Skip to content

BossNet: Disentangling Language and Knowledge in Task Oriented Dialogs

License

Notifications You must be signed in to change notification settings

dair-iitd/BossNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BossNet

BossNet: Disentangling Language and Knowledge in Task Oriented Dialogs

Datasets

The complete data folder structure with all tasks can be downloaded here.

Individual Datasets

Run Environment

We include a requirements.txt which has all the libraries installed for the correct run of the BossNet code. For best practices create a virtual / conda environment and install all dependencies via:

❱❱❱ pip install -r requirements.txt

Training

The model is run using the script main.py

❱❱❱ python main.py --task_id 1 --train 

The list of parameters to run the script is:

  • --task_id this is task dependent. 1-5 for bAbI, 7 for CamRest, and 8 for SMD
  • --batch_size batch size
  • --learning_rate learning rate
  • --embedding_size hidden state size of the two rnn
  • --hops number of stacked rnn layers for BossNet
  • --word_drop_prob dropout rate
  • --p_gen_loss_weight loss function weight on copy

Look at params.py for detailed information on the runtime options

Training from Saved Model

There is support to start training from a previously saved checkpoint with the --save flag.

Testing

To obtain metric scores on the best model run main.py with --train=False or by omitting the train flag altogether. Make sure all the parameter options match those of the trained model.

❱❱❱ python main.py --task_id 1

Analysis

Trainable Paramters

The following numbers are reported using embedding_size 256, batch_size 64, hops 6

Task 1 Task 2 Task 3 Task 4 Task 5 CamRest SMD
BossNet 1204993 1198849 1478913 1715457 1943809 1968129 2187265
Mem2Seq 776030 780127 3426789 4508397 5049201 5274536 6880560
Seq2Seq + Copy 6379859 6378321 6870481 7083494 7167315 7223452 7504137
Seq2Seq 6905172 6903634 7395794 7608807 7692628 7748765 8029450

Running Times

The following numbers are reported using embedding_size 128, batch_size 64, hops 3
Times are reported as sec. per train epoch (avg. no. of epochs till convergence) **total train time**

Task 1 Task 2 Task 3 Task 4 Task 5 CamRest SMD
BossNet 38.1 (15) 571.5 65.2 (10) 652.0 142.4 (25) 3560 16.9 (2) 33.8 231.3 (6) 1387.8 113.5 (6) 681 1252 (10) 12520
Mem2Seq 10 (100) 1000 32 (30) 960 51 (90) 4590 4 (10) 40 136 (60) 8160 22 (40) 880 81 (40) 3240

Hyperparameters

Task 1 Task 2 Task 3 Task 4 Task 5 CamRest SMD
Learning Rate 0.001 0.001 0.005 0.001 0.0005 0.0005 0.0005
Hops 1 1 3 1 3 6 3
Embedding Size 128 128 128 128 256 256 256
Disentangle Loss Weight 1.0 1.0 1.5 1.0 1.0 1.0 1.0
DLD 0.2 0.2 0.2 0.2 0.2 0.2 0.1

About

BossNet: Disentangling Language and Knowledge in Task Oriented Dialogs

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages