forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PersistentSoftmax.cuh
385 lines (347 loc) · 18.4 KB
/
PersistentSoftmax.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#pragma once
#include <assert.h>
#include <cuda_fp16.h>
#include <cfloat>
#include <limits>
#include <stdint.h>
#include <cuda_fp16.h>
#include <c10/macros/Macros.h>
namespace {
int log2_ceil(int value) {
int log2_value = 0;
while ((1 << log2_value) < value) ++log2_value;
return log2_value;
}
template<typename T>
struct Add {
__device__ __forceinline__ T operator()(T a, T b) const {
return a + b;
}
};
template<typename T>
struct Max {
__device__ __forceinline__ T operator()(T a, T b) const {
return a < b ? b : a;
}
};
template <typename acc_t, int WARP_BATCH, int WARP_SIZE, template<typename> class ReduceOp>
__device__ __forceinline__ void warp_reduce(acc_t* sum) {
ReduceOp<acc_t> r;
#pragma unroll
for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
acc_t b = WARP_SHFL_XOR(sum[i], offset, WARP_SIZE);
sum[i] = r(sum[i], b);
}
}
}
// The softmax_warp_* methods perform softmax forward and backward propagation on samples spanning the fast dimension.
// Each sample contains element_count scalar elements. element_count can be any integer value <= 1024.
// The template arguments have the following meaning:
// One "WARP" works on one "BATCH". One "BATCH" contains "WARP_BATCH" samples.
// WARP_BATCH is equal to 1 when element_count is large, and > 1 when element_count is small.
// A "WARP" contains "C10_WARPS_SIZE" threads, these treads are guaranteed to belong to the same warp.
// This is important because it means only __shfl_ instructions are required for reductions.
// Note that this means WARP_SIZE must be a power of two and <= architecture warp size.
// CUDA warp size is 32 for all existing GPU architectures, but there is no guarantee this will not change for future arch.
// ROCm warp size is 64 for all currently ROCm-supported GPU architectures, but this may change for future archs.
// is_log_softmax is a flag indicating whether SoftMax or LogSoftMax should be computed.
// The template can be instantiated with any floating point type for the type arguments input_t, output_t and acc_t.
// This allows SoftMax to be fused with a cast immediately following the SoftMax.
// For instance:
// input_t=half, acc_t=float, output_t=half => read half tensor, float accumulators, write half tensor.
// input_t=half, acc_t=float, output_t=float => read half tensor, float accumulators, write float tensor.
// input_t_float, acc_t=float, output_t=half => read float tensor, float accumulators, write half tensor.
template <typename input_t, typename output_t, typename acc_t, int log2_elements, bool is_log_softmax>
__global__ void softmax_warp_forward(output_t *dst, const input_t *src, int batch_size, int stride, int element_count)
{
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and warp_size of method warp_softmax_forward_kernel.
constexpr int next_power_of_two = 1 << log2_elements;
constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;
// batch_size might not be a multiple of WARP_BATCH. Check how
// many batches have to computed within this WARP.
int local_batches = batch_size - first_batch;
if (local_batches > WARP_BATCH)
local_batches = WARP_BATCH;
// there might be multiple batches per warp. compute the index within the batch
int local_idx = threadIdx.x;
src += first_batch * stride + local_idx;
dst += first_batch * stride + local_idx;
// The nested loops over WARP_BATCH and then WARP_ITERATIONS can be simplified to one loop,
// but I think doing so would obfuscate the logic of the algorithm, thus I chose to keep
// the nested loops.
// This should have no impact on performance because the loops are unrolled anyway.
// load data from global memory
acc_t elements[WARP_BATCH][WARP_ITERATIONS];
for (int i = 0; i < WARP_BATCH; ++i) {
int batch_element_count = (i >= local_batches) ? 0 : element_count;
for (int it = 0; it < WARP_ITERATIONS; ++it) {
int element_index = local_idx + it * WARP_SIZE;
if (element_index < batch_element_count) {
elements[i][it] = src[i*element_count+it*WARP_SIZE];
} else {
elements[i][it] = -std::numeric_limits<acc_t>::infinity();
}
}
}
// compute max_value
acc_t max_value[WARP_BATCH];
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
max_value[i] = elements[i][0];
#pragma unroll
for (int it = 1; it < WARP_ITERATIONS; ++it) {
max_value[i] = (max_value[i] > elements[i][it]) ? max_value[i] : elements[i][it];
}
}
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Max>(max_value);
acc_t sum[WARP_BATCH] { 0.0f };
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
#pragma unroll
for (int it = 0; it < WARP_ITERATIONS; ++it) {
if (is_log_softmax) {
sum[i] += std::exp(elements[i][it] - max_value[i]);
} else {
elements[i][it] = std::exp(elements[i][it] - max_value[i]);
sum[i] += elements[i][it];
}
}
}
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
// store result
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
if (i >= local_batches)
break;
if (is_log_softmax) sum[i] = max_value[i] + std::log(sum[i]);
#pragma unroll
for (int it = 0; it < WARP_ITERATIONS; ++it) {
int element_index = local_idx + it * WARP_SIZE;
if (element_index < element_count) {
if (is_log_softmax) {
dst[i*element_count+it*WARP_SIZE] = elements[i][it] - sum[i];
} else {
dst[i*element_count+it*WARP_SIZE] = elements[i][it] / sum[i];
}
} else {
break;
}
}
}
}
template <typename input_t, typename output_t, typename acc_t, int log2_elements, bool is_log_softmax>
__global__ void softmax_warp_backward(output_t *gradInput, const input_t *grad, const input_t *output, int batch_size, int stride, int element_count)
{
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and warp_size of method warp_softmax_backward_kernel.
constexpr int next_power_of_two = 1 << log2_elements;
constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;
// batch_size might not be a multiple of WARP_BATCH. Check how
// many batches have to computed within this WARP.
int local_batches = batch_size - first_batch;
if (local_batches > WARP_BATCH)
local_batches = WARP_BATCH;
// there might be multiple batches per warp. compute the index within the batch
int local_idx = threadIdx.x % WARP_SIZE;
// the first element to process by the current thread
int thread_offset = first_batch * stride + local_idx;
grad += thread_offset;
output += thread_offset;
gradInput += thread_offset;
// The nested loops over WARP_BATCH and then WARP_ITERATIONS can be simplified to one loop,
// but I think doing so would obfuscate the logic of the algorithm, thus I chose to keep
// the nested loops.
// This should have no impact on performance because the loops are unrolled anyway.
// load data from global memory
acc_t grad_reg[WARP_BATCH][WARP_ITERATIONS];
acc_t output_reg[WARP_BATCH][WARP_ITERATIONS];
for (int i = 0; i < WARP_BATCH; ++i) {
int batch_element_count = (i >= local_batches) ? 0 : element_count;
for (int it = 0; it < WARP_ITERATIONS; ++it) {
int element_index = local_idx + it * WARP_SIZE;
if (element_index < batch_element_count) {
grad_reg[i][it] = grad[i*element_count+it*WARP_SIZE];
output_reg[i][it] = output[i*element_count+it*WARP_SIZE];
} else {
grad_reg[i][it] = acc_t(0);
output_reg[i][it] = acc_t(0);
}
}
}
acc_t sum[WARP_BATCH];
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
sum[i] = grad_reg[i][0];
#pragma unroll
for (int it = 1; it < WARP_ITERATIONS; ++it) {
sum[i] += grad_reg[i][it];
}
}
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
// store result
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
if (i >= local_batches)
break;
#pragma unroll
for (int it = 0; it < WARP_ITERATIONS; ++it) {
int element_index = local_idx + it * WARP_SIZE;
if (element_index < element_count) {
// compute gradients
if (is_log_softmax) {
gradInput[i*element_count+it*WARP_SIZE] = (grad_reg[i][it] - std::exp(output_reg[i][it]) * sum[i]);
} else {
gradInput[i*element_count+it*WARP_SIZE] = (grad_reg[i][it] - output_reg[i][it] * sum[i]);
}
}
}
}
}
} // end of anonymous namespace
template<typename input_t, typename output_t, typename acc_t, bool is_log_softmax>
void dispatch_softmax_forward(output_t *dst, const input_t *src, int softmax_elements, int softmax_elements_stride, int batch_count)
{
TORCH_INTERNAL_ASSERT( softmax_elements >= 0 && softmax_elements <= 1024 );
if (softmax_elements == 0) {
return;
} else {
int log2_elements = log2_ceil(softmax_elements);
const int next_power_of_two = 1 << log2_elements;
// This value must match the WARP_SIZE constexpr value computed inside softmax_warp_forward.
int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
// This value must match the WARP_BATCH constexpr value computed inside softmax_warp_forward.
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
// use 128 threads per block to maximimize gpu utilization
constexpr int threads_per_block = 128;
int warps_per_block = (threads_per_block / warp_size);
int batches_per_block = warps_per_block * batches_per_warp;
int blocks = (batch_count + batches_per_block - 1) / batches_per_block;
dim3 threads(warp_size, warps_per_block, 1);
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
switch (log2_elements) {
case 0: // 1
softmax_warp_forward<input_t, output_t, acc_t, 0, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, batch_count, softmax_elements_stride, softmax_elements);
break;
case 1: // 2
softmax_warp_forward<input_t, output_t, acc_t, 1, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, batch_count, softmax_elements_stride, softmax_elements);
break;
case 2: // 4
softmax_warp_forward<input_t, output_t, acc_t, 2, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, batch_count, softmax_elements_stride, softmax_elements);
break;
case 3: // 8
softmax_warp_forward<input_t, output_t, acc_t, 3, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, batch_count, softmax_elements_stride, softmax_elements);
break;
case 4: // 16
softmax_warp_forward<input_t, output_t, acc_t, 4, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, batch_count, softmax_elements_stride, softmax_elements);
break;
case 5: // 32
softmax_warp_forward<input_t, output_t, acc_t, 5, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, batch_count, softmax_elements_stride, softmax_elements);
break;
case 6: // 64
softmax_warp_forward<input_t, output_t, acc_t, 6, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, batch_count, softmax_elements_stride, softmax_elements);
break;
case 7: // 128
softmax_warp_forward<input_t, output_t, acc_t, 7, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, batch_count, softmax_elements_stride, softmax_elements);
break;
case 8: // 256
softmax_warp_forward<input_t, output_t, acc_t, 8, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, batch_count, softmax_elements_stride, softmax_elements);
break;
case 9: // 512
softmax_warp_forward<input_t, output_t, acc_t, 9, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, batch_count, softmax_elements_stride, softmax_elements);
break;
case 10: // 1024
softmax_warp_forward<input_t, output_t, acc_t, 10, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, batch_count, softmax_elements_stride, softmax_elements);
break;
default:
break;
}
}
}
template<typename input_t, typename output_t, typename acc_t, bool is_log_softmax>
void dispatch_softmax_backward(output_t *grad_input, const input_t *grad, const input_t *output, int softmax_elements, int softmax_elements_stride, int batch_count)
{
TORCH_INTERNAL_ASSERT( softmax_elements >= 0 && softmax_elements <= 1024 );
if (softmax_elements == 0) {
return;
} else {
int log2_elements = log2_ceil(softmax_elements);
const int next_power_of_two = 1 << log2_elements;
// This value must match the WARP_SIZE constexpr value computed inside softmax_warp_backward.
int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
// This value must match the WARP_BATCH constexpr value computed inside softmax_warp_backward.
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
// use 128 threads per block to maximimize gpu utilization
constexpr int threads_per_block = 128;
int warps_per_block = (threads_per_block / warp_size);
int batches_per_block = warps_per_block * batches_per_warp;
int blocks = (batch_count + batches_per_block - 1) / batches_per_block;
dim3 threads(warp_size, warps_per_block, 1);
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
switch (log2_elements) {
case 0: // 1
softmax_warp_backward<input_t, output_t, acc_t, 0, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, batch_count, softmax_elements_stride, softmax_elements);
break;
case 1: // 2
softmax_warp_backward<input_t, output_t, acc_t, 1, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, batch_count, softmax_elements_stride, softmax_elements);
break;
case 2: // 4
softmax_warp_backward<input_t, output_t, acc_t, 2, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, batch_count, softmax_elements_stride, softmax_elements);
break;
case 3: // 8
softmax_warp_backward<input_t, output_t, acc_t, 3, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, batch_count, softmax_elements_stride, softmax_elements);
break;
case 4: // 16
softmax_warp_backward<input_t, output_t, acc_t, 4, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, batch_count, softmax_elements_stride, softmax_elements);
break;
case 5: // 32
softmax_warp_backward<input_t, output_t, acc_t, 5, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, batch_count, softmax_elements_stride, softmax_elements);
break;
case 6: // 64
softmax_warp_backward<input_t, output_t, acc_t, 6, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, batch_count, softmax_elements_stride, softmax_elements);
break;
case 7: // 128
softmax_warp_backward<input_t, output_t, acc_t, 7, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, batch_count, softmax_elements_stride, softmax_elements);
break;
case 8: // 256
softmax_warp_backward<input_t, output_t, acc_t, 8, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, batch_count, softmax_elements_stride, softmax_elements);
break;
case 9: // 512
softmax_warp_backward<input_t, output_t, acc_t, 9, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, batch_count, softmax_elements_stride, softmax_elements);
break;
case 10: // 1024
softmax_warp_backward<input_t, output_t, acc_t, 10, is_log_softmax>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, batch_count, softmax_elements_stride, softmax_elements);
break;
default:
break;
}
}
}