-
Notifications
You must be signed in to change notification settings - Fork 62
/
selfextend_flash_attn.py
199 lines (178 loc) · 8.54 KB
/
selfextend_flash_attn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from flash_attn import flash_attn_func, flash_attn_varlen_func
import torch
# must replace orginal flash forward method with the following one first, to enbale the window feature.
def flash_attention2_forward_with_window_size(
self,
query_states,
key_states,
value_states,
attention_mask,
query_length,
dropout=0.0,
softmax_scale=None,
window_size=[-1, -1],
return_attn_probs=False,
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
window_size ([Int, Int])
The left & right window size for Flash Attention. Default to [-1, -1] which means no window size is used.
return_attn_probs (`bool`, *optional*):
Whether to return the attention softmax logssumexp and probabilities. Default to False.
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad, softmax_lse, S_dmask = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=window_size,
return_attn_probs=True,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output, softmax_lse, S_dmask = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=window_size,
return_attn_probs=True,
)
if return_attn_probs:
return attn_output, softmax_lse, S_dmask
else:
return attn_output
def self_extend_flash_forward(
model_self,
query_position,
group_size_2,
neighbor_query_states,
neighbor_key_states,
group_query_states,
group_key_states,
value_states,
attention_mask,
bsz,
q_len,
kv_seq_len,
attn_dropout,
):
if query_position.max() >= group_size_2:
neighbor_attn_output, neighbor_softmax_lse_right_padded, neighbor_prob = model_self._flash_attention_forward(
neighbor_query_states,
neighbor_key_states,
value_states,
attention_mask,
q_len,
dropout=attn_dropout,
window_size=[group_size_2 - 1, 0],
# right dim here does not matter and can be -1, or > 0 due to causal mask
return_attn_probs=True,
)
group_attention_len = (
kv_seq_len - group_size_2
) # here we should use kv_seq_len rather than max_kv_len since we have paddings in qkv and attention_mask
group_attention_mask = attention_mask[:, :group_attention_len] if not attention_mask is None else None
group_attn_output, group_softmax_lse_right_padded, group_prob = model_self._flash_attention_forward(
group_query_states[:, -group_attention_len:, :, :],
group_key_states[:, :group_attention_len, :, :],
value_states[:, :group_attention_len, :, :],
group_attention_mask,
group_query_states[:, -group_attention_len:, :, :].shape[1],
dropout=attn_dropout,
window_size=[-1, -1],
return_attn_probs=True,
) # note that kv and q's indexing are different! also query size could be different from kv length and very small during generation compared to prefilling
# normalize lse first
neighbor_seq_length = torch.Tensor([kv_seq_len,]).long().expand(bsz, 1) if attention_mask is None else torch.sum(attention_mask, axis=1, keepdim=True) # [batch_size, 1]
group_seq_length = torch.Tensor([group_attention_len,]).long().expand(bsz, 1) if attention_mask is None else torch.sum(attention_mask[:, :group_attention_len], axis=1, keepdim=True) # [batch_size, 1]
# convert align left to align right and convert exp(0) to 0
neighbor_softmax_lse = torch.zeros_like(neighbor_softmax_lse_right_padded)
group_softmax_lse = torch.zeros_like(group_softmax_lse_right_padded)
for idx in range(bsz):
if neighbor_seq_length[idx] > 0:
neighbor_softmax_lse[idx, :, -neighbor_seq_length[idx] :] = neighbor_softmax_lse_right_padded[
idx, :, : neighbor_seq_length[idx]
]
if group_seq_length[idx] > 0:
group_softmax_lse[idx, :, -group_seq_length[idx] :] = group_softmax_lse_right_padded[
idx, :, : group_seq_length[idx]
]
# attn_output size is [batch_size, max_seq_len (not the true one), query_length, dim]
true_neighbor_seq_max_length = neighbor_softmax_lse.shape[
-1
] # it could be smaller than query_length due to the attention_mask
true_group_seq_max_length = group_softmax_lse.shape[
-1
] # it could be smaller than group_query_layer[:, -group_attention_len:, :, :].shape[1] due to the attention_mask[:, :group_attention_len]
neighbor_softmax_lse = neighbor_softmax_lse.transpose(1, 2).unsqueeze(
-1
) # [batch_size, true_neighbor_seq_max_length, self.num_heads, 1]
group_softmax_lse = group_softmax_lse.transpose(1, 2).unsqueeze(
-1
) # [batch_size, true_group_seq_max_length, self.num_heads, 1]
lse_gap = group_softmax_lse - neighbor_softmax_lse[:, -true_group_seq_max_length:, :, :]
#if torch.isinf(neighbor_softmax_lse).any() or torch.isnan(neighbor_softmax_lse).any():
# import pdb; pdb.set_trace()
neighbor_softmax_lse[:, -true_group_seq_max_length:, :, :] = 1 / (1 + torch.exp(lse_gap))
neighbor_softmax_lse[:, :-true_group_seq_max_length, :, :] = 1.
group_softmax_lse = 1 / (1 + torch.exp(-lse_gap))
neighbor_attn_output[:, -true_neighbor_seq_max_length:, ...] = (
neighbor_attn_output[:, -true_neighbor_seq_max_length:, ...] * neighbor_softmax_lse
)
group_attn_output[:, -true_group_seq_max_length:, ...] = (
group_attn_output[:, -true_group_seq_max_length:, ...] * group_softmax_lse
)
attn_output = torch.empty_like(neighbor_attn_output).copy_(
neighbor_attn_output
) # might be slightly faster than clone
#attn_output[:, group_size_2:, ...] += group_attn_output
attn_output[:, group_size_2-kv_seq_len:, ...] += group_attn_output
attn_output = torch.nan_to_num(attn_output, nan=0)
else:
attn_output = model_self._flash_attention_forward(
neighbor_query_states,
neighbor_key_states,
value_states,
attention_mask,
q_len,
dropout=attn_dropout,
window_size=[-1, -1],
)
return attn_output