-
Notifications
You must be signed in to change notification settings - Fork 60
/
proj_maxEig.m
141 lines (125 loc) · 3.96 KB
/
proj_maxEig.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
function op = proj_maxEig( q, LARGESCALE )
%PROJ_MAXEIG Projection onto the set of matrices with max eigenvalue less than or equal to q
% OP = PROJ_MAXEIG( q ) returns a function that implements the
% indicator for matrices with spectral norm less than q.
% Q is optional; if omitted, Q=1 is assumed. But if Q is supplied,
% it must be a positive real scalar.
% This function is similar proj_spectral.m but assumes that
% the input is real symmetric. For positive semi-definite inputs,
% this function is equivalent to proj_spectral
% OP = PROJ_MAXEIG( ..., largescale) will switch to using
% eigs instead of svd or eig, if largescale==true. This is usually
% beneficial for large, sparse variables.
%
% Dual: prox_trace(q)
% (if domain is pos. semidefinite matrices, then prox_trace(q)
% is also the dual, and is more efficient than prox_nuclear(q) ).
%
% See also prox_trace, prox_nuclear, proj_spectral, prox_spectral
% Sept 1, 2012
if nargin < 2 || isempty(LARGESCALE)
LARGESCALE = false;
end
if nargin == 0,
q = 1;
elseif ~isnumeric( q ) || ~isreal( q ) || numel( q ) ~= 1 || q <= 0,
error( 'Argument must be positive.' );
end
% vectorFunction = proj_linf( q ); % for proj_spectral.m
vectorFunction = proj_max( q );
if LARGESCALE
% clear the persistent values:
proj_maxEig_eigs_q();
op = @(varargin)proj_maxEig_eigs_q( q,vectorFunction, varargin{:} );
else
op = @(varargin)proj_maxEig_eig_q( q,vectorFunction, varargin{:} );
end
function [ v, X ] = proj_maxEig_eig_q( q,eproj, X, t )
SP = issparse(X);
v = 0;
if nargin > 3 && t > 0,
if SP, X = full(X); end % svd, eig, and norm require full matrices
[V,D] = safe_eig(X); % just in case X is sparse
[dum,D] = eproj(diag(D),q); % not q*t, since we are just projecting...
X = V*diag(D)*V';
if SP, X = sparse(X); end
else
nrm = max(eig(X));
if nrm > q
v = Inf;
end
end
% --------------- largescale functions: use eigs or svds -----------------------
function [ v, X ] = proj_maxEig_eigs_q( q,eproj, X, t )
persistent oldRank
persistent nCalls
persistent V
if nargin == 0, oldRank = []; v = nCalls; nCalls = []; V=[]; return; end
if isempty(nCalls), nCalls = 0; end
SP = issparse(X);
v = 0;
if nargin > 3 && t > 0,
if isempty(oldRank), K = 10;
else, K = oldRank + 2;
end
[M,N] = size(X);
ok = false;
opts = [];
opts.tol = 1e-10;
if isreal(X)
opts.issym = true;
SIGMA = 'LA'; % not 'LM' like proj_spectral
else
SIGMA = 'LR';
end
while ~ok
K = min( [K,M,N] );
if K > min(M,N)/2 || K > (min(M,N)-2) || min(M,N) < 20
[V,D] = safe_eig(full((X+X')/2));
ok = true;
else
[V,D] = eigs( X, K, SIGMA, opts );
ok = (min(abs(diag(D))) < q) || ( K == min(M,N) );
end
if ok, break; end
K = 2*K;
if K > 10
opts.tol = 1e-6;
end
if K > 40
opts.tol = 1e-4;
end
if K > 100
opts.tol = 1e-3;
end
end
oldRank = length(find(diag(D) > q)); % no abs here
[dum,D_proj] = eproj(diag(D),q);
% we want to keep the singular vectors that we haven't discovered
% small = X - V*D*V'
% large = V*D_proj*V'
% and add together to get X - V*(D-Dproj)*V'
X = X - V*diag(diag(D)-D_proj)*V';
if SP, X = sparse(X); end
else
% if SP
opts = struct('tol',1e-8);
if isreal(X)
opts.issym = true;
SIGMA = 'LA'; % not 'LM' like proj_spectral
else
SIGMA = 'LR';
end
K = 1;
D = eigs( X, K, SIGMA , opts );
nrm = max(D);
% else
% nrm = max(eig(X));
% end
if nrm > q
v = Inf;
end
end
% TFOCS v1.3 by Stephen Becker, Emmanuel Candes, and Michael Grant.
% Copyright 2013 California Institute of Technology and CVX Research.
% See the file LICENSE for full license information.