-
Notifications
You must be signed in to change notification settings - Fork 119
/
image_patch.py
486 lines (409 loc) · 19.1 KB
/
image_patch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
from __future__ import annotations
import numpy as np
import re
import torch
from dateutil import parser as dateparser
from PIL import Image
from rich.console import Console
from torchvision import transforms
from torchvision.ops import box_iou
from typing import Union, List
from word2number import w2n
from utils import show_single_image, load_json
from vision_processes import forward, config
console = Console(highlight=False)
class ImagePatch:
"""A Python class containing a crop of an image centered around a particular object, as well as relevant
information.
Attributes
----------
cropped_image : array_like
An array-like of the cropped image taken from the original image.
left : int
An int describing the position of the left border of the crop's bounding box in the original image.
lower : int
An int describing the position of the bottom border of the crop's bounding box in the original image.
right : int
An int describing the position of the right border of the crop's bounding box in the original image.
upper : int
An int describing the position of the top border of the crop's bounding box in the original image.
Methods
-------
find(object_name: str)->List[ImagePatch]
Returns a list of new ImagePatch objects containing crops of the image centered around any objects found in the
image matching the object_name.
exists(object_name: str)->bool
Returns True if the object specified by object_name is found in the image, and False otherwise.
verify_property(property: str)->bool
Returns True if the property is met, and False otherwise.
best_text_match(option_list: List[str], prefix: str)->str
Returns the string that best matches the image.
simple_query(question: str=None)->str
Returns the answer to a basic question asked about the image. If no question is provided, returns the answer
to "What is this?".
compute_depth()->float
Returns the median depth of the image crop.
crop(left: int, lower: int, right: int, upper: int)->ImagePatch
Returns a new ImagePatch object containing a crop of the image at the given coordinates.
"""
def __init__(self, image: Union[Image.Image, torch.Tensor, np.ndarray], left: int = None, lower: int = None,
right: int = None, upper: int = None, parent_left=0, parent_lower=0, queues=None,
parent_img_patch=None):
"""Initializes an ImagePatch object by cropping the image at the given coordinates and stores the coordinates as
attributes. If no coordinates are provided, the image is left unmodified, and the coordinates are set to the
dimensions of the image.
Parameters
-------
image : array_like
An array-like of the original image.
left : int
An int describing the position of the left border of the crop's bounding box in the original image.
lower : int
An int describing the position of the bottom border of the crop's bounding box in the original image.
right : int
An int describing the position of the right border of the crop's bounding box in the original image.
upper : int
An int describing the position of the top border of the crop's bounding box in the original image.
"""
if isinstance(image, Image.Image):
image = transforms.ToTensor()(image)
elif isinstance(image, np.ndarray):
image = torch.tensor(image).permute(1, 2, 0)
elif isinstance(image, torch.Tensor) and image.dtype == torch.uint8:
image = image / 255
if left is None and right is None and upper is None and lower is None:
self.cropped_image = image
self.left = 0
self.lower = 0
self.right = image.shape[2] # width
self.upper = image.shape[1] # height
else:
self.cropped_image = image[:, image.shape[1]-upper:image.shape[1]-lower, left:right]
self.left = left + parent_left
self.upper = upper + parent_lower
self.right = right + parent_left
self.lower = lower + parent_lower
self.height = self.cropped_image.shape[1]
self.width = self.cropped_image.shape[2]
self.cache = {}
self.queues = (None, None) if queues is None else queues
self.parent_img_patch = parent_img_patch
self.horizontal_center = (self.left + self.right) / 2
self.vertical_center = (self.lower + self.upper) / 2
if self.cropped_image.shape[1] == 0 or self.cropped_image.shape[2] == 0:
raise Exception("ImagePatch has no area")
self.possible_options = load_json('./useful_lists/possible_options.json')
def forward(self, model_name, *args, **kwargs):
return forward(model_name, *args, queues=self.queues, **kwargs)
@property
def original_image(self):
if self.parent_img_patch is None:
return self.cropped_image
else:
return self.parent_img_patch.original_image
def find(self, object_name: str) -> list[ImagePatch]:
"""Returns a list of ImagePatch objects matching object_name contained in the crop if any are found.
Otherwise, returns an empty list.
Parameters
----------
object_name : str
the name of the object to be found
Returns
-------
List[ImagePatch]
a list of ImagePatch objects matching object_name contained in the crop
"""
if object_name in ["object", "objects"]:
all_object_coordinates = self.forward('maskrcnn', self.cropped_image)[0]
else:
if object_name == 'person':
object_name = 'people' # GLIP does better at people than person
all_object_coordinates = self.forward('glip', self.cropped_image, object_name)
if len(all_object_coordinates) == 0:
return []
threshold = config.ratio_box_area_to_image_area
if threshold > 0:
area_im = self.width * self.height
all_areas = torch.tensor([(coord[2]-coord[0]) * (coord[3]-coord[1]) / area_im
for coord in all_object_coordinates])
mask = all_areas > threshold
# if not mask.any():
# mask = all_areas == all_areas.max() # At least return one element
all_object_coordinates = all_object_coordinates[mask]
return [self.crop(*coordinates) for coordinates in all_object_coordinates]
def exists(self, object_name) -> bool:
"""Returns True if the object specified by object_name is found in the image, and False otherwise.
Parameters
-------
object_name : str
A string describing the name of the object to be found in the image.
"""
if object_name.isdigit() or object_name.lower().startswith("number"):
object_name = object_name.lower().replace("number", "").strip()
object_name = w2n.word_to_num(object_name)
answer = self.simple_query("What number is written in the image (in digits)?")
return w2n.word_to_num(answer) == object_name
patches = self.find(object_name)
filtered_patches = []
for patch in patches:
if "yes" in patch.simple_query(f"Is this a {object_name}?"):
filtered_patches.append(patch)
return len(filtered_patches) > 0
def _score(self, category: str, negative_categories=None, model='clip') -> float:
"""
Returns a binary score for the similarity between the image and the category.
The negative categories are used to compare to (score is relative to the scores of the negative categories).
"""
if model == 'clip':
res = self.forward('clip', self.cropped_image, category, task='score',
negative_categories=negative_categories)
elif model == 'tcl':
res = self.forward('tcl', self.cropped_image, category, task='score')
else: # xvlm
task = 'binary_score' if negative_categories is not None else 'score'
res = self.forward('xvlm', self.cropped_image, category, task=task, negative_categories=negative_categories)
res = res.item()
return res
def _detect(self, category: str, thresh, negative_categories=None, model='clip') -> bool:
return self._score(category, negative_categories, model) > thresh
def verify_property(self, object_name: str, attribute: str) -> bool:
"""Returns True if the object possesses the property, and False otherwise.
Differs from 'exists' in that it presupposes the existence of the object specified by object_name, instead
checking whether the object possesses the property.
Parameters
-------
object_name : str
A string describing the name of the object to be found in the image.
attribute : str
A string describing the property to be checked.
"""
name = f"{attribute} {object_name}"
model = config.verify_property.model
negative_categories = [f"{att} {object_name}" for att in self.possible_options['attributes']]
if model == 'clip':
return self._detect(name, negative_categories=negative_categories,
thresh=config.verify_property.thresh_clip, model='clip')
elif model == 'tcl':
return self._detect(name, thresh=config.verify_property.thresh_tcl, model='tcl')
else: # 'xvlm'
return self._detect(name, negative_categories=negative_categories,
thresh=config.verify_property.thresh_xvlm, model='xvlm')
def best_text_match(self, option_list: list[str] = None, prefix: str = None) -> str:
"""Returns the string that best matches the image.
Parameters
-------
option_list : str
A list with the names of the different options
prefix : str
A string with the prefixes to append to the options
"""
option_list_to_use = option_list
if prefix is not None:
option_list_to_use = [prefix + " " + option for option in option_list]
model_name = config.best_match_model
image = self.cropped_image
text = option_list_to_use
if model_name in ('clip', 'tcl'):
selected = self.forward(model_name, image, text, task='classify')
elif model_name == 'xvlm':
res = self.forward(model_name, image, text, task='score')
res = res.argmax().item()
selected = res
else:
raise NotImplementedError
return option_list[selected]
def simple_query(self, question: str):
"""Returns the answer to a basic question asked about the image. If no question is provided, returns the answer
to "What is this?". The questions are about basic perception, and are not meant to be used for complex reasoning
or external knowledge.
Parameters
-------
question : str
A string describing the question to be asked.
"""
return self.forward('blip', self.cropped_image, question, task='qa')
def compute_depth(self):
"""Returns the median depth of the image crop
Parameters
----------
Returns
-------
float
the median depth of the image crop
"""
original_image = self.original_image
depth_map = self.forward('depth', original_image)
depth_map = depth_map[original_image.shape[1]-self.upper:original_image.shape[1]-self.lower,
self.left:self.right]
return depth_map.median() # Ideally some kind of mode, but median is good enough for now
def crop(self, left: int, lower: int, right: int, upper: int) -> ImagePatch:
"""Returns a new ImagePatch containing a crop of the original image at the given coordinates.
Parameters
----------
left : int
the position of the left border of the crop's bounding box in the original image
lower : int
the position of the bottom border of the crop's bounding box in the original image
right : int
the position of the right border of the crop's bounding box in the original image
upper : int
the position of the top border of the crop's bounding box in the original image
Returns
-------
ImagePatch
a new ImagePatch containing a crop of the original image at the given coordinates
"""
# make all inputs ints
left = int(left)
lower = int(lower)
right = int(right)
upper = int(upper)
if config.crop_larger_margin:
left = max(0, left - 10)
lower = max(0, lower - 10)
right = min(self.width, right + 10)
upper = min(self.height, upper + 10)
return ImagePatch(self.cropped_image, left, lower, right, upper, self.left, self.lower, queues=self.queues,
parent_img_patch=self)
def overlaps_with(self, left, lower, right, upper):
"""Returns True if a crop with the given coordinates overlaps with this one,
else False.
Parameters
----------
left : int
the left border of the crop to be checked
lower : int
the lower border of the crop to be checked
right : int
the right border of the crop to be checked
upper : int
the upper border of the crop to be checked
Returns
-------
bool
True if a crop with the given coordinates overlaps with this one, else False
"""
return self.left <= right and self.right >= left and self.lower <= upper and self.upper >= lower
def llm_query(self, question: str, long_answer: bool = True) -> str:
return llm_query(question, None, long_answer)
def print_image(self, size: tuple[int, int] = None):
show_single_image(self.cropped_image, size)
def __repr__(self):
return "ImagePatch({}, {}, {}, {})".format(self.left, self.lower, self.right, self.upper)
def best_image_match(list_patches: list[ImagePatch], content: List[str], return_index: bool = False) -> \
Union[ImagePatch, None]:
"""Returns the patch most likely to contain the content.
Parameters
----------
list_patches : List[ImagePatch]
content : List[str]
the object of interest
return_index : bool
if True, returns the index of the patch most likely to contain the object
Returns
-------
int
Patch most likely to contain the object
"""
if len(list_patches) == 0:
return None
model = config.best_match_model
scores = []
for cont in content:
if model == 'clip':
res = list_patches[0].forward(model, [p.cropped_image for p in list_patches], cont, task='compare',
return_scores=True)
else:
res = list_patches[0].forward(model, [p.cropped_image for p in list_patches], cont, task='score')
scores.append(res)
scores = torch.stack(scores).mean(dim=0)
scores = scores.argmax().item() # Argmax over all image patches
if return_index:
return scores
return list_patches[scores]
def distance(patch_a: Union[ImagePatch, float], patch_b: Union[ImagePatch, float]) -> float:
"""
Returns the distance between the edges of two ImagePatches, or between two floats.
If the patches overlap, it returns a negative distance corresponding to the negative intersection over union.
"""
if isinstance(patch_a, ImagePatch) and isinstance(patch_b, ImagePatch):
a_min = np.array([patch_a.left, patch_a.lower])
a_max = np.array([patch_a.right, patch_a.upper])
b_min = np.array([patch_b.left, patch_b.lower])
b_max = np.array([patch_b.right, patch_b.upper])
u = np.maximum(0, a_min - b_max)
v = np.maximum(0, b_min - a_max)
dist = np.sqrt((u ** 2).sum() + (v ** 2).sum())
if dist == 0:
box_a = torch.tensor([patch_a.left, patch_a.lower, patch_a.right, patch_a.upper])[None]
box_b = torch.tensor([patch_b.left, patch_b.lower, patch_b.right, patch_b.upper])[None]
dist = - box_iou(box_a, box_b).item()
else:
dist = abs(patch_a - patch_b)
return dist
def bool_to_yesno(bool_answer: bool) -> str:
"""Returns a yes/no answer to a question based on the boolean value of bool_answer.
Parameters
----------
bool_answer : bool
a boolean value
Returns
-------
str
a yes/no answer to a question based on the boolean value of bool_answer
"""
return "yes" if bool_answer else "no"
def llm_query(query, context=None, long_answer=True, queues=None):
"""Answers a text question using GPT-3. The input question is always a formatted string with a variable in it.
Parameters
----------
query: str
the text question to ask. Must not contain any reference to 'the image' or 'the photo', etc.
"""
if long_answer:
return forward(model_name='gpt3_general', prompt=query, queues=queues)
else:
return forward(model_name='gpt3_qa', prompt=[query, context], queues=queues)
def process_guesses(prompt, guess1=None, guess2=None, queues=None):
return forward(model_name='gpt3_guess', prompt=[prompt, guess1, guess2], queues=queues)
def coerce_to_numeric(string, no_string=False):
"""
This function takes a string as input and returns a numeric value after removing any non-numeric characters.
If the input string contains a range (e.g. "10-15"), it returns the first value in the range.
# TODO: Cases like '25to26' return 2526, which is not correct.
"""
if any(month in string.lower() for month in ['january', 'february', 'march', 'april', 'may', 'june', 'july',
'august', 'september', 'october', 'november', 'december']):
try:
return dateparser.parse(string).timestamp().year
except: # Parse Error
pass
try:
# If it is a word number (e.g. 'zero')
numeric = w2n.word_to_num(string)
return numeric
except ValueError:
pass
# Remove any non-numeric characters except the decimal point and the negative sign
string_re = re.sub("[^0-9\.\-]", "", string)
if string_re.startswith('-'):
string_re = '&' + string_re[1:]
# Check if the string includes a range
if "-" in string_re:
# Split the string into parts based on the dash character
parts = string_re.split("-")
return coerce_to_numeric(parts[0].replace('&', '-'))
else:
string_re = string_re.replace('&', '-')
try:
# Convert the string to a float or int depending on whether it has a decimal point
if "." in string_re:
numeric = float(string_re)
else:
numeric = int(string_re)
except:
if no_string:
raise ValueError
# No numeric values. Return input
return string
return numeric