-
Notifications
You must be signed in to change notification settings - Fork 32
/
test.py
130 lines (113 loc) · 4.22 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
from vit_pytorch import ViT
from models.binae import BinModel
from einops import rearrange
import load_data
import utils as utils
from config import Configs
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# get utils functions
count_psnr = utils.count_psnr
imvisualize = utils.imvisualize
load_data_func = load_data.load_datasets
def build_model(setting, image_size, patch_size):
"""
Build model depending on its size
Args:
setting (str): model size (small/base/large)
image_size (int, int): ihabe height and width
patch_size (int): patch size for the vit
Returns:
model (BinModel): the built model to be trained
"""
# define hyperparameters for the models depending on size
hyper_params = {"base": [6, 8, 768],
"small": [3, 4, 512],
"large": [12, 16, 1024]}
encoder_layers = hyper_params[setting][0]
encoder_heads = hyper_params[setting][1]
encoder_dim = hyper_params[setting][2]
# build encodet ViT
v = ViT(
image_size = image_size,
patch_size = patch_size,
num_classes = 1000,
dim = encoder_dim,
depth = encoder_layers,
heads = encoder_heads,
mlp_dim = 2048
)
# build full model
model = BinModel(
encoder = v,
decoder_dim = encoder_dim,
decoder_depth = encoder_layers,
decoder_heads = encoder_heads
)
return model
def visualize(model, epoch, testloader, image_size, patch_size):
"""
Visualize the result on the test set and show the test loss
Args:
model (BinModel): the model
epoch (str): the current epoch
testloader (Dataloder): the test data loader
image_size (int, int): image size
patch_size (int): ViT used patch size
"""
losses = 0
for _, (test_index, test_in, test_out) in enumerate(testloader):
bs = len(test_in)
inputs = test_in.to(device)
outputs = test_out.to(device)
with torch.no_grad():
loss,_, pred_pixel_values = model(inputs,outputs)
rec_patches = pred_pixel_values
rec_images = rearrange(rec_patches, 'b (h w) (p1 p2 c) -> b c (h p1) (w p2)',
p1 = patch_size, p2 = patch_size, h=image_size[0]//patch_size)
for j in range (0,bs):
imvisualize(inputs[j].cpu(), outputs[j].cpu(), rec_images[j].cpu(), test_index[j],
epoch, experiment)
losses += loss.item()
print('test loss: ', losses / len(testloader))
def valid_model(epoch, data_path, test_dibco, experiment, flipped, THRESHOLD):
"""
Count PSNR of test images
Args:
epoch (int): the current epoch (testing)
data_path (str): path of the data folder
test_dibco (str): the testing data set
experiment (str): the name of the experiment
flipped (bool): whether the images are flipped
THRESHOLD (float): final binarization thresold after the model output, between 0 and 1.
Returns:
psnr (float): the psnd of the full testing data
"""
psnr = count_psnr(epoch, data_path, valid_data=test_dibco, setting=experiment, flipped=flipped , thresh=THRESHOLD)
return psnr
if __name__ == "__main__":
flipped = False
THRESHOLD = 0.5
epoch = "_testing"
# get configs
cfg = Configs().parse()
SPLITSIZE = cfg.split_size
setting = cfg.vit_model_size
TPS = cfg.vit_patch_size
batch_size = cfg.batch_size
test_dibco = cfg.testing_dataset
data_path = cfg.data_path
# set variables
experiment = setting +'_'+ str(SPLITSIZE)+'_' + str(TPS)
patch_size = TPS
image_size = (SPLITSIZE,SPLITSIZE)
# build model
model = build_model(setting, image_size, patch_size)
model = model.to(device)
# load trained weights
model_path = cfg.model_weights_path
model.load_state_dict(torch.load(model_path))
_, _, testloader = load_data.all_data_loader(batch_size)
# visualize images, count and print PSNR
visualize(model, str(epoch), testloader, image_size, patch_size)
print('Test PSNR: ', valid_model(epoch, data_path, test_dibco, experiment, flipped, THRESHOLD))