i];
if (capa->isXmlMatch(doc))
return capa;
}
return (ArchitectureCapability *)0;
}
/// Return the ArchitectureCapability object with the matching name
/// \param name is the name to match
/// \return the ArchitectureCapability or null if no match is found
ArchitectureCapability *ArchitectureCapability::getCapability(const string &name)
{
for(int4 i=0;i<thelist.size();++i) {
ArchitectureCapability *res = thelist[i];
if (res->getName() == name)
return res;
}
return (ArchitectureCapability *)0;
}
/// Modify order that extensions are searched, to effect which gets a chance
/// to run first.
/// Right now all we need to do is make sure the raw architecture comes last
void ArchitectureCapability::sortCapabilities(void)
{
uint4 i;
for(i=0;i<thelist.size();++i) {
if (thelist[i]->getName() == "raw") break;
}
if (i==thelist.size()) return;
ArchitectureCapability *capa = thelist[i];
for(uint4 j=i+1;j<thelist.size();++j)
thelist[j-1] = thelist[j];
thelist[ thelist.size()-1 ] = capa;
}
/// Set most sub-components to null pointers. Provide reasonable defaults
/// for the configurable options
Architecture::Architecture(void)
{
// endian = -1;
resetDefaultsInternal();
min_funcsymbol_size = 1;
aggressive_ext_trim = false;
funcptr_align = 0;
defaultfp = (ProtoModel *)0;
defaultReturnAddr.space = (AddrSpace *)0;
evalfp_current = (ProtoModel *)0;
evalfp_called = (ProtoModel *)0;
types = (TypeFactory *)0;
translate = (Translate *)0;
loader = (LoadImage *)0;
pcodeinjectlib = (PcodeInjectLibrary *)0;
commentdb = (CommentDatabase *)0;
stringManager = (StringManager *)0;
cpool = (ConstantPool *)0;
symboltab = (Database *)0;
context = (ContextDatabase *)0;
print = PrintLanguageCapability::getDefault()->buildLanguage(this);
printlist.push_back(print);
options = new OptionDatabase(this);
loadersymbols_parsed = false;
#ifdef CPUI_STATISTICS
stats = new Statistics();
#endif
#ifdef OPACTION_DEBUG
debugstream = (ostream *)0;
#endif
}
/// Release resources for all sub-components
Architecture::~Architecture(void)
{ // Delete anything that was allocated
vector<TypeOp *>::iterator iter;
TypeOp *t_op;
for(iter=inst.begin();iter!=inst.end();++iter) {
t_op = *iter;
if (t_op != (TypeOp *)0)
delete t_op;
}
for(int4 i=0;i<extra_pool_rules.size();++i)
delete extra_pool_rules[i];
if (symboltab != (Database *)0)
delete symboltab;
for(int4 i=0;i<(int4)printlist.size();++i)
delete printlist[i];
delete options;
#ifdef CPUI_STATISTICS
delete stats;
#endif
map<string,ProtoModel *>::const_iterator piter;
for(piter=protoModels.begin();piter!=protoModels.end();++piter)
delete (*piter).second;
if (types != (TypeFactory *)0)
delete types;
if (translate != (Translate *)0)
delete translate;
if (loader != (LoadImage *)0)
delete loader;
if (pcodeinjectlib != (PcodeInjectLibrary *)0)
delete pcodeinjectlib;
if (commentdb != (CommentDatabase *)0)
delete commentdb;
if (stringManager != (StringManager *)0)
delete stringManager;
if (cpool != (ConstantPool *)0)
delete cpool;
if (context != (ContextDatabase *)0)
delete context;
}
/// The Architecture maintains the set of prototype models that can
/// be applied for this particular executable. Retrieve one by name.
/// If the model doesn't exist, null is returned.
/// \param nm is the name
/// \return the matching model or null
ProtoModel *Architecture::getModel(const string &nm) const
{
map<string,ProtoModel *>::const_iterator iter;
iter = protoModels.find(nm);
if (iter==protoModels.end())
return (ProtoModel *)0;
return (*iter).second;
}
/// \param nm is the name of the model
/// \return \b true if this Architecture supports a model with that name
bool Architecture::hasModel(const string &nm) const
{ // Does this architecture have a prototype model of this name
map<string,ProtoModel *>::const_iterator iter;
iter = protoModels.find(nm);
return (iter != protoModels.end());
}
/// Get the address space associated with the indicated
/// \e spacebase register. I.e. if the location of the
/// \e stack \e pointer is passed in, this routine would return
/// a pointer to the \b stack space. An exception is thrown
/// if no corresponding space is found.
/// \param loc is the location of the \e spacebase register
/// \param size is the size of the register in bytes
/// \return a pointer to the address space
AddrSpace *Architecture::getSpaceBySpacebase(const Address &loc,int4 size) const
{
AddrSpace *id;
int4 sz = numSpaces();
for(int4 i=0;i<sz;++i) {
id = getSpace(i);
if (id == (AddrSpace *)0) continue;
int4 numspace = id->numSpacebase();
for(int4 j=0;j<numspace;++j) {
const VarnodeData &point(id->getSpacebase(j));
if (point.size != size) continue;
if (point.space != loc.getSpace()) continue;
if (point.offset != loc.getOffset()) continue;
return id;
}
}
throw LowlevelError("Unable to find entry for spacebase register");
}
/// Look-up the laned register record associated with a specific storage location. Currently, the
/// record is only associated with the \e size of the storage, not its address. If there is no
/// associated record, null is returned.
/// \param loc is the starting address of the storage location
/// \param size is the size of the storage in bytes
/// \return the matching LanedRegister record or null
const LanedRegister *Architecture::getLanedRegister(const Address &loc,int4 size) const
{
int4 min = 0;
int4 max = lanerecords.size() - 1;
while(min <= max) {
int4 mid = (min + max) / 2;
int4 sz = lanerecords[mid].getWholeSize();
if (sz < size)
min = mid + 1;
else if (size < sz)
max = mid - 1;
else
return &lanerecords[mid];
}
return (const LanedRegister *)0;
}
/// Return a size intended for comparison with a Varnode size to immediately determine if
/// the Varnode is a potential laned register. If there are no laned registers for the architecture,
/// -1 is returned.
/// \return the size in bytes of the smallest laned register or -1.
int4 Architecture::getMinimumLanedRegisterSize(void) const
{
if (lanerecords.empty())
return -1;
return lanerecords[0].getWholeSize();
}
/// The default model is used whenever an explicit model is not known
/// or can't be determined.
/// \param model is the ProtoModel object to make the default
void Architecture::setDefaultModel(ProtoModel *model)
{
if (defaultfp != (ProtoModel *)0)
defaultfp->setPrintInDecl(true);
model->setPrintInDecl(false);
defaultfp = model;
}
/// Throw out the syntax tree, (unlocked) symbols, comments, and other derived information
/// about a single function.
/// \param fd is the function to clear
void Architecture::clearAnalysis(Funcdata *fd)
{
fd->clear(); // Clear stuff internal to function
// Clear out any analysis generated comments
commentdb->clearType(fd->getAddress(),Comment::warning|Comment::warningheader);
}
/// Symbols do not necessarily need to be available for the decompiler.
/// This routine loads all the \e load \e image knows about into the symbol table
/// \param delim is the delimiter separating namespaces from symbol base names
void Architecture::readLoaderSymbols(const string &delim)
{
if (loadersymbols_parsed) return; // already read
loader->openSymbols();
loadersymbols_parsed = true;
LoadImageFunc record;
while(loader->getNextSymbol(record)) {
string basename;
Scope *scope = symboltab->findCreateScopeFromSymbolName(record.name, delim, basename, (Scope *)0);
scope->addFunction(record.address,basename);
}
loader->closeSymbols();
}
/// For all registered p-code opcodes, return the corresponding OpBehavior object.
/// The object pointers are provided in a list indexed by OpCode.
/// \param behave is the list to be populated
void Architecture::collectBehaviors(vector<OpBehavior *> &behave) const
{
behave.resize(inst.size(), (OpBehavior *)0);
for(int4 i=0;i<inst.size();++i) {
TypeOp *op = inst[i];
if (op == (TypeOp *)0) continue;
behave[i] = op->getBehavior();
}
}
/// This method searches for a user-defined segment op registered
/// for the given space.
/// \param spc is the address space to check
/// \return the SegmentOp object or null
SegmentOp *Architecture::getSegmentOp(AddrSpace *spc) const
{
if (spc->getIndex() >= userops.numSegmentOps()) return (SegmentOp *)0;
SegmentOp *segdef = userops.getSegmentOp(spc->getIndex());
if (segdef == (SegmentOp *)0) return (SegmentOp *)0;
if (segdef->getResolve().space != (AddrSpace *)0)
return segdef;
return (SegmentOp *)0;
}
/// Establish details of the prototype for a given function symbol
/// \param pieces holds the raw prototype information and the symbol name
void Architecture::setPrototype(const PrototypePieces &pieces)
{
string basename;
Scope *scope = symboltab->resolveScopeFromSymbolName(pieces.name, "::", basename, (Scope *)0);
if (scope == (Scope *)0)
throw ParseError("Unknown namespace: " + pieces.name);
Funcdata *fd = scope->queryFunction( basename );
if (fd == (Funcdata *)0)
throw ParseError("Unknown function name: " + pieces.name);
fd->getFuncProto().setPieces(pieces);
}
/// The decompiler supports one or more output languages (C, Java). This method
/// does the main work of selecting one of the supported languages.
/// In addition to selecting the main PrintLanguage object, this triggers
/// configuration of the cast strategy and p-code op behaviors.
/// \param nm is the name of the language
void Architecture::setPrintLanguage(const string &nm)
{
for(int4 i=0;i<(int4)printlist.size();++i) {
if (printlist[i]->getName() == nm) {
print = printlist[i];
print->adjustTypeOperators();
return;
}
}
PrintLanguageCapability *capa = PrintLanguageCapability::findCapability(nm);
if (capa == (PrintLanguageCapability *)0)
throw LowlevelError("Unknown print language: "+nm);
bool printMarkup = print->emitsMarkup(); // Copy settings for current print language
ostream *t = print->getOutputStream();
print = capa->buildLanguage(this);
print->setOutputStream(t); // Restore settings from previous language
print->initializeFromArchitecture();
if (printMarkup)
print->setMarkup(true);
printlist.push_back(print);
print->adjustTypeOperators();
return;
}
/// Set all IPTR_PROCESSOR and IPTR_SPACEBASE spaces to be global
void Architecture::globalify(void)
{
Scope *scope = symboltab->getGlobalScope();
int4 nm = numSpaces();
for(int4 i=0;i<nm;++i) {
AddrSpace *spc = getSpace(i);
if (spc == (AddrSpace *)0) continue;
if ((spc->getType() != IPTR_PROCESSOR)&&(spc->getType() != IPTR_SPACEBASE)) continue;
symboltab->addRange(scope,spc,(uintb)0,spc->getHighest());
}
}
/// Insert a series of out-of-band flow overrides based on a \<flowoverridelist> element.
/// \param decoder is the stream decoder
void Architecture::decodeFlowOverride(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_FLOWOVERRIDELIST);
for(;;) {
uint4 subId = decoder.openElement();
if (subId != ELEM_FLOW) break;
string flowType = decoder.readString(ATTRIB_TYPE);
Address funcaddr = Address::decode(decoder);
Address overaddr = Address::decode(decoder);
Funcdata *fd = symboltab->getGlobalScope()->queryFunction(funcaddr);
if (fd != (Funcdata *)0)
fd->getOverride().insertFlowOverride(overaddr,Override::stringToType(flowType));
decoder.closeElement(subId);
}
decoder.closeElement(elemId);
}
/// Write the current state of all types, symbols, functions, etc. to a stream.
/// \param encoder is the stream encoder
void Architecture::encode(Encoder &encoder) const
{
encoder.openElement(ELEM_SAVE_STATE);
encoder.writeBool(ATTRIB_LOADERSYMBOLS, loadersymbols_parsed);
types->encode(encoder);
symboltab->encode(encoder);
context->encode(encoder);
commentdb->encode(encoder);
stringManager->encode(encoder);
if (!cpool->empty())
cpool->encode(encoder);
encoder.closeElement(ELEM_SAVE_STATE);
}
/// Read in all the sub-component state from a \<save_state> XML tag
/// When adding stuff to this BEWARE: The spec file has already initialized stuff
/// \param store is document store containing the parsed root tag
void Architecture::restoreXml(DocumentStorage &store)
{
const Element *el = store.getTag(ELEM_SAVE_STATE.getName());
if (el == (const Element *)0)
throw LowlevelError("Could not find save_state tag");
XmlDecode decoder(this,el);
uint4 elemId = decoder.openElement(ELEM_SAVE_STATE);
loadersymbols_parsed = false;
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_LOADERSYMBOLS)
loadersymbols_parsed = decoder.readBool();
}
for(;;) {
uint4 subId = decoder.peekElement();
if (subId == 0) break;
if (subId == ELEM_TYPEGRP)
types->decode(decoder);
else if (subId == ELEM_DB)
symboltab->decode(decoder);
else if (subId == ELEM_CONTEXT_POINTS)
context->decode(decoder);
else if (subId == ELEM_COMMENTDB)
commentdb->decode(decoder);
else if (subId == ELEM_STRINGMANAGE)
stringManager->decode(decoder);
else if (subId == ELEM_CONSTANTPOOL)
cpool->decode(decoder,*types);
else if (subId == ELEM_OPTIONSLIST)
options->decode(decoder);
else if (subId == ELEM_FLOWOVERRIDELIST)
decodeFlowOverride(decoder);
else if (subId == ELEM_INJECTDEBUG)
pcodeinjectlib->decodeDebug(decoder);
else
throw LowlevelError("XML error restoring architecture");
}
decoder.closeElement(elemId);
}
/// If no better name is available, this method can be used to generate
/// a function name based on its address
/// \param addr is the address of the function
/// \param name will hold the constructed name
void Architecture::nameFunction(const Address &addr,string &name) const
{
ostringstream defname;
defname << "func_";
addr.printRaw(defname);
name = defname.str();
}
/// \brief Create a new address space associated with a pointer register
///
/// This process sets up a \e register \e relative"space for this architecture.
/// If indicated, this space takes on the role of the \e formal stack space.
/// Should only be called once during initialization.
/// \param basespace is the address space underlying the stack
/// \param nm is the name of the new space
/// \param ptrdata is the register location acting as a pointer into the new space
/// \param truncSize is the (possibly truncated) size of the register that fits the space
/// \param isreversejustified is \b true if small variables are justified opposite of endianness
/// \param stackGrowth is \b true if a stack implemented in this space grows in the negative direction
/// \param isFormal is the indicator for the \b formal stack space
void Architecture::addSpacebase(AddrSpace *basespace,const string &nm,const VarnodeData &ptrdata,
int4 truncSize,bool isreversejustified,bool stackGrowth,bool isFormal)
{
int4 ind = numSpaces();
SpacebaseSpace *spc = new SpacebaseSpace(this,translate,nm,ind,truncSize,basespace,ptrdata.space->getDelay()+1,isFormal);
if (isreversejustified)
setReverseJustified(spc);
insertSpace(spc);
addSpacebasePointer(spc,ptrdata,truncSize,stackGrowth);
}
/// This routine is used by the initialization process to add
/// address ranges to which there is never an (indirect) pointer
/// Should only be called during initialization
/// \param rng is the new range with no aliases to be added
void Architecture::addNoHighPtr(const Range &rng)
{
nohighptr.insertRange(rng.getSpace(),rng.getFirst(),rng.getLast());
}
/// This builds the \e universal Action for function transformation
/// and instantiates the "decompile" root Action
/// \param store may hold configuration information
void Architecture::buildAction(DocumentStorage &store)
{
parseExtraRules(store); // Look for any additional rules
allacts.universalAction(this);
allacts.resetDefaults();
}
/// Create the database object, which currently doesn't not depend on any configuration
/// data. Then create the root (global) scope and attach it to the database.
/// \param store is the storage for any configuration data
/// \return the global Scope object
Scope *Architecture::buildDatabase(DocumentStorage &store)
{
symboltab = new Database(this,true);
Scope *globscope = new ScopeInternal(0,"",this);
symboltab->attachScope(globscope,(Scope *)0);
return globscope;
}
/// This registers the OpBehavior objects for all known p-code OpCodes.
/// The Translate and TypeFactory object should already be built.
/// \param store may hold configuration information
void Architecture::buildInstructions(DocumentStorage &store)
{
TypeOp::registerInstructions(inst,types,translate);
}
void Architecture::postSpecFile(void)
{
cacheAddrSpaceProperties();
}
/// Once the processor is known, the Translate object can be built and
/// fully initialized. Processor and compiler specific configuration is performed
/// \param store will hold parsed configuration information
void Architecture::restoreFromSpec(DocumentStorage &store)
{
Translate *newtrans = buildTranslator(store); // Once language is described we can build translator
newtrans->initialize(store);
translate = newtrans;
modifySpaces(newtrans); // Give architecture chance to modify spaces, before copying
copySpaces(newtrans);
insertSpace( new FspecSpace(this,translate,numSpaces()));
insertSpace( new IopSpace(this,translate,numSpaces()));
insertSpace( new JoinSpace(this,translate,numSpaces()));
userops.initialize(this);
if (translate->getAlignment() <= 8)
min_funcsymbol_size = translate->getAlignment();
pcodeinjectlib = buildPcodeInjectLibrary();
parseProcessorConfig(store);
newtrans->setDefaultFloatFormats(); // If no explicit formats registered, put in defaults
parseCompilerConfig(store);
// Action stuff will go here
buildAction(store);
}
/// If any address space supports near pointers and segment operators,
/// setup SegmentedResolver objects that can be used to recover full pointers in context.
void Architecture::initializeSegments(void)
{
int4 sz = userops.numSegmentOps();
for(int4 i=0;i<sz;++i) {
SegmentOp *sop = userops.getSegmentOp(i);
if (sop == (SegmentOp *)0) continue;
SegmentedResolver *rsolv = new SegmentedResolver(this,sop->getSpace(),sop);
insertResolver(sop->getSpace(),rsolv);
}
}
/// Determine the minimum pointer size for the space and whether or not there are near pointers.
/// Set up an ordered list of inferable spaces (where constant pointers can be infered).
/// Inferable spaces include the default space and anything explicitly listed
/// in the cspec \<global> tag that is not a register space. An initial list of potential spaces is
/// passed in that needs to be ordered, filtered, and deduplicated.
void Architecture::cacheAddrSpaceProperties(void)
{
vector<AddrSpace *> copyList = inferPtrSpaces;
copyList.push_back(getDefaultCodeSpace()); // Make sure the default code space is present
copyList.push_back(getDefaultDataSpace()); // Make sure the default data space is present
inferPtrSpaces.clear();
sort(copyList.begin(),copyList.end(),AddrSpace::compareByIndex);
AddrSpace *lastSpace = (AddrSpace *)0;
for(int4 i=0;i<copyList.size();++i) {
AddrSpace *spc = copyList[i];
if (spc == lastSpace) continue;
lastSpace = spc;
if (spc->getDelay() == 0) continue; // Don't put in a register space
if (spc->getType() == IPTR_SPACEBASE) continue;
if (spc->isOtherSpace()) continue;
if (spc->isOverlay()) continue;
inferPtrSpaces.push_back(spc);
}
int4 defPos = -1;
for(int4 i=0;i<inferPtrSpaces.size();++i) {
AddrSpace *spc = inferPtrSpaces[i];
if (spc == getDefaultDataSpace()) // Make the default for inferring pointers the data space
defPos = i;
SegmentOp *segOp = getSegmentOp(spc);
if (segOp != (SegmentOp *)0) {
int4 val = segOp->getInnerSize();
markNearPointers(spc, val);
}
}
if (defPos > 0) { // Make sure the default space comes first
AddrSpace *tmp = inferPtrSpaces[0];
inferPtrSpaces[0] = inferPtrSpaces[defPos];
inferPtrSpaces[defPos] = tmp;
}
}
/// Recover information out of a \<rule> element and build the new Rule object.
/// \param decoder is the stream decoder
void Architecture::decodeDynamicRule(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_RULE);
string rulename,groupname;
bool enabled = false;
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_NAME)
rulename = decoder.readString();
else if (attribId == ATTRIB_GROUP)
groupname = decoder.readString();
else if (attribId == ATTRIB_ENABLE)
enabled = decoder.readBool();
else
throw LowlevelError("Dynamic rule tag contains illegal attribute");
}
if (rulename.size()==0)
throw LowlevelError("Dynamic rule has no name");
if (groupname.size()==0)
throw LowlevelError("Dynamic rule has no group");
if (!enabled) return;
#ifdef CPUI_RULECOMPILE
Rule *dynrule = RuleGeneric::build(rulename,groupname,el->getContent());
extra_pool_rules.push_back(dynrule);
#else
throw LowlevelError("Dynamic rules have not been enabled for this decompiler");
#endif
decoder.closeElement(elemId);
}
/// This handles the \<prototype> and \<resolveprototype> elements. It builds the
/// ProtoModel object based on the tag and makes it available generally to the decompiler.
/// \param decoder is the stream decoder
/// \return the new ProtoModel object
ProtoModel *Architecture::decodeProto(Decoder &decoder)
{
ProtoModel *res;
uint4 elemId = decoder.peekElement();
if (elemId == ELEM_PROTOTYPE)
res = new ProtoModel(this);
else if (elemId == ELEM_RESOLVEPROTOTYPE)
res = new ProtoModelMerged(this);
else
throw LowlevelError("Expecting <prototype> or <resolveprototype> tag");
res->decode(decoder);
ProtoModel *other = getModel(res->getName());
if (other != (ProtoModel *)0) {
string errMsg = "Duplicate ProtoModel name: " + res->getName();
delete res;
throw LowlevelError(errMsg);
}
protoModels[res->getName()] = res;
return res;
}
/// This decodes the \<eval_called_prototype> and \<eval_current_prototype> elements.
/// This determines which prototype model to assume when recovering the prototype
/// for a \e called function and the \e current function respectively.
/// \param decoder is the stream decoder
void Architecture::decodeProtoEval(Decoder &decoder)
{
uint4 elemId = decoder.openElement();
string modelName = decoder.readString(ATTRIB_NAME);
ProtoModel *res = getModel(modelName);
if (res == (ProtoModel *)0)
throw LowlevelError("Unknown prototype model name: "+modelName);
if (elemId == ELEM_EVAL_CALLED_PROTOTYPE) {
if (evalfp_called != (ProtoModel *)0)
throw LowlevelError("Duplicate <eval_called_prototype> tag");
evalfp_called = res;
}
else {
if (evalfp_current != (ProtoModel *)0)
throw LowlevelError("Duplicate <eval_current_prototype> tag");
evalfp_current = res;
}
decoder.closeElement(elemId);
}
/// There should be exactly one \<default_proto> element that specifies what the
/// default prototype model is. This builds the ProtoModel object and sets it
/// as the default.
/// \param decoder is the stream decoder
void Architecture::decodeDefaultProto(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_DEFAULT_PROTO);
while(decoder.peekElement() != 0) {
if (defaultfp != (ProtoModel *)0)
throw LowlevelError("More than one default prototype model");
ProtoModel *model = decodeProto(decoder);
setDefaultModel(model);
}
decoder.closeElement(elemId);
}
/// Parse a \<global> element for child \<range> elements that will be added to the global scope.
/// Ranges are stored in partial form so that elements can be parsed before all address spaces exist.
/// \param decoder is the stream decoder
/// \param rangeProps is where the partially parsed ranges are stored
void Architecture::decodeGlobal(Decoder &decoder,vector<RangeProperties> &rangeProps)
{
uint4 elemId = decoder.openElement(ELEM_GLOBAL);
while(decoder.peekElement() != 0) {
rangeProps.emplace_back();
rangeProps.back().decode(decoder);
}
decoder.closeElement(elemId);
}
/// Add a memory range parse from a \<global> tag to the global scope.
/// Varnodes in this region will be assumed to be global variables.
/// \param props is information about a specific range
void Architecture::addToGlobalScope(const RangeProperties &props)
{
Scope *scope = symboltab->getGlobalScope();
Range range(props,this);
AddrSpace *spc = range.getSpace();
inferPtrSpaces.push_back(spc);
symboltab->addRange(scope,spc,range.getFirst(),range.getLast());
if (range.getSpace()->isOverlayBase()) { // If the address space is overlayed
// We need to duplicate the range being marked as global into the overlay space(s)
int4 num = numSpaces();
for(int4 i=0;i<num;++i) {
AddrSpace *ospc = getSpace(i);
if (ospc == (AddrSpace *)0 || !ospc->isOverlay()) continue;
if (ospc->getContain() != range.getSpace()) continue;
symboltab->addRange(scope,ospc,range.getFirst(),range.getLast());
}
}
}
//explictly add the OTHER space and any overlays to the global scope
void Architecture::addOtherSpace(void)
{
Scope *scope = symboltab->getGlobalScope();
AddrSpace *otherSpace = getSpaceByName(OtherSpace::NAME);
symboltab->addRange(scope,otherSpace,0,otherSpace->getHighest());
if (otherSpace->isOverlayBase()) {
int4 num = numSpaces();
for(int4 i=0;i<num;++i){
AddrSpace *ospc = getSpace(i);
if (!ospc->isOverlay()) continue;
if (ospc->getContain() != otherSpace) continue;
symboltab->addRange(scope,ospc,0,otherSpace->getHighest());
}
}
}
/// This applies info from a \<readonly> element marking a specific region
/// of the executable as \e read-only.
/// \param decoder is the stream decoder
void Architecture::decodeReadOnly(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_READONLY);
while(decoder.peekElement() != 0) {
Range range;
range.decode(decoder);
symboltab->setPropertyRange(Varnode::readonly,range);
}
decoder.closeElement(elemId);
}
/// This applies info from a \<volatile> element marking specific regions
/// of the executable as holding \e volatile memory or registers.
/// \param decoder is the stream decoder
void Architecture::decodeVolatile(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_VOLATILE);
userops.decodeVolatile(decoder,this);
while(decoder.peekElement() != 0) {
Range range;
range.decode(decoder); // Tag itself is range
symboltab->setPropertyRange(Varnode::volatil,range);
}
decoder.closeElement(elemId);
}
/// This applies info from \<returnaddress> element and sets the default
/// storage location for the \e return \e address of a function.
/// \param decoder is the stream decoder
void Architecture::decodeReturnAddress(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_RETURNADDRESS);
uint4 subId = decoder.peekElement();
if (subId != 0) {
if (defaultReturnAddr.space != (AddrSpace *)0)
throw LowlevelError("Multiple <returnaddress> tags in .cspec");
defaultReturnAddr.decode(decoder);
}
decoder.closeElement(elemId);
}
/// Apply information from an \<incidentalcopy> element, which marks a set of addresses
/// as being copied to incidentally. This allows the decompiler to ignore certain side-effects.
/// \param decoder is the stream decoder
void Architecture::decodeIncidentalCopy(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_INCIDENTALCOPY);
while(decoder.peekElement() != 0) {
VarnodeData vdata;
vdata.decode(decoder);
Range range( vdata.space, vdata.offset, vdata.offset+vdata.size-1);
symboltab->setPropertyRange(Varnode::incidental_copy,range);
}
decoder.closeElement(elemId);
}
/// Look for \<register> elements that have a \e vector_lane_size attribute.
/// Record these so that the decompiler can split large registers into appropriate lane size pieces.
/// \param decoder is the stream decoder
void Architecture::decodeLaneSizes(Decoder &decoder)
{
vector<uint4> maskList;
LanedRegister lanedRegister; // Only allocate once
uint4 elemId = decoder.openElement(ELEM_REGISTER_DATA);
while(decoder.peekElement() != 0) {
if (lanedRegister.decode(decoder)) {
int4 sizeIndex = lanedRegister.getWholeSize();
while (maskList.size() <= sizeIndex)
maskList.push_back(0);
maskList[sizeIndex] |= lanedRegister.getSizeBitMask();
}
}
decoder.closeElement(elemId);
lanerecords.clear();
for(int4 i=0;i<maskList.size();++i) {
if (maskList[i] == 0) continue;
lanerecords.push_back(LanedRegister(i,maskList[i]));
}
}
/// Create a stack space and a stack-pointer register from a \<stackpointer> element
/// \param decoder is the stream decoder
void Architecture::decodeStackPointer(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_STACKPOINTER);
string registerName;
bool stackGrowth = true; // Default stack growth is in negative direction
bool isreversejustify = false;
AddrSpace *basespace = (AddrSpace *)0;
for(;;) {
uint4 attribId = decoder.getNextAttributeId();
if (attribId == 0) break;
if (attribId == ATTRIB_REVERSEJUSTIFY)
isreversejustify = decoder.readBool();
else if (attribId == ATTRIB_GROWTH)
stackGrowth = decoder.readString() == "negative";
else if (attribId == ATTRIB_SPACE)
basespace = decoder.readSpace();
else if (attribId == ATTRIB_REGISTER)
registerName = decoder.readString();
}
if (basespace == (AddrSpace *)0)
throw LowlevelError(ELEM_STACKPOINTER.getName() + " element missing \"space\" attribute");
VarnodeData point = translate->getRegister(registerName);
decoder.closeElement(elemId);
// If creating a stackpointer to a truncated space, make sure to truncate the stackpointer
int4 truncSize = point.size;
if (basespace->isTruncated() && (point.size > basespace->getAddrSize())) {
truncSize = basespace->getAddrSize();
}
addSpacebase(basespace,"stack",point,truncSize,isreversejustify,stackGrowth,true); // Create the "official" stackpointer
}
/// Manually alter the dead-code delay for a specific address space,
/// based on a \<deadcodedelay> element.
/// \param decoder is the stream decoder
void Architecture::decodeDeadcodeDelay(Decoder &decoder)
{
uint4 elemId = decoder.openElement(ELEM_DEADCODEDELAY);
AddrSpace *spc = decoder.readSpace(ATTRIB_SPACE);
int4 delay = decoder.readSignedInteger(ATTRIB_DELAY);