-
Notifications
You must be signed in to change notification settings - Fork 60
/
prox_nuclear.m
188 lines (169 loc) · 5.29 KB
/
prox_nuclear.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
function op = prox_nuclear( q, SVD_STYLE )
%PROX_NUCLEAR Nuclear norm.
% OP = PROX_NUCLEAR( q ) implements the nonsmooth function
% OP(X) = q * sum(svd(X)).
% Q is optional; if omitted, Q=1 is assumed. But if Q is supplied,
% it must be a positive real scalar.
%
% OP = PROX_NUCLEAR( q, SVD_STYLE )
% uses a Lanczos-based SVD based on PROPACK
% if SVD_STYLE == 1 or 'propack',
%
% or Matlab's Lanczos-based SVDS is SVD_STYLE == 2 or 'arpack'
% (calls SVDS, which calls EIGS, which uses ARPACK)
%
% or a randomized algorithm based on [1] if SVD_STYLE==3 or
% 'randomized'
%
% otherwise it uses a dense matrix SVD
%
% (default: dense matrix SVD if X is dense and less than 300^2
% elements, otherwise the randomized algorithm)
%
% CALLS = PROX_NUCLEAR( 'reset' )
% resets the internal counter and returns the number of function
% calls
%
% [1] "Finding Structure with Randomness: Probabilistic Algorithms
% for Constructing Approximate Matrix Decompositions"
% by N. Halko, P. G. Martinsson, and J. A. Tropp. SIAM Review vol 53 2011.
% http://epubs.siam.org/doi/abs/10.1137/090771806
%
% This implementation uses a naive approach that does not exploit any
% a priori knowledge that X and G are low rank or sparse. Future
% implementations of TFOCS will be able to handle low-rank matrices
% more effectively.
%
% Dual: proj_spectral.m
% See also prox_trace.m and proj_spectral.m
if nargin == 1 && strcmpi(q,'reset')
op = prox_nuclear_impl;
return;
end
if nargin == 0
q = 1;
elseif ~isnumeric( q ) || ~isreal( q ) || numel( q ) ~= 1 || q <= 0
error( 'Argument must be positive.' );
end
if nargin < 2, SVD_STYLE = []; end
% clear the persistent values:
prox_nuclear_impl();
op = @(varargin)prox_nuclear_impl( q, SVD_STYLE, varargin{:} );
end % end of main function
function [ v, X ] = prox_nuclear_impl( q, SVD_STYLE, X, t )
persistent oldRank
persistent nCalls
persistent V_save
if nargin == 0, oldRank = []; v = nCalls; nCalls = []; V_save=[]; return; end
if isempty(nCalls), nCalls = 0; end
ND = (size(X,2) == 1);
% ND = ~ismatrix(X);
if ND % X is a vector, not a matrix, so reshape it
sx = size(X);
X = reshape( X, prod(sx(1:end-1)), sx(end) );
end
% Determine which SVD we will use:
% 0 = dense
% 1 = PROPACK
% 2 = ARPACK
% 3 = Randomized
if isempty(SVD_STYLE)
% use a default
if numel(X) > 300^2 || issparse(X)
SVD_STYLE = 'randomized';
else
SVD_STYLE = 'dense';
end
end
SVD_STYLE = lower(SVD_STYLE);
switch SVD_STYLE
case {1,'propack'}
if ~exist('lansvd','file')
warning(...
'TFOCS:prox_nuclear',...
'Cannot find lansvd.m, required by PROPACK; using default SVD_type');
SVD_STYLE = 'arpack';
end
case {3,'randomized'}
if ~exist('randomizedSVD','file')
warning(...
'TFOCS:prox_nuclear',...
'Cannot find randomizedSVD.m, required by SVD_TYPE; using default SVD_type');
SVD_STYLE = 'arpack';
end
end
opts = struct('tol',1e-10); % 1e-10 is default in svds
% Define [U,S,V] = svdFcn( X, K, opt )
switch SVD_STYLE
case {1,'propack'}
% These fields are used by lansvd, otherwise are ignored
opts.eta = eps; % makes compute_int slow
%opt.eta = 0; % makes reorth slow
opts.delta = 10*opts.eta;
svdFcn = @(X,K,opt) lansvd( X, K, 'L', opt ); % fixed bug, 3/29/15
case {2,'arpack'}
svdFcn = @(X,K,opt) svds(X,K,'L',opt);
case {3,'randomized'}
nPower = 2; % 2 or 3 is good
overSample = 20;
warning('off','randomizedSVD:warmStartLarge');
svdFcn = @(X,K,opt) randomizedSVD( X, K, K+overSample, nPower, [], struct( 'warmStart', V_save ) );
end
if nargin > 3 && t > 0
tau = q*t;
nCalls = nCalls + 1;
if isequal(SVD_STYLE,0) || strcmpi(SVD_STYLE,'dense')
[U,S,V] = svd( full(X), 'econ' );
else
% Guess which singular value will have value near tau:
[M,N] = size(X);
if isempty(oldRank), K = 10;
else K = oldRank + 2;
end
ok = false;
while ~ok
K = min( [K,M,N] );
[U,S,V] = svdFcn(X,K,opts );
ok = (min(diag(S)) < tau) || ( K == min(M,N) );
if ok, break; end
% K = K + 5;
K = 2*K;
if K > 10
opts.tol = 1e-6;
end
if K > 40
opts.tol = 1e-4;
end
if K > 100
opts.tol = 1e-1;
end
if K > min(M,N)/2
[U,S,V] = svd( full(X), 'econ' );
ok = true;
end
end
oldRank = length(find(diag(S) > tau));
end
s = diag(S) - tau;
tt = s > 0;
s = s(tt,:);
if isempty(s)
X = tfocs_zeros(X);
else
X = U(:,tt) * bsxfun( @times, s, V(:,tt)' );
end
switch SVD_STYLE
case {3,'randomized'}
V_save = V;
end
else
s = svd(full(X)); % could be expensive!
end
v = q * sum(s);
if ND
X = reshape( X, sx );
end
end
% TFOCS v1.3 by Stephen Becker, Emmanuel Candes, and Michael Grant.
% Copyright 2013 California Institute of Technology and CVX Research.
% See the file LICENSE for full license information.