forked from chrhenning/hypercl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar10_data.py
517 lines (410 loc) · 19.5 KB
/
cifar10_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
#!/usr/bin/env python3
# Copyright 2018 Christian Henning
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# @title :cifar10_data.py
# @author :ch
# @contact :[email protected]
# @created :08/08/2018
# @version :1.0
# @python_version :3.6.6
"""
CIFAR-10 Dataset
----------------
The module :mod:`data.cifar10_data` contains a handler for the CIFAR 10 dataset.
The dataset consists of 60000 32x32 colour images in 10 classes, with 6000
images per class. There are 50000 training images and 10000 test images.
Information about the dataset can be retrieved from:
https://www.cs.toronto.edu/~kriz/cifar.html
"""
import os
import numpy as np
import time
import _pickle as pickle
import urllib.request
import tarfile
import matplotlib.pyplot as plt
from warnings import warn
from data.dataset import Dataset
class CIFAR10Data(Dataset):
"""An instance of the class shall represent the CIFAR-10 dataset.
Note, the constructor does not safe a data dump (via pickle) as, for
instance, the MNIST data handler (:class:`data.mnist_data.MNISTData`) does.
The reason is, that the downloaded files are already in a nice to read
format, such that the time saved to read the file from a dump file is
minimal.
Args:
data_path (str): Where should the dataset be read from? If not existing,
the dataset will be downloaded into this folder.
use_one_hot (bool): Whether the class labels should be represented in a
one-hot encoding.
use_data_augmentation (bool, optional): Note, this option currently only
applies to input batches that are transformed using the class
member :meth:`data.dataset.Dataset.input_to_torch_tensor` (hence,
**only available for PyTorch**, so far).
validation_size (int): The number of validation samples. Validation
samples will be taking from the training set (the first :math:`n`
samples).
"""
_DOWNLOAD_PATH = 'https://www.cs.toronto.edu/~kriz/'
_DOWNLOAD_FILE = 'cifar-10-python.tar.gz'
_EXTRACTED_FOLDER = 'cifar-10-batches-py'
_TRAIN_BATCH_FNS = ['data_batch_%d' % i for i in range(1,6)]
_TEST_BATCH_FN = 'test_batch'
_META_DATA_FN = 'batches.meta'
# In which file do we dump the dataset, to allow a faster readout next
# time?
_CIFAR10_DATA_DUMP = 'cifar10_dataset.pickle'
def __init__(self, data_path, use_one_hot=False,
use_data_augmentation=False, validation_size=5000):
super().__init__()
start = time.time()
print('Reading CIFAR-10 dataset ...')
if not os.path.exists(data_path):
print('Creating directory "%s" ...' % (data_path))
os.makedirs(data_path)
extracted_data_dir = os.path.join(data_path,
CIFAR10Data._EXTRACTED_FOLDER)
# If data has been processed before.
build_from_scratch = True
dump_fn = os.path.join(extracted_data_dir,
CIFAR10Data._CIFAR10_DATA_DUMP)
if os.path.isfile(dump_fn):
build_from_scratch = False
with open(dump_fn, 'rb') as f:
self._data = pickle.load(f)
if self._data['is_one_hot'] != use_one_hot:
reverse = True
if use_one_hot:
reverse = False
self._data['is_one_hot'] = use_one_hot
self._data['out_data'] = self._to_one_hot(
self._data['out_data'], reverse=reverse)
self._data['out_shape'] = [self._data['out_data'].shape[1]]
if self.num_val_samples != validation_size:
build_from_scratch = True
if build_from_scratch:
archive_fn = os.path.join(data_path, CIFAR10Data._DOWNLOAD_FILE)
if not os.path.exists(extracted_data_dir):
print('Downloading dataset ...')
urllib.request.urlretrieve(CIFAR10Data._DOWNLOAD_PATH + \
CIFAR10Data._DOWNLOAD_FILE, \
archive_fn)
# Extract downloaded dataset.
tar = tarfile.open(archive_fn, "r:gz")
tar.extractall(path=data_path)
tar.close()
os.remove(archive_fn)
train_batch_fns = list(map(lambda p : os.path.join(
extracted_data_dir, p), CIFAR10Data._TRAIN_BATCH_FNS))
test_batch_fn = os.path.join(extracted_data_dir,
CIFAR10Data._TEST_BATCH_FN)
meta_fn = os.path.join(extracted_data_dir,
CIFAR10Data._META_DATA_FN)
assert(all(map(os.path.exists, train_batch_fns)) and
os.path.exists(test_batch_fn) and os.path.exists(meta_fn))
self._data['classification'] = True
self._data['sequence'] = False
self._data['num_classes'] = 10
self._data['is_one_hot'] = use_one_hot
self._data['in_shape'] = [32, 32, 3]
self._data['out_shape'] = [10 if use_one_hot else 1]
# Fill the remaining _data fields with the information read from
# the downloaded files.
self._read_meta(meta_fn)
self._read_batches(train_batch_fns, test_batch_fn, validation_size)
# As the time advantage are minimal compared to the huge storage
# requirements, we don't safe the data as pickle file.
## Save read dataset to allow faster reading in future.
#with open(dump_fn, 'wb') as f:
# pickle.dump(self._data, f)
# Initialize PyTorch data augmentation.
self._augment_inputs = False
if use_data_augmentation:
self._augment_inputs = True
self._train_transform, self._test_transform = \
CIFAR10Data.torch_input_transforms()
end = time.time()
print('Elapsed time to read dataset: %f sec' % (end-start))
def _read_meta(self, filename):
"""Read the meta data file.
This method will add an additional field to the ``_data`` attribute
named "cifar10". This dictionary will be filled with two members:
- "label_names": The names of the associated categorical class
labels.
- "num_cases_per_batch": The number of samples in each batch.
Args:
filename: The path to the meta data file.
"""
with open(filename, 'rb') as f:
meta_data = pickle.load(f, encoding='UTF-8')
assert(meta_data['num_vis'] == 32 * 32 * 3)
self._data['cifar10'] = dict()
self._data['cifar10']['label_names'] = meta_data['label_names']
self._data['cifar10']['num_cases_per_batch'] = \
meta_data['num_cases_per_batch']
def _read_batches(self, train_fns, test_fn, validation_size):
"""Read all batches from files.
The method fills the remaining mandatory fields of the _data attribute,
that have not been set yet in the constructor.
The images are converted to match the output shape (32, 32, 3) and
scaled to have values between 0 and 1. For labels, the correct encoding
is enforced.
Args:
train_fns: The filepaths of the different training batches (files
are assumed to be in order).
test_fn: Filepath of the test batch.
validation_size: Number of validation samples.
"""
with open(test_fn, 'rb') as f:
test_batch = pickle.load(f, encoding='bytes')
# Note, that we ignore the two keys: "batch_label" and "filenames".
test_labels = np.array(test_batch['labels'.encode()])
test_samples = test_batch['data'.encode()]
# Read training batches.
for i, fn in enumerate(train_fns):
with open(fn, 'rb') as f:
curr_batch = pickle.load(f, encoding='bytes')
curr_labels = np.array(curr_batch['labels'.encode()])
curr_samples = curr_batch['data'.encode()]
if i == 0:
train_labels = curr_labels
train_samples = curr_samples
else:
train_labels = np.concatenate((train_labels, curr_labels))
train_samples = np.concatenate((train_samples, curr_samples),
axis=0)
if validation_size > 0:
assert(validation_size < train_labels.shape[0])
val_inds = np.arange(validation_size)
train_inds = np.arange(validation_size, train_labels.size)
else:
train_inds = np.arange(train_labels.size)
test_inds = np.arange(train_labels.size,
train_labels.size + test_labels.size)
labels = np.concatenate([train_labels, test_labels])
labels = np.reshape(labels, (-1, 1))
images = np.concatenate([train_samples, test_samples], axis=0)
# Note, images are currently encoded in a way, that there shape
# corresponds to (3, 32, 32). For consistency reasons, we would like to
# change that to (32, 32, 3).
images = np.reshape(images, (-1, 3, 32, 32))
images = np.rollaxis(images, 1, 4)
images = np.reshape(images, (-1, 32 * 32 * 3))
# Scale images into a range between 0 and 1.
images = images / 255
self._data['in_data'] = images
self._data['train_inds'] = train_inds
self._data['test_inds'] = test_inds
if validation_size > 0:
self._data['val_inds'] = val_inds
if self._data['is_one_hot']:
labels = self._to_one_hot(labels)
self._data['out_data'] = labels
def _get_batch_identifier(self, index):
"""Return the identifier of the batch a given sample is drawn from.
Batches 1 to 5 are the training batches. Batch 6 is the test batch.
Args:
index: The sample index (row index) in _data['in_data'].
"""
return index % 10000 + 1
def plot_sample(self, image, label=None, figsize = 1.5, interactive=False,
file_name=None):
"""Plot a single CIFAR-10 sample.
This method is thought to be helpful for evaluation and debugging
purposes.
.. deprecated:: 1.0
Please use method :meth:`data.dataset.Dataset.plot_samples` instead.
Args:
image: A single CIFAR-10 image (given as 1D vector).
label: The label of the given image.
figsize: The height and width of the displayed image.
interactive: Turn on interactive mode. Thus program will run in
background while figure is displayed. The figure will be
displayed until another one is displayed, the user closes it or
the program has terminated. If this option is deactivated, the
program will freeze until the user closes the figure.
file_name: (optional) If a file name is provided, then the image
will be written into a file instead of plotted to the screen.
"""
warn('Please use method "plot_samples" instead.', DeprecationWarning)
plt.figure(figsize = (figsize, figsize))
if label is None:
plt.title("CIFAR-10 Sample")
else:
label_name = self._data['cifar10']['label_names'][label]
plt.title('Label of shown sample: %s (%d)' % (label_name, label))
plt.axis('off')
if interactive:
plt.ion()
plt.imshow(np.reshape(image, self.in_shape))
if file_name is not None:
plt.savefig(file_name, bbox_inches='tight')
else:
plt.show()
def get_identifier(self):
"""Returns the name of the dataset."""
return 'CIFAR-10'
def input_to_torch_tensor(self, x, device, mode='inference',
force_no_preprocessing=False):
"""This method can be used to map the internal numpy arrays to PyTorch
tensors.
Note, this method has been overwritten from the base class.
The input images are preprocessed if data augmentation is enabled.
Preprocessing involves normalization and (for training mode) random
perturbations.
Args:
(....): See docstring of method
:meth:`data.dataset.Dataset.input_to_torch_tensor`.
Returns:
(torch.Tensor): The given input ``x`` as PyTorch tensor.
"""
if self._augment_inputs and not force_no_preprocessing:
if mode == 'inference':
transform = self._test_transform
elif mode == 'train':
transform = self._train_transform
else:
raise ValueError('"%s" not a valid value for argument "mode".'
% mode)
return CIFAR10Data.torch_augment_images(x, device, transform)
else:
return Dataset.input_to_torch_tensor(self, x, device,
mode=mode, force_no_preprocessing=force_no_preprocessing)
def _plot_sample(self, fig, inner_grid, num_inner_plots, ind, inputs,
outputs=None, predictions=None):
"""Implementation of abstract method
:meth:`data.dataset.Dataset._plot_sample`.
"""
ax = plt.Subplot(fig, inner_grid[0])
if outputs is None:
ax.set_title("CIFAR-10 Sample")
else:
assert(np.size(outputs) == 1)
label = np.asscalar(outputs)
label_name = self._data['cifar10']['label_names'][label]
if predictions is None:
ax.set_title('Label of shown sample:\n%s (%d)' % \
(label_name, label))
else:
if np.size(predictions) == self.num_classes:
pred_label = np.argmax(predictions)
else:
pred_label = np.asscalar(predictions)
pred_label_name = \
self._data['cifar10']['label_names'][pred_label]
ax.set_title('Label of shown sample:\n%s (%d)' % \
(label_name, label) + '\nPrediction: %s (%d)' % \
(pred_label_name, pred_label))
ax.set_axis_off()
ax.imshow(np.squeeze(np.reshape(inputs, self.in_shape)))
fig.add_subplot(ax)
if num_inner_plots == 2:
ax = plt.Subplot(fig, inner_grid[1])
ax.set_title('Predictions')
bars = ax.bar(range(self.num_classes), np.squeeze(predictions))
ax.set_xticks(range(self.num_classes))
if outputs is not None:
bars[int(label)].set_color('r')
fig.add_subplot(ax)
def _plot_config(self, inputs, outputs=None, predictions=None):
"""Re-Implementation of method
:meth:`data.dataset.Dataset._plot_config`.
This method has been overriden to ensure, that there are 2 subplots,
in case the predictions are given.
"""
plot_configs = super()._plot_config(inputs, outputs=outputs,
predictions=predictions)
if predictions is not None and \
np.shape(predictions)[1] == self.num_classes:
plot_configs['outer_hspace'] = 0.6
plot_configs['inner_hspace'] = 0.4
plot_configs['num_inner_rows'] = 2
#plot_configs['num_inner_cols'] = 1
plot_configs['num_inner_plots'] = 2
return plot_configs
@staticmethod
def torch_input_transforms():
"""Get data augmentation pipelines for CIFAR-10 inputs.
Note, the augmentation is inspired by the augmentation proposed in:
https://www.aiworkbox.com/lessons/augment-the-cifar10-dataset-using\
-the-randomhorizontalflip-and-randomcrop-transforms
Note:
We use the same data augmentation pipeline for CIFAR-100, as the
images are very similar. Here is an example where they use slightly
different normalization values, but we ignore this for now:
https://zhenye-na.github.io/2018/10/07/pytorch-resnet-cifar100.html
Returns:
(tuple): Tuple containing:
- **train_transform**: A transforms pipeline that applies random
transformations and normalizes the image.
- **test_transform**: Similar to train_transform, but no random
transformations are applied.
"""
# Copyright 2017-2018 aiworkbox.com
# Unfortunately, no license was visibly provided with this code.
# Though, we note that the original license applies regarding the parts
# of the code that have been copied from the above mentioned website (we
# slightly modified this code).
#
# Note, that we use this code WITHOUT ANY WARRANTIES.
import torchvision.transforms as transforms
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_transform = transforms.Compose([
transforms.ToPILImage('RGB'),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(size=[32,32], padding=4),
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose([
transforms.ToPILImage('RGB'),
transforms.ToTensor(),
normalize,
])
return train_transform, test_transform
@staticmethod
def torch_augment_images(x, device, transform):
"""Augment CIFAR-10 images using a given PyTorch transformation.
Args:
x (numpy.ndarray): A 2D-Numpy array containing CIFAR-10 images.
device (torch.device or int): The PyTorch device on which the
resulting tensor should be.
transform: A :mod:`torchvision.transforms` method to modify the
data.
Returns:
(torch.Tensor): The augmented images as PyTorch tensor.
"""
from torch import stack
#x = torch.from_numpy(x).float()
#x = x.view([-1, 32, 32, 3])
#x = x.permute(0, 3, 1, 2)
#x = torch.stack([transform(_x) for _x in x])
#return x.to(device)
assert(len(x.shape) == 2) # batch size plus flattened image.
# Transform the numpy data into a representation as expected by the
# ToPILImage transformation.
x = (x * 255.0).astype('uint8')
x = x.reshape(-1, 32, 32, 3)
x = stack([transform(x[i,...]) for i in range(x.shape[0])]).to(device)
# Transform tensor back to numpy shape.
# FIXME This is a horrible solution, but at least we ensure that the
# user gets a tensor in the same shape as always and does not have to
# deal with cases.
x = x.permute(0, 2, 3, 1)
x = x.contiguous().view(-1, 3072) # 3072 = 32 * 32 * 3
return x
if __name__ == '__main__':
pass