forked from richarddurbin/pbwt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pbwtLikelihood.c
447 lines (389 loc) · 15.3 KB
/
pbwtLikelihood.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/* File: pbwtLikelihood.c
* Author: Richard Durbin ([email protected])
* Copyright (C) Genome Research Limited, 2014
*-------------------------------------------------------------------
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------
* Description:
* Exported functions:
* HISTORY:
* Last edited: Jul 21 08:57 2014 (rd)
* Created: Sat Apr 26 22:29:13 2014 (rd)
*-------------------------------------------------------------------
*/
#include "pbwt.h"
#include <math.h>
/** line search code to maximise a function **/
double lineSearchPositive (double xInit, double tol, double (*function)(double))
/* find value to maximise function within tolerance */
{
if (tol <= 1.0) die ("tolerance %f in lineSearchPostive() must be > 1.0", tol) ;
double x0 = 0.9*xInit, y0 = (*function)(x0) ;
double x1 = 1.1*xInit, y1 = (*function)(x1) ;
double x2, y2 ;
while (y0 < y1)
{ x2 = 3*x1 - 2*x0 ; if (x2 > 2.0*x1) x2 = 2.0*x1 ; y2 = (*function)(x2) ;
if (isCheck) printf ("x0 %.4f %.4f > x1 %.4f %.4f\n", x0, y0, x1, y1) ;
if (y1 > y2) break ;
x0 = x1 ; y0 = y1 ; x1 = x2 ; y1 = y2 ;
}
while (y0 > y1)
{ if (isCheck) printf ("x0 %.4f %.4f < x1 %.4f %.4f\n", x0, y0, x1, y1) ;
x2 = x1 ; y2 = y1 ; x1 = x0 ; y1 = y0 ;
x0 = 3*x1 - 2*x2 ; if (x0 < 0.5*x1) x0 = 0.5*x1 ;
y0 = (*function)(x0) ;
}
/* now should have y1 > y0 and y1 > y2 */
/* repeatedly fit a quadratic and pick the minimum */
/* y = ax^2 - 2bx + c: min at b/a */
/* (y2-y1) = a(x2^2-x1^2) - 2b(x2-x1) */
while (x2/x0 > tol)
{ double x ; /* new test value */
if ((x1 - x0) > 2*(x2 - x1))
{ x = 0.5*(x0 + x1) ; if (isCheck) printf ("split 01: ") ; }
else if ((x2 - x1) > 2*(x1 - x0))
{ x = 0.5*(x1 + x2) ; if (isCheck) printf ("split 12: ") ; }
else
{ double a = ((y2-y1)*(x1-x0) - (y1-y0)*(x2-x1))
/ ((x2*x2-x1*x1)*(x1-x0) - (x1*x1-x0*x0)*(x2-x1)) ;
double b = 0.5 * (a * (x2*x2-x1*x1) - (y2-y1)) / (x2-x1) ;
x = b/a ;
if (isCheck) printf ("estimate: ") ;
}
double y = (*function)(x) ;
if (isCheck) printf ("x/y0 %.4f %.4f x/y1 %.4f %.4f x/y2 %.4f %.4f x/ynew %.4f %.4f\n",
x0, y0, x1, y1, x2, y2, x, y) ;
if (x > x1)
if (y > y1) { x0 = x1 ; y0 = y1 ; x1 = x ; y1 = y ; }
else { x2 = x ; y2 = y ; }
else
if (y > y1) { x2 = x1 ; y2 = y1 ; x1 = x ; y1 = y ; }
else { x0 = x ; y0 = y ; }
}
return x1 ;
}
/*******************************************************************************/
static void simpleEntropy (PBWT *p)
{
PbwtCursor *u = pbwtCursorCreate (p, TRUE, TRUE) ;
int i, j, d ;
double LL = 0, f ;
long dTotStick = 0, nTotStick = 0 ;
long dTotSwitch = 0, nTotSwitch = 0 ;
for (i = 0 ; i < p->N ; ++i)
{ int last = u->y[0] ;
for (j = 1 ; j < p->M ; ++j)
{ d = i+1 - u->d[j] ;
if (u->y[j] == u->y[j-1]) { dTotStick += d ; ++nTotStick ; }
else { dTotSwitch += d ; ++nTotSwitch ; }
}
f = u->c/(double)p->M ;
if (f > 0 && f < 1) LL += f * log(f) + (1-f) * log(1-f) ;
pbwtCursorForwardsReadAD (u, i) ;
}
pbwtCursorDestroy (u) ;
printf ("Fraction switch %.4f av dStick %.1f av dSwitch %.1f\n",
nTotSwitch / (double)(nTotStick+nTotSwitch),
dTotStick / (double)nTotStick, dTotSwitch / (double)nTotSwitch) ;
printf ("Simple entropy per cell %f\n", LL/p->N) ;
}
/** package global variables we need for maximising likelihood for pbwt model **/
static Array info ;
static double alphaSearch, betaSearch ;
typedef struct {
int nStick, nSwitch ;
} RowInfo ;
static Array buildRowInfo (PBWT *p, int MAX) /* array of RowInfo */
/* record how many times for each d we stick or switch going down the column */
{
Array info = arrayCreate (4096, RowInfo) ;
PbwtCursor *u = pbwtCursorCreate (p, TRUE, TRUE) ;
int i, j ;
for (i = 0 ; i < p->N ; ++i)
{ for (j = 1 ; j < p->M ; ++j)
{ int d = i+1 - u->d[j] ; if (d > MAX) d = MAX ;
if (u->y[j] == u->y[j-1])
++arrayp(info,d,RowInfo)->nStick ;
else
++arrayp(info,d,RowInfo)->nSwitch ;
}
pbwtCursorForwardsReadAD (u, i) ;
}
if (isStats)
{ int totStick = 0, totSwitch = 0 ; int lastStick = 0, lastSwitch = 0 ;
double lastF = 1.0 ;
for (i = 0 ; i < arrayMax(info) ; ++i)
{ totStick += arrp(info,i,RowInfo)->nStick ;
totSwitch += arrp(info,i,RowInfo)->nSwitch ;
if (!((i+1)%100))
{ double f = (totSwitch-lastSwitch)*100.0/(totStick+totSwitch-lastStick-lastSwitch) ;
printf ("%d %d %d %.2f %.3f\n", i+1, (totStick-lastStick), (totSwitch-lastSwitch), f, f/lastF) ;
lastStick = totStick ; lastSwitch = totSwitch ; lastF = f ;
}
}
printf ("RowInfo counts: stick %d switch %d", totStick, totSwitch) ;
printf (" %%stick %.2f %%switch %.2f\n",
totStick*100.0/(totStick+totSwitch), totSwitch*100.0/(totStick+totSwitch)) ;
}
pbwtCursorDestroy (u) ;
return info ;
}
static double pbwtLogLikelihood (Array info, double alpha, double beta)
{
int d ;
double like = 0.0 ;
RowInfo *inf = arrp(info,0,RowInfo) ;
for (d = 0 ; d < arrayMax(info) ; ++d, ++inf)
{ like += inf->nStick * log (1.0 - exp(-alpha*d - beta)) ;
like += inf->nSwitch * (-alpha*d - beta) ;
}
return like ;
}
static double betaSearchLL (double beta)
{ return pbwtLogLikelihood (info, alphaSearch, beta) ; }
static double alphaSearchLL (double alpha)
{ alphaSearch = alpha ;
betaSearch = lineSearchPositive (betaSearch, 1.001, betaSearchLL) ;
return pbwtLogLikelihood (info, alphaSearch, betaSearch) ;
}
/** drop one model: sum over sequences x_i LL(X)/LL(X\x_i) **/
typedef struct {
int n[8] ;
int nTot ;
} RowInfoDropOne ;
static Array buildRowInfoDropOne (PBWT *p, int MAX) /* array of RowInfoDropOne */
/* record how many times we see each set of 3 consecutive values in y, encoded as k,
as a function of the pair of d values between them, encoded as dd */
{
Array info = arrayCreate (4096, RowInfoDropOne) ;
PbwtCursor *u = pbwtCursorCreate (p, TRUE, TRUE) ;
int i, j, k, d1, d2, dd ;
for (i = 0 ; i < p->N ; ++i)
{ for (j = 0 ; j < p->M ; ++j)
{ if (!u->d[j] || !u->d[j+1]) continue ; /* ignore edge effects */
if (j == 0)
{ k = (u->y[j] << 1) + u->y[j+1] ; d1 = 0 ; d2 = i+1 - u->d[j+1] ; }
else if (j < p->M-1)
{ k = (u->y[j-1] << 2) + (u->y[j] << 1) + u->y[j+1] ;
d1 = i+1 - u->d[j] ; d2 = i+1 - u->d[j+1] ;
}
else
{ k = (u->y[j-1] << 2) + (u->y[j] << 1) ; d1 = i+1 - u->d[j] ; d2 = 0 ; }
d1 /= 10 ; d2 /= 10 ;
if (d1 > MAX) d1 = MAX ; if (d2 > MAX) d2 = MAX ;
if (d1 < d2) dd = d2*d2 + d1 ; else dd = d1*d1 + d1 + d2 ;
arrayp(info,dd,RowInfoDropOne)->n[k] += 1 ;
arrp(info,dd,RowInfoDropOne)->nTot += 1 ;
}
pbwtCursorForwardsReadAD (u, i) ;
}
if (isStats)
{ int kTot[8] ; for (k = 0 ; k < 8 ; ++k) kTot[k] = 0 ;
for (dd = 0 ; dd < arrayMax(info) ; ++dd)
if (arrp(info,dd,RowInfoDropOne)->nTot)
for (k = 0 ; k < 8 ; ++k) kTot[k] += arrp(info,dd,RowInfoDropOne)->n[k] ;
printf ("RowInfoDropOne counts: ") ;
double tot = 0.0 ;
for (k = 0 ; k < 8 ; ++k) { printf (" %d", kTot[k]) ; tot += kTot[k] ; }
printf (" %%stick %.1f %%drift %.1f %%flip %.1f\n",
(kTot[0]+kTot[7])*100.0/tot, (kTot[1]+kTot[3]+kTot[4]+kTot[6])*100.0/tot,
(kTot[2]+kTot[5])*100.0/tot) ;
}
pbwtCursorDestroy (u) ;
return info ;
}
static double pbwtLogLikelihoodDropOne (Array info, double alpha, double beta)
/* this is the sum of "leave-one-out" likelihoods leaving each sequence out */
{
int dmax = sqrt ((double)arrayMax(info)) ;
double *pSwitch = myalloc (dmax+1, double) ; /* actually log_p values */
double *pStick = myalloc (dmax+1, double) ; /* actually log_p values */
int dd, d1, d2, dmin ;
for (d1 = 0 ; d1 <= dmax ; ++d1)
{ pSwitch[d1] = - alpha*d1 - beta ; pStick[d1] = log (1.0 - exp(pSwitch[d1])) ; }
double like = 0.0 ;
RowInfoDropOne *inf = arrp(info,0,RowInfoDropOne) ;
d1 = 0 ; d2 = 0 ;
for (dd = 0 ; dd < arrayMax(info) ; ++dd, ++inf)
{ if (inf->nTot)
{ int *nn = inf->n ;
dmin = (d1 < d2) ? d1 : d2 ;
dmax = (d1 < d2) ? d2 : d1 ;
/* 0,0,0 and 1,1,1 */
like += (nn[0]+nn[7])*pStick[dmax] ;
/* 0,0,1 and 1,1,0 */
like += (nn[1]+nn[6])*(pStick[d1]+pSwitch[d2]-pSwitch[dmin]) ;
/* 0,1,0 and 1,0,1 */
like += (nn[2]+nn[5])*(pSwitch[d1]+pSwitch[d2]-pStick[dmin]) ;
/* 0,1,1 and 1,0,0 */
like += (nn[3]+nn[4])*(pSwitch[d1]+pStick[d2]-pSwitch[dmin]) ;
}
if (d1 < d2) { if (++d1 == d2) d2 = 0 ; } else { if (d2++ == d1) d1 = 0 ; }
}
free (pSwitch) ; free (pStick) ;
return like ;
}
static double betaSearchLLDropOne (double beta)
{ return pbwtLogLikelihoodDropOne (info, alphaSearch, beta) ; }
static double alphaSearchLLDropOne (double alpha)
{ alphaSearch = alpha ;
betaSearch = lineSearchPositive (betaSearch, 1.001, betaSearchLLDropOne) ;
return pbwtLogLikelihoodDropOne (info, alphaSearch, betaSearch) ;
}
/************************************************************/
/***** now a version using the column allele frequency ******/
static int pM ;
static Array buildRowInfoFreqDropOne (PBWT *p, int MAX) /* array of RowInfoDropOne */
/* record how many times we see each set of 3 consecutive values in y,
as a function of allele count */
{
Array info = arrayCreate (p->M, RowInfoDropOne) ;
PbwtCursor *u = pbwtCursorCreate (p, TRUE, TRUE) ;
int i, j, k, n1 ;
for (i = 0 ; i < p->N ; ++i)
{ for (j = 0 ; j < p->M ; ++j)
{ if (!u->d[j] || !u->d[j+1]) continue ; /* ignore edge effects */
if (j == 0)
k = (u->y[j] << 1) + u->y[j+1] ;
else if (j < p->M-1)
k = (u->y[j-1] << 2) + (u->y[j] << 1) + u->y[j+1] ;
else
k = (u->y[j-1] << 2) + (u->y[j] << 1) ;
n1 = u->M - u->c ;
arrayp(info,n1,RowInfoDropOne)->n[k] += 1 ;
arrp(info,n1,RowInfoDropOne)->nTot += 1 ;
}
pbwtCursorForwardsReadAD (u, i) ;
}
pbwtCursorDestroy (u) ;
pM = p->M ;
return info ;
}
static double pbwtLLFreqDropOne (Array info, double alpha, double beta)
{
int i ;
double p00, p01, p10, p11, like = 0.0 ;
RowInfoDropOne *inf = arrp(info,0,RowInfoDropOne) ;
for (i = 0 ; i < arrayMax(info) ; ++i, ++inf)
if (inf->nTot)
{ double f = (0.5+i) / (double)(1+pM) ; /* frequency */
p01 = -beta + alpha*log(f) ; p00 = log (1.0 - exp(p01)) ;
p10 = -beta ; p11 = log (1.0 - exp(p10)) ;
int *nn = inf->n ;
/* 0,0,0 and 0,0,1 and 1,0,0 */ like += (nn[0]+nn[1]+nn[4])*p00 ;
/* 0,1,0 */ like += nn[2]*(p01+p10-p00) ;
/* 0,1,1 and 1,1,0 and 1,1,1 */ like += (nn[3]+nn[6]+nn[7])*p11 ;
/* 1,0,1 */ like += nn[5]*(p10+p01-p11) ;
}
return like ;
}
static double betaSearchFreqDropOne (double beta)
{ return pbwtLLFreqDropOne (info, alphaSearch, beta) ; }
static double alphaSearchFreqDropOne (double alpha)
{ alphaSearch = alpha ;
betaSearch = lineSearchPositive (betaSearch, 1.001, betaSearchFreqDropOne) ;
return pbwtLLFreqDropOne (info, alphaSearch, betaSearch) ;
}
/****************************************/
void pbwtFitAlphaBeta (PBWT *p, int model)
{
double LL ;
switch (model)
{
case 1: /* alpha and beta drop one */
info = buildRowInfoDropOne (p, 1000) ;
alphaSearch = 0.0 ; /* first find beta-only model */
betaSearch = lineSearchPositive (1.0, 1.001, betaSearchLLDropOne) ;
LL = pbwtLogLikelihoodDropOne (info, alphaSearch, betaSearch) / p->N ;
printf ("Fit beta %f LL per site %f per cell %f\n", betaSearch, LL, LL/p->M) ;
alphaSearch = lineSearchPositive (0.01, 1.001, alphaSearchLLDropOne) ;
LL = betaSearchLLDropOne (betaSearch) / p->N ;
printf ("Fit alpha %f beta %f LL per site %f per cell %f\n",
alphaSearch, betaSearch, LL, LL/p->M) ;
break ;
case 2: /* beta freq drop one */
info = buildRowInfoFreqDropOne (p, 1000) ;
alphaSearch = 1.0 ;
betaSearch = lineSearchPositive (1.0, 1.001, betaSearchFreqDropOne) ;
LL = pbwtLLFreqDropOne (info, alphaSearch, betaSearch) / p->N ;
printf ("Fit beta %f LL per site %f per cell %f\n", betaSearch, LL, LL/p->M) ;
alphaSearch = lineSearchPositive (1.0, 1.001, alphaSearchFreqDropOne) ;
LL = betaSearchFreqDropOne (betaSearch) / p->N ;
printf ("Fit alpha %f beta %f LL per site %f per cell %f\n",
alphaSearch, betaSearch, LL, LL/p->M) ;
break ;
}
LL = -log(256.0)*arrayMax(p->yz) / p->N ;
printf ("PBWT entropy per site %f per cell %f\n", LL, LL/p->M) ;
arrayDestroy (info) ;
simpleEntropy (p) ; /* print out simple entropy and some other stats */
}
/**************************************************************/
/******* Li and Stephens copying model ************************/
double copyLogLikelihoodDropOne (PBWT *p, double theta, double rho)
{
int i, j, k ;
PbwtCursor *u = pbwtCursorCreate (p, TRUE, TRUE) ;
double **left = myalloc (p->M, double*) ;
double *logLeftSum = mycalloc (p->M, double) ;
for (i = 0 ; i < p->M ; ++i)
{ left[i] = myalloc (p->M, double) ;
for (j = 0 ; j < p->M ; ++j) left[i][j] = 1.0 / (p->M - 1.0) ;
left[i][i] = 0.0 ;
}
uchar *x = myalloc (p->M, uchar) ;
double rho1 = 1.0-rho, rhoM = rho/(p->M - 1.0), theta1 = 1.0-theta ;
for (k = 0 ; k < p->N ; ++k)
{ for (j = 0 ; j < p->M ; ++j) x[u->a[j]] = u->y[j] ;
for (i = 0 ; i < p->M ; ++i)
{ double sum = 0.0 ;
for (j = 0 ; j < p->M ; ++j)
{ left[i][j] *= rho1 ;
left[i][j] += rhoM ;
left[i][j] *= (x[i] == x[j]) ? theta1 : theta ;
sum += left[i][j] ;
}
sum -= left[i][i] ; left[i][i] = 0.0 ;
logLeftSum[i] += log(sum) ;
for (j = 0 ; j < p->M ; ++j) if (j != i) left[i][j] /= sum ;
}
/* if (isCheck) printf ("done site %d\n", k) ; */
pbwtCursorForwardsRead (u) ;
}
pbwtCursorDestroy (u) ;
double LL = 0 ;
for (i = 0 ; i < p->M ; ++i) LL += logLeftSum[i] ;
free (logLeftSum) ;
for (i = 0 ; i < p->M ; ++i) free (left[i]) ; free (left) ;
return LL ;
}
static PBWT *pSearch ;
double thetaSearch, rhoSearch ;
static double rhoSearchDropOne (double rho)
{ return copyLogLikelihoodDropOne (pSearch, thetaSearch, rho) ; }
static double thetaSearchDropOne (double theta)
{ thetaSearch = theta ;
rhoSearch = lineSearchPositive (rhoSearch, 1.001, rhoSearchDropOne) ;
return copyLogLikelihoodDropOne (pSearch, thetaSearch, rhoSearch) ;
}
void pbwtLogLikelihoodCopyModel (PBWT *p, double theta, double rho)
{ double LL = copyLogLikelihoodDropOne (p, theta, rho) ;
printf ("theta %f rho %f LL %f per site %f per cell %f\n",
theta, rho, LL, LL/p->N, LL/(p->M*p->N)) ;
pSearch = p ;
thetaSearch = theta ;
rhoSearch = lineSearchPositive (rho, 1.01, rhoSearchDropOne) ;
thetaSearch = lineSearchPositive (theta, 1.01, thetaSearchDropOne) ;
LL = copyLogLikelihoodDropOne (pSearch, thetaSearch, rhoSearch) / p->N ;
printf ("Fit theta %f rho %f LL per site %f per cell %f\n",
thetaSearch, rhoSearch, LL, LL/p->M) ;
}
/******** end of file ********/