diff --git a/.gitignore b/.gitignore index b0a8e0d..01368d5 100644 --- a/.gitignore +++ b/.gitignore @@ -92,3 +92,4 @@ _build/ .env /data + diff --git a/README.md b/README.md index ed2c629..1aef1d8 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,35 @@ -# Development Data Partnership Heatwaves +# Understanding Impacts of Excess Heat in Filipino cities + + +The Development Objective is to empower urban Philippines Local Government Units (LGUs) to take preventative and real-time action to mitigate the impacts of heatwaves. This will occur through the provision of more timely and granular data products that reveal localized occurrences of heatwaves and their impacts on human health and urban economies. These data products will be an input to the GeoRiskPH and PlanSmart Planning tool developed under the Philippines Disaster Risk Management and Climate Development Policy Loan with a Catastrophe Deferred-Drawdown Option (P180585). Specifically, this data product will expand the multi-hazard information in the GeoRiskPH and PlanSmart platforms to include heat, so that LGUs can integrate spatial heat risk information in their Comprehensive Land Use Planning (CLUP). + +Until now, cities have been challenged to address heatwaves, because the data and expertise needed to mitigate impacts are typically scattered across many departments. There is also much difficulty in monitoring the effect of existing policies, which the World Bank’s Climate report on the Philippines recommended as a pillar to future sustainability work and accountability.1 To overcome this barrier, as part of the World Bank’s Technical Deep Dive on Urban Heat (April 24-28, 2023), Filipino authorities have requested support on better measurement of urban heatwaves and their impacts. To meet this demand-driven request, the project team would facilitate access to heat risk and vulnerability information by creating a Data Product for select cities in of the Philippines. Through this public data good, Filipino LGU authorities will be able to identify investments and policy interventions that are critical to alleviate impact from excess heat in specific barangays of their cities. The successful interventions can then be scaled to build the resilience of the city. The Data Product will be designed and validated with inputs from local data collection drives and stakeholder participation to ensure inclusive design and participation. The roll out of the Data product will happen through training sessions for the LGU authorities who can then use the insights from this tool to inform policy interventions on a regular basis. + +## Components of the project + +### Data Product Creation: Geospatial excess heat vulnerability mapping as an input to GeoRiskPH and PlanSmart planning tools, an indicator of P180585. + +This Data Product will act as an input to the indicators developed in Pillar B: Strengthening the Resilience of the Human Settlements System of P180585. Specifically, the output will provide the heat risk information for: + +Results Indicator B1: Disaster and climate resilience measures are integrated in land use planning to guide development, using a risk-informed and evidence-based platform. + +The Data Product will be developed and improved in phases in consultation with various stakeholders. The first phase, as part of this grant funding, will include insights, methodologies, and creation of spatial data that LGUs can use to assess localized impact of heatwaves on health and economy in Filipino cities. + +The Data Product will consist of foundational datasets that can be shared across departmental units for comparison of results across teams. Additionally, it will include indicators that LGUs can use to observe impacts in Barangays within cities. + +**Foundational datasets**: These datasets form the underlying information that will remain common across all subsequent analyses conducted by different departmental units in an LGU, and CSOs who contribute to and use the product. + +Historical and hyperlocal weather data: Weather data will be collected from openly available sources, high-resolution private sector data sources, and data from The Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA). This will provide historic data at low resolution and daily data at high granularity (~5km grids) allowing for both insights to be used in risk informed decision-making processes and the development of CLUPs. + +**Socio-demographic indicators and spending**: Income, health and demographic data from the census of the Philippines, socio demographic data at high granularity from private sector data sources and spending data from crowdsourced surveys will be used to identify the areas in Filipino cities that have a systemic risk which makes them less capable of handling new stresses such as excess heat.5 + +**Historic Heatwave Mapping**: Using historic weather data, historic heatwave days in the Filipino cities will be identified. The team will use multiple definitions of a heatwave6 – definition from the WMO,7 Heat Index during the day and Heat Index during the night. Understanding nighttime HI is important because it impacts the effects of the heatwave, as evenings are usually a time to cool down. When that doesn’t happen, people become more susceptible to heat and mortality rises.8 This is to have a standard set of days, across departmental units, during which impacts are assessed and to identify areas which were affected by multiple heatwaves. + +**Indicators to measure vulnerability to heat**: Based on the foundational datasets, additional indicators and data will be identified to visualize the health vulnerability in barangays within a city. + +**Understanding change in air quality during excess heat days**: Air Quality gets progressively worse on hot days which leads to respiratory illnesses in people.9,10 Given the complex relationship between heat and health,11 air quality is used as one of the proxies to measure health vulnerability to heat. Heatwave days will be overlaid with air quality index data available at granular levels. The data will be obtained from multiple private sector sources and the local government. The data will be compared to obtain insights about worsening air quality in specific Barangays in a city. + +**Change in movement to places of interest**: Another proxy for vulnerability is using change in movement of people on days of excess heat. The team will assess how heat impacts change movement to hospitals, schools, construction sites, manufacturing units and other places of interest identified through conversation with the LGU. The movement data will be obtained through GPS location data provided by private sector companies such as Mapbox and Veraset. The team undertook a similar analysis to assess the impacts of the earthquake on the Turkish economy. The results of this can be found here - https://datapartnership.org/turkiye-earthquake-impact/notebooks/mobility/activity.html. Points of Interest data will be obtained from the LGUs and Open Data sources such as OpenStreetMaps. It is noted that the cost of this analysis is contingent on negotiated final price of data and the time period length covered by the analysis. If the negotiated price exceeds the grant budget, then this indicator would be prepared for Phase II of the grant project. ## License diff --git a/docs/_config.yml b/docs/_config.yml index 4dc005f..ba352d5 100644 --- a/docs/_config.yml +++ b/docs/_config.yml @@ -11,19 +11,33 @@ repository: ####################################################################################### # HTML-specific settings html: - home_page_in_navbar: true - extra_navbar: "" - use_edit_page_button: true - use_repository_button: true - use_issues_button: true - baseurl: https://datapartnership.github.io/heatwaves/PH - extra_footer: | -
- Country borders or names do not necessarily reflect the World Bank Group’s official position. All maps are for illustrative purposes and do not imply the expression of any opinion on the part of the World Bank, concerning the legal status of any country or territory or concerning the delimitation of frontiers or boundaries -
-
- All content (unless otherwise specified) is subject to the Mozilla Public License. -
+ + home_page_in_navbar: false + extra_navbar: "" + use_edit_page_button: true + use_repository_button: true + use_issues_button: true + baseurl: https://datapartnership.github.io/datapartnership/heatwaves/philippines + extra_footer: | +
+ All content (unless otherwise specified) is subject to the World Bank Master Community License Agreement. +
+ google_analytics_id: G-ETJ4QT0E4L +======= +# home_page_in_navbar: true +# extra_navbar: "" +# use_edit_page_button: true +# use_repository_button: true +# use_issues_button: true +# baseurl: https://datapartnership.github.io/heatwaves/PH +# extra_footer: | +#
+# Country borders or names do not necessarily reflect the World Bank Group’s official position. All maps are for illustrative purposes and do not imply the expression of any opinion on the part of the World Bank, concerning the legal status of any country or territory or concerning the delimitation of frontiers or boundaries +#
+#
+# All content (unless otherwise specified) is subject to the Mozilla Public License. +#
+ ####################################################################################### # Execution settings diff --git a/docs/_toc.yml b/docs/_toc.yml index 362a17d..b150144 100644 --- a/docs/_toc.yml +++ b/docs/_toc.yml @@ -1,2 +1,24 @@ format: jb-book + +root: README + +parts: + # - caption: Heatwave data Collaborative + # numbered: True + # chapters: + # - file: static/Heatwaves Data Collaborative.pdf + # - file: notebooks/world-bank-package.ipynb + # - file: notebooks/nasa-apod.ipynb + - caption: Heatwaves in the Philippines + chapters: + - file: notebooks/measuring-heatwaves/heatwaves-in-philippines.ipynb + - file: notebooks/socio-economic-indicators/census.ipynb + - file: notebooks/air-pollution/air-pollution.ipynb + # - url: https://wbdatalab.org + # title: World Bank Data Lab + # - url: https://www.worldbank.org/en/about/unit/unit-dec + # title: World Bank DEC + # - url: https://www.worldbank.org/en/research/dime + # title: World Bank DIME +======= root: notebooks/measuring-heatwaves/heatwaves-in-philippines.ipynb diff --git a/notebooks/.gitkeep b/notebooks/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/notebooks/heat-and-air-pollution.ipynb b/notebooks/heat-and-air-pollution.ipynb new file mode 100644 index 0000000..9a3c44b --- /dev/null +++ b/notebooks/heat-and-air-pollution.ipynb @@ -0,0 +1,50 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'fcntl'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[5], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mee\u001b[39;00m\n", + "File \u001b[1;32mc:\\Users\\sahit\\anaconda3\\envs\\heatwaves\\lib\\site-packages\\ee\\__init__.py:1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39m.\u001b[39;00m\u001b[39mmain\u001b[39;00m \u001b[39mimport\u001b[39;00m main\n", + "File \u001b[1;32mc:\\Users\\sahit\\anaconda3\\envs\\heatwaves\\lib\\site-packages\\ee\\main.py:5\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39msubprocess\u001b[39;00m\n\u001b[0;32m 4\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39msys\u001b[39;00m\n\u001b[1;32m----> 5\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mblessings\u001b[39;00m\n\u001b[0;32m 6\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mre\u001b[39;00m\n\u001b[0;32m 7\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mos\u001b[39;00m\n", + "File \u001b[1;32mc:\\Users\\sahit\\anaconda3\\envs\\heatwaves\\lib\\site-packages\\blessings\\__init__.py:7\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mcurses\u001b[39;00m\n\u001b[0;32m 6\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mcurses\u001b[39;00m \u001b[39mimport\u001b[39;00m setupterm, tigetnum, tigetstr, tparm\n\u001b[1;32m----> 7\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mfcntl\u001b[39;00m \u001b[39mimport\u001b[39;00m ioctl\n\u001b[0;32m 8\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39msix\u001b[39;00m \u001b[39mimport\u001b[39;00m text_type, string_types\n\u001b[0;32m 10\u001b[0m \u001b[39mtry\u001b[39;00m:\n", + "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'fcntl'" + ] + } + ], + "source": [ + "import ee" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "heatwaves", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/measuring-heatwaves/analyse-era5.ipynb b/notebooks/measuring-heatwaves/analyse-era5.ipynb new file mode 100644 index 0000000..2e69de4 --- /dev/null +++ b/notebooks/measuring-heatwaves/analyse-era5.ipynb @@ -0,0 +1,756 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "import geopandas\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import rioxarray\n", + "import xarray as xr\n", + "from netCDF4 import Dataset\n", + "from shapely.geometry import mapping\n", + "from heatwaves.geographic import *\n", + "import zipfile\n", + "import os\n", + "import glob\n", + "from heatwaves.weather import *" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Calculating heat index using ERA5 data for the Philippines" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Unzipping files" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "def unzip_files(zip_file_path):\n", + " with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:\n", + " zip_ref.extractall(os.path.dirname(zip_file_path))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "files = glob.glob('../../data/remotesensing/era5/temperature/*.zip')\n", + "for file in files:\n", + " #print(file)\n", + " zip_file_path = file \n", + " unzip_files(zip_file_path)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Reading files, clipping geographical boundaries" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "PHILIPPINES = geopandas.read_file('../../data/shapefiles/philippines/phl_adminboundaries_candidate_exclude_adm3/phl_admbnda_adm2_psa_namria_20200529.shp')\n", + "MANILA = PHILIPPINES[PHILIPPINES['ADM2_EN'].isin(['NCR, City of Manila, First District', 'NCR, Second District', 'NCR, Third District', 'NCR, Fourth District'])]" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "ds = xr.open_mfdataset('../../data/remotesensing/era5/temperature/*.nc', parallel=True)\n", + "df = clip_area(ds, MANILA).to_dataframe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Converting Kelvin to Celcius" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "for column in ['Temperature_Air_2m_Max_Day_Time',\n", + " 'Temperature_Air_2m_Mean_Day_Time',\n", + " 'Temperature_Air_2m_Mean_Night_Time',\n", + " 'Temperature_Air_2m_Min_Night_Time']:\n", + " df[column] = df[column].apply(lambda x: convert_kelvin_to_celcius(x))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Definitions of each of the temperature variables\n", + "\n", + "Daytime is considered to be 6AM to 6PM local time\n", + "Night time is considered to be 6PM to 6AM local time\n", + "\n", + "Relative humidity values are collected 6AM, 9AM, 12PM, 3PM and 6PM resepctively. \n", + "\n", + "To calculate heat index separately for night time and day time, the 6AM relative humidity value is considered to be the night time value. This is owing to the fact that relative humidity is the highest when the temperature is at the lowest. \n", + "\n", + "To calculate heat index during the day, an average value of humidity is taken between the 9Am-6PM values" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAHBCAYAAACypRvfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADpl0lEQVR4nOydeXhMVxvAfzOTfZVENkkkiFhjCUpo7RU7VUXt1aKqtq+LlraolmrV0k1VEUrR1lLU3gpaa2PfiSWRhex7JpmZ8/1xmRpJSEgyE7m/57nPzD333HPeO3OX957zLgohhEBGRkZGRkZGxkRQGlsAGRkZGRkZGZn7kZUTGRkZGRkZGZNCVk5kZGRkZGRkTApZOZGRkZGRkZExKWTlREZGRkZGRsakkJUTGRkZGRkZGZNCVk5kZGRkZGRkTApZOZGRkZGRkZExKcyMLcCD6HQ6YmJisLe3R6FQGFscGRkZGRkZmSIghCA9PZ0qVaqgVD7Z2IfJKScxMTH4+PgYWwwZGRkZGRmZxyAqKgpvb+8nasPklBN7e3tAOjgHBwcjSyMjIyMjIyNTFNLS0vDx8dE/x58Ek1NO7k3lODg4yMqJjIyMjIxMOaMkTDJkg1gZGRkZGRkZk0JWTmRkZGRkZGRMClk5kZGRkZGRkTEpTM7mRKb00Wq15OXlGVsMGRkZGaNgbm6OSqUythgyD0FWTioQQgji4uJISUkxtigyMjIyRqVSpUp4eHjI8bRMFFk5qUDcU0zc3NywsbGRL0oZGZkKhxCCrKws7ty5A4Cnp6eRJZIpCFk5qSBotVq9YuLi4mJscWRkZGSMhrW1NQB37tzBzc1NnuIxQWSD2ArCPRsTGxsbI0siIyMjY3zu3Qtl+zvTRFZOKhjyVI6MjIyMfC80dYqlnCxatIgGDRroo7cGBwezfft2QNI+J0+eTGBgILa2tlSpUoWhQ4cSExNTKoLLyMjIyMjIPJ0USznx9vbms88+499//+Xff/+lffv29OrVi3PnzpGVlcXx48f58MMPOX78OBs2bODy5cv07NmztGSXkZExERQKBZs2bTK2GDJlRFhYGAqFQvb8kyk1iqWc9OjRg65duxIQEEBAQACffvopdnZ2HD58GEdHR3bv3k2/fv2oVasWLVq04OuvvyY8PJzIyMjSkl/mKUehUDx0GT58uLFFLHHatm3LxIkTjS2GAdnZ2Tg5OeHs7Ex2dna+7bGxsXTp0uWx2w8LC6NXr154enpia2tLo0aNWL169ZOIXCT8/PxQKBSsXbs237Z69eqhUCgIDQ0tdTnucf+5bWtrS82aNRk+fDjh4eFlJkPbtm0fes35+fnRsmVLYmNjcXR0LDO5ZCoWj21zotVqWbt2LZmZmQQHBxdYJzU1FYVCQaVKlQptR61Wk5aWZrA8rQghOBmVQoZaY2xRyg2xsbH6ZcGCBTg4OBiULVy40NgiFpmyNrwryf7Wr19P/fr1qVu3Lhs2bMi33cPDA0tLy8eW5eDBgzRo0ID169dz+vRpRowYwdChQ9myZcsTy/4ofHx8WL58uUHZ4cOHiYuLw9bWttT7f5Dly5cTGxvLuXPn+Pbbb8nIyKB58+asXLmyTPrfsGGD/vo6evQoAHv27NGXHTt2DAsLCzlGiEzpIorJ6dOnha2trVCpVMLR0VH88ccfBdbLzs4WTZo0EYMGDXpoe9OmTRNAviU1NbW4opk8Kw9eF76Tt4rGH+8Sy/6+JnLyNGXWd3Z2tjh//rzIzs4utT50Ol2ptS2EEMuXLxeOjo4GZZs3bxZBQUHC0tJSVKtWTUyfPl3k5eXptwPi+++/F926dRPW1taidu3a4uDBg+LKlSuiTZs2wsbGRrRo0UJcvXpVv8+0adNEw4YNxffffy+8vb2FtbW16Nu3r0hOTjboe9myZaJ27drC0tJS1KpVS3z77bf6bdevXxeAWLdunWjTpo2wtLQUy5YtEwkJCWLAgAHCy8tLWFtbi/r164uff/5Zv9+wYcPyXQvXr18v8Ng3btwo7r+E78m9dOlSUa1aNaFQKIROpxMpKSli5MiRwtXVVdjb24t27dqJkydPFuu3b9u2rfj+++/FokWLRLt27fJtB8TGjRsfeuzFpWvXruKVV14p8Ph8fHyEra2teP3114VGoxFz5swR7u7uwtXVVXzyySdF7sPX11e89957wtLSUkRGRurLR44cKcaNGyccHR3F8uXL9eVffvmlqF+/vrCxsRHe3t5izJgxIj09Xb/9lVdeEYGBgSInJ0cIIURubq4ICgoSAwcOLJI89/+O9zN06FBhb28vkpKShBDikefRihUrhLOzs16Oe/Tp00cMGTKkSLII8d9/eeLECYPyvXv3CkB/Tdw7P7ds2SICAgKEtbW1ePHFF0VGRoYIDQ0Vvr6+olKlSuLNN98UGs1/9z21Wi3eeecdUaVKFWFjYyOeeeYZsXfv3iLL9ySUxT2xopGamlpiz+9iKydqtVpcuXJFHDt2TLz33nuicuXK4ty5cwZ1cnNzRa9evUTjxo0fKWROTo5ITU3VL1FRUU+lcqLT6US7uXuF7+St+qXVZ3+KjcdvCa22dB/qQhR8Iep0OpGpznviJSVLLa7eThf/3kgUl+PSREZO7iP3eRxF5sEH9I4dO4SDg4MIDQ0VERERYteuXcLPz09Mnz5dXwcQXl5eYt26deLSpUuid+/ews/PT7Rv317s2LFDnD9/XrRo0UJ07txZv8+0adOEra2taN++vThx4oTYt2+f8Pf3N3jA/PDDD8LT01OsX79eXLt2Taxfv144OzuL0NBQIcR/N3U/Pz99nejoaHHr1i3xxRdfiBMnToiIiAjx1VdfCZVKJQ4fPiyEECIlJUUEBweLkSNHitjYWBEbGys0Gk2RlRNbW1sREhIijh8/Lk6dOiV0Op1o1aqV6NGjhzh27Ji4fPmyeOutt4SLi4tITEws0u9+9epVYWlpKZKSkkRiYqKwtLQUERERBnUKUk4ePPbi0qpVK/HWW28ZHJ+dnZ3o27evOHfunNi8ebOwsLAQISEhYty4ceLixYti2bJlAhCHDh0qUh++vr5i/vz5omfPnmLmzJlCCCEyMzOFg4ODOHHiRD7lZP78+eKvv/4S165dE3/++aeoVauWGDNmjH57enq6qF69upg4caIQQojJkyeLqlWripSUlCLJU5hycuLECb3CJ4R45HmUlZUlHB0dxS+//KJvIz4+XlhYWIi//vqrSLIIUTzlxNzcXDz//PPi+PHjYt++fcLFxUV06tRJ9OvXT5w7d05s2bJFWFhYiLVr1+rbGThwoGjZsqXYv3+/uHr1qvjiiy+EpaWluHz5cpFlfFxk5aTkMapy8iAdOnQQo0aN0q/n5uaK3r17iwYNGoiEhIRit1eSB2dKHLmWKHwnbxW1P9guQv+5Lpp9sluvpHResF/svXi7VEceCroQM9V5BspSWS6Z6ryHSFswDz6gn3vuOTFr1iyDOj/99JPw9PTUrwPigw8+0K8fOnRIAGLp0qX6sjVr1ggrKyv9+rRp04RKpRJRUVH6su3btwulUiliY2OFEEL4+PgYvKkKIcTMmTNFcHCwEOK/m/qCBQseeVxdu3Y1eAi3adNGTJgw4aHHLkTByom5ubm4c+eOvuzPP/8UDg4O+d6ga9SoIRYvXvxI2YQQYsqUKaJ379769V69eompU6ca1ClIOSnKsRfGr7/+KiwsLMTZs2f1ZdOmTRM2NjYiLS1NXxYSEiL8/PyEVqvVl9WqVUvMnj27SP3cU042bdokatSoIXQ6nVixYoVo3LixEELkU04e5JdffhEuLi4GZQcPHhTm5ubiww8/FGZmZmLfvn1FkkWIwpWT7OxsAYg5c+YUuu+D59GYMWNEly5d9OsLFiwQ1atXL9Z9pjjKCWAwAjl69GhhY2NjMLIUEhIiRo8eLYSQlF6FQpFPce3QoYN4//33iyzj4yIrJyVPST6/nzhCrBACtVoNSPPK/fr148qVK+zdu1eORHofa49JRsE9GnoyrKUf/Zr6sOyf63wfFsGF2DSGLz9GcHUX3utSm4Y+lYwrbDkhPDycY8eO8emnn+rLtFotOTk5ZGVl6YMsNWjQQL/d3d0dgMDAQIOynJwc0tLScHBwAKBq1ap4e3vr6wQHB6PT6bh06RIqlYqoqCheffVVRo4cqa+j0WjyGQg2bdrUYF2r1fLZZ5+xbt06oqOjUavVqNXqErNt8PX1xdXVVb8eHh5ORkZGvmsxOzubiIiIR7an1WpZsWKFgW3P4MGDmTRpEjNmzHhoZM0Hj72ohIWFMXz4cJYsWUK9evUMtvn5+WFvb69fd3d3R6VSoVQqDcruhSYvKt26dWP06NHs37+fZcuWMWLEiALr7d27l1mzZnH+/HnS0tLQaDTk5OSQmZmp/w+Dg4N5++23mTlzJpMnT6Z169bFkqUghBDAf7E5inIejRw5kmbNmhEdHY2XlxfLly9n+PDhpWYnYmNjQ40aNfTr7u7u+Pn5YWdnZ1B27785fvw4QggCAgIM2lGr1fKzQ6Z44eunTJlCly5d8PHxIT09nbVr1xIWFsaOHTvQaDT07duX48ePs3XrVrRaLXFxcQA4OztjYWFRKgdQHkjNzmPbmVgABjxTFQBrCxVj2/kz8JmqfLv3KisP3eTQtUR6ffsP3QI9eTukFtUql64xnrW5ivMfhxS5vlqjJSEtl5TsPATSzdLG0gw3OwtsLc1QKBQkZ+YSnSJ5c7jZW+HmULCRpLX5k4eL1ul0zJgxgz59+uTbZmVlpf9ubm6u/37vxlxQmU6nK7Sve3UUCoW+3pIlS2jevLlBvQcf1g8qHV9++SXz589nwYIF+phAEydOJDc3t/ADBZRKpf4BdY+CjEwf7E+n0+Hp6UlYWFi+ug8zVL/Hzp07iY6Opn///gblWq2WXbt2PdRD53EUrn379tGjRw/mzZvH0KFD822//38D6f8oqOxh/2VBmJmZMWTIEKZNm8aRI0fYuHFjvjo3b96ka9euvP7668ycORNnZ2f+/vtvXn31VYP/QqfT8c8//6BSqbhy5Uqx5CiMCxcuAFCtWjWgaOdR48aNadiwIStXriQkJIQzZ86UqoFxcf8bnU6HSqUiPDw833Vzv0LztJCr0XHgSjy/n4zhekImn70YSL0qsrdTYRRLObl9+zZDhgzRu5A1aNCAHTt28Pzzz3Pjxg02b94MQKNGjQz227t3L23bti0pmcsdm09Gk5OnI8DdjsYPjIo42VrwQfe6DG/lx/zdV9hw4hZ/nIllx7k4BjTzYUKHmrg5WBXc8BOiUCiwsXj0KZCTpyU+XU1KlqSUWJorsbM0w83BCjtLw/1tLMywMFMRm5pNWk4etpZmuNoX7sXxJAQFBXHp0iX8/f1LvO3IyEhiYmKoUqUKAIcOHUKpVBIQEIC7uzteXl5cu3aNQYMGFavdAwcO0KtXLwYPHgxIN+grV65Qp04dfR0LCwu0Wq3Bfq6urqSnpxu8oZ88efKR/QUFBREXF4eZmRl+fn7FkhVg6dKlDBgwgKlTpxqUf/bZZyxduvSJ3IcfJCwsjO7duzNnzhxGjRpVYu0WlREjRjB37lz69++Pk5NTvu3//vsvGo2GL7/8Uj9S88svv+Sr98UXX3DhwgX27dtHSEgIy5cv55VXXnki2e55qnXs2BEo2nkE8NprrzF//nyio6Pp2LEjPj4+TyRHSdK4cWO0Wi137tzhueeeM7Y4pYJOJzh6I4nfT8aw/WwsKVn/KbFvrD7O1nHPYm9l/pAWKi7FUk6WLl1a6DY/P798b3Yy0nDsmqNRAAxoVrXQIVVvJxu+7NeQka2r8fmOS/x18Q6rj0Sy4Xg0rz1XjVGtq5f5SZyTp+VOmprU7Fzu/bP2Vua42Vtia1n4qeNqb4kQgri0HGJTs1EqwMWu5BWUjz76iO7du+Pj48NLL72EUqnk9OnTnDlzhk8++eSJ2raysmLYsGHMnTuXtLQ0xo8fT79+/fDw8ABg+vTpjB8/HgcHB7p06YJarebff/8lOTmZ//3vf4W26+/vz/r16zl48CBOTk7MmzePuLg4g4eKn58fR44c4caNG9jZ2eHs7Ezz5s2xsbFhypQpjBs3jqNHjxYp/kbHjh0JDg6md+/ezJkzh1q1ahETE8O2bdvo3bv3Q6de4uPj2bJlC5s3b6Z+/foG24YNG0a3bt2Ij483mEZ6XMLCwujWrRsTJkzgxRdf1I+6WlhY4Ozs/MTtF4U6deqQkJBQaP6pGjVqoNFo+Prrr+nRowf//PMP33//vUGdkydP8tFHH/Hbb7/RqlUrFi5cyIQJE2jTpg3Vq1cvkhwpKSnExcWhVqu5fPkyixcvZtOmTaxcuVI/2lWU8whg0KBBvP322yxZsqTMXJGLSkBAAIMGDWLo0KF8+eWXNG7cmISEBP766y8CAwPp2rWrsUV8LIQQnItJY/OpGDafjCEuLUe/rbKdJd0beLL7/G1uJmbx3oYzfPNyY9kluwDk3DqlzNnoNM7HpmFhpqRPkNcj69f2cGDZ8GasG9WCxlUrkZ2n5eu/rtLmizCW/X0dtUb7yDaelOxcLTcTM7l8O52Uu4qJg5U5/m52VKts+1DF5B6u9pb6EZPolGySsx4+bfE4hISEsHXrVnbv3k2zZs1o0aIF8+bNw9fX94nb9vf3p0+fPnTt2pVOnTpRv359vvvuO/321157jR9//JHQ0FACAwNp06YNoaGh+mH3wvjwww8JCgoiJCSEtm3b4uHhQe/evQ3qvP3226hUKurWrYurqyuRkZE4OzuzatUqtm3bRmBgIGvWrGH69OmPPA6FQsG2bdto3bo1I0aMICAggAEDBnDjxg29/U1hrFy5EltbWzp06JBvW7t27bC3t+enn356pAxFITQ0lKysLGbPno2np6d+KWjKrjRxcXHRZ6x9kEaNGjFv3jzmzJlD/fr1Wb16NbNnz9Zvz8nJYdCgQQwfPpwePXoA8Oqrr9KxY0eGDBmSbzSsMF555RU8PT2pXbs2Y8aMwc7OjqNHjzJw4EB9naKcRwAODg68+OKL2NnZFbjd2CxfvpyhQ4fy1ltvUatWLXr27MmRI0dMaoSnqFxPyGThnit0nLeP7l//zQ/7rxGXloO9lRn9mnqz6tXmHJnSgek96/HNwMaYKRX8cTqW1UfkIKUFoRAmNtyRlpaGo6MjqampeuPE8syUjWf4+UgkPRtW4auXGxdrXyEEO8/d5vOdF7kWnwmAt5M1b3UKoFdDL5TKomvbOTk5XL9+nWrVqhnYY9xPdq6G22lq0nL+G3p0tJZGSqyLMP1TkPwxqTkkZqhRoKCqiw2O1qY/hDl9+nQ2bdpUpGkTGRlT5/nnn6dOnTp89dVXxhbFpCjKPfFR3EnLYcvpWDafjObUrVR9uYWZko513OjZ0Iu2tVyxKsDGbsn+a3y67QIWZko2vtHyqbA/Kcnn9xN768gUTqZaw+aTUuLDAc8U/01AoVDQub4HHeu48Wv4LRbsucyt5GwmrTvFD/uvM7lzLdoEuD7xkGBWroY7DygllazNcXWweiLDVYVCQRVHK3Q6QXJWLpFJWfi52MhzrDIyZUBSUhK7du3ir7/+4ptvvjG2OE8Nqdl57Dgby+ZTMRyMSOTe671SAc/WdKVnwyqE1HN/5H3uteeqcfhaIn9evMObP59gy7hn89nwVWTkaZ1S5I8zsWSoNfi62NCi2uO7xpmplLz8TFXC3m7Hu51rYW9lpnc/fnnJYU5GpTxWu5lqDdcTMrl6J4O0nDwUQCUbCwLc7anqYlsiHjUKhQJvJ2scrc0RQnAzMUsO329C1KtXDzs7uwKXksxt06VLl0L7mTVrVon1cz+rV68utM8HXZTLglmzZhUqT0kaFt8jKCiI0aNH622N7qes/venhZw8LX+cjmXUyn9p9skeJq8/wz9XJcUkqGolZvSsx5EpHVk54hn6NvEu0guYQqFg7ksNqeJoxfWETKZuPCPbbd6HPK1TivT57h+OR6bwbudavNG25DxKkjNz+S7sKisO3iRXK7nldQ304O1OtajuWrAL3v1DmBqFGXfScvRKggIFlWyk6RvLElBICkInBJGJWaTl5KFSKKjmalskTyGZ0uXmzZuF5r1xd3c3iCnyJERHRxeYMBCkUAOlYfSanp7O7du3C9xmbm5eIrZJxSEpKYmkpKQCt1lbW+Pl9WibtJKirP53U+ZR0zoarY5/IhL5/WQ0u87dNnipCnC3o1cjL3o0qEJVl4INqItK+M0k+i0+jFYn+KxPoD7cRHmkJJ/fsnJSSly+nU6n+ftRKRUceq99qbgDR6dkM3/3ZdYfv4UQoFIq6N/Mh4kFuB9nZ2dz8UoEtpU9ydFJCogCBU625rjaW2JpVjpKyf3odIIbiZlkqDWolAqqV7bD2qL0+5WRkZF5kIKUEyEExyOT+f1kDH+cjiUx8z9Dfq9K1vRsVIVejapQ26Nkn02LwiKYs+MilmZKfn+zVYm3X1bIykk54OMt51n2z3U61XXnh6GPFymzqFyMS+OLHZf486IUedHaXMWrz1ZjVJvq2Fuase9yPKv/uUq/2la4VfFGaW6Js42klFiUgVJyP1qd4HpCJlm5GsyUSqq72hZoLCYjIyNTmtyvnNxK07Dh+C02n4rhVvJ/I3zOthZ0b+BJz4ZVCKrqVCwnhOKg0wleCT3Gvsvx1HC1Zcu4Z8vlyLKsnJg4ao2W5rP+JCUrj2XDm9K+9sNdNkuKI9cS+WzHRU5EpgDgZGOOl5M1Z6PT8LJXMaO9GwE1quPp7IC5mfHMjTQ6HdfjM8nO02KuUlLD1bbMlSQZGZmKzT3lJFHhyPCVJ9HopEehrYWKkHoe9GxUhVb+lTFXlc29MjFDTdevDnA7Tc2LQd582a9hmfRbksjeOibOznO3ScnKw8PBijYBbmXWb/PqLmwY05Jd52/z+Y6LRMRnkpyVh7W5ipeaeOPhoMTNwcqoigmAmVJJtcq2RMRnotZouZaQSQ1XuzK7CcjIyMiANJI7a+cFNDrBM9WcGRrsS4fa7kaZbnaxs+SrAY15eclh1h+/RXANF/o28X70jk8psnJSCqy7m+SvX1NvVKU0DFgYCoWCkHoedKjtxsYT0cSl5vBy86rYmQmuX79eprI8DDOVkuqVbYlIyCBXo+NafCY1XG0xkxUUGRmZMkAnBEmZuaRm51HX04GVI54x+hRz8+ouTOoYwJe7L/PhprM09HakpvvTb5xcEPKToIS5mZjJP1cTUSjgpabGi3JoplLyUlMfxnWoSeVSCB1fEpibSQqKuUqJWqPlekImmmImbJORkZF5HBLS1ag1OmwtzVg0OMjoisk93mjnz7P+lcnO0zL25+Nk55Z+VHBTRFZOSphf/pXy6DzrXxkf5ydzMasIWJipqFbZFjOlkuw8LTcSstDqTMoMSqYIKBQKNm3aZGwxZEyIsLAwFAoFKSkpxhYlH6nZufqUGu90qoWvS+lmgC8OKqWC+f0b4WpvyeXbGUzffM7YIhkFWTkpQTRaHb/+ewuAl8uxr3pZY2UuKSgqpYKsXA03EzPR3VVQFArFQ5fhw4cbV/hSoG3btkycONHYYhiQnZ2Nk5MTzs7OBcYriY2NfaJAYmFhYfTq1QtPT09sbW1p1KhRmQQD8/PzQ6FQsHbt2nzb6tWrh0KhKFKCxbLk/vPf1taWmjVrMnz4cMLDw8tMhrZt2z70uvTz86Nly5b6DPamhDpPy60k6Ry2tzLjuYAnT1xZ0rjaW7KwfyMUClj3bxSbTkQbW6QyR1ZOSpC9l+K5k67GxdaCjnXKxkPnacHaQlJQlAoFGWoNkUlZ6IQgNjZWv9xLG39/2cKFC40tepEpLOhVeehv/fr11K9fn7p167Jhw4Z82z08PLC0LHz68FGyHDx4kAYNGrB+/XpOnz7NiBEjGDp0KFu2bHli2R+Fj48Py5cvNyg7fPgwcXFx2Nqazhv1/SxfvpzY2FjOnTvHt99+S0ZGBs2bNy+zzMMbNmzQX4NHjx4FYM+ePfqyY8eOYWFhgYeHh0ll3NXpBJFJWWiFwNpchYOV6ZpdtvSvzPj2NQEpR1tEfIaRJSpbZOWkBFl7VDKEfbGJNxZG9ogpj9hYmOF3V0FJy8kjKikLd3d3PDw88PDwwNHREYVCoV/38PBg//79NGnSBCsrK6pXr86MGTPQaP6L5KhQKFi8eDHdu3fHxsaGOnXqcOjQIa5evUrbtm2xtbUlODiYiIgI/T7Tp0+nUaNGLF68GB8fH2xsbHjppZfyDU8vX76cOnXqYGVlRe3atQ2yFt+4cQOFQsEvv/xC27ZtsbKyYtWqVSQmJvLyyy/j7e2NjY2NPsPwPYYPH86+fftYuHCh/i30xo0bhIaGUqlSJYP+N23aZHDjvyf3smXLqF69OpaWlgghSE1NZdSoUbi5ueHg4ED79u05depUsf6bpUuXMnjwYAYPHszSpUvzbb9/WqewY38YU6ZMYebMmbRs2ZIaNWowfvx4OnfuzMaNGws8vqpVq2JnZ8eYMWPQarV8/vnneHh44ObmxqefflqsYxs0aBD79u0jKipKX7Zs2TIGDRqEmZnhw+tRv2VERAS9evXC3d0dOzs7mjVrxp49ewza8PPzY9asWYwYMQJ7e3uqVq3KDz/8UCyZK1WqhIeHB35+fnTq1InffvuNQYMG8eabb5KcnAzwyHNt5cqVuLi4oFarDdp+8cUXGTp06EP7d3Z21l+Drq7SyIOLi4tB2YPTOvfO4a1bt1KrVi1sbGzo27cvmZmZrFixAj8/P5ycnBg3bpxBBufc3FzeffddvLy8sLW1pXnz5oSFhRXr97pHTGo22XlazJRKPB2tTUpxKojxHWrSorozWblaxq4+Tk5eBbI/ESZGamqqAERqaqqxRSkWsSnZotp7W4Xv5K3iyu10Y4uTj+zsbHH+/HmRnZ39X6FOJ4Q6wziLTleorGnZueL0rRRxKipZRCZmCt3dusuXLxeOjo76ejt27BAODg4iNDRUREREiF27dgk/Pz8xffp0fR1AeHl5iXXr1olLly6J3r17Cz8/P9G+fXuxY8cOcf78edGiRQvRuXNn/T7Tpk0Ttra2on379uLEiRNi3759wt/fXwwcOFBf54cffhCenp5i/fr14tq1a2L9+vXC2dlZhIaGCiGEuH79ugCEn5+fvk50dLS4deuW+OKLL8SJEydERESE+Oqrr4RKpRKHDx8WQgiRkpIigoODxciRI0VsbKyIjY0VGo0m37ELIcTGjRvF/ZfwPblDQkLE8ePHxalTp4ROpxOtWrUSPXr0EMeOHROXL18Wb731lnBxcRGJiYlFOneuXr0qLC0tRVJSkkhMTBSWlpYiIiLCoA4gNm7c+NBjLy6tWrUSb731lsHx2dnZib59+4pz586JzZs3CwsLCxESEiLGjRsnLl68KJYtWyYAcejQoSL14evrK+bPny969uwpZs6cKYQQIjMzUzg4OIgTJ04IR0dHsXz5ciGEKNJvefLkSfH999+L06dPi8uXL4upU6cKKysrcfPmTYM+nZ2dxbfffiuuXLkiZs+eLZRKpbhw4UKRZL7/t76fEydOCECsW7dOCCEeea5lZWUJR0dH8csvv+jbiI+PFxYWFuKvv/4qkixC/Pd/nzhxwqB87969AhDJyclCCOn6NTc3F88//7w4fvy42Ldvn3BxcRGdOnUS/fr1E+fOnRNbtmwRFhYWYu3atfp2Bg4cKFq2bCn2798vrl69Kr744gthaWkpLl++XGQZhRAiKUMtTkUli1NRySItO7fge6IJEpeaLYI+3iV8J28V7284bWxxHkpJPr9l5aSE+GrPZeE7eat4adFBY4tSIAVeiOoMIaY5GGdRZzxU3pQstTgdJSkot5KzhE6ny/eAfu6558SsWbMM9vvpp5+Ep6enfh0QH3zwgX790KFDAhBLly7Vl61Zs0ZYWVnp16dNmyZUKpWIiorSl23fvl0olUoRGxsrhBDCx8dH/PzzzwZ9z5w5UwQHBwsh/rthL1iw4KHHKYQQXbt2NXgIt2nTRkyYMMGgTlGVE3Nzc3Hnzh192Z9//ikcHBxETk6Owb41atQQixcvfqRsQggxZcoU0bt3b/16r169xNSpUw3qFKScFOXYC+PXX38VFhYW4uzZs/qyadOmCRsbG5GWlqYvCwkJEX5+fkKr1erLatWqJWbPnl2kfu4pJ5s2bRI1atQQOp1OrFixQjRu3FgIIQyUk8f9LevWrSu+/vprgz4HDx6sX9fpdMLNzU0sWrSoSDIXppxkZ2cLQMyZM6fQfR8818aMGSO6dOmiX1+wYIGoXr26/oWgKBRHOQHE1atX9XVGjx4tbGxsRHr6fy90ISEhYvTo0UIISTFWKBT5lNsOHTqI999/v8gyZuVqxJm7LzxxqdI9sLwoJ0IIse/SHeF39+V388niK/plRUk+v013wq0codMJ1t310unfzHjuw08TjtYWeDtDVFIWiRlqlAryZewMDw/n2LFjBsP4Wq2WnJwcsrKysLGRvKUaNGig3+7uLtkCBQYGGpTl5OSQlpamj2pYtWpVvL3/C4AUHByMTqfj0qVLqFQqoqKiePXVVxk5cqS+jkajyWf817SpYeoCrVbLZ599xrp164iOjkatVqNWq0vMtsHX11c/zA7Sb5SRkYGLi2FW7OzsbIOprMLQarWsWLHCwLZn8ODBTJo0iRkzZqBSFe5++eCxF5WwsDCGDx/OkiVL8mUP9vPzM0hK5+7ujkqlQqlUGpTduXOnWH1269aN0aNHs3//fpYtW8aIESPy1SnKb5mZmcmMGTPYunUrMTExaDQasrOziYyMNNjn/nPy3lRlcWV+kHvXx72piqKcayNHjqRZs2ZER0fj5eXF8uXLGT58eKlNd9jY2FCjRg39uru7O35+ftjZ2RmU3fstjh8/jhCCgIAAg3bUanW+/6EwtDop6ahOCOwszXCzN83QCg+jdYArb7Stwbd7I3h/wxkCvRzxq2ya9lAlhayclAD/RCRwKzkbeyszugZ6GlucomNuA1NijNf3I3CysUCnE0SnZBOfriY9R2OwXafTMWPGDPr06ZNv3/uzjJqb/5e+/N5Nt6Ay3UNirNyro1Ao9PWWLFlC8+bNDeo9+LB+UOn48ssvmT9/PgsWLCAwMBBbW1smTpxIbm4uD0OpVOZTzgoyMn2wP51Oh6enZ4Fz9A/asBTEzp07iY6Opn///gblWq2WXbt2PdRD53EUrn379tGjRw/mzZtXoN3D/f8bSP9HQWUP+y8LwszMjCFDhjBt2jSOHDliYOtyj6L8lu+88w47d+5k7ty5+Pv7Y21tTd++ffP9vyUh84NcuHABgGrVqgFFO9caN25Mw4YNWblyJSEhIZw5c6ZUjZCL+//pdDpUKhXh4eH5rq37FZrCEEJwKzkLtUZKlVHV2cbk7UwKY1LHAI5dT+bojSTeXHOc9WNalknCVmMhKyclwNpj0qjJC429yleWXYUCLExb+3axs0QnIDY1m9TsPO5/PAcFBXHp0iX8/f1LvN/IyEhiYmKoUqUKAIcOHUKpVBIQEIC7uzteXl5cu3aNQYMGFavdAwcO0KtXLwYPHgxIN98rV65Qp04dfR0LCwsDg0AAV1dX0tPTyczM1D/0T548+cj+goKCiIuLw8zMDD8/v2LJCpIh7IABA5g6dapB+WeffcbSpUufyH34QcLCwujevTtz5sxh1KhRJdZuURkxYgRz586lf//+ODk55dtelN/ywIEDDB8+nBdeeAGAjIwMbty4UYpS/8c9b7aOHTvqZXnUuQbw2muvMX/+fKKjo+nYsSM+PqYz+tu4cWO0Wi137tzhueeeK/b+iXcjwCpQUNXZplxHoDZTKVn4ciO6LjzA2eg0Zv1xgRm96htbrFJDVk6ekMQMNbvOxQHylE5p4Wpvie7uqIEQgqRMNc62lnz00Ud0794dHx8fXnrpJZRKJadPn+bMmTN88sknT9SnlZUVw4YNY+7cuaSlpTF+/Hj69euHh4cHIHmOjB8/HgcHB7p06YJarebff/8lOTmZ//3vf4W26+/vz/r16zl48CBOTk7MmzePuLg4gweGn58fR44c4caNG9jZ2eHs7Ezz5s2xsbFhypQpjBs3jqNHjxYp/kbHjh0JDg6md+/ezJkzh1q1ahETE8O2bdvo3bv3Q6de4uPj2bJlC5s3b6Z+fcOb4LBhw+jWrRvx8fEG00iPS1hYGN26dWPChAm8+OKLxMVJ15SFhQXOzs5P3H5RqFOnDgkJCfrpwAcpym/p7+/Phg0b6NGjBwqFgg8//PCJR0QKIiUlhbi4ONRqNZcvX2bx4sVs2rSJlStX6kdxinKugeSt9Pbbb7NkyZIyc0UuKgEBAQwaNIihQ4fy5Zdf0rhxYxISEvjrr78IDAyka9euhe6blashNjUHAA9HK2wty//jztPRmnn9G/HK8mOsOHSTFtVd6FKeRuuLQflVI02EjSeiydMKGng7Uq+KaQUbeppws7fE/m5MglvJ2aRk5RISEsLWrVvZvXs3zZo1o0WLFsybNw9fX98n7s/f358+ffrQtWtXOnXqRP369Q1chV977TV+/PFHQkNDCQwMpE2bNoSGhuqH1Avjww8/JCgoiJCQENq2bYuHhwe9e/c2qPP222+jUqmoW7curq6uREZG4uzszKpVq9i2bZveJXT69OmPPA6FQsG2bdto3bo1I0aMICAggAEDBnDjxg29/U1hrFy5EltbWzp06JBvW7t27bC3t+enn356pAxFITQ0lKysLGbPno2np6d+KWjKrjRxcXHB2tq6wG1F+S3nz5+Pk5MTLVu2pEePHoSEhBAUFFTicr7yyit4enpSu3ZtxowZg52dHUePHmXgwIH6OkU51wAcHBx48cUXsbOzK3C7sVm+fDlDhw7lrbfeolatWvTs2ZMjR448dIRHo9URmZiFEAJHa3Mq21mUocSlS7taboxuUx2Ad9efJjIxy8gSlQ4K8eBEtpEpyZTLpY0Qgo7z9hERn8mnL9RnUPMnfyiWFvfSg1erVs3AHqM8IYQgJiWbxMxcaZjWxQZHa/NH71hMpk+fzqZNm4o0bSIj8zTw/PPPU6dOHb766itji/LECCG4kZhFek4elmZK/N3sUCnzv4eX53tinlbHgB8OE34zmYbejvz6ekuTiK1Vks9v4x9NOSb8ZjIR8ZlYm6vo2bCKscV56lEoFFSpZI2TjQUCKdJjRk7ZRl2VkXmaSEpKYu3atfz111+MHTvW2OKUCJLxfB5KhWRnUpBiUt4xVyn56uXGOFqbc+pWKp9tv2hskUqcp+9fK0PWHJUMYbs38MTequTf4GXyo1Ao8HayxtHaHCEENxOzyM7VPHpHmQKpV68ednZ2BS4lmdumS5cuhfYza9asEuvnflavXl1onw+6KJsKs2bNKlTmkjQ+vkdQUBCjR4/W29DcT1mdGyVJRk4et9MkO5Mqlaywtij/diaF4VXJmrkvNQRg2T/X9baPTwvytM5jkpaTxzOf7iEnT8f6MS1p4pvfut+UKM9DmAWh0wmuJ2aSqdZgplLi72qLxVPsVlda3Lx5s9C8N+7u7gYxRZ6E6OjoAhMGghQKvTSMXtPT07l9+3aB28zNzUvENqmkSUpKIikpqcBt1tbWeHl5lZksZXVulBR5Wh1Xbmeg0elwsrHA2+nh4emflnvizK3nWfr3dRyszNg24Tm8nR4dpqG0KMnn99OrVpYyv5+MISdPR003O4KqVjK2OBUOpVKBr4sN1+IzycnTcj0hixqutuXaVdAYlNUDuiwfqvewt7c3uQfooygtRe1xMEXlrTCEkKZ5NTodVuYqvCqZft6ckmJy59r8ezOZU1EpjFtzgl9GB2P+FNwHy/8RGIl7Sf4GPFO1wlwEpoaZUkk1F1ssVErUGi03ErPQ6kxqIFBGRqYMiEvLIVOtQaVQ4Otsg1JZce7JFmZKvnm5MfZWZpyITOGLnZeMLVKJICsnj8HZ6FTOxaRhoVLyQuOyfyOU+Q9zMyV+lW1RKRVk5WqITMrSx0SRkZF5+knLziM+Xcqs7OVkjaV5xZve9XG24Yu+kv3JD/uv8dfFgqczyxOycvIYrLk7ahJS3wNn26fHf768YmWuws/FFqVCQXpOHtHJ2flCvcvIyDx95Gq0RCVLcT4q21lSyabi3o871/dgeEs/AN765RSxqQXbeJUXZJuTYpKVq2HzSSkfzQA5IqzJYGtpRlVnG24mZpGclYuZSoGnY8HBtGRkZMo/OiG4mSRN5dpYmOHhWH6NWkuK97vWJvxmMmeiUxm/5gRrRrYoNTu8XI2OqOQsbiZmcj1B+rx868mSV96PrJwUkz9Ox5Ku1lDV2Ybg6kXLiilTNjhYm+PlZMWtZClRoLlKSWW78peBVEZG5tHEpuSQnatFpZTimShl2z8szVR8M7Ax3b/6m2M3kpm3+zLvdq792O2pNVqikrK5kZDJjURpuZmYxY3ETKKTs3nQxE+nLrlotbJyUkzW3U3y17+ZT4UyuiovONtaotEK4tJyiEnJxkypqNBDvWWFQqFg48aNJhn+vKLStm1bGjVqxIIFC4q8jzH+x8eJyJySlUtipmRn4uNsYxLRUU0FXxdbPnuxAWN/Ps53YRE0r+5Cm4DC81/l5GmJSsriRmKWXgm5mZjF9YRMYlKzedgMuY2FCl8XW/xcbPCrbIubpZYRC0rmOGTlpBhcuZ3OvzeTUSkV9G3ibWxxKgSP8oQaNmxYvgR4rvaW5OkEiRlqopIlBcWuHAXJe5yHSmmTnZ1NlSpVUCgUREdH58s/ExsbW2Am36ISFhbG/PnzOXr0KGlpadSsWZN33nmn2Fmfi4ufnx83b95kzZo1DBgwwGBbvXr1OH/+PMuXL2f48OGlKkdxUCgUWFpacunSJQN33969e1OpUiX99bBhwwbMzUv2vA8LC6Ndu3YkJyfrEww+StaHMWzYML755hvGjRtXZBly8rTcSpbsKdzsrXAoR9d2WdGtgSeHrlVl1eFIJq07ycY3WqLW6LiekGkwDXMzMeuRCojtXQWkWmVbfO8qIX53FRJXe0uD/zgtLY0RJXQMsnJSDO6NmrSr5Ya7gzy/WRbExsbqv69bt46PPvqIS5f+c5UrKEmbQqGgiqMVGq2O1Ow8biZmUd3V1ujRIvPy8kr8YVFW/a1fv5769esjhGDDhg35lIZ72ZofV5aDBw/SoEEDJk+ejLu7O3/88QdDhw7FwcGBHj16lMgxFIaPjw/Lly83UE4OHz5MXFwctra2pdr346JQKPjoo49YsWJFoXVMIV5KUa7fe1Fni4JWJ4hMlDzy7CzNcHeQp20L44NudQm/mcKF2DTafBH20Lp2lmb4Vbb5bxTExVavhFS2szBOuAxhYqSmpgpApKamGlsUA3LyNKLRjJ3Cd/JWsed8nLHFKTbZ2dni/PnzIjs729iiPDbLly8Xjo6OBmWbN28WQUFBwtLSUlSrVk1Mnz5d5OXlCSGE0EpBT8QHs+eJNh1DhLW1tahdu7Y4ePCguHLlimjTpo2wsbERLVq0EFevXtW3OW3aNNGwYUPx/fffC29vb2FtbS369u0rkpOTDfpetmyZqF27trC0tBS1atUS3377rX7b9evXBSDWrVsn2rRpIywtLcWyZctEQkKCGDBggPDy8hLW1taifv364ueff9bvN2zYMAEYLNevXy/w2Ddu3Cjuv4Tvyb106VJRrVo1oVAohE6nEykpKWLkyJHC1dVV2Nvbi3bt2omTJ08W67dv27at+P7778WiRYtEu3bt8m0HxMaNGx967MWla9eu4pVXXinw+Hx8fIStra14/fXXhUajEXPmzBHu7u7C1dVVfPLJJ0Xuw9fXV7z33nvC0tJSREZG6stHjhwpxo0bJxwdHcXy5cv15Y/6La9evSp69uwp3NzchK2trWjatKnYvXt3vj4//fRT8corrwg7Ozvh4+MjFi9eXGSZAfHOO+8IpVIpTp8+rS/v1auXGDZsmH69TZs2YsKECfr1mJgY0bVrV2FlZSX8/PzE6tWrha+vr5g/f75B20uWLBG9e/cW1tbWwt/fX/z+++9CiP/+1/uX+/t7FAWdw0L897/eY9iwYaJXr17i008/FW5ubsLR0VFMnz5d5ObmilFvThAOjpWEu2cV8cOSJQbt3Lp1S/Tr109UqlRJODs7i549e4rr168XKs/TcE98FBF30kWD6dJzq/5HO0T3rw6IsavDxdydF8Wv/0aJf28kivj0HKHT6Uqkv5J8fsvKSRHZcipa+E7eKp75dLfI02iNLU6xKehC1Ol0IjM30yjL41wMD97cduzYIRwcHERoaKiIiIgQu3btEn5+fmL69On6OoBw96wiPv9umdj+d7jo1auX8PPzE+3btxc7duwQ58+fFy1atBCdO3fW7zNt2jRha2sr2rdvL06cOCH27dsn/P39xcCBA/V1fvjhB+Hp6SnWr18vrl27JtavXy+cnZ1FaGioEOK/G7mfn5++TnR0tLh165b44osvxIkTJ0RERIT46quvhEqlEocPHxZCSA+/4OBgMXLkSBEbGytiY2OFRqMpsnJia2srQkJCxPHjx8WpU6eETqcTrVq1Ej169BDHjh0Tly9fFm+99ZZwcXERiYmJRfrdr169KiwtLUVSUpJITEwUlpaWIiIiwqBOQcrJg8deXFq1aiXeeustg+Ozs7MTffv2FefOnRObN28WFhYWIiQkRIwbN05cvHhRLFu2TADi0KFDRerj3sO5Z8+eYubMmUIIITIzM4WDg4M4ceKEgXJSlN/y5MmT4vvvvxenT58Wly9fFlOnThVWVlbi5s2bBn06OzuLb7/9Vly5ckXMnj1bKJVKceHChSLJfO+37tmzp+jWrZu+/FHKSceOHUWjRo3E4cOHRXh4uGjTpo2wtrbOp5x4e3uLn3/+WVy5ckWMHz9e2NnZicTERKHRaMT69esFIC5duiRiY2NFSkpKkWQWonjKib29vRg7dqy4ePGiWLp0qQBE+47Pi3HvfiC27A8XH06bIczNzfUKZWZmpqhZs6YYMWKEOH36tDh//rwYOHCgqFWrllCr1QXKUxGUEyGESMvOFQklqIA8DFk5MQKDlhwWvpO3irk7LxpblMeioAsxMzdT1A+tb5QlMzez2Mfw4M3tueeeE7NmzTKo89NPPwlPT0/9OiDenzJVXIhJFaeiksUvf/wpALF06VJ9nTVr1ggrKyv9+rRp04RKpRJRUVH6su3btwulUiliY2OFEEL4+PgYjHgIIcTMmTNFcHCwEOK/B/SCBQseeVxdu3Y1eAg/+FAp6NiFKFg5MTc3F3fu3NGX/fnnn8LBwUHk5OQY7FujRo0iv61PmTJF9O7dW7/eq1cvMXXqVIM6BSknRTn2wvj111+FhYWFOHv2rL5s2rRpwsbGRqSlpenLQkJChJ+fn9Bq/3thqFWrlpg9e3aR+rmnnGzatEnUqFFD6HQ6sWLFCtG4cWMhhDBQTh73t6xbt674+uuvDfocPHiwfl2n0wk3NzexaNGiIsl877c+d+6cUKlUYv/+/UKIhysnFy5cEIA4duyYfvuVK1cEkE85+eCDD/TrGRkZQqFQiO3btwshhNi7d68A8o0iFoXiKCe+vr4G/2lAQC0R1DxYnIpKFnfSsoVGoxG2trZizZo1Qgghli5dKmrVqmXwAFar1cLa2lrs3LmzQHkqinJSlpTk81u2OSkCUUlZ/H01AYUC+jWVY5uYCuHh4Rw7doxPP/1UX6bVasnJySErKwsbGykBVuNGDfGrbEtEfAa2lST373r16+v3cXd3Jycnh7S0NH2yqqpVq+Lt/Z/Rc3BwMDqdjkuXLqFSqYiKiuLVV19l5MiR+joajQZHR0cDGZs2bWqwrtVq+eyzz1i3bh3R0dGo1WrUanWJ2Tb4+vri6vqfZX54eDgZGRm4uBi6vWdnZxMREfHI9rRaLStWrGDhwoX6ssGDBzNp0iRmzJiBSlV4NM4Hj72ohIWFMXz4cJYsWZIve7Cfn59Bvhx3d3dUKhVKpdKg7M6d4sVb6NatG6NHj2b//v0sW7aMESPym/UV5bfMzMxkxowZbN26lZiYGDQaDdnZ2URGRhrs06BBA/13hUKBh4dHsWWuW7cuQ4cOZfLkyRw8ePChdS9duoSZmRlBQUH6Mn9//wKNmO+XzdbWFnt7+2LL9qTUq1dP/59qtDocnCtTI6A2DlbmVLaTjDBdXFz0coWHh3P16tV8uZRycnKKdJ7LmB6yclIE7hnCPutfGR9n42V8LGmszaw5MvCI0fp+UnQ6HTNmzKBPnz75tt2fZdTc3FwfRfZWpGTYlZytRQiBQqHQG3vpdLpC+7pXR6FQ6OstWbKE5s2bG9R78GH9oNLx5ZdfMn/+fBYsWEBgYCC2trZMnDiR3Nzchx6rUqnMF/W2oIyxD/an0+nw9PQkLCwsX92ieFvs3LmT6Oho+vfvb1Cu1WrZtWsXXbp0KXTfx1G49u3bR48ePZg3bx5Dhw7Nt/1Bo1qFQlFg2cP+y4IwMzNjyJAhTJs2jSNHjrBx48Z8dYryW77zzjvs3LmTuXPn4u/vj7W1NX379s33/5aEzAAzZswgICCATZs2PbTeg+fOw8pLSrYn4Z4MQgi9Z46FhWGm4fvl0ul0NGnShNWrV+dr635lXab8ICsnj0Cj1fFruKScDGhW1cjSlCwKhQIb8/KrbAUFBXHp0iX8/f2LVN/W0owqlSSlKC1Hw+20HDwKiSIbGRlJTEwMVapUAeDQoUMolUoCAgJwd3fHy8uLa9euFdvV9cCBA/Tq1YvBgwcD0k31ypUr1KlTR1/HwsICrVZrsJ+rqyvp6elkZmbqH/pFiQsRFBREXFwcZmZm+Pn5FUtWgKVLlzJgwACmTp1qUP7ZZ5+xdOnShyonxSUsLIzu3bszZ84cRo0aVWLtFpURI0Ywd+5c+vfvX+CIQlF+ywMHDjB8+HBeeOEFADIyMrhx40apyezj48Obb77JlClTqFGjRqH1ateujUaj4cSJEzRp0gSAq1evkpKSUqz+LCykmEEPnp+lRUKGmrQcSQm3tzIrNNppUFAQ69atw83NTT/6KVO+kSPXPIKwS/HcTlPjbGtBx7puxhZH5j4++ugjVq5cyfTp0zl37hwXLlxg3bp1fPDBB4XuY39fTIQ76WoSMtQF1rOysmLYsGGcOnWKAwcOMH78ePr166d3mZ0+fTqzZ89m4cKFXL58mTNnzrB8+XLmzZv3UJn9/f3ZvXs3Bw8e5MKFC4wePZq4uDiDOn5+fhw5coQbN26QkJCATqejefPm2NjYMGXKFK5evcrPP/+cL75LQXTs2JHg4GB69+7Nzp07uXHjBgcPHuSDDz7g33//fei+8fHxbNmyhWHDhlG/fn2DZdiwYWzevJn4+PhHylAUwsLC6NatG+PHj+fFF18kLi6OuLg4kpKSSqT9olCnTh0SEhJYvnx5gduL8lv6+/uzYcMGTp48yalTpxg4cGCpjzq8//77xMTEsGfPnkLr1K5dm44dOzJq1CiOHj3KiRMnGDVqFNbW1sVyE/X19UWhULB161bi4+PJyMgoiUMokEy1hrhU6fq0MFNi/pAw7IMGDaJy5cr06tWLAwcOcP36dfbt28eECRO4detWqckoU3rIyskjWHt3SufFIC8szSpetktTJiQkhK1bt7J7926aNWtGixYtmDdvnkFgqsJwuZuwMSYlm4yc/NMj/v7+9OnTh65du9KpUyfq16/Pd999p9/+2muv8eOPPxIaGkpgYCBt2rQhNDSUatWqPbTfDz/8kKCgIEJCQmjbti0eHh75onG+/fbbqFQq6tati6urK5GRkTg7O7Nq1Sq2bdtGYGAga9asYfr06Y88ToVCwbZt22jdujUjRowgICCAAQMGcOPGDdzd3R+678qVK7G1taVDhw75trVr1w57e3t++umnR8pQFEJDQ8nKymL27Nl4enrql4Km7EoTFxeXAmPnQNF+y/nz5+Pk5ETLli3p0aMHISEhBnYepYGzszOTJ08mJyfnofVWrlyJu7s7rVu35oUXXmDkyJHY29sbTIE+Ci8vL2bMmMF7772Hu7s7b7755pOKXyA6IYhMykIgqGRj8VDFBMDGxob9+/dTtWpV+vTpQ506dRgxYgTZ2dnySEo5RSEKm4w0EmlpaTg6OpKammr0k+p2Wg4tP/sLrU6w53+t8Xezf/ROJkpOTg7Xr1+nWrVqxboZPa0IIYhJySExU41CoaCai40+iuzjhNOWkSlv3Lp1Cx8fH/bs2VOgAmpMbiRkkpaTh6WZCn83O1SlkCpEvieWPCX5/JZtTh7Cb+G30OoEzfycyrViIpMfhUJBlUpWaHT3R5G1w9pCHh2TeTr566+/yMjIIDAwkNjYWN599138/Pxo3bq1sUUzIFOtIS0nDwUKfF1sSkUxkTF95GmdQtDpBGuPSe5//Z8yQ1gZCYVCgY+TDbaWZmiF4EZiJrmasjH0MxXq1aunDx/+4FKQ58Pj0qVLl0L7mTVrVon1cz+rV68utM8HXZRNhVmzZhUq85MaH+fl5TFlyhTq1avHCy+8gKurK2FhYU+U4iAyMrJQee3s7PK5UD8KIQRxqdL0lJOt5GUnUzGRp3UK4Z+rCQz68Qj2lmYcndqx3L9Ry0OYhaPR6bgWn0lOnhZLMxU1XG0L9Qp42rh582aBLskgxQt5MG7E4xIdHU12dnaB25ydnUslD0x6ejq3b98ucJu5uXmRbJPKmqSkpEKNgK2trfHy8ipjiR6ORqN5qDeSn58fZmZFH6BPy87jRmImSoWCWu72mJditmH5nljyyNM6ZcCao5LG36txlXKvmMg8HDOlkmouUpA2tUbLjcQsqlW2rRDDyWX1gDbGQ9Xe3r7ElKuyorQUtdLCzMysyK78j0IIQVyaNGriYmdRqoqJjOkj//sFkJSZy65z0hvX0xbbRKZgzM2U+N1VSLJyNUQmSZlPZWRkyobU7Dxy8rSoFApc7eRswxUdWTkpgA3Hb5Gr1VHfy4H6Xo6P3kHmqeBeFFmlQkF6Th7RydmFRtaUkZEpOXRCcPvuqElle8sKM60qUzjyGfAAQgh9uHp51KTiYWtpRlVnGxQoSM7K1d8wZWRkSo/kzFzUGh1mSiWV5VETGWTlJB/HI5O5cicDa3MVPRtVMbY4MkbAwdocLyfJQO5hUWRlZGSeHJ1OcCddusbc7C0rhK2XzKORlZMHWHNUGjXp1sATB6vHd7GTKd8421ri7iApKDEp2aRmPTwxn4yMzOORmJlLnlaHuUqJs52FscWRMRFk5eQ+0nLy+ON0LAADmvkYWRoZY+Nmb4mLrTTEHJmcTUaOxsgSmS4KheKRmXGfBox1nMXtNywsDIVCUezEfk9K27ZtmThxYpHra3U64tOlqVN3ByuUxcjzI/N0Iysn97H5ZAzZeVr83exo4ps/K6lM2aNQKB66DB8+vFT7rlLJCkdrc4QQ3EzMJDu39BWU4t7gy4Ls7GycnJxwdnYuMF5JbGzsEwUJCwsLo1evXnh6emJra0ujRo1KNAhcYfj5+aFQKFi7dm2+bfXq1UOhUBgkWHzS47yfewpE/fr182X5rVSpUqn1e4/p06fTqFGjItW9J+vDltDQUDZs2MDMmTOLLEN8Ri4ancDSTIWTjTxSLfMfsnJyH/8ZwvoUK1OnTOkRGxurXxYsWICDg4NB2cKFC0u1/wejyF5PyEKd93hRZAsLdlZalGR/69evp379+tStW5cNGzbk2+7h4YGlZeGGjI+S5eDBgzRo0ID169dz+vRpRowYwdChQ9myZcsTy/4ofHx88mUiPnz4MHFxcdja2hqUP+o4H4eIiAhWrlz50Dql0W9xaNmypcF1169fPzp37mxQ1r9/f5ydnYscW0aj1ZFw19bEw8FSvufKGCArJ3c5G53KmehULFRK+gR5G1scmbt4eHjoF0dHRxQKhUHZ/v37adKkCVZWVlSvXp0ZM2ag0fw3uqFQKFi8eDHdu3fHxsaGOnXqcOjQIa5evUrbtm2xtbUlODiYiIgI/T733igXL16Mj48Pdna2TB4znLysdDQ6HdcTMsnV6Fi+fDl16tTBysqK2rVrG2QtvnHjBgqFgl9++YW2bdtiZWXFqlWrSExM5OWXX8bb2xsbGxt9huF7DB8+nH379rFw4UL9G+mNGzcIDQ2lUqVKBr/Npk2bDG7o9+RetmwZ1atXx9LSEiEEqampjBo1Cjc3NxwcHGjfvj2nTp0q1v+wdOlSBg8ezODBg1m6dGm+7fdPOxR27A9jypQpzJw5k5YtW1KjRg3Gjx9P586d2bhxY4HHV7VqVezs7BgzZgxarZbPP/8cDw8P3Nzc+PTTT4t1bIMGDWLfvn1ERUXpy5YtW8agQYPyRTct6Dg3bNhAu3btsLGxoWHDhhw6dKhY/Y8bN45p06Y9NKvwg9M6Bw8epFGjRlhZWdG0aVP9ufBgssrw8HCaNm2KjY0NLVu25NKlS4CUBXrGjBmcOnXKYOSjMCwsLAyuO2traywtLfOVPTjq5+fnxyeffMLQoUOxs7PD19eX33//nfj4eLr16MkzAV689HwrLp8zPB8PHjxI69atsba2xsfHh/Hjx5OZmVnk31Sm/CMrJ3e5N2rSqZ47zrYVwyhLCIEuK8soS0nED9m5cyeDBw9m/PjxnD9/nsWLFxMaGprv4TRz5kyGDh3KyZMnqV27NgMHDmT06NG8//77/PvvvwD5Ur9fvXqVX375hS1btrBjxw5OnTrF3OmTsTRTkavVMWfBt0ydOpVPP/2UCxcuMGvWLD788ENWrFhh0M7kyZMZP348Fy5cICQkhJycHJo0acLWrVs5e/Yso0aNYsiQIRw5cgSAhQsXEhwczMiRI/VvpD4+Rbd/uif3+vXr9Q+qbt26ERcXx7Zt2wgPDycoKIgOHToUGib9QSIiIjh06BD9+vWjX79+HDx4kGvXrj1yvwePvbikpqbmi5YaERHB9u3b2bFjB2vWrGHZsmV069aNW7dusW/fPubMmcMHH3zA4cOHi9yPu7s7ISEh+v8uKyuLdevWMWLEiCLtP3XqVN5++21OnjxJQEAAL7/8soGC/CgmTpyIRqPhm2++KVL99PR0evToQWBgIMePH2fmzJlMnjy5UNm+/PJL/v33X8zMzPTH1L9/f9566y3q1atnMPJRGsyfP59WrVpx4sQJunXrxpAhQxg8ZAider3E2u1hBNT0Z9iwYfp7wpkzZwgJCaFPnz6cPn2adevW8ffff+e7RmWecoSJkZqaKgCRmppaZn1mqTWi/rQdwnfyVnHgcnyZ9VuWZGdni/Pnz4vs7Gx9mTYzU5yvVdsoizYzs9jHsHz5cuHo6Khff+6558SsWbMM6vz000/C09NTvw6IDz74QL9+6NAhAYilS5fqy9asWSOsrKz069OmTRMqlUpERUXpy7Zv3y6USqW4GRUtzsekCo8qXmLeoqVCo9Xp68ycOVMEBwcLIYS4fv26AMSCBQseeVxdu3YVb731ln69TZs2YsKECQ89diGE2Lhxo7j/Ep42bZowNzcXd+7c0Zf9+eefwsHBQeTk5BjsW6NGDbF48eJHyiaEEFOmTBG9e/fWr/fq1UtMnTrVoA4gNm7cKIQo3rEXxq+//iosLCzE2bNn9WXTpk0TNjY2Ii0tTV8WEhIi/Pz8hFar1ZfVqlVLzJ49u0j9+Pr6ivnz54tNmzaJGjVqCJ1OJ1asWCEaN24shBDC0dFRLF++/KHH+eOPP+q3nzt3TgDiwoULj+x77969AhDJycni+++/F87OziIlJeWR/S5atEi4uLgYXMtLliwRgDhx4oRB23v27NHX+eOPPwSg32/atGmiYcOGRfqdHmTYsGGiV69e+cofPHd9fX3F4MGD9euxsbECEBPefk+cikoWV++ki4MHDwpAxMbGCiGEGDJkiBg1apRBuwcOHBBKpdLgmJ+Ugu6JMk9GST6/5ZETYNuZWNJzNPg4W9OyhouxxZEpIuHh4Xz88ccGWVDvjThkZWXp6zVo0ED/3d3dHYDAwECDspycHNLS0vRlVatWxdv7v+m94OBgdDod1yOuYCeyiIuJZsqkN3Gwt9f3/cknnxhMDwE0bdrUYF2r1fLpp5/SoEEDXFxcsLOzY9euXcXO3loYvr6+uLq66tfDw8PJyMjQ93VvuX79ej5ZC0Kr1bJixQoGDx6sLxs8eDArVqzIZ8T5IA8ee1EJCwtj+PDhLFmyJF/2YD8/PwObBnd3d+rWrYtSqTQou3PnTrH67NatGxkZGezfv59ly5YVedQEDM8vT09PgGL3/+qrr1K5cmXmzJnzyLqXLl2iQYMGBsnqnnnmmVKT7Ukp6PrzqVELAA8HKzw8PAzkCg8PJzQ01OB8DQkJka6/69fLVHYZ4yEn/gPWHpMeDP2b+qCsQAGAFNbW1DoebrS+nxSdTseMGTPo06dPvm3337jvTwl/z0ajoDKdTle4vHfrKBQKLFTS92mfL6R+oybYW5lRpZI1CoUClcowSeSDBpVffvkl8+fPZ8GCBQQGBmJra8vEiRPJzX14HBWlUplvKqwgI9MH+9PpdHh6ehIWFpav7oM2LAWxc+dOoqOj8w35a7Vadu3a9VAPkgdlKQr79u2jR48ezJs3j6FDh+bbfv//BtL/UVDZw/7LgjAzM2PIkCFMmzaNI0eOGNi6PIrinkuF9f/JJ58wfPjwR05fCCHyGY8+eG6UpGxPSkEyqMzMcbAyx9bSLJ9cOp2O0aNHM378+HxtVa0qR+2uKFR45eTqnQyO3UhGqYCXmlas2CYKhQKFjY2xxXhsgoKCuHTpUollRb2fyMhIYmJiqFJFihJ86NAhlEolAQEBuLu74+XlRWZCNL7V+yGEwNrGAi8n60d6HBw4cIBevXrpRyJ0Oh1XrlyhTp06+joWFhb5RiVcXV1JT08nMzNT/9B/0PixIIKCgoiLi8PMzAw/P79i/AISS5cuZcCAAUydOtWg/LPPPmPp0qUl6t4aFhZG9+7dmTNnDqNGjSqxdovKiBEjmDt3Lv3798fJqexDCbz00kt88cUXzJgx46H1ateuzerVq1Gr1XoPnnu2U8WhoPOstLnfFd/d0arAOkFBQZw7d65UrmuZ8kOFV07W3R01aV/bTR8RVKZ88NFHH9G9e3d8fHx46aWXUCqVnD59mjNnzvDJJ588UdtWVlYMGzaMuXPnkpaWxvjx4+nXr59+CHr69OmMHz8eW3sH6j3TmitqNZGXzyLUmfzvf/8rtF1/f3/Wr1/PwYMHcXJyYt68ecTFxRkoJ35+fhw5coQbN25gZ2eHs7MzzZs3x8bGhilTpjBu3DiOHj36UO+Ke3Ts2JHg4GB69+7NnDlzqFWrFjExMWzbto3evXs/dOolPj6eLVu2sHnzZurXr2+wbdiwYXTr1o34+HiDaaTHJSwsjG7dujFhwgRefPFF4uLiAOkB+qBRbGlRp04dEhISsDGiwv7ZZ5890nh44MCBTJ06lVGjRvHee+8RGRnJ3LlzAYrljuvn58f169c5efIk3t7e2Nvbl7q7clya5Dpsa2mGtbmqwDqTJ0+mRYsWjB07lpEjR2Jra8uFCxfYvXs3X3/9danKJ2M6VGibk9TsPH4LvwXISf7KIyEhIWzdupXdu3fTrFkzWrRowbx58/D19X3itv39/enTpw9du3alU6dO1K9f38BV+LXXXuPHH39k3eqf6Pt8K0a81J3VP63E2cProe1++OGHBAUFERISQtu2bfHw8KB3794Gdd5++21UKhV169bF1dWVyMhInJ2dWbVqFdu2bdO7H0+fPv2Rx6FQKNi2bRutW7dmxIgRBAQEMGDAAG7cuKGf/y+MlStXYmtrS4cOHfJta9euHfb29vz000+PlKEohIaGkpWVxezZs/H09NQvBU3ZlSYuLi5Yl8CU4+PSvn172rdv/1BvHwcHB7Zs2cLJkydp1KgRU6dO5aOPPgIMpzMfxYsvvkjnzp1p164drq6uBi7tpUGGWkN6jjQVWekhAdcaNGjAvn37uHLlCs899xyNGzfmww8/1NvMyFQMFKKwyUojkZaWhqOjI6mpqTg4OJRqX1M2nuHnI5FUr2zLrkmtn+o03Tk5OVy/fp1q1aoV6wZWEZk+fTqbNm0q0rTJPeLTc4hNleJUeDtZ42wrZ1aVKTtWr17NK6+8QmpqqlGVq8IQQhARn0lWrgYXWwu8nIw/nSzfE0ueknx+V9hpnSPXEvn5iDSlM6tP4FOtmMiUPq72Vmh0gvh0NdHJ2agUChxtKka8HJmyZ+XKlVSvXh0vLy9OnTrF5MmT6devn0kqJgDpORqycjUoFQrc5OlzmSJQrCfyokWLaNCgAQ4ODjg4OBAcHMz27dv124UQTJ8+nSpVquijBZ47d67EhX5ScvK0vL/xDCCFqm9RXXYflnlyPByscLa1QCAlCrw3hG3K1KtXz8Bl8/6lJHPbdOnSpdB+Zs2aVWL93M/q1asL7fNBF+XSoDSPOS4ujsGDB1OnTh0mTZrESy+9xA8//PBEbZbW7yWEIC5NGlV0sbPAXH4RlCkCxZrW2bJlCyqVSm9FvWLFCr744gtOnDhBvXr1mDNnDp9++imhoaEEBATwySefsH//fi5dulTkfAtlMa0zb9clvvrrKq72luyZ1AbHCpBwSh7CLBuEEEQmZZGanYdSoaC6qy02FqY7QHnz5s1C8964u7sX+bp9FNHR0QUmDARwdnYuFaPX9PR0bt++XeA2c3PzErFNehjGOOYnobR+r5SsXCKTslApFdRytzeZUWr5nljylOTz+4ltTpydnfniiy8YMWIEVapUYeLEifpQymq1Gnd3d+bMmcPo0aOL1F5pKyeX4tLp9tUBNDrBd4OC6BpYMYys5Aux7NAJwY2ETDLUGlRKBTVc7bAqxDNBRuZpRicEl2+nk6vR4eFgZVJTOvI9seQpyef3Y6uwWq2WtWvXkpmZSXBwMNevXycuLo5OnTrp61haWtKmTRsOHjxYaDtqtZq0tDSDpbTQ6gST159GoxM8X9edLvU9Sq0vmYqLUqHA10UaMdHqxN1EgWUbT0JGxhRIzswlV6PDTKnExU42EpcpOsVWTs6cOYOdnR2Wlpa8/vrrbNy4kbp16+rjEjzonuju7q7fVhCzZ8/G0dFRvxQnyVlx+enQDU5GpWBnacbMXvUrZIruso4OWVFRKRX4udhgZaYiT6vjekIWeVr5t5epOOh0gjvpUlwTNwdLVCYWfVu+F5o2xZ4Mr1WrFidPniQlJYX169czbNgw9u3bp99eUFjlhykB77//vkHQqrS0tFJRUGJSsvlip5QufHLnWngUEp3wacXCwgKlUklMTAyurq5YWFhUSOWsrPG0UxGVpCYnJ5eI2Fx8nK1RKU1jzl1GpjRJylSTq1ZjrlRio9KRk5NjbJEA6ZmUm5tLfHw8SqUSCwvZq84UKbZyYmFhoTeIbdq0KceOHWPhwoV6O5O4uDiDYDl37tx5aLAnS0vLUo9KKITgw01nyczV0sTXiUHNS9cQzhRRKpVUq1aN2NhYYmJijC1OhUKr1ZGYoUargzsxSirbyYphaaDVCXRCoNXdtwiBmVKBvdXTb/RuSuiE4HZqDloBTjbm3Mw0PaNwGxsbqlatapA0UsZ0eOIzRgiBWq2mWrVqeHh4sHv3bho3bgxAbm4u+/btK1KmzdJk6+lY/rx4B3OVgs/6BFao5H73Y2FhQdWqVdFoNGWeU6PCcyedt9adIjNXQ3B1F6b1rCe7VBaRXI2OpEw1iRlq4jNyiU+Xvidk5BKfoSYhQ01iRu5Dp80mdqxJj4YPj94rU3Is//s6q47coaqzDT8Oa2ZyUzoqlQozMzP5JcGEKZZyMmXKFLp06YKPjw/p6emsXbuWsLAwduzYgUKhYOLEicyaNYuaNWtSs2ZNZs2ahY2NDQMHDiwt+R9JSlYuM7ZIsVbGtvOnpnvJuEaWV+5lcX0wk6tM6RJY1YpP+gYxZOkRfjt1B53SnLkvNaywivI90nPyuJ2WQ1yqmtjUbOl7Wg5xqfc+1SRmqimqT2FlO0s8HC3xcLDCw9GKTLWWjSei+WDLZRr6uRFQwa//siAhQ83X+2+Slavlg541sbUxzcBwMqZNsZST27dvM2TIEGJjY3F0dKRBgwbs2LGD559/HoB3332X7Oxs3njjDZKTk2nevDm7du0qsVgJj8OsbRdIyMjF382OMW1rGE0OGZlnqjnz3aAgRv0UzoYT0TjamPNR97oV6u3tyLVEFu2LICopi9tpajLUheeQuR8LlRL3u0qHu4MVno7Sp4fjf9/d7K2wMDMcjdLpBEmZuey7HM+4n0/w+5utZLfuUubbvVfJytXSwNuRzrJHpMxj8lTn1jl4NYGBPx4B4LfXg2nqZ1pBj2QqJptORDNx3UkA/vd8AOM71DSuQGXET4dvMmPzOTQ6w1uOvZWZfqRD/3n3+z1FxNn28e104tPVdFl4gIQMNUNa+DKzd/1H7yTzWESnZNPuizBytTp+evUZnqv55BmrZcoPcm6dInB/iPohLXxlxUTGZOjd2IuUrFymbznPvN2XcbIxZ0iwn7HFKjXytDqmbz7H6ru5rHo0rMLLzXxwv6uA2FqW7m3I1d6Sef0aMnTZUX46fJNna1YmpJ78Rl8aLNxzmVytjuDqLjzrX9nY4siUY55ai7wFe65wMzELDwcr3u1cy9jiyMgYMLxVNSbcHTH5aPM5fj8ZbWSJSoekzFyGLD3C6iORKBQwuXNtvhrQiJb+lanhalfqisk9Wge4Mqp1dQAmrz9NbGrBYeVlHp+rdzL4LfwWAO90rlWhpitlSp6nUjk5F5PKkgPXAJjZu77sRihjkkzsWJNhwb4IAW/9coq9l+4YW6QS5WJcGj2/+ZvD15KwtVCxZEhTxrStYbSH1tudahHo5UhKVh4T155EqzOpGe1yz7zdl9AJ6FjHnaCqTsYWR6ac89QpJxqtjvc3nEGrE3QN9OD5uoXHWJGRMSYKhYJpPerRu1EVNDrBmFXh/HsjydhilQi7zsXx4ncHuZWcTVVnGzaObUVHI1+LFmZKvnq5MbYWKo5cT+K7vVeNKs/TxJlbqWw7E4dCAe+EyCPVMk/OU6echB68welbqdhbmTG9R+mnRZeReRKUSgVfvNSQ9rXdyMnTMSL0GBdiSy+/VGkjhOCbv64w6qdwMnO1BFd34fexrUzGhbdaZVu9QeyCP688NcqgsflilxR9u3cjL2p5mMZ/LVO+eaqUk6ikLL7cdRmAqV3rmFQGTBmZwjBXKfl2YBDN/JxIy9EwZOlRbiZmGlusYpOdq2XcmhPMvXsNDgv2ZeWrz+Bka1rhwfsEefNCYy+0OsGEtSdJzc4ztkjlmsPXEtl/OR4zpYJJHQOMLY7MU8JTo5wIIZiy8QzZeVqaV3Omf7PSSyAoI1PSWFuo+HFYM+p4OpCQoWbw0iOcuZVqbLGKTExKNi8tPsjW07GYKRXMeiGQGb3qm2wU3I971cPXxYbolGymbDiDiUVUKDcIIfh8x0UAXn6mKlVdbIwskczTgmneOR6DTSejOXAlAQszJbP7BMqW4jLlDkdrc1aMaIaviw1RSdn0+OZv3lgdTkR8hrFFeyjhN5Pp+c0/nI1Ow9nWgtWvNWdg86rGFuuh2FuZ89WAxpgpFfxxJpZ1x6KMLVK55M8LdzgemYKVuZJx7f2NLY7MU8RToZwkZqj5eMt5ACZ0qEl1VzsjSyQj83i42Vvxy+hg+gR5oVDAtjNxdJq/n8m/nSYmxfTcX38Lv8XLPxwmIUNNbQ97fh/biubVXYwtVpFo6FOJt+8ab87Ycp6rd9KNLFH5QqcTzL1razK8ZTV5Gl2mRHkqlJNP/rhAclYetT3s9bEMZGTKK+4OVszr14gdE1rTsY47Wp1g3b9RtJ0bxidbz5OUmWtsEdHqBJ9sPc/bv54iV6sjpJ4768e0xMe5fA3rj3quOs/6VyY7T8u4NSfJyZMTYhaVLadjuBiXjr2VGWPayKlBZEqWcq+c7Lscz8YT0SgU8NmLDUx2jltGprjU8rDnx2FNWT+mJc2rOZOr0fHj39dp/fleFu65UuS8NCVNanYeI0KP8ePf1wEY36EmiwY1KbOAaiWJUqlgXr+GuNhacCE2jc+2XzS2SOWCPK2Oebslw+fX29TA0UaOJSVTspTrJ3lWroapd0PUD2/pRyOfSsYVSEamFGji68TaUS1YMeIZ6lVxIEOtYf6ey7T5fC/L/r6OWlN2b/vX4jN44bt/2Hc5Hitzycvof88HlOvsym4OVsx9qSEghSLYc/62kSUyfdYdi+JmYhaV7Sx4pZWfscWReQop18rJvF2XuZWcjVcla97uJAf+kXl6USgUtAlwZcubz/LNwMZUq2xLYmYuH289T/u5+/j136hSj3i673I8vb79h2vxmVRxtOK311vSrYFnqfZZVrSr7carz1YD4J3fTnE7LcfIEpku2blavvrzCgBvtvPHxqL8jZjJmD7lVjk5fSuFZf9Iw8qfvFC/XA4py8gUF6VSQfcGVdg1qTWz+wTi7mBJdEo27/x2mpAF+9lxNq7E3WKFEPx44BqvLD9Keo6GJr5O/P7ms9T3cizRfozNu51rUa+KA8lyePuHsuLQDe6kq/GqZM3LJu6VJVN+KZfKSZ5Wx+T1Z9AJ6NmwCu1quRlbJBmZMsVcpeTlZ6qy7512TOlaG0drc67eyeD1VeH0/u4gB68mlEg/ao2Wd387zSd/XEAn4KUm3vw8sjmu9pYl0r4pYWmm4uuXG2NjoeLQtUS+3xdhbJFMjrScPBaFSb/LpOcDsDRTGVkimaeVcqmc/HjgOhdi06hkY85HPeoaWxwZGaNhZa5iVOsa7H+3HW+288faXMWpqBQG/niEwT8e4VRUymO3HZ+uZuCSI/wafgulAj7sXpfP+zZ4qh9I1V3tmNFTSnsxb/dljkcmG1ki02LJ/mukZudR082OFxp7GVscmaeYcqec3EjIZMEeyUr8g251qWz39L3BycgUF0drc94OqcX+d9sxvKUf5ioFf19NoNe3/zBmVThX7xQvkNvZ6FR6fvM34TeTcbAyI/SVZ3j12WoVIrhh3ybe9GxY5W54+xOk5cjh7UFSVpfe9dB6q1MtVOXYCFrG9ClXysm9EPVqjY5n/SvzYpCsucvI3I+rvSXTe9bjr7fa6gO5bT8bR6f5+3j3t1NEFyGQ29bTMfT9/iCxqTlUd7Vl09hWtA5wLQPpTQOFQsEnL9TH28maqKRspm48K4e3B77de5WsXC0NvR0JqSdne5cpXcqVcvJr+C0ORiRiZa5k1gtyiHoZmcLwcbbRB3J7vq47OgG//HuLdnPDmLn1PIkZ6nz76HSCL3dd4s2fT5CTp6NNgCubxraqkBGXHazM+erlxqiUCraciuG38FvGFsmoRCVl8fORSADeCakt33tlSp1yo5zEp6v59I8LAEzqGCAnmJKRKQK1POxZMtQwkNvSu4HcFuy5rA/klqnW8PqqcL7+6yoAo1pXZ9nwZjhYVdzgWkFVnfjf81KW3Wmbz5l8jqPSQgjB+xvOkKvV0crfhWdrVja2SDIVAIUwsfHKtLQ0HB0dSU1NxcHBQV/+5s/H2Xo6lnpVHPh9bCvM5EiwMjLFQgjB/isJfL7jIudi0gBwtrXgteeqsfmkFIrcQqVkVp9A+jbxNrK0poFWJxiy9AgHIxKpV8WBDW+0fKoNggvip8M3+XDTWazMlWyf0JpqlW2NLZKMiVLY8/txKBdP+D8v3Gbr6VhUSgVzXmwgKyYyMo9BQYHckjJz+XzHJS7GpeNqb8na0S1kxeQ+VEoF8/s3wsnGnHMxaXy+45KxRSpTIhOzmL1NGrGe3Lm2rJjIlBkm/5TPUGv4YNNZAF57ttpTF/hJRqaseTCQm7eTNU19ndj8ZiuCqjoZWzyTw/2+8PZL/77O3kt3jCxR2aDTCd7+7RRZuVpaVHdmWLCfsUWSqUCYvHIyd+clYlNzqOpsw8SOAcYWR0bmqeFeILe/J7fntzEt8XS0NrZIJkuHOu4Mb+kHwNu/nOJO+tMf3n75wRscvZ6ErYWKL/o2LNf5k2TKHyatnByPTGbFoRsAfPpCfawtKtZcb7ki6RqsHQT7vgB1xTQclHm6ea9Lbep4OpCYmctbv5xC9xSHt4+Iz+DzHVKG5ind6uDjLDsgyJQtJquc5Gp0vLf+NELAi0HePFez4sRZKHckRkBod7i4FfZ+Al81hmM/glYOXiXz9GBlruLrlxthZa7kwJUElhy4ZmyRSgWtTvD2r6dQa3Q8V7MyA5+R8+fIlD0mq5ws+/s6l29n4GJrwQfd6hhbHJnCuKeYpEWDiz84+UHmHfjjLfi2OZzbBKblECYj89j4u9kzvYcU3v6LnZeeKD2AqfLD/muciEzB3tKMOS82kGOayBgFk1VOFu+X3ko+6lEXJ1sLI0sjUyCJERDaDdJjwLU2vLIdxh6DLp+DjQskRcCvw+DHDnDjb2NLKyNTIvRv5kO3QE80OsH4tSdIf4rC21+KS2f+bik9yEc96lKlkmyHVOKc2wSbxkr3T5lCMVnlJE+ro20tV3o2rGJsUWQKIuEqLO8K6bHgWgeGbQU7NzCzgOajYfxJaDMZzG0hOlxSYlb3g9vnjC25jMwToVAomNUnEK9K1txMzOKj35+OczpPq+OtX0+Sq9XRobab7FJe0mSnwPqR0gvbyVXwY0e4ecjYUpksJqucWFso+aR3fXlI0RRJuCIpGxlx4FYXhm0BuwdsgqwcoN0UGH8Cmr4KChVc2QmLWsHGMZASZRzZZWRKAEdrc756uREqpYKNJ6LZcLz8h7f/bm8EZ6PTcLQ2Z3YfOT1IiXL9gHTvO/MLKJTgVA2yk2BlTzjzm7GlM0lMVjkZ374m3k6yhbjJEX/5PsWkXsGKyf3Yu0P3eTD2KNTtBQg49TN83QR2fQBZSWUmuoxMSdLE15mJHWoC8OGms9xIyDSyRI/P2ehUvv7rCgAf96qHm4OVkSV6StCoYdeHsKIHpN2SbPJG7IQxB6F2d9DmwvpXYf8Xsm3eA5iscjKwua+xRZB5kPhLsKI7ZNy+q5hsBtsi5tmo7A/9VsJrf4Lvs6BVw8Gv4atG8PcCyHt0tlwZGVPjjXb+NK/mTGaulvFrT5Cr0RlbpGKj1mh5+9dTaHSCLvU95Kn0kuL2eVjSAQ5+BQhoPARe/xt8ngELG+l+GPymVPevT+D3saDJNarIpoTJKicqOeCPaXHnouSVk3Eb3OtLIyZFVUzux7spDN8KA3+VpoRyUmHPNGkk5cQq0GlLXnYZmVJCpVSwYEAjKtmYc/pWKl/uKn/h7b/68woX49JxtrVgpjyV/uTodHDoO/ihLdw+IzkH9F8Nvb4BS/v/6ilVEPIpdJsnTXufXA2r+kB2stFENyVMVjmRMSHuXJRGTDLvgHvgXcXE5fHbUyggoJP0FtF7ETh4S67Iv4+V5mUv7ZCHOGXKDZ6O1nz+YgNA8jL888JtI0tUdE5GpbAoTPIa+bR3fSrbWRpZonJOajT81Bt2vi+NDvs/D2MOQZ3uhe/T7FUY+AtY2MGNA7C0EyRdLzORTRVZOZF5OHcu3FVM4sEjUJrKsXEumbaVKmg0EMaFw/MzwaoSxF+ANf0lu5aoYyXTj4xMKdOpngdDg6Wp6DGrjrPjbKyRJXo0OXla3vrlJDoBPRtWoUugp7FFKt+c3QCLWsL1fWBmDd2+hEG/SnZ3j6JmRxixAxy8IOGy5MkTdbT0ZTZhZOVEpnBun5emcjLjwaMBDC1BxeR+zK2g1XiYcBJaTQCVJdz8B5Z2hHWDJe8gGRkT54Nudeka6EGuVscbq4/zy7+m7ZH25a5LRMRn4mpvyce96hlbnPJLTipsGAW/vQI5KVClMbx+AJq9Jo0SFxWPQMkmz6MBZCVI996zG0pNbFNHVk5kCub2OcnCPCsBPBvC0N9LRzG5H2sneP5jGH8cGg+WXO4ubJEizW6ZCOlxpdu/jMwTYGGm5OuXg+jf1AedgHd/O82PJhri/tiNJH78W5o6+KxPIJVs5ECXj8WNf6Sp6NPrpPtV63fg1d1QuebjtefgKQWzDOgiTQv99gocmFchp7kVQpjWUaelpeHo6EhqaioODg7GFqdiEndW8r/PSgTPRjBkY+krJgVx+zz8+TFc3i6tm9tA8FhoOV6KoyIjY4IIIZi9/SI/3I1yPb69P5OeDzAZQ9OsXA1dFh7gZmIWfZt4M/elhsYWqfyhUcPeT+Gfu544Tn7wwg9QtXnJtK/Tws6pcGSRtB40VDKcVZmXTPulREk+v2XlRMaQuDOwoqcUIKhKY0kxsXYyrkw3/pE8em7dtUGxcYHW70LTEVJEWhkZE0MIwXdhEXyxU/LeGRbsy7Qe9VCagBfitN/PsuLQTTwdrdg5qTUOVqb9wDM57lyQIr3ePiOtNx4MnT8z9MQpKY4shh3vgdBB9baS+7GVY8n3U0LIyolM6WCgmATdVUwqGVsqCSGkKZ4/Z0DiVanMqZp0sXo2MK5sMjKF8NPhm3z0+1mEgBcae/F53waYq4w3m37wagIDfzwCwMoRz9A6QM72XmR0Oji6GHZPk6ZcrJ2h51dQp0fp9ntpB/w2AvIypRxmA38BJ9OMA1aSz2/Z5kRGIva0ZGOSnQReTUxLMQHJsKxuT3jjCHSfD3bukHwdlneBq3uMLZ2MTIEMaeHLgv7/hbkfsyqcnDzjxPJJz8njnd9OAzCweVVZMSkOaTFSDJId7/3nIvzGodJXTABqdYYR28HeE+IvSp48t8JLv18jIysnMhB76q5ikmyaisn9qMyk6ZyxR8HvOcjNkBIKhq8wtmQyMgXSq5EXPwxpgqWZkj0X7jB8+VGjZDKete0C0SnZeDtZM6VrnTLvv9xybiN8FwzX9kouwl3n3nUR9ig7GTwbSp487oFSvKnQbnB+c9n1bwRk5aSiE3NSmsrJSQGvppJiYsJzmnqsK8HgDdBgAAgtbBkPf86skFbtMqZPhzrurBjxDHaWZhy+lsSgH4+QlFl2ocrDLt1hzVHJtfmLvg2xszQrs77LLTmpsGE0/Dpcuj96NoLR++GZkcVzES4pHL2kEZSanUCTDb8MlQxyn9J7nqycVGRiTkheOTkp4N2s/Cgm9zCzgBe+l4xjAQ7MhQ0jJUt6GRkTo0V1F9aMbIGzrQWnb6XSb/Eh4lJzSr3f1Ow83lsvGW8Ob+lHcI0niO5cUbh5EBY9C6fXSi7Cz70Nr+0B1wDjymVpDwPWSDFUELD7Q9g6CbQa48pVCsjKSUUl+jis7CW9HXg/I41ClEf3XIUC2k+Fnt+A0gzO/Ao/yfkpZEyTQG9HfhkdjKejFVfvZPDiooOlns14xpZzxKXlUK2yLZM71y7Vvso9mlzYMx2Wd4XUSKjkK8Ud6fCh6bjxqsykqaWQ2YACwpdLUbVz0owtWYkiKycVkehwWNlbUkx8msOQcqqY3E/QkLv5Kezh5t+wNASSbxpbKhmZfPi72fHr68FUq2xLdEo2fb8/xIXY0nmw7D5/mw3Ho1EqYO5LDbC2UJVKP08Fdy7Cjx3g7/mAgEaDYcw/ULWFsSXLj0IBwW/AgNVS/Kere2BZZ0i9ZWzJSgxZOalo3AqHlS+AOhV8WsDg9aXjn28M/DtI+Snsq0DCJcmqPfq4saWSkcmHt5MNv4wOpo6nAwkZavovPkT4zaQS7SM5M5f3N0jTOSOfq04TXyMEUiwvHF0CP7SBuNOSi3C/n6D3t6Z/b6zdDYb/IXkv3jkHSzpI0/VPAbJyUpG49a+UMVOdClWDYfBvpn/xFReP+tLcsHv9/6zaL203tlQyMvlwtbdk7agWNPV1Ii1Hw+Afj7L/cnyJtf/R5nMkZKip6WbHpOeNbCthylzeCdveBk0O+HeUXITr9jS2VEXHK0i657nVhYw4aUrq4raylUEIyEyUQlKUEHIQtopC1DHJT1+dBlVbSq5wlnbGlqr0yEmDX4dBxF+SQVuXzyUrexkZEyM7V8vrq8LZdzkec5WChQMa0/UJMwRvOxPLG6uPo1Iq2DCmJQ19KpWMsE8bOh380FoKQNnsNcmWw0TSDBSbnFTJsyjiL0ABnWdD89dL5ni0eVKsl9QoaeooJeru97vrqbcgL4s0tcDxs3Q5QqxMEYk6KhmJ5qaDbyvJNuNpVkzuoc2TLNlP/CSttxwHHT8GpTxgKGNa5Gp0TFp3kj/OxKJUwOw+gfRvVvWx2krIUNNp/n6SMnN5s50/b4fUKmFpnyLObZJeYizsYeJp4+QQK0m0edIoUHiotP7MKMlwVvUI1/GctPsUj8i7Csd9ikd6rBRC/xGkmVXG8cNrJfL8lp3dy5rcTNBpQGUJKovSf1BGHoFVL95VTJ6FQb+AhW3p9mkqqMyh59dSqOe/PoGDX0sa/wuLwdzK2NLJyOixMFPy1cuNcbA2Y83RKCavP0NatoaRrasXqx0hBFM3niEpM5faHvaM7/CY2XErAjothM2Wvge/Uf4VE5Dued0XgHMNyc346A+SY0CXOZAZLykcKVGGykdKlDTV/8i2LcDRGxx9pKWSz33r3tKSpYYPSyYchayclCWXtsPagYYaqNJM+tPvX8weXLeUTjrV3U8zy6Jt12mlzJm5GVI01YHrKo5icg+FQkpj7lgVfh8L5zdJbwED1oCtHO9BxnRQKRXMeiEQB2tzFu+7xqfbLpCancdbnYqe0fj3kzHsPHcbM6WCL/s1xMJMHiUslLPrpXDwVpWgxRvGlqbkUCig1XjppWzDKLiyU1oehbXTXSWjqvSpVz7urtu6FuFluuRiTMnKSVkhxN0Ipg8Mjek00pKXVXp9+z13183WpvT6MHUa9geHKrBuEEQdgaXPS3Y3LjWMLZmMjB6FQsH7XergaG3O5zsu8c3eq6Rm5zGj56MzGt9Oy+Gj388CML5DTepVKUcBFcsarea/UZNW4003XceTULcXOHjBb69AarR0/7t/pKOSz3+jII5eJuccISsnZcWV3ZKrl4UdjD8pTSto86Roplr1fd9z/1s0974/wXaX6tB2SsVWTO5R7TkYsQtWvwRJEZKC8vJa8HnG2JLJyBjwRlt/HKzM+fD3s/x0+CZpOXnMfalhoRmNhRC8t/40aTkaAr0cGdNWVrofyqk1kHQNbCrDM6ONLU3p4d0UJpyWRtEfZXdiYpQvacszf8+XPpu+AnZyNlCj4VZbcrv7uR/EnpQSHvZZUr5cB2UqBINb+OJgbc7/1p3k95MxZORo+HZQEFbm+QOp/frvLfZeisdCpeTLfoUrMTJIL237Ppe+Pzvp6XcOUCjKnWICcpyTsiHyMEQelOxAWow1tjQy9u5S4KKAzlJsg1+GwqFvn9oEWjLll54Nq7BkaFMszZT8efEOw5blz2gcnZLNx1vPA/C/TgEEuJvW8LzJcWKlFJrezgOavWpsaWQKQVZOyoK/F0ifDQeAw5PFL5ApISztoP9qaPoqIGDnFNg+WRr+lJExIdrVduOnV5tjb2nGketJvLzkMIkZkuGhEILJv50mQ60hqGolRj5XPO+eCkdeNuyfK31v/TaYWxtXHplCkZWT0ub2ebi8HVBAywnGlkbmflRm0O1LeP5jaf3oYlg3BHJL0ThZRuYxeKaaM2tGtcDF1oKz0Wn0W3yI2NRsVh2J5O+rCViZK5n7UkNUjzCarfD8u1zy1nPwhqChxpZG5iHIyklp889C6bNuT6jsb1xZZPKjUECrCdB3ueSKfekPKeR9xh1jSyYjY0B9L0d+eT2YKo5WRMRn0nfRIWZvuwDAuyG1qe76lNtOPCm5mfD3POl7m3elkAsyJousnJQmKZFw5lfpe6uJRhVF5hHU7wPDNku+/jHHpaSBCVeMLZWMjAE1XO34dUxLqt/NaJyVq6V5NWeGt/Qztmimz9EfpEBkTn7QaKDRxMjIzSD8dji6IkRcrcjIyklpcvAbEFqo1kZKziRj2lRtAa/ukW5eKTclBeXmQWNLJSNjgFcla355PZimvk5UcbTii74NHxkDpcKTk/bfKHbb96VglUbgVvot+m/tz/Adw/n40MeYWPYYk0JWTkqLzEQ4vlL6/uwk48oiU3Qq+8Nrf4J3M8hJgZW94MxvxpZKRsaAynaW/DamJQcmt6eqixzD6JEcXgTZyVA5AAJfMooIl5IuMWT7ECLTIwFYf2U984/PN4os5QFZOSktji4GTTZ4NoLqbY0tjUxxsK0Mw7ZAnR5SMLv1r0pxauS3HBkTQzaALQJZSXDoG+l72/dBmT9OTGlzLO4Yw3cMJyE7gZpONZnURHphXX52OUvPLC1zecoDsnJSGqgz4Mhi6fuzk8pvCu6KjLk1vLTiv7g0e6bDtndkBUVGprxx6BtQp4F7fajbu8y7//Pmn7y++3Uy8jIIcgsitHMoI+qP4O2mbwOw4PgCfr38a5nLZerIyklpcHyFNCXgXEN6+5YpnyhV0HkWdJ4DKODYEtjxvqygyMiUFzIT4PD30vd2U0o/C/wD/Hr5V/6373/k6nJp59OOxc8vxsHCAYBh9YYxMnAkADMPzWTH9R1lKpupIysnJY0mVzKEBclF1QhDiDIlTIvXodfd//TIImkURVZQZGRMn7/nQ14mVGkMtbqWWbdCCL4/9T0fH/oYndDxYs0Xmdd2HlZmVgb1xjUeR7+AfggE7x94n7+j/y4zGU2dYikns2fPplmzZtjb2+Pm5kbv3r25dOmSQZ2MjAzefPNNvL29sba2pk6dOixatKhEhTZpzvwC6TFSaOSGA4wtjUxJ0XgwdLsbI+GfBbBvjlHFkZGReQRpsXDsR+l7uw/KbHpdq9My68gsvj35LQCjGoxiWvA0zJT589soFAqmNJ9CF78uaISGSXsnceLOiTKR09QplnKyb98+xo4dy+HDh9m9ezcajYZOnTqRmZmprzNp0iR27NjBqlWruHDhApMmTWLcuHH8/vvvJS68yaHT/ReqPnisHOTnaaPZqxByN8162Gw4MM+48sjIyBTO3/Ok3Fk+LcC/Q5l0mavNZfKByay9tBYFCt575j3GNR6H4iGKkUqp4tPnPuU5r+fI0eYwds9YLiZdLBN5TRmFeAJH6/j4eNzc3Ni3bx+tW7cGoH79+vTv358PP/xQX69JkyZ07dqVmTNnPrLNtLQ0HB0dSU1NxcHB4XFFMw4XtsC6wWDlCBPPglU5k1+maByYB3/OkL6HzIbgN4wrj4yMjCEpkfBVEOjyJM+7aq1LvcuM3Awm7p3IkbgjmCnNmP3sbDpX61zk/bM12by++3WO3zmOs5UzK7usxNfBtxQlLnlK8vn9RDYnqampADg7O+vLnn32WTZv3kx0dDRCCPbu3cvly5cJCQl5IkFNHiGk+U2AZiNlxeRp5rn/QZv3pO873/9v6FhGRsY02P+FpJhUa10miklCdgIjdo7gSNwRbMxs+K7Dd8VSTACszaz5usPX1HauTVJOEqN2jSIuM66UJDZ9Hls5EULwv//9j2effZb69evry7/66ivq1q2Lt7c3FhYWdO7cme+++45nn322wHbUajVpaWkGS7nkxgGIDgczK2j+urGlkSlt2r73X0qCP96C4z8ZVRwZGZm7JEbAidXS93YflHp3UelRDN0+lAtJF3C2cmZZyDKCqwQ/VlsOFg4s6rgIXwdfYjJjGL17NMk5ySUscfngsZWTN998k9OnT7NmzRqD8q+++orDhw+zefNmwsPD+fLLL3njjTfYs2dPge3Mnj0bR0dH/eLj4/O4IhmXe6MmjQeDnatxZZEpfRQK6Dgdmo+R1jePg9NyrAIZGaOz73MpbYj/81C1eal2dTHpIkO3DyUqPQovOy9WdllJvcr1nqjNytaV+eH5H3C3ceda6jXG7BlDRm5GCUlcfngsm5Nx48axadMm9u/fT7Vq1fTl2dnZODo6snHjRrp166Yvf+2117h16xY7duT341ar1ajVav16WloaPj4+5cvmJOYk/NAGFCoYf1zKzSJTMRAC/vgf/LtM+v9fWg51exlbKhmZikn8JfiuBQgdjAqTXIhLiWNxxxj/13gy8jIIcArg+47f42pTci+m11KvMXz7cJLVyTTzaMaijouwVJm2k4XRbE6EELz55pts2LCBv/76y0AxAcjLyyMvLw/lA4FuVCoVOl3BGRgtLS1xcHAwWMod/yyQPuv3kRWTioZCAV2/hEaDpLe130bApe3GlkpGpmISNltSTGp3L1XFZPfN3YzePZqMvAyaujcltHNoiSomANUdq7Po+UXYmttyLO4Yb+97G41OU6J9mDLFUk7Gjh3LqlWr+Pnnn7G3tycuLo64uDiys7MBcHBwoE2bNrzzzjuEhYVx/fp1QkNDWblyJS+88EKpHIDRSYyA83fdpO/ZIMhULJRK6Pk11O8LOg38MhSu/mlsqWRkKhZxZ+HcRkAhRYMtJX659Atvhb1Fni6PjlU78v3z32NvYV8qfdVzqcfX7b/GQmlBWFQYH/3zETpR8Iv+00axpnUK89Vevnw5w4cPByAuLo7333+fXbt2kZSUhK+vL6NGjWLSpEkP9fW+R7lzJd4yAcJDoWYnGFSxbQ4i0yKxMrPC1dq1SP/1U4c2D357RXIpN7OCQb9BteeMLZWMTMVgzUC49AfU6yNNr5Yw96K+fnfqOwD6BvTlg+YfoCqDKOBhUWFM3DsRrdAysPZA3nvmPZO8x5bk8/uJ4pyUBuVKOUmPgwWBUubaV7aDb0tjS2QUziWeY0H4Ag7HHgbA0dKRAKcAalaqKX061cS/kj825hUgtbsmV4p1c2UnmNvCkA1QtYWxpZKRebqJPg5L2oFCCW8cAdeAEm1eq9My++hs1l1aB8DoBqMZ22hsmSoIWyK2MOVvaUTojYZvMKbRmDLruygk5yTz47Efebf1uyXy/M4fT1em6BxeJCkmPs2h6uO5jpVnbqTe4JuT37Dzxk4AVAoVAkGqOpVjccc4FndMX1eBAm97b72yck958bH3KZM3jzLDzAL6rYQ1A+DaXljVF4b9Dl5NjC2ZjMzTy95Ppc8G/UtcMcnV5vLegffYfXM3ChS83/x9Xq79con2URR61OhBWm4anx39jO9OfYe9hT2D6w4uczke5HbmbVacX8Fvl38jI73kvIpk5eRxyUmVPDQAnp1UZnkbTIE7WXf4/tT3bLiyAa3QokBB9+rdeaPRG1S2rsy11GtcTr7MleQrXEm+wuXkyyTmJBKVHkVUehR/Rv5nj2GlsqJGpRqGSotTTZytnB8igYljbgUDfobVL8HNv+GnPlKUSs8GxpZMRubpI/IwXN0DSjNo826JNp2Rm8GEvRM4GncUc6U5s5+bTYif8QKKDqoziLTcNL47+R1zjs3BwdKBnjV6GkWWyLRIlp1dxu8Rv+sNdWs51eICF0qkfXla53G5F8LctQ6MOVjmqbiNQVpuGsvOLGP1hdXkaHMAaO3dmvGNx1PLudZD903MTuRKyn/KypXkK1xNuYpaqy6wfmXrygbTQgFOAVSvVN3kXekMUGfAqj4QdQRsXGD4H+BWx9hSGRchJCPy3HTQaqSRR12e9F2XJ9ntPLiuLytgm+5uG/rveQ9sywPPhtDhowr1AlGhCO0uBcEMGgY9vyqxZhOyExizZwwXky5ia27LwnYLae5ZunFTioIQgs+Pfc6qC6tQKVTMazuP9lXbl1n/l5IusfTMUnbe3Kk3zm3q3pSRgSOpZ1ePSpUqyTYnRiMvGxY0gMw78MLipz77cI4mhzUX1/DjmR9Jy5Ui+DZ0bcikJpNo4v740xVanZao9ChJWUm5wuUk6TMqParA+iqFCl8HX72yElg5kBaeLUzSMExPTiqs7AUxJ8DWTbJNquxvbKmMQ8IV2DJRGk0qa/oul1z9ZZ4uru2DlT1BZQHjjkOlkgniGZUWxajdo7iVcQtnK2cWdVxEXZe6JdJ2SaATOj7850M2R2zGQmnBoo6LeMbzmVLt8+Sdkyw5s4T9t/bry9p4t+G1wNdo5NYIkA1ijc+xpVLgLUcfGH8CVObGlqhU0Og0bI7YzHcnv+N21m0AajjWYELQBNr6tC01pSArL4urKVf1Iyz3lJdUdWq+us09m/Nhiw9NO0FWVhKs6AG3z4J9FXhlGzhXe/R+TwuaXCkW0P4vpFEOlQXYukrD8CpzUJqDyuzup8XdssK23fv+YJ1CtkUdgROrpGv1zWNgbm3sX0OmpBACloVI//Ezo6DrFyXS7IXEC4zZM4bEnES87bxZ/PxiqjpULZG2SxKNTsP/wv7H3qi92JjZsDRkKfUr13/0jsVACMGhmEMsObOEf2//C4BSoSTEN4RXA1/NN2IuKyfGRKuBb5pA8g3oPAdaPH15dIQQ/Bn5J1+d+IrrqdcB8LD1YGyjsfSo3sMoBqxCCO5k3ZFGWJIvcynpEn9G/olaq8ZCacGoBqMYUX8E5qaqKGYmQGg3iL8IjlUlBaWE3vJMmsjDkrt9/N0U8P4dods8cCojZTI3C75pBmm3pDwrbd4pm35lSp8ru2F1X8ltf8IpsPd44iaPxh5l/N7xZOZlUtu5Nos6LqKydeUSELZ0UGvVjN0zliNxR6hkWYnQzqHUqFTjidvVCR1/Rf7FkjNLOJ94HgAzpRm9avTilfqvFPoyKCsnxuTMb7D+VbB2hklnwcLW2BKVKEdjj7Lg+ALOJJwBoJJlJUYGjqR/7f4mZ+8RlRbFzMMzORR7CJBGdT4K/ogg9yAjS1YI6XGwvCskRYBTNWmKx8HT2FKVDtkpsGc6hN+NN2HrCp0/g/ovlr3tx71r1twGxoWDQ5Wy7V+m5BECfmgLsSeh5Tjo9MkTN7nrxi7eO/Aeebo8mnk0Y2G7haUWXK0kyczL5LWdr3E28SxuNm6s7LISLzuvx2orT5fHtmvbWHp2qf7F1NrMmr4BfRladygetg9XAGXlxFgIAd8/B7fPQNsp0HaysSUqMS4kXmDh8YX8E/MPIJ2QQ+oOYXi94SZ9gQoh+OP6H3xx7AuScpIAKTjSxKCJOFo6Glm6AkiNhuVdIOUmVA6A4duerkSRQkgRk7e/CxnSVCCNh8DzH4ONkTywhIBlnSHqsORq2ucH48ghU3Jc2ArrBkmxhCaeBtsnG91Yd3Ednx75FIHged/nmf3cbJN7GXsYKTkpDN8xnIjUCKraV2VFlxXFGvHJ0eSw8epGlp9dTmxmLAD2FvYMrD2QQXUG4WTlVKR2ZOXEWFzZA6tflC6ISWeNd7MtQaLSovj65Ndsvy7lgzFTmNE3oC+jG4426eHMB0lVpzIvfB4brmwAwMXKhcnPTKazX2fTM5hNvimNoKTdArd6MHzrU3EukXoL/ngbLt/NLeTiDz0Wgt+zxpUL/gvSBfDqHvBpZlx5ZB4fnQ6+fxbunIPn3oYOHz5Rc6fjTzNo2yAA+gX0Y0rzKeUy9tLtzNsM3T6UmMwYApwCWN55OQ4WD3+Gpuems+7SOn46/5P+5c7FyoWh9YbSL6AfdhZ2xZJBVk6MxfJukqdBi7HQeZaxpXkiErIT+P7U96y/vB6NkHzUu1TrwrhG4/BxKL+2EP/G/cvHhz/WD0m28mrFB80/wNve28iSPUBihKSgZMRJrq5DN4N1JWNL9XjotHB0Cfw1E3IzJKPUZyfBc29JMV9MhU1vwMnV4NUUXt1dIdz/n0rOrpcSbFo6wsRTYF20t/rCmPr3VDZHbKazX2c+b/256b3MFIPItEiGbh9KYk4ijVwbsfj5xQVG5k7KSWLV+VWsvbiW9Lx0AKrYVmFE/RH08u+FldnjXbeycmIMoo7C0uelG++EU+D4eHN6xiY9N53Qc6H8dP4nsjVSwsZWXq2Y0HgCdVyejhgcudpclp5dypLTS8jT5WGlsmJMozEMqTsEc6UJGczeuSgZyWYlSA/MoZvA0nSn0Aok7gxsHg8xx6V1nxbSaIlbbePKVRDpcfB1E0mBeuEHaNjf2BLJFBetBr5rAYlXoN3UJw66lpabRodfOpCjzWFV11U0dG1YQoIaj0tJl3hl5yuk56bTyqsVX7f7Wu8oEJcZR+i5UNZfXq+PVVXdsTqvBb5G52qdn/j+KCsnxuBeUqlGg6H3t8aWptiotWrWXlzLj2d+JEWdAkBg5UAmNZlEM4+nc4j7eup1Zh6eqQ+jH+AUwLTgaTRwNaFIrXFnYUV3yE6Gqi1h8G/lw8g6Nwv2zYGDX4PQgqUDPD8Dgoab9ojEveCJ9lVg3L/l47eW+Y+Ta2DT69JoyYTTYPVkz4g1F9cw68gs/Cv5s6HnhnI9anI/J++cZOSukeRocwjxC+GNhm8Qei6ULde26KO51nOpx8jAkbSr2g6lomSuWVk5KWvuXITvmgMKGHsEXB8eDdWU0Oq0bLm2he9Ofqc3dPJz8GNC0AQ6VO3w1FyMhSGE4PeI35n771xS1akoUNC/Vn/GB403HUPfmBOwoieo06BaGxi4zrTjcVz9E7ZOkox6Aer2ktzqy4PnUV4OfPuMJHvrd6H9VGNLJFNUtHnwTVMpjEPHGfDsxCdqTghB3y19uZx8mfeeeY9BdQaViJimwj/R//DmX2/qlZF7POPxDK8GvkqwZ3CJ3/9l5aSsuTdXXbs7DFhtbGmKRGZeJnuj9rL0zFKuplwFwM3GjbGNxtKzRk/MlBUrrVJSThJzj81ly7UtALhZu/Fe8/foWLWjaShoUUfhpxekKYeanaD/KjAzMW+BzATYOQVOS5lZcfCCrnOhdlfjylVczm+GX4ZI8THePAaVTC/AlkwBhIdKMXNsXaWp9Scc9ToTf4aB2wZiqbLkz5f+NE3vvidkx40dvLvvXQSCtt5teTXwVX0019JAVk7KktRbsLChlKfjtT/Bu6mxJSqUbE02+2/tZ+eNney/tV+ft8bBwoHXAl/j5dovP7ah09PC4djDzDw0k8j0SADaerdlSvMpeNqZwFv/jX9g1YugyYZaXaHt+1IuHmMHlhMCTq2RFJPsZEABzV+XRh3Km40MSMezooeUj6XeC/BSqLElknkUGjV8FSR5uHX+DFqMeeImpx+czvor6+levTuzn5tdAkKaJpeSLmGuMqe6Y/VS70tWTsqSHe/D4e/A7znJ5dPEUGvV/H3rb3bc2MG+W/v0Rq4AVe2r0r16dwbVHfRIl7KKRI4mhx9O/8Dyc8vR6DRYm1nzZqM3GVhnoPFHlCL2ws/94V5CRDMr8AiEKkFQpTF4BUkuumXl6pgYAVsnwvW7+TTcAyWDV+/Hz6lkEsSdgcWtQeikYHi+LY0tkczDOPIDbH9HshUaf+KJvcAy8zJp9//27ju8qfIL4Pg3Tffeg1L2kK2ykb1lyRQBGYr+RAFBQYaDJUNUEFEBB0umIFsQRPYQRPaeZRVKoS3dbZrk/v64UEFAGUlu0p7P8/QxTW7vey62NyfvOO+iemQYM5jZZCaVwu33Q6cjkeTEVtIT4IsykJ0OLy9RS2/bAYPJwM4rO1l3fh2bLm0iLTst57VI70iaFGpC00JNeSrwKfsYsrBTZxLPMGrXKPbH7QegVGAphtcYTpmgMtoGFr0Vtn6uzkXJSr73dVdviHga8j2tJiv5nlErzlry/7UpG3ZOhi2fgjETnD2g7hCo3lv7nhxLWdVPHSqIqACvb7bvibx5mSEdJj+tFvVrPhEq93ziUy4+tZhRf4yikG8hVrZeKfdJC7Hk+3femnjwqP78Tk1MwstB0QaahpJtzmb31d2sjV7Lxosbc9amg7rvTZOCTWhauCllgsrIH9pDKhZQjFlNZ7H09FIm7p3I8YTjdF7dmc5PdabvM33vWx/AJgrXVr/MZkg4pyYpV/ap/716UJ2XcmH73bv7uvurScrt3pV8z6hzQh7nd+HSHlj1NsSpe2pQpB60mAiB1u8Wtql6H8KRpeq/6YF58GxXrSMS9/PXdDUx8S+gVhu2gCWnlgBqNWm5X9on6Tl5EEOa2muSkQjtZ6h7gtiY0WxkT+we1p1fx4aLG3KWAAOEeITQuFBjmhZqSvmQ8hZbCpZX3ci4wad/fsqv59XqpuFe4XxQ9QPqRtXVNrB/Mhnhxqm/k5Ur+9UhCpPh3mO9Qu9OVvI9A96hDz53ZjJsGAV7fgAU8AyCJuOg/Iu23w/HVnZ+Db99oP5b9d37xEtThYVlpahz/tLj4YVv4JmXn/iUx+OP8+IvL+Ls5MyGDhsIdM8F1ZnthPSc2MK+H9XEJKAwlHrBZs2azCb2xe1j3fl1rL+wPqekMECgeyCNCjaiaaGmPBv2rCQkFhTsEcyndT6lVbFWjN41mpjUGPpu7EvDAg0ZUmUIYV5hWoeo0jtDWGn16/aN2mhQezluJywx+9Xv0+Lg9Dr16zbf/HcPB+V7Rq0ZcfwXWPMepFxRj6vQWd1MzSvI5pdoU1X+p25OGH8Gtn2u7gEk7Mfub9XEJLAolH/JIqdcclrtNWlYoKEkJnZMek7ux2iAyc+oM8NbfAGVXrVqc2bFzMHrB1l3fh2/nf+N6xnXc17zd/OnQYEGNC3clEphlbSfsJkHZBgzmHpwKj8e/RGTYsLLxYt+z/bjxRIvOs6eG9kZao/K7d6VmH1qjwv3+XP3iYAUtQYOgUXU3/kidW0ZrbZOroUFHUHvqtYxym3DV44q4yZ8WR4yk6DtD1C+wxOfMj07nQaLG5Cancr3jb+nWkS1J49T5JCeE2s78rOamHiFqp8grUBRFI7cOMLa82v57cJvxKbF5rzm4+qjJiSFmlIloop9lVzPAzycPXi34rs0L9ycUX+M4tCNQ4zdPZYtl7fcVQrarrl4QFQV9eu2rBR1fsXtZOXKfkiMVhMTJ2d4rh/Ufs++C8BZQ4kmULQ+nN0Iv33kMLWMcr0/vlETk5BSULatRU657vw6UrNTye+dnyrhVf77B4RmJDn5J7MZtk9SH1d/y+Ibl51MOMma6DWsO7+OmNSYnOe9XLyoH1WfJoWaUCNfDcd4A8zlSgaW5Mfnf2TxqcVM3DuRHTE7GPHHCEY/N9oxJ9G5+ag7BN+5S3B6Alw7Av4FIaCgdrFpSadT59ZMrQEnfoFzW6BIHa2jytvS4mHXVPVxvaEWWzp/e0inXYl2Mixu5yQ5+adTv8KNk+peIRYezllzbg2Dtw3O+d7D2YO6+evSpHATakbWxE1vZxVBBXonPS899RL5vPPx9sa3WXl2JZHekbz19Ftah2YZnoHqyqC8LvQpdYnqn9+ptY3e2KrO7xHa2DYBDCkQXh6eammRU55OPM3B6wdx1jnTulhri5xTWI+kjndSFHVjMFBvVO6WK2dsMBmYtG8SAM/le44JdSawpeMWPq3zKQ0KNJDExM7Vzl+bD6qp+7BMPTiVZaeXaRyRsLi6Q9XJwXFHYd9sraPJuw7+BLtuba5a/0OL1Z+53WtSJ6oOwR7BFjmnsB5JTu50YQfE/AV6N6j65OWR77Ts9DKupl0lxCOESfUm0bhQYzyc89jYvoPrUKIDr5d7HYBRf4xiZ8xOjSMSFuUZCHXfVx9vHH2rVL+wqXObYUVv9XGNvup8IAvIMmWx6qy6r1b7Eu0tck5hXZKc3Gn7F+p/n+kCPpZbOpplyuK7w98B8Fq51/L8/jaOrO8zfWlWuBlGxcg7m9/hRMIJrUMSllTpVQh5CjIS1Oq4wnauHYWfuoI5G8q0hYaWW9a9/sJ6kg3JRHhFUD2iusXOK6xHkpPbYg/Dmd9B56Rm7Ba05NQS4tLjCPMMo10J2xdzE5aj0+n4+LmPqRxemXRjOr1/733XSivh4PTO0GSs+vjP7+D6KW3jySuSYmBue3W7hoLPQeupFt1O4OdTPwPQpngbxykHkMdJcnLb7RU6pVtbtM5BpjGTHw7/AMD/yv9P5pbkAq56VybVm0RRv6LEZcTx5u9vkmJI+e8fFI6hWAMo0VTdify3D7SOJvfLTIJ57dUCgMEl1aXcFlwlGZ0Uzd5re3HSOdGmWBuLnVdYlyQnAAnRcHSp+rhmf4ueevGpxVzPuE6EV4T8YeQivq6+TG04lRCPEM7cPMM7m98h25StdVjCUhqPAScXOP0bnP5d62hyL6MBFnZRKxp7h8HLP6uTki1o6Wn13l4rshbhXuEWPbewHklOAHZ+pW6dXrSBukOphWQYM5h+eDqg9ppI7ZLcJcI7gm8afIOnsye7r+5m+M7h2FnBZfG4gotB1TfUx+uGqrs0C8tSFHXy6/lt6k7bXRarm/tZkMFkYMWZFQC0Ky5D6o5EkpPUONg/V31c8x2LnnrRyUXEZ8YT6R3JC8Vstz+PsJ1SQaWYUHcCep2eVedW8c2Bb7QOSVhK7ffAM1gt+79nutbR5D4bRsHhRaDTw4uzLfrB8LaNlzaSmJVIqEcotfLXsvj5hfVIcrJrKpiyILLS3ZUzn1B6djozjswA4I3yb0gJ+lysZmRNPqr2EQDfHvo2pxtZODgPf7XOBsDmsWrVUmEZe6bD9ls1pVpNhmINrdLMklNqbZPWxVvLvmQOJm8nJ1cOqLtegtprYsGS5AtOLCAhM4EonyhaFrVMhUNhv9qVaMf/yv8PUGugbI/ZrnFEwiKe7QZh5dRJm5vHah1N7nDyV1gzUH1c9/2/d9e2sEvJl9h1dRc6dLQtbpm9eYTt5N3k5MZpmNsOstOgUC0o2cxip041pDLz6EwAelXoJRl7HtHn6T60LNISk2JiwOYBHI8/rnVI4kk56aHpOPXxXzPg2jFt43F0l/fC4lfUOX7PdIU6g6zW1NIzag9mjXw1iPSOtFo7wjryZnJy8xL82BrSb6jjnC/Nt+ia+vkn5pOUlUQh30I0K2y5pEfYN51Ox8gaI6kaXlWtgbKhN1dTr2odlnhShWtBqZbqG+q6oepETvHoEs7B/BfBmKEO47T4wqK91XfKNmez/MxyAKkt5aDyXnKSeh3mtIbkyxBcAl5eCu6+Fjt9iiGF2UfVfTmk1yTvcdG78EW9LyjmX4zrGdd5a8NbJBuStQ5LPKlGH4PeVS2vfvJXraNxPGk31J7q2x8IO8wGK65e3HppKzcybhDkHkTdqLpWa0dYT95KTjKTYG5biD8DflHQdRl4WXYDqLnH55JsSKaIXxGaFmpq0XMLx+Dj6sPUhlMJ9QhVa6BsegeDyaB1WOJJBBaG6rf2fPntAzBmaRuPIzGkw4KX1J4TvwLQeTG4eVu1yZ9PqxVhXyj2gixGcFB5JzkxpMP8lyD2EHiFQNfl4Jffok0kZSUx5+gcAN6s8KaUSc7Dwr3CmdJwCl4uXvwZ+yfDdg6TGiiOrtYAtVBYwjnYPU3raByD2QRLXoPLe8DdXy2yZsF9y+7naupVdsTsAKS2iSPLG8mJ0QCLu8PFneDmpw7lBBezeDNzjs0hJTuFYv7FaFyoscXPLxxLycCSTKwzEb1Oz+pzq/lq/1dahySehJsPNBiuPt7ymVojSTyYosCvg+HkanWn904LIaSk1ZtdemYpCgpVw6tSwNeyRd2E7eT+5MRsguW91DLUzh7Q+SeIKG/xZpKykph7XC3m9tbTb+Gky/3/tOK/1YiswfDq6hva94e/z9mATDioCp0g3zNgSIGNH2sdjX3bORn2fA/ooO23UND6uwGbzCaWnV4GyERYR5e730EVRV1Pf2QJODlDxzlW+wOZfXQ2adlplAwoSYMCDazShnBMbYq3oVeFXgCM3jWabZe3aRyRdpINyWy5tIWY1BitQ3k8Tk7Q9BP18b45cPWgtvHYq8M/w/ph6uMmY6CMbfYV23FlB9fSr+Hv5i/3YQeXu5OTjR+rtQnQQdvvoHgjqzSTmJmY02vy5tNvSq+JuMdbFd6iVdFWag2ULQM4Fp+36mUoisKqs6touawlfTb2oemSprRb2Y6v9n/FkRtHMCtmrUN8eAWqQdl2gAJrZWnxPaK3wfI31cfV3vp7IrENLD61GIBWRVvhqne1WbvC8nLvu+iOybBtgvq4xRe3bibWMfPoTDKMGZQKLEX9qPpWa0c4Lp1Ox4jqI6gWUY0MYwa9N/TmSuoVrcOyiTOJZ3hl3Su8v/19EjITCHIPwknnxKnEU3x36Ds6re5Eg8UNGLFzBFsubSHTmKl1yP+t4Uh1mPjCDji2Quto7EfccXWXYZMBSrVSd3e2kWtp13J6JWUirOPLncnJ3tmwXt3rhIYjoNIrVmsqPiOehScWAtD76d7orFRUSDg+F70LE+tOpHhAcW5k3ODN398kKStJ67CsJj07nYl7J9JhVQf2XtuLh7MH/Z/tz/r269ny4hbG1hxL44KN8XT25EbGDZacXkKfjX2otbAWb298m2Wnl3Ej44bWl3F//lHw3Nvq498+guwMbeOxB8lXYW57yEqCqGpqb7UFi1v+l+VnlmNSTDwb+ixF/IvYrF1hHTrFztY3Jicn4+fnR1JSEr6+j1Ec7ehy+PlWeeTn+kGjURaP8U6f7/mc2cdmUzaoLPObz5fkRPyn2LRYuqzpQlx6HJXDKzOt4bRc1QWtKAobLm5g/J7xxKbFAlA/qj6Dqwwmn3e+e443mAz8FfsXmy5tYvPlzTk/A6BDR/mQ8tSNqkvd/HUp6l/Ufv7GDGnwdWVIjlE3CKz9ntYRaSczGWY2g2uHIag49PwNPANt1rxZMdNsaTNiUmMYW3Os7GemkSd+/75D7kpOzmyA+R3BnA3PdoeWX1qtPDLA9fTrPL/0ebJMWUxtOJWakZbb1VjkbicTTtJ9bXfSstNoVrgZ42qNyxVzlS4lX2Lsn2NzNj6M9I5kaJWh1Imq81A/rygKJxNPqonKpc33zM3J752fulF1qRdVj2fCntG+wNahxbD0NXDxgr57wTdC23i0YDTA/A5q9VyvEHjtdwgoZNMQdsbs5I3f38DH1YeNHTbi7uxu0/aFSpKT+7m4Wy1Ln52uzgxvN13dtMuKxv85nrnH51I+pDxzn59rP5/ohEPYeWUnvX/vjVEx8lq51+j3bD+tQ3psWaYsZh6ZyQ+HfyDLlIWLkwuvlH2F18q9hoezx2OfNzYtlq2Xt7Lp0ib+vPonBvPflXZ9XH2oFVmLelH1eC7yOXxcfSxxKY9GUWB6Y7j8p7rMuE0eK86mKOrk14ML1AStxy8Q+azNw3h387usv7CeTk914v2q79u8faGS5OSfYo/ArGZqefpiDeGlBeBs3W7ya2nXaLa0GQazgW8bfUuNfDWs2p7InZafWc5HO9T5UR9V+4gXS76ocUSPbmfMTsbsHsPFlIsAVIuoxvtV36ewX2GLtpOenc4fV/5g06VNbL28lcSsxJzXnHXOVAyvSL2oetTJX4f8Ppat/vyvYvbC97cmwr+2EfJXtF3bWts4BrZ+Cjq9WmSthO2LT97IuEGjxY0wKkaWtFpCiYASNo9BqCyZnDj+rnTxZ2FOGzUxiaoGL86xemICMP3IdAxmA8+GPkv1COsXFxK5U+tirbmadpUpB6YwZvcYwr3CqZ2/ttZhPZRradf4dM+n/HbhNwBCPEIYVHkQTQo1sUovoqeLJw0KNqBBwQaYzCYO3TiUM/wTnRTN7qu72X11N5/8+QnFA4pTN786/FMmuIx1h8wiK6q9JgcXwNrB0HO9VYeT7cbeWWpiAtBioiaJCcDKsysxKkbKB5eXxCQXceyek+QrML0JJF2EsHJql6KHv9VjjE2LpdnSZmSbs5neeDpVIqpYvU2ReymKwrCdw1h+Zjkezh7MbDqTMkFltA7rgbLN2cw/Pp8pB6aQbkxHr9PTuVRn3qrwFt6u1t3Q7UHOJ51ny+UtbLq0if1x+++qm/JU4FNMbzIdX1fL7T5+j+Sr8FVFyE6DF76BZ162Xlv24NRv6mZ+iglqD4L6H2gShqIotFjWgospFxlZYyRti7fVJA6hsmTPiePOwEuLhx9bq4lJYBHoutQmiQnA94e+J9ucTeXwypKYiCem0+kYVn0YNfLVUGug/N7bbiuo7o/bT8dfOvL5X5+TbkynQkgFfmrxE4MqD9IsMQEo5FeI7mW6M6vprLuWKXs4e3Ai4QQfbv/Quhsv+kZA7QHq41X91cn5uVXMPnWvMsUEFTpDPe3meOyJ3cPFlIt4uXjJLvC5jGMmJ1kpMK893DgJPvmg2wrwDrVJ01dSr7D0zFJArfophCW4OLkwoc4ESgaUJD4znl7re7Hq7CouJF+wi92MEzIT+GjHR3T7tRunE0/j7+bPqBqj+PH5HykZaP3N3B6Fv7s/LYu2ZELdCcxsMhMXJxc2XdrE7KOzrdvwc/2hdGt1teBPL6uT9HObhGiY/6K68KBIPauviPwvP59W96pqVrgZni6emsUhLM/xhnWyM9XE5Pw28AiEV9faZKfL20bsHMGS00uoGlGVHxr/YLN2Rd5wLe0aXdZ04Vr6tZzn/N38KRtclvIh5akQXIGyIWWtO0RxB7NiZsnpJUzaO4lkQzKgVt/s/2x//N39bRLDk/rpxE+M3j0avU7PjCYzeDbMiqtJjAZY2AnO/A7uftBjDYSXtV57tpSeANMbQfwZdRj9lTXgbpvfw/tJzEykweIGZJuzWdhioV0PheYVeXe1jskIi7qpW3C7+kD3lTZdtnYp5RKtlrXCqBj58fkfeSb0GZu1LfKOmNQY5h+fz6HrhzgWf+yu5bO3FfYrTLngclQIqUD5kPIU8y+Gs5Nl57cfiz/G6F2jOXzjMKDO3fiw2odUCKlg0XasTVEUhmwbwproNYR4hLCo5SKCPYKt16AhXZ2kf2kXeIWqH6CCilqvPVu485p886u1TDSu6fLj0R/57K/PKBVYikUtF2kai1DlzeTEbIYVb6kz4vVu8PISKFzLprF9tOMjlp9ZznP5nmNaozxWz0BoItuUzanEUxy8fpBDNw5x+PrhnCW7d/Jw9qB0UGnKB5enfEh5ygWXI8wr7LHaTDYk8/X+r/np5E+YFTPeLt70eaYPHUt2tHgCZCvp2el0Wt2Jc0nnqBpelW8bfYvemnWQMm7C7BYQexj8ouDVdeAXab32rCkjUS1ueWk3uPlBz3UQWkrTkBRFofWK1pxLOuewS/Bzo7yXnCgKrB0Cu6ep6+lfmgcln7dpXBeTL9Jqubqr7Lxm8ygfUt6m7QtxW2JmIodvHObQ9UMcvnGYw9cPk5Kdcs9xYZ5hlA8pn5OwlAoq9a8F0RRFYXX0aj7f8znxmfGAOpY/sNJAQjxDrHY9tnL25lk6re5EhjGDN8q/QZ9n+li3wdTrMLOpOgwSXAJe+RW8rNhjYw3JV2BuO4g7pg5TdV4MBapqHRX7ru2j+9rueDh7sLHDRk0nY4u/5b06J1vGq4kJQOupNk9MAL499C0mxUStyFqSmAhNBbgHUDt/7Zx6KGbFzPmk8xy6cSgnYTmVeIpr6ddYf2E96y+sB0Cv01MioISasNxKWgr6FkSn03Hu5jlG7x7Nntg9ABTyLcSH1T6kaoT2b0SWUtS/KMOrD2fItiF8e+hbKoRUoFZ+K/a+eodA1+UwoyncOAVz20L3VeqbvCO4cUYdykm6CN7h6orIMPuY17Hk9BIAmhZq6nCJiSklhYz9+/GsVg0n19yzp5al2X/Pya6paq8JwPOfQdX/2Tym6KRoWq9ojVkxs7D5QsoE28cfqBAPkp6dzrH4YzkJy6Hrh7iecf2e43xdfSkZWJL9cfsxmo246915o8IbdC/dHRe9xvvWWMnHf3zMolOL8HPzY3GLxUR4W3nuxI3TaoKSfgMK1FCHpF3tfGVJzD514UF6PAQWha7LIKCg1lEBkJSVRIPFDcgyZTG32VyHmgNlunmTC127knX6DM75Igjp3Ru/F15A5+wY/QT/Je8M65xbDct7qS/U+wDqDNIkpsFbB7Mmeg11o+ryVf2vNIlBiCehKArX0q/lJCqHbxzmaPxRskxZOcfUjarLkCpDiPR20LkRDynLlEW3X7txLP4Y5YPLM6vpLOsnYlcPwqwWkJUMxRtDx3k2qWT9WM5thoVdwJAKERWgyxK1F8hOzD8+n3F/jqN4QHGWtFziMHuamTMyuPhqTzL277/reddChQh5uy8+TZuic3LM6h635Y3kZM8ifFe/oRb6qdYbmozRZD392ZtnabOiDQoKi1osolSQthPBhLCUbHM2pxNPczT+KAV8CuSqIZz/cjnlMi/+8iIphhS6lOrCkCpDrN/ohT/UYRJjBpRtB22/t/rmpI/s6DJY+j8wGaBwbTWJ0nC58D8pikL7Ve05lXiKIVWG0KVUF61DeihKdjaX+/QldcsWnHx9KfDD96T/tZf4777DdPMmAG5PPUVI/35416njMAnXnYyJiVyaM4ci/frl8gqxy3qpicnTXaDxaM0K/Uw9OBUFhQYFGkhiInIVFycXSgeVpkOJDnkqMQHI75OfsTXHAjDv+DzWnV9n/UYLVoeOc8HJBY4sgdUD1Mn+9mLPD7D4FTUxKf0CdPnZrhITgCM3jnAq8RRuejdaFGmhdTgPRVEUrn40jNQtW9C5uRE1dQoe5csT9OorFP19PcF9++Dk7U3WiRNc7vUmFzp1Jm33n1qH/dAyT57k6kcfcaZuPW589bXFzmu/yYk5G55qAS0ng0ZdXacST/HbeXVTszcrvKlJDEII66gbVZdXy74KwLAdw4hOirZ+o8UbQtvvAB3snQm/j7B+m/9FUWDzeDVZQoGKr0D7meDspnVk97hdEbZxwcb4uTnGxOK4zz8nafly0OuJ/OILPCv+vWu13tubkN69Kbr+N4Je64nO3Z2MAwe42L27OgR0+LB2gf8LxWgk+bffuNC1G9EvtObm4p9RsrJwLWm5gqj2m5wUfA7aTQe9dhOFph2choJC44KN7a5EtxDiyfV9pi8VwyqSbkzn3c3vkmHMsH6jZduqZd8BdkyCbROt3+aDmM2w5j3YrPYiUWcwtPjC/oabgLTsNH6N/hWAdiXaaRzNw4mfPp2E6TMAiPj4Y3zq17vvcc4BAYQOHEjRdesI6NwJXFxI27mT8x1e5FKfPmSeOmXLsB/ImJjIje+/50yjxsS83Y/0PXtAr8enaVMKzptLoXlzLdaW/c45iYvBNySfZnGcSDhBh1Ud0KFjaaulFAsoplksQgjruZ5+nQ6rOhCfGU+roq0Y/dxo24z575gM6z9SHzefCJV7Wr/NOxkNsOwNOLoU0MHzn2qyGvJhLT61mFF/jKKwX2FWvLDC7udl3Fy2nKtDhwIQ+t5Agno+/P9fw+XL3Pj6G5JWrlQTSJ0O3xYtCOnbB9cCBawV8gNlnjxJ4ty5JK1chZKlTqLX+/vj37EjAZ1ewiU8HMgruxK7abt2fcqBKYC6jl4SEyFyrxDPED6t/SlOOidWnl3JsjPLbNPwc29DrYHq49UD4PDPtmkXICtV3cDv6FJ1Dky7H+w6MQH4+ZT679OueDu7T0xSNm3i6ocfAhD4yiuPlJgAuObPT75PxlFk1Up8mjQBRSF51SrONmvO1eEjyL527b9P8oQeNHTjVqoUEWPGUGzzJkLf6Z+TmFia/facWCDzelxH44/y0i8v4aRzYtkLyyjiV0STOIQQtvPD4R/4ct+XuDq5Mq/5PJ4KfMr6jSqKOqyy53twcoaX5kOJJtZtMy1erWFyZR+4eEHHOVCsgXXbfELH44/z4i8v4uLkwoYOGwhwD9A6pAdK37ePi6+8ipKVhd8LLxAxbuwTLxHOOHqU619+SdrWbQDoXF0J6NyZoP+9jnNgoCXCzmFMTOTmzz+TuGABxitX1Sf1enwaNSKw68t4PPvsA5NDzXpOxo0bR+XKlfHx8SE0NJTWrVtz8uTJe447fvw4rVq1ws/PDx8fH6pVq8bFi/fuB2Kvph6YCqiluyUxeXiGy5fJvnoVO8t3hXgor5Z9lVqRtTCYDby7+V1SDPduCWBxulvDKeVeBPOtjU3Pb7deezcvwYwmamLiEahunmrniQn8XRG2QYEGdp2YZJ46xaVeb6JkZeFdpw4Roz+2SO0SjzJlKPDddxScOwePihVRDAYSZs3ibMNGXJ88GVPKk/+u3rnq5vqEiRivXEXv70/QG29QbMPv5J+kTua1Va/VI/WcNG3alJdeeonKlStjNBr54IMPOHz4MMeOHcPLywuAs2fPUqVKFXr27EmnTp3w8/Pj+PHjVK5cmdDQ0P9sQ+uek8PXD9N5TWf0Oj0rWq+goK99VEW0Z6abN4kdO5bklasA0Hl44Fq4EG6FCuNapIj6uEgRXAsVwsnjwXu7CKG1pKwkXlz1IlfSrtCgQAO+qPuFbW7Gpmz4qSuc+lXdcb3HKshn4V3P406odVZSrqg7C3ddCiH2P9E/PTud+ovrk5adxg+Nf7DbZe+GyzFc6NwZY1wcHs88Q4EZ061yv1MUhbTt27n+xSQyjx0DwMnPj+DXXyOgS5dHalMxGknZuJHEOXPVya23uJUuReDLXfFt3gwnt4dftWU3RdiuX79OaGgoW7ZsoXZtdZ+Pl156CRcXF+bMmfNY59Q6Oen1ey92xOzghaIvMLrmaJu372hSNm8m9qNhGK9fVz8F6vVgND7weOd8EfcmLYUL4xwWZvfjyCJvOHLjCF1/7YrRbGRgpYF0L9PdNg1nZ6rDLee3qb0ar661XPJw6U+Y1wEyb0JwSTUx8ctvmXNb2bLTyxi2cxhRPlH80uYXnHT2N1XSmJDAhc5dMJw/j1vxYhScMwe9v79V21QUhZTf1nN98mQMZ88CoA8JJrhXLwI6dED3L/v2PHDopnEjAl/+96Gbf2M3ycmZM2coXrw4hw8fpmzZspjNZvz8/Bg0aBDbt29n//79FC5cmKFDh9K6dev7niMrK4usrL9LaCcnJxMVFaVJcnIg7gBdf+2KXqdnVetVRPlG2bR9R2JKSeHauE9IWroUANfChck3bizuZcpguHwZQ3Q0huhoss6dwxB9HsO5czmVEO/HydMT10KF/k5aCt9KYAoWlN4WYXMLTixg7O6x6HV6ZjadyTOhFu7FeJCsFJjdSh128cmnJihPuqfN6fXqcFF2OkRWgi6LwdOy8xSsqcuaLhy6foh+z/bjtXKvaR3OPUypaVzs0YPMI0dwzhdBoQULcAkLs1n7islE0qpV3Pjqa7JjYgBwiYwkuE8f/Fq1RKf/e1n4w666eVx2kZwoisILL7xAYmIi27apk3RiY2OJiIjA09OT0aNHU69ePdauXcv777/Ppk2bqFOnzj3nGTFiBCNHjrzneS2Sk//99j/+uPoHbYu3ZWSNe2MSqtRt27n60UcYY2NBpyOwe3dC+vfDyd39X3/OmJh436TFcOkSmEwP/DmXfPlwLXyf3pbQUOltEVahKAqDtw7m1/O/EuoZyqIWiwjyCLJN4+kJMPN5uH4CAovAK2vB5zHf7A4tguVvqvNZijZQJ7+6elk2Xis6nXiativb4qxzZn2H9QR7BGsd0l3MBgOX3niD9D92oQ8IoOC8ebgVKaxJLIrBQOLPPxM/dZrakw24FilCyNt9wcnJYkM3/8YukpPevXuzevVqtm/fTv78avfglStXiIyMpFOnTsyfPz/n2FatWuHl5cWCBQvuOY+99JzsvbaXHmt74Kxz5pe2v+T6zc8ehyk1jbjx47m5eDEALgULkG/s2LsqHj4OxWDI6W25M2nJio7GnJT0wJ/T+/nhVac2PvXr41WzFnpvx7npCvuXlp1Gp9WdiE6KplpENaY1nIbeVsXJkq+oE1dvXoTQMvDKavB4xImgd+7oXq4DvDDFfjcbfIBP/vyEecfn0bBAQ76o94XW4dxFMZmIGTiQlF/XovP0pODsWXiUK6d1WJgzMkicP5/4777H9M/7pwWGbv6NJZOTxyq/2rdvX1auXMnWrVtzEhOA4OBgnJ2dKV269F3HlypViu3b7z8D3c3NDTcLZW1P4nZdkzbF20hich9pu3Zx9f0PyL5yBYCArl0Jfac/Tp5PvvW7ztUVtyJFcCtSBJ8Gf68cUBQF063elpykJTpa7W25fBlTUhLJK1eRvHIVOhcXPKtVw6dBfbzr1bNpt6rInbxcvJhYZyKd13Rm19VdTDs0jd5P97ZN4775oNsKmNEU4o7CvBeh67KHq/+kKLDxY9g2Qf2+ai9oMk6zbUAeV6Yxk5VnVwL2VxFWURSujRlLyq9rwcWF/F9NtovEBMDJw4Ognj3xf/FFEmbNJmHWLHQuLhYburGVR+o5URSFvn37smzZMjZv3kzx4sXvOaZGjRoULVr0rgmxbdq0wcPD467elAfRYkLsntg9vLruVZydnFnTZg0R3hE2adcRmNPSiJswkcRb/+9cIiOJGDsWr6pVNI1LMRjIOHyYlA0bSd2wAcOFC3e97l62rJqo1K+PW4kSMvwjHtuqs6t4f/v76NAxteFUnot8znaNXzumDvFk3oQi9aDzT/++543JCKvfgX0/qt/X/whqDdBs49QncfvfPZ9XPta0XWO7XquHcP2bb9RN7nQ6Iid8jm+zZlqH9ECKooCiWGRJ83/RrOekd+/ezJ8/nxUrVuDj40NsbCwAfn5+eNyatPjee+/RsWNHateunTPnZNWqVWzevPmJArUWRVH45sA3gFp5UBKTv6Xv2cOV9z8g+9IlAPw7vUTYwIE4eWk/fKJzdcWzYkU8K1Yk9L2BGKKjSdmwgdQNG8k4eJDMI0fIPHKE619OxiUyEu8G9fGp3wDPis+ic3HROnzhQFoWbcm+uH38fOpnhmwbwuKWiwn3stGnz7DS8PISdZLsuU2wpCe0n3X/PceyM9XXT/wCOid1j5yKPWwTpxXcrm3Spngbu0pMEhcuzNl9N+yDD+w6MQHUD2YOmJw+Us/Jgz59zpw5kx49euR8P2PGDMaNG8fly5cpWbIkI0eO5IUXXnioNmzdc7Lr6i5e/+11XJ1cWd12te1uOnbMnJFB3BdfkDhnLigKzvkiyDd6NF41amgd2kMx3rhB6ubNpGzYSNrOnTmz0kGtB+BduzY+DerjVbMmem9tt0kQjiHLlEXXNV05nnCc8iHlmdVkFi56Gya55zarS4FNBni6C7T6+u5hmswkWNAZLmwHvau6aWrpVraLz8LOJZ3jheUv4KRzYl27dXZzX05eu46Yd94BRSH4rTcJefttrUOyK3YxIdZabJmcGM1Guq/tzqHrh+hSqgtDqgyxanuOIH3ffq4OHZozTOLfoT2hgwc77Ju4OT2dtJ07Sdm4idRNmzAlJua8pnNxwbNq1b/nqTjIWKzQxqWUS3Rc1ZGU7BReLvUyg6sMtm0Ax39RlwQrJqj2FjQZq34iTo2DuW0h9rBawK3TfChc27axWZDRbGT4zuGsPLuSuvnr8lWDr7QOCVDn3V16/X8o2dn4d+xI+IjhMlz8D5KcWICiKIzZPYafTv6Eh7MHq9usJsQzxGrt2TtzVhbXJ08mYeYsMJtxDgsj4uNReNd23JvcPykmExkHDjx4nkqZMurwT4MGMk9F3NfGixvpt6kfABPqTKBxoca2DeDAAljeS31c930o/6Ja9TUxGrxC1CGgiAq2jcmCDsQd4ONdH3Mq8RQAUxtOpWZkTY2jgowjR7nYrRvm9HR8Gjcm8ouJd9UPESpJTixg9tHZfP7X5+jQMbHuRBoWbGi1tuxdxqFDXBkyFMO5cwD4tW5N2PtD0Wu08aKtZJ07p85T2biJjAMH1FUOt7hERuJdvz4+Deqr+0nIPBVxy8S/JjLz6Ey8XLxY2HwhhfwK2TaA3d/Cr4PUx26+kJUM/gXV1TxBRW0bi4XczLzJpH2TcuaZ+Ln5MaDiANoUb6NxZGA4f57znbtgSkjAs2pVor771mJ1QXIbSU6e0G/nf2PAlgEAvFfpPbqV6WaVduyd2WDgxjdTiP/+ezCb0YcEEzFyJD7162sdms396zwVX1+8a9fGv317vKrZ574ewnayzdm8tu419sXto0RACeY2m4uHs42rGG/5FDaNUR+HlVV7THwcb1jSrJhZcWYFE/dO5GbWTQDaFGvDOxXfsYsN/rKvxXGhc2eyY2JwK12Kgj/+6LBD3LYgyckTOBB3gNd+e40sUxadnurE0CpD82T3fcbRo1wdMpSs06cB8G3RgrAP3sc5QPsbgtbM6emk/fGHOvzzj3kqPo0bEzZ4EC6RUgsnL4tLj6PDqg4kZCbQulhrPn7uY9sGoChqkbUbJ6HhSPDwt237FnAy4SRjdo9hf9x+AIoHFOejah/ZbquA/2BKTubCy13JOnUKlwIFKDR/Hs7B9lWh1t5IcvKYLiVfosuaLiRmJVI3f10m1ZtkV0vUbEExGLjx7Xfc+PZbMBrRBwYSPmI4vo1tPHbuIBSTiYyDB0lasVKtjGs2o3N3J+j11wjq2fM/S/aL3GvX1V28sf4NzIqZUTVG2cUQhCNIy05jyoEpzDs+D5NiwsPZg95P96Zzqc64ONnH8Kk5M5OLPV8jY+9e9CHBFJo/H9co2Wvtv0hy8hhuZt6k669dOZ98ntJBpZnZZCaeLk9e3dSRZJ48yZUhQ8k6fhwAnyZNCB8+DOdAx9kETEuZJ09ybfSYnP0pXCIjCR0yGJ+GDfNk75uA7w59x1f7v8JN78a8ZvMoGWihXYRzIUVR+P3i73zy5yfEpccB0KhgIwZVHmQ3S4UBFKORy2/3I3XjRpy8vSk4dw7uTz2ldVgOQZKTR5RlyuJ/v/2PfXH7iPCKYF6zeXlqZY5iNBL/ww9c/2YKZGej9/cnfPgwfJ9/XuvQHI6iKKT8+ivXPv1M3fgQ8HruOcI+eB+3IkU0jk7Ymlkx03tDb7bHbKeATwEWtliIj6uP1mHZnUvJlxjz5xh2xOwAIL93ft6v+j618tfSOLK7KYrC1Q8+JGnpUnSurhSY/gOelStrHZbDkOTkEZgVM0O2DuHX87/i7eLNnOfnUCygmAUidQxZp09zZej7ZB45AoB3wwZEjBghY6dPyJyezo1vvyNhxgyU7Gxwdiawa1eCe78lE+bymJuZN+nwSwdi02JpWKAhE+tOlJ60WwwmAzOOzOCHwz+QZcrCxcmFV8u+ymvlXsPd2f6GROMmTCD++x/AyYn8X02+a68v8d8kOXkEk/dN5vvD3+Osc2Zqo6lUi6hmgSjtnzE+nsR584j//geU7GycfH0J/+hDfFu0kBunBRkuXuTauE9I3bQJAH1IMKEDBuDXqpVN9rIQ9uHQ9UN0X9sdo9lI32f68r/y/9M6JM3tvLKTsbvHciFZrSdULaIaH1T9wPZLrx9S/MxZxI0fD0DE6I/xb99e44gcjyQnD2nJqSWM+GMEAB8/9zGti7V+8gDtXOaJEyT8OIfkVavUT/SAd506hI8ahUtYqMbR5V6pW7dybczYnMJuHk8/TdiHH+JRtozGkQlbWXBiAWN3jwXgnYrv8GrZVzWOSBtx6XF8tucz1p5fC0CIRwiDKg+iSaEmdvvBKGnFCq4MViuEh7z7LsH/e13jiByTJCcPYWfMTt7a8BYmxUSvCr1st9W5BhSzmdTNW0iYPZv03btznncvX56gV1/Bp4n93hRyE7PBQMLs2dyYOg0lPR10Ovzbtyfknf4y6TiPmHpgKlMOTgHg3Yrv8krZVzSOyHaMZiMLTyzk6wNfk5adhpPOiU5PdaL3073teh5O1rlznGv1AhiNBHbvRuiQIXK/fEySnPyHkwkn6b62O2nZabQs0pIxNcfkyl82c1oaN5ctJ2HOj2RfuKg+qdfj07gRgd264fmMfdQLyGuyr10j7rPPSf7lF0At4hbSty8BnV5C5/xIG4ELB5QXE5SD1w8yetdoTiScAKBccDk+rPYhpYNKaxzZf7s2/lMSZs7Eq0Z1on74QYZjn4AkJ//iWto1uqzpwrX0a1QOr8y3Db+17e6hNpAdE0PC3Hnc/PlnzCkpgPoGGPBiBwI6d8YlXz6NIxQA6Xv3Ejt6TM7SbbcSJQj78AO8qlTRODJhbXcmKAMqDqBH2R7aBmQlSVlJatn5U0tQUPBx9aH/s/1pX6I9Tjr7f5NXjEZO162H6cYN8n/ztUyAfUKWTE5y1ce4tOw0+mzsw7X0axT2K8wXdb/INYmJoihk7N9PwuwfSVm/HsxmAFwLFSKgW1f8W7fGyTNv1W2xd54VK1L458XcXLSI65O+JOvUKS52645vs+cJfe89XCIitA5RWMmbT7+JgsLUg1OZsHcCQK5KUBRFYcXZFUz8ayKJWWoF5VZFW/FuxXcJ8gjSOLqHl7p9O6YbN9AHBuaqTU5zg1yTnBjNRgZuGciJhBMEugcypcEU/Nz8tA7riSkGA8nrfiNh9uyc5cAAXjWqE9i9O161akk3pB3T6fUEdOqET9OmXJ88mZs/LSJ5za+kbNpM8Bv/I/CVV2QTsVzqraffAsh1CcrpxNOM3jWafXH7ACjqV5QPq31IpfBKGkf26JKWLQfAr2UL2dzTzuSKYR1FURi9azSLTi3CXe/OjCYzKBdSzsqRWpcxMZGbPy0icf58jHFqNUWdqyt+L7QioGtX3EuU0DhC8Tgyjx0jdsxYMvbuBcClQAHChgzBu17dXDkv6n7MmZl5quz/lANTmHpwKgADKw2ke5nuGkf0eNKz05l2cBpzjs3BqBjxcPagV4VedC3d1W7Kzj8KY2IiZ2rXQcnOpvDyZVIF1gJkWOcfZh2dxaJTi9Ch45Panzh0YpJ15gwJP84hacWKnJ1x9SHBBHbujH/HjrLqw8G5ly5NwblzSP5lNXGffUb2xYtcfustvGrXImzoUNwKF9Y6RKswXL5M8uo1JK9eTdapU7gWK4pPvfp416+HR/ny6PS5d4+rO3tQPv/rcwCHS1B2Xd3FRzs+IjZNrYpcP6o+g6sMJp+3485vS16zBiU7G7dSpSQxsUMO33Oy7vw6Bm4ZCMDgyoN5ufTL1g7R4hSzmbQdO0iYNZu0HTtynncvXZrAHt3xbdoUnaurhhEKazClphH/7TTiZ82G7GxwcSGoR3eC3uiF3ttL6/CeWHZcHClr15K0ejWZBw898Dh9UBDedevgU78+XtWr59q5U98c+IZpB6cBjtODYjAZmLxvMrOPzQYg0juSoVWGUieqjsaRPbno9h3IPHKEsKFDCOxu//8vHIGs1rnlQNwBeq7ricFsoEupLgypMsRGUVqGOSODpBUrSPhxDoZz59QnnZzwadCAwO7d8KhYMc909edlWdHRXBs3jrSt2wBwDg0ldMC7+DRq5HBv1KabN0lev57k1WtI//PPnInbODnhWbUKfs2b41mtOhkHDpC6cSOpW7diTk3N+Xmdmxte1avjXb8e3nXr4hKaewoHKorClINTHCZBOZN4hiHbhnAy8SQAHUp0YGClgbliw9TMU6eIbvUCODtTfMtmnIMcZxKvPZPkBLiYfJEua7pwM+smdaPqMqnuJPROjtE1nB0bS+K8+SQuWoQ5KQkAJy8v/Nu3J6Dry7jmz69xhMLWFEUhddNmro0bR/alS+qTzs54lCmDZ5XKeFaqhEfFina5b485LY2UjZtIXr2a1B071F6gWzyefhrf5s3xbdoE55B7N9tUDAbS9+4lZeMmUjduJDsm5q7X3cuXx6d+Pbzr1cetRHGHT9YVReGbA9/w7aFvAXiv0nt0K9NN46jupigKC04sYOLeiWSZsghwC2BkjZHUK1BP69As5tqnn5EwYwbeDRoQ9c3XWoeTa+T55CQxM5GX17zMxZSLlAkqw4wmMxwimzcmJnJtzFiSf/0VTCYAXKKiCOzaFb+2bezyjUfYljkri4SZs0j86SeMV6/e/aKTE+5PPYVn5cp4VlaTFeeAAG3iNBhI27qV5DVrSNm4CSUzM+c1t5Il1YSkWTNc80c+9DkVRSHr1GlSN20kZeMmMg/dPRTkEhmJd/36+NSvh2elSg67usKeE5QbGTf4aMdHbI/ZDsBzkc8x+rnRBHvkno1C76pt8vVX+DRsqHVIuUaeTk6yTFm8/tvr7I/bTz6vfMxrPs9h/nAu9elD6u8bAPCsUoXA7t3wrls3V08GFI9HURSyY2JI3/MX6Xv2kP7XX2RfvHjPcW7Fi+ckK56VKt23d8JiMRmNpO3eTfLqNaSsX59TABDApWAB/G4lJG7FLLPrd3ZcHKmbN5O6cRNpf/yRM0EcwMnHB+9atfCuXx/v2rXQW2CTUFuyxwRly6UtDNs5jITMBFydXHm30rt0fqqzw/dW/VPqli1ceqMX+oAAim/ZLPP5LCjPJidmxczgrYNZe34tPi4+zGk2h6L+RTWK9NEkr19PTN+3wdmZgrNm4lnJ8WoCCG1lX7t2V7JiOHv2nmNcCxfGs1KlnKGgJy30ppjNZBw4QPIvq0letw5TfHzOa85hYfg+/zy+zZvjXraMVd/EzOnppP3xBykbN5K6aTOmhIS/X3R2xrNSpVvDP/VwjYqyWhyWpCgKXx/4mu8OfQfAoMqD6Fq6q83jyDBm8Pmez1l0ahEAJQJK8EmtTygeUNzmsdjC5f7vkLJ2LQHduhL+/vtah5Or5NnkZNLeSUw/Mh1nJ2emNZxG1YiqGkX5aEypqZxr1hxjXBxBb7xB6Dv9tQ5J5ALG+HjS/9qbk6xknTwJ//hzdsmfX01WbvWuuERF/WcSoSgKWSdOkLx6NUlr1mC88vfwkt7fH5+mTfBr3lydsK1BAUDFZCLj0CFSN24iZdNGDGfuTtLcihfPGf5xL1fOrosUap2gHIs/xuCtgzmffB6AbqW78fazb+Omz52FAU03b3K6Vm21tsmypbiXKqV1SLlKnkxOFp9azKg/RgEwpuYYWhVtpVWIjyx21Mckzp+PS8ECFFmxIk8VoBK2Y7p5k/R9+9VkZc8eMo8d+3u1zC3OYWF3JSuuRYrkJCtZ0dFqLZI1a/5ePYY6WdunYQN8mzfHq3p1u5vrYbh4kdRNm0jZuIn0v/7Kmc8FoA8Oxr99O0LefttukxRFUfhq/1d8f/h7wDYJislsYtbRWXx94GuMZiMhHiGMrjmaGvlqWLVdrSXMn8+1UR/j9tRTFFm+TOtwcp08l5xsj9lOnw19MCkm3qrwFm8+/abGUT68jAMHON+pMygKBWbOwKt6da1DEnmEKTWNjP37coaCMo4cuWslDYA+MBDPihXJjolRk5lbdK6ueNeti2/z5njXqe0wCbUpKYnUrdtI3bSR1K3bcpYph743kKCePTWO7sH+maBYs2ZTbFosQ7cN5a9rfwHQsEBDhlcfjr+7v1XasyfRHV4k8/BhqW1iJXkqOTmZcJJuv3Yj3ZhOq6KtGP3caIeZoKVkZxPdth1Zp0/j17o1+T4Zp3VIIg8zZ2SQcfDg38nKwYN3TTJFr8erRg18mzfDp2FDh189phgMJMyZS9xnn4FeT8EfZ+NZsaLWYT2QLRKUtdFrGbVrFCmGFDycPRhaZSiti7V2mHvqk8g6fZpzLVtJbRMryjPl62PTYnlrw1ukG9OpEl6FEdVHONQfUfyMmWSdPo0+IIDQwYO0DkfkcU4eHnhVq4ZXtWqAuhw48/Bh0vftQ+/rh0+jhrlqewSdqyuBr75C5vHjJP/yCzHvvEvh5cvs9hp1Oh19n+kLwPeHv2f8nvHodDq6lOryxOdONaQydvdYVp1bBUC54HKMqzWOgr4Fn/jcjuLm8uUAeNeuLYmJA7Db5CTVkErfnX2JS4+jqF9Rvqj3BS56+xrr/jeGCxe48c03AIQNGaxZPQohHsTJ1RXPihXtujfhSel0OiJGjiDz2DEM585x5b1BRH33rd0u3/9ngvLJn58APFGCciDuAEO2DSEmNQYnnROvl3udNyq84ZCb9T0uxWgkeaWamPm1aa1tMOKh2OcMMeDD7R9yKvEUQe5BfNPwG3xdHaeOgaIoXB0xAsVgwKtGdXxbOc7kXSFyGycvL/J/OQmduztpO3Zw49tvtQ7pX91OUF4r9xoAn/z5CfOOz3vk82Sbs/l6/9d0X9udmNQYIr0jmdlkJn2e6ZOnEhOAtJ07MV6/rq42q+P4+wLlBXabnOyK3YWHswffNPiGSO+HrzJpD5JWrCD9j13o3NwIH+FYQ1FC5EZuxYsTPnw4ADe++pq0P/7QOKJ/p9PpePuZtx87QbmYfJEev/bg20PfYlbMtCzSksUtF/Ns2LPWCtmu3VymrszxbdlSiq45CLtNTnToGF9rPGWCy2gdyiMxJiYS98l4AIL79Ma1QAGNIxJCAPi3aY1f+3agKMQMfI/sa3Fah/Sv7pegzD8+/19/RlEUlp1eRvtV7Tl04xA+Lj58WvtTxtYai4+rjy3CtjumpKScytz+MqTjMOw2Oelfsb9DbjQV98l4TDdv4layJEE9emgdjhDiDuEffohbyZKY4uO5MmAAitGodUj/6naC0rOsugx63J/jHpig3My8yYAtAxi2cxgZxgwqhVViSaslPF/4eVuGbHeS16xByc7GrWRJ3KTomsOw2+SkY8mOWofwyNJ27iRpxQrQ6YgYNdLuilUJkdc5ubsTOekLnDw9Sf/rL65P/krrkP6TTqej37P9/jVB2XV1F+1WtmP9hfU465zp92w/fmj8AxHeT7Z9QW5wc9lyQJ0IK0PsjsNukxNHY87I4OrwEQAEdOmCR4UK2gYkhLgvt8KFiRgzGoD4774jdcsWjSP6b7cTlFfLvgqoCcqCEwswmAx8vudzXv/tdeIy4ijkW4i5zefyWrnX0DvZ54okW8o6c0bd3Vqvx69FC63DEY9AkhMLuTFlKtmXLuEcFkZI/35ahyOE+Be+zz9PQBd1ee6VQYPJvnJF44j+m06no/+z/XMSlLG7x9JqeStmH5sNwIslXuSnFj9RJsix5ulZU9KdtU2CHWP3eqGS5MQCMk+eJH7mTADCh33k8JU1hcgLQgcPwr1sWUxJScS88y6KwaB1SP/pnwlKTGoMAW4BTK43mY+qf4Sni6fGEdoPxWQiSWqbOCy7LcLmKBSTiavDhoHRiE+jRvg0aKB1SEKIh+Dk6krkpC+IbtuOjIMHiZswkbChQ7QO6z/dTlCCPYI5l3SO3k/3JthDegX+KW3nToxxcWptk7p1tQ5HPCJJTp5Q4oKFZB48hJOXF2EffqB1OEKIR+CaPz/5PhnH5bd6kzB7Nh4Vn8W3cWOtw/pPOp3O6jsXO7qk27VNWrSQ2iYOSIZ1nkB2bCzXJ04EIGTAu7iEhWkckRDiUfnUr0/gq+owydX3P8Bw8aLGEYknZUpKIuVWbRMZ0nFMkpw8gdjRozGnp+Px9NMEvPSS1uEIIR5T6Dv98Xj2WcypqVzu3x/znbs1C4eT/OuvKAYDbiVK4F66tNbhiMcgycljSl6/Xq066OxM+KiR6Jzkn1IIR6VzcSFy4gT0AQFkHTvOtXHjtA5JPIHb5er92rSR2iYOSt5RH4MpJYVrH6t1EoJ69sS9RAmNIxJCPCmX8HDyffYZ6HTcXPgTSat+0Tok8Riyzp4l8+Ct2iYtpbaJo5Lk5DFc/2ISxrg4XAoWIPjNXlqHI4SwEO+az+X8TV8dPpysc+c0jkg8qpzaJrVqSW0TBybJySNK37+fxAULAIgYMQInd3eNIxJCWFJw7954Vq2Kkp5OTL9+mDMytA5JPCTFZCJpxUpAHdIRjkuSk0egGAzEDhsOioJf69Z4Va+udUhCCAvT6fVEfv4Z+pBgsk6fIXbkKBRF0Tos8RDSdv6h1jbx88O7Xl2twxFPQJKTRxA/YyZZp0+jDwggdPAgrcMRQliJc0gIkZ9PACcnkpYvJ2npUq1DEg/hztomTlLbxKFJcvKQDOfPc2PKFADChg7BOSBA44iEENbkVbUKIW+/DUDsqI/JPHlS44jEvzElJ5Py+++ADOnkBpKcPARFUbg6YiSKwYBXjRr4tmypdUhCCBsI+t/reNWuhZKVRczb/TClpmodkniA5DW3apsUL457Galt4ugkOXkISctXkL5rFzo3N8JHDJd180LkETonJ/KNH49zRASGCxeIHTZM5p/YqSSpbZKrSHLyH4wJCcSNHw9AcJ/euBYooHFEQghbcg4IIHLiBHB2JnnNrzmr9YT9yDoXTcbBg1LbJBeR5OQ/xI0fj+nmTdxKliSoRw+twxFCaMDzmWcIHTgAgLhxn5Bx+IjGEYk75dQ2qVkT55AQbYMRFiHJyb9I3bFDXTOv0xExaiQ6FxetQxJCaCSwe3e8GzZAyc4mpn9/TElJWockuF3bZAUgE2FzE0lOHsCckUHsiJEABHTpgkeFChpHJITQkk6nI9/YsbhERZEdE8OVoe/L/BM7kPbHLozXruHk54d3/XpahyMsRJKTB7gxZSrZly7hHBZGSP9+WocjhLADel9fIid9gc7FhdSNG0mYOUvrkPK8nImwzZtLbZNcRJKT+8g8eZL4GTMACB/2EXpvb40jEkLYC48yZQj74H0A4iZMIH3fPo0jyruktknuJcnJPygmE1c/GgYmEz6NGuHToIHWIQkh7Ix/x474Nm8OJhMx77yLMSFB65DypORf16JkZeFWvBjuZctoHY6wIElO/iFx/gIyDx3CycuLsA8/0DocIYQd0ul0hI8ciWvhwhivXePKoMEoZrPWYeU5OUM6raW2SW4jyckdsq9e5foXXwAQMuBdXMLCNI5ICGGv9N5eRE6ahM7dnbTt24n/7jutQ8pTss5Fk3HgAOj1+Eptk1xHkpNbFEUh9uPRmNPT8Xj6aQJeeknrkIQQds69ZAnChw0D4Prkr0jbtVvjiPKO28uHvWo+h0toqMbRCEuT5OSWlPXrSd24EZydCR81Ep2T/NMIIf6bf9s2+LVtC2YzMQMHkh0Xp3VIud6dtU38ZSJsriTvwIApJYVro8cAENSzJ+4lSmgckRDCkYR/9CFuJUpgunGDmL5vY87M1DqkXC1t1y6MsbFqbZN6UtskN5LkBLj+xRcY4+JwKViA4Dd7aR2OEMLBOHl4EPnlJJz8/Mg4eJArQ4fKBFkrSlq2HAC/5s1wcnPTNhhhFXk+OUnft5/EBQsBiBgxAid3d40jEkI4IrfChck/eTK4uJDy61qufzFJ65ByJVNKCinr1wNS2yQ3y9PJiTktjavDPgJFwa91a7yqV9c6JCGEA/OqWoWIj0cBEP/99yQuXqxxRLlP8q+/omRl4VqsKO5ly2odjrCSPJucKCYTMe8NwnDmLPqgIEIHD9I6JCFELuDfujXBvXsDEDtiJKk7dmgcUe5ye0jHv43UNsnNHik5GTduHJUrV8bHx4fQ0FBat27NyZMnH3j8G2+8gU6nY9KkSU8ap8XFTZhI6saN6Fxdyf/1VzgHBGgdkhAilwju0xvfVi3VCrL9+pN1+rTWIeUKWdHRZOzfD05O+LZsqXU4wooeKTnZsmULvXv3ZteuXaxfvx6j0Ujjxo1JS0u759jly5eze/du8uXLZ7FgLSVx8WISbu2dEzF2LJ7PPKNxREKI3ESn0xExejQelSpiTk3l0hu9MF6/rnVYDi+ntkmtmlLbJJd7pORk7dq19OjRgzJlylChQgVmzpzJxYsX2bt3713HxcTE0KdPH+bNm4eLi4tFA35Sabt2EztSHRMO7t0bvxbNNY5ICJEbObm6kv+rr3AtWJDsK1e49FZvzBkZWoflsBSTiaTlt2qbtG6tbTDC6p5ozklSUhIAgYGBOc+ZzWa6du3Ke++9R5ky9rURU1Z0NJf79QOjEd/mzQnu01vrkIQQuZhzQABR332L3t+fzMOHuTJokCwxfkzpu3ertU18ffGuX1/rcISVPXZyoigK7777LjVr1qTsHTOmx48fj7OzM2+//fZDnScrK4vk5OS7vqzBdPMml3u9iTkpCY8KFYgYO0YmUwkhrM61YEHyf/M1OhcXUtb/TtznE7QOySHdvDUR1ldqm+QJj52c9OnTh0OHDrFgwYKc5/bu3cuXX37JrFmzHvqNf9y4cfj5+eV8RUVFPW5ID6QYDFzu1x/DhQs454sg/zdfyy+3EMJmPCtWJGLcOAASZswgceFCjSNyLHfWNpFy9XnDYyUnffv2ZeXKlWzatIn8+fPnPL9t2zbi4uIoUKAAzs7OODs7c+HCBQYMGEChQoXue66hQ4eSlJSU83Xp0qXHupAHURSFq6NGkb57N06enkRNnYZzcLBF2xBCiP/i16I5If3UHuXYUR+TunWrxhE5juS1a1EyM3EtWhT3cuW0DkfYgPOjHKwoCn379mXZsmVs3ryZwoUL3/V6165dadiw4V3PNWnShK5du/LKK6/c95xubm64WbEXI2HmLJJ+XgJOTuSbOAH3krJvjhBCG0G9emG4eImkZcuI6f8OBefPw/2pp7QOy+79XduktQzH5xGPlJz07t2b+fPns2LFCnx8fIiNjQXAz88PDw8PgoKCCAoKuutnXFxcCA8Pp2TJkpaL+iGlbNxI3GefARA2ZDA+devaPAYhhLhNp9MRMXIE2VeukL57N5d6vUmhn37CJUyWxT6I4cIFMvbtu1XbpJXW4QgbeaRhnalTp5KUlETdunWJiIjI+frpp5+sFd9jyzx+nJiB74Gi4P9SRwK6dtU6JCGEUAs/Tv4S1yJFMMbGcunNXpjvUytKqG4uXw6AV83nJInLQx55WOdRnT9//pF/5kllx8Vx6c23UNLT8apRnfAPPpCuQCGE3dD7+RH17TTOd3yJrGPqB6n8X3+FTq/XOjS7opjNUtskj8p1e+uYMzK43LsPxthYXIsUIXLSJHR2VghOCCFco6KImvINOjc3Ujdt4tr48VqHZHfSd+/GePUqTj4+eDdooHU4woZyVXKimM1cGTKUzMOH0fv7EzVtKnpfX63DEkKI+/J4+mnyjf8EgMQf55AwZ67GEdmXm8uWAVLbJC/KVcnJ9a++ImXdOnBxIf9Xk3EtUEDrkIQQ4l/5Nm1KyIB3Abg2bhwpmzZpHJF9MKWmkvKb1DbJq3JNcpK0YgXxU6cBEDFyJJ6VK2sckRBCPJyg117Dv0N7MJuJGTCQjKNHtQ5Jcym3a5sUKYJ7+fJahyNsLFckJ+l793L1w48ACHr9dfzbSpYthHAcOp2O8GHD8KpRHSU9ncu93iT76lWtw9LU7XL1flLbJE9y+OTEcOkSl/v0RcnOxqdRQ0Le6a91SEII8ch0Li5EfvklbsWLYbx+nUu93sSUmjeXGBsuXCBj715wcsKvldQ2yYscOjkxpaSof8CJibiXLk2+8ePROTn0JQkh8jC9jw9R06ahDw4m6+RJYt59B8Vo1Dosm1EUhazoaK5/8w0AXs89h0tYmMZRCS08Up0Te6IYjcT0fwfD2bM4h4aSf+oUnDw9tQ5LCCGeiEtkJFFTp3ChazfStm4jdswYwocNy7VDG6bUNNJ37yJ1+3bStm0n+/LlnNf827TWLjChKYdNTq6NHUfajh3oPDzIP3WKZNdCiFzDo1w58n32KTFv9+PmgoW4FixIUI8eWodlEYqikHXiBKnbtpO2fTvp+/bBHb1DOhcXPCpWxKd+fXyaNtUwUqElh0xOEubOI3H+fADyfToejzJlNI5ICCEsy7dRI7IHDSJu/Hjixn+Ka/78+PxjY1VHYUxMJG3HTtK2bSN1xw5MN27c9bpLwQJ4P1cTr1o18apSBScvL40iFfbC4ZKT1G3buDZ2LAAhA97Ft1EjjSMSQgjrCOzRHcPFC9xcsJCYge9RcM4cPMqV1Tqs/6QYjWQcOkza9m2kbttO5pEjcMf2JzpPT7yqVsWr5nN416yJa8GCGkYr7JFDJSeZp04R0/8dMJvxa9uWoNde0zokIYSwGp1OR/gHH5B9OYa0bdu49OabFP5pIS6RkVqHdo/s2FjStm9Xh2v++ANzcvJdr7uVLIl3rZp41ayFx7PP4OTqqlGkwhHolMfZzc+KkpOT8fPzIykpCd87Ss8b4+M5/2JHsmNi8KxUiQIzpqOTX24hRB5gSk3lQpeXyTp5ErfixSg4fz56Hx9NYzJnZZGxd++tuSPbyDp95q7Xnfz88H6uBl41a91adSM7Cud2D3r/fhwOkZyYs7K42OMVMvbvx6VAAQr9tBDngACNIxVCCNvJvnqV8y92xHj9Ol41ahD17TSbbmqqKAqG8+dJ27ad1B3bSd/9J0pm5t8HODnhUa4cXrVq4V2rJu5ly8ouy3mMJZMTux/WURSFqx9+RMb+/Tj5+hI1baokJkKIPMclIoL806aqS4x37iR21CjCR416pCXGisGAKTUVc2oqppQUzKlpmFNTbn2vPm9OTbl1TBrmlBRMaamYU1IxJSRgvH79rvM5h4biVbOmOlxTvTp6f38LX7XIq+w+OYmfNo3kVatAryf/l5NwK1JE65CEEEITHmXKEDnhcy737sPNxT/j5OmJa+EimNPuSDbuSCjMqamYUv9+XjEYnqh9nYsLHpUq4l1TnTviVqJ4rq2/IrRl18M67NhBzDvqbp3hI0cS0PFFjaMTQgjtJcyZy7UxYx7753Wenui9vXHy9sbJxxu9lzdOPj44eXuh9/b5+3lvb5xufa/38catWDFZ5iseKE8M62QcOULikKEABHbvLomJEELcEtj1ZdDpSPn9d5y8vO5ONO5IKJy8vdD73Eoubh/j7S1zQYTds9uek71Vq+Fx8ybedeqQf8o38sckhBBC2DFL9pzY7S55pvh43EqUIN+ECZKYCCGEEHmI3SYn+qAgoqZOQe8t45tCCCFEXmK3yUnkhM/tsgqiEEIIIazLbpMTj3LltA5BCCGEEBqw2+RECCGEEHmTJCdCCCGEsCuSnAghhBDCrkhyIoQQQgi7IsmJEEIIIeyKJCdCCCGEsCuSnAghhBDCrkhyIoQQQgi7IsmJEEIIIeyKJCdCCCGEsCuSnAghhBDCrkhyIoQQQgi7IsmJEEIIIeyKJCdCCCGEsCvOWgfwT4qiAJCcnKxxJEIIIYR4WLfft2+/jz8Ju0tO4uPjAYiKitI4EiGEEEI8qpSUFPz8/J7oHHaXnAQGBgJw8eLFJ764h1W5cmX27Nljk7Zs3Z5cm2O2J9cm7f2X5ORkoqKiuHTpEr6+vlZvD+T3xBHbsmV7iqJQsWJF8uXL98TnsrvkxMlJnQbj5+dnsz84vV5vs7Zs3Z5cm2O2J9cm7T0sX1/fXPn/Ljf/f8vN1+bq6przPv4kZEIs0Lt371zbnlybY7Yn1ybt2SP5PXG8tmzdnqXa0imWmLliQcnJyfj5+ZGUlGTTzFIIIRyJ3CtFbmZ3PSdubm4MHz4cNzc3rUMRQgi7JfdKkZvZXc+JEEIIIfI2u+s5EcKR6HQ6li9frnUYQghhtx7nPinJiQPbuXMner2epk2bah1KrtGjRw9at26tdRgO69KlS/Ts2ZN8+fLh6upKwYIF6devX079ov+yefNmdDodN2/etG6gIk+Re6Vl2eI+KcmJA5sxYwZ9+/Zl+/btXLx48YnOZTKZMJvNFopM5EXnzp2jUqVKnDp1igULFnDmzBmmTZvGhg0bqF69OgkJCVqHKPIouVc6HpsnJ/LJ1DLS0tJYtGgRb775Ji1atGDWrFk5r93+9Ll69WoqVKiAu7s7VatW5fDhwznHzJo1C39/f3755RdKly6Nm5sbFy5c0OBK7FehQoWYNGnSXc89/fTTjBgxQpN47F3v3r1xdXXlt99+o06dOhQoUIDnn3+e33//nZiYGD744AMAsrKyGDRoEFFRUbi5uVG8eHGmT5/O+fPnqVevHgABAQHodDp69Oih4RVpS+6VliH3Suuy1n1Sek4c1E8//UTJkiUpWbIkL7/8MjNnzrxnP4P33nuPzz//nD179hAaGkqrVq3Izs7OeT09PZ1x48bxww8/cPToUUJDQ219GSKXSEhIYN26dbz11lt4eHjc9Vp4eDhdunThp59+QlEUunXrxsKFC5k8eTLHjx9n2rRpeHt7ExUVxZIlSwA4efIkV69e5csvv9TickQuIvdKx6RpcrJ27Vpq1qyJv78/QUFBtGjRgrNnz+a8fv78eXQ6HUuXLqVevXp4enpSoUIF/vjjDw2jtg/Tp0/n5ZdfBqBp06akpqayYcOGu44ZPnw4jRo1oly5csyePZtr166xbNmynNezs7OZMmUKNWrUoGTJknh5edn0GkTucfr0aRRFoVSpUvd9vVSpUiQmJrJnzx4WLVrEjBkzaNOmDUWKFKFBgwZ07NgRvV6fs31FaGgo4eHhNtvCwt7JvfLxyb3SMWmanKSlpfHuu++yZ88eNmzYgJOTE23atLlnPO+DDz5g4MCBHDhwgBIlStCpUyeMRqNGUWvv5MmT/Pnnn7z00ksAODs707FjR2bMmHHXcdWrV895HBgYSMmSJTl+/HjOc66urpQvX942QYs87fYn1ejoaPR6PXXq1NE4Isci98rHI/dKx6Xp3jrt2rW76/vp06cTGhrKsWPHKFu2bM7zAwcOpHnz5gCMHDmSMmXKcObMGZ566imbxmsvpk+fjtFoJDIyMuc5RVFwcXEhMTHxX39Wp9PlPPbw8Ljre3E3Jyene7p/7+zqFX8rVqwYOp2OY8eO3XeexIkTJwgICMDT09P2weUCcq98PHKvtD5r3Sc17Tk5e/YsnTt3pkiRIvj6+lK4cGGAe2ZT35mxRkREABAXF2e7QO2I0Wjkxx9/ZMKECRw4cCDn6+DBgxQsWJB58+blHLtr166cx4mJiZw6dSrP3qQeR0hICFevXs35Pjk5mejoaA0jsl9BQUE0atSIKVOmkJGRcddrsbGxzJs3j44dO1KuXDnMZjNbtmy573lcXV0BdUWE+JvcKx+d3Cttw1r3SU2Tk5YtWxIfH8/333/P7t272b17NwAGg+Gu41xcXHIe385e8+pSrl9++YXExER69uxJ2bJl7/pq374906dPzzl21KhRbNiwgSNHjtCjRw+Cg4Nl9v8jqF+/PnPmzGHbtm0cOXKE7t27o9frtQ7Lbn399ddkZWXRpEkTtm7dyqVLl1i7di2NGjUiMjKSMWPGUKhQIbp3786rr77K8uXLiY6OZvPmzSxatAiAggULotPp+OWXX7h+/TqpqakaX5V9kHvlo5N7pW1Y6z6pWXISHx/P8ePH+fDDD2nQoEHOhDnx76ZPn07Dhg3vO1GwXbt2HDhwgH379gHwySef0K9fPypWrMjVq1dZuXJlzidTcX9msxlnZ3W0c+jQodSuXZsWLVrQrFkzWrduTdGiRTWO0H4VL16cv/76i6JFi9KxY0eKFi3K//73P+rVq8cff/yRM9l16tSptG/fnrfeeounnnqK119/nbS0NAAiIyMZOXIkQ4YMISwsjD59+mh5SXZB7pWPR+6V1mOT+6RiY927d1deeOEFxWQyKUFBQcrLL7+snD59WtmwYYNSuXJlBVCWLVumKIqiREdHK4Cyf//+nJ9PTExUAGXTpk22Dt1hbNq0SQGUxMRErUNxOE2aNFF69+6tdRhCyL3SBuRe+XhscZ+0ec/J7YzLycmJhQsXsnfvXsqWLcs777zDZ599ZutwhADUcebVq1ezefNmGjZsqHU4Qsi9UtgdW94nbb5aJy4ujmLFigHQsGFDjh07dtfryh2zfgsVKnTPLGB/f/97nhPiSb366qvs2bOHAQMG8MILL2gdjhByrxR2x5b3SZ1io9/exMREdu7cSbt27Vi4cKFMNhJCiPuQe6UQNuw5kU+mQgjx3+ReKYQNe06EEEIIIR6GbPwnhBBCCLsiyYkQQggh7IokJ0IIIYSwK1ZJTsaNG0flypXx8fEhNDSU1q1bc/LkybuOURSFESNGkC9fPjw8PKhbty5Hjx7NeT0hIYG+fftSsmRJPD09KVCgAG+//TZJSUk5x5w/f56ePXtSuHBhPDw8KFq0KMOHD7+npLMQQtgbW90nAVq1akWBAgVwd3cnIiKCrl27cuXKFZtcpxCPwyrJyZYtW+jduze7du1i/fr1GI1GGjdunFOiGuDTTz9l4sSJfP311+zZs4fw8HAaNWpESkoKAFeuXOHKlSt8/vnnHD58mFmzZrF27Vp69uyZc44TJ05gNpv59ttvOXr0KF988QXTpk3j/ffft8ZlCSGExdjqPglQr149Fi1axMmTJ1myZAlnz56lffv2Nr1eIR6JVevP3hIXF6cAypYtWxRFURSz2ayEh4crn3zySc4xmZmZip+fnzJt2rQHnmfRokWKq6urkp2d/cBjPv30U6Vw4cKWC14IIWzAlvfJFStWKDqdTjEYDJa7ACEsyCZzTm53Md7e+Cs6OprY2FgaN26cc4ybmxt16tRh586d/3oeX1/fnA2HHnTM7XaEEMJR2Oo+mZCQwLx586hRo8ZduxgLYU+snpwoisK7775LzZo1KVu2LACxsbEAhIWF3XVsWFhYzmv/FB8fz8cff8wbb7zxwLbOnj3LV199Ra9evSwUvRBCWJ8t7pODBw/Gy8uLoKAgLl68yIoVKyx8FUJYjtWTkz59+nDo0CEWLFhwz2s6ne6u7xVFuec5gOTkZJo3b07p0qUZPnz4fdu5cuUKTZs2pUOHDrz22muWCV4IIWzAFvfJ9957j/379/Pbb7+h1+vp1q2b7L0j7JZVy9f37duXlStXsnXrVvLnz5/zfHh4OKB+MoiIiMh5Pi4u7p5PCSkpKTRt2hRvb2+WLVt2327IK1euUK9ePapXr853331npasRQgjLs9V9Mjg4mODgYEqUKEGpUqWIiopi165dVK9e3UpXJsTjs0rPiaIo9OnTh6VLl7Jx40YKFy581+uFCxcmPDyc9evX5zxnMBjYsmULNWrUyHkuOTmZxo0b4+rqysqVK3F3d7+nrZiYGOrWrcuzzz7LzJkzcXKS0i1CCPtny/vk/doGyMrKstDVCGFZVuk56d27N/Pnz2fFihX4+PjkjI/6+fnh4eGBTqejf//+jB07luLFi1O8eHHGjh2Lp6cnnTt3BtRPAo0bNyY9PZ25c+eSnJxMcnIyACEhIej1eq5cuULdunUpUKAAn3/+OdevX8+J4fanDiGEsEe2uk/++eef/Pnnn9SsWZOAgADOnTvHsGHDKFq0qPSaCPtljSVAwH2/Zs6cmXOM2WxWhg8froSHhytubm5K7dq1lcOHD+e8vmnTpgeeJzo6WlEURZk5c+YDjxFCCHtmq/vkoUOHlHr16imBgYGKm5ubUqhQIaVXr17K5cuXbXzFQjw82ZVYCCGEEHZFJmgIIYQQwq5IciKEEEIIuyLJiRBCCCHsiiQnQgghhLArkpwIIYQQwq5IciKEEEIIuyLJiRBCCCHsiiQnQgiL2Lx5Mzqdjps3b2odihDCwUkRNiHEY6lbty5PP/00kyZNAtR9XxISEggLC7vvrrlCCPGwrLorsRAi73B1dZU9rYQQFiHDOkKIR9ajRw+2bNnCl19+iU6nQ6fTMWvWrLuGdWbNmoW/vz+//PILJUuWxNPTk/bt25OWlsbs2bMpVKgQAQEB9O3bF5PJlHNug8HAoEGDiIyMxMvLi6pVq7J582ZtLlQIoQnpORFCPLIvv/ySU6dOUbZsWUaNGgXA0aNH7zkuPT2dyZMns3DhQlJSUmjbti1t27bF39+fNWvWcO7cOdq1a0fNmjXp2LEjAK+88grnz59n4cKF5MuXj2XLltG0aVMOHz5M8eLFbXqdQghtSHIihHhkfn5+uLq64unpmTOUc+LEiXuOy87OZurUqRQtWhSA9u3bM2fOHK5du4a3tzelS5emXr16bNq0iY4dO3L27FkWLFjA5cuXyZcvHwADBw5k7dq1zJw5k7Fjx9ruIoUQmpHkRAhhNZ6enjmJCUBYWBiFChXC29v7rufi4uIA2LdvH4qiUKJEibvOk5WVRVBQkG2CFkJoTpITIYTVuLi43PW9Tqe773NmsxkAs9mMXq9n79696PX6u467M6ERQuRukpwIIR6Lq6vrXRNZLeGZZ57BZDIRFxdHrVq1LHpuIYTjkNU6QojHUqhQIXbv3s358+e5ceNGTu/HkyhRogRdunShW7duLF26lOjoaPbs2cP48eNZs2aNBaIWQjgCSU6EEI9l4MCB6PV6SpcuTUhICBcvXrTIeWfOnEm3bt0YMGAAJUuWpFWrVuzevZuoqCiLnF8IYf+kQqwQQggh7Ir0nAghhBDCrkhyIoQQQgi7IsmJEEIIIeyKJCdCCCGEsCuSnAghhBDCrkhyIoQQQgi7IsmJEEIIIeyKJCdCCCGEsCuSnAghhBDCrkhyIoQQQgi7IsmJEEIIIeyKJCdCCCGEsCv/B2/Z1cqyhQ3DAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.reset_index().groupby(pd.Grouper(key='time', freq='M')).mean()[['Temperature_Air_2m_Max_Day_Time',\n", + " 'Temperature_Air_2m_Mean_Day_Time',\n", + " 'Temperature_Air_2m_Mean_Night_Time',\n", + " 'Temperature_Air_2m_Min_Night_Time']].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "#ds_rh = xr.open_mfdataset('../../data/remotesensing/era5/relativehumidity/*.nc', parallel=True)\n", + "df_rh = clip_area(ds_rh, MANILA).to_dataframe()" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['spatial_ref', 'Relative_Humidity_2m_06h', 'Relative_Humidity_2m_09h',\n", + " 'Relative_Humidity_2m_12h', 'Relative_Humidity_2m_15h',\n", + " 'Relative_Humidity_2m_18h'],\n", + " dtype='object')" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_rh.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHhCAYAAABEAkVkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeVxU9frH32dmGBj2fREQUBQRTTFNsVIpt7LSi5WmZqZplu23xVa1xbLUn3m7N03LLUVt01xSK/c1NxRXVEQQQUDZh21mzu+PwwwgO8zAoPN+veY1w5xzvud7zjBznvMsn0cQRVHEggULFixYsGDBjJA19wQsWLBgwYIFCxZuxWKgWLBgwYIFCxbMDouBYsGCBQsWLFgwOywGigULFixYsGDB7LAYKBYsWLBgwYIFs8NioFiwYMGCBQsWzA6LgWLBggULFixYMDssBooFCxYsWLBgwexQNPcEbkWn03Ht2jUcHBwQBKG5p2PBggULFixYqAOiKJKbm0urVq2QyRrv/zA7A+XatWv4+/s39zQsWLBgwYIFCw0gKSkJPz+/Ro9jdgaKg4MDIB2go6NjM8/GggULFixYsFAXcnJy8Pf3N1zHG4vZGSj6sI6jo6PFQLFgwYIFCxZaGMZKz7AkyVqwYMGCBQsWzA6LgWLBggULFixYMDvMLsRTV7RaLSUlJc09DQsWLNQBKysr5HJ5c0/DggULLYgWZ6CIokhqaipZWVnNPRULFizUA2dnZ7y9vS3yARYsWKgTLc5A0Rsnnp6e2NraWn7sLFgwc0RRRK1Wk5aWBoCPj08zz8iCBQstgRZloGi1WoNx4ubm1tzTsWDBQh1RqVQApKWl4enpaQn3WLBgoVZaVJKsPufE1ta2mWdiwYKF+qL/3lpyxyxYsFAXWpSBoscS1rFgoeVh+d5asGChPrRIA8WCBQsWLFiwcHtjMVAsWLBgwYIFC2aHxUBpISQkJCAIAjExMWYxTksiMDCQefPm1biOIAisW7cOuDPPUX1YunQpzs7OzT0NCxYs3OZYDJQmYty4cQiCgCAIKBQKWrduzQsvvEBmZqZJ9zls2LAK7/n7+5OSkkKnTp1Mtt/y1HQxK28UmJLDhw8zadKkOq9/6znauXMngiAYVXvn119/ZcCAAXh4eODo6EhERARbt2412vjVkZmZydNPP42TkxNOTk48/fTTVR7X0qVLueuuu7CxscHb25uXXnrJ5HOzYMGChfJYDJQmZPDgwaSkpJCQkMDixYvZsGEDL774YpPOQS6X4+3tjULRoirMG4XS3ombhaDViXVavynO0e7duxkwYACbN2/m6NGjREZG8uijj3L8+HGT7RNg1KhRxMTEsGXLFrZs2UJMTAxPP/10hXXmzp3L+++/z9SpUzl9+jR///03gwYNMum8LFiwYKESopmRnZ0tAmJ2dnalZQUFBeKZM2fEgoICw3s6nU7MLypplodOp6vzcT3zzDPi0KFDK7z3xhtviK6uroa/f/jhB7FDhw6itbW1GBISIv73v/81LLt8+bIIiMePHxdFURQ1Go04fvx4MTAwULSxsRHbt28vzps3z7D+tGnTRKDCY8eOHRXG0Wq1oq+vr/jtt99WmNfRo0dFQLx06ZIoiqKYlZUlTpw4UfTw8BAdHBzEyMhIMSYmpk7HvWTJEtHJyanKZYD422+/iaIoijt27BABMTMz07D8+PHjIiBevny5wlgbNmwQ27dvL6pUKnH48OFiXl6euHTpUjEgIEB0dnYWX3rpJVGj0UhzVxeLrfz8xbemzRQzcgtFURTFuLg48f777xetra3F0NBQcdu2bRXmUv4c6V+XfzzzzDPismXLRFdXV7GwsLDCMUVFRYlPP/10nc7NrXTs2FGcMWOG4W/9/8xnn30menp6ik5OTuL06dPFkpIS8c033xRdXFxEX19f8fvvv6/T+GfOnBEB8eDBg4b3Dhw4IALiuXPnRFEUxZs3b4oqlUr866+/qh1H/zls2bJF7NChg2hnZycOGjRIvHbtWo37r+r7a8GChduHmq7fDaHF30YXlGjp+JHpXeNVcebjQdgqG3YK4+Pj2bJlC1ZWVgAsWrSIadOm8c033xAeHs7x48eZOHEidnZ2PPPMM5W21+l0+Pn5sXbtWtzd3dm/fz+TJk3Cx8eHJ598kjfffJOzZ8+Sk5PDkiVLAHB1deXatWuGMWQyGSNHjmTlypVMnjzZ8P6qVauIiIigTZs2iKLIkCFDcHV1ZfPmzTg5ObFw4UIefPBB4uLicHV1bdDxNxS1Ws38+fNZvXo1ubm5REVFERUVhbOzM5s3byY+Pp7hw4dz33338ciw4STdVBu2zS3U4GJrRVRUFO7u7hw8eJCcnBxee+21avfn7+/PL7/8wvDhwzl//jyOjo6oVCqUSiWvvPIKv//+O0888QQAGRkZbNy4kS1bttT7uHQ6Hbm5uZXO5/bt2/Hz82P37t3s27ePCRMmcODAAfr06cOhQ4dYs2YNkydPZsCAAfj7+9e4jwMHDuDk5ETPnj0N7/Xq1QsnJyf2799PSEgIf/75JzqdjuTkZEJDQ8nNzaV3797MmTOnwvhqtZrZs2ezYsUKZDIZY8aM4c0332TlypX1PnYLdzbpuUU4qaxQKiwOfQsVafEGSkti48aN2Nvbo9VqKSwsBCR3OsAnn3zCnDlziIqKAiAoKIgzZ86wcOHCKg0UKysrZsyYYfg7KCiI/fv3s3btWp588kns7e1RqVQUFRXh7e1d7ZxGjx7N3LlzuXLlCgEBAeh0OlavXs17770HwI4dO4iNjSUtLQ1ra2sAZs+ezbp16/j555/rlNuRnZ2Nvb19Hc9SzZSUlPDtt9/Stm1bAB5//HFWrFjB9evXsbe3p2PHjkRGRvLX39vpdP9gdKJo0N/IK9KwbdufnD17loSEBPz8/ACYOXMmDz30UJX7k8vlBqPB09OzQj7NqFGjWLJkicFAWblyJX5+fvTr16/exzVnzhzy8/N58sknK7zv6urK/PnzkclkhISE8OWXX6JWqw2fz7vvvssXX3zBvn37GDlyZI37SE1NxdPTs9L7np6epKamApLhrNPpmDlzJl9//TVOTk588MEHDBgwgJMnT6JUKgHpc1iwYIHhc3jppZf4+OOP633cFu5sjidm8uTCAwzo6MX/Rt/d3NOxYGa0eANFZSXnzMfNEx9XWdVPrjsyMpJvv/0WtVrN4sWLiYuL4+WXXyY9PZ2kpCQmTJjAxIkTDetrNBqcnJyqHW/BggUsXryYK1euUFBQQHFxMV27dq3XnMLDw+nQoQPR0dFMnTqVXbt2kZaWZrhQHj16lLy8vEqtBQoKCrh06VKd9uHg4MCxY8cqvd+uXbt6zRUkNVL9RRHAy8uLwMDACgaQh4cnCVevodWJ2CoVKGQCcpmAThQ5ceo0rVu3NhgnABEREfWeB8DEiRPp0aMHycnJ+Pr6smTJEkMydH2Ijo5m+vTprF+/vpIBERYWhkxWdmfp5eVVIcFZLpfj5uZm6HNTG1XNTSxnxOl0OkpKSpg/fz4DBw40zM/b25sdO3YYclFu/Rx8fHzqPAcLFvT8sC+BEq3I5thU4tPzaONhnBsZC7cHLd5AEQShwWGWpsbOzo7g4GAA5s+fT2RkJDNmzDBUSCxatKiC+x2otmfJ2rVref3115kzZw4RERE4ODjw1VdfcejQoXrPa/To0axatYqpU6eyatUqBg0ahLu7OyBdsHx8fNi5c2el7epaaiqTyQzHXdM6IF0s9VQlia4PiekRBKHCexqtjrxiLVqtDhuFnEA3SV7dutR9XFiirTRmQxVOw8PD6dKlC8uXL2fQoEHExsayYcOGeo2xZs0aJkyYwE8//UT//v0rLa/tePXv6XS6Wvfl7e3N9evXK72fnp6Ol5cXUNbIr2PHjoblHh4euLu7k5iYWOO8yn92FizURkZeEVtOpRj+/vFgIh892rGGLSzcaViCfs3ItGnTmD17NlqtFl9fX+Lj4wkODq7wCAoKqnLbPXv20Lt3b1588UXCw8MJDg6u5NFQKpVotZUvyLcyatQoYmNjOXr0KD///DOjR482LOvWrRupqakoFIpKc9MbMcbAw8MDgJSUsh+s+uqQ6HQiCTfU6HSSRyDQ3Q6FXPoXty71dvkFBZOYmFghF+fAgQM1jqsPa1R1Lp977jmWLFnCDz/8QP/+/WvNAylPdHQ048aNY9WqVQwZMqTO2zWUiIgIsrOz+eeffwzvHTp0iOzsbHr37g3AvffeC8D58+cN69y8eZOMjAwCAgJMPkcLdw4/H71KiVbESSUZuz8dTUJdrGnmWbVc9l/M4PM/znIjr6i5p2I0LAZKM9KvXz/CwsKYOXMm06dP5/PPP+frr78mLi6O2NhYlixZYshRuZXg4GCOHDnC1q1biYuL48MPP+Tw4cMV1gkMDOTkyZOcP3+ejIyMapu0BQUF0bt3byZMmIBGo2Ho0KGGZf379yciIoJhw4axdetWEhIS2L9/Px988AFHjhwx2rkIDg7G39+f6dOnExcXx6ZNm5gzZ06dtxdFkcSbatTFGgQBbJXyCkl31goZgiBwd+++tG8fwtixYzlx4gR79uzh/fffr3HsgIAABEFg48aNpKenk5eXZ1g2evRokpOTWbRoEePHj6/zfKOjoxk7dixz5syhV69epKamkpqaSnZ2dp3HqC+hoaEMHjyYiRMncvDgQQ4ePMjEiRN55JFHCAkJAaB9+/YMHTqUV199lf3793Pq1CmeeeYZOnToQGRkpMnmZuHOQqcTif5H8si9+1AHAtxsyS3U8HvMtVq2tHArN/OL+ffaE4xafIiFu+J586cTt40302KgNDNvvPEGixYtYtCgQSxevJilS5fSuXNn+vbty9KlS6v1oEyePJmoqChGjBhBz549uXHjRiVNlYkTJxISEkL37t3x8PBg37591c5j9OjRnDhxgqioKFQqleF9QRDYvHkzffr0Yfz48bRv356RI0eSkJBgCAsYAysrK6Kjozl37hxdunRh1qxZfPrpp3XePjmzgJzCEmSCgL21ArmsYthGJgjYKeXIZDJ++HENRUVF3HPPPTz33HN89tlnNY7t6+vLjBkzmDp1Kl5eXhVEyxwdHRk+fDj29vaVRPFqYuHChWg0GqZMmYKPj4/h8eqrr9Z5jIawcuVKOnfuzMCBAxk4cCB33XUXK1asqLDO8uXL6dmzJ0OGDKFv375YWVlVqDizYKGx7LuUwZUbahysFTzWtRVjekreueUHrtw2F1dTI4oivx2/Sv+5u/jl2FUEARQygR3n09lwMqX2AVoAgmhm/w05OTk4OTmRnZ2No6NjhWWFhYVcvnyZoKAgbGxsmmmGFsyN1OwC0nKLEIAANzscVVVfSNNzi0jJLsDeWmHUZLwBAwYQGhrK/PnzjTbm7Yjl+2tBzws/HuWPU6k8ExHAjKGdyFIX03Pm3xRpdPzyQgR3BzStfEFLI/GGmvfXxbLnQgYAIV4OfD68M7vj0pn31wXc7JT89UZfXOyUTTqvmq7fDcHiQbHQosnIKyItV4q5+rqoqjVOABxtpGTq/GJtnVVla+LmzZusXr2a7du3M2XKlEaPZ8HCnUBaTiHbzkjJ2qNKPSfOtkoe69IKkLwoFqpGo9WxcNclBs7bxZ4LGSgVMt4aFMKGl++jW2sXXujXlnae9tzIL+azzWebe7qNpt4GSm5uLq+99hoBAQGoVCp69+5dIfdBFEWmT59Oq1atUKlU9OvXj9OnTxt10hbMh7CwMOzt7at8mFq0K0tdzLWsAgC8HW1wtbOucX1rKznWChmiKJJX1PhkvG7duvH8888za9YsQw6HnuY4LzNnzqx2n9XpvFiw0NSsPZKEVidyd4ALId4OhvfHRgQCsDk2hfTc2yfR01icvJrFY9/s4/M/zlFYoiOijRtbX+vDlMhgQ76dtULOF8M7IwhSEvLeUg9LS6Xe9bnPPfccp06dYsWKFbRq1Yoff/yR/v37c+bMGXx9ffnyyy+ZO3cuS5cupX379nz66acMGDCA8+fP4+DgUPsOLLQoNm/eXG3yrTFzVG4lr7CEpEzJOHGzt8bDoWbjRI+DjRVFeUXkFpQYqgcaSkJCQrXLmuO8TJ48uZLQm57yeUUWLDQXWp1I9D9JAIzu2brCss5+TnT1dyYmKYu1R5KYElmzNMGdQn6Rhrl/xrFk32V0IjiprHh/SChP3O1XpUTC3QGuPN0rgOUHrvDeb7Fsfa0PKmX9NLvMhXrloBQUFODg4MD69esrlEV27dqVRx55hE8++YRWrVrx2muv8c477wBQVFSEl5cXs2bN4vnnn691H5YcFAu1UVCsIT49H60olSi2drWts5ZJbmEJlzPysZLL6ODt0GANFAv1x/L9tbDjXBrPLj2Mk8qKQ+89iM0tYpe/HL3Kv386QSsnG3a/HWmQCbhT2XEujQ/WnSK51FP8WJdWfPRoR9zta74hyy0sYcDc3aTmFPJ83za8+1BoU0y3eXNQNBoNWq220o+LSqVi7969XL58mdTUVIMCJYC1tTV9+/Zl//79VY5ZVFRETk5OhYcFC9VRpNFyOUONVhSxs1bg71J34wTATqlAJgiUaHVVirZZsGDBdKw8JOWXPH63XyXjBGDIXT642im5ll3I3+dajjLxxbRcZm89z4oDCey5kM7VTEmPqaGk5xbxcvRxnl16mOSsAnydVSx5tgfznwqv1TgByVP8yTBJcXrxnsucSjadfIEpqVeIx8HBgYiICD755BNCQ0Px8vIiOjqaQ4cO0a5dO0M/j1td2F5eXly5UnXi0+eff16hp4wFC9VRotWRkJGPRqfDxkpSiZXJ6ucBkcmkMuScwhJyCzWoWogKsQULLZ1rWQVsLzU6nrqndZXr2FjJebK7Pwt2XWLFgSsMCqu+j5g5MWPDGUNFjR6lQkaAqy1B7nYEudsRWPoc5G6Hp4N1tW0n1h5J4rNNZ8kp1CATYMJ9Qbw+oH29FdMHdPRiyF0+bDqZwtRfT7LuxXtbnEeq3r/OK1asYPz48fj6+iKXy+nWrRujRo2q0Gvl1hNfvtfHrbz77ru88cYbhr9zcnLqpcZp4c5AqxNJyMinSKNDKZcR5G6HXNawL5uDjWSg5BRq8Gy8F9KCBQt1YM3hJHQi9GrjSrBn9WX+o3u2ZuHuS+y9mMGl9Dzamnl/Hq1O5NiVTADuDXbjek4RiTfUFGt0XEjL40JaXqVtbJVyAt30hostQe72eDhY878dFzl0+SYAYa0c+SLqLjr7Vd+PrTamPdqRPXHpnErO4Yd9l5nUp23tG5kR9TZQ2rZty65du8jPzycnJwcfHx9GjBhBUFCQoWtuamqqoacHQFpaWrWJgdbW1oYuuRYsVIVOFLlyI5+CEi0KmWScWDXiTsDBxgooQF2sQaPVtbi7CgsWWhoarY7VhyXlWH1pcXX4u9ryYAdP/jqbxo8HrzDt0bCmmGKDOZ+aS36xFntrBcvH90QuE9DqRK5lFXA5I7/CI+FGPlczC1AXazmTksOZlMopDTZWMv49IIRn7w1s9G+Tp4MNHwzpyNu/nGTun3EMDvOhdWl/spZAg/3bdnZ22NnZkZmZydatW/nyyy8NRsqff/5JeHg4AMXFxezatYtZs2YZbdIWbn9EUUSjEynW6MjIKyKvSINMEAh0tzX01WkoSoUMGys5hSVa8oo0ONs2rZiRBQt3GtvPpXE9pwg3OyWDwmqvYhvTK4C/zqbx89GrvDUoxKwbwh5PkrwnXfydDArWcpmAv6st/q629GnvUWH9Yo2OpEw1CbcYLlduqOno48iHj3TE39V4RsQT3f347XgyB+Jv8N5vsayYcE+LKQ6ot3m2detWtmzZwuXLl/nzzz+JjIwkJCSEZ599FkEQeO2115g5cya//fYbp06dYty4cdja2jJq1ChTzP+OISEhAUEQ6t1Az1TjGAudKFJYoiW7oIS03EKSbqq5mJbHmZQczqbkcCk9j+yCEgQEAtxsG/RDFRgYyLx58yq851Aq2pZTKOmhCILAunXrAPM7R+bG0qVL69zJ2oIFgJWHJO/J4939sFbUfoPRp50HgaX9edYdN+/+PMeuZAEQ7u9Sp/WVChltPex5MNSL5+5vw2f/6szK53qx950H+G5sd6MaJyD9ts2M6oy1Qsbeixn8cizZqOObknobKNnZ2UyZMoUOHTowduxY7rvvPrZt22bo0/H222/z2muv8eKLL9K9e3eSk5PZtm3bHa+BMm7cOARBQBAEFAoFrVu35oUXXiAzM9Ok+7y1P4y/vz8pKSl06tTJZPstj/5iptHqyC/ScDO/mJTsAhIy8hEEgf98v4q467lcuZFPanYhmepi1MUag9KrUiHDwcaKAHfb0tBM/Tl8+DCTJk2q8J5j6Vi5hSWVen/ceo527tyJIAhkZWU1aP9V8euvvzJgwAA8PDxwdHQkIiKCrVu3Gm386sjMzOTpp5/GyckJJycnnn766UrH9ffff9O7d28cHBzw8fHhnXfeQaOxdJm93SjW6Nh00vSiaEk31ey+kA7AUz2qTo69FZlMYEwvfX+eBLPuz3M8UfoN7xbg3LwTqYEgdzte7d8OgE83nSGjhXQ8rreB8uSTT3Lp0iWKiopISUnhm2++wcmpLIlHEASmT59OSkoKhYWF7Nq1q8kuhubO4MGDSUlJISEhgcWLF7Nhw4ZKDf5MjVwux9vbG4WiaVymOQUl6ESRM6XekKuZatJzi8gplETMRKRGfiorOc62SrwcbWjtaks7Lwc6tXKig7cjQe52BoOiIXh4eGBrW/GuxFYpN8SK1cUVy42b4hzt3r2bAQMGsHnzZo4ePUpkZCSPPvoox48fN9k+AUaNGkVMTAxbtmxhy5YtxMTE8PTTTxuWnzx5kocffpjBgwdz/PhxVq9eze+//87UqVNNOi8LTYtOJ/Lvn04wZdUxnlx4gHwjKCtXR/Q/iYgi3N/OnUB3uzpv98Td/thYyTiXmsuRK6a7kWsMmfnFxGfkA3X3oDQXE+9vQ6iPI1nqEj7ecKa5p1MnWn52oChCcX7zPOpp1VtbW+Pt7Y2fnx8DBw5kxIgRbNu2zbB8yZIlhIaGYmNjQ4cOHfjf//5X7VharZYJEyYQFBSESqUiJCSEr7/+2rB8+vTpLFu2jPXr1xs8Nzt37qwQvtDpdPj5+bFgwYIKYx87dgxBEIiPjwckr9mkSZPw9PTE0dGRBx54gBMnTtR6vMUaLTkFZWqqSrkMe2sF7vbWtHKWlE39XFSEtXIk+exRAtzssNYV4myrRGUl5+TJEwiCYFBs1XtjNm7cSEhICLa2tjz++OPk5+ezbNkyAgMDcXFx4eWXX0arLTM6bg3xXLhwgb59+3J3Gy/+9UAvNv5R0XNR/hwlJCQQGRkJgIuLC4IgMG7cOJYvX46bmxtFRRXvRIYPH87YsWNrPTfz5s3j7bffpkePHrRr146ZM2fSrl07NmzYYFhH7wGbOXMmXl5eODs7M2PGDDQaDW+99Raurq74+fnxww8/1Lo/gLNnz7JlyxYWL15MREQEERERLFq0iI0bN3L+/HkAVq9ezV133cVHH31EcHAwffv25fPPP+e///0vubm5FcbbunUroaGh2NvbG4xvC+aPKIp8uuksG05IoZPLGfkmu2AVa3SsPXIVgFHVlBZXh5OtFUO7+AKwwkz788QkZQGSh6KpG/PVFyu5jFnDOyMT4PcT19jRAnRmzDfzqK6UqGFmq+bZ93vXQFn3O4LyxMfHV2hhv2jRIqZNm8Y333xDeHg4x48fZ+LEidjZ2fHMM89U2l5vXKxduxZ3d3f279/PpEmT8PHx4cknn+TNN9/k7Nmz5OTksGTJEgBcXV25dq0sniuTyRg5ciQrV65k8uTJhvdXrVpFREQEbdq0QRRFhgwZgqurK5s3b8bJyYmFCxfy4IMPEhcXh6tr9V1H03OLkEw4gbBWZQlk5VHIZfVK2FKr1cyfP5/Vq1eTm5tLVFQUUVFRODs7s3nzZuLj4xk+fDj33XcfI0aMqPK8RUVF4e7uzrYde7iUnMbHH71f7f78/f355ZdfGD58OOfPn8fR0RGVSoVSqeSVV17h999/54knngAgIyODjRs3smXLljofT/l55ebmVjqf27dvx8/Pj927d7Nv3z4mTJjAgQMH6NOnD4cOHWLNmjVMnjyZAQMG1Fqef+DAAZycnOjZs6fhvV69euHk5MT+/fsJCQmhqKioSiHGwsJCjh49Sr9+/QDpc5g9ezYrVqxAJpMxZswY3nzzTZP3X7LQeBbtieeHfZcBSWPjh32XWXMkiX4hHjzU2aeWrevHn2euk5FXhIeDNf071r/Fw9MRAaw5ksQfp1JIz+1Y55YWTYU+vBPe2rl5J1JH7vJzZvy9QSzee5kP1p1i2+t9sLM2XzOg5XtQWhAbN27E3t4elUpF27ZtOXPmjKElwCeffMKcOXOIiooiKCiIqKgoXn/9dRYuXFjlWFZWVsyYMYMePXoQFBTE6NGjGTduHGvXrgUw7EfvtfH29kaprGzhjx49mn379hmE9HQ6HatXr2bMmDEA7Nixg9jYWH766Se6d+9Ou3btmD17Ns7Ozvz888/VHmuJVsdNteQ9yc3JxsnRoVIDu4ZQUlLCt99+S3h4OH369OHxxx9n7969fP/993Ts2JFHHnmEyMhIduzYUeX2f/31F2fPnmXFihVE3HM3d/e6l5fe+qDa/cnlcoPR4Onpibe3N05OTqhUKkaNGmUw/gBWrlyJn5+f4SJeH+bMmUN+fn6lXjqurq7Mnz+fkJAQxo8fT0hICGq1mvfee4927drx7rvvolQq2bdvX637SE1NxdPTs9L7np6eBpHFQYMGsX//fqKjo9FqtSQnJ/Ppp58CVPCQlJSUsGDBArp37063bt146aWX+Pvvv+t93BaalnXHk5m5+RwA7z8cyoePdGRyX0kbY+qvsaRkFxh1f6v+kX5XRnT3b5A0QCdfJ8JbO1OiFVn9T6JR52YMjiVmAdCttXmHd8rzxsD2+LmoSM4qYPa28809nRoxX9OprljZSp6M5tp3PYiMjOTbb79FrVazePFi4uLiePnll0lPTycpKYkJEyYwceJEw/oajaZCfs+tLFiwgMWLF3PlyhUKCgooLi6ma9eu9ZpTeHg4HTp0IDo6mqlTp7Jr1y7S0tIMF8qjR4+Sl5eHm5tbhe0KCgq4dOlSteNm5BYhiqKU5OrgUEHIT0+7du3qNVcAW1tb2rYtExvy8vIiMDCwgsHj5eVFWlrV7suzZ8/SunVr/Pz8pPGUCu66u0e95wEwceJEevToQXJyMr6+vixZssSQDF0foqOjmT59OuvXr69kQISFhSErJ0jn5eVVIadLLpfj5uZW7fHeSnXqlfr3Bw4cyFdffcXkyZN5+umnsba25sMPP2Tv3r3I5WXVF7d+Dj4+PnWeg4XmYc+FdN78SQrNPndfEBP7tAHg9f7t2Xshg9jkbN5Yc4KVz/Wst0JzVVzOyGffxRsIAoy8p+Him2MjAjiemMWqfxJ5oV9bs9Et0upEQ4inpXhQQPrNm/mvzoz94R+W7k/gsS6tCDdTA8s8PunGIAhSmKU5HvW8ENnZ2REcHMxdd93F/PnzKSoqYsaMGeh0OkAK88TExBgep06d4uDBg1WOtXbtWl5//XXGjx/Ptm3biImJ4dlnn6W4uLjep3D06NGsWrUKkMI7gwYNwt3dHZA8Kj4+PhXmFRMTw/nz53nrrbeqHE+j1XEjX5qHo40VMpmM4ODgSo/y6C/C5bP1q+oGrA+J6REEocr39Of0Vm6tBnCwUTRYEyA8PJwuXbqwfPlyjh07RmxsLOPGjavXGGvWrGHChAmsXbuW/v37V1re2OMtj7e3N9evX6/0fnp6egUhxTfeeIOsrCwSExPJyMhg6NChAAQFBdU4L3OutLjTOZWczeQVR9HoRB7r0or3Hi5rHqdUyPh6ZFdUVnIOxN/guz3xRtlndKnHo197D/xcGl46+3BnH9zslKRkF/LXWfMxgi+m5ZFXpMFWKSfEq2VVqfZp70FUuC+iCO/+Gkuxpvbfj+ag5RsoLZhp06Yxe/ZstFotvr6+xMfHV7qIl78olGfPnj307t2bF198kfDwcIKDgyt5NJRKZYVk0eoYNWoUsbGxHD16lJ9//pnRo0cblnXr1o3U1FQUCkWluemNmFvJyCtGJ4qorOTYWNXtX8zDQxIzKh9GMIUOSceOHUlMTDTk4jjYKDhx9DAgabJUhT40VtW5fO6551iyZAk//PAD/fv3r1ebhujoaMaNG8eqVasqdAc3FREREWRnZ/PPP/8Y3jt06BDZ2dn07t27wrqCINCqVStUKhXR0dH4+/vTrVs3k8/RgvFJvKFm3JJ/yC/Wcm+wG189cVclD0kbD3umP9YRgDnbzhN7tXHN5Yo0Wn46kgTUrhxbG9YKOSN6SN+rFQcTGjWWMTlWmn/Sxc/ZbLw69eGDRzriaqfkXGou3+2u3hvenLS8s3ob0a9fP8LCwpg5cybTp0/n888/5+uvvyYuLo7Y2FiWLFnC3Llzq9w2ODiYI0eOsHXrVuLi4vjwww85fPhwhXUCAwM5efIk58+fJyMjo0qPBEh3xr1792bChAloNBrDHTNA//79iYiIYNiwYWzdupWEhAT279/PBx98wJEjRyqNpdXpuJEvVbZU1xCruuPx9/dn+vTpxMXFsWnTJubMmVOnbetD//79CQkJYezYsZw4cYIjB/fz36+kHIuiarobBwQEIAgCGzduJD09nby8st4ao0ePJjk5mUWLFjF+/Pg6zyM6OpqxY8cyZ84cevXqRWpqKqmpqWRnm67raGhoKIMHD2bixIkcPHiQgwcPMnHiRB555BFCQkIM63311VfExsZy+vRpPvnkE7744gvmz59fIcRjoWWQkVfE2B8OkZFXTEcfRxaMubtaobQnu/szOMybEq3Iq6uPoy5ueOnxllOpZKpL8HGyITLEo/YNamFUz9bIBNh38QYXq+ht0xzo+++0pPBOeVztlHz0iGSUzt9+kUvp5nFey2MxUJqZN954g0WLFjFo0CAWL17M0qVL6dy5M3379mXp0qXVelAmT55MVFQUI0aMoGfPnty4caOSpsrEiRMJCQmhe/fueHh41JhIOXr0aE6cOEFUVBQqlcrwviAIbN68mT59+jB+/Hjat2/PyJEjSUhIqLK/0o38YrQ6EWuFHEdV3bVLrKysiI6O5ty5c3Tp0oVZs2YZkjONiUwm47fffqOoqIh77rmHiRMnMvXD6QAUVGOg+Pr6MmPGDKZOnYqXlxcvvfSSYZmjoyPDhw/H3t6+kiheTSxcuBCNRsOUKVPw8fExPF599dXGHF6trFy5ks6dOzNw4EAGDhzIXXfdxYoVKyqs88cff3D//ffTvXt3Nm3axPr16+t1bBbMg/wiDROWHibhhho/FxVLn+1Ro9ihIAh8Mbwz3o42xGfk88nGsw3et145dkQPf6N4F/xcbHmgg/R78+NB8yg5Pl6af9KSEmRvZWjXVvRp70GxRse7v8ai05lXmFYQzSxwnJOTg5OTE9nZ2Tg6Vmw1W1hYyOXLlwkKCqpUCmmh+dHpRM6l5qLR6fB3sTV7XQA92epirtxUY62QE+Jd/1jygAEDCA0NZf78+SaY3e2D5fvbdJRodTy37Ai74tJxsbXilxd606aOXYH3X8xg9PeHEEVYMOZuBnfyrte+L1zPZcD/7UYuE9j3zgN4Oxnns94dl87YH/7BwVrBwfcebNby2Gx1CV0+ljSsjn7QHzd78yp/rg9JN9UM/L/dFJRomfmvzozqWT+9mvLUdP1uCBYPigWjcVNdjEanQymX4WTbcOXXpsbeRoGAQJFGS5Gm9pwdPTdv3mT16tVs376dKVOmmHCGFizUHVEUmfpLLLvi0lFZyflhXI86GycAvYPdmVRa4TP115Nczyms1/5XlSbHPtDB02jGCcB9we4EuduRW6RhXUzz9pPRNwgMcLNt0cYJSN2j3xwkhXg//+NsvT9vU2IxUCw0irCwMIOuSWsvN3qF+NG9XSscHRxajGiXXCbD1lqKy+cW1j3u3q1bN55//nlmzZpVIYcDKp6XWx+mOi8zZ86sdp8PPfSQSfZpwfz4aut5fjl2FblM4L+jwxtUQvrvASF08pVk0d9YG1Nn139hiZZfjkrKsaMbcSdeFTKZYBhzxYErzVo1drwF6p/UxLjegXTxcyK3UMO09aebezoGWr4OioVmZfPmzZSUlJClLiY1uxCFXKCNuz0ymVBljoq54mijIL9IQ26hBvc63hHpJfirQn9eqsJU52Xy5MmVhN70lM8rsnD7smx/Av/bKVVkfP6vzoa8jfoilR6H88j8vey7eIPv91426KbUxMaTKeQUavBzUdGnXeOTY2/libv9mb3tPOdSczmckMk9QdUrWZuSYy1MQbY25DKBL4bfxaP/2cuW06n8eeY6Axqg/GtsLAaKhUYREBCAKIrEXc9F6arDx0lldnLUdcHBxoqU7ELyiqROylXJ8teHgIDGlVY2BFdX1xpbD1i4vdkcm8L0DdLd75sD2/Nkj4aLowG09bDno0c78u6vsXy59RwRbd3o5Fu9cCTAqkNSAutT97Q2itjbrTjZWjGsqy+rDyex/EBCsxgounICbbeLBwUg1MeR5+5vw4Jdl5i2/hS927o1uwy+JcRjodFkF5RQpNEhlwm4tpDE2FuxVshQymWIomjSzq4WLJiCg/E3eG11DKIIT/cKYEpkcO0b1YGRPfwZFOZlKD0uKK4+R+tsSg7HErNQyASe6O5nlP1XxdMRkvG/5VQqac2QL3EpPY/cQg02VjI6NCCp3px59cF2+LmouJZdyP/9Gdfc07EYKBYahyiKpOVKuifu9taN9jw0F4IgGEowcwurDs1YsGCOnEvNYeLyIxRrdQwO82b6Y2ENVke+FUEQ+CLqLrwcrbmUns+nm6rveryqtLR4YJgXng6mq9IKa+XE3QEuaHQiqw8nmWw/1aEP79zVQgXaakKllPPJMKmVxpL9CZxKNp0uU124vc6uhSYnt1BDYYkWuSDgZq7eE20xFNb+RXOwkdyZuYUai2y7hRZBclYBz/zwD7mFGnoEujBvZFej3yS42CmZ+2RXQNI3+fNM5XYJ+UUafjsuVdaMbqRybF14upe0j1WHEtFom1am/diVLOD2Cu+UJzLEkyF3+aDVibz/WyzaZtRGsRgoFhpMee+Jq73SfO8mbl6Gm/FQmFPjavbWCmSCQLFWR5GZ9qawYEFPlrqYZ374h+s5RbT3smfx2B7YWJlG7ffecqXH7/xyslJoZcOJa+QVaQh0syWijVtVQxiVhzp742anJDWnsEqDyZToS4y73SYJslUx7ZGOOFgrOHE1u1mF8cz0imKhJZBXpEFdrEEmCHWufGlyStTSA6Aot8ZVZTLBkBSWYwnzWDAjMvKK2H8pg6X7LvPeb7E8/u1+7v9yBxfT8vB2tGHps/eYXHvo3wPbE9bKkZv5xfz7pxMVSo/1yrGjepomOfZWrBVyQ4fk5Qea7gKaU1jChVKpfXPtAGwMPB1teHuwJJ3w1dbzpGY3jzaKxUBpISQkJCAIQqMb6BlrHKDMe2KnxMpcvSfqmwT2HMK8RSuhuPpeE4IgsG7dOhxsFCQnJeLlqDJJs8LbgaVLl+Ls7Nzc07gtyVIX88/lm/x48AofrT/FyO8O0O2TP+n+6V+MWnSI6RvOsOpQIkeuZJJbqMHTwZpl4++hlbPpy8itFXK+HhmOjZWMPRcy+GHfZQBOXs0iNjkbpVzG43c3rnKoPozqGYBMgAPxN7hwveabD2MRk5iFKIK/a8usVqwPo3oG0NXfmbwiDR9vbB5tFDO9qtx+jBs3DkEQEAQBhUJB69ateeGFF8jMzDTZPsc+8wyPPja0wnv+/v6kpKTQqVOnRo2dX6Qhv0iDUIv3pKaLmd4oMBmiDgoyObz5RyaNiYKSAtDVrBTrYKPAu5Uv24+ep0NHqZHWzp07EQSBrKwso03t119/ZcCAAXh4eODo6EhERARbt2412vjV8dlnn9G7d29sbW2r/FxOnDjBU089hb+/PyqVitDQUL7++muTz+tO5FxqDmsOJ/LxhjM8/f0h7vnsL7p+/CdPLjzAB+tOsfzAFQ7G3+RmfjGCIKmW9g/1YkpkW74e2ZU/Xr2fve880KD2DA0l2NOeD0sbzH255Tynr2UbkmMHd/Ju0io+X2cV/UObtj/P7SbQVhNymcDMf3VGLhPYHJvK32ebNpQGFh2UJmXw4MEsWbIEjUbDmTNnGD9+PFlZWURHRxt9X8UaHTkFkhFxPafQ0FlYLpfj7V2/3hpVkV7qPXFRWaFUmKmdW5gDOg0eHp7S37oSKdxjXf0PurVCjq21ErmnJ4UasDHR7+3u3bsZMGAAM2fOxNnZmSVLlvDoo49y6NAhwsPDTbNToLi4mCeeeIKIiAi+//77SsuPHj2Kh4cHP/74I/7+/uzfv59JkyYhl8srNEm00DjWHE7knV9iq1zm66yinZc9IV4OtPNyIMTLgWBPe1RK8+gmPeqe1uw8n86fZ67zSvRxUkrd/8ZWjq0LT0cEsO3MdX45lsxbgztgb2LdDoNAm7+zSfdjLnRs5chz9wWxcHc8H60/TURbN2yVTWc2mOmVpe6Iooi6RN0sj/pWelhbW+Pt7Y2fnx8DBw5kxIgRbNu2zbB8yZIlhIaGYmNjQ4cOHfjf//5X7VharZYJEyYQFBSESqUiJCTEcKer04n8e+r7rP9pFTu2bcbbSYVMJmP79h0VQjw6nQ4/Pz8WLFhQYexjx44hCALx8fEAZGdnM2nSJDw9PXF0dKRfZCSHjx1DAKO5OavyUsTExCAIgkGxVe+N2bhxIyEhIdja2vL444+Tn5/PsmXLCAwMxMXFhZdffhmtVgvqGwAE9nyIeT+slQYtzuPChQv06dMHGxsbOnbsyJ9//llhLtlpyXTxd+Hg4aMkJCQQGRkJgIuLC4IgMG7cOJYvX46bmxtFRUUVth0+fDhjx46t9XjnzZvH22+/TY8ePWjXrh0zZ86kXbt2bNiwwbDOuHHjGDZsGDNnzsTLywtnZ2dmzJiBRqPhrbfewtXVFT8/P3744Yc6n+cZM2bw+uuv07lz5yqXjx8/nvnz59O3b1/atGnDmDFjePbZZ/n1118rrbt161ZCQ0Oxt7dn8ODBpKSk1HkedzIZeUV8tknqFHx3gAvj7w3ii6jO/Ppib2KnD2Tf1AdY+uw9vPtwKI/f7UdnPyezMU5A8nzOGn4Xng5S6bG6WEuwp32ziKbd29adNu525BVp2HTymkn3pdOJHC81ULoF3P4eFD2v9m+Hr7OK5KwC5v11oUn33eI9KAWaAnqu6tks+z406hC2VrYN2jY+Pp4tW7ZgZSUlti1atIhp06bxzTffEB4ezvHjx5k4cSJ2dnY888wzlbbXGxdr167F3d3dcKfr7e1NxIBHGT1xChfjzlNckM8Hs/6DiIi3pwclRVmGMWQyGSNHjmTlypVMnjzZ8P6qVauIiIigTZs2iKLIkCFDcHV1ZfPmzTg5OfHVvG+YNHIYu/45gbWVc4OOv6Go1Wrmz5/P6tWryc3NJSoqiqioKJydndm8eTPx8fEMHz6c+3r3YkRfyRWNIAOF5ArRFeQSFTUcd3d3Dh48SE5ODq+99lqFfdiV9uXJL9Li5+fHL7/8wvDhwzl//jyOjo6oVCqUSiWvvPIKv//+O0888QQAGRkZbNy4kS1bttT7uHQ6Hbm5uZWUYLdv346fnx+7d+9m3759TJgwgQMHDtCnTx8OHTrEmjVrmDx5MgMGDMDf3zTx/+zs7ErzUqvVzJ49mxUrViCTyRgzZgxvvvlmi+m/1JzM+uMcOYUawlo5svb5iBapHeRqp2TOk114+vt/AMmrYiztlfogkwkMv9uPr7aeZ33MNUb0MJ0XJz4jn5xCDdYKGaE+je/U21KwVSr4eGgYE5Yd4fu9lxnW1ZeOrZrm+Fu8gdKS2LhxI/b29mi1WgoLJbfo3LlzAfjkk0+YM2cOUVFRAAQFBXHmzBkWLlxYpYFiZWXFjBkzDH8HBQWxf/9+foxeQ+i9g7Czc8DVyZ58mY4eHYO4clONRidy7UZ+hXFGjx7N3LlzuXLlCgEBAeh0OlavXs17770HwI4dO4iNjSUtLQ1ra2sKS7S89O4MtmzawO4/N3JX8GRqIzs7G3v7undTrYmSkhK+/fZb2rZtC8Djjz/OihUruH79Ovb29nTs2JHIyEh2/LVNMlCs7AAB5JKn56+//+bs2bMkJCTg5yepXc6cObNCMz1VqQtTK4oU6zBcnD09PSvkbYwaNYolS5YYDJSVK1fi5+dHv3796n1cc+bMIT8/v1IvHVdXV+bPn49MJiMkJIQvv/wStVpt+HzeffddvvjiC/bt28fIkSPrvd/aOHDgAGvXrmXTpk0V3i8pKWHBggWGz+Gll17i448/Nvr+bzeOXrnJT6XN9D4Z1qlFGid67m/nwfRHO3I4IZMRjZTVbwyPdWnFV1vPcyD+BqnZhUbtoFyeMoE2J/MtCjARD4Z68XBnbzbHpvLeb7H88kLvJvnfbfEGikqh4tCoQ8227/oQGRnJt99+i1qtZvHixcTFxfHyyy+Tnp5OUlISEyZMYOLEiYb1NRoNTk7V975YsGABixcv5sqVKxQUFFBcXExIR8l17+NsY/gS2dtYEexhT8INNSVaKSyVV1pGGx4eTocOHYiOjmbq1Kns2rWLtLQ0w4Xy6NGj5OXl4eYmaRuIgChCUWEBSQmX63TcDg4OHDt2rNL77dq1q9P25bG1tTVcFEFqvBcYGFjBAPLy8iIttdTda1t65y9TgCDn7IV4Wvv7G4wTgIiIiAr7kJW7E6ypu/HEiRPp0aMHycnJ+Pr6smTJEkMydH2Ijo5m+vTprF+/Hk9PzwrLwsLCkMnKfgy9vLwqJDjL5XLc3NxIS0ur1z7rwunTpxk6dCgfffQRAwYMqLDs1s/Bx8fHJHO4ndBodXywTqqGGNnD/7ZItBx3bxDj7g1q1jn4u9rSPcCFI1cy2XDiWp2aGjYEQ3jnNvjcGsK0R8PYHZdBTFIWqw5d4emIQJPvs8UbKIIgNDjM0tTY2dkRHCz1yJg/fz6RkZHMmDHDkHy4aNEievasGK6Sy6uOPa9du5bXX3+dOXPmEBERgbXKlumffsHJ40dwtVVWUnW1tpLT1sOO68nSeNeyC0nPLcLdXsno0aNZtWoVU6dOZdWqVQwaNAh3d3dACj34+Piwc+dOijVaLqerEREJcLPFx9O9Tsctk8kMx13TOkCFvJ6qugHrQ2J6BEGo/J6oRafVADJQuehXBKVd6fi6SmNUR02y9+Hh4XTp0oXly5czaNAgYmNjK+SQ1IU1a9YwYcIEfvrpJ/r3719peZ2OVxDQ6YwrLHfmzBkeeOABJk6cyAcffFCneVnUd2vmx4NXOJuSg5PKircHd2ju6dxWDA335ciVTNafSDahgZIF3N76JzXh5WjDW4NCmPb7ab7ccp5BYd54OpqupQHcBkmyLZlp06Yxe/ZstFotvr6+xMfHExwcXOERFFT13cmePXvo3bs3L774Ind16YrCpRWJVy4jCAKtXFQIgoBSqZSSRUtRyGX4uZYZcynZBSRnFTDyqaeIjY3l6NGj/Pzzz4wePdqwTrdu3UhNTUWhUODk1Rr/oCA6dmhP544dDEaMMfDwkFqzl0+0bLAOiaY0cVXlDLJyBp7Sjo7t25CYlMy1a2UJdQcOHKh2KHWxFpm8NOSjrVyi/Nxzz7FkyRJ++OEH+vfvX688kOjoaMaNG8eqVasYMmRInbczNadPnyYyMpJnnnmGzz77rLmnc1uQnlvEnG1S87W3B4e02Kaa5sqQzj4oZAKnknO4mFa93lFDyS0s4Xyp1srtrCBbG2N6BdDFz4ncIg0zNlbfl8lYWAyUZqRfv36EhYUxc+ZMpk+fzueff87XX39NXFwcsbGxLFmyxJCjcivBwcEcOXKELVu2sPvwCWbP/JjTJ46jVMgMIYrAwEBOnjzJ+fPnycjIoKSkxLDM3d4aAbiZXwwOnkRE9GbChAloNBqGDi3TTunfvz8REREMHTaMDZv/IDkpkfhTx/jggw84cuSI0c5FcHAw/v7+TJ8+nbi4ODZt2sScOXPqP5BOC9pSA8X2lqoCpT397+9JSNtAxo4dy4kTJ9izZw/vv/9+lUNZl5ZPu3r7IggCGzduJD09nby8sh/A0aNHk5yczKJFixg/fnydpxkdHc3YsWOZM2cOvXr1IjU1ldTUVLKzTducKzExkZiYGBITE9FqtcTExBATE2M4Jr1xMmDAAN544w3DvNLT0006r9udz/84S26Rhrv8nBhpwkTOOxVXOyV92ks3Oetjko0+/omkbERRKgE3tdfAnJHLBGZGSdoom06msOOcacO6FgOlmXnjjTdYtGgRgwYNYvHixSxdupTOnTvTt29fli5dWq0HZfLkyURFRTFi5EiGDupHdlYmzz8/mfLBiokTJxISEkL37t3x8PBg3759hmWudkoC3OyQCQL5RRoGPDacEydOEBUVhUpVllsjCAKbN2+me8/efPTvlxjatzvjnxlDQkICXl5eRjsPVlZWREdHc+7cObp06cKsWbP49NNP6z9QYbaUKCPIQHlLYq7SFplMzm+LZ1NUWMA999zDc889V62XwK40WdbB1ZMZM2YwdepUvLy8KuiBODo6Mnz4cOzt7Rk2bFidp7lw4UI0Gg1TpkzBx8fH8Hj11Vfre8T14qOPPiI8PJxp06aRl5dHeHg44eHhBmPzp59+Ij09nZUrV1aYV48ePUw6r9uZfy7f5NdjyQgCfDK0ZSfGmjNDu7YCYH3MNaOHG+/E8uLqCGvlxLO9AwH4cP0pCoprFr9sDIJoZoHjnJwcnJycyM7OxtGxYilTYWEhly9fJigoCBubO9eK1ZNdUMKV0qocPxfbBrmNC0q0XMnIp1irQy4TCHC1xd6mYn6BRqvjXGouOlEk0M0OR5Vpe340iowLkqS9gzc4+FSxPA6K88HJH+xqDlHlF2m4lJ6HXCYQ6uNYIXm2PAMGDCA0NJT58+cb4whuW+7E769Gq+OR/+zlXGouT93Tms+jqtafsdB41MUaun/6F+piLb++2NuoyazPLvmHHefT+eiRjoy/r3mTgs2B/CINA+bu4lp2IZP7tmXqQ1JOVU3X74Zg8aC0UApLtCTdlJrgudtbNzimrbKS09bTHlulAq1O5HKGmht5FcXHMvKL0YkiKis5DjZmnFetKSrrt6OqRjRK71Upzq96eTlslXIUMgGtTkRdxV3CzZs3Wb16Ndu3b2fKlCkNnbWF25jlB65wLjUXZ1sr3h4U0tzTua2xVSoY2FHy6v4eYzzRNlEUOZ6UBVg8KHrsrBV8PFSqJly8J55zqTV3im8oFgOlBaLR6rhyIx+dKGJvrWh03b+VXEYbdzucbZWIiCRnFXAtqwBRFNHqRIPB4lEql1+esLAw7O3tq3w0uWiX+qb0rHQARTUKt/UwUARBMHiTqqrm6datG88//zyzZs0iJKTixac5zsvMmTOr3Wd5nRcLTUNaTiH/96eUGPvO4A64WBJjTc7QcF8ANp68hkZrnMq2yxn5ZKlLUCpkdLyDBNpqo39HLwaHeaPRibz7a2yF7tbGwoxvhy1UhSiKJGUWUKTRoZTLaO1qW23ooT7IZAL+LiqsFTKu5xSSkVdEkUaHykqOVidirZDjVEVoZ/PmzVWWAwNGzVGpFVGEglID5dbk2PIoS6uYtEWgLQF5zeEqRxsFWepicgs1+NwiSaOX4K+K5jgvkydPriT0pqd8XpGFpmHmZikxtou/MyO6N5+Q2Z3EfcHuuNopycgrZu/FDPqFeNa+US0cKy0v7uzrZL59x5qJaY91ZM+FdI4nZrHqn0Qe62hcD5PFQGlhpOYUklsoVeMEuNmiMKKioSAIeDnaYK2QcTWzgNzCEoPnoCrvCUBAQIDR9t8oivNAWwyCHGycq19PpgCFCjQF0jaqmr9Q9tYKBKSQWrFGV+cfqOY4L66urpUk6S00Dwfjb7Au5lppYmwYMktibJNgJZfxyF0+LD9whd9jrhnJQNELtDk3eqzbDR8nFW8OCmHGhjPM2nKOCH/jNjq1mIMtiCx1saGLsJ+LyiDJbmycbZW08bAzGD9KuQxnWzNOjAVDY0BJ+6SWf2ulnfRchzCPQi4zdO+sSbTNggU9JVodH60/BUg9au7yc27eCd1hDO0qhXm2nk41SoWJXqCtxqTbi3/DT+MgP6PR+2tpjI0IpLOvE7mFGr7cct6oY9fLQNFoNHzwwQeGDrpt2rTh448/rqBiqZf6Lv/o1auXUSd9J1JQrOFqZgEgeTOcbU0bz7ZVKgj2sMfD3prWbsYJI5kMnQYKsqTXtm61r2+tz0Opm6CTPjE4NaeQC9dzuZSeR0JGPok31FzNVHMtq4DUnELScwu5kVdEprqYnIIS8gpLUBdrKCzRUqLRmSRGa8H8WLY/gbjrebjYWvGWJTG2yenW2hl/VxX5xVr+PHu9UWPlFWk4X5oAWqOC7LYP4PRv8M93jdpfS0QuE/g8qjMyAf44lWrUset1Cz5r1iwWLFjAsmXLCAsL48iRIzz77LM4OTlV0G8YPHgwS5YsMfytVFqSwxpDiVbHlRtqdKKIg40V3k0kFKRUyPBxbgG5CwVZgAgKG6hL2wO9B6WkQBJ2k9Xcyt5JZcX13CK0OpECXcPvyAQEnFQK3OytsVXKm6X7qwXTcr1cYuzUhzpUfyORchKiR8IDH0DXUU04w9sfQRAY2sWXb3Zc5PeYZB7r0qrBY51MykInQisnm+qLETKvQFqpquq5TRD5XoP311Lp5OvEuN5BLN5+2qjj1stAOXDgAEOHDjXIcgcGBhIdHV1JUdTa2hpvb2/jzfIORieKJN5UU6zVYa2Q4++qslzYbkUf3rF1lXru1IZcKT20xVKYx6bmzHxrKzkhXg6UaHVodSI6UXpodRhe63QiOpFyy0GnE9EaloOISFZBCVkFJais5LjZW+OssrLkJ9xGfLbpLPnFWsJbO/PE3TUkxp6Ihpxk2DET7hpZe1jSQr0YFt6Kb3ZcZOf5dDLzixtcQaUvLw6vqbw4bmvZ6+un4OZlcL3ztFLeGNieDUcukmTEMev1rbjvvvv4+++/iYuT7hBOnDjB3r17efjhhyust3PnTjw9PWnfvj0TJ06ssctpUVEROTk5FR4WykjJLiS/SINcnxRr+SGrSEkhlEh6MNVqn1SFsn5hHqVChp21AkeVFc62SlztrPFwsMbL0QYfJxW+Lrb4u9oS6G5HGw97gj3tae/tQKiPI2GtnOjk60g7TwdcbZXIBIGCEi1XM9WcS80lNbuQEo1xm/1Vh5npMt5W7L+Uwe8nriErVYyt0fBMPio9ZyfB5V1NM8E7iGBPBzr6OKLRiWyKTal9g2o4dkVKkA33d65+pbg/Sl+Uft7nNjV4fy0Ze2sF7z0catQx63W1e+edd3jqqafo0KEDVlZWhIeH89prr/HUU08Z1nnooYdYuXIl27dvZ86cORw+fJgHHniAoqKiKsf8/PPPcXJyMjzq02ztdudmfpFBg0SXm4ZKqWh4A71SEhISEASh0eOYDXrvibVTtSXDgYGBzJs3r+KbtyTKCoLAunXrANOcI0EQUCnl+Lna0sHbAW8nG6zkMjQ6HWm5hZxLzSXxRj75RRqjGhHFGh2Z6mKuZqo5n5rLmZQc0nILG7WPpUuX4uzsbLQ53g5IibGSe3tMrwA6+TpVv7K2BFJOlP0d08R6QXcIw8Kl0E5DRdvqJNBWlAsJe6XXPZ6Tns9tbND+bgceDDWuhEK9DJQ1a9bw448/smrVKo4dO8ayZcuYPXs2y5YtM6wzYsQIhgwZQqdOnXj00Uf5448/DM3fquLdd98lOzvb8EhKMqaDyHwonzysUCho3bo1L7zwApmZmVWuX1CsITmrEJDaXDvY1L+KZty4cZX6w/j7+5OSkkKnTp3qPV5DqOliVt4oaBB11D45fPgwkyZNqvhmecE2saL34tZztHPnTgRBICsrq+FzLYdCLmPvn5t5ZexwHghvR+/Q1owZOoBNf2zhUnoeF9PyuJlfXO+kWlEUKdZouZlfTNJNNedScziXmkPSTTU384sp0mhZMO8rBkb2wdbOrsbP5dbHggULjHDkty8/7L3MxbQ83OyU/HtALYmxaWdAUyiVvAOc3VCW5G3BaDzapRWCAP8k3ORqprre21+5IX1vlHIZYa2qCQNf2iGFil3bwH2vSe8lHoQ8S3NNY1AvA+Wtt95i6tSpjBw5ks6dO/P000/z+uuv8/nnn1e7jY+PDwEBAVy4cKHK5dbW1jg6OlZ43K4MHjyYlJQUEhISWLx4MRs2bODFF1+sct2b+cWIooijjRWeDtWoojYAuVyOt7c3CsVtIIFTlCNV8MgUNeaReHh4YGt7S/KswlrSTEGUkmXL0RTnaPfu3QwYMIA/Nm/m+LGjDOz/AK+Of4rzp0/WOfwjiiJFJVpu5heVGiS5nEvN5Wqmmkx1McUaHQJSOwN3e2sC3eywkYsMfGQYT4wZj06UempUxZIlS0hJSTE8nnnmGZOdi5ZOSnYBX/8t/b5NfagDTrWV5OvDO4H3gWdHyVg5/auJZ3nn4eOkomeQdOPy+4n6e1H0+idhvo5YK6pJpI/bIj23HwxOfuDTFRDLhX0sNIZ6GShqtRrZLTkQcrm8Qpnxrdy4cYOkpCR8fKpo3GYERFFEp1Y3y6O+bnJ98rCfnx8DBw5kxIgRbNu2zbB8yZIlhIaGYmNjw/09urJm2WJc7ZRVJsVqtVomTJhgKPkOCQnh66+/NiyfPn06y5YtY/369Ya74J07d1YIX+h0Ovz8/CrdHR87dgxBEIiPjwcgOzubSZMm4enpiaOjIw888AAnTpzAmFTlpYiJiUEQBINiq94bs3HjRkJCQrB19ebxiW+Rr7Nm2fIVBAYG4uLiwssvv4xWW1Ztc2uI58KFC/Tp2xeboB507DecP7dU9O6VP0cJCQlERkYC4OLigiAIjBs3juXLl+Pm5lYpdDl8+HDGjh1b6/HOmzePt99+mx49etCuXTu+mvUF7dq14/SBHYbwz7uvTmbUk8P59/vT8fD0xNnZmQ8/msb1rHyef+k1nF1dad26Nf/5dhGZ6mJKtDoEBGyVCjwcrAl0t6NjK0faeTnQylmFo8qKrz7/jBnvvUNoWCdAJD49n/Tcokr/y87Oznh7exseVSnRbt26ldDQUOzt7Q3G953Ip5vOoi7WcneAC8O7+dW+gd5A8e0OXUdLr49bwjymYFipJkpDwjxlAm3VhHd02rIE2faDpefQR6Tns3dumMeY1OsW8dFHH+Wzzz6jdevWhIWFcfz4cebOncv48eMByMvLY/r06QwfPhwfHx8SEhJ47733cHd351//+pdJDkAsKOB8t7tNMnZthBw7inDrnXkdiY+PZ8uWLVhZSXdbixYtYtq0aXzzzTeEhnXmj90H+fjtVwlu5c6zz46rtL3euFi7di3u7u7s37+fSZMm4ePjw5NPPsmbb77J2bNnycnJMZR8u7q6cu1a2RdVJpMxcuRIVq5cyeTJkw3vr1q1ioiICNq0aYMoigwZMgRXV1c2b96Mk5MTCxcu5MEHHyQuLq7JlUvVajXz589n9coV5CbGEvXcm0SNm4KzizS/+Ph4hg8fzn333ceIESMqba/T6YiKisLd3Z2D2zeTk3qZ1z74uNr9+fv788svvzB8+HDOnz+Po6MjKpUKpVLJK6+8wu+//84TTzwBQEZGBhs3bmTLli31Pi6dTkdubi7u7m54OtjgYW+NnbWCv/fvwdOnFd//tInjhw8x/a2X2b57H3f3jODH3/9i24bf+Oy9N3jkoUG0bxuIrVKBvJaqIJVSjpeDEgEBEZGU7ALyizT4uagM4nwvvfQSzz33HEFBQUyYMIFJkyZVuDlRq9XMnj2bFStWIJPJGDNmDG+++WbT919qZvZeyGDTyRRkAnxcV8XYq3oD5W7w6wF/TYPkI5B+HjwsuinG5KFOPny0/nSpdzGHDt5199DXKtCWfAzUGWDtCK0jpPc6PALbP4X4nVJ+irVD4w7gDqdeBsp//vMfPvzwQ1588UXS0tJo1aoVzz//PB999BEgeVNiY2NZvnw5WVlZ+Pj4EBkZyZo1a3BwsHxQGzduxN7eHq1WS2GhlF8yd+5cAD755BPmzJlDVFQU13MK6f+QB8nxF1i06LsqDRQrKytmzJhh+DsoKIj9+/ezdu1annzySezt7VGpVBQVFdVY8j169Gjmzp3LlStXCAgIQKfTsXr1at57T6rl37FjB7GxsaSlpWFtLYWaZs+ezbp16/j5558r53ZUQXZ2Nvb29nU+TzVRUlLCt99+S1svB2hlxeOPDmLFzxu4fv069vb2dOzYkcjISHbs2FGlgfLXX39x9uxZEhIS8PN0gQxXZk6dwkOjqw61yeVygxHmWerF0DNq1CiWLFliMFBWrlyJn58f/fr1q/dxzZkzh/z8fEMvHUEQUCpkuLu58v2C/5GpLqFNcHuWLphPSVEB77//PnZKBYN7dWHJ/+ZxIfYod4e1q/P+ZDIZggC+ziquZReSU1jCxTQtrd1s+eSTT3jwwQdRqVT8/fff/Pvf/yYjI4MPPvjAsH1JSQkLFiygbdu2gGTQfPxx9Ybe7UixRsdHv0uKsWMjAglrVUNirJ6iXEg/J7327Qb2HtBuEJzfBMd/hIGfmHDGdx5Otlb0C/Fg25nrrDt+jakP1c1AURdrOJeaC0B4dRL3+jBO8IOgKC1j9ugg5aPcjJfUZcOGNe4A7nDqZaA4ODgwb968yhURpahUKrZu3VrlMlMhqFSEHDvapPssv+/6EBkZybfffotarWbx4sXExcXx8ssvk56eTlJSEhMmTGDixImIIoiATqvByan6H70FCxawePFirly5QkFBAcXFxXTt2rVecwoPD6dDhw5ER0czdepUdu3aRVpamuFCefToUfLy8nBzq6jQWlBQwKVLl+q0DwcHB44dO1bp/Xbt6n5B1WNra0vbNm2ku03Aq5UfgYGBFQwgLy+vakvbz549S+vWrfHz8ytNjpUR0S2s3vMAmDhxIj169CA5ORlfX1+WLFliSIauD9HR0UyfPp3169fj6Vmxd0hYWBh2NlbY2VjRShRp7etDp06d8Con1ufm5lZjKX9NuNlbo1LKJa0djY5L6flMfu0t3EpDi/r/p48//riCgWJra2swTkDKNWvoHFoq3++9THx6Pu72Sl4f0L5uG12LAURw9AOH0huH8NGSgXJiNTz4Ua0NLC3Uj2Hhvmw7c50NJ67x9qCQOnm5Tl7NRqsT8Xa0oVV1YpWG8E65TuGCIHlR9s+XqnksBkqjaPGZkoIgNDjM0tTY2dkRHBwMwPz584mMjGTGjBm89NJLgBTm6da9B5fSJG2Otp722Cir/rFau3Ytr7/+OnPmzCEiIgIHBwe++uorDh06VO95jR49mlWrVjF16lRWrVrFoEGDcHd3B6TQg4+PDzt37qy0XV1LTWUymeG4a1oHKup0VNUN2MrKSkpq1RQAAoLS1hAm0yMIQrV5URVyLQQZKG0RhIZp74SHh9OlSxeWL1/OoEGDiI2NZcOGDfUaY82aNUyYMIGffvqJ/v37V1pe/thkpblE9TneumCrVBDsaU9yZgHZBSVcyyoL+chlMnr16kVOTg7Xr183dGKuag53ksbKtawC5pcmxr77UGiVnb6rxJB/0q3svXYDwc4D8tPg4l8Q8lDV21poEA908MTBWkFyVgFHrmRyT1DtYWlD/kmAc9UrZCVKomyCDNoNqLhMb6DEbQNNcZl3xUK9afEGSktm2rRpPPTQQ7zwwgv4+voSHx/P4GGPU2JXYLhoVMeePXvo3bt3hSqgWz0aSqWyQrJodYwaNYoPPviAo0eP8vPPP/Ptt98alnXr1o3U1FQUCgWBgYH1P8g64uHhAUBKSgouLlLMt1odEr32iY2z9ANRDzp27EhiYiLXrl2jVatWoLTnwNGTNW6jb9VQ1bl87rnn+L//+z+Sk5Pp379/vXR8oqOjGT9+PNHR0QZ15uZCIZPR2tWWG3nFpOQUkl1QQkGJlgBXW44fP46Njc0dp30iiiK5RRquZxeSkl1Iak4h10ufjyRkUlCipUegC1HdfOs+qN5A8ete9p7cCu4aAQe+kcI8d5KBIoqQ9A+4t6tRKqAx2FjJGdTJm5+PXmVdTHLdDJQrWQCE+1eTf6L3nvj3rDxvvx5g5ykZnAl7pBCQhQZhMVCakX79+hEWFsbMmTOZPn06r7zyChqZNXff/wCOVrBnUyyZmZm88cYblbYNDg5m+fLlbN26laCgIFasWMHhw4cJCiqTWA4MDGTr1q2cP38eNze3asNFQUFB9O7dmwkTJqDRaBg6dKhhWf/+/YmIiGDYsGHMmjWLkJAQrl27xubNmxk2bBjdu3evcsz6EhwcjL+/P9OnT+fTTz/lwoULzJkzp+qVC0q1Yxrwg9a/f39CQkIYO3Ysc+bMISc9hfdn/bfGbQICAhAEgY0bN/Lwww+jUqkMIaXRo0fz5ptvsmjRIpYvX17neURHRzN27Fi+/vprevXqRWqq1GRLpVLVGNZrLImJidy8eZPExES0Wq3BCAwODsbe3p4DO7eReDUZ/w5dkVtZs/rAXuZ++gETJ0405CDdDmh1Ihl5RaSWGh/XcyoaIKmlz+oauuEq5TJmPNapfiG95NJQp+8tif1dR0sGStwWqSOunXsDjqqFUZwPG16F2J8guD+M+cVkuxrW1Zefj15lc2wK0x8NQ6mo/sZGFEVikmrxoJQvL74VmQw6PAxHl0qqshYDpcFYDJRm5o033uDZZ5/l4sWLfPfdIj77Yhaff/wh9nZ2dO7cmddee63K7SZPnkxMTAwjRoxAEASeeuopXnzxRf74o6z+fuLEiezcuZPu3buTl5fHjh07qvWCjB49milTpjB27NgKJaWCILB582bef/99xo8fT3p6Ot7e3vTp08fg7jcGVlZWREdH88ILL9ClSxd69OjBp59+akhALUMEUQsyqwZlyMtkMn777TcmTJjAPffcQ2BgIPOnvcLg0S9JCp9V4Ovry4wZM5g6dSrPPvssY8eOZenSpQA4OjoyfPhwNm3aVEkUryYWLlyIRqNhypQpTJkyxfD+M888YxjbFHz00UcVhBXDw8MBKRm6X79+WFlZsfi7hVy8eBGtToevfwAvvPEuz7/wIlqdWGuFUEtgx/k0XvzxGAUldWv86GijwNvJBm8nFd6O1ng72uDlZENEGzfaeNQj+Ts3FXKuSl4/n64Vl3l1hFbhcO04nFwLEVUnbd823LgEa8aUNdm7vAc0RZI+kQmIaOuGh4M16blF7I5Lp3/H6n+7km4WkJFXjJVcqDrxuSgPLu+WXldloIAU5jm6FM5vhodnW3otNRBBNLPAcU5ODk5OTmRnZ1cSbSssLOTy5csEBQVhY9M0HX2bkpyCEhJu5GMll9HB28HSFLAqblyUKiHsvcCx4V1KK5B+TsprcQ5okFdmwIABhIaGMn/+fOPMx0wQRb2XoQgREWuFnNZutqisau7+XB3m8v19/Nv9HLmSiUwATwfJ2NAbHt5OKrydynoseTlaY6s00n3cuU2wepQkzvbigcrL/1kEm98Er04weW/dGl+2RM5tgt8mS0KL9l5SP62ibBi/DVr3NNluP95whh/2XeaRu3z4ZlS3atdbdzyZ19bE0MXfmfVT7q28wtkNknHlEgivxFT9OWmK4Mu2UJwLz/1dMaRnruSmwsonwLk1jGyYXEBN1++GYPGgmBE5hdIdvKPKymKcVIWmWDJOwLjxaqW9ZKAU59dr3Js3b7Jt2za2b9/ON998Y7z5mAmCIODhYIOtUkHiTTVFGi2X0vLwdVY1uDtscxN3PZcjVzKRywT2T32gQjWUyakqQbY8nR+Hre9LyZcpJ6BV1yabWpOg00oaIXslaQVaR8ATS2HTv6WKl8QDJjVQhoW34od9l/nr7HXyijTYW1d9+TtuEGhzrnogQ3jnoeqNSIW1lDx7+lfp2MzdQCnKlYyT1JPSI+ea8W4AG4HF72QmiKJIbqEkO+5o03LsxrCwMOzt7at8GF20S993R2kPCiNeWOrZ2VhPt27deP755w25OeVp0vNSysyZM6vd50MPNTzx0s5aQTtPexxsrNCJIkmZUo+SlsiqQ4kA9A/1bFrjBMoZKNUIS6pcoENpsvTt1kAwPwN+jCozTnq9CM9skEqtW/eS3ks8aNIpdPZ1IsjdjsISHdtOp1a73rGaBNp0Oqk6B6D9oJp3qP8szV1VVlsCa5+RDBM9V48033zKYbZXwrwiDbdvV57KFJRoKdHqkAkCdtVY9ubI5s2bqywHBoyao4Iogrr2xoANQt/ZWFNY1tunDugl+Kuiyc5LOSZPnmzQr7mVqqTq64NCLiPQzZaU7EIy8opIzlQjE8DZtuV4UgqKtfx67CoAT93Tuml3rtNB8nHptW8Nd9Pho6W77tifYOCnJsvJaFKuHoW1Y6X8GytbeOw/krdIj16FNemgdJ5MlK8hCAJDu7Zi3l8XWBdzjagq2hIUFGs5myLJDlQp0HbtmFSdY+0IAVWEf8rTbqCUK3fjAqTHgUcdtXKaElGEDa/Bpb+lz8anKyTuh6v/QMfHmnt25mug/BGbwoQHmlZGvTnRe08cbBTIWlB4JyAgoGl2VJwP2iIpwdDG2bhjy61Abi2NX5wPNo2vommy81IOV1dXk7YeEAQBHycbdKJY2jG5AJkg4FhXDZBmZlNsCjmFGnydVfRp59G0O795ScqzUKjAM7T69dpEgqMv5CRLCZZhpmkR0iSIopQo+sfbUsdft2AY8WPl4/e+SzovBZnSxdyEcv9Du/oy768L7LuYQXpuER63NGKNTc5GoxPxdLDGtyqBNn14p+0Dteub2DhCm76Sts25jeBRuRqz2dn5BcT8KP2uPrFU8nQl7jcbD4rZhnh2xd1ZqpQ5BdLdtoNNy/ixb3L02icqZ5A1LEmzRvRelOJ84499GyEIAr7OKpxVSkRErtxUk1dYtafI3Ij+RwrvPHWPf9165hgT/Q++T5ealWJlcugyUnrdkhsIlhTA+pdg42uScdLhEZi4vWrjTKEsy9FIrCJ52IgEudvRxc8JrU5k08nKDQTLNwisMg/wfA3lxVXRobR54DkzDPMcWw67vpBeD5krhaz8ekh/XztebVVjU2K2BsqB+JsU1rEMsKVTrNEZSh4dWlD+SZOh00JhlvRa5Vbjqg3GumF5KHcigiDg56rC0cYKURRJuKFGXaRp7mnVyPnUXI6WJsc+2b3uYnpGo7b8k/LoOxxf+ltKVmxpZCbA9wPL7sz7T5c8JzV5JpsoDwUkLwrAuio6HB+7IhkoVYZ3sq/C9dhS9diBddtZyMOAIH3+5vRZXvhTCu0A9HkLuj8rvXYLlj4nTaGUrN3MmK2BUlSiY9/FjOaeRpOQW3oHaqtUYCU324+k+SjMkvrmyK3LPB3GxuBBUUtxcAs1IhMEWrvaYm+tQCeKXL6RT0ENombNjd570j/UE8+mTo6F2it4yuPWVsrLEHVSf56WxIU/YWFfKeHS1g2e/g3ue732kml/vYFiWg8KwCNdfJAJEJOUxZUbZR5TURQ5npQFQLeAKhJk9eEdv3vAro43Sg5eZV6J85sbMWsjcu24lBQraqHLUxD5ftkymawsR8oMwjxmfTX86+ydEebJMVX1TkkBFDasz4xZUT451lT5OXLr0uRYEUrUptnHbYZMJhDgZoetUoFWJ3I5I98svZ4FxVp+KU2OHdWz6XOD0BRBaqz0uq7lpnovSsxKKZfD3NHppHyGlU9INxS+d8Pzu6FNv7pt798DECTvS06K6eaJpH1zb7Ck1Lu+nBflamYB6blFKGQCnX2r8PYYwju1VO/cSmhpmMccqnkyE2Dlk1CSL+U7PTq/8m+q3qC6erjJp3crZm2gbD93/bZvQKbVieSVuseNmmwoipKo2c1LLTuvolhdFnZRmTBpWhDKeVEsYZ66IpcJBLpL4m0anY7LGfkUa8zLSNkUm0JuodT88P7gZpCQTz0FuhLJo+BcRwMpbJhUVXHjotSrxpxR34ToEbDzc0CE7uPh2T/AqXKVTLXYOEkCdSBV85iYsjBPsuEao88/6djKEZtbxQiL88vUY+vbK0mfh5KwBwqyGjrlxqO+CT8+LlUheXWGJ5dXnehrMVBqR6WUcT2niFPJt4EHoAbyijSIoohSIcO6hv4QCQkJCIJQfQO9WynOk0pmoax3TUPGaU5KCiQDC6QfsAZ2BQ0MDGTevHk1riMIAuu2Sj9ACRfPt5xz1AwsXbq0QuNAhUxGkLsd1go5JVod8Rn5lGjNJ0y26tAVQCotbvLkWIDkUle579119wBaO0DHYdLrmB9NMi2jcPUIfNcPLmyTtImG/g8e+b+GlUc3YR7KoDAvrBUy4tPzOX1NusYcr0n/JH6nVOXn3Bo8OtRvZ25tpW10Guk8NQclBRA9UqqScvSD0T9JVUZVoQ9D3oyH/BtNN8cqMFsDpXdbKcb319nrzTwT4zBu3DgEQUAQBBQKBa1bt+aFF14gKUUKYznaGFk9tjCbca9NY9j4NySrvfQuwd/fn5SUFDp16mS8fdXArRez8giCwLp166resKRQunvUacBKJf0wNJDDhw8zadKk2ldUSGWF/h6OpFy7ZjhHO3fuRBAEsrKyGjyHW/n1118ZMGAAHh4eODo6EhERwdatW402fnV89tln9O7dG1tb22o/l8OHD/Pggw/i7OyMi4sLAwcOrNVYU8hltHG3Q6mQUayRPCkaMzBSzqXmcCwxC4VM4Inu9bijNyb1SZAtT3hpmOfUb+bnBb0WA9FPweIHIeuK5Bma8GfZnBtC66bLQ3GwsaJ/qKRHtO54MlCmIFtlguz50h5nNanH1kRzVvPotPDrREg6JN3ojfkZHH2qX9/WFdzaSa+TmzcPxWwNlL7tPQH4+9ztYaAADB48mJSUFBISEli8eDEbNmzg7TdeBYxcvSOKUJhd9reuxPADJ5fL8fb2RqEw42qh8saJQgWuwXUWT6sKDw8PbG1ta19RoQRBhlwG3u7OJj1Hu3fvZsCAAWzevJmjR48SGRnJo48+yvHjx022T4Di4mKeeOIJXnjhhSqX5+bmMmjQIFq3bs2hQ4fYu3cvjo6ODBo0qFrhOT1WCslIsZLLKCzRcjkjH20zJxxHG5RjvfB0aKb+Pw01UALulfq9FOdK/V/MAb1h8l1fKelTkMFdI2HSTvC5q3Fj6wXbUmPLWlqYkKFdJSn3DSevoS7WGDwplTwoOl2Z5yOkjuXFt6JXlb3wl/T71lSIImx9T/r/kSth5KqadXj0mEmYx4wNFA8EAU4l55Ca3YQfqAmxtrbG29sbPz8/Bg4cSNTjT7B/13bkpeqxS5YsITQ0FBsbGzp06MD//ve/asfSarVMmDCBoKAgVCoVISEhfP3119JCTQHTv5zPsp82sH7rTgTfbgg2DuzcubNCiEen0+Hn58eCBQsqjH3s2DEEQSA+Ph6A7OxsJk2ahKenJ46OjjzwwAOcOHHCqOfG4KXISC01TkqIOXcZwSuUhCQpwVHvjdm4cSMhISHY2try+OOPk5+fz7JlywgMDMTFxYWXX34ZrbYsD+LWEM+FCxfo06cPNjY2dOzYkT///FNaIAhgZUdC0jUEpS0xMTEkJCQQGRkJgIuLpI0wbtw4li9fjpubG0VFRRWOY/jw4YwdO7bW4503bx5vv/02PXr0oF27dsycOZN27dqxYUPZhWjcuHEMGzaMmTNn4uXlhbOzMzNmzECj0fDWW2/h6uqKn58fP/zwQ53P84wZM3j99dfp3LlzlcvPnz9PZmYmH3/8MSEhIYSFhTFt2jTS0tJITEyssO7WrVsJDQ3F3t7eYHwrFXKC3O1QyGQUlGhJyFCj0zVPHllBsZZfS++OR/VsYuVYwyQypf9ngFZ1qOApjyCUJcseb+YwT8oJiB5V0TDp/CS8eAiiFhpH3dnJF5xaS9VLTVBB0i/EEyeVFddzili85zIanYi7vTV+LrcItKUch7zrUkuM2tRjq6NVuCTAV5IvhYuaigP/hUOlv+//WgCB99VtO3+LgVIjbvbWdPV3Bmr2ooiiSEmRtlkejUngjY+PZ+vWrSisrLC3UfD94sW8//77fPbZZ5w9e5aZM2fy4YcfsmzZsiq31xsXa9eu5cyZM3z00Ue89957rF27FgqzeXPyWJ4c+jCDB/Yn5fg2Uk5sp3dERIUxZDIZI0eOrNQbZtWqVURERNCmTRtEUWTIkCGkpqYa7va7devGgw8+yM2bNxt8/NVyI17y+ChswKmyXoVarWb+/PmsXr2aLVu2sHPnTqKioti8eTObN29mxYoVfPfdd/z8889VDq/T6YiKikIul3Pw4EEWLFjAO++8U7aCXg+lFH9/f3755RdAuninpKTw9ddf88QTT6DVavn9998N62ZkZLBx40aeffbZeh+2TqcjNze3khLs9u3buXbtGrt372bu3LlMnz6dRx55BBcXFw4dOsTkyZOZPHkySUlJ9d5nVYSEhODu7s73339PcXExBQUFfP/994SFhVVQx1Wr1cyePZsVK1awe/duEhMTefPNNwGwsZIT5G6LXCaQX6wh4UY+umZIdt948hq5hRr8XVXc1xzJsSCVdAK4BNW9NLU8XZ4CBCnBMjPBmDOrG3rDZGEfOL+pomEyfJHx5dubMA9FqZDxcGdvAL7dKeW6dWvtXDnUrq/eaftAw1sPCEKZF6WpwjynfoFtpSXEAz+FTsPrvq3Bg3JUChE1E2bs55fcsscTs/j7bBqjqykP1BTr+O7VXU08M4lJX/fFyrruqqYbN27E3t4erVZLYaHkFXrzo89wtLHik08+Yc6cOURFRQEQFBTEmTNnWLhwIc8880ylsaysrJgxY4bh76CgIPbv38/atWt5st9d2NvZorJ3pAg13l5eUs07lRu8jR49mrlz53LlyhUCAgLQ6XSsXr2a9957D4AdO3YQGxtLWloa1tbSl3P27NmsW7eOn3/+uU65HdnZ2djb29e8krZ0bjqN9CPgFgzXTldaraSkhG+//Za2bdsC8Pjjj7NixQquX7+Ovb09HTt2JDIykh07djBixIhK2//111+cPXuWhIQE/PyknISZM2eWNdMrr7MiisjlcoPR4OnpWSFvY9SoUSxZsoQnnngCgJUrV+Ln50e/fv1qPSe3MmfOHPLz8yv10nF1dWX+/PnIZDJCQkL48ssvUavVhs/n3Xff5YsvvmDfvn2MHDmy3vu9FQcHydM2dOhQPvnkEwDat28vGdPlQl4lJSUsWLDA8Dm89NJLfPzxx4blKqWCQDc7Lmfkk1ekIemmGk/bpr0f0mufjOzRTMmx0PDwjh5nf0kuPX4nxERD5LtGm1qNpJyAnbMkowQkw6TT45Kolyl7yrTuBbFrmyQPBaRqnuh/kgxCmeFVJcjq9U/qW71zKx2GwD/fSfksOq1pFLH1JOyD3yZLr3tOhoiX6re9RyhY2UnhxYy4uoWFTIDZelAAHgyV8lD2XcwwaxGouhIZGUlMTAyHDh3ixSkv0bvvg4x6dhKFuZkkJSUxYcKECh1oP/30Uy5dulTteAsWLKB79+54eHhgb2/PokWLSLxyBTQF0gpyK0CQ5OGhQjWPnvDwcDp06EB0dDQAu3btIi0tzXChPHr0KHl5ebi5uVWY2+XLl2ucW3kcHByIiYmp9DCgKYbs5NI5K6UErWrkwG1tbQ0XRZAa7wUGBlYwgLy8vEhLq1pD5+zZs7Ru3dpgnABElPcsWdkCpRezWqSeJ06cyLZt20hOlua+ZMkSQzJ0fYiOjmb69OmsWbMGT0/PCsvCwsKQlWue5uXlVSE8I5fLcXNzq/Z460tBQQHjx4/n3nvv5eDBg+zbt4+wsDAefvhhCgoKDOvd+jn4+PhUmoOdtYJAN1sEQSC7oITU7MImk/Qwi+RYkO5AoeEGCkD409JzzCrTiwg2tcfkVvQelKtHmkRq/Z5AV3ycynKTut2aIJudXNrlV4DgAY3bWcC9Uh8xdYaUsGoq0s7B6qekm77QR2HQzPon9soVZdU8zRjmMWsPSoiXA77OKpKzCth7MYP721QWz1EoZUz6um8zzE7ad32ws7MjODgYgBlfzOahgf35fv5XfPiO1ERq0aJF9OzZs8I2cnnVVvbatWt5/fXXmTNnDhERETg4OPDVV19x6MA+aQWlvfTjAqVfihul1TyVPRmjR49m1apVTJ06lVWrVjFo0CDc3SWXuE6nw8fHh507d1barroqkFuRyWSG466ErgRuXECGZICKrkEG46SqpEwrq4qGiyAIVb6nq+aHvKqwXAWDQiYvc+OWFFRatzzh4eF06dKF5cuXM2jQIGJjYyvkkNSFNWvWMGHCBH766Sf69+9faXljj7e+rFq1ioSEBA4cOGAwjFatWoWLiwvr1683eGmqmkNV59bexooAV1uu3FCTU1iMuqC4SbSN9MmxAzo2Y3KsKDbegwLSnbe1E2QnSqGeNib4vUs5Abu+LAs/NJXH5FY8QqVjLcqWkmXrorzbCGQygce6tGLh7njkMoG7/JwrrnChtLLOrwfYN7LBpNxK6uFzcjWc2wQBvRs3XlXkpMDKx6UiCf+eELWo4Z4av+7S/9vVw9Ct9rw6U2DWHhRBEOhf6kX5u5pyY0EQsLKWN8ujMWXBuYUaJr/+Dt9/Ox+tVouvry/x8fEEBwdXeAQFBVW5/Z49e+jduzcvvvgi4eHhBAcHSx4NfbzQxgmlUikli1o7SFUworbKcsVRo0YRGxvL0aNH+fnnnxk9uqxUsFu3bqSmpqJQKCrNTW/ENIqcVNAW4+Ehfc4paWV196bQIenYsSOJiYlcu1amIHngwC3uZKvSMI9GUpRVKiX9lfKJt3qee+45lixZwg8//ED//v3x9697n5fo6GjGjRvHqlWrGDJkSD2PxDSo1WpkMlmF/2393w01ghxVVvi7SomHeUVavtsdb1IjpXxy7FP3NFNyLEi9W/LTpO9eYypcrFTQuTR/IMbIDQRTTsLq0ZLH5NxGQGhaj8mtyGTQuvQmrQnyUACe6O6PykpO3/YeqJS3XMz1+ScNrd65FX0eytkNxlcILsyRlHyzk6QQ+VOrpf+dhmLIQ2m+UmOzNlAAHiytVf/7XFqzVQMYG716bI+I++jYMYyZM2cyffp0Pv/8c77++mvi4uKIjY1lyZIlzJ07t8oxgoODOXLkCFu3biUuLo4PP/yQw4cPSxnwADZOBAYGcvLkSc7HxZGRr5M8EuXLj0sJCgqid+/eTJgwAY1Gw9ChQw3L+vfvT0REBMOGDWPr1q0kJCSwf/9+PvjgA44cacQ/rt59qysBuZLg7g/g7+/P9OnTiYuLY9OmTcyZM6fh41dD//79CQkJYezYsZw4cYI9e/bw/vvvV1xJWVqSXOpBCQgIQBAENm7cSHp6Onl5ZUqzo0ePJjk5mUWLFjF+/Pg6zyM6OpqxY8cyZ84cevXqRWpqKqmpqWRnV/58jEliYiIxMTEkJiai1WoN4Tb9MQ0YMIDMzEymTJnC2bNnOX36NM8++ywKhcJQzdQQnG2VeJX2wFl7JIkf9iUY43CqxCySY6HMe+IV1rgLBUDXMdLzmd+r/A7Xm8Ic2PgGLLy/nGHyBEz5p3kMk/LowzxNoCgLEOxpz76pD/C/0bd4a4rVcLk0v7Gu3Ytr3dmDUgFA1hW4XjnHrsFoimDNGKmZoZ0HjPml8ZVV+p48aWebrWWK2RsoPdu4YqeUk55bRNx109fGNwV5RSWIooi1QsYbb7zOokWLGDRoEIsXL2bp0qV07tyZvn37snTp0mo9KJMnTyYqKooRI0bQs2dPbty4wYsTS6tHFCpQWDNx4kRCQkKkPJXgruw7fKJafYHRo0dz4sQJoqKiUKnKfkwFQWDz5s306dOH8ePH0759e0aOHElCQgJeXl4NOwHakrLSS0EObsFYqeyJjo7m3LlzdOnShVmzZvHpp582bPwakMlk/PbbbxQVFXHPPffw3HPP8dlnn1VcyarUQNEUg1aDr68vM2bMYOrUqXh5efHSS2UJZ46OjgwfPhx7e3uGDRtW53ksXLgQjUbDlClT8PHxMTxeffVVIxxl9Xz00UeEh4czbdo08vLyCA8PJzw83GBsdujQgQ0bNnDy5EkiIiK4//77uXbtGlu2bMHHpwZxpzrgbKvEqbSdw8zNZ/nnsgmqwIBV5pAcC8YJ7+jx7SapkWoK4PRvjRvrwp/wvwg48r30d6fHSw2Txc1rmOjR66EkHmyyPkSudsrK8vaXd0ldfZ1ag2dH4+xIaSdVA4EU5jEGOi389rw0Xys7GLVW0s9pLA5epQKZIlw71vjxGoAgmlmzm5ycHJycnMjOzsbRUZLifeHHo/xxKpV3+rehn690x29j00xxZSOQdFNNproYd3trWjk38s6qPDfjpbsre+/KSoGiKFnsuhJwbVNz63NTotVIcsuaQpBZgXuwdEdhbqSdleboElSWZFwNAwYMIDQ0lPnz5zfN3FoohYWFXL58mVVnClhxOAVPB2s2vnKfUXNEzqbk8NDXe1DIBPa/+0Dz5Z8ALBkCV/bC0P9C+JjGj7dvPvz5odRN97k/67+9+iZseVfKgQDpIvbYfyCoT+PnZkxKCuELfynJ85Xj0u9Vc/D7K3BsGdwzCR7+ynjjHl8J618E784weW/jxhJF2PwWHF4k/Z6O/gnaNtzTWYmfx0vlypEfQN+3al29qut3YzB7DwqUhXkOxDdvXwBjIIoiuaboXqzTQmGpd6Qq40OouZqnSdBqJM+J3jhxM1PjBMo1DqxeYvzmzZusXr2a7du3M2XKlCaaWMvnjQHtae9lT1puES+vOm5USXx9aXGzJseC9H3Ua6AYw4MCcNcIyeN49R9IP1+/bU+vg//eIxkngkwqO33hgPkZJwBWNpKwGTRZHkoldDqIK02QrW/34tpoP1j6DFJjIfNK48ba/ZVknCBIgnnGNE6g2RVlW4SBEhkiqcpeSs9D28LzUNTFWjQ6HXKZgK21EQ2UolxAJ5XpVhfvVpXW+BdmG61cMSwsrEL5cflHBQE4nQZuXpRc1DKFZJxYmalxAlIVFNTY2bhbt248//zzzJo1i5CQkArL6nxejMjMmTOr3adB58UMUCkVfDvmbuyUcg5dvslX2+p5sa0GdbGG3441s3KsnvRzkmqo0h7cjRQ2cfCCdgOl13VNls1NlXITfnoG8tOlMNGEP2HQZ2W5VuZIE/blqZLUE5CXKn1+gfcbd2w7N2hdWsHTmDDPkR9gR2l4+qEv6yfEVlfKGyjNEGwx6zJjPW721nRr7ULqzRyDoE5LJadQSg51sLZCZuTmgIDkPaluXCtbyYDRFkNRTq2hi7qwefPmanu0GHJUdBq4cUlKOm0JxgmUeVBKCqoVVUpISKh28zqdFyMzefLkSkJvesrnFZkDbT3s+eqJLry48hgLd8UT7u/C4E7ejRpz48kUcos0tHa15d62zZgcC2X5J63CjSvIFT4a4v6AE6vhgY8kvYqqEEVJN2Xru9Jvg0wB970Bfd5suBpqU+LfC/i6+TwoBvXYSNOcr9BHpPDfuU0Q8WL9tz+zXkpyBujzNvSsQzPUhuDdWbpmFNyUUgjc2ta+jRFpEQYKSKJtK/flUNjCDRRDeEdlouaANeWWCIKkiZKfJoV5jGCglJc/rxKdttQ4URsSYhtd0dAUyJVSGEpXIs3d2qFem9d6XkyAq6trJal8c+bhzj48d18Qi/de5q2fThDi7UCQu13tG1bDqlLtk5H3+DdvciwYN0G2PO0Gga2b1Bvm0t9Vhx+yEmHDa9JyAJ+uUh6Md9N0MDcK/qWlxhlxkJ8Bdk1scMbpuxcbqXrnVkIehi1TIXE/5N+oXxuEy7vhl+cAEe4eB5HvmWaOIBlnPl0kD8rVI01uoLSIEA9Isvc6EQpLdGbRxr0hFGu0FJZoERCwN2Z4pzhP0jgR5GWhierQGyVFOU3TYyEzocw4cW8hxglIxlwd8lAs1J2q8vHfeagDPQJdyC3S8MKPRxusGH3mWg4xSaXKsXfXXYvGZJjKQFEopVwUqNxAUKeDQ9/Bf3tJxonCBvrPgOf+blnGCUgXbPfSsKkpVVerIueaJFyHUBZSMzYuAZJ3QtSVGUN1Qa/0q1eJHTK3/iqx9aUZ81BajIHSztMeO5WSEq2OzJzq8wLMmZxS74mttRyF3Iinvi7hHT36MI+oM46eQo3zypEMIYRSz4kZx7yrQt84sKhl/r+ZG2q1JHxXXoXWSi7jm1HdcLe35lxqLu+vi22QiJs+OXZgmBceDs0cwihWw/Uz0mtjGyhQ1uH4/B/S3TdAxgVY+jD88ZaU+9K6N0zeB/e9Vn0YyNxpwsaBFdAnx/reDfaeNa/bGDo8Kj3XNQ/lxiX4cbjUHyfwfohabNp+Pnr8SvVQmsFAaTH/uYIgcF87L/6OT8fNLhVbpRxbW9tGqbk2NZk5+YgaLSqVzNAssNGIIuRmgk4EQQV1GVfuAEUZkHMDZCYyGkQRMq+CRpSSc3Wyus3NnNAppPlr8qCgwPR3KrcpoiiiVqtJS0vD2dm5UvsGL0cb/vNUOKMXH+TXY8l0D3CtV5KruljDulLl2FH3NH1orRIpJySPpr03OLYy/vjenSS3e8oJOBEthSF3fA7aIsmD2n86dJ8gqbK2ZFpHSGW+zWWgGEs9tjo6DIGdM+HSdslLq6whvJl7HX6MkhKdvTvDyFVNl8en96BcPyUZ302YXN1iDBSQwjxPf5+AnVLBSBurFnW90IkiKVmFiIDM0ZpsY3lQtMVSpr4gQJ41CHUoxdYWQ246kAFOxWU9e4xJiVqKHQsycFBCxmXj78PUiKJkxIk6yBEkz5OFBuPs7Iy3d9WJsBFt3Xh7cAe++OMc038/TSdfx8p9Uaph44my5NjebesRyzcV5cM7pvqR6jpGMlC2lVNBbvsgPDqvVFzrNkDvQbl2XEpWb4rwcEmB1DkaoL2JK9+8wiQtmswEuPg3dHys6vUKsyXPSWaCtP7oX8Cm8RojdcbJH+y9pLynlBMQEFH7NkaiRRko9wS5Ym+tYPmJbP7VuyOhXi0nZLDjfBqf7kjEz9WWZc8aSZUQpPbd/3wHgf3gkdl120YUYeX7kJUgxaj1/SGMhVYD0SMkOeceE6Grkcv0mpLf50mJbPf9G7o+1dyzabFYWVlV2/hSz/N92nDsSibbzlznhR+PsfHl+3Cxq90o1CvHPnVPMyvH6tEbKH4mCO/o6fy4ZJxoi6XE98FfQJeRt5eXzyVQ8kLlpULyMQi81/T7jN8lSSE4+kkGhCkRBOjwCBz4RgrzVGWglBRKOSfXY8HOE57+TSo3b0oEQfKinNsohXnM1UDRaDRMnz6dlStXkpqaio+PD+PGjeODDz4wdD4VRZEZM2bw3XffkZmZSc+ePfnvf/9LWFjjP2ylQkaf9h5sik1h+/l0wgNCat/ITNh27ibJuVqGhHsYVwX3zFrIS4K2EVCfcdveC7v2wOk10NXI9fPHlsPVvaByhZ7P1m9e5oZPCJxZA4k7oNezzT2b2xpBEJj9ZBce+89eEm6oeW1NDEvG9ajR6CifHPv43X5NONsaMFWCbHlsXWHYt5ASAxEvN/1FqykQBMmLcmadpIfSFAZKXLnmgE1h7HUYIhkocX9ILUDk5bqE67TwywSpHNnaUeqv01yquuUNlCakXr79WbNmsWDBAr755hvOnj3Ll19+yVdffcV//vMfwzpffvklc+fO5ZtvvuHw4cN4e3szYMAAcnON00fnwdLuxn+dTTPKeE2BRqtjx3lpvg92MGLSVeYVSY1QkNW/HK5TlPR8abskgW0sSgph5xfS6z5vNq0r0hTo+4JcOdAsQkV3Go42Vnw75m5srGTsikvnP9sv1ri+Pjl2UJh38yfHghTWzCpVB9WroZqKzo/DwE9vT+NET1MmyopiOfXYJhI29O8Jtu5SGOfKvopz2fi6ZBTIraWck8Z0xG4szdTZuF4GyoEDBxg6dChDhgwhMDCQxx9/nIEDBxoajYmiyLx583j//feJioqiU6dOLFu2DLVazapVq4wy4X4hnsgEqedGclaBUcY0NccSs8hSl+CksuLuABfjDXx+s/Tcunf96ugBPELAM0xKsDu30XhzOrwYcpIlF2n3CcYbt7lo1U3KPclPk4SKLJicUB9HPhvWGYB5f8exKy69yvXKJ8c+dY+Z5F0klzZVc2/ffP2ubicMnY3/Mb0sQsoJyL0mNdwLvM+0+9Ijk0NIqTFUvppnx2dSgrAgk5o4BjVzmLxVV0kqIvcaZCc32W7rZaDcd999/P3338TFxQFw4sQJ9u7dy8MPPwzA5cuXSU1NZeDAstpxa2tr+vbty/79+6scs6ioiJycnAqPmnC1U9KttXSR3372en2m32z8XTrPyBAP45YX6/+hG5pD0ulf0vOpX40zn8Js2DNHet1vqvmrxdYFKxvJSIHmk92+Axl+tx+jerZGFOHV1ce5mqmutI4+OTbAzUySYwGSS+8wTRneuZPw6iwZDEXZUgNPU6L3nrSNbNrfrg6PSM/nNkmek0MLpR47IOmcVJc825Qo7cpycpowzFOvq+U777zDU089RYcOHbCysiI8PJzXXnuNp56SkgdTU1OBylLeXl5ehmW38vnnn+Pk5GR4+PvXLrKkbx7YUsI8f5UaKP07GtEVq75Z5hLs8HDDxggrDfNc3i25phvL/m8kSWT39tDlNkoo1SeFWQyUJuWjRzrS2deJLHUJU1Yeo0hT8Q56pbklx0LT5J/cScgV4F8aXkgycZjH1Oqx1dGmn2SE5STDX9Pgj3ek9yM/gO5mlPfWDIJt9TJQ1qxZw48//siqVas4duwYy5YtY/bs2SxbtqzCerdqk4iiWK1eybvvvkt2drbhkZSUVOs8+pfmoRy4dIP8Ik19DqHJuZyRz6X0fBQygT7tPYw3cNwWqfzVq7OU7d4Q3NpKMtiiVurt0Bjy0uDAf6XXD3zYcsWhqkKfhxK/25KH0oTYWMn53+huOKmsOHE1m082njEsO30tmxNJWVjJzSg5VhQtBoop0H//TJmHkpNS1n3aVOqx1WFlA+36S6/3fQ2IcM8kKYfPnGiGPJR6GShvvfUWU6dOZeTIkXTu3Jmnn36a119/nc8//xzAoHFwq7ckLS2t2gZp1tbWODo6VnjURrCnPa1dbSnW6thzwQh3/iZEH97p2cYVRxurWtauB40N7+jRJ8ue/q1x4+yZIylYtuomSTDfTgTeL93hZCc2W9vxOxV/V1vmjeyKIMCPBxP57fhVoLxyrDfu9maQHAuQeVnqcSVXglcLk5Y3Z5oiUfbCNunZ9+7mSTruUO43s9NwGDzL/ErG9QZKSgxoiptkl/UyUNRqtaGcWI9cLkenk3rjBAUF4e3tzZ9//mlYXlxczK5du+jdu7cRpishCIKhmudvM89D0Yd3HuxgxH/6YrUk7AONN1DCSvNQEvZKgm8NIfMKHP5eet1/mvl9sRqL0lbqPgoQ+1PzzuUOJDLEk5cfaAfAu7/Gcjwxk3XHrwEwylySY6EsQdb7LqlnjgXj4NtdStDMToKs2j3sDUJfXtxU1Tu3EvKQZByF/QuGLTBPFWC3tpLmjqZQUpVtAup1Fh599FE+++wzNm3aREJCAr/99htz587lX/+SLnKCIPDaa68xc+ZMfvvtN06dOsW4ceOwtbVl1KhRRp14/9I8lB3n09DpzNPtnq0u4XBCJlA2X6MQv0MSE3JqLckeNwbn1qWWsQin1zVsjJ2fS9VAbfpJj9uRzk9Iz6d+lYToLDQprz7YjvvbuVNYomPkdwfJK9IQ6GZLRBszSY6FMte3JbxjXKzty0psTdE4sIJ6bBXdoZsCa3uYuB2eWGq+xq1esA2azJNcLwPlP//5D48//jgvvvgioaGhvPnmmzz//PN88sknhnXefvttXnvtNV588UW6d+9OcnIy27Ztw8Ghfu3qa6NHoCsO1goy8oqJuZpl1LGNxc64NLQ6kXae9rR2M6LqbfnwjjG8Ffpk2dMNqOa5fgZOrJZeP/hR4+dirrTpJ7W5V2fA5Z3NPZs7DrlM4OuR4bRysqFII3lsR5pTcixY8k9MSWsTJqrHrJJaczj6Nf6G73bHnA0UBwcH5s2bx5UrVygoKODSpUt8+umnKJVlFp8gCEyfPp2UlBQKCwvZtWsXnToZPx6rVMjoEyIlnZprmOfv0iqjB43pPdFqpC6mYDyJ+rBhgCDdnWRfrd+22z8FRAh97Pb+YZZblYXDYn9u3rncobjaKfnfmLtRymWorOTmkxwLkgpoygnptb77qwXj4d9TejZ2HkpBlqQ5AnDvq7dfeNrYNHFnYzMMdNWd/oY8FPMrNy7R6thZqh6rn6dRSDoolfKqXMruKhqLYysIKM0Rqk+ybNI/cH6TJCb0wIfGmYs5ow/znN0guYWbmpM/SblCdzBd/Z3Z8PJ9rJtyr/kkxwJcPy11E7Zxaj458tsZfaLs9dOSUWEsdn8F6hvgHmJeJb3miv4mNDMB8qoWUDQmLdpA6ddeUpU9l5pbpZBTc3IkIZOcQg2udkrCWxtRPVYf3mn/kHFLecPqKdomivDXDOl119Hg0d54czFX/O6R8n6K88pEnZqKhL3w63Ow7DE4v6Vp921mhHg7EOJt3JBxo2mKDsZ3Mg7e4BIEiMYrc824CIcWSK8Hz6zYB8dC1aicJWMOykQJTUiLNlBc7JR0D3AFzM+L8pdBPdYTubHi5KJYJktv7A7EHYdKnpBrx+Dm5drXv/S31MRKbi2pxt4JyGTQubSxYlNX8xxeLD2LWvjpGUjYV/P6FpoWfQXP7RzmbG6MnYey7QPQaSTdk+D+xhnzTqAJ81BatIEC5ZsHNl8eilYncjEtl/UxyXz+x1nG/vAPqw5JOg1GDe9cPwVZiaBQQdsHjDcugL2npPcBtSfL6nRl3pN7JoKTGeUCmJpOj0vPF7YZ19VcE7nXpbASSD8OmkKIHgnXYppm/xZqxyJxb3qMqYdyabukHCtTwMDPGj/enUQT5qG0eLnPB0O9+PyPcxyKv0lekQZ7a9MeUl6RhvOpOZy5lsOZFOn5XGquobKgPD5ONsZVj9WHd9o+IGlzGJtOUXB5F5z6De7/d/XrnfkNUk+C0gHue8P48zBnvMLAIxTSz0pGQ7enTb/P48ulOz3/njB2Pfw4XGpz8ONwGL8V3INNPwcL1VOYA+nnpdcWA8V06D0oyUckobCGluNqNbD1fel1j4ng0Z6LR9Nw8bHFrZW9ceZ6O6P3oCQfkxo4yuQm21WLN1DaetgR6GZLwg01e+LSeaizj1HGFUWR1JxCzqZUNEYSblSd62KrlBPq40hHH0fpuZUjHbwdsLEy4odnqvCOntDHYNO/4XosZFwA93aV19GWwHZ91vsr9e+i3NIRBKnN/fZPpDCPqQ0UnRaOLJVed58AVip4KhqWPSpVjawYBuO33FleLHMjJQYQpfwkeyN6TC1UxL0dqFylIoGUE2U9eurLsaWQdkYqNOj7NumJuWxddApHdxvGfBJRbVsWC6V4hoLSXsrFSz9X1kTQBLR4A0VSlfXi+72X+etsWqMNFK1OZNn+BP638xIZeUVVruPtaEPHVhWNkQBXW9NqMmRegdRYKU/EVM2sbF2hTSRc/FNKlu33TuV1jv8INy+BrTv0esE08zB39AbK5d2S+q6Dt+n2FbcVcq5KGiwdh0rv2TjBmF/hh8Fw4wKs+Bc8+wfYuZtuHhaqx5Ag261553G7IwiSF+X8JikPpSEGSkFW2Q1Wv/fA1pXM65KCdk5GIRlX8/DwN7MEbHNDJpf+1y/vlsI8FgOlZh4M9eT7vZfZcV4SRmtoUuql9Dze/vkkR69I6q9ymUCwh30FYyTUxwG35ihvPL9Zem7d27Rei05RkoFyugoDpaQAds2SXvd5C6zv0C+yS6BU0XP1H8mQi3jRdPvSJ8eGj6nYAt7OHZ7+DX4YBBlxUrjnmQ1gU3svKwtGxiLQ1nS07llqoByUPLj1ZfdXkgfGowN0Hw9AXmbZjWjCyQyLgVIX/HqUGSh3jzPZbm4LA6VHoCsONgpu5hcTk5TJ3aWVPXVFqxNZvCeeuX/GUaTRYaeU8+7DoTx+t59xQzSNwVjNAWujwxCp2Vn6OUkl1qtj2bJ/voPcFMmVfadrBnR+QjJQYn8ynYFyM16qlkKAu6s4387+8PQ6WDJYCjNEPwVjfpbCQBaaDksFT9Ohz0NJOihVNdYnHFO+rHjQZwaZhvysigZKjyFBxprt7UsTdTZu8VU8AFZyGf1C9NU89Ss3vnA9l6hv9/P5H+co0ui4v507297oy5heAeZjnKhvSkmRYHoDxcaprOTu1C9l7xdkwZ650uvId0FhRiJZzUHYMKmB2bVjcOOSafZxZIn0HNwfXKv50fRoD2N+kRKWr+yFn56V8oQsNA05KZCTLIVefbo06a4P/HaJ9fOOU1KsbdL9Nis+XUBhI4mr3bhYv22rKSsub6CkXcmt4FGxUA2+pZU86edMWs14WxgoUF5Vtm7lxiVaHf/dcZEh8/dyIikLBxsFXw6/i+Xj78HX2czuQOO2gKiT+kS4BJh+f+V784iljRj3z4fCLMk1etcI08/B3LH3LGuMaArp+5JCKd8HoMeEmtdtFQ6jVkuaNHF/wPqXpFJwC6ZHH97x7Cg1fGsitBodMX8lcvVcJklnbjbZfpsdhXWZp6o+eig1lBXrDRS9MyYhNsMYM729sfeQQt0g3aSZiNvGQOnXXhJEi7ueR9LNmlVlz1zLYdh/9/HV1vMUa3U80MGTP1/vy5M9/M0zg9sQ3nmkafYX8pCktXIzXsqWz70OB7+Vlj34kUnLyloUeun72J/KDDljcWadFCt38pfu+Goj8D54cpnk1Tm5Gra+a/w5WahMMyXI3kzJR6eVPt/k85lNuu9mp756KFoNbHlPel1aVlwevcck8C4pyTzhpMVAqRNNEOa5bQwUJ1srugdIkvLVibYVa3T8359xPPbNXk5fy8FJZcX/jejC9890x9vJpsptmp1iNVz8W3pt6vCOHmt7aF96UTz9q5RYVqKW/iFDHm6aObQEOgyR3M03Lki6MMbk8PfS893j6m4QhjwEw0oNyUMLYNeXxp2Thco0U4JsRlJu2RTi7jQDpZ6KsseWSrpFpWXF5RF1IursYgA69fEF4Oq5TEqK7qCwWUNpAkVZ8zVQNMX13qR/adfgqmTvY69m89g3e/n67wtodCKDwrz4840+/Cvczzy9Jnrid4CmAJxbg5fxu0JXiz7MExMNR0tzIR6cZukzUh4bR2g/SHptTOn7lJNSAq7MCrqNrd+2XUbAQ6WGyc6ZcGih8eZloSI6HVw7Lr1uYgMlPSnP8PpGcj4FufX/vWyx+PUABMnDm1tLSL98WXHk+5KUQjnUucXodCKCAH4dXHB0t0Gr0ZF09g4KmzWU8oqyJvLWmq+BUj5Bs47oZe8PXb5BbqGUKFik0fLllnMM+98+zqXm4mqn5D9PhbNgzN14Opip16Q85cM7TWkctBsIVnaQnyYllrV9EILub7r9txQMYZ5fjJf3caTUe9LxsYYJf/V8XtJ4APjjbTixxjjzslCRGxehKEcKh3qENumuy3tQAK5dyGrS/TcrKucy7Y2kWsI8u74sKyuuohJOn39i66hEJpcZwjyXLWGe2vHqLOW9FWRKxqIJMF8D5eB/pdhhPWjjYU8bdztKtCK74zI4npjJkPl7+d/OS2h1IkPu8uHP1/vwaJdW5u010aPVwPk/pNdNFd7Ro7SVQgZ6HvyoafffUggeANZOkHsNEvc3frzCbDi5VnrdvZbk2Jro+zb0nCy9XvdC2f+RBeOh77/TqqtxO4vXgqgTySj1oPiGSGHtOy4Pxb+n9FxTHkrGRfin1IM4aGaVn5E+/8TOWapKDCo1UK7EZqDTWXK4akShlP73AZL+MckuzNdAyUyQEgXrid6LMnPzWYZ/u5+LaXm421uzYEw3/juqW/OIrDWUpIOS9a9yBf9eTb//7s9K5ZPhY8r+ES1UxMoGOj4qvTZGmOfEGinfxyMUAno3fBxBgEGfw10jpQ7Ia5+By3saPz8LZTRT/kl2egElRVrkVrKyvIm4rCadQ7NjyEOpwUAxlBUPguAHq1xF70HRGyg+7ZxRqhQU5JaQlpBj1Cnflpg4D8V8DRSQdDfq6TZ/sDQPJTmrAJ0I/wr35c/X+zC4k3F69DQp+vBOyENNeodmIPA+ePMCPDq/6ffdktCHeU6va1DulAFRLAvv9JjQ+JCeTAZDv5ESm7VFkpCbPmfCQuNprgTZq5L3xK2VHX4hLiBAZko+6pw7KA9FX8mTcgKK8ysvL19WPKj6bsV6A8XeRQr3y+UyAsKkPJXLJyxhnloxcWdj8zVQrOwh7TRc2FqvzboHuNDF3xl/VxXfP9Od/xvRFRe7Bna9bE5E0fTNAeuCnbulrLg2Au8Hey9JJ+bS3w0f58o+SfjIyu7/2Tvv8LbKs/9/jra893a8YmdPkhAIgYQRRghhlkKhUAqlb+netOXXQd/S/VI6WKV0sfcmECCL7O04iePEe2/LtrZ0fn88OvK2JVmynUSf6/IVxTrn6LEtnXOf+/7e3zt4XjNqLdz4tFijvVtY4pdvDs6xz2YcVmg8Ih5PuEBW6E+SpkVjiNKSmCn8V86qbp64bIjJEtnBwW2u/duKl31p+KGnHnq8GZS+a0TugrAOxWeUDEpTyfCB4jiZugGK0r2w5fd+KYQ1ahWvf+V8tn7/Ym825bSk6Qh0VgsBXv7qyV5NmNFQqWHuDeLxeMo8Smvx/JuCO1NHa4DPPgvpC4UD57+vgRc/L95fYQKj6Qi4HWJoZty0CX1pRSCrzIzJKjpLdSgj+aGM0lY8GG8GJa6v9D9tdiIqlURHQy+dzaN7ap31xGRCdLoIFOsPBv3wUzdAWXaP8Jio2yuGEvnBaSGAHYsdfxP/Tr9ECFbDTG3m3Sj+Pf4u2HpG33Y4upvg2Fvi8XjEsSNhiIHPvyGMqiQVHH0D/rIUPnlIeO2E8Y/+5Z0JPt8oLcZJ2SJzklEUJ5Z01ulQlAClnx+KpWNgW7ExftRDDNagABgitaQXxgFh07YxkaSQlnmmboASldyXRdn6h8ldy0RTswcOPSseX/DtyV1LGN/IWAwJ+cKzRpk87Q8H/i3uyLOWQfr84K8PRHvm2t/DvVtFycdphc2/hr8uE/qZiXCetfeK4Xqnu8utUlZQTs4TRG+XDYvJjiThLe1kFMaBBJ1N5gFzZc54FKFs7Z6+js/Nvxu1rXgwPYM0KApKN0/Y9t4HQiiUnboBCsD5Xxcip4rNIZ+aOGVwu+G974nHC2+DrPCE1NMCSernieLnbB63C/b+UzxeendQlzUsaXPhjrfgpn+KOn5XDbx0B/xrnaglBxtZhqrt8MZ98PsieHI1bP198F9nonC7hZEeTLjFfUu1KO/EpUag1QltmCFS6y33nFU6lJRZosXf3iNKbj60FffHbnHisArH2P4ZFIDc+YkA1Jd1Ye0ND98claxl4t8QGLZN7QAlLlu0ScLZk0U5+IzotNDHwKU/nezVhPGHuZ4yz6mPoLfN9/1ObABTrWgnn70+NGsbjCTBnOvgq3vgoh+KcmrlVnjsAnj3e2KC9njprBF3tI8sgqevFMMP7Z7y16ePiHT86cjux4UNgsbYN9V1glA6eJI8AYlCplLmOZt0KCo1ZHsujtU74YMfj9lW3B8le6IzatDqBzYCxCZHkJARieyWqS7x47N8NpK+QCQSepqgqy6oh57aAQrABd8EJJE2D8Xd3VTC0gkbfyYeX/SDwFxEw0weyUWQNl+cJP3x8FFaixfdJgStE4kuAlbfD/fthlnXiKnZu5+AP58jRLtuP2eS2M3CaO7f6+HhefDJL6GjAnRR4ue7810x+ddmgp2PheZnCiVNJfCh58ZhzYOibDaBDBbIKiiGbWefH4rHsG3Xo2Lq+xhtxf0ZTn/Sn7CrrI/oIvrGsAR5svHUD1CSCmHOteLx1j9O6lJCzubfgLkVkmYIu/Iwpx/+lnnayz3DICVhjDdZxOfAzf+Bz78pTOIs7fDOt+Hxi0R5ZjRkGap3wZtfEyWcV++B8k2ALLQu1z0O3z0B6/8KuSvgQk8Jc+ejIig/XXBY4ZW7hadM4eUTU44bhFcgOy1qwPczpschqSRMLRa6260Tvq5JQ9GhdFSKf8doK+6P4iIbFT98gKLoUKqPtOFyBmmMxZmKokOpC67P0tQPUKBPKFryKrSdmty1hIrm432D3a78tfCvCHP6MfcGQBK29501Y2+/92lAFinphPxQr25s8i+CL2+DK38HhlhoKhblmZfvgq7agdt21QkbgD+fA/9YA/v/LbxW4nJg1f3wjcNw59uw4LOgi+zbb/a1QsRo6zq9hhlu/Bk0H4XIZGGAN8HdOzaLE1OLBRiaQdEZNSRPOwt1KBmLxVBNECXSMdqK+zNWBiU1NwZjtBa71UX9yc7xrvTMRglQzroMCoiuhsI1Iv386cOTvZrgI8tiqJvsEkMBCy6e7BWFCZTYTMhZIR6PNfDSYRW6DJiUu/ERUWvg3C/B1w7AkrsASfwsf1kqNCXFL8N/roP/mwMfPwjtp0AbAQtuhTvfga8fhFU/FFmZ4VCp+i4kO/8q5g9NdU5+JMoIAOv/Ninl17ZaUd6JStBjiBx6A5M1Iw44y3Qouoi+duPVPxqzrbg/w3mg9EdSSeTO83TzhF1lR0fpZms8HNTDnh4BCsDK74p/Dz4XdCHOpHP8bdGppNbDml9O9mrCjBfFE2WsMs/RN0QpJTZbBOBTjchEuPr/4N4tMO18MSPok1/CK18UVuLIIhhb/zdRwrnuUTEeQeXDaWX2taKUaT0Nsii9bWLgIggfmaLJ+Vu1VHvKO1nRwz6foRi2nW06lGsfhc8+53eQ3zNGBgUG6lDk0701PpQk5IsMlju4HU+nT4Ay7VzIuUD8Arb/ebJXEzwcFtjgsWVe8Q1IyJvc9YQZP7PXi7RzUzE0Hxt5uz1/F/+ec8fUHieQPh++8C7c8BQkFkJ8Llz4ffj6AfH9RZ8D/fAXzRFRqfuyKDv+CtYpOphNloW2pqdJBFRrHpy0pbTWKgLZqGGfTy+IRaWS6G6zYmq1TOTSJpe4bJh5ld8lt7EyKADZsxJQa1V0t1lprw++lfsZgyT1lXmCyOkToABc+B3x775/Qu8ZknL79BFhOR6TBRd8a7JXEyYYRCTA9EvF45GyKA2HhZeGSguLPj9xawsUSRKZoa/thW8cgot/PH7NzJzrIKlIzDDaPUWzKPv/BaXviL/TDX8HrXHSltLnIDt8MKgzaEjJPQt1KAHiSwZFq1eTNVNkpsLdPGNw1gco+ashY5Fw69z5t8lezfjprIZtns6kNQ+GLe3PJLxlnpeGNy9SWotnrYPo03hm1HhQqfs6enb8FWzdk7uewbSehPfvF48v+X+hc/j1AZfDTYfnDl4Rww5HpncuT+dELOu0xeV0Y+kW059HC1Cgn6tsOEAZnRC4Kp9eAYok9WlRdj95eojrRuODB4TdeM4F4m4yzJnDjCvFVOLOqqEuyFYTHPYMFVwagrk7pxNzb4DE6cK0bfcTk72aPpx2obVxmCHvQjjvq5O6nPaGXtxuGX2kZsS2WOjzQ6k70RHWTIxCb5cNZFBpJIxRo3dMKkLZpgqT2C/M8GQuBoLb2XZ6BSgAM67ytCiaRJByulKxRZh5SSq48jcT3rIYJsToIkVdHODIoDLP4RfA0Svex0rHz9mKSi30LADb/zJ1siibHoKGg2CIg2sf8034G0Ja+hm0jTYMNa0gFpVaoqfDRlfLWaRD8ZPeTk/2JFaPpBr93BsZpyclR2StqorDrrIjYogVGrUgcvoFKCpVny/Kzr+dnpNYXU547wfi8dK7xWyUMGceimnbkVf7hpnJcp84dskXw4EpiCxKQoHoaJoKNx2Vn8K2/xOP1/1JtI5PMq2eGTxJWcMLZBW0OjWpeTHAWdZu7Ce+CGT7k7cg7CrrE0GeTeVXgJKbm4skSUO+7rvvPgDuvPPOIc8tX748qAsGxAktLgfMbcIc6nRj71PC8MmYIAytwpyZFFws/sa9zVC5RXyvaju0HBflnwU3T+76pgpqTZ8WZfufwdYzeWuxdMKrXwJkMaxTcbGeZEaawTMcmWdru7EfjGXSNhil3bj2WDsOu5/jH84mfJiB5A9+BSh79uyhoaHB+/Xhhx8CcNNNN3m3ueKKKwZs8+67AYyeHwu1xjOjB9j+iKgXny70tsInnlkRlzwgOj7CnJmotX0XOKWbRxHHzr9JpETDCObdJLqCLO19GabJ4J3viMGN8XnC0XkKILtlb4Ay2EF2OMI6lLHp6RDjACJH0fP0JzEziqgEPU6Hm9rj4czUiMy4MqiH8ytASU5OJi0tzfv19ttvU1BQwEUXXeTdRq/XD9gmISFEF+CFn4OoNDDVweHnQ/MaoeDjB4W4N20+LL5jslcTJtQoZZ6jb4quraNviv8vOcvFsYNRa/oE8Nv/DPZJ8Jw4/KLQC0lquP5J/71dQkRXiwWHzYVGqyIura/Tr/ab3+LkJZfiMg30kEnLj0GtUWHustPZdBqWwCcAf0s8kiSRNz8ZgMpDLSFb12RzYncjlcVTp4wVsAbFbrfz3//+l7vuumuAaGvTpk2kpKRQVFTEPffcQ3Nz86jHsdlsmEymAV8+odHD+V8Tj7f9X1+NfypTfxD2/Us8vup3U9ucK0xwyF4uPG7s3fDSF4TRYNaySW1ZnbLMv1lkLsytYpLyRNJRJbInICaJZwff0yFQFIFsYlYUKo+g0202071hA466Osx79gzYXqNVk5bv0aGEyzzD4osHymCUduOK4jZk95mXmWqr6+HDfxzlvceLsVumxvU04ADl9ddfp7OzkzvvvNP7vSuvvJJnnnmGjz/+mD/84Q/s2bOHiy++GJtt5Nashx56iNjYWO9Xdna274s4504xe6G93L/x9pOBMm8HGeZ9pm9+RJgzG5UK5t0gHtd52o3P9tbikVBr4EIli/LIxAngXU6hO7GZIPtcWPmdiXldH2n1BCj99Se2sjKvv47lyJEh+3jLPGGh7LD4m0EByCiKQ2tQYzHZaa6aIt1mQeTkPpFMcDtlaqfI+ybgAOWpp57iyiuvJCMjw/u9m2++mbVr1zJ37lzWrVvHe++9x4kTJ3jnnXdGPM79999PV1eX96umxocJsAr6KFj+FfF46x/BPYVHYh9+EWp2CXHkZT+f7NWEmUjm9Wm0MCaIOTRhhmf+zUIA39sCe/8xMa+57f+gZifoouH6J0SgNIXwOsj26+CxHjve97ikZMg+fULZsA5lMLIs97UZ+xGgqDUqps1OBKDi8JlV5pFl2RugANQca5/E1fQRUIBSVVXFxo0bufvu0Yczpaenk5OTQ1lZ2Yjb6PV6YmJiBnz5xbJ7xImluQTKNvi370Rh64YP/594fOF3ISZj9O3DnFmkzhWeJwCLbgOtYXLXM5VRa/uyKJ8+HPosSu0+4XkCouwanxva1/MTWZa9GZT+Alnr8b4ZT9aSo0OCkNTcGDRaFZZuB+0N4Rky/bH2OnA5xc2sPwEK9LUbn2musm11PQP0StVHT+MA5emnnyYlJYW1a9eOul1bWxs1NTWkp6cHtDifMMb3pcy3/H54W/HJZsvvoadRdCmcd99krybMRCNJsPYPsOj28LwlX1hwC8RNE1mUfU+H7nVsPfDq3SC7YM71sOCzoXutADF32bF0O5BUEomZkd7v2/plUFxtbTgbGwfsp9aqSCsQXWJh2/uBKOUdY7QWtca/S2DO3EQklURbXe8ZNZDx5F6RPcmaGY9KLWFqsdDVMvkCa78DFLfbzdNPP80dd9yBRtOXCu3p6eG73/0uO3bsoLKykk2bNrFu3TqSkpK47roQ27ifdx9oDKLGX7EltK/lL22nxJwRgCt+LcS9Yc4+ci+A9X8Jt5X7glrbpwP59E9i4ncoeP+HQr8WkwVX/3FKmuYpAtn4tAg0OiGql10urCdOAKCKFlmV0co89eHBgQPo6fBfIKtgiNSS7gn8zhTTtv7lndkrMkjLFz9fdcnkZ1H8DlA2btxIdXU1d91114Dvq9VqiouLWb9+PUVFRdxxxx0UFRWxY8cOoqND3K4XlQKLPRNht/4htK/lL+//UHRuFK6BossnezVhwpweLLgVYqdBT5OYXh5sjr4JB/4DSHDdYyITOwXpE8j26U/sVdXIFguSwUDUxRcDYBkuQJnRZ9h2JnadBEogAtn+5J5hwwNba3roarGg1qrImZfItDniJmoqlHn8DlDWrFmDLMsUFRUN+L7RaGTDhg00Nzdjt9upqqrin//8p39dOePh/K+BSgMVm4cOZ5ssTmyAsg/EqPbLH5rs1YQJc/qg0cFKz0iLbQ+Dwxq8Y7edgre+Lh6v+AbkrQzesYNMn0C2XwePR3/SkKblSdcmAKxHhgYoKbnRaPRqrL0O2urDOhSFQFqM+6O0G9ef6MQ2Rdpxx4OSPcmdm4jOoPEKgetKO7xancni9JvFMxJx00QHAEyNLIrTJrInIEpQSdMndz1hwpxuLPwcxGYL/db+f43/eLZu2Phz+Nt5Ynpy+gJY/ePxHzeE9Alkh3bwFMf3cChBBDDWkpIhQlm1WkWGV4cSLvMo+GtzP5i41Aji0yJwu2WqS07v4YGivNMEQME5KYDoFjNGa3HYXDSWd03m8s6gAAU8AkQJSt+FpqF3FBPKzr+J+nZUWl9XQpgwYXxHo+sTFW/7v8CzKG43HHwW/rwEtv0RXDbIuwhufka8xhTFZnZgahU/c9KADh4RoFSmSFSlgEsFrvb2IUJZGGh7H0bQ69GgRPlocz8cSpmn4tDpXeZpqe7G1GpFo1WRO0/8TJJKInvW1CjznFkBSlIhzF4vHm/94+Sto7EYNv1GPL7sF1PGMjtMmNOORbdBTCZ0NwQ2GLRmD/z9Enj9f0QmJj4PPvssfP4NiJug8nOAKPN3ohMMGCK13u9bjh0FoDJVwqVTU5Pk+f5whm2KULasE3dYhwIMLfG4TCbK111D8x98z7wrAUp1SRsu1xT23xoDpbyTMy8Jrb7P2XzabBGg1IQDlCCjqP+PvAzHRzaICxnmdnj+c+C0wPRLYf5nJn4NYcKcKWj0A7MozpFdqQdgqhfusE9dCvX7QRcFl/4c7tsFM9dOyY6dwbQq+pN+5R1nSwvu1jbcgHHGTNbkrKE8Tfwsw3XyJE+LQmtQYzM7aaudxCnRU4jBJR7z/v3Yyspof+YZZKdvmpK0/FgMkVpsZieNJye3DBIo/bt3pnvKOwpZngxKS3U3lu7JG8Z75gUo6fNh2ZfE41fumdhSj9sFr9wNnVXCDfP6J0+LE2GYMFOaxZ+H6Azorh87i+KwwObfwZ/PgcMvABIsvA2+tl9MQD+N2vyVFuPkaX0ZWIsikE2A6+fdwvrp6zmVLs4xluLiIcdQqVVkTI8DwmUeAIfdhc0sgpCoeGGY2Fl9EgDZbMFcenzEffujUknkzlNcZU/PMk9zVTfdbVY0OtG905/IWD2JHufiyXSVPfMCFIDLfwV5F4KjF577LPRO0Bto00Nw6iPQGOGzz4Q9L8KECQYafb+OnhGyKLIMJa/DX5bBJ78Eh1nM1bnnY7j2rxCdOqFLDgbeFuN+Fvelu4Rbdl26livzruS89PPoyBFlnO4jh4e1tffa3oeFsl79iUavRmcQJY268sPe5ze882efj5XrcZWtONx6Wo4T8HbvzE9Cqxs6uFYp80ymDuXMDFDUWrjpX6Le3FkNL9wOzhCnqY6/A1t+Jx6v+xOkzQvt64UJczax6HaITgdTHRz478DnGg7DP9fCS3dAV7XQrNzwFNy1ATIXT856x4nT4aK9QTh59hfI1h/8FICo2fOI0EagVqlZsPwanCpQd/XgbGgYcqzMGXFi37JO3KexXiIY9PdAkTzZbWt9rff5ll1b2V6/3adjZc9KQKURrqsdDZPvuuoP/bt3Bpd3FPrrUCYrADszAxQQ2YtbXwB9DFRvh3e/Gzob/NYyePVe8fjcL8OCm0PzOmHCnK1oDX1alK1/FDccPS3w1jfg8Quh6lPhJn3RD+Gre2Dejad1ebW9vhfZLWOI1Hq7Tep76omoEBeVBSvWe7e9etb11CSLxy0Hdg45VlJ2NPoIDXary+urcrbSJ5Dt695yN/UN/iuqk7l/6/20mMceBqgzaMjydElVFp9eZZ6mShM97TY0ejU5cxKH3Sa9IA6NToXZZKetbnLeN2dugAKQPANu/AdIKuGjsPuJ4L+GrRteuA3s3TDtfFjzy+C/RpgwYWDxHaJt31QLL38B/rzY4zIrw9wb4Kt7YfX9oIsc60hTnv4CWeVO/9XDz5Husd3IPWe1d9vp8dPpyBF3u8e3D20MUKkk0hUdylle5unLoPQN7NS1mbyP0zrB2dbGD7b+AJfbNebx8k7TdmOlvJM3P8k7QmEwaq3K26Y+Wbb3Z3aAAlB4mWj1BWGcdurj4B1bluGN+6DluEg/3/RPUV4KEyZM8NEahNAV4PjbYDNB2nz4wnviRmSKtw37Q8ugCcYOl4M9O15BBbjio9EkJw/YPmnRcgB6ig8zHFlhPxRgaIux2+0mutNT/o8Sge3cRh17Gvfw2OHHxjye0m7cWNGF2TR53S7+ILtlTo3QvTOYydahnPkBCsB5XxWulLIbXroTWk8G57jbH4Gjbwgr+8/8+7QU4oUJc1pxzp2QMgeiUuGaP8OXNkHO+ZO9qqDjFchOEwLZjdUbSagR7azRc4bq2xatvAGA1JoejrcN7UTx6lBOdp3Wvh3jZXCLcWtjOTpPZ3HUxSIrdYcsgr3HDz3Ojvodox4vKt4guqxkqDpyemRRmipN9HTY0OrV3rk7I6HY3jec6sRhGzujFGzOjgBFkuDq/4OsZWDtguduBkvn+I5Zvgk2/kw8vvI3kL1snIsMEybMmGiN8OWt8J1S0X6sGj49fTrjdstekzZlBs/zx58nt0lo6IyzZg/ZJ2neObhVEjEW2Lj7uSHPJ2ZEoY/U4LS5aKnqDuHqpzY9g1xka04dAKA7UkX0uecBkFnRzQ2FNyAj9CitltEDD2+78WlS5jm511PeWZCERjv65yc2xUh0ogG3U56U7NvZEaCAaFX87DNitHrbSXj5LnAFOOipsxpe+oLIyCy8DZbcNfY+YcKECQ4q9WktgB2LrmYzTrsbjU5FXGoEJzpOsL95P7niuoJ+5swh+6j0elz5WQCc2rkBh9sx4HlJJZFZGC7zDM6gtFSKbJM5IQLjooWAcOT9waLvUBhfSJu1jR9sGV2PkrdAlNtqjrXjdEx8lsEfZLfMyf2+lXcAJEmaVFfZsydAAYhKgVueBW2E8Cv58P/5fwyHVbQtW9ohfSGs/f0ZfbIMEybMxKIIZBMzo1CpJF4sfRHJLZPXIk7Xhlmzht0vceFSAJKrTWyvG9oqq5R5zlahrNste3UiUZ4AxVRbIZ5LjkeXm4sqNhbZaoWTVfz+ot9j1BjZ3bibJw6P3GCRlB1FZJwep91N7fGp/bttLO+it9OGzqAme7ZvPl3Zk6hDObsCFBATTK99VDze+VfY/x/f95VleOc70HAQjAlw839EyjlMmDBhgkR/gWyvo5e3Tr1FWgdo7S4kgwFdTs6w+0XMnQ9AXiO8ceqNIc8rhm0Np7pwOc8+HYrFZEd2y0gqCWOMaDO21dcBoE1PR1KpMC4Qv0PLwYPkx+bzwPIHAHj00KPsatg17HElSfKKZSuLp/Z0Y2/3zoLkMcs7ClkzE5BUEp1NZkxtllAubwhnX4ACMOdaWHW/ePz2t6BqdCGUl31Pw8H/irblG/8BcdNCtsQwYcKcnXgFstlRvH3qbcxOM8u6xQVQP6MIST38hcUwZw4ABQ0ym6o/ocs2cEZMQkYkxmgtTrubpkrTcIc4o1H0J5GxOlQqkfWWWkRAEZ2ZC0DEokWACFAA1hWs4/rC65GR+cGWH4yoR1F0KFXFU9dV1t/yjoLeqCEtLwaY+DLP2RmgAFz4fTH52O0QPiad1aNvX7Mb3v2+eHzJT6Fg9ejbhwkTJoyfyLLsNVNLyo7ihRMvAHCxrQAAw8zhyzsgghe0WqKtENfh4L2K9wY8L0kSGYVnr+39YP2J3WXH2O5x680Vuh7jwoVAX4AC8MNlP2R63HTarG38cOsPh9WjZM2MR6NT0dNh85bophoNp7owd9nRGTVkzxq+vOO2WpEdjiHfn6wyz9kboKhUotSTNh/MrfDcLWAb4Y3V3QQvfl4EM7OugRXfmNi1hgkT5qygt9OGtceBpJKo0ZykrKMMg9rg7eAxzBoqkFVQ6XQYCgsByG+UefPUm0O2yVJ0KGehUHawB0pNdw0JJvF7jc+eDoBh3nxQqXDU1eFoFtkGo8bIHy76A0aNkV0Nu3iieKgeRaNVey/6U9VVVinv5C9IQq0deul3WyycWnM5FZ+5eUgWSGk3rj3eMaHjEs7eAAWE4+Qtz0FkCjQdgdfuBfegX77LIbxTuhsgaQZc+7ewKDZMmDAhQcmexKdF8GK5yJ5clX8VzhNlABiG6eDpj1Lmmd4oUdxaTHln+YDnFWfQxnLTlO84CTaDMyiVHeUkejqutekZAKijItEXFQEDsyj5cfn8ZPlPAHjs0GPsbtg95Pi58zw6lCk43djtljnlKe8UjFDesZWW4mxuxnbsGK72gZmS5Jxo9JEa7BYnTRUTVx48uwMUgNgs0X6s1gl3yk0PDXz+gwfELB9dtNhOHz38ccIMiyzLU7YmGybMVEPRn8Rk6Piw6kMAbk5ag6ulFSTJe/EcCcPcuQAs7ogFhopl41IjiIjR4XK4J/RCMxXo6bQCfR08tbVH0bpAlkCb0ufMa1y4AADLwUMD9r+m4Bqum34dbtnND7YO1aPkeHQozVXd9HYNM3F7Emk42YnZZEcfMXJ5x3bqlPexvaJiwHMqleTdbyLLPOEABYTJ2ro/icdbfgtHXhGPD78IuzwdP9c9BkmFk7O+05hN/z3O0z/4lPKDYw/fChPmbEfRL9ToT+J0O5mfNJ9pnvKOLjcXVUTEqPsrGZTMWivIMm+fenuAZkKSJDKL4oCzT4cyOIPSVnUCAHtsBJKub3jgcDoUhfvPvZ/pcdNptbRy/9b7B/xuI2P1pOSIG9iqKdbN4+3eWZiMWjP8Zd9W1uewbisvH/L8ZNjehwMUhYW3wvlfE49f/4oY6f7m18X/V34XZl09eWs7TWmt7eHopw1YTHbee6yYve9WhrMpYcKMgtJivNmyAYCbZ96M9fgxYHT9iYK+qBC0WlQ9Zgos0TRbmtnZMHDCcaZ3Lk9nEFc+9entHOiB0lNXJZ5ISRqwXYQnQLEeOYJsHzhfx6gxev1Rdjbs5O/Ffx/wvNJuXDGFyjz9yzujde8MyKCUVwx5XsmgNFeZsPYMFdKGgnCA0p9Lfw6Fa8BpFUMAnRYouARW/2iyV3Zacmij6IyKiBV3J7veLOfDp0pw2M+u2neYML5g7XXQ3SbKECfUh4nVx3J57uXYjgm3U/0oHTwKKp0Og6cMtN4pZvYMLvMofiiNFV04z5LPoizL9HSI322kx+be2dgAgD4jY8C22pwc1PHxyHY71mPHhhyrIK6AH5/7YwD+duhv7Gnc431OCVBqj7VPmd9tfVknlm4H+ggNWTPjR9zOdqovgzK4xANi7lBCRiTIUHN8YrIo4QClPyo13PB3IYYFiMsR/z8D532Emt5OGyf2NAFw1Zfnc9GtM1CpJMr2NvPa7/d7TxZhwoQRKPN37BG92DUWrpt+HXq1HutxEaD4kkGBvjLPuZ1CE/Fx9cd02/vm78SmGImM0+N2yjSUdw17jDMNu8WJ0y4aIKLi9HRYO4joEKZj0Vl5A7aVJGnUMg/A+unrWV+wXuhRtvyANoso6SRlRREVr8fpcFM7RUpo3u6dRcmo1cNf8l09vTjrG7z/tw0ToEBfu/FE+aGEA5TBGGLh9ldFWef21yDCNzvgMAM5/EktbpdM+vRYUvNimHthJtd8cyGGSC0t1d289NBeGs+Sk2OYML6gCGTrDOJO9jNFn8FtNnvvZsfq4FEwzBUBSmR5EwWxBdhcNjZUbvA+L0nSWWd7r7QY6yM0aHRqKk2VJHo0wsb0rCHbKwGK+cDBEY/5o3N/REFsAS2WFn607Ue4ZTeSJJEzb+q4yrpdbsoPjF3esZeL8o5DKzpUHbW1uAeVt2CgDmUiyvXhAGU4YrPgkgcgsWCyV3JaYrc6KdkqLKQXXtrntptZFM9N9y8hISMSs8nO6388QOnOhpEOEybMWYUikG2JrGVFxgqyY7KxlZWBLKNOSkKTnDzGEQRKBsV69CjrC64B4I2Tw5d56s8SHcqQFuOuShI9Hija9LQh24+VQQGI0Ebw+4t+j0FtYHv9dp4qfgqYWq6ydZ7yjiFS69UeDYftpAhQSjPArAfcbhxVVUO2y5geh1qrorfTRntDb6iW7SUcoIQJOse2N2AzO4lNMZI3f6AALSbJyA3fP4e8BUm4nG42/vMY2185idsdFs+OhrXXwfO/3M1/H9jBJ88cp2xvE5buoXc4YU5fmmvELX1rZB03z7gZAKtHf+Jr9gTAUFiIpNXi7uriSv05qCQVB1sOUmXqu+BkeS5WTZUmHLapoZUIJYrNfZRHf1JhqvB6oGjS0odsb5w3F9RqnI2NOBobRzzu9Pjp/Hi50KP85eBfONp2dEq5yvpS3oE+/UlNEtR5iga2YYSyGp2azMI4se0ElHnCAUqYoOJ2uTn8cQ0gsieSaqipnc6g4cp753HOlWLo2YEPq3n30cPYLc4JXevpxMEPq2mr7aGrxcLRrfV88PcS/vG9bTz/4G62vVRG5eHW8O9vAnHaXVh7g9fJ4LS76PDckaqT7FyYdSGAXx08CpJOh36G0NFFlDdwXsZ5AAOcZaMTDUQl6HG7ZBpOdQbjR5jSDDVpqyBBMWlLSx2yvSoiAoPndzhaFgXg2unXcsm0S3DLbt4pf2fKuMq6XW7K9wt7h7Fm79hOigClNkmiPlGcs+0VQ1uNYWJt78MBSpigUn6wFVOrFUOklhnLh6ZOFSSVxPL1Baz54hzUWhVVxW28/Ju9dDabJ3C1pweWHjuHP6kFYOnaXBZcnE1iZiQAbXU9HPqohnf+dpi/f2crL/9mLzvfOEVtacdZ5xQ6UciyzEu/3st/H9gRtDR3W30vyBIWTQ9Xz7sStUeYr3TwGGaN3cHTH2+Z58gRri24FoC3Tr2FWxZCUUmSyPKUeU7taz7jM5hDPFDqT6Fxg6yS0KQMf/H2lnkOHBjz+FfmXQnAtrptwNRwla0r7cTa68AQpfV634zE8AHK8EJZxfa+vqwz5J1KmpAePcxZhSzLHPhQtBbPXZWJVjd291Ph0lRiU4y8+2gxHY1mXv71Xi7/0lyyZ4bFyQoHP6zBYXORlB3F0qvzkDyjFswmO3UnOqg93kFtaQemFgtNFSaaKkzse68KtVZFekEsmTPiyZoZT8q0aFSjpHnD+EZPh432ehGYbHjyCDf+YAla/fg6/YqPCSv7tqg67iy6CQDZ5cJ6QpiJ+dJi3B/DnNkAWEpKWP2trxGtjaaht4E9jXs4N/1cAHLmJXF8ZyNHP22gqbKb868vIHt2gvf9dSahiGSj4vQ43U5s9UIjp0pKRNIMfxk0LlpEx7PPYh4jgwJwXsZ5qCU15V3l1PXUeYWyiqtsZKw+OD+IH5zcJ7ooCxYlj/q5d5vNOOvqAejJjKfB0gm46Tl5Ytjt49MjiIzT09tpo76sk2lzEoO9dC/hs1WYoNFwqovmShNqjYp5Fw1Vxo9ESk4MN92/hNS8GGxmJ289cojiTbWTLjCbCli67RzepGRP8gZcPCJidBQuSWX1bTO5/cHzuP1/z2P17TMpWpbqtTOvPd7BrjfKeeU3+3jqO1t57/HiKWfDfbqhdNsAtNf3suWF4U/k/nDQ47cRna4lySgubvaqamSLBcloRJczbbTdh2D0WN5bS46iU+m4Iu8KYKBYtmBxMudfPx2dUUNbXQ9v/fkQb/7pIC3V3cMe83SmfwalrqeOWJMoh+rTM0fcx7hoIQDWo8dw20b/zMToYliQLCzyt9Vum3RXWZfLzamDPpZ3PFqTrghYUHgBhnwxONFRXjHsOViSpAlzlQ0HKGGCxkFP9mTG8jQiYnRjbD2QyFg91357ETPOTUN2y2x5/gSbny3F5Zy4yZlTkQMfVuO0uUieFk3egqRRt41JNDJ7RQaX3TWHO3+zglt+ei4rby4if2Ey+ggNdquL8gMtlGytn6DVn5koA/0SMyORJDi+vYHjOwLvRuu2d9PdIPQs53hKMwA2RX9SVISk9i9Do58+XQhlTSYcNTVc4+nm2Vi9kV6HyP5IksSiNdO4/cHzWHBJNiq1RO3xDl781R4+fLoEU5sl4J9pqqEEKFHxek8Hj/i+Nm3kMrQ2MxN1UhI4HFhLjo75GiuzVgL9yjyT6Cpbe7wDW68TY7SWDI+odSRsJ0X2riZJYmnaUvJmL8ctgcpiw9ky/IgSrx/KsXCAEuY0oLPJ7P0gLrw0O6BjaLRqLrlzFuddXwASlGyt580/HcTSc3Z2q5hNdoqV7MnVeX6l3iVJIiE9kvmrs7jyy/O46/crWbZOGFI1V55dQ+KCjZJBmXV+hvd3uvnZUtrqA+vYeKPsTeJ7xYVy6Zz53u8rHTx6PwSyCpJOh97T+WMtKWFB8gJyYnKwOC18UPnBgG0NUVouuKmQz/18OYVLhWD0xK4mnvnpTj595WRQxcCTgcvhxtItfobIOD2VpkqSlBbjUQIUYdjmGRzogw7lgswLANjVuAu7yz6prrJK907BopQxy7q9ZaUA1CXB0tSlLM4+l6Y48dxwlvcgbO8lSWQQQ2m6GQ5QwgSFQx/VgCw8AOLTIgM+jiRJLF6Tw9qvzEdrUFNf1slLD+311vwDYVfDLp459syAwV6nAwc+rMZpd5OSE+31VggUlUryituaKk3h8tk4UFpHk7KjOOeKXLJnJ+B0uNnwxBHsVv86qWRZ5p0DH6B160HrJi61bxig10HWT/2JgqJDsZaUIEkS6wvWAwO7efoTk2RkzRfncNP9S8gsisPtlDn4YTX/fWCHeC+epqJrpaSp1qgwRGqp6OrXYjyMB0p/IhYtAsbu5AGYET+DZGMyFqeFfU37Js1V1uV0U+FjeQeg7dhBALoyYsiKzmJx6mKvULa99PCw+xgitaTkxgChLfOEA5Qw48bSY/emuPsbs42H3HlJ3Pj9JcQkG+lus/Lh0yV+H6PH3sNPt/+Uuz+4m1/v/vWIJ+apiNlk50iA2ZORSMqKQqWWsPb0zXwJ4x/WXgfd7eJ3l5QVhaSSuOwLs4mM1dHRaGbLcyf8Cv72NO7B2ij+tsmZMaj6teUH0mLcH6WTx3JEfHbWFaxDQmJv015qu2tH3C8lJ4b131rE2vvmk5ARic3sZPsrJ3n2p7so3dWIfJp1/PR49Sc6JEmi0lRJgg8ZFOjnKHvwwJh/V0mSWJG5AoCtdVsnzVW25lg7NrMTY4yO9DHKOwCOU6KdOHbGXCRJIkYXgzVDlHDqj+0dcb+JsL33K0DJzc1FkqQhX/fddx8g7gZ+9rOfkZGRgdFoZNWqVZSU+H9hCXN6cWRzHU6Hm+Rp0WSM0c7mDwkZkdzwvXNQaSRaa3q8s0p8YWfDTq5/83peLXvV+733K98P2tpCzf4PqnA63KTkxpAzNzgqebVWRVJWFCCyKGH8RynvxCQZ0EdoATBG61hz91wklUTprkaObfddj/J86fMk9QqhZmpOrPf7zpYWXC2toFKh9wz/85c+oWwJsiyTFpnGsvRlgGg5Hg1Jksidl8TNP1nG6ttnEhmro7vdysanj/LSr/dSO0HD4oLBcC6ySV4PlNEDFMOcOaDR4GppxVE3tnZrZeYgHcokuMqe8pR3pi9KHhDwDofbYsHYLM4FeQsv9H4/Yrp4z5k9+pThUDKyNcfaQ9am7leAsmfPHhoaGrxfH374IQA33STa4n7729/yxz/+kb/85S/s2bOHtLQ0LrvsMrq7zzxVeBiB0+Hy6iQWXpYd9BbFiBid11OgdNfIjo4KZoeZX+78Jfd8cA8NvQ1kRmXy4IoHAVHqabdO/RNrb5eNks2iDXJZkLInCkpaNqxDCYwWb3knesD3MwrjOPcaoUfZ8vwJn4LpZnMzn1R/QpJZdLwl9zum9bjQBehyc1EZjQGtVT99OpJOh7u7G0e1ELArZZ43Tr3h9UQZDZVKYvaKDD734Hmcuz4frUFNS3U3bzx8kLf+fIi2usl1SvWF3n4txia7iXZzK/HeEs9QF9n+qAwGrweNL2We5RnLUUtqKroqqOupm3BXWZfDTfkhoQWcvmTs8o7p5HEkGUxGWFS0yvv9rDmiFV1fN7xIFiA1NxqdUYPN7KS5KjTnE78ClOTkZNLS0rxfb7/9NgUFBVx00UXIsszDDz/Mj3/8Y66//nrmzp3Lv/71L8xmM88++2xIFh9m8jmxqwlLt4OoBD0Fi8f+QATCjHPFXc6J3Y2jRur7mvZxw5s38ELpCwDcPONmXr3mVa6dfi2zEmbhkl18VP1RSNYYTA58UI3T4SY1L4Zpc4LrB5PqCVDCGZTAaK0VV7bk7Kghzy1ek8O0OYm4HG42PDm2HuWVsldwup2kWoSjclK/Y3rLO35Y3A9G0moHCGUBLpl2CRGaCOp66tjftN/nY2l1apZcmcvtD57HvNVZqFQS1SVtPP/L3Xz8n2MTLgL1B8XmPjLeQGVXJXG9oJYBtRpN0uidcdDXbuxLgDK43XiiXWVrjrVjtziJiNWRVhA35vanDmwCoDlFR3ZMX3PDnEWXARDb4aS9Y/iMoEqtInumMPsLVZknYA2K3W7nv//9L3fddReSJFFRUUFjYyNr1qzxbqPX67nooovYvn37iMex2WyYTKYBX2GCQ5eti/qe0LWUym6ZgxvFndmCi7NHnfUwHnLmJmKI1GLusg+bWrY6rfx2z2/5wvtfoLanlrTINJ647Al+svwnRGiF6PDy3MsB2FCxYcj+U4neLhtHtoQmewJCXwDQUt2N23V2t3AHglcgmxU95DlJJXHpF2YRFa+ns8nMpmdKR0zrO91OXj7xMpH2OLR2AyqVRGJGX4BiG0cHT3/6G7aBGHCnfBYC0WQZo3VceHMRt/zsXHFDIsOxTxt4/8kjU9YSoH8GRXTwiO9rUlJ8at+O8GFwYH+UduOtdVuBiXWV9XbvLE4Zs7wD0FQiNCau3IwB55qE9DzMESpUQPGBD0bYu5/tfckUC1Bef/11Ojs7ufPOOwFo9AxUSk0dONcgNTXV+9xwPPTQQ8TGxnq/srMDa1ENMxBZlrlrw11c+8a1NPU2heQ1qkra6Gg0ozOomb0iIySvAUJ9X+hJV5buHPheOtxymJveuon/HP0PMjLXTb+OV6951Tt/REE5Ke9p2kOrZfLsp8di/4YqXA43afkx3g9/MIlLi0BrUOO0u+loDI8V8Aen3eX9nQ0u8SgYo3Ss+eIcJJVE2Z6mET1nNtduptncTJ5DBCDx6ZGotX2n4/F28HjX47W879MCKp4oH1R9gNkR2HsgLiWCxbelkPlZF5JGpqq4jY1PH52Slvn9NSgDphiPoT9RUISy1uPHcVvG9oZRdCi7G3djc9nI8ehQFFfZUOF0uKg45Hv3DgwUyPZHkiTMHqFs9ZEdI+6vnKOaKk3YzMFvRw84QHnqqae48sorycgYeGEafMcny/Kod4H3338/XV1d3q+amppAlxSmH4daDnGi4wQWp4UDzWP38AeCkj2ZvTITnTG0UxNmLBe14vIDLditTuwuOw/ve5jb37udSlMlycZk/nrJX/nFil8QrRt68ciKzmJe0jzcspuNVRtDutZA6e20UbJFXNCWXZ0fEstxlUryOlyGyzz+0VbXi+yWMUZriYwb2YgwfXocy6/NB2Dbi2XDOrN+XP0xAMs0FwEDyztus9k7ByXQDh4FgyKUPXrUm81ZnLqYzKhMeh29Ppc8nW4nR9uO8uyxZ/n+lu9z+cuXc8lLl/BA1bd5q/AxUMmc3NfMpv8en3JdPt4SjyeDorQYa8doMVbQpKejSU0FpxPrkSNjbl8UX0SKMcXbbjxRrrI1R9uxW11ExupIz48dc3uL00J0fRcAuQtWDnnekCfew6aTx0Y8RkyikbjUCGS3HJJW6oAClKqqKjZu3Mjdd9/t/V6aJxodnC1pbm4eklXpj16vJyYmZsBXmPHzTvk73sfH2kd+gwVKS3U3daWdqFQS81f7bmsfKCm50cSlRuB0uNm69RA3v30zTx15CrfsZm3+Wl5b/5p3AuxIKFmUqdrNs29DFS6nm/SCWLJmxYfsdZQyT1go6x+K/iQpO3rM4HHRpdPInZeIy+nRo/SbNO2W3d4ujxSzaMvvL5C1lZWBLKNOTvJJIzEa+oKCIUJZlaQa0xOly9bFltotPLL/Eb644Yuc/9z53Pz2zTy0+yHeq3iP+t56VJKKzKhMauOOs2Xm80gSHNvewLaXyqaMz47slr1Zi6h4vfBA8WRQNKm+BSjCsG0hgE9zefq3G0+Uq6wsyxzxCOsLzkkZdor8YA7W7iG1Q/wusuYuH/J86uzFAOhqWzDZRz5XhNL2PqAA5emnnyYlJYW1a9d6v5eXl0daWpq3sweETmXz5s2cf/75419pGJ9xuB18UNVXNzzefjzor6EMBZy+JIXoBEPQjz8YSZKYviwZgI827uVk50kSDAk8vOphfr3y18Tqx75jWJMj9FH7m/bTbG4O6Xr9pafDxlFPOWDpuuBrT/oTFsoGhtLBM5xAdjCSSuKSO2cTlaCnq8XCx/857r1ol7SW0G5tJ0obhbNFaCAGCGSPBae8Ax6hrCcLY+l397+uYB0gOtsaehoo7yrntbLX+On2n7L+9fVc8PwF3PfRfTxZ/CS7G3eLu21tNCsyV3Dfwvt4cs2TbL9lO29f9zazEmZxNHYnrecWA3D4k1p2vzW8A+lEY+lx4HbJIIE+Wk21qdrvDAr0m2x88JBP2yuusltrPToUxVX2eGhcZSsOtlJ9tB2VWvJ5DtqxAxtRyWCL0KJJSR7yfPyMeQBktMkcaBo5C+/1QylpD3pg6nde3u128/TTT3PHHXeg6TcFUpIkvvnNb/KrX/2KwsJCCgsL+dWvfkVERAS33nprUBcdZnSUdlq1pMYluzjefnzMUps/dLdbvWKsYBmzjcWJjhP8pefXLOc2MroKuCJpHfdf8l0SDL7rNNKj0lmQvIBDLYf4sOpDPjfrcyFcsX/sf79SZE+mx5I1I3TZE+hrNW6r68Vpd6HxYep0mD4PlOEEssNhiNRy+d1zee33+zm1v5kjm+OYtyqLLXVbAFiReCE97eLuPmlAi/H4O3j6Y5wzB+uhw1hLjhLruanMis5iSeoS9jbtZe1ra3G4h+oHcmNyWZC8gIUpC1mYvJD8uHxU0tB72p+e91NuffdWXuLv/PLKv1L7npO971aiNahZvCYnKD9DoCj6E2O0jmZrE3a3nWSTBMhofNSgAAMs7305lyrTjStNldR215KZlUlUvJ6eDhu1pR1e4WwwcNhcbH1JDKxcdNm0AW7Eo9F8dB8ArpyMYX8eXa5om89oh48b9nBR9kXDHiezKB6VRqK73Upnc3B1bX5nUDZu3Eh1dTV33XXXkOe+//3v881vfpOvfOUrLFmyhLq6Oj744AOio337QIcJDu+WvwvA+unrUUtq2q3tQc0YHP64BtktkzkjnuRpof3byrLMU8VP8dm3P8tB6x6aYiuQUPFZ9Zf8Ck4UrsgVU13fr5g6ZZ7udislnyrak9BmT0Ckuo0xOmS37M0KhBkdt1umrbbP4t5X0vJjxWwpYNvLZTRXmbx31Us0ogwQk2RA30/DpXTwjFd/oqA4yloHmWbeUHQDIDKuerWec1LP4Ytzv8ifL/4zW27ewlvXvcUvL/glNxbdyPT46cMGJwBzkuZw60xxE/qo81csWS9uWna8esrbkTZZ9Azq4AFI7hE/h68iWRC/Q0mrxdXejsMHnWS0LpqFKQsBUeYJpavs3vcq6Wm3EZWg55yrcn3ax+ww4y6vAiBmxuxht9FlZyGrVRgcUHZi54jH0urVZEyPA8SQwmDid4CyZs0aZFmmaBh3Q0mS+NnPfkZDQwNWq5XNmzczd+7cYY4SJlRYnVav8O266deRFyui4GCVeWwWJyXbxMU00KGA/vBOxTs8vP9hHG4Hq7JWcfWVQsxVurMxoHTiZTmXISFxsOUgjb1jG79NBPvfr8LtlMkojCMzxNkTEJ/T1LBhm190NplxOtxo9GriUny7Q1VYcEk2eQuScDtl3n38MGVNonMiy1YIDMyeyC4X1hPiblgfhBIP9BPKlpQgu/tagdfmreXxSx/nubXPseOWHfzzin/yzXO+yarsVcQb/Hsffm3R10iPTKeup45PU97knCtE5mTzc6U+GSyGisEdPCq3THS30AP5k0FR6XR9owN8bDdWyjyhdJXtaOz1TpFf+ZkitD5mQw+1HCKjRbwXEmYtHHYbSatFnS3KRb2nTninYA+HUuapm+wAJczUZnPtZsxOM5lRmSxIXsDMBHEXFiyh7NFt9TisLuLTI8mZExwL9pFwuV08fuhxAL4494s8cvEjLDw3H7VWRUejedjuiLFIjUxlUYoYALahcvI9UbrbrRydwOyJQmpuuJPHH7zlncwonwSI/ZEkiYs/P4voRAO97XZWnbqF2QmzsTSKC0R/TYu9qhrZYkEyGtHlBKd8qi8oQNLrcff0eIWyyrrOzzyfuUlz0aq143qNCG0EPz73xwD8u+TfxK60M291Fsjw0b+OUX5gZEfSUDLYAyW+G1QyoNX6LUD2CmV9mGwMfe3Guxp2YXPZgu4qK8syW54/gdslkzM3kbwFvv88exr3kNUqgiT99IIRt4soEEF0aquLg80HR9xOEcrWn+r0eQ2+EA5QzjCU8s5VeVchSZI3QAlGBsXlcnP4Y5HeXHhptt8nan/5oOoDKk2VxOpjuWf+PUiShM6oId/zQRzsieIrV+SJMs/gsfOTwb73KnG7ZDKLJiZ7ohDu5PGPlhr/yzv9MURqufyeucgqN/ntC7iwY/2wtvk2RX9SVOSTiZgvSBoN+pkzgL7BgaHgouyLWJOzBpfs4hc7fsH5N+Qz87w0ZLfMhqeOUH104gbmKfR0iMGOXg8URSCbkoKk8u/y569QVmk3trqs7GvcF3RX2VP7W6g93oFao2LlzYV+3dwcqNtNmifZoZ8+fcTt9PkiA5/ZJrO3aeTBgYmZUUTE6HDag2vWFw5QziC6bF1e98Kr8q4CYFaCSBMHI0A5ta+Zng4bxhgdRctGbh0PBm7ZzROHnwDgtlm3EamN9D6neKKc2NOEKwA31MtyLkMlqTjcepi6nsmrkZvaLN7BcsvW5U3oaytC2a4WC9be4BssnWkoGZTkEQzafCFhmpG9eaL9X9qVRmdj75BjWoPkIDsY45y+Mk8o+eGyHxKtjeZI2xFeKHuB1bfNpGBxMm6nzHuPFlN/sjOkrz8YbwYlXk+FqV+LsR/lHQXjIpF5tZWW4u4dudyhIEkSF2R5unmC7CprtzrZ9pIY5Lf48mnEJvtedjQ7zLSeKBZ2/5ERaFJGNnXTebxQMtrFKJGRkCQpJMaS4QDlDOKj6o9wuB0UxhcyPV5ExTMSxJ1TXU8dXbaugI8tyzIHN4rsyfxVmWi0oe38+Kj6I052niRaG82tswZ2gWXPiscYo8Pa4wjIYjnJmMSS1CXA5JZ59r1fJbInM+LJKJy47AmIO/rYZDGELlSDvs4UZFmmRSnxBJhBATjYfJB9yRupSS5BdoEsgzFaS0Rsn+lbsBxkBzOSUDbYJEck881zvgnAI/sfodnazGV3zWHanEScDjfv/OXQhL7fejrtAGiixHBGX6cYD4c2NQVNRjq43ViKxzZsg6E6lGC5yu59p5LeThsxSQYWX+5fp9ShlkOkNwsdjrGwaNTMiy4vFxCtxsWtxVicIzvpTgsHKGFGo395RyFWH0tmlBjnXtpeGvCx60500lLdjUarYu6FoTVmk2XZqz25ddatxOgGmvep1CqKlooMTqBlHu9snkkKUEytFo5/OjnZE4XwZGPf6OmwYet1olJJJGREjr3DCGyt3QoSqFc1E+MJDgebvnlbjIOcQRlJKBsKbiy6kYXJCzE7zfzvrv9FpZa48t65ZBTGYbe6eOuRQ7TVT0z3mJJB6dAIDUxmrx7wzwOlP31zeXzToSxPX45G0lBpqqSmuyYorrLt9b0c+kjcLK68uchvm4D++hPdKPoTAH2eODcldYPG4uBwy+ERt82elQBBrvqHA5QzhGZzM7sbdwNwZd6VA54LhlBWsbWfeX46hqjxCerGYlPNJko7SonQRHD77NuH3WbGcnGCqTzcGlCJ4tKcS1FLao62HaXaVD32DkFm33uVuN0yWTPjvS16E02fYZv/YuOzCaW8E58eMa7MoZLmX5m/gqu+PI/s2QksuqxPCOtsacHV0goqFfphuiTHg74gH8lgwN3bi72qKqjHHoxKUvHT836KRqVhU80mPqr+CI1OzdqvzCclJxprr4M3/3SQrpbQzoKyW51eB98magHItAhTSV9dZAdjXCjKPJYDB33aPloXzYIUz3TjILjKCmFsKW63TO78pID8VPY07iHLExvpC0bWnwCo4+JQJ4qsT3o7o+pQjNE6kjIDzzAORzhAOUN4v+J9ZGQWpSzyZkwUxiuUbW/oFdG+JFomQ4ksyzx2+DFAZE9GcohNyooiISMSl9PNqf3+e7wkGBJYlrYMmPgsiqnVwvEdIvOzbF3+hL52f1L6OcpOFWvyqchwYlZ/qe+p52TnSdSSmvMyziMxM4prvr7QK5oEsB4XGU5dbi4qo3F8ix6EpNFgmCHKvdaSo0E99nBMj5/OXXOFV9ZDux6i296Nzqhh3dcXkpARibnLzhv/d9ArYg0FSvZEa1BTbasEIKlb3OIHmkExLloIgOXQIZ8/M0o3T1+7ceCusmV7m6g70Ylaq2LlZwr92heE/uRI6xGfOngUvGWedpm9jSMHKADZM4Nbqp6yAcq+DZXhk6YfvFsxtLyjMF6h7CFP9iR/QbLfHhD+sq1uG0fbjmLUGEfMnoAQZSlZlEB9FpRunokOUPa+K7In2bMTSC8Y26I/VCRli5ZZi8nuHagWZijBEMgq5mwLkheMGHQH20F2MN4yjw8D74LBl+Z/iZyYHJotzfxp/5/EGiK1XPONhcQmG+lut/LGwwcxm+whef0BLcZdlQBEe97nmrT0gI5pmDEDSa/H1dmJvbLSp30UHcruBjHdOCk7iqh4PU67268Be3aLk09fPgnAkitziEnyP4g92HIQ2ekgwyPdG62DR0HvEcpmtskcbjmM3TXy36toeWCB30hM3QDlvSo2P3diSo7vnmpUdlVS0laCWlKzJnfNkOeVDEpFVwVWp393LGaTneOeACDUxmyyLPPYIZE9uXnGzWM6xc5YloYkQcPJroDSxZdMuwSNpKG0o5SKromZHdLVYua4Rzez7OrJ0Z4oaHVqEjOFpiIslB2Z1nG2GANee/uVWUOnxirYQtTBozBRQlkFvVrP/1v+/wB4sfRFr49GZKyea765kKh4PZ1NZt585GBIOsl6+pu0mSpRu2S0XeI8EWgGRdLpvIGer2WeovgiUiJEu/Hexr0Bu8rufrsCc5ed2GQjCy8LzCNnb+Ne0jpA7QZVRIRP3Uy6fBGg5HXqsLvtFLcWj7htbFJwb2CnbICCBCVb6nj/8eKQDFc6k3iv4j1AzH8Y7qKeEpFCgiEBl+yirKPMr2MXb6rF7ZRJzYshLcR3+zsadnC49TB6tZ475twx5vaRcXqyPCnF0l1Nfr9erD6W5RliiudEZVH2vluJ7JaZNieBNB9GooeasFB2dKy9DrrbRVCflBVYgGJ1WtndIPRhSrp/2O1C1MGjYJjrCVCOHg25UFZhWfoy1hesR0bm5zt+7p35E5NoZP03F2GM0dFW28OmZwIX8I9E76AAJaEbJFkWDqnxgZciIpQyj4+OspIkjdtVtq2uh8OfCB3Nys8WBayFGiiQne6Td4pS4sntFN1mY5V5gonfwwInikvvmM3OF2uoONTKm48c5Kr/mY8hMrTizNMFl8uNtceBtceBpdvOvh1lzDFdwArVerY8fwJrjx1LjwNLjwOn3YVao+Jq89cwuTrZUVtHZYz4Xt+XhFqjQqUd+j1lhPfCS6eF1OW0f+fOTUU3kWT0Tfw1Y3k6Ncc6KN3VyNK1uX6v8YrcK9hWt40NlRv48oIv+71uf+hsNnsDqWVXT572pD+puTEc3VofdpQdAaW8E5NkQB8R2PlnT+MerC4rqRGpFMUPL351m83YK0QWL9gdPAr6/H5C2coqrwlXqPnuku+ypXYLJztP8q+Sf3H3vLsBiEuN4Kovz+OV3+6jsrg16IMre5WyZaQTi9lCfrcacKFJS/PbpK0/fYZtB33eZ2XmSl4te5Vtddv4AT8Y6Cpb2zNq+VCWZTY/V4rslslflBywg7eiP7nWY+rrS3kHxPsGIL7FguQWhm33cm9Aa/CXKRug5C9MJiU9gXf+VkzDyS5e+8N+rv7qAqITDJO9tAmhu93KsU/r6emwYelxeIMOa48Dm9k5YNtFXA1AVwUUe9Tqg4kggQgScHRDNf55h8QkGchfNHQcdzDZ27SX/c370al0fGHuF3zeL39hMhq9GlOLhcZyk9+ajtXTVqPdoeVk50lOdpz0+seEAiV7kjM3kdS8mLF3mAC8jrJV3chuOeTuwKcbwRDIert3slaOGEDbyspAllEnJ/ltwe4rkkaDYeZMLAcPYi0pmbAAJc4Qx/eWfo8fbfsRjx58lDU5a5gWI0oUqXkxRMbp6e20UV/WybQgjs9QSjxmfReYodARDzQF5IHSHyVAsZWV4eruRu3DMNzB7cbZ0dlkzUyg8nArlYdbRw1QSnc10nCyC41OxQU3+S+MVTjYchCn7GR6px6woC8YWyALoM3MRNJqUdkdJJnUHNIdwuF2oFWFPmEwZQMUgIzCeK7/7mLeeuQg7fW9vPq7fVz9tQUkZgS3lWkqYbM42f9+FYc+rsHlGCUNKwnBmVltotFdR2xsFEvzFmOM1GKM1mGI0mKM0qLRqXG53Oyu3cM/D/+bvKg8/mfufbicbu+X2+nG5ZRxOdwDvu9yysiyzLyLMlGF+MKlaE+uK7yOlIiRnQ0Ho9WrKViUTOnORkp3NvgdoMToYliRsYJNtZvYULUhZAFKZ5OZEx4tz9JJ1p70JyE9Ao1OhcPqoqPJTEJ64D4fZyKttYpANrBzjizLbKkV+pMLMy8ccTvFQTZU5R0Fw9y5IkA5coTYdVeH9LX6c3X+1bx16i12NOzgFzt/wZOXPYkkSUiSxLQ5CRz7tIHqkvagBihKiadTLVIGubZooCkgF9n+aJKS0GZl4aitxXL4MFErVoy5T5QuioUpC9nbtJdtddu4ZeYt5M1P8gYoS9cOf06wmR1sf8UjjL0qd1w36EppJq9DC1h86uABkNRqdLk52MpOUmiKYHuchaNtR1mQvCDgtfjKlA5QQHj83/CDJbz1yEE6Gs289vv9rP3KfNInyTsiVLicbo5sqWPvO5VewVhGYRzZsxIwRms9AYcn8IjWoo/QIuNmzctraLY088jqR1g9beTUsCt9Bj+rO0yDupQ/Lv8ZGtXU+dPvb9rP7sbdaFQavjj3i37vP2N5GqU7Gzm5r5mVnylCrfUvfbsmdw2bajfxfsX7fGXBV0JSyjrwQRWyLGrPiv/IVEClVpE8LZqGk100V5rCAcogvALZrMAyKBWmCup66tCqtJybfu6I24W6g0dhooWyCpIk8cDyB7juzevY1bCLt8rf4pqCawCYNjtRBChH24DAMwSDUTIoDQhTs4xeoaEYbwYFhO29o7YWy8GDPgUoILp59jbtZWvtVm6ZecsQV9nIWP2QfXa9WYGl20FcagQLLx3f8Mg9jXtQuWXimoRNv24MD5T+6PLysZWdZKktg+2cYm/j3gkJUKauSLYf0QkGrv/uOaTlx2AzO3njTwcpPzg50zGDjSzLnNzXzLM/38W2F8uw9jqIT4vgqq/M59pvL2LJVbnMWZlJwaIUMgrjSEiPxBilQ6WS2N+8n2ZLMzG6GK8IaySmxUwjQhOBzWXzttxNFR4/LLQn6wvWkx7lf/tfZlE8UfF6bGZnQEO4VmevRqfSUWmq5ETHCb/3HwtZlqk8ItT68y8ObSdUIPT3QwnTh9PuoqNRdH0EWuJR2ouXpi0lQjtyh4PSwRMq/YmCcRKEsgrZMdlendfv9vyODqtosc2eFY+kkuhoNGNqHdlK3R/cLjcWT/tytbscgARlDk+AHTz9MS4UF2dfBwdCXwfXnsY92Fy2MV1lW6q7ObJZlOwvvKUItSbwy7WiP0nrAMnpQoqIQJvh+7lW5ykHFprEe3g0w7ZgcloEKACGKC3XfHMRufOTcDncvP94MUe2TN6gt2BQf7KTV367jw1PHsHUYsEYo2PV52bw2QeWkTc/acw7+XfKxeCxy3IuG3NcukpSeefyjMdRNtgcbjnM9vrtqCW1VzznLyqV5B1eeDwA6/soXZT35BGKbp7OJjPmLjsqjTSpvicjkRru5BmWtrpeZLeMMVpLZJxu7B2GQQlQRuvekV0urCdEYKwPcYlHl5+PZDQKUa6PPh7B5I45d1AYX0inrZPf7/09APoILWkeTVb1Uf9naw2H2WRHlsW54aRVBH9RnaIbSxugB0p/+gtlfQ30CuMKB7QbQ5+r7OAbK9ktHGNlGaYvSSF75vjm3BxsFvqT+d2ie0mfn++XUFixvE9pEdn9A80HcLlD31172gQoIHwbrrx3LrNXpCPLsPnZUna/VX7aGbp1NPby7qOHee33+2mqMKHRq1l6dR63/WI5c1ZmolKP/Wexu+x8WPUhMLw523CM11E2FCjZk3UF68iKDnzGT9G54q6o+kgblh7/jZ+U2TzvV74f9PdT3YlOANLzY4PapRAslACltbZndN3TWYaiPxk8L8dXeuw93gmwF2aNrD+xV1UjWyxIRiO6nPGl8cdCUqu9ZaSJLvMAaFVafnbez5CQePPUm+xs2AnAtDniAlxdEth8msEoxoPGWC0NZjHzStPSKdaQNv5J7IYZM0Sg192Nvbzcp30kSRrRVbbmWDtOR98F/9iOBhrLTWj1albcMP6y156mPQAstgh9n68CWQXFC0Vd00i0NppeRy/HO0J/HTmtAhQQNfNVt81kydpcAPa8U8mmZ0txu6b+idVssrPp2VKe+8VuKg61Iqkk5qzM4LZfLGfZ1XnoDL7rQj6t+xST3USKMYVzUs/xaZ/xOsoGm5K2ErbUbkElqbhn3j3jOlZiRhTJ06Jxu2XK9vhvfX9R1kUY1AZqumuCnmGqPS5S2ZkzJnZisa9EJxowRGpxu2RaaydmiNvpgLeDJ0D/k50NO3HKTnJicrxdK8NhU/QnRUVI6tAHsBPtKDuY+cnz+ezMzwLw4I4HsTqtXnFsbWkHriCcyxWBrCYaZGQSVNG428XnUJM+/gyKpNFgnDcP8K/dWCnFK51dA1xlPecJa6+DHa+dAoSgPip+qDbFX/Y0igAlv11cY8YaEjgYnSeD4mpt5dwY8XNPhB/KaReggIhEz12Xz0W3zkCS4OjWet5/4siUNXRz2FzseaeC/z6wg5ItdcieQU+ffWAZqz43c1hx1Fgo1vZX5F2BWuXbSa3/0MCpkHV64tATgMgAjXYC95UZnixK6c4Gv/eN0EZ4yzzvV74/7rUoyLJMfZknQCmamgGKJEl9hm1hR1kv47W4V7p3RivvQF8HT6gcZAdjmDMbAMskZFAUvr7o66REpFDdXc0Th58gOTsaQ5QWh9VFU3nXuI+vCGSdRlHWmSdnACDp9ajj4sZ9fOgr85gP+DbZGPrajatMVdSYaoZ1ld35RjnWHgcJGZHMv3j8k+PNDjMlreJvHdcggm5fPVAU1FFRaJKF1cR5jhxgYnQop2WAojD3wkyu+NI81BoVFYdaeePh0FgmB4rb5aZkax3/fWAHu9+qwGFzkZITzbXfXsTar8wPuGOi19HLpppNAFyV71t5B2B63HQ0Kg3d9m7qe+sDeu1gUdpeysc1HyMhcc/88WVPFAqXpiKpJJqruulo7PV7/ytyxWyeDyo/CFoA117fi6XbgUarGrf3ycsnXmZ7/fagrGswqbniIhwWygrcbpm22sAt7mVZHuB/MhqhdpAdjNHTyWM7egzZNTk3dVG6KH607EcAPH3kaU52nWTabFHmqSoZvw5FMWkz60SwU+gQx9akpQatS69Ph+K7UDZKF8WiVDERWXl/9HeVbao0UbJVaCsv/GwRah/K/WOh6E+yDOnIVUJ062+AAn1lntk94jy2v2k/bjm0lYvTOkAByF+UzDXfWIg+QkNjeRev/m6f15p6suhut3J8ZwPP/3IPm54pxWyyE5NkYM3dc7jxh0vGfSf9cfXHWF1WcmNymZ0w2+f9tGot0+PEG/N42+SWeRTtyeW5l5MfGxxX1YgYnbeWXRqAWHZl1kqMGiN1PXUcaQ1O+rvuhMiepE+PHZcKv7ilmJ/v+Dlf++hrNPYGNhxxNMKW9wPpbDTjdLjR6NUBDcg81n6MVksrRo2RJalLRt3W22I8QRmUyRbKKlyScwkXZ1+MU3byh71/8JZ5gqFDUTIoHRqPB4pVBJnBEMgqKJON7adO4eryPesz2Pa+v6vs+08UgwxFy1KDlnFV9CcXaWYh2+1IBgPazMwx9hqK0smT1GzFqDFispv8Hp3iL6d9gALCL+S67ywmMk5PR6OZV367j6YKE/IEDBqUZZn2+l6ObKnjw3+U8K8ffcq/f7Sdj/55jI6GXvSRGi64qZBbf7qcwiXBid77Ty7293j9yzyTxcmOk2ys2giIiafBxFvm2d3o99/fqDGyKmsVELwyT7D0J0rmxO62e03tgoniKNvRZMZmcY6x9ZmPVyCbGRWQu67SvbM8fTk69cgdQM6WFlwtraBSoS8a3gY/2EhqNYZZIlszGULZ/nx36XcB8f425oq78daaHnq7xjddW9GgNHqctVN7hPYiGB4oCpr4eHQ5otxhOXzY5/28040bd2N1WtFo1WR5unR62m3oDGrOvyF4hpGK/mSJ2SOQ9bODR0Hp5HFWVrMoRWSBQl3mOSMCFPAYun3/HOLTI+nttPHyb/byxDc388L/7ubDf5Sw991Kyg+00NHYOy4RltvlpqnSxMGN1bz76GH+8b1tPPeLXWx+tpQTu5voabchqSRScqJZsjaX2x88jwWXZPttHjYS7dZ2dtTvAODKvCv93n8qdPI8UfwEMjKXTruUwvjgGTMB5M1PQmfU0NMurLP95fI80c3zQdUH405fym7Zu4bx3g3taNjhffzaydco7/Ktc8BXImJ0RCcaQIaWsA6ln8V9YAJZZXrxaN07ANbjYkieLjcXldEY0GsFgndw4CQHKNnR2SxKWYSMzCetH5I8TZQaa46Nr8yjBCjVLiE2je8SpaxgeKD0x1vm8UOHUhhXSGpEKjaXzXuBz5vfN95g2br8gHSJw9Fff5LfIQJlfwWyCro8kem2VZR7s4JKl1qomDp2okFAGLot5qN/HaP6aBtOu5vWmh6vG6SCSi0RmxJBQnoE8WmRJKRHEp8eQVxqxJApkU67i6YKE/UnO6kv66SxwoTTNrBuq9GqSM2PIX16HBnT40jNi/GrI8cfPqj8AJfsYk7iHHJjc/3eX+nkmawMSkVXhddr5N4FwR84pdGpmb44maOfNnB8V6PfmYsLMi8gUhtJY28jh1sOszBlYcBraa3twWZ2ojWovYZMgWB2mDnUIurcsxNnc7TtKH858Bf+uOqPAR9zOFJyYuhus9JUafLe0Z2tjEcg22HtoLhFjKQfy0BxohxkB2OcM4cOwHJkcgMUgLV5aznQfIB3yt/h23MuoKW6m+qSdmYuD6wcI8uyt8TTqm5AJakwtPdiJrgZFBCOsl1vvOFXJ48y3fiVslfYVreNCzIvIG9hEjvf0BKXGsG8Vf6XX0ZC0Z9kRmWiP9KCDdD74SDbH2V2k72qmiVJIoOyr2kfsiyHbJDsGRWggJhPs/Yr83G73JharbQ39NLR2EtHg1k8bjLjtLnoaOilo6EX6HOklSSITjKSkB5JVLye1ppumqu6cbsGlgr0ERrSC2JFQFIYR/K06HHpC/yhf3knEGYkzEBCotncTLu1nQTDxF6I/l78d9yym1VZq7zZnGAzY3k6Rz9t4NS+Zi78bBFaP7xH9Go9q7NX83b527xf+f64AhRFf5IxPc4nb5uR2Ne0D6dbnGR+ueKX3PDmDXxY9SFHWo8wN2luwMcdTGpuDKf2N9Nc1R20Yw6mpaabfe9VsXRtLomZU3OmlizLtNQoHij+r3Fb3TZkZGbEzyAtcvQLom2CO3gUvJb3x4RQdiLam0diTe4afr371xxrP4ZmgQgsao6243bLAc0As5mdXj+fXl0XGZEZuJqE9cB45/AMRtGhWA4d9uv3uDJzpTdAATBG6bjz18IyfzznisHsbtwNwJLUJdhOHgXweQbPYDTp6UgGA7LVSpE1Dr1aT7u1nYquCvLjQjOd/YwLUBRUahVxqSIrAn2TeGW3THeHlY5GszdIaW8w09HYi83sxNRiwdQy0G45Mk5PxvS+gCQhPXJSpr7W9dRxoPkAEhJX5F0R0DEitZFMi5lGlamK423HOT/z/CCvcmRqTDVe99tQZE8U0gtiiUkyYGq1UnGohaKl/p2Ursi9grfL3+aDyg/4/tLvo5ICO2HUlganvVgp7yxPX05hfCHrCtbx5qk3+dP+P/HkmifHdez+pOaJbEEohbLbXiyjvqyTlmoTN/94GTrj1DsF9XTYsPU6UakkEjL877TztXsHJr6DR0GXl4cUEYFsNmOvqPC5q8Ntt+NsbMTR2Oj5twnZYUdfUIC+sBBdTg6Sxr+/abwhnhWZK9hcu5kdro8wGBdg7XXQUtUdUOebUt6RDG5cKie5sbk4Gw4CoA2CB0p/9NOno4qMxN3bi+3kKQwzfNMRnZt+rrfduNpUzbSYaUENTBQUgezS5HOwl7/tXXMgSCoVutxcbMeP466qYUHyAnY37mZv095wgBIsJJVETKKRmEQjOf0mZ8qyjNlk9wYu3e1WEtIjSZ8eR0ySIWQpLH94r+I9AJalLfNr4u9gZibMpMpUxbH2YxMaoPz9yN9xyS4uyLwgqHf+g5FUEkXL0tj7biWlOxv9DlDOyziPaG00LZYW9jftZ0na6F0Yw+F2ub36k6yZ4wtQFLfN5RnLAfjKwq/wbsW77GzYyY76HZyXcd64jq8gHFPFBbq300ZkXHDq4AqttT3e34mp1cqmZ0u57K7ZU+Kz1R+lvBOfPrTkOxZOt5NP6z4FxtafuD3BAUxcB4+CIpS17NuHtaQE/fTpuG02nE1NA4IPZ2OD518RlLjaR9eGSFotuvx89IWFfV9FhWgzMkYVZl6VdxWbazfzbuW7fH3mKsoPtFB9tC2gAEVxkXVFiG7OfEMWrs5NAGhTx+8i2x9JrcYwfx7mHTuxHDjgc4CitBvvadzD1rqtfC7mc0FdFwzUnyyWs+ix2ZB0OrRZgXur6PPzsB0/jr28giXnLBEBSuNePjPjM8Fa9gDOugBlJCRJIjJWT2Ssnqwp6viplHcCEcf2Z2bCTDZUbphQoWxdTx1vnnwTgHvnhy57ojDjXBGg1BxtH3FS6Ejo1DounnYxb5x6g/cr3w8oQGmp7sFhdaGP0JAYoBMpQKullbKOMiQkzk0T03AzozK5ecbNPHPsGf60/08sT18elIu8zqAhPj2S9vpemipN5C9MHnsnPyjeJDoqkqdF01rbQ9meJrJnxTPr/Iygvs546RPI+q8/KW4txmQ3EaOLYV7SvFG3tZWVgSyjTk5Ck5Q06rahwDh3DpZ9+2j6zW9p+s1vxww+FCS9Hk1aKtq0dGEbr1JjO3UK28mTyGYzttJSbKWlA/eJiPBmWfp/aVKSkSSJVdmrMGqM1PbUoppmhgOi3Xjp2jy/fy4lg9KrE5lAxQNFMhpRxQZ/FlbEokUiQDl4kPjP3uzzfiszV7KncQ/b6rbxuVnBD1AONB/AJbvIjMokrr6HHjwt5uMo5+lyPTqUygqWrL0GDolOnlDpUMIBymlCWUcZZR1laFQaLs25dFzHmgzL+6eKn8IpO1mevnxcug5fiUuNIC0/hsZyE2V7mvweVX5F3hW8ceoNPqz6kPuX3e+zW69Cbak42WcUxgVUR1dQsiczE2YSb+gLnO+Zdw+vlr1KSVsJG6s3clnOZQG/Rn9Sc2Nor++luSq4AYq118GJXcK/5YKbptNwqoudr5ez5fkTpObFBmxaGArGI5BV3GNXZK5Aoxr99Ko4yE50eUchYulS2v/17wGBiaTXo01LQ5OW1vdvehqa1FTv/9VxccNejGS3G0d9A7ayE9jKTmIrK8NWVoa9vBzZbMZaXIy1uHjAPqqYGPSFhSTeczeXTLuEt8vfZr9uKzEspqnChLXXgSFy9EGog/F6oKiF7iTbLLqjtGlpIbmI9h8c6A8XZF7AH/f9kT2Ne7A6rRg0hqCuy9tenLoE29GTQODlHQXFrM1WXsG8pHloVVpaLC3UdNcExQ18MOEA5TRBKe+szFxJrH58dwGKOLXKVIXZYR51DHwwaOxt5LWTrwETkz1RmHFuGo3lJo7vbPQ7QDk3/Vxi9bG0W9vZ27SXc9PP9Wt/ZUDgePUnO+sHlncUEo2J3DHnDh479BiP7H+E1dmrx7wg+kJKbgzHtjcEXYdy7NMGnA43iZlRpE+PI70gjtrjHdQe7+CDv5dw4w/P8bucEipax9Fi7Mv0YoXJ6uBRiLrkErIffwxZlkXwkZo6YvDhC5JKhS4rE11WJtGrV3u/Lzud2KtrvAGLN3CpqsJtMmHZt4/mjg7WPnm/EKe3vsW96RfQ0WCm5lg7hUv8K8soGZQWlXDLTulV0QNog9xirGBcsAAAe2Ulzo4ONPG+feanx00nNSKVJnMTexr3+KRZ8gev/iRtKfa3hI9SoAJZBW8nT3k5Bo2BeUnz2N+8n71Ne0MSoJwxPihnMrIs93Xv+GFtPxKJxkRSjCnIyJR2lI69wzj5x5F/4HQ7WZK6JKBySaBMX5KKSi3RVtvj9xA8rUrLpdNEpkppi/YVl9NNw8lOYHz6E1mW+/Qn6cuHPH/H7DuI08dRaarkzVNvBvw6/Un1zuTpDprdv9stU7xZlHfmr85CkiQklcSlX5iNMVpLW10P218+GZTXGi/WXofXidrfIYGNvY2UdpQiIY3ZXgx9HTwTrT9RkCSJqIsuInrVKgwzZ6KJjw9JhkHSaNDn5xFz+RqSv3ofWX96mIJ332HGgf3kPv8cIC54S42zSDAk0G5tR50j/gbVR/33Q1E0KN3aDiI0ERjaxNgLTWpoAhR1bKw3s2DZv9/n/ZR2Y+hzlQ0W/fUnS9KWYDsp/GB0fk4xHowuNxcAV0cHzo4O76DaUA0ODAcopwGHWg5R11NHhCaCi7IuCsoxZyZ6HGXbQuuH0mJu4ZUTrwDw5QVfDulrDcYQqSXXY4BUust/e/jLc4Vp28aqjTjdvrurNleacNrdGKK04ypdVJoqaTI3oVPpWJyyeMjzUboo7xTovx38G1bn+Ec8JGRGotaosJmddDVbxt7BB6qOtNHdZkUfoaFwWd/dcGSsnkvvFKMaijfXUX6gZaRDTBhKeScmyYA+wr/SgnKRmZc8b0A5bjhklwvriRMA6CepxDPZqHQ6jAsXos0Rd96OkqPeeVhHI0R7bHVJm9+Bcp8GpVN08DQ2AaHLoABEni+aDbreftuv/ZSsSbADlP76k4yIdGzlwtgxUA8UBVVEhHcatL2i0nvDGSpH2SkboGyvC81QtNMRJXtyybRLMGqC4zY5UY6yT5c8jd1tZ2HyQpalLQvpaw2HYn1/Ylcjbj8dhJemLSXBkECHrYPdDbt93q+vvThuXO3oimPwotRFI9anb555M2mRaTSZm3ih9IWAX0tBrVaRPE1kDoI1OLD4kxoAZq/IGOJJM21OIosuExeoj/9zbNLnaI1HIKvoTy7MHL17B4TZlWyxIBmN6HKCnxo/nVBKJJaDh1ibvxaADbbX0ehUmLvstNX5N/izL0DpIjcmF0ejmG4ebA+U/sTdeAMA3Rs/wtnR4fN+y9OXo1FpqO6upspUFbT19NefOOrrxXtNq0U3LXvcx1Ys7+0V5SxMXohaUtPQ20B9T/AH0E7ZAOXh/Q/jcE+dycSThdPt9JYYglHeUZgIoazNZeP1stcBMXNnMtpJc+Ymoo/UYDbZvXNxfEWj0vSVeap8L/MoBm3j1p+MUt5R0Kv1fGXBVwB4svhJuu3jN1lT5vIEQ4fS0dhLzbEOkGDuRcM7ZJ67Pp+U3BhsZicfPlXidyAZTJQZPMl+6k/sLrv37zWWlkCWZUzvipsOQ1HRpJqkTQX6i0znJc0jOzqbXnc32ixx/vdneKDT4fJOtO/VdQ3MoIQwQDHMnIlh7lxwOOh6/Q2f94vURnqzo8HMoij6k2Xpy7CdFOVTXV6e3x41w6HzBigVRGgjmJMoTP9CkUWZsgFKdXc1zx9/frKXMensatjldXz1V6hpOXQI03vvDfuckkEp6yzD4QpNILitdhvdjm5SI1JZkbkiJK8xFmqNiiKPyO54ABOO+5d5fPk9OR0uGk+JC/t49CdOt9N7FzSWz8m6gnXkx+bTZevinyX/DPg1FbyTjYMwk6f4E6E9yZ2XREzS8Nk/tUbFmi/OQWdQ03Cqiz3vVI77dQPFK5DN8i+DsrdpLxanhWRjsjf4Hw5nRwe1X/sarX/5CwBRq1cFutQzBm8G5fBhkGWvS3Z5jBjA548ORcmeuFVObBozeTF5OBrF5z6UGRSAuJtuAqDzpZf8KkspOhTF4G+89Dp6+/QnqUuwnxL6k/EKZBWUqca2cuHhc05a6HQofgcodXV13HbbbSQmJhIREcHChQvZt69vYNCdd94pRHD9vpYvH/kOcDQePfgo7dbxDY063VHKO2ty1qBV+V4Tlx0Oau79MnXf+jbWo0eHPJ8ZlUm0Lhqn28mprlNBW29/3qkQrrFX5V0VsBtrMJjhmelRcbAFu5+Tes9JPYckYxImu2nAwL6RaCo34XK6iYjReVyMA+NI6xF6HD3E6mOZGT+6iFKj0vD1RV8H4D9H/0OrpTXg14U+oWxLdc+4BmvaLU5vUDh/9ejmULHJRlbdJn7Ove9VestkE4nT7qKj0Qz4X+JRuncuyLxgxExhz7ZPqbhmPT0bPwKtlpTvfY/ELwV3mvfpiKGoCMlgwN3djb2iwlvm2SKJm6uGk53Yrb59br3lHX0XSJCjS8Pd1QUE30V2MDFrr0IyGrGXl/s1PFDp+NrbuDcoOrIB+pOoDGxlngzKOAWyCnqPINju0bUogwMnPYPS0dHBihUr0Gq1vPfeexw9epQ//OEPxMXFDdjuiiuuoKGhwfv1ried6Q9F8UV0O7r564G/+r3vmYLVaWVj1UYA74fWV8wHDuDq7ASgd+euIc9LkuTNooRCKNtt72ZzzWYguKWpQEjJjSYuNQKnw82pA81+7atWqb0eI75083j1JzPG1xGhlAuWpS3zyYPl4mkXMy9pHhanhScOPxHw6wLEphjRR2hwOd20+1n/78/xnQ04bC7i0yJ8yiYVLkll9op0kOHDf5Rg6bYH/NqB0FbXi+yWMUZriYzT+bWvcvc7nHus22aj6aGHqLn7bpwtLegKCsh78QUSv3hXQGPvzzQkrRbjXOEsbTl4kLzYPGYnzqZD34Qq1oXbJXvb9sdC8UDp1np8iHrF31EVEYEqKrSzn9RRUcRcJUw0O198yef9CuIKSItMw+ayebOm40E5xtK0pQDYvBmU4EyO95Z4amuRHQ4WpSxCJamo6a6hude/8+tY+PXp+M1vfkN2djZPP/00y5YtIzc3l0suuYSCQZGZXq8nLS3N+5WQ4P9Aum8u/iYAL5e9TGl76FthpyKbazdjdprJjMpkQfICv/bt2bTZ+9i8d/jINpRC2Y1VG7G77eTH5jMjfkbQj+8PkiQxY7lI75YGUOZROgs+qv5ozDscRX8yXjdiX/Qn/ZEkyfuZeenES9R01wT82pIkeacvByqUld0yxZvqAJi3KsvnYO2Cm4uIT4vA3GXno38dC1qrsy/0DQiM9iu4rDJVUWWqQqPSDPl7WU+coPKmz9D+r38DEH/rreS9/BKGWWdn585IGBf2CWVBTDhGgvp40enkqw5FaTHu1XWRFpmGprUT8Ay6mwANXLynzGN6/31cJt8+O/3bjYNR5lFKLUvTliLLcr8AJTgZFE1qKlJEBDid2GtqiNZFe8/xB5sPBuU1FPwKUN58802WLFnCTTfdREpKCosWLeLJJ4cOK9u0aRMpKSkUFRVxzz330Nw8clRls9kwmUwDvgAWpy7m8tzLcctufrPnNxN6opoqvFveZ23v74erZ9Mm72Pzvn3I7qGp+lAKZZXS1Nr8tVNi1sqMc9NAEgZqplb/2mcXpiwkMyqTXkcvn9R8MuJ2DpuLpgrx/s2cERfwWs0OM4daxIm6v/5kuL9hf5alL+P8jPNxup387eDfAn596KdDCTBAqTnWTmeTGa1B7Q0OfUGrU3P5PXNRa1RUHWnj0EeBB1r+onjl+Ot/opR3zkk5hyid2Fd2u2n/97+pvPEmbCdOoE5MJOuxR0n7fw+gMganE+9MwqDoUA6J9/2VeVeiklQc0Ivfra/txkqJp0fXKfQnDeKGJJQC2f4YFixAXzgd2WrF9M47Pu+nBCgvnXiJ72z6Dltqt/hlbaDQ6+ilpK1Pf+JsaEA2m0GrRTctON1ikiT1dfIoZR5Pu/H+Ft99YHzBrwClvLycRx99lMLCQjZs2MCXv/xlvv71r/Pvf//bu82VV17JM888w8cff8wf/vAH9uzZw8UXX4zNZhv2mA899BCxsbHer+zsvjaob5/zbfRqPXsa97CxemOAP+LpSZetyxtN+zt7x15VJd44Gg2S0Yi7q8tbh+xP/wyKWw5e50SLucU75nu8c4OCRXSCwdtVc2K3f1kUlaTi6vyrAUY1RGs41YnbJRMVrx9REOoLe5v24nQ7yYzKJDtafB6cra2cXH0xJy++hI7nX0C2D1/++PpioUV5p/ydcWUelU6eQDMohz1zd2adl47O4F/nQGJmFBd8RqSjd7x2KihiXV8I1OJ+8PRiR3MzNV+6l6ZfPYRstxN10UXkv/kG0atWBXW9ZxKKUNZWVoarp5fkiGSWpS2jLrYMVDKmVqtPvjwDWoxjc3E0eQSyIfRA6Y8kSV6xbMdLvpd5Lsi8wHtz8UHVB9z30X1c9vJl/HHvHznV6btGcIj+xNPBo8/NQdL65+szGkqZx+YZdqkYth1o9l174wt+BShut5vFixfzq1/9ikWLFnHvvfdyzz338Oijj3q3ufnmm1m7di1z585l3bp1vPfee5w4cYJ3Rogm77//frq6urxfNTV9d0wZURncOedOAP6w9w/YXMMHOWci71W8h8PtYHrcdIrifZuQqdCzWZR3IpYsIWLRIgDMe4fWNvNi89Cr9Zid5nGVBAbzfuX7uGU3C5IXeC+wU4GZnjv54zsb/c7IrStYB8D2+u0jilDrSjuB4OlP+pcLOl58UUyara+n8Wc/4+QVVwwbqMxJnMPluZcjI/PnA38OeA3KFNmOhl6fBYoKXS1mqo6IlPy8VYFNTp2zMoOCRcm4XTIb/l7it7jZX9xumbZa/y3uzQ6zt+a/Mmsl3R99RMU16+ndtg1Jryftp/+PrMceRZOYOMaRzm60KSloMzJAlrEWi+6dq/Kuwqm20xYngt3qo2OXeQZ7oDiVDEqIXGSHI/aaa5B0OmxHj2EpKfFpH71az+OXPc5L617itlm3Ea+Pp9XSytMlT3PtG9dy6zu38sLxF+iydY16nCH6E6+D7PgM2gaj81reewKUFBGgBNPLBfwMUNLT05k9e/aA782aNYvq6upR98nJyaGsrGzY5/V6PTExMQO++nPX3LtIiUihrqeOf5f8e9hjnGnYXDb+Xvx3AG4sutHv/ZXyTtSqi4hYKlJvw+lQNCoNhXHiTvVYe/CEskppSmkXnCrkL0pGo1PR1WzxlmJ8JScmhwXJC3DLbt4pHz7YDpb+RDFoU8o7stNJ5wsvAhBz9dVokpNx1jeIQOXyK+h4/nnc/QKVry78KmpJzebazexvCizlGhmrJypejyz3ZRZ8pXhTHcgwbU5CwJ1MkiSx6raZRCXoMbVY2PxcaUjLvJ2NZpwONxq9mtgU39e8q2EXDreDPF06ht//k9r7voqrsxP9rFnkvfoK8bfcMiVKnKcDXh2Kp8xzac6l6FQ6TkSJ93B1ydgdnX0aFOEiq7QYh9JFdjDquDiiLxPC+k4/siggsto/WPYDPrrpIx5e/bCYsSVpKG4t5pe7fsnqF1ePWgLqrz8BsJ3yZFCC1MGjMLiTJ84QR2F8cES4/fErQFmxYgWlg8ZonzhxgpycnBH3aWtro6amhvQAW7witBF8+5xvA8KIqqm3KaDjnE68fOJlmsxNpEak+h2guHp66N0j3qTRq1YRsaQvQBnuBB9sy/sqUxVH2o6gltReD5Gpgs6gIX+RmNAbiFj2moJrAHjr1FtDnrNbnDRXiQt55jgClFZLKyc7TyIheZ13uz/6GGdTE+qEBNJ/9b8UfPgBqT/+sQhUGhpo/NnPOdUvUMmNzeW6wusAYXgY6IXdW+ap8D1AcdhcHNsunDsDzZ4oGCK1rPniXCSVxIndTQH9zXxFMWhLyoz0a/r0lrot5DfI/OTxLrpeegkkiYQv3kXuC88H/aJwptPfURYgWhfNRdkXURMnzk11pR04Ha4R95fdMuYuEaj3ejQoTq+LbGhbjAejlHlMb72N22z2e3+tWssl0y7hkYsfYeNNG/n+0u9TFF+Ew+0YsQTUX3+yNFXJoChTjIP7XvSWeCorvecXpd04mPgVoHzrW99i586d/OpXv+LkyZM8++yzPPHEE9x3330A9PT08N3vfpcdO3ZQWVnJpk2bWLduHUlJSVx33XUBL/KqvKtYkLwAi9PCn/b/KeDjnA5YnBaePCyEx/cuuBe9Wu/X/r2fbgeHA11uLrrcXAzz5yNptbhaWnFUDU2/BVsoq2RPlmcsJ9E49dLaMz2eKGV7m3A5/NPdXJ57OVqVltKO0iH6jvqTnchumZgkA9EJgY9NV8o7MxNmeue5dDwnBqrF3XgjKp0OlcFAwu23UbDxw6GByprL6XjuOe6deRd6tZ4DzQcC7gxIyfW/k6d0VyN2i5OYZCM5c4b+/Xc37OaO9+7wOSBOL4hl2TpxMtz8XCkdjYG3PY9GIBb3bqcTbZY0IgAAW0FJREFUwzPv8st/u4huNKFJTWXa00+T+r3vodL516Ycpp+j7KFD3ove2vy1tEc0YNF143S4aSgbucRh7rbjdsu4ceM2OkiNTMXhdZH1byLyeIlYthTttGm4e3sxve/fsNHBJBoTuX327bxyzSsjloBuefsW/rj3j7hkF1lRWaRHpSPLMvaTSgdPkEs8OTkgSbi7unC1i8yWokMJJn4FKEuXLuW1117jueeeY+7cuTz44IM8/PDDfO5znwNArVZTXFzM+vXrKSoq4o477qCoqIgdO3YQHe3/bAsFSZL44bIfAvBW+Vscbjkc8LGmOs8ff542axtZUVlcO/1av/fv+UR0mUR5BHkqvR7DgvnA8GWe/kLZ8abQZVn2mrOtzfPPt2WiyJwRT2ScHpvZSWWxf4ZmsfpY77DGt8sHDgWrKw1Necd26hTmnTtBpSL+szcP2Fal1/cFKj/5CZqUFJyNjTT+/Bd0X/d5fli3EI1T5uH9Dwckgk7101FWlmWKPeLYeRdlDplD1GPv4f6t97O/eT8vn3jZ53UsvjyHrJnxOO1uNvy9ZNS76EDxVyDrqKuj9LbPcs1GExo3RF5+GflvvE7kcv/cnsP0oZ81S9xMdXTg8MgGVmauJFofTWWsyAxUjaJDUfQnFm0302KzkXstuLvF33WiMyiSSkXcjSL77W+ZZzRGKgEdaTvCiydEGVgp7zibmnD39oJaLQKKIKIyGNBmitEVSpln0gMUgKuvvpri4mKsVivHjh3jnnvu8T5nNBrZsGEDzc3N2O12qqqq+Oc//zmgMydQ5ibNZX3BegB+s/s3Qe06mSr02Hv4x5F/AGLyrz/OsSAmpPZsEQPLovp1DPSVefYN2acwvhCVpKLd2k6zeXwmO0fbjlJlqsKgNnDxtIvHdaxQoVJJzDg3cOt7RSz7dvnbA2rAipHUeMo7siwPEch2PCuyJ1GrVwsR4TCo9HoSbvucKP30C1TmPP0pf3ncTd7GUt49MXL30Ugk58SABN1tVsymsU3T6k500l7fi0anYtb5Qy8Ifz34V5ot4j3mT8ZOpZK49AuzMUZraavtYfurwXU+lmW5nwfK2AJZ2e2m+q4vwsESLDrYePsssh/+E+pBhpVh/EOl02HwaBwVHYpOrWNNzhpq4kXGbTQdSn8PFDGDR5R3VNHRqKMCnyoeKHHXXQtqNZYDB7CNoMEMlJFKQBqVxnuO8gpkc3KQQpDRG9zJk2RMIicmyIFQUI8WYr6x+BtEaCI43Hp4RKHi6cx/j/2XTlsnuTG5fjvHAliLi3G1t6OKiiLinMXe70ecM7JQ1qgxkhcj3mjjLfMoWYVV2auI1E78CcFXijwTjquPtPntVroycyVx+jhaLa3sahAOvdZeh/cCN54ApcJUQbO5GZ1Kx6KURbh6eul6/XUA4m+5Zcz9BwQqD/wETWoqCSaZuz9wk/D5n9D63/8MENOOhd6oId4jcvUli6LM3ZmxPB19xMDg+mjbUZ49/qz3/yc6TuBy+54JiYzVc8kds72vU36wxed9x6Knw4at14lKJZGQMfb71lZ2UrTy61R8/y41yTd8JiyEDRL9BwcqrM1fS21sKW7cdDT0jjjxuq+Dp9MzxTj0QwJHQ5Oc7J211PnyKyF7nf4loP237e/XwSOComCXdxT0gzp5ABalLArqa5xWAUpyRDL3zBcZm//b93+YHf6Lj6YqXbYub5fSfQvvQ6Pyf+pkt6d7J3LlBQN63o2LFoFKhaO2FkdDw5D9vELZcXTyuNwu3q98H/Dflj/UOBoasB7vC74SM6JInhaN2y1Tttc/0bVWrfV6uyieKPVlnSBDXGoEkbH+aYb6s7NeZE8Wpy7GoDFgeutN3L296HJyiDx/9IGB/VHp9SR87nMUfLCBhB/9gI4YFfFdLlp++StOrbncO+TLF3w1bOtut1JxSAQN81YNnFrscrt4cMeDuGU3a3LWYNQYsbqsfrck5sxNZOFlwmzq438fw9Tmn+HeSCjlnfj0CDTasccKmHeJwPRYpkxTvDTm9OIwvjPYURZE6SA+Jobm6EpgZFfZAQFKvwxKqIcEjobiLNv1xht+3RwESv9AOdhDAgejyxOdPLaKcu/3Ls4Obub8tApQAG6ffTtZUVm0WFq8rbhnAv8q+Rfdjm4K4wtZk7smoGMo9vaDDaHUUZHe1OlwZZ5gCGX3NO2h1dJKjC6GFRmTM7m4P26zmc7XX6fqC1/g5MWXUHHtdZj7DfCaeV7g1vdKN8/H1R/TY+8Jnv7EM4xwefpyZFn2lnfib70loJktKr2e1M/fSe3f7+fva1R0xKhwNjbS+tijY+/sQdGhNFWO3slzZHMdsiwySIkZA8skL514iSNtR4jSRvHDZT/0+voEEhAvX59PSm4MNrOTD/5egss5/lKvvwLZ3t0iQDmSI1EQW0BmVOYYe4TxFaWTx1paitsiAlCVpOKqvKuo9nTzjDTduKffoMDJcJEdjsgLLkCTloars5OejRNrNtrngRKqAMWTQamo9H5vWfqyoL7GaReg6NV6vrv0u4C4qNd2107yisZPu7Wd/x77LyCyJ4FM/nU0NGA7fhxUKiIvHDqwrH+78WCCMZNHKbmtyV2DVh08x0J/kN1uenfuov6H93PigpU0/PB+zDt2gkf827ujbxpx4ZJUVCqJ5qpu2uv96wyZkziHvNg8rC4rH1Z96PU/GU95x+l2ek2Wlmcsx7J3L7ayMiSjkdhxdMABXDf3Zo6tyuF314q7q+4NH/g8J0RpNW6uNI0oonbaXRzdVg8MnVrcamn1dt59ffHXSY5I9r7fAnG6VWtUXH73HPQRGpoqTOwIgh7FH4Gs7HZj9rTxl0yThh0OGCZwNOnpaFJSwOXC2s/kbG3+WmrixPmp5lj7sFO2u9pFRr1H10lOTA4OJYMygR4og5HUauKuvx7wz1l2vAycwRPaEo+jthb3CE7x4+W0C1BApJHOTT8Xu9vOH/f9cbKXM26ePvI0FqeF2YmzA06RKe6xxoUL0cQPvVCOZtimXDDqeurGdCocDpvL1jd1eRK6d+yVlTT/6U+cuvQyqu+8k67XX0c2m9FOm0bS175KwhfvAsB6pO+EZ4zWMW2uaIMt3TW07DUakiSxLl8I0d479gFtnom/mUVxAf8MR1qP0OvoJVYfy6yEWbQ/K/QasVdfjXqQeaG/aFVavrrwq5zMgNoUFbLNRtfbb4+9I2IujUotYe110N02fO2/bG8T1l4HUQl6cucNbC3+7Z7f0uPoYU7iHD5T9Bmg7/0WaEkxJsnIpXeKjOChj2v8nlA9mNYa3x1kbaWluLu6sOokKtIIl3eCjCRJ/fxQDnq/XxRfRGymDoumB4fVNazRYle7+BxqoySidFE4FQ3KBLrIDkfcDdeDJGHesRP7KKamwcTZ3ILbZAKVypvpCDbqpCRU0dHgdmMfxsIiGJyWAYokSXx/6fdRSSo+rPowKCOqJ4sWcwvPHRep/K8u/GrAYrueTzYBA7t3+mNcLESz9lOncLYNrOHG6mPJiBQdIoHc1W6p3UKPo4e0yDQWpy4ee4cg4DKZ6Hj+BSo/ewunrriStkcfw1FfjyoqiribbiLn2Wco2PA+yffdR/TFIuizDrKdVqzvS3c14Xb712KtzOZpOikubomZkRijA1fKK+Wdc9POxdXSSveHIuCLv3VscawvXJF3BTMSZrJxnvi/r6I9tVblHZ43nB+KLMsc/kRpLc5Cpe47pWyv3857Fe+hklQ8cN4DqFVC36GUFEvbA3eHzZ2fxKI1Hj3Kv47R1RKYHs3a6/CKLn0ZEtjr0Z8czYLoiHgWpiwM6HXDjMxgR1kQ5/y1BWup9WRRhtOhWLtEV11CkgjoJ8NFdji0mZlErhBl785XXp2Q17R7HGR106aFzJNHkqRhyzzB5LQMUEBE1DcVCQHSr3f/2q+OgKnEk8VPYnPZWJi80DvR0l/cFgu9O4XAMmrVRcNuo4mPR18orIjN+4bqUMZzV9t/6nIg5SlfkZ1OejZvpvZb36LsgpU0/uxn4i5LpSJy5Uoy/vB7CrdtJf3BXxCxeLE32DPMnAmShLOpCWdLX/dH7rwk9BEaejttXh2Jr6RHpbMsbRmZXeJ3qgwiDBRFILs8Y7nwTXA6MS5ahGHWrHEdV0ElqfjZ+T9j1wIDThXYjh7Fesy3v3WKV4cyNEBpLDfRWtODWqti9oq+Nmiby8b/7vxfAG6ZeQtzEud4n5sePx21pKbD1kGTOXBn6HPX55M+PRa71cX7TxwJyB9FKe/EJBmGdB4Nh3m3uBkqyZG4ZNolflsBhBkbpZPHfPDggAC2vw6lvHjg+8ZucSI7xOc9PSUJWZZxNkyOi+xwKM6yXa++iuwM7Vwp6Kc/CZFAVsE71bifUDaYnLYBCoiMQ4wuhhMdJ3ilLHRtXKGioafBa1j1tUVfCzh70rtjJ7LNhjYjwxuEDMeoZZ7EwHQoJruJLbXCeyVU5R1r6Qmafv0bylatpubeL9P93vvIdjv6wkJSvvc9pm/6hGlPPkHs2rWoDENdXFWRkegKhOK8//AutVZF4RLhiRKIWHZdwToyTKK+mzGO8o7ZYfaaDy5PXuqduxN/660BH3M45ibN5f41v2L3DPE+2/3kQz7tlzpKJ0/xJ2LIZNHSVAxRfRfrp4qforq7mmRjMl9d+NUB++jVevJix9/arlarWPPFuRiitLTW9LDtRf+9JvwRyMouF+Y9IkA5Ok3iirwr/H69MGNjmD0bNBpcLa046+u938+IyiC+QGQDOmoHevMoAlmb2kxu4jTcPT1ei/mJdpEdjujVq1AnJuJsafGW40OJ1+I+yEMCB6PzzOSxlYcDlCHEGeL4ysKvAPDnA38OSD8xmTx++HEcbgfL0paNS/3cNxxw1ahBzmhC2UA7eT6q+gi72x7Q1OXRcPX00PHCi1Tc9Bkq1q+n/Z//xNXaijo+nvjP307uKy+T9+YbJH7xLrQpKWMezzhH3MEPLvPM8JR5Th1o9ntq74q4i4i3pCHjpivRPx1Lf/Y27cUpO8mKyiJ2VynO5mbUiYlEXx5YN9doXJ57ObE3CNGe8eM9bCv/eMx9lAxKS3U37n7ixN5OG6f2K63FfeLYyq5Kb4fdD5b9gCjd0NJJsEYsRMXrueyu2SBBydZ6Snf5F2j2CWTHLu9Yjx3H3d2NWQ+mnETvvJMwwUVlNGKYMQMYWOYBuHz2JbREiqC45lhfN8+AKcaxuV47BVVsLKqIwAZWBhNJpyP2WmE02vmS7y7KgRJqgayCLi8XCJd4RuQzMz5Dfmw+nbZOHjv02GQvx2eqTdW8fvJ1AL666KujbzwKsiz3BSirV426rdFj2GY7dhxX98C2UaXEU9FVgdU5vBhyOBRr+6vyrhq3WZUsy5j3H6D+Rz+mbOWFNP70p1iLi0GrJfqyy8j6218p3LKZtB/9COOcOX69nkEJUI4MDFBS82KITTHitLspP+Cf+VdHuTgptkbW8V69b6LT4VDs7ZdnLKfDI45V5u6Egutv+Tm9CRFEWeHlJ7/LiY4To24fnxqB1qDGaXfT3tCn9TiytQ63Wya9IJbkaSIDIcsyv9z1SxxuBysyV7AmZ/gga0aCuAAFYwbUtNmJLLkqF4BNz5bS3uB7V1ZrrSeDkjV2BsW8ezcAx7IkLslf49XUhAk+XqHsoADlspzLqIsTOrmjB/qEmd0doiW5V9flGRI4+S3Gg1Gs73u2bPHqY0KBLMshGxI4mP5TjUMxbfy0D1C0Ki3fX/p9QMyxKe8KTaop2Dx26DFcsosLMi8Yl/ue7dgxnM3NSEYjEctGz8JoU1PQ5kwDWcayf/+A51IjUonXx+OSXZR1+JYqbzY3s7tBnLQV87JAcHZ00PbPf1K+bh1Vt94q6rQWC7r8fFJ+8AMKN28i68+PEH3xxQMM6PzBMHcuMDSDIkmSVyzrr/W9olupiynjvcr3cLgcAa1Nsbdfac8TF0GVivibPxPQsXxBpVaTfcsdAJy/38pXP/oqrZaR5xJJKomUHHEBV8o8Lqebkq0i/T6vX2vxuxXvsqthF3q1nh8v+/GIQWSwh1QuXZtH5ox4nDYXG548gsM2th7FaXfR0SgCLl9KPD27RCBZkhMu74Qa46KFgNCh9CfeEE9coTgH1B3vQvaI2xubhWjWou8mIypjSnigDEaflyey2G43Xa+9FrLXcbW14e7qCmkHj4J22jRQq3H39uJsDp67s8JpH6AArMhcwaqsVThlJ7/b87vJXs6YlHeWezMPg+vz/uJ1jz3/fFT6sV1MRyrzSJLkt1D2/Yr3kZFZmLyQrOissXfoh+x20/Ppp0LweuFFNP/6N9hPnvL6fuQ8+wz577xN4hfuRJOQ4Nexh8MwcyaoVDibm3E0D2xLLVomTmJ1JzpGtNEejlpPgNKb3EyXrYstdVv8XleLuYWTnSeRkCj4WGQyoi4eee5OsEi44UaQJOZVybhr6/n6x1/H4hzZmdVr2OaxvD+1vxmLyU5krI78RcmAcEP+7Z7fAvCl+V8iO2bkGVxKBqWupw6T3fdpySOhUkms+eIcImJ0tNf3svm5sTuE2up6kd0yxmgtkXGjZ6tkp5Mej/6kfkZC0C29wwxEyaDYjh4b4sC6esly7GorklVDc7V47zS3iHKPJlpGrVLjbBIBymS6yA5H3GeEWLbz5VeQ3aGZJ6dkT7TZWcNq8oKJSqdDm+UZGljhu0O1z8cP+hEnie8u/S4alYZtddu8os2pyt8O/Q237Obi7IuZkzRn7B1Gweseu3qVT9tHLBF1c8Vsqj/+CmW95Z38q3zaHkTrX8vf/sapSy+j5ot30/3e++BwYJg7l7Sf/YzCLZvJeOhXA7pwgoEqIgK9Ryg7OIsSk2QUHiYynNjtWxalu92KqdWKpJI4Z6HIBrx16i2/16VkTxZEFmF9W4wKSAiyOHY4tBkZRJ5/PgBXlOgobi3mx9t+POIQzv6GbYC3tXjOhZmoPa3Ffz7wZ9qt7eTF5nHnnDuHPY55714qb7sNfXn9uFrbhyMiRseau+cgSUL0fGz76LqgvgGB0WO+16zHjqEyW+kxwOxzrwppt1oY0GZno46PR3Y4sB09OuC51bmraIgTF+Hdu8VzigdKVJy4SfNmUCa5xXgw0WvWoIqJwVFXR+/2HWPvEABKB0+oBbIKeo/lfSg6ec6YT1lOTA63z7odgN/t+V3A6fZQU9peyobKDUhI3LfovnEdy9naivWw6P4Yzj12OJROHsuRI14raQV/0u4VXRUcbTuKWlJzee7lo24rOxyYPvyQ6nvv5eTFl9D6yJ+FZ0lMDPGf+xx5r71K3ssvEf/Zm1FH+2Y3HgiG2YpQ9uiQ5xSxbOnORp9qqUp5JyUnmnWzRPfS5trNdFo7/VqTEqCsPxkn5u7k5hKxfLlfxwiUuJtETfzKYwZ0qPmw6kP+fODPw26rCGXb6nqpL+ukqcKESiMxZ6W4eypuKebFUtF99MDyB9Cph2YkZKeThh//BMvefbT9/amg6lAUMoviOXe9OGFuef6EV2MyHH36k7EFsl07PgXgWLbEFQW+B+RhAkOSpAHtxv0xaozEFAj9T/kR0W5sNYmSXkKi4oEy+XN4hkNlMBC7Tpg8dr4cGrGs7ZTSwRNa/YlCXydPOIMyKl+a/yUSDAlUmiq95mdTjb8e/CsguinG2/XSs1lkigxz5/rUyQLCNEiTlgZO5xABmlLiOdFxAqd79I6W9yreA+C8jPNIMIxcgjG9+y5lq1ZT97Wv07t5C7jdRCxbRsbvfisErw/8JGheH2NhGKGTB6BgUQoarYqORjPNY8ydgb4AJbMonqL4ImYmzMTpdnoHJvqCLMvC/0SWmbmpEgh87k4gRF18Meq4OFStHfxGJwzh/l78d14rG1ofj4rXExGjQ3bLbHpWZDymn5NCRIwOp9vJgzsfREbmmoJrvNNUB9P1+utex8mebduYHRv8AAVg8ZoccuYm4nK4ef+JYuyW4d/L/ljcN2z5AIDawljmJ80P3mLDjMhIQlmAFeeK51TNUfT0mJF7RMCSnirKjV4X2SnggTIYpczT/dFHONuHnys0HuxlEyOQVejr5AkHKKMSpYviG4u/AQgRajBq28HkSOsRPqn5BJWk4n8W/s+4j9e/vdhXJEnq06EMKvPkxORg1BixuWxUdlWOeAxZlr2zd67KG/lu0t3bS8NPHsDV1oY6KYnEe+6m4P33yPn3v4hdty7k9dHBeIWyR44MeU5n1JC3UJzcSneOXhqQZdmrP8mcEQfgtb5/q9z3Mk9FVwXNlmYW1GlRV9YJ/c211/q8/3hR6XTErheDD2dur+VL878EwC92/MIrflaQJMmbRenwdMkorcXPH3+eY+3HiNHF8O1zvj3sa7ltNlr++re+/3d1MbdRZFmCHaBIKolL75xNVLyermYLH//n+JCsmNst01brm8W97HCgKhb6oOQVFwe19BhmZIZzlFVYOWs5XREtqFDx8bbdaGziXJKXkY0sy30uslPAA2UwhhkzMMyfDw4HXa+9HvTjKy3GuhC3GCv07+QJNlM2QHF2+OfsqbC+YD3T46bT7ejmpdKJG87kC3858BdA2KTnx+aP61huu53eT0Xa2Z8ABUYWyqokFTPixV3taELZkrYSqrurMagNXDLtkhG3M72/AbdnJk7hJx+T8p3voMvN9WutwcQwyyOUbWnB0TR0fovSzXNib9OoU3JNrRZ6Omyo1BLpBXGA0OGoJTWHWw6PGtz1R7G3v7FYXCBj160b99wdf4m94QYAuj/ZxL1ZN3NF7hU4ZSff2vQtKroG3hGl5vZlGlJyoknLi6Wpt8lbFvrWOd8i0ThwFo9C5wsv4GxoQJOWRvQa0XqccUh0AZV3lmN3BXcUvSFKy+X3zEWlkji1v5kjm+sGrqfRjNPhRqNXE5syuk9G56H96Gwuug1w/oWfDeo6w4yMYe488XmtbxjyedWoNBjzRFnn+I5GJCRckpPCtDzcXV3InvL1VCvxKMTdKD53nS+/HNT2XGd7O66ODpAkb+AQapQSj6O+fohsYLxM2QCl5f8eDmg/tUrNHXNEC+Uzx54J+okvUPY37efT+k/RSBq+vODL4z6eefce3GYzmuRkDLP9K5F4dSgHDyIPUsj7MtlYyZ6szl5NhHbkk7tSY4274YaA24ODicpoHFEoC5A1K4GIWB22XidVR4bO+lCoK+0EhIeKVi9Sy0nGJM7PEKJTX7MoOxt2Et8tU1gs0rzBmrvjD4aiIgwL5oPTSfebb/PgigeZnzwfk93EfR/dR4e170ZByaBA39Ti3+z5DWanmQXJC7i+8PphX8Pd20vr408AkPQ//+M1oJO37yVWH4tTdnKy82TQf7a0/FjOv0HcRW57qWyAVX9rrUcgmxmJSjV6RuTYRqGtqciPYHbS3KCvM8zwqKMivc7YlkMHhzy/eIkokUc0JQFg1fcQZ4zzZk/U8fETnqX1lZir1iJFRGCvqMAyzOiRQPF28GRmojIag3bc0dDEx6OOjQXAXlMT1GNP2QDF9M479GzdGtC+a/PWkmJMocXS4r2YTiayLHvvMq8tvJbs6JHbL32lr7xzkd+aBV1+vlDI22wDrN8BZiWOLpR1uV1e/cna/JGt7W2nTmE5cADU6gktW4yFYc7wfiggWlVnLOsTy45EbT/9SX/WFYgyz9un3h6xG0bB4Xawp3EPlxyUUbncGBcvFq3Qk0DcDX13c3q1nj+t/hOZUZnUdNfwzU++6Q3yU/NiMURpiUk2Mv2cVLbUbuHDqg9RS2oeWP7AiJ0t7f/5L662NrTTphF3/XVEXXABqNXYT55kmTsXCH6ZR2H+xVnkL0zG7ZLZ8OQRrL1CPO+PxX2PZ0CgbsmicHlnghlNh3L+OQtxqRxInsuYO0IYJyoBylTNnoAIvmKuEt5RwXSW7TNom5jyjoKSRbFXVgb1uFM2QAFo+OlPcfX47gqpoFVruX226Oh5uuTpMS8WoWZX4y72Nu1Fq9Jy7/x7x328Ae6xfpZ3YJAOZVCZp78XynCpx12Nu2izthGrj/VmDIZDmZYbdeGFaFN9E/BOBKMJZaGvm6eyuBVrz9BOMFmW+wSyMwYGKKuzVxOljaK+t559TaPfFZW0lmC19rDmoPh/sOfu+EPMVVchGY3ibu7AAZKMSfzl4r8QpY1if/N+frr9p8iyjN6o4XM/W85n7l+CXbLxq12/AuD22bd7O3IG4+rqou2ppwBI/trXkLRa1LGxRCwSPiLnVQodyrE2/4dU+oIkSVz8+ZnEJBnobrPy0b/E+9pXgaypt53kkyKbNuuym0KyxjAjo3TyDBegaHUa1Jm2vv9Hi+BxKrrIDke8Z4CgacMGXKbg6CXtSovxBAlkFXT5oZlqPGUDFE1GBs76Bloefjig/W8supEobRQVXRWT6ovSP3tyU9FNpEWO/0NjP3UKR20tkk5HZIAtqSMNDpweNx2NpKHb3k19b/2Q/ZTJxZfnXI5WPXzZRrbb6XrjDaCvlXWqYJgrAhRLyVChLEBiZhRJ2VG4XTJle4dO2u1sMmM22VFrVKTlD9SLGDQG1uSK8sVYnig7Gnaw9IRMXI8bdVISMWsuC+THCQrqqChirvTczXkCy+nx0/nDRX9ALal5u/xtHj/8OCC0HfoILU8efpK6njrSItP4nwUjC77bnvoH7u5u9EVFxKztE1QrU7fzSkR5q7QjOF4ow6GP0HLFl+ah0khUHm7l4Ic1/TxQRhfI7vz4vxgc0BOppmjxpSFbY5jhUYSy1iMlyI6hNwyzF+V4H0fFiXLOVPVAGYxh/nz0RUXIVitdb/nvoTQcXoHsBHmgKHinGldVjbGlf0zZACX1xz8CoOOZZzDvP+D3/lG6KG6aISLUp488HdS1+cPWuq0cbjmMQW3g7nl3B+WYSvYk4txzUUVGBnQMJYNi2bcf2dVnC65T6yiIE9H38baBaXer08rG6o3A6OZs3Z9swtXejiY5mSgf/Vn+f3t3Hh9VeT1+/HNnzUyWCQlZgZAAISxhXwQBBZSIC4qgVlFcqn61ipZaamvVSrXFrVptUVyqgLZKf1QRXMqiLEIRRBYJYQ+EyBISsu/LzP39cTNDQvZkJjMJ5/165SWZe+fOk06TOfd5znNOe3FWlLVnnas3URag3xhta2J9pe+dsyeRvYMwGOv2YnHu5ll7Ym2jlVm3nd7GVbu0mb3gm29C8VDfneZyJu0V/Pe/2Iu05Y9Lu13K7y/Rfg/f2POGKzhNzUtlcYr2O/XE6CcazEOqysoi58MPAQib+8taS5HOmT//5GOYK1QO5Rzy6ExnWEwgE27Rcha+W3GU8uIqFJ1CSHTjvz8nN2nbxksGxqLTS++d9maKjUUXFIRaVkbZobo9o4aNON+9/fwW4+olngjfDlAURXH158lb7p5k2fbqwXMhVy2UE2luva7PBigBY8ZgmzEDVJUzTz2Fo7y86Sdd4I7+d2DQGdiVuYs9mXvcP8gmqKrq2rlzW7/bCLOGueW6zvL2TTUHbIw5IQFdQACOoiLKD9W+e22o5P23J7+luLKYSP/IRkt9532iranapk9HMRhaPUZP0BJltV/esgZmUeJHRaDoFDLTCsjNqL3E2FD+idPwiOF0C+hGcWUxG9I31HtOcWUx2fv3MDAdre/OLZ7ru9NclmHDMMXFoZaWUvDVV67Hb0m4hTsH3AnA0/97mt2Zu3lu23NUOaqY2GMik2MmN3jNc2+/g1pait/gwQRMmlTrmKl3b4zdukFFJcN+MlBSVcJPhe5NsLvQwAnRxI+KwPk5EBJlrTfIdMovzydwn3ZHGH2Z+ztLi6YpOl2NPJQ9dY7bwi34h2jB/YCeWrDi2mLs4zMoALbrp6GYTJQfPFinkWlLVeXmYs/WliPbawePk7PnT+WJdLde12cDFICI3z6OvmtXKo4d49xbLe9UHG4Nd93RLklZ4ubRNe2b9G84kHMAq8HKPYn3uOWa9rw8SqtnlAIvv7zV11H0eiwjhgN1l3kaSpT96rj2wXVNXMOlvivPnKF48xYAgmfWv6vD287XQ6n/D4I1yETPgVrxuZrJsqpD5dThPAC6J9QfoOgUHdf1ug5oeDfPzrM7uXKnNl0deMVkjFHeLyZV627uk09qHXtsxGNM6jGJCkcF9625j51nd2IxWHhi9BMNXq/y1Cny/v1vAMJ/NbdOcqmiKK5ZlMtPaMssze0B1VqKojDx9gSCI7QZn6byT9anriH+pDarE3N565thirZxBSh76uahKIrC5Nv7M/CybsQN1nbz+GoV2frog4MJvEqrxJ23vG1lMSqql3eM0dGtnllvLVP37mAwuLZ3u4tPByh6m43Ip58GIPvdf1B2qOXr1M6eIOvT19ep6+BJdofdVTX2jgF30MWv/g+0liravAUcDsx9+2p3oG1gHVF/wTZnyfuaHxj55fmuXJ7GirPlrVgBqop11Civ1jxpTFOJsgAJ1cs8h7ZnuDqm5pwppqyoEoNJV2vL7YWcu3m2nt5ab5fgHambuGyfdk1vJsdeyDb9BjAYKPtxL2WHz0+n63V6XpjwAv1D+lPh0Hb0/GLIL4gOaLihYdabb6JWVmIdMwb/sWPrPccZoPQ/VAKq6raePI0x+Rm49uHBDBgfzfCpPRs9d++mTzBXQYXN2m5Fr0Rdje3kAYgZGMrEWQnojTpUVT1fRdYHAv/mcN4YFHzxBY7ilm8KcXL24DG18/IOgGI0YoqJcft1fWv+vR5BVyVRMGUKhevWcebJp4hd9nGLlg16BfdiYveJbDy5kaUpS5l/6XzPDbaGNWlrOJp3lEBToKsuizu0ZffOhWru5FFV1XWXmxCSgIJCZkkmOWU5hPiF8E36N1Q6KukT3KfBHRuqw0F+dZKlryXH1uQ3cAAApSkptX7ummIHh2KyGCjKLefU4Vy69wtxLe9E9QlGb2g4tu8Z1JPBYYPZm7WXL499Wef9r/rqGywVUNkjot367jSHITSUwEkTKVz3NfmffILfE+dnSKxGK3+f/HfuX3c/IX4h3DHgjgavU37suKtCZvjcXzZ4nnX0KBSLBWteKbFn9R6fQXEKDrcy6Y7Gt3TnlOWg7NICWOuoUbK92IssgwcBUJmeTlVOTqPdze15eajV6QCGCN+rIlsf6+hRGHvGUHkinfzPPydg0mQchQXYCwpd/7UXFuCo9d9CHAUF5/9bVIQ9Px9ovyaBFzL1ioMjR9x6TZ+eQXGKePopdEFBlO3bR87SD1r8fOfyyuepn9d7R+tu5fZy1+zJXQPuIsjknuqgamWlqzaMOwIUS+JAFLMZe25urTLF/kZ/YoK0aNiZKOtMkGys9knxd99pTQADA13VQn2RX79+oNdjP3eOqsz6E2UNRj19Rmrbo53LPOf77wQ3+RrX99JKyF+4myezOJPhW7Q7vNBZt/vcB5/zbi5/5ao6be4j/CNYNX0VS6YuwahruPBe1t//Bg4HAZMnu7aJ1kdnNrs6Kg9PVeskZXvT1ye+pn+6trzTdVzrl1JF2+ltNkzVeWMNzaI4VZ3Rlnf0oaHovJx43lw1l1cz5v+Ro5dfzrHrpnFi1ix+euBBTv/mN5x99jmyXnuNnPfeJ2/5cgpXr6Z461bKkpOpOHFCyz2pqkIxmdzy2dAazp087tQhAhRjeDgRv30cgKy//a3FW5mGhQ9jcNhgKhwVfHTgI08MsZY3dr9BemE6XS1dG73TbKmS3btxFBSgDw7GMqTtDcsUk+l8x9AdDddDOVt8lu8ztN4sV8c1vBafX527YJt2nc9WcIQLEmXr6cvj5NzNc3R3FhWlVZw+kgdA94SG7+CcpsZNxaAzcCj3UK2li71rP6J7NlSYdETe5Htl0/3Hj8cQEYE9L4+i9etb/Pyy/fsp/O9qUBTCfvlok+cHXK7t8hpxVCW7LLtdbiCaY92Rr+h7UluGs15yiZdHIxrLQ6mpsoPUQLlQ8IwZ6LtqOTTo9eiDgzHGxOA3cCDWsWMITErCdtNMQu65h7BfPkrEU08R/eILdH/zTXr+80PiVq6kz4b19N2+Df9LRnvlZzDFuT8x1+eXeJxsM2aQ/8UXlHy3jTNP/4GYpUuaffepKAo/H/hz5m6cy7JDy7h30L34Gz2TRPRj1o8s3b8UgGfGPuPW1ynauAnQ/qgrbtryaB05kpLt2yn54Qe63Poz1+P9QvqxJm0NB3MOYtAZUFEZFj6MbgH1571U5eZSuE7bguzs7+LL/BITKT98mLKUFAKvqL+fUGSvIILCLBRklfL9F8cpL6nC6KcnLKbx2hkANrONid0n8nX613ye+rlrWazqP18AcHZ8AkMCm65i2t4UvR7bjdPJfutt8pb/h6CpU1v0/MzXXwe04m9+CfUvBdYUUJ3o3fuMSlCxyoHsA0zoPqHlA3ejrJIsCnf9gMkOSmiIa4eC8B7LkCHkf/ppkzMoHaGKbH0MoaHEb1iPWlGBYrX63Mxqc5h7XaQzKKAFGVHPPotisVDy/fctznie2GMisUGxFFYU8umRTz0yxnJ7OU//72kcqoNpvaYxscdEt17fnfknTq6CbTt21NqH70yUPZhzsFmdiws+/xy1shLzgP5YqpNQfVnNPJSGKIriaiC4d722BTY6Phidvnm/Ns5k2S+Pf0mVo4qKjAy679aa1nW53XeSYy/kLH1fvHUrladONXH2eSW7dlG86VvQ6wl7ZE6znmOMiMA8oD86FYalqh4t2NZca0+sZUD18k7gJWM65IdFZ+Oc6S3bu7dW3aYLVZ3pmDMooCWa6vz9O+z/3zwRyHeYAAXA1KOHa9o486WXqTxbt9JnQ/Q6PXcO1Oo5fLD/AyoddasSttUbe97geP5xulq68tvRv3XrtStOnNDyRAwG/MePd9t1LUOGgMFA1dmztT6MnEs8aQVpHMg5gEExcFXsVfVeQ1VVVz+J4A4wewK4gqiyfSmNFkjqW92bx3lKQ/VP6jOh2wSCzcGcKz3HtjPbOP7hO+gdcLCHjsFjprV+8B5m6tFDS95VVfKa2Q5eVVWyXv0roE1Xt2QHV2B1wD08VfVYyfuWWJO2hoEnZHnHl5j79EZnteIoKXEVI6tPR6qB0tnobTb0jSQwt0aHClAAQmbPxm/wYBxFRWT88dkWVd+7vvf1hPiFkFGcwerjq906rh+zfmRpyvmlHZvZ5tbrF23SlnesI0eid+PSgM5iwVJdF6RmHkqoJZRwy/keOmOjxza4VbosOZnyI0dQzGZs113ntrF5ktmZKJudTVUjga4tzEJUn/PvZUP1T+pj1BuZGqstkXxxaCXln2oJs6mT4zHrza0ceftwNRD89JNG71idiv+3lZIffkAxmej6UMOl7+vjXOYZclzlaJZ3E2UzijPYd2oX8dVdHry1ni9qU/R6/AZreXeN5aG4qshGdowtxp2NKbbxrfst1eECFEWvJ+pPz4HRSNH69RSubn6gYdabuaO/lrS6JGWJW0oLQ+2lnet6Xef2pR2o3b3Y3c735dlR6/F+oee3Yja2e8c5exJ4VZKr7bav0/n5uTp+NlYPBaDfWO2PndlqoGv3pvNParq+t7abp/DrdRhzi8jzh65TfT+IC0yags5mo+r0GYq/29bouaqqkvVXbfaky223trj+hN+gQShdgrGWg2V/GsWVra8F0VZr0tbQ95SK0Q6G8HCMPd37B1e0nrMvT2N5KOeTZDvGFuPOxtQz1q3X63ABCoBf3750/b//AyDjT3+mKje32c+9JeEWLAYLh3MPs/X0VreMp+bSzu9G/84t16zJXlREcfXsRqAHtpA11dnYYrAwqcekOs8DcBQXU/CllqMSPNN3a5/Ux9U4sJGdPAB9R0cw8LJuXHZrXxRdy9aHE7smEhsUy4Rd2pbdr4cqXBIzrnUDbke6GrNhztYFDSlct46ylBQUq5XQ6t/LllB0OoImav//Gp7aPgXbGrImbQ2JNZZ3Omo+QGd0fifPnnqPqw6HzKB4mWXECLder8UByqlTp7jjjjsIDQ3FarUydOhQdu4831peVVXmz59PdHQ0FouFiRMnktLEHWprhD7wf5jj+2DPzibzhReb/Tyb2cbMeG362h1NBPdm7XUt7fxhzB/cvrQD2vQ5lZWYYmM9Up3VMnw4KAqVJ9JrNdCb2H0iOkXHzPiZDTaEK1i9BkdJCcaeMVhHj3L72DypORVlQauJMnFWgisfpSUURWFGxBQGpmsfenuGBzdY6M7XOBsIFn39TYM3AardTtbrfwMg5K47MYSGtuq1nMs8I46qdVostJeThSdJPpes9UhClnd8jTNAqTh2zFWUrCZ7To7W8VhRMIa7p++ZaBnb1S3b9deUFgUoubm5jBs3DqPRyH//+1/279/PK6+8QnBwsOucl156iVdffZWFCxeyY8cOIiMjmTJlCoWFhe4duMlE1HPPgaKQv3Klq4BZc9w54E70ip7tGdtJyW598FRuL+ep/z3lWtqZFFP/LENbFW3Qms55qgCPPjAQc39ttqR05/lZlEFhg9h862bmjZzX4HPz/lOdHDtjZoe722xuomxbTU63YXDAiTCIS7y0wT5Gvsavf3/8Bg5EraykYNWqes8p+OILKlJT0dlshN7T+n5T/uPH4dDriM6Bkwd2NP0ED1iTtgZzhUq8VusL62gJUHyJISQEY0+tgGTp3uQ6xyurS9zru4Z6vTu4cI8W/aV88cUX6dGjB4sXL2b06NHExsZyxRVX0Lu66JWqqrz22ms8+eSTzJgxg8TERJYuXUpJSQkffeT+AmmWoUMJuXM2AGeeeQZ7UfPWrqMColwFx5bsW9Lq139zz5sczz9OqF+oR5Z2QLtDLfpW64HjyQqB55d5dtZ6PMgUhF5Xf82V8tRUSnfvBr0e2/TpHhubp5gTEsBgwJ6T45oa9gTdt1qRu+8TFC7rfpnHXscTnLMoef/5pE4Qp1ZUkPV3rVt36H33og9qfcVkfUAAFYO0nCDDtsZrXXiKM/9Eb1cxREVh7NHDK+MQDWusL09VdZNAoyzvdBotClBWrVrFyJEjufnmmwkPD2fYsGG8++67ruPHjx8nIyODpBplzs1mM5dffjlbt7on3+NCYb/8JcZu3ag6fYas115r9vOcTQTXnljbqjbve7P2ujok/2GsZ5Z2QNshY8/JQRcQgLW6+7AnNJSH0pi86r47AZddhjEivImzfU9LEmVby1FcTPEWrbvzuFnzXJ2OO4qga69FMZspP3KEsuTad615n3xC5cmT6MO6EnL77W1/rUnaDGT35LMeKQPQmLR8bTv9oHRtFtB/tPTf8UWN5aFUduAaKKJ+LQpQjh07xqJFi4iPj2fNmjU8+OCDPProo3zwgdYfJ6P6LjTigiZNERERrmMXKi8vp6CgoNZXi34Aq5Wo554FIPdf/6Jk1+5mPS8hJIFx0eNwqA4+3P9hi16z5q6da3tdy+SYyS16fksUVu/e8Z8wHsXYcP+TtnIGKOWHD2PPy2vyfLWigvyVKwHfbgzYFFfBtiYSZVuraPNm1IoKjDExTJ50T4dZ3nHSBwUReJV2w+HcrQXgKC3l3JuLAOj6wIPorPXnKLVE9yk3AND/hIPUU555PxqyOk3bDTj6jFb52Tpa6p/4ImfBttK9e1EdjlrHqs5WJ8hKDZROo0V/LR0OB8OHD2fBggUMGzaMBx54gPvvv59FixbVOu/CO4+GOsYCPP/889hsNtdXj1ZMq/pfeim2GTNAVTnz1FM4qrtZNsXZRHDFkRXkljV/J9Cbe97kWP4xbWlnlGeWdpyc5e09sXunJkNIiKshV8muXU2eX7hhI/acHPRhXQm4rGMtW9TkrAFTlrLfI9cvXLsOgKCkKR32jtzVDv6rr3CUlACQ+9FHVGVlYYyOJviWm93yOuZeceSE+WFwwKn1X7rlms3lzD+JSi8CpECbr/Lr2xfFzw9HQQEVaWm1jrlmUCIkQOksWhSgREVFMWDAgFqP9e/fn/R0Le09snpq7cLZkszMzDqzKk5PPPEE+fn5rq+ffmr5cgtAxG8fRx/WlYpjxzj31lvNes7oyNH0D+lPmb2MZQeXNes5yVnJtZZ2gv2CWzXe5qg8c4bygwdBp8O/HYIA1zLPjqaXeZxbT4On34hi6DAtnepw7eTZt8/tibKO8nJX/ZrAKVPceu32ZB2ltYN3FBdTsHoN9sJCst/Rlna7zpnj1q6xucO1hmNVW7a77ZpNOZp7lKN5Rxl4So9id2CMjsbUvf6eU8K7FKPxfHmA3XtqHZMqsp1PiwKUcePGcehQ7RoFhw8fpmd1MaO4uDgiIyNZt26d63hFRQWbNm3i0uq26hcym80EBQXV+moNvc1G5FNPA5D97j8oO9R0LQVFUfh54s8B+Pjgx5RWlTZ6fs1dO9fEXePRpR04Xz3WMnQohi7Nr2DaWs3NQ6k8c4bizVpeRfDMGR4flye5EmVzc12t2t2leOtWHCUlGCIi8Bs0yK3Xbk+KohA8w5ks+x9ylizFnp+PqVcvbNe7t2S/acJYAEJ3n6gzhe8pzuWdpGwtuVJmT3xbQ4myzt9fqYHSebQoQPnVr37Ftm3bWLBgAUePHuWjjz7inXfe4eGHHwa0P2Rz585lwYIFrFixgn379nH33XdjtVqZNcvzzdGCrkrS7lSrqjg9b16jjeCcrux5Jd0CupFbnsvKoysbPXfRnkWupZ0nRj/hrmE3qGjDRsCzu3dqso7UiuyU7d/f6I6ovBUrQFWxjhrlkbos7UlnNmOOjwcabxzYGs7uzoFXXomi61i5JxeyTZ8Oej2lu3aR/d57AIQ9+qjbZ89iJkylxAT+RZUeywuqSVVV1qStAWDACS0gskr9E5/mykOpEaCoDgeVmVoNJ6ki23m06K/mqFGjWLFiBR9//DGJiYk899xzvPbaa9xeI4P/8ccfZ+7cuTz00EOMHDmSU6dOsXbtWgLbqbV8xNNPoe/ShfIjR0mbeROnHn+cytOnGzzfoDNw5wCtieDSlKXYHfX3HUnOSmZxilbY7emxT3t0aQe0JMTibVqJcU+Ut6+PMSoKY/fuYLc3Wq0xv3r3TkdOjq3JmShbts99AYpaVUXRN98AHXt5x8kYEe7KNVLLyjAP6E9gkvt/rt5dE9jXS/uzdGbt526//oUO5R4irSANW5UJv1Tt74S/1D/xaZbB2gxK+ZEjrhupqnPnoKoKdDoM4R1vR6GoX4tv66677jqSk5MpKyvjwIED3H///bWOK4rC/PnzOXPmDGVlZWzatInE6kTE9mAMDyfuk/8QNE2bei5Y9TmpU68m85VXsDdQLG56n+kEm4M5WXSSr9O/rnO85q6da+Ku4YqYKzz6M9iLish67XXU8nKM0dGuO/z2cH6Zp/5iWcXffUfl6dPoAgMJrLGdvCM7nyjrvgCl5IcfsOfno+/SxTUz1dE5a6IAhM+d65FZIaPeyKnB0cD5JU5PcjYNnVHSH+x2jD16YIyO9vjritYzRoRjiI4Ch4OyfdrWd1eJ+7CwDp0TJ2rr2PPODTBGR9Pt5ZeIXb4c6+jRqBUVZL/7D1KnJJHzwYeoFRW1zrcardzW7zYA3t/3fp1kyUV7FpGan+rxpR1HcTHn3nmX1CuuJGepVj7fdlP7Vmg93ziw/jyU/E+02RPbtOvQ+fm127g8yROJss7dOwFXTO40fzADLr+coOuuo8usWfhPmOC5FxozDADTkZ9c0/aeoKqqK//k0gwt902WdzoGq3OZp7qz8fkmgZIg25l0ygDFyTIokZilS+i+6E1MvXtjz8vj7IIFpE6bRsGatbU+jG7tdytmvZn92fvZkXF+9mDfuX0eX9pxlJaS/f5ijk5JIuvVV10JiN1efYWuDz7o9tdrjHMGpezHvXW2a1fl5rryKmwzZ9Z5bkdlTkgAoxF7Xh5VjSwHNpfqcFD4tfa/U1AnWN5xUgwGuv3lZSL/8LRHg+aecUM4Up3nWFxdRdkTUrJTOFV0CovBQthBrUy6LO90DBcWbDvfJFAClM6kUwcooC05BU6aRK+VnxE5fz76rl2pPJHOqV/+khOzbqdkt1bYLcQvhOl9pgO4ApIKewVPbdF27Vwdd7Xbl3Yc5eXkfPAhR5OSyHzpJew5ORh7xhD90ov0+nwVQddc0+7JlcaYGAxhYaiVlZTt3VvrWMHnn6NWVmIe0N/Vx6Yz0JlMmOO1irLuSJQt/fFHqjIz0fn7Yx07ts3Xu9j0D+nPrj7a/++dhQo9wbm8c2XopVQc0BoUSv+djqHmTh5VVaWKbCfV6QMUJ8VgoMutP6P36tV0fegXKBYLpbt3c+K2WZz85VwqTpzgrgF3oVN0bDm1hUM5h1j0o7a0E+IX4talHbWigtyPPyY16SrOLliAPescxm7diPrzn+j95ZfYrr8eRV9//xtPUxSl3mUeVVVdlUSDO9HsiVPNxoFt5ZxlCpg40a01Qi4Wfbv0ZVcfbYam+H9bcVywJOsODtXBmhPa7p1r8mPB4cDYM0Y+4DoI84ABKEYj9txcKn/6icrqPjxSRbZzuWgCFCd9gD9hjz5K79Wrsd00ExSFwjVrSL1uGsaFH3JtiLZT4bltz/H+vvcB+MOYP9DFr+11SNTKSnKXL+fo1Klk/PFZqs6exRAZSeT8+fT+71cEz5zpE/kKlhFaUmfNgm1lycmUHzmCYjZju65j9ZNpDr+B7kmUVVWVwuo6QJ0libi9BZgCsPeJIScA1NJSSr53f3fjvVl7ySjOwN/oT69jWnVcfylv32HoTCb8qouGlv74I1XVnYwlwOxcLroAxckYEU70n/5E3GefaQl/lZXkfvAhd8zfyrRtDvaf2aMt7cRezRU927a0o1ZVkbfiM1KvuZaMp/9A1ekzGMLCiHjqKXqvXUOXW3/mU+3BrSNHAVCyZw9qpda0zTl7EpiUhN7mmcaI3uRKlE1JaVOibPmhQ1T+9BOK2UzAhPHuGt5FJyG0H7t7a7MoRR5Y5nEmx07qMYmy6kBcCrR1LJah1cs8u/dIkmwn5f3bdS/zS+hLzLvvUPS//5H58l8oP3iQ2Rvg6p1woruZ8QP0ZO56DX2XYPTB2pehSxfXv3WBgQ3miah2OwX/Xc25hQtdfSP0oaGE3n8fXW691Wd3wZjj+6Cz2XDk51N24ADm3r0p+FLrjeLsy9LZmBP6uhJlK0+dbnWpc+fuHf8J493SQO9i1T+kP1v7rOGKH1WKNm5EffL3bkvMtTvsrE1bC8DVIRMoP6AVaLSOHuWW64v2YRk6FJZ+QMnu3VRV7/YyREkV2c7kog9QnALGjcN/zBjyV33OmVf/QtesbLruL6d0/2c0WgBfr0dvs7kCFn2XLuiDbehtwRRv/pbyI0e104KDCb3vXrrMmuXzH1yKTod1xAiK1q+nZMcPlB85iqOkBGPPmE77R1xnMuEXH0/Z/v2UpaS0PkBZp33wdabdO97QL6Qfb8cqVOkVOHmSimPHMFc3s2yrXZm7yCrNItAUyKDTBjJUFVNcHEYp8NWhOBNlyw8c0B7Q6zF07erFEQl3kwClBkWvJ/jG6QRNvYqibzdTlZWFPS8Pe26u9l/nV/X3jpISsNux5+Rgz8mp95q6oCBC77mbLrPvRB/g384/UetZR47UApQffsCelwdA8Iz2rcnS3vwGDtQClH37CLqq5fkj5ceOawGpwdBu7Qk6q34h/Sg3KeyLgaHHta7e7gpQPj74MQBXxlxJ+Sbn8o7s3uloDFFRGMLCqMrK0r4PD/fa5gLhGRKg1ENnsTTrA8pRUYE9N6/e4MWem4shPIzgm29G38oGiN7k3MlTvHUrank56PVaP5ZOzC8xEZYvb3WirLP2if+YMZ0yT6c9hVnDCPULZWefLIYe15Z5Qu/9eZuvuz97P+tOrENB4c4Bd1Ly0jxA6p90RIqiYBk61JWULvknnY8EKG2gM5nQRYRjjOh8U8N+/fujWK2oJdoOh4DLLuuUP2dNFybKtnS2yLV7R5Z33KJfSD929TnHveugZNcurXVAGwO/v+/+OwDX9LqGWEI5Ut31XOqfdEyWoUPOByiyxbjTuWh38YjGKQYD1mHDXN93lsaAjTH3jdcSZfPzqTx1qkXPrTx9mrLkZFAUAq+Y7KERXlz6hfQjK1ghPzoI7HaK//e/Nl1vd+Zutpzagl7R89CQhyjZoW1fNvXpLbkLHZQzDwXAECEBSmcjAYpokHOZRx/W1dXJtjPTmUz49e0LtLxgW+HXWudiy4jh8mHnJv1C+gGQ0lfb7daWqrKqqrpmT6b3mU5MUAwl278HZHmnI/MbOBCqa0fJDErnIwGKaJDtxhlYR40i4ne/84kCcu3h/DLPvhY9r3Ct7N5xN2eAsr5HAQDF325Gtdtbda1tZ7axI2MHRp2RBwY/AEDJ91qAYpUCbR2WzmLBb6BWsM0YE+Pl0Qh3uzg+dUSrGCPC6fnhB94eRruqmYfSXFXnzlGycycAgVde6ZFxXYxigmKwGCzsiy6BQH/seXmU/rgX6/BhTT+5BlVVWbh7IQC3JNxCVEAUVTk5lB85Akj9k44u6tnnKNm+nYDxUhixs5EZFCFq8EvUApTSlP3NrihbuH49qCp+iYkYu7WufoqoS6foSOiSgEOnUDg8HoCiTZtafJ1NJzex99xe/PR+3DfoPuD87Ik5Ph5DSIj7Bi3anV9CX0LunH3RzPJeTCRAEaIGv/h4FKMRR34+lSdPNus5zuaAsnvH/ZzLPKn9td07LS1771AdrtyTWf1n0dWi5Qe5lnekvL0QPksCFCFqUEwmzAkJQPOWeewFBRRv2wZIgOIJzgBla0wp6HRar6MzZ5r9/LVpazmce5gAYwA/TzxfR6V4uzP/RJZ3hPBVEqAIcQFXHsq+phNlizZuhMpKTH16Y+4V5+GRXXz6hWoByu6KVK33Cs1f5qlyVPHGnjcAuHPgndjM2ixM1blzVKSmgqJgHSUBihC+SgIUIS7g3BVQ2owZFCnO5ll9gvugV/Tkl+ejjh0OQNGGjc167hfHviCtII1gczCz+8+mKjeXwvXrOfviSwCYExIwdOniqaELIdpIsoqEuIAlMRGAsupE2YYqyjpKSijavAWAoKSW9+4RTTPrzfQK7sWR3COcHBxBV6B42zYcpaXoLJYGn1dpr2TZpoWMP+jgZ2XdyPzXba7GnU4BEyZ4ePRCiLaQAEWIC5j79NESZQsKqPzpJ0wN1Fco2rIFtawMY/fumPv1a+dRXjz6h/TnSO4R9gUVcGVUFFVnzlC8fTuBNRoyqg4HFamplOzcSckPOzm3fTPPZOVXH/2R8up/mXr1wjpiONZRowi86qr2/lGEEC0gAYoQF1BMJsz9+lGWnExZSkqDAUrN3TuducuztyV00ZKWD+YeYvrEy8n7eBlF33yDITjYFZCUVvfqcTIBdgXK+kTTY1wSlhHDsY4YIVuKhehAJEARoh5+Awe4ApSgq6+uc9xRUUHRhg2A5J94Wv/Q/gAczDlIwOVPkPfxMvKW/4e85f+pdZ5isWAZMoQjMXre039HYZ8oPr31K0x6kzeGLYRoIwlQhKiHcydPaQM9eUq2bcNRVIQhLAzL0CH1niPco28XrT/S6eLT2Kf0Rx/WFXvWOfTBwVhGjMA6YgTWkSPw69+fEiqY/cnV5JbreHb0wxKcCNGBSYAiRD3OJ8qm1Jsoe373zpUoOtkM50k2s41uAd04VXSKwyUnGL5yJfa8fEyxPev8b//PH98ntzyX2KBYpvWe5qURCyHcQf6yClEPc58+KCYTjsJCKtPTax1T7XZX92JZ3mkfzjyUAzkHMISEYO4VVyc4yS/PZ2nKUgAeGvoQBp3cfwnRkUmAIkQ9FKOxwYqyJTt3Ys/NRW+zYR050hvDu+g4C7YdyjnU4DlLUpZQWFlIfJd4roqVHTpCdHQSoAjRgPONA2sHKM7dOwGTJ6MYje0+rotR/xAtUfZAzoF6j2eXZvOvA/8CYM7QOegU+dMmREcnv8VCNMDiKnl/PkBRHQ6pHusFzp48x/OPU24vr3P8H8n/oLSqlEFdBzGpx6T2Hp4QwgMkQBGiAX7ORNn9+1EdDu3f+/ZRlZGBzmrFf9yl3hzeRSXCGkGwORi7audobu2KsBnFGfy/Q/8PgDnD5khNGiE6CQlQhGiAuXfvOomyztmTgImXozObvTm8i4qiKCSEVBdsyzlY69jbe9+mwlHBiIgRjI0a643hCSE8QAIUIRqgGI2uEval1duNC9auBWR5xxvqy0P5qeAnPjvyGQCPDntUZk+E6EQkQBGiEZbqRNmylP2UHzlC5Yl0FJMJ/wmXeXlkF5/6ZlAW/biIKrWKcd3GMTxiuLeGJoTwACkUIEQj/FyJsvvQWa0A+I8bhz7A35vDuig5Z1AO5x7G7rCTVpDGF8e+AOCRYY94c2hCCA9o0QzK/PnzURSl1ldkZKTr+N13313n+JgxY9w+aCHaS81E2ULn8k5SkjeHdNGKDYrFT+9HaVUp6YXpvLHnDVRUroi5goGhA709PCGEm7V4BmXgwIF8/fXXru/1en2t41OnTmXx4sWu700m6YUhOi5z794oZjOOoiLKDx8GvZ7ASRO9PayLkl6nJ75LPMnnkvns6GesO7EOBYU5Q+d4e2hCCA9ocYBiMBhqzZpcyGw2N3pciI5EMRgw90ug7Me9APhfMhp9cLB3B3UR6xfSj+RzySzep90EXdPrGvp06ePlUQkhPKHFSbJHjhwhOjqauLg4br31Vo4dO1br+MaNGwkPD6dv377cf//9ZGZmNnq98vJyCgoKan0J4UssAxNd/5bdO97lLNimoqJX9Dw05CEvj0gI4SktClAuueQSPvjgA9asWcO7775LRkYGl156KdnZ2QBcffXV/Otf/2L9+vW88sor7Nixg8mTJ1NeXrfyo9Pzzz+PzWZzffXo0aNtP5EQbuZMlEVRCLjiCu8O5iLnDFAApveZTkxQjBdHI4TwJEVVVbW1Ty4uLqZ37948/vjjPPbYY3WOnzlzhp49e7Js2TJmzJhR7zXKy8trBTAFBQX06NGD/Px8goKCWjs0Idym8uxZjl17Hf7jxtH99de8PZyLWmlVKVcuv5JKRyUrb1hJVECUt4ckhKhWUFCAzWZz2+d3m7YZ+/v7M2jQII4cOVLv8aioKHr27NngcdByVsxSkVP4MGNEBH23/g90UjbI2ywGC/+85p8AEpwI0cm16S9ueXk5Bw4cICqq/j8U2dnZ/PTTTw0eF6KjUEwmFIOUDfIFcbY44mxx3h6GEMLDWhSgzJs3j02bNnH8+HG2b9/OTTfdREFBAXfddRdFRUXMmzeP7777jrS0NDZu3Mi0adPo2rUrN954o6fGL4QQQohOqEW3hCdPnuS2227j3LlzhIWFMWbMGLZt20bPnj0pLS0lOTmZDz74gLy8PKKiopg0aRL//ve/CQwM9NT4hRBCCNEJtSlJ1hPcnWQjhBBCCM9z9+e3ZP0JIYQQwudIgCKEEEIInyMBihBCCCF8jgQoQgghhPA5EqAIIYQQwudIgCKEEEIInyMBihBCCCF8jgQoQgghhPA5EqAIIYQQwudIgCKEEEIIn+Nz7VmdlfcLCgq8PBIhhBBCNJfzc9tdHXR8LkDJzs4GoEePHl4eiRBCCCFaKjs7G5vN1ubr+FyAEhISAkB6enqbfsBRo0axY8eONo2lrdeQMcgYZAy+OQZ3XEPGIGOQMdSWn59PTEyM63O8rXwuQNHptLQYm83Wpm6Ier2+zd0U23oNGYOMQcbgm2NwxzVkDDIGGUP9nJ/jbdVpk2Qffvhhr19DxiBjkDH45hjccQ0Zg4xBxuBZiuqubBY3KSgowGazkZ+f3+YoTgghhBDtw92f3z43g2I2m3nmmWcwm83eHooQQgghmsndn98+N4MihBBCCOFzMyhCCCGEEBKgCCGEEMLnSIACvPnmm8TFxeHn58eIESPYvHmz69j8+fPp168f/v7+dOnShSuvvJLt27d7cbSiId9++y3Tpk0jOjoaRVH47LPPah1XVZX58+cTHR2NxWJh4sSJpKSkeGewoklNvZ+KotT79fLLL3tnwKJBzz//PKNGjSIwMJDw8HCmT5/OoUOHGjz/gQceQFEUXnvttfYbpPA5F32A8u9//5u5c+fy5JNPsnv3biZMmMDVV19Neno6AH379mXhwoUkJyezZcsWYmNjSUpKIisry8sjFxcqLi5myJAhLFy4sN7jL730Eq+++ioLFy5kx44dREZGMmXKFAoLC9t5pKI5mno/z5w5U+vr/fffR1EUZs6c2c4jFU3ZtGkTDz/8MNu2bWPdunVUVVWRlJREcXFxnXM/++wztm/fTnR0tBdGKnyKepEbPXq0+uCDD9Z6rF+/furvfve7es/Pz89XAfXrr79uj+GJVgLUFStWuL53OBxqZGSk+sILL7geKysrU202m/rWW295YYSiJS58P+tzww03qJMnT26fAYk2yczMVAF106ZNtR4/efKk2q1bN3Xfvn1qz5491b/+9a/eGaBo1JtvvqkOGjRIDQwMVAMDA9UxY8aoX331lev4J598oiYlJamhoaEqoO7evbtVr3NRz6BUVFSwc+dOkpKSaj2elJTE1q1b6z3/nXfewWazMWTIkPYapnCD48ePk5GRUeu9NpvNXH755fW+16JjOXv2LF9++SX33nuvt4cimiE/Px+gVkl0h8PB7Nmz+c1vfsPAgQO9NTTRDN27d+eFF17ghx9+4IcffmDy5MnccMMNriXz4uJixo0bxwsvvNCm1/G5Uvft6dy5c9jtdiIiImo9HhERQUZGhuv7L774gltvvZWSkhKioqJYt24dXbt2be/hijZwvp/1vdcnTpzwxpCEGy1dupTAwEBmzJjh7aGIJqiqymOPPcb48eNJTEx0Pf7iiy9iMBh49NFHvTg60RzTpk2r9f2f//xnFi1axLZt2xg4cCCzZ88GIC0trU2vc1EHKE6KotT6XlXVWo9NmjSJPXv2cO7cOd59911uueUWtm/fTnh4eHsPVbRRU++16Jjef/99br/9dvz8/Lw9FNGEOXPmsHfvXrZs2eJ6bOfOnbz++uvs2rVLfh87GLvdzvLlyykuLmbs2LFuvfZFvcTTtWtX9Hp9rdkSgMzMzFp32v7+/vTp04cxY8bw3nvvYTAYeO+999p7uKINIiMjAZp8r0XHs3nzZg4dOsR9993n7aGIJjzyyCOsWrWKDRs20L17d9fjmzdvJjMzk5iYGAwGAwaDgRMnTvDrX/+a2NhY7w1YNCg5OZmAgADMZjMPPvggK1asYMCAAW59jYs6QDGZTIwYMYJ169bVenzdunVceumlDT5PVVXKy8s9PTzhRnFxcURGRtZ6rysqKti0aVOj77Xwfe+99x4jRoyQvDAfpqoqc+bM4dNPP2X9+vXExcXVOj579mz27t3Lnj17XF/R0dH85je/Yc2aNV4atWhMQkICe/bsYdu2bfziF7/grrvuYv/+/W59jYt+ieexxx5j9uzZjBw5krFjx/LOO++Qnp7Ogw8+SHFxMX/+85+5/vrriYqKIjs7mzfffJOTJ09y8803e3vo4gJFRUUcPXrU9f3x48fZs2cPISEhxMTEMHfuXBYsWEB8fDzx8fEsWLAAq9XKrFmzvDhq0ZCm3k/QmpMtX76cV155xVvDFM3w8MMP89FHH7Fy5UoCAwNdM5k2mw2LxUJoaCihoaG1nmM0GomMjCQhIcEbQxZNMJlM9OnTB4CRI0eyY8cOXn/9dd5++233vUjbNxx1fG+88Ybas2dP1WQyqcOHD3dtfSstLVVvvPFGNTo6WjWZTGpUVJR6/fXXq99//72XRyzqs2HDBhWo83XXXXepqqptNX7mmWfUyMhI1Ww2q5dddpmanJzs3UGLBjX1fqqqqr799tuqxWJR8/LyvDdQ0aT63kdAXbx4cYPPkW3GHcvkyZNr/W6qqqoeP368TduMpVmgEEIIIZrt97//PVdffTU9evSgsLCQZcuW8cILL7B69WqmTJlCTk4O6enpnD59mmuvvZZly5aRkJBAZGSkKx+wOS7qHBQhhBBCtMzZs2eZPXs2CQkJXHHFFWzfvt0VnACsWrWKYcOGce211wJw6623MmzYMN56660WvY7MoAghhBDC58gMihBCCCF8jgQoQgghhPA5EqAIIYQQwudIgCKEEEIInyMBihBCCCF8jgQoQgghhPA5EqAIIYQQwudIgCKEEEIInyMBihBCCCF8jgQoQgghhPA5EqAIIYQQwudIgCKEEEIInyMBihBCCCF8jgQoQgghhPA5EqAIIYQQwudIgCKEEEIInyMBihBCCCF8jgQoQgghhPA5EqAIIYQQwudIgCKEEEIInyMBihBCCCF8jgQoQgghhPA57R6g3H333UyfPr29X1YIIYQQHYjMoAghhBDC53g1QFm9ejXjx48nODiY0NBQrrvuOlJTU13H09LSUBSFTz/9lEmTJmG1WhkyZAjfffedF0cthBBCCE/zaoBSXFzMY489xo4dO/jmm2/Q6XTceOONOByOWuc9+eSTzJs3jz179tC3b19uu+02qqqqvDRqIYQQQniawZsvPnPmzFrfv/fee4SHh7N//34SExNdj8+bN49rr70WgD/+8Y8MHDiQo0eP0q9fv3YdrxBCCCHah1dnUFJTU5k1axa9evUiKCiIuLg4ANLT02udN3jwYNe/o6KiAMjMzGy/gQohhBCiXXl1BmXatGn06NGDd999l+joaBwOB4mJiVRUVNQ6z2g0uv6tKApAnWUgIYQQQnQeXgtQsrOzOXDgAG+//TYTJkwAYMuWLd4ajhBCCCF8iNcClC5duhAaGso777xDVFQU6enp/O53v/PWcIQQQgjhQ9o9B8XhcGAwGNDpdCxbtoydO3eSmJjIr371K15++eX2Ho4QQgghfJCiqqrani84depU+vTpw8KFC9vzZYUQQgjRgbTbDEpubi5ffvklGzdu5Morr2yvlxVCCCFEB9RuOSg///nP2bFjB7/+9a+54YYb2utlhRBCCNEBtfsSjxBCCCFEU6RZoBBCCCF8jgQoQgghhPA5HglQnn/+eUaNGkVgYCDh4eFMnz6dQ4cO1TpHVVXmz59PdHQ0FouFiRMnkpKS4jqek5PDI488QkJCAlarlZiYGB599FHy8/Nd56SlpXHvvfcSFxeHxWKhd+/ePPPMM3Uq0QohhBCiY/FIgLJp0yYefvhhtm3bxrp166iqqiIpKYni4mLXOS+99BKvvvoqCxcuZMeOHURGRjJlyhQKCwsBOH36NKdPn+Yvf/kLycnJLFmyhNWrV3Pvvfe6rnHw4EEcDgdvv/02KSkp/PWvf+Wtt97i97//vSd+LCGEEEK0k3ZJks3KyiI8PJxNmzZx2WWXoaoq0dHRzJ07l9/+9rcAlJeXExERwYsvvsgDDzxQ73WWL1/OHXfcQXFxMQZD/RuQXn75ZRYtWsSxY8c89vMIIYQQwrPaJQfFuSwTEhICwPHjx8nIyCApKcl1jtls5vLLL2fr1q2NXicoKKjB4MR5jvN1hBBCCNExeTxAUVWVxx57jPHjx5OYmAhARkYGABEREbXOjYiIcB27UHZ2Ns8991yDsysAqamp/P3vf+fBBx900+iFEEII4Q0eL9Q2Z84c9u7dW2+nYkVRan2vqmqdxwAKCgq49tprGTBgAM8880y9r3P69GmmTp3KzTffzH333eeewQshhBDCKzw6g/LII4+watUqNmzYQPfu3V2PR0ZGAtSZLcnMzKwzq1JYWMjUqVMJCAhgxYoVGI3GOq9z+vRpJk2axNixY3nnnXc88JMIIYQQoj15JEBRVZU5c+bw6aefsn79euLi4modj4uLIzIyknXr1rkeq6ioYNOmTVx66aWuxwoKCkhKSsJkMrFq1Sr8/PzqvNapU6eYOHEiw4cPZ/Hixeh0UtpFCCGE6Og8ssTz8MMP89FHH7Fy5UoCAwNdMyU2mw2LxYKiKMydO5cFCxYQHx9PfHw8CxYswGq1MmvWLECbOUlKSqKkpIR//vOfFBQUUFBQAEBYWBh6vZ7Tp08zceJEYmJi+Mtf/kJWVpZrDM5ZGiGEEEJ0PB7ZZlxfHgnA4sWLufvuuwFtluWPf/wjb7/9Nrm5uVxyySW88cYbrkTajRs3MmnSpHqvc/z4cWJjY1myZAn33HNPvedIiyEhhBCi45JmgUIIIYTwOZKwIYQQQgifIwGKEEIIIXyOBChCCCGE8DkSoAghhBDC50iAIoQQQgifIwGKEEIIIXyOBChCCCGE8DkSoAgh3GLjxo0oikJeXp63hyKE6ASkUJsQolUmTpzI0KFDee211wCtn1ZOTg4RERENVpMWQojm8kgvHiHExcdkMkkPLCGE28gSjxCixe6++242bdrE66+/jqIoKIrCkiVLai3xLFmyhODgYL744gsSEhKwWq3cdNNNFBcXs3TpUmJjY+nSpQuPPPIIdrvdde2Kigoef/xxunXrhr+/P5dccgkbN270zg8qhPAamUERQrTY66+/zuHDh0lMTOTZZ58FICUlpc55JSUl/O1vf2PZsmUUFhYyY8YMZsyYQXBwMF999RXHjh1j5syZjB8/np/97GcA3HPPPaSlpbFs2TKio6NZsWIFU6dOJTk5mfj4+Hb9OYUQ3iMBihCixWw2GyaTCavV6lrWOXjwYJ3zKisrWbRoEb179wbgpptu4sMPP+Ts2bMEBAQwYMAAJk2axIYNG/jZz35GamoqH3/8MSdPniQ6OhqAefPmsXr1ahYvXsyCBQva74cUQniVBChCCI+xWq2u4AQgIiKC2NhYAgICaj2WmZkJwK5du1BVlb59+9a6Tnl5OaGhoe0zaCGET5AARQjhMUajsdb3iqLU+5jD4QDA4XCg1+vZuXMner2+1nk1gxohROcnAYoQolVMJlOt5FZ3GDZsGHa7nczMTCZMmODWawshOhbZxSOEaJXY2Fi2b99OWloa586dc82CtEXfvn25/fbbufPOO/n00085fvw4O3bs4MUXX+Srr75yw6iFEB2FBChCiFaZN28eer2eAQMGEBYWRnp6uluuu3jxYu68805+/etfk5CQwPXXX8/27dvp0aOHW64vhOgYpJKsEEIIIXyOzKAIIYQQwudIgCKEEEIInyMBihBCCCF8jgQoQgghhPA5EqAIIYQQwudIgCKEEEIInyMBihBCCCF8jgQoQgghhPA5EqAIIYQQwudIgCKEEEIInyMBihBCCCF8jgQoQgghhPA5/x+oBYAgjxde0wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df_rh.reset_index().groupby('time').mean()[['Relative_Humidity_2m_06h', 'Relative_Humidity_2m_09h',\n", + " 'Relative_Humidity_2m_12h', 'Relative_Humidity_2m_15h',\n", + " 'Relative_Humidity_2m_18h']].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [], + "source": [ + "df_rh['Relative_Humidity_Night'] = df_rh['Relative_Humidity_2m_06h']\n", + "df_rh['Relative_Humidity_Day_Mean'] = df_rh[[ 'Relative_Humidity_2m_09h',\n", + " 'Relative_Humidity_2m_12h', 'Relative_Humidity_2m_15h',\n", + " 'Relative_Humidity_2m_18h']].mean(axis=1)\n", + "df_rh['Relative_Humidity_Day_Min'] = df_rh[[ 'Relative_Humidity_2m_09h',\n", + " 'Relative_Humidity_2m_12h', 'Relative_Humidity_2m_15h',\n", + " 'Relative_Humidity_2m_18h']].min(axis=1)\n", + "df_rh['Relative_Humidity_Day_Max'] = df_rh[[ 'Relative_Humidity_2m_09h',\n", + " 'Relative_Humidity_2m_12h', 'Relative_Humidity_2m_15h',\n", + " 'Relative_Humidity_2m_18h']].max(axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "heat_index = df.reset_index().merge(df_rh.reset_index())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Calculating different aggregations for heat index\n", + "\n", + "1. Heat Index Day Mean: Mean day time temperature, Mean day time relative humidity\n", + "2. Heat Index Night Min: Min night time temperature, min night time relative humidity\n", + "3. Heat Index Day Max: Max day time temperature, Max day time relative humidity" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['lat', 'lon', 'time', 'spatial_ref', 'Temperature_Air_2m_Max_Day_Time',\n", + " 'Temperature_Air_2m_Mean_Day_Time',\n", + " 'Temperature_Air_2m_Mean_Night_Time',\n", + " 'Temperature_Air_2m_Min_Night_Time', 'Relative_Humidity_2m_06h',\n", + " 'Relative_Humidity_2m_09h', 'Relative_Humidity_2m_12h',\n", + " 'Relative_Humidity_2m_15h', 'Relative_Humidity_2m_18h',\n", + " 'Relative_Humidity_Night', 'Relative_Humidity_Day_Mean',\n", + " 'Relative_Humidity_Day_Min', 'Relative_Humidity_Day_Max'],\n", + " dtype='object')" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "heat_index.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [], + "source": [ + "heat_index['heat_index_day_mean'] = heat_index.apply(lambda x: convert_fahrenheit_to_celcius(calculate_heat_index(convert_celcius_to_fahrenheit(x['Temperature_Air_2m_Mean_Day_Time']), x['Relative_Humidity_Day_Mean'])), axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [], + "source": [ + "#heat_index['heat_index_day_min'] = heat_index.apply(lambda x: convert_fahrenheit_to_celcius(calculate_heat_index(convert_celcius_to_fahrenheit(x['Temperature_Air_2m_Min_Day_Time']), x['Relative_Humidity_Day_Min'])), axis=1)\n", + "heat_index['heat_index_day_max'] = heat_index.apply(lambda x: convert_fahrenheit_to_celcius(calculate_heat_index(convert_celcius_to_fahrenheit(x['Temperature_Air_2m_Max_Day_Time']), x['Relative_Humidity_Day_Max'])), axis=1)\n", + "heat_index['heat_index_night_min'] = heat_index.apply(lambda x: convert_fahrenheit_to_celcius(calculate_heat_index(convert_celcius_to_fahrenheit(x['Temperature_Air_2m_Min_Night_Time']), x['Relative_Humidity_Night'])), axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latlontimespatial_refTemperature_Air_2m_Max_Day_TimeTemperature_Air_2m_Mean_Day_TimeTemperature_Air_2m_Mean_Night_TimeTemperature_Air_2m_Min_Night_TimeRelative_Humidity_2m_06hRelative_Humidity_2m_09hRelative_Humidity_2m_12hRelative_Humidity_2m_15hRelative_Humidity_2m_18hRelative_Humidity_NightRelative_Humidity_Day_MeanRelative_Humidity_Day_MinRelative_Humidity_Day_Maxheat_index_day_meanheat_index_day_maxheat_index_night_min
014.8120.92022-01-010NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
114.8120.92022-01-020NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
214.8120.92022-01-030NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
314.8120.92022-01-040NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
414.8120.92022-01-050NaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
...............................................................
46014.4121.12022-01-27029.04070427.08693826.09743725.82906584.17205883.86377076.67266174.22798278.40148284.17205878.29147374.22798283.86377029.76651135.72940627.452966
46114.4121.12022-01-28029.00670827.24212026.55800825.68221486.21498983.23447473.26680867.87719070.89117486.21498973.81741367.87719083.23447429.64221435.48145927.181632
46214.4121.12022-01-29029.60485227.35824026.96135925.67305987.85340986.20417071.26181067.68750072.96669887.85340974.53004567.68750086.20417029.94512238.17014227.189428
46314.4121.12022-01-30028.43349626.89089427.36318425.97744185.59158385.02950377.43275575.15193976.21936885.59158378.45838975.15193985.02950329.36608134.15495127.822222
46414.4121.12022-01-31028.15639626.55407126.76564926.29293279.31634579.20472773.39214369.83261173.34185879.31634573.94283369.83261179.20472728.37782632.36412528.206891
\n", + "

465 rows × 20 columns

\n", + "
" + ], + "text/plain": [ + " lat lon time spatial_ref Temperature_Air_2m_Max_Day_Time \\\n", + "0 14.8 120.9 2022-01-01 0 NaN \n", + "1 14.8 120.9 2022-01-02 0 NaN \n", + "2 14.8 120.9 2022-01-03 0 NaN \n", + "3 14.8 120.9 2022-01-04 0 NaN \n", + "4 14.8 120.9 2022-01-05 0 NaN \n", + ".. ... ... ... ... ... \n", + "460 14.4 121.1 2022-01-27 0 29.040704 \n", + "461 14.4 121.1 2022-01-28 0 29.006708 \n", + "462 14.4 121.1 2022-01-29 0 29.604852 \n", + "463 14.4 121.1 2022-01-30 0 28.433496 \n", + "464 14.4 121.1 2022-01-31 0 28.156396 \n", + "\n", + " Temperature_Air_2m_Mean_Day_Time Temperature_Air_2m_Mean_Night_Time \\\n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 NaN NaN \n", + "4 NaN NaN \n", + ".. ... ... \n", + "460 27.086938 26.097437 \n", + "461 27.242120 26.558008 \n", + "462 27.358240 26.961359 \n", + "463 26.890894 27.363184 \n", + "464 26.554071 26.765649 \n", + "\n", + " Temperature_Air_2m_Min_Night_Time Relative_Humidity_2m_06h \\\n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 NaN NaN \n", + "4 NaN NaN \n", + ".. ... ... \n", + "460 25.829065 84.172058 \n", + "461 25.682214 86.214989 \n", + "462 25.673059 87.853409 \n", + "463 25.977441 85.591583 \n", + "464 26.292932 79.316345 \n", + "\n", + " Relative_Humidity_2m_09h Relative_Humidity_2m_12h \\\n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 NaN NaN \n", + "4 NaN NaN \n", + ".. ... ... \n", + "460 83.863770 76.672661 \n", + "461 83.234474 73.266808 \n", + "462 86.204170 71.261810 \n", + "463 85.029503 77.432755 \n", + "464 79.204727 73.392143 \n", + "\n", + " Relative_Humidity_2m_15h Relative_Humidity_2m_18h \\\n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 NaN NaN \n", + "4 NaN NaN \n", + ".. ... ... \n", + "460 74.227982 78.401482 \n", + "461 67.877190 70.891174 \n", + "462 67.687500 72.966698 \n", + "463 75.151939 76.219368 \n", + "464 69.832611 73.341858 \n", + "\n", + " Relative_Humidity_Night Relative_Humidity_Day_Mean \\\n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 NaN NaN \n", + "4 NaN NaN \n", + ".. ... ... \n", + "460 84.172058 78.291473 \n", + "461 86.214989 73.817413 \n", + "462 87.853409 74.530045 \n", + "463 85.591583 78.458389 \n", + "464 79.316345 73.942833 \n", + "\n", + " Relative_Humidity_Day_Min Relative_Humidity_Day_Max \\\n", + "0 NaN NaN \n", + "1 NaN NaN \n", + "2 NaN NaN \n", + "3 NaN NaN \n", + "4 NaN NaN \n", + ".. ... ... \n", + "460 74.227982 83.863770 \n", + "461 67.877190 83.234474 \n", + "462 67.687500 86.204170 \n", + "463 75.151939 85.029503 \n", + "464 69.832611 79.204727 \n", + "\n", + " heat_index_day_mean heat_index_day_max heat_index_night_min \n", + "0 NaN NaN NaN \n", + "1 NaN NaN NaN \n", + "2 NaN NaN NaN \n", + "3 NaN NaN NaN \n", + "4 NaN NaN NaN \n", + ".. ... ... ... \n", + "460 29.766511 35.729406 27.452966 \n", + "461 29.642214 35.481459 27.181632 \n", + "462 29.945122 38.170142 27.189428 \n", + "463 29.366081 34.154951 27.822222 \n", + "464 28.377826 32.364125 28.206891 \n", + "\n", + "[465 rows x 20 columns]" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#heat_index.to_csv()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "heatwaves", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/measuring-heatwaves/calculate-heat-index.ipynb b/notebooks/measuring-heatwaves/calculate-heat-index.ipynb new file mode 100644 index 0000000..3cf5864 --- /dev/null +++ b/notebooks/measuring-heatwaves/calculate-heat-index.ipynb @@ -0,0 +1,1107 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import rioxarray\n", + "import xarray as xr\n", + "from netCDF4 import Dataset\n", + "import geopandas\n", + "from utilities.weatherFunctions import *\n", + "from utilities.geographicFunctions import *" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Using Baseline to calculate heatwaves using multiple definitions\n", + "\n", + "There are two definitions of a heatwave that are more nuanced than the current definition used by the WMO. \n", + "\n", + "1. **Heat Index**: Heat index aka apparent temperature is based on work carried out by Robert G. Steadman in 1979 (\"An Assessment of Sultriness, Parts I and II\") where he discussed factors that would impact how hot a person would feel under certain conditions. It incorporates 21 parameters and assumptions: body mass (147.7 lbs), height (5'7\"), actively walking (3.1 mph), clothing (pants and short sleeve shirt), heat tolerance, in the shade, etc. This formula became the \"heat index\". It is the traditional measurement of heat stress due to high temperatures and high humidity.\n", + "*Heat index is calculated for shady areas*\n", + "\n", + " The inputs to this are - temperature, relative humidity\n", + "\n", + " Equation:\n", + "\n", + " Heat Index = -42.379 + 2.04901523*T + 10.14333127*RH - .22475541*T*RH - .00683783*T*T - .05481717*RH*RH + .00122874*T*T*RH + .00085282*T*RH*RH - .00000199*T*T*RH*RH\n", + "\n", + " * T = ambient dry temperature (in Fahrenheit)\n", + " * R = relative humidity (percentage)\n", + "\n", + "2. **Wet Bulb Globe Temperature (WBGT)**: WBGT is an indicator of heat related stress on the human body at work (or play) in direct sunlight. It takes into account multiple atmospheric variables, including: temperature, humidity, wind speed, sun angle, and cloud cover.\n", + "\n", + " Equation:\n", + "\n", + " WBGT=0.7Tw+0.2Tg+0.1Td\n", + " * Tw = Natural wet-bulb temperature (combined with dry-bulb temperature indicates humidity)\n", + " * Tg = Globe thermometer temperature (measured with a globe thermometer, also known as a black globe thermometer)\n", + " * Td = Dry-bulb temperature (actual air temperature)\n", + "\n", + "**In this notebook, currently, Heat Index is calculated**\n", + "\n", + "\n", + "**References**\n", + "\n", + "* https://www.weather.gov/ict/wbgt#:~:text=The%20Wet%20Bulb%20Globe%20Temperature,sun%20angle%2C%20and%20cloud%20cover.\n", + "* https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "ds_tasmax = xr.open_mfdataset(\"../../data/gldas/tasmax/wld_cli_gldas2*\", parallel = True)\n", + "ds_tasmin = xr.open_mfdataset('../../data/gldas/tasmin/wld_cli_gldas2*', parallel=True)\n", + "ds_rh = xr.open_mfdataset(\"../../data/gldas/relativehumidity/wld_cli_gldas2*\", parallel = True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Explore the data" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['1948-01-01T13:30:00.000000000', '1948-01-02T13:30:00.000000000',\n", + " '1948-01-03T13:30:00.000000000', ...,\n", + " '2022-04-28T13:30:00.000000000', '2022-04-29T13:30:00.000000000',\n", + " '2022-04-30T13:30:00.000000000'], dtype='datetime64[ns]')" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds_rh['time'].values" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:      (time: 27149, lon: 1440, lat: 600)\n",
+       "Coordinates:\n",
+       "  * time         (time) datetime64[ns] 1948-01-01T13:30:00 ... 2022-04-30T13:...\n",
+       "  * lon          (lon) float32 -179.9 -179.6 -179.4 -179.1 ... 179.4 179.6 179.9\n",
+       "  * lat          (lat) float32 -59.88 -59.62 -59.38 -59.12 ... 89.38 89.62 89.88\n",
+       "    spatial_ref  int64 0\n",
+       "Data variables:\n",
+       "    Tasmin       (time, lat, lon) float32 dask.array<chunksize=(366, 600, 1440), meta=np.ndarray>\n",
+       "Attributes: (12/21)\n",
+       "    CDI:                    Climate Data Interface version 1.9.10 (https://mp...\n",
+       "    Conventions:            CF-1.6\n",
+       "    source:                 Noah_v3.6 forced with Princeton_V2.2\n",
+       "    institution:            NASA GSFC\n",
+       "    missing_value:          -9999.0\n",
+       "    tavg definision::       past 3-hour average\n",
+       "    ...                     ...\n",
+       "    DX:                     0.25\n",
+       "    DY:                     0.25\n",
+       "    history_L34RS:          'Created by L34RS v1.4.2 @ NASA GES DISC on Septe...\n",
+       "    frequency:              day\n",
+       "    history:                Sun Nov 13 09:16:53 2022: cdo -z zip_5 -setattrib...\n",
+       "    CDO:                    Climate Data Operators version 1.9.10 (https://mp...
" + ], + "text/plain": [ + "\n", + "Dimensions: (time: 27149, lon: 1440, lat: 600)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 1948-01-01T13:30:00 ... 2022-04-30T13:...\n", + " * lon (lon) float32 -179.9 -179.6 -179.4 -179.1 ... 179.4 179.6 179.9\n", + " * lat (lat) float32 -59.88 -59.62 -59.38 -59.12 ... 89.38 89.62 89.88\n", + " spatial_ref int64 0\n", + "Data variables:\n", + " Tasmin (time, lat, lon) float32 dask.array\n", + "Attributes: (12/21)\n", + " CDI: Climate Data Interface version 1.9.10 (https://mp...\n", + " Conventions: CF-1.6\n", + " source: Noah_v3.6 forced with Princeton_V2.2\n", + " institution: NASA GSFC\n", + " missing_value: -9999.0\n", + " tavg definision:: past 3-hour average\n", + " ... ...\n", + " DX: 0.25\n", + " DY: 0.25\n", + " history_L34RS: 'Created by L34RS v1.4.2 @ NASA GES DISC on Septe...\n", + " frequency: day\n", + " history: Sun Nov 13 09:16:53 2022: cdo -z zip_5 -setattrib...\n", + " CDO: Climate Data Operators version 1.9.10 (https://mp..." + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds_tasmin" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How has the average global minimum temperature changed over the years?" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "#xr.plot.line(ds_tasmin.groupby('time').mean(...).reset_index())" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Prep the data to clip the area of interest" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "ds_tasmax=ds_tasmax.drop(['time_bnds'])\n", + "ds_rh=ds_rh.drop(['time_bnds'])\n", + "ds_tasmin=ds_tasmin.drop(['time_bnds'])" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Read areas of interest" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "INDIA = geopandas.read_file(\"../../data/shapefiles/india_district/sh819zz8121.shp\").to_crs(\"EPSG:4326\")\n", + "CHENNAI = INDIA[INDIA[\"laa\"] == \"CHENNAI\"]\n", + "PHILIPPINES = geopandas.read_file('../../data/shapefiles/philippines/phl_adminboundaries_candidate_exclude_adm3/phl_admbnda_adm2_psa_namria_20200529.shp')\n", + "MANILA = PHILIPPINES[PHILIPPINES['ADM2_EN'].isin(['NCR, City of Manila, First District', 'NCR, Second District', 'NCR, Third District', 'NCR, Fourth District'])]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [], + "source": [ + "PHILIPPINES_ADM3 = geopandas.read_file('../../data/shapefiles/philippines/phl_adminboundaries_candidate_adm3/phl_admbnda_adm3_psa_namria_20200529.shp')\n", + "DAVAO = PHILIPPINES_ADM3[PHILIPPINES_ADM3['ADM3_EN'].isin(['Davao City'])]\n", + "ZAMBOANGA = PHILIPPINES_ADM3[PHILIPPINES_ADM3['ADM3_EN'].isin(['Zamboanga City'])]\n", + "CEBU = PHILIPPINES_ADM3[PHILIPPINES_ADM3['ADM3_EN'].isin(['Cebu City'])]" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Clip areas of interest from the larger dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "manila_hi = get_heat_index(ds_tasmax, ds_rh, MANILA)" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [], + "source": [ + "cebu_hi = get_heat_index(ds_tasmax, ds_rh, CEBU)\n", + "davao_hi = get_heat_index(ds_tasmax, ds_rh, DAVAO)\n", + "zamboanga_hi = get_heat_index(ds_tasmax, ds_rh, ZAMBOANGA)" + ] + }, + { + "cell_type": "code", + "execution_count": 112, + "metadata": {}, + "outputs": [], + "source": [ + "davao_hi['Tasmax_C'] = davao_hi['Tasmax'] - 273" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latlontimespatial_ref_xTasmaxTasmax_Fspatial_ref_yRH_f_instheat_indexTasmax_C
06.875125.1251948-01-07 13:30:000302.62197985.049562093.692421103.70254829.621979
16.875125.1251948-01-09 13:30:000302.29592984.462672089.89303699.60767529.295929
26.875125.1251948-01-12 13:30:000302.64444085.089991086.849541100.31300429.644440
36.875125.1251948-01-14 13:30:000303.04800485.816407085.851151102.28581730.048004
46.875125.1251948-01-16 13:30:000301.22357282.532429081.80953290.63406628.223572
.................................
812777.625125.6252022-04-11 13:30:000302.75695885.292524076.69916596.17772929.756958
812787.625125.6252022-04-12 13:30:000302.60778885.024019077.44046095.76325229.607788
812797.625125.6252022-04-22 13:30:000303.44479486.530629080.378883101.65861130.444794
812807.625125.6252022-04-23 13:30:000302.43692084.716456087.63810099.42437129.436920
812817.625125.6252022-04-30 13:30:000301.73693883.456489090.09941996.23205228.736938
\n", + "

325788 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " lat lon time spatial_ref_x Tasmax \\\n", + "0 6.875 125.125 1948-01-07 13:30:00 0 302.621979 \n", + "1 6.875 125.125 1948-01-09 13:30:00 0 302.295929 \n", + "2 6.875 125.125 1948-01-12 13:30:00 0 302.644440 \n", + "3 6.875 125.125 1948-01-14 13:30:00 0 303.048004 \n", + "4 6.875 125.125 1948-01-16 13:30:00 0 301.223572 \n", + "... ... ... ... ... ... \n", + "81277 7.625 125.625 2022-04-11 13:30:00 0 302.756958 \n", + "81278 7.625 125.625 2022-04-12 13:30:00 0 302.607788 \n", + "81279 7.625 125.625 2022-04-22 13:30:00 0 303.444794 \n", + "81280 7.625 125.625 2022-04-23 13:30:00 0 302.436920 \n", + "81281 7.625 125.625 2022-04-30 13:30:00 0 301.736938 \n", + "\n", + " Tasmax_F spatial_ref_y RH_f_inst heat_index Tasmax_C \n", + "0 85.049562 0 93.692421 103.702548 29.621979 \n", + "1 84.462672 0 89.893036 99.607675 29.295929 \n", + "2 85.089991 0 86.849541 100.313004 29.644440 \n", + "3 85.816407 0 85.851151 102.285817 30.048004 \n", + "4 82.532429 0 81.809532 90.634066 28.223572 \n", + "... ... ... ... ... ... \n", + "81277 85.292524 0 76.699165 96.177729 29.756958 \n", + "81278 85.024019 0 77.440460 95.763252 29.607788 \n", + "81279 86.530629 0 80.378883 101.658611 30.444794 \n", + "81280 84.716456 0 87.638100 99.424371 29.436920 \n", + "81281 83.456489 0 90.099419 96.232052 28.736938 \n", + "\n", + "[325788 rows x 10 columns]" + ] + }, + "execution_count": 113, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "davao_hi.to_csv()" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [], + "source": [ + "#manila_hi.to_csv('../../data/gldas/manila_heat_index_daily.csv')\n", + "#cebu_hi.to_csv('../../data/gldas/cebu_heat_index_daily.csv')\n", + "#davao_hi.to_csv('../../data/gldas/davao_heat_index_daily.csv')\n", + "zamboanga_hi.to_csv('../../data/gldas/zamboanga_heat_index_daily.csv')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How did temperature change in the Philippines over the last few years?" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The classification was created by the United States and hence, may not be applicable to hotter countries in the Global South" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAAINCAYAAABrm8NBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZhc9Xnn/X/OObV0dau1L90CSSwG4iCCNUYBG8YCB4M1RBibwcZkZBY75rLFYovggEGBzG9A4DAe+YHBmSRY2MaMmV8ekMlAwMKOEIRdWGGNACMh0IKEpG71VlVn+T5/nKWW3qpbrV7U79d19aWuU6fO+Z7q1nY+fd+3ZYwxAgAAAAAAAAAAGAfskV4AAAAAAAAAAADAcCEYAQAAAAAAAAAA4wbBCAAAAAAAAAAAGDcIRgAAAAAAAAAAwLhBMAIAAAAAAAAAAMYNghEAAAAAAAAAADBuEIwAAAAAAAAAAIBxg2AEAAAAAAAAAACMG6mRXsBgBEGg7du3q7GxUZZljfRyAAAAAAAAAADACDLGqK2tTbNnz5Zt910TMiaDke3bt2vOnDkjvQwAAAAAAAAAADCKvP/++zr88MP73GdMBiONjY2SwgucOHHiCK8GAAAAAAAAAACMpP3792vOnDlJftCXMRmMxO2zJk6cSDACAAAAAAAAAAAkqabxGwxfBwAAAAAAAAAA4wbBCAAAAAAAAAAAGDcIRgAAAAAAAAAAwLgxJmeM1MIYI8/z5Pv+SC8F44jjOEqlUjX1sQMAAAAAAAAADL9DMhgpFovasWOHOjs7R3opGIfq6+vV3NysTCYz0ksBAAAAAAAAAFQ55IKRIAi0efNmOY6j2bNnK5PJ8NP7GBbGGBWLRe3evVubN2/WMcccI9umWx0AAAAAAAAAjCaHXDBSLBYVBIHmzJmj+vr6kV4OxplcLqd0Oq333ntPxWJRdXV1I70kAAAAAAAAAECZQ/bH2flJfYwUvvcAAAAAAAAAYPTiDi4AAAAAAAAAABg3CEYAAAAAAAAAAMC4QTACAAAAAAAAAADGDYKRUWT9+vVasmSJZs+eLcuytGbNmj73v/zyy2VZllatWtXnfg8++KBOOukkTZ48WQ0NDfrEJz6hn//85xX7HHHEEbIsq9vHsmXLkn0uueSSbs+fcsopfZ779ddf1/nnn58cv6e1rly5UgsXLlRjY6Nmzpyp8847T5s2barYxxijm2++WbNnz1Yul9Ppp5+u119/vc9zS9KqVat03HHHKZfLac6cOfrud7+rfD5/0K8bAAAAAAAAADA6EYyMIh0dHTrxxBN111139bvvmjVr9Pzzz2v27Nn97jt16lTdcMMNevbZZ/XKK6/o0ksv1aWXXqrHH3882efFF1/Ujh07ko+1a9dKki644IKKY33+85+v2O/RRx/t89ydnZ066qijdNttt6mpqanHfZ588kktW7ZMzz33nNauXSvP83TWWWepo6Mj2ecHP/iBfvjDH+quu+7Siy++qKamJn3uc59TW1tbr+f+xS9+oeuuu0433XST3nzzTd1zzz164IEHdP311x/06wYAAAAAAAAAjE6pkV7AcDDGqMv1R+TcubQjy7Jq2nfx4sVavHhxv/tt27ZNV1xxhR5//HGdc845/e5/+umnVzy++uqr9dOf/lRPP/20zj77bEnSjBkzKva57bbbdPTRR2vRokUV27PZbK8BR08WLlyohQsXSpKuu+66Hvd57LHHKh6vXr1aM2fO1IYNG/SZz3xGxhitWrVKN9xwg770pS9Jkn76059q1qxZuv/++3X55Zf3eNxnn31Wp556qi666CJJYXXIV7/6Vb3wwgvJPgfrugEAAAAAAAAAo9O4CEa6XF9/+FeP97/jQfDGfz1b9Zmhe5uDINDSpUt17bXX6vjjjx/w640x+u1vf6tNmzbp9ttv73GfYrGo++67T8uXL+8W6qxbt04zZ87U5MmTtWjRIt1yyy2aOXPmoK6lN62trZLCShdJ2rx5s3bu3Kmzzjor2SebzWrRokV65plneg1GTjvtNN1333164YUX9Md//Md699139eijj+riiy/ucf+Rvm4AAAAAAAAAwME3LoKRQ8ntt9+uVCqlq666akCva21t1WGHHaZCoSDHcXT33Xfrc5/7XI/7rlmzRi0tLbrkkksqti9evFgXXHCB5s2bp82bN2vFihX67Gc/qw0bNiibzQ72kioYY7R8+XKddtppmj9/viRp586dkqRZs2ZV7Dtr1iy99957vR7rwgsv1O7du3XaaafJGCPP8/Stb32r18qVkbxuAAAAAAAAAMDwGBfBSC7t6I3/evaInXuobNiwQT/60Y/08ssv19yeK9bY2KiNGzeqvb1dv/nNb7R8+XIdddRR3dpsSdI999yjxYsXd5tf8pWvfCX5fP78+TrppJM0b948PfLII0mLqwN1xRVX6JVXXtHTTz/d7bnqazbG9Pk+rFu3TrfccovuvvtunXzyyXrnnXd09dVXq7m5WStWrOi2/0heNwAAAAAAADBe5Ttcte3Na8acxpFeCsaJcRGMWJY1pO2sRspTTz2lXbt2ae7cuck23/d1zTXXaNWqVdqyZUuvr7VtWx/72MckSZ/4xCf05ptvauXKld2Ckffee09PPPGEHnzwwX7X09zcrHnz5untt98e1PVUu/LKK/Xwww9r/fr1Ovzww5Pt8WyPnTt3qrm5Odm+a9eublUk5VasWKGlS5fqG9/4hiTphBNOUEdHh775zW/qhhtukG3byb4jed0AAAAAAADAePbre17X+2/s1VdvOllTmxtGejkYB+z+d8FosXTpUr3yyivauHFj8jF79mxde+21evzxgc1QMcaoUCh02x4PPq9lqPuePXv0/vvvV4QVg2GM0RVXXKEHH3xQv/3tb3XkkUdWPH/kkUeqqalJa9euTbYVi0U9+eST+vSnP93rcTs7OyvCD0lyHEfGGBljKraPxHUDAAAAAAAAkNr35iVJ+z/qGuGVYLwY+2UUh5D29na98847yePNmzdr48aNmjp1qubOnatp06Zp2rRpFa9Jp9NqamrScccdl2z72te+psMOO0wrV66UJK1cuVInnXSSjj76aBWLRT366KP62c9+ph//+McVxwqCQKtXr9bFF1+sVKryW6O9vV0333yzzj//fDU3N2vLli36/ve/r+nTp+uLX/xir9dULBb1xhtvJJ9v27ZNGzdu1IQJE5IKlmXLlun+++/Xr371KzU2NiYzRSZNmqRcLifLsvSd73xHt956q4455hgdc8wxuvXWW1VfX6+LLrqo1+tesmSJfvjDH2rBggVJK60VK1bo3HPPleOUWpwdjOsGAAAAAAAAUJv4Z5h9NxjZhWDcIBgZRV566SWdccYZyePly5dLki6++GLde++9NR9n69atFZUSHR0d+va3v60PPvhAuVxOf/AHf6D77ruvYnaGJD3xxBPaunWrLrvssm7HdBxHr776qn72s5+ppaVFzc3NOuOMM/TAAw+osbH33n/bt2/XggULksd33HGH7rjjDi1atEjr1q2TpCSgqW7rtXr16mQQ+ve+9z11dXXp29/+tvbt26eTTz5Zv/71ryvOXX3dN954oyzL0o033qht27ZpxowZWrJkiW655ZaDft0AAAAAAAAAahMEYTLiEYxgmFimuqfQGLB//35NmjRJra2tmjhxYsVz+Xxemzdv1pFHHqm6uroRWiHGM74HAQAAAAAAgNr9/MZntP+jvM74L3+gPzxt9kgvB2NUX7lBNWaMAAAAAAAAAABGTKlixB/hlWC8IBgBAAAAAAAAAIwYE3XQ8oq00sLwIBgBAAAAAAAAAIwYE1WM+B7BCIYHwQgAAAAAAAAAYMTEY7CpGMFwIRgBAAAAAAAAAIyYpJUWM0YwTAhGAAAAAAAAAAAjJq4Y8V0qRjA8CEYAAAAAAAAAACMmiGaMeAQjGCYEIwAAAAAAAACAERMPX2fGCIYLwQgAAAAAAAAAYMREnbTkM2MEw4RgZBRZv369lixZotmzZ8uyLK1Zs6bP/S+//HJZlqVVq1b1ud+DDz6ok046SZMnT1ZDQ4M+8YlP6Oc//3nFPkcccYQsy+r2sWzZsmSfSy65pNvzp5xySp/nfv3113X++ecnx+9prStXrtTChQvV2NiomTNn6rzzztOmTZu6XcPZZ5+t6dOny7Isbdy4sc/zDuW5B3PdAAAAAAAAAGpjaKWFYUYwMop0dHToxBNP1F133dXvvmvWrNHzzz+v2bNn97vv1KlTdcMNN+jZZ5/VK6+8oksvvVSXXnqpHn/88WSfF198UTt27Eg+1q5dK0m64IILKo71+c9/vmK/Rx99tM9zd3Z26qijjtJtt92mpqamHvd58skntWzZMj333HNau3atPM/TWWedpY6OjmSfjo4OnXrqqbrtttv6vd6hPvdgrhsAAAAAAABAbeJghOHrGC6pkV4AShYvXqzFixf3u9+2bdt0xRVX6PHHH9c555zT7/6nn356xeOrr75aP/3pT/X000/r7LPPliTNmDGjYp/bbrtNRx99tBYtWlSxPZvN9hoy9GThwoVauHChJOm6667rcZ/HHnus4vHq1as1c+ZMbdiwQZ/5zGckSUuXLpUkbdmyZdjPLQ38ugEAAAAAAAD0zxiTtNKiYgTDZXxUjBgjFTtG5iP+XT1EgiDQ0qVLde211+r4448fxFth9Jvf/EabNm2quPFfrlgs6r777tNll10my7Iqnlu3bp1mzpypY489Vn/+53+uXbt2Deo6+tLa2ioprHQZbr2deziuGwAAAAAAABh3ym6fEoxguIyPihG3U7q1/5ZTB8X3t0uZhiE73O23365UKqWrrrpqQK9rbW3VYYcdpkKhIMdxdPfdd+tzn/tcj/uuWbNGLS0tuuSSSyq2L168WBdccIHmzZunzZs3a8WKFfrsZz+rDRs2KJvNDvaSKhhjtHz5cp122mmaP3/+kBzzQM89HNcNAAAAAAAAjEdB2Q+WM3wdw2V8BCOHiA0bNuhHP/qRXn755W6VHP1pbGzUxo0b1d7ert/85jdavny5jjrqqG5ttiTpnnvu0eLFi7vNL/nKV76SfD5//nyddNJJmjdvnh555BF96UtfGtQ1Vbviiiv0yiuv6Omnnx6S4w3FuYfjugEAAAAAAIDxKJ4vIklekYoRDI/xEYyk68PKjZE69xB56qmntGvXLs2dOzfZ5vu+rrnmGq1atarP+Ru2betjH/uYJOkTn/iE3nzzTa1cubJbMPLee+/piSee0IMPPtjvepqbmzVv3jy9/fbbg7qealdeeaUefvhhrV+/XocffviQHPNgnHuorxsAAAAAAAAYr0xZFuJ7BCMYHuMjGLGsIW1nNVKWLl2qM888s2Lb2WefraVLl+rSSy8d0LGMMSoUCt22x8PHaxnqvmfPHr3//vtqbm4e0Ll7WsuVV16phx56SOvWrdORRx55QMc72OcequsGAAAAAAAAxjtjqBjB8BsfwcgY0d7ernfeeSd5vHnzZm3cuFFTp07V3LlzNW3aNE2bNq3iNel0Wk1NTTruuOOSbV/72td02GGHaeXKlZKklStX6qSTTtLRRx+tYrGoRx99VD/72c/04x//uOJYQRBo9erVuvjii5VKVX5rtLe36+abb9b555+v5uZmbdmyRd///vc1ffp0ffGLX+z1morFot54443k823btmnjxo2aMGFCUsGybNky3X///frVr36lxsZG7dy5U5I0adIk5XI5SdLevXu1detWbd8eVv5s2rRJktTU1KSmpqYer3sozj3Y6wYAAAAAAADQv/JWWr4XyARGlj2wMQLAQBGMjCIvvfSSzjjjjOTx8uXLJUkXX3yx7r333pqPs3XrVtm2nTzu6OjQt7/9bX3wwQfK5XL6gz/4A913330VszMk6YknntDWrVt12WWXdTum4zh69dVX9bOf/UwtLS1qbm7WGWecoQceeECNjY29rmX79u1asGBB8viOO+7QHXfcoUWLFmndunWSlAQ01W29Vq9enQyAf/jhhyuqYi688EJJ0k033aSbb765x+seinMP9roBAAAAAAAA9M9UFYl4XqB0xhmZxWDcsEx5rdIYsX//fk2aNEmtra2aOHFixXP5fF6bN2/WkUceqbq6uhFaIcYzvgcBAAAAAACA2nTuL2r1955OHn/9v/9H1TWkR3BFGKv6yg2q2X0+CwAAAAAAAADAQVL9c/vMGcFwIBgBAAAAAAAAAIyIbq20XH9kFoJxhWAEAAAAAAAAADAiqitGfDeQW/C7bR8tPNfX8w+/qw+37B/ppeAAEIwAAAAAAAAAAEaECSoDkA+37Nc/LF+vZx/8/QitqG9bX9+rlx7doud/NTrXh9oQjAAAAAAAAAAARkRQFYxsf6tFgW+0c3PrCK2ob4VON/rVG+GV4EAQjAAAAAAAAAAARkZVx6z2fXlJo3cIu1sI1+W5o3N9qA3BCAAAAAAAAABgRFRXjLTvK0iSvOLoHMIer4tgZGwjGAEAAAAAAAAAjIjqGSPtLVEwMkqDBzcKRvxRGtygNgQjAAAAAAAAAIARYUxlMOJHgcjorRihldahgGAEAAAAAAAAADAiTC/5wmidMeIVolZao3R9qA3ByCiyfv16LVmyRLNnz5ZlWVqzZk2f+19++eWyLEurVq3q99gtLS1atmyZmpubVVdXp49//ON69NFHk+dXrlyphQsXqrGxUTNnztR5552nTZs2VRzjkksukWVZFR+nnHJKn+d9/fXXdf755+uII47oda21nNsYo5tvvlmzZ89WLpfT6aefrtdff73f6161apWOO+445XI5zZkzR9/97neVz+eT5+N1VX8sW7bsgK4bAAAAAAAAQP+qK0Zinhv0+txIiitZfC/o1gYMY8eAg5Fabt6/+eabOvfcczVp0iQ1NjbqlFNO0datW5PnC4WCrrzySk2fPl0NDQ0699xz9cEHHxzQhRwKOjo6dOKJJ+quu+7qd981a9bo+eef1+zZs/vdt1gs6nOf+5y2bNmif/zHf9SmTZv093//9zrssMOSfZ588kktW7ZMzz33nNauXSvP83TWWWepo6Oj4lif//zntWPHjuSjPFzpSWdnp4466ijddtttampq6nGfWs79gx/8QD/84Q9111136cUXX1RTU5M+97nPqa2trddz/+IXv9B1112nm266SW+++abuuecePfDAA7r++uuTfV588cWK61m7dq0k6YILLjig6wYAAAAAAADQv+rh6zETGAX+6Ase3LJKEc+jamSsSg30BfHN+0svvVTnn39+t+d///vf67TTTtPXv/51/fVf/7UmTZqkN998U3V1dck+3/nOd/RP//RP+uUvf6lp06bpmmuu0Z/+6Z9qw4YNchznwK5oDFu8eLEWL17c737btm3TFVdcoccff1znnHNOv/v/5Cc/0d69e/XMM88onU5LkubNm1exz2OPPVbxePXq1Zo5c6Y2bNigz3zmM8n2bDbba8DRk4ULF2rhwoWSpOuuu67Hffo7tzFGq1at0g033KAvfelLkqSf/vSnmjVrlu6//35dfvnlPR732Wef1amnnqqLLrpIUlgd8tWvflUvvPBCss+MGTMqXnPbbbfp6KOP1qJFiyq2D/S6AQAAAAAAAPSvt1ZaUlg14qRGV9Oj8tknfjFQOjN+72ePZQMORvq7eX/DDTfoP/2n/6Qf/OAHybajjjoq+by1tVX33HOPfv7zn+vMM8+UJN13332aM2eOnnjiCZ199tkDXVK/jDHq8rqG/Li1yKVysixryI4XBIGWLl2qa6+9Vscff3xNr3n44Yf1qU99SsuWLdOvfvUrzZgxQxdddJH+8i//stcgqrW1VZI0derUiu3r1q3TzJkzNXnyZC1atEi33HKLZs6ceWAX1c+5N2/erJ07d+qss85K9slms1q0aJGeeeaZXoOR0047Tffdd59eeOEF/fEf/7HeffddPfroo7r44ot73L9YLOq+++7T8uXLu33NhuO6AQAAAAAAgPGmr3ZZXtFXNjfgW9gHVXkw4rm+pPTILQaDNqTfVUEQ6JFHHtH3vvc9nX322frd736nI488Utdff73OO+88SdKGDRvkum7FTe7Zs2dr/vz5euaZZ3oMRgqFggqFQvJ4//79A1pXl9elk+8/eXAXdYCev+h51afrh+x4t99+u1KplK666qqaX/Puu+/qt7/9rf7sz/5Mjz76qN5++20tW7ZMnufpr/7qr7rtb4zR8uXLddppp2n+/PnJ9sWLF+uCCy7QvHnztHnzZq1YsUKf/exntWHDBmWz2SG5vp7OvXPnTknSrFmzKvadNWuW3nvvvV6PdeGFF2r37t067bTTZIyR53n61re+1Wvlypo1a9TS0qJLLrmkYvtwXDcAAAAAAAAwHvU1p6M8hBgt3EJZMMIA9jFrSIORXbt2qb29Xbfddpv+23/7b7r99tv12GOP6Utf+pL+5V/+RYsWLdLOnTuVyWQ0ZcqUitfOmjUruQFebeXKlfrrv/7roVzqmLRhwwb96Ec/0ssvvzygKpQgCDRz5kz93d/9nRzH0Sc/+Ult375df/M3f9NjMHLFFVfolVde0dNPP12x/Stf+Ury+fz583XSSSdp3rx5euSRR5IWVweqt3NL6nbNxpg+34d169bplltu0d13362TTz5Z77zzjq6++mo1NzdrxYoV3fa/5557tHjx4m5zW4bjugEAAAAAAIDxqO9gZPQFD54b9Pg5xpYhrxiRpC984Qv67ne/K0n6xCc+oWeeeUZ/+7d/221uQ7m+bnJff/31Wr58efJ4//79mjNnTs3ryqVyev6i52vefyjlUrkhO9ZTTz2lXbt2ae7cuck23/d1zTXXaNWqVdqyZUuPr2tublY6na5om/Xxj39cO3fuVLFYVCaTSbZfeeWVevjhh7V+/Xodfvjhfa6nublZ8+bN09tvv31gF9bPuePZHjt37lRzc3OyfdeuXd2qSMqtWLFCS5cu1Te+8Q1J0gknnKCOjg5985vf1A033CDbLvUnfO+99/TEE0/owQcf7HedQ33dAAAAAAAAwHjV54yRURiMVFSMuKOvogW1GdJgZPr06UqlUvrDP/zDiu0f//jHkwqApqYmFYtF7du3r6JqZNeuXfr0pz/d43Gz2ewBtSyyLGtI21mNlKVLlyZzWWJnn322li5dqksvvbTX15166qm6//77FQRBEga89dZbam5uTkIRY4yuvPJKPfTQQ1q3bp2OPPLIftezZ88evf/++xVhxWD0d+4jjzxSTU1NWrt2rRYsWCApnAfy5JNP6vbbb+/1uJ2dnRXhhyQ5jiNjTLfehfHA91qG2Q/VdQMAAAAAAADjXdDXjJFRGDxUzBgZhcENamP3v0vtMpmMFi5cqE2bNlVsf+uttzRv3jxJ0ic/+Uml02mtXbs2eX7Hjh167bXXeg1Gxov29nZt3LhRGzdulBQOHd+4caO2bt0qSZo2bZrmz59f8ZFOp9XU1KTjjjsuOc7XvvY1XX/99cnjb33rW9qzZ4+uvvpqvfXWW3rkkUd06623atmyZck+y5Yt03333af7779fjY2N2rlzp3bu3Kmurq5kbX/xF3+hZ599Vlu2bNG6deu0ZMkSTZ8+XV/84hd7vaZisZhcU7FY1LZt27Rx40a98847NZ/bsix95zvf0a233qqHHnpIr732mi655BLV19froosu6vW6lyxZoh//+Mf65S9/qc2bN2vt2rVasWKFzj333IrqmSAItHr1al188cVKpSqzwsFeNwAAAAAAAID+jblWWmVrGo0zUFCbAVeMtLe3V9zUjm/eT506VXPnztW1116rr3zlK/rMZz6jM844Q4899pj+6Z/+SevWrZMkTZo0SV//+td1zTXXaNq0aZo6dar+4i/+QieccEK3aojx5qWXXtIZZ5yRPI7bh1188cW69957az7O1q1bKyol5syZo1//+tf67ne/qz/6oz/SYYcdpquvvlp/+Zd/mezz4x//WJJ0+umnVxxr9erVuuSSS+Q4jl599VX97Gc/U0tLi5qbm3XGGWfogQceUGNjY69r2b59e1LlIUl33HGH7rjjDi1atCj5nujv3JL0ve99T11dXfr2t7+tffv26eSTT9avf/3rinNXX/eNN94oy7J04403atu2bZoxY4aWLFmiW265peI8TzzxhLZu3arLLrus2/oHe90AAAAAAAAA+tdHwcioCx6MMXLL1uQzY2TMskx1T6F+rFu3ruLmfaz85v1PfvITrVy5Uh988IGOO+44/fVf/7W+8IUvJPvm83lde+21uv/++9XV1aU/+ZM/0d13313z3JD9+/dr0qRJam1t1cSJEyuey+fz2rx5s4488kjV1dUN5NKAIcH3IAAAAAAAAFCbdzfu1j//7as9PnfmpX+o405uGuYV9c5zff2vK59MHo+29Y13feUG1QZcMXL66ad3m89Q7bLLLuvxp+9jdXV1uvPOO3XnnXcO9PQAAAAAAAAAgENE3620RlfFiFeorBAZbetD7YZ0xggAAAAAAAAAALWKfwbfsq1km50KPx9tM0bcqiDEo5XWmEUwAgAAAAAAAAAYEXHFSDrrJNsmTM5KCltXjSbVFSLMGBm7CEYAAAAAAAAAACMiiIORTOlWdePUcG7vaKsYqV4PrbTGLoIRAAAAAAAAAMCIiOdZp+tK47AnTImDkdEVPNBK69BBMAIAAAAAAAAAGBEmyhYydVErLUtqmBK10hptFSOFqmBklK0PtUv1vwsAAAAAAAAAAEMvrhipn5jRJz43V9n6lOxoEPvomzFS1UprlK0PtSMYAQAAAAAAAACMiHj4umVbOvX8j0mSXvmX9yWNvoqMbq20Rtn6UDtaaQEAAAAAAAAARkR5MBJLpcO2WqNthkf1zBN/lK0PtSMYAQAAAAAAAACMiCDKFqxSLqJUJrxtPdqGr9NK69BBMDKKrF+/XkuWLNHs2bNlWZbWrFnT5/6XX365LMvSqlWr+j12S0uLli1bpubmZtXV1enjH/+4Hn300eT5lStXauHChWpsbNTMmTN13nnnadOmTRXHuOSSS2RZVsXHKaec0ud5X3/9dZ1//vk64ogjel1rLed+8MEHdfbZZ2v69OmyLEsbN27s95qH6tyDuW4AAAAAAAAA/YtnjFi2pX3/5/+o9ZFHlMpEFSNDEIxseeUj7d3RcUDHeOPp7fqnO/9NnfuLkkqD4mmlNXYRjIwiHR0dOvHEE3XXXXf1u++aNWv0/PPPa/bs2f3uWywW9bnPfU5btmzRP/7jP2rTpk36+7//ex122GHJPk8++aSWLVum5557TmvXrpXneTrrrLPU0VH5h8bnP/957dixI/koD1d60tnZqaOOOkq33XabmpqaetynlnN3dHTo1FNP1W233dbv9Q71uQdz3QAAAAAAAAD6F7fSkudp5003a8f135eTioevH1jwsHdHhx65+xU99r9ePaDj/Mt9/66tr+/Ry4+/J0mqm5AekvVh5DB8fRRZvHixFi9e3O9+27Zt0xVXXKHHH39c55xzTr/7/+QnP9HevXv1zDPPKJ0Of9POmzevYp/HHnus4vHq1as1c+ZMbdiwQZ/5zGeS7dlstteQoScLFy7UwoULJUnXXXddj/vUcu6lS5dKkrZs2TLs55YGft0AAAAAAAAA+mfiVlqBLxkjUyzKscKNB1qR0fJhpyRp385OFfOeMnVDczu8riGt/R/l5dNKa8waFxUjxhgFnZ0j8hGXgg2VIAi0dOlSXXvttTr++ONres3DDz+sT33qU1q2bJlmzZql+fPn69Zbb5Xv9/4bt7W1VZI0derUiu3r1q3TzJkzdeyxx+rP//zPtWvXrsFfzADPPRxG8roBAAAAAACA8aZ0/7R0H9WRJ+nAW2nFra8kHXA7rXJJxQittMascVExYrq6tOk/fHJEzn3cyxtk1dcP2fFuv/12pVIpXXXVVTW/5t1339Vvf/tb/dmf/ZkeffRRvf3221q2bJk8z9Nf/dVfddvfGKPly5frtNNO0/z585Ptixcv1gUXXKB58+Zp8+bNWrFihT772c9qw4YNymazQ3J9vZ17OIzkdQMAAAAAAADjUTJjxJRCBsfEwciBBQ8dLYXk873bO9R05KQDOl6sFIxQMTJWjYtg5FCxYcMG/ehHP9LLL78sy7Jqfl0QBJo5c6b+7u/+To7j6JOf/KS2b9+uv/mbv+kxGLniiiv0yiuv6Omnn67Y/pWvfCX5fP78+TrppJM0b948PfLII/rSl740+Aur4dzDYSSvGwAAAAAAABiP4hkjVkXFSBg4HGjw0NFaGYwMlVxDRhIzRsaycRGMWLmcjnt5w4ide6g89dRT2rVrl+bOnZts831f11xzjVatWtXr/I3m5mal02k5jpNs+/jHP66dO3eqWCwqk8kk26+88ko9/PDDWr9+vQ4//PA+19Pc3Kx58+bp7bffPrALG8S5h9pIXjcAAAAAAAAwXgXxjBGVQgY7cCWFwYMxZkA/JF6uo6Wsldb29sEvskrdhPC2OsHI2DU+ghHLGtJ2ViNl6dKlOvPMMyu2nX322Vq6dKkuvfTSXl936qmn6v7771cQBLLtcKzMW2+9pebm5iQUMcboyiuv1EMPPaR169bpyCOP7Hc9e/bs0fvvv6/m5uYDuKrBnXuojOR1AwAAAAAAAONdUjFSNqvZCUqBhu8GSmWcbq+rRXnFyJ4DqBixHUuBX1pf3YRMsrYDCW4wcsZFMDJWtLe365133kkeb968WRs3btTUqVM1d+5cTZs2TdOmTat4TTqdVlNTk4477rhk29e+9jUddthhWrlypSTpW9/6lu68805dffXVuvLKK/X222/r1ltvrZhTsmzZMt1///361a9+pcbGRu3cuVOSNGnSJOVyObW3t+vmm2/W+eefr+bmZm3ZskXf//73NX36dH3xi1/s9ZqKxaLeeOON5PNt27Zp48aNmjBhgj72sY/VdG5J2rt3r7Zu3art27dLkjZt2iRJampqUlNTU4/XPRTnHux1AwAAAAAAAOhfMny9bMaI7ZeCEe8AgpHOsmCks7WofLubzAcZiG7BSEPpGAcS3GDk2CO9AJS89NJLWrBggRYsWCBJWr58uRYsWNDjHJC+bN26VTt27Egez5kzR7/+9a/14osv6o/+6I901VVX6eqrr9Z1112X7PPjH/9Yra2tOv3009Xc3Jx8PPDAA5Ikx3H06quv6gtf+IKOPfZYXXzxxTr22GP17LPPqrGxsde1bN++PbmmHTt26I477tCCBQv0jW98o+ZzS9LDDz+sBQsW6JxzzpEkXXjhhVqwYIH+9m//ttfrHopzD/a6AQAAAAAAAPQvzkPKh69brivbCaswBjtnxPcCdbWFLbkydWFwsXfH4NpplYciklTXUKo3oJ3W2ETFyChy+umnlxLSGvU0V2TdunXdtn3qU5/Sc8891+tx+jtvLpfT448/PqC1SdIRRxzR77FrueZLLrlEl1xySZ/7VF/3UJx7sNcNAAAAAAAAoH9xKy2V3aczhbxSaVtF35dXHFzw0Lk/rDqxHUvNH5us917boz3bOjT7mCkDW58x3YKRTC4l27YUBCZcX8OglogRRMUIAAAAAAAAAGBEBCaeMVKqDAkKhaQ9lecOrmIkni9SPymjaYeFycXeQcwZSYKbMqmMIydjH9D6MLIIRgAAAAAAAAAAI6JUMVKqDDGFolJx8DDYipGWsGKkYVJWk2bWS5L27+ka8HGqq0UkKZWxk+DGp5XWmEQwAgAAAAAAAAAYEXEHrfIZI6ZYVjEyyBkjccVIw6SsGqfWSZLa9uQHfJyegpF01lEqfWDBDUYWwQgAAAAAAAAAYETEFSNWUAoYgkLhgIOHjpY4GMmocVopGBnojOeeK0bKgxFaaY1FBCMAAAAAAAAAgBFRCkZKAUPYSiueMTLIYCSeMTI5q8YpdZIVHqurzR3QcXy/dP4JU7KaPDOnvXf+P7K9wgGtDyOLYAQAAAAAAAAAMCJ6njFSKJsxMriKjM7W0owRJ22rYWJGktS2d2DttOKKEduxdNFfn6L/dGqH9v793ynYtSNcH8PXxySCEQAAAAAAAADAiEg6W5VXjAzljJHJYSDSOC0naeBzRsqDkXTGkdXeGj72i9H6qBgZiwhGAAAAAAAAAAAjImmlZUoBSJAvmzEy2FZaLaWKEUnJnJH9e7oGdJwgaqVlO+F6gs7w9U4UjPi00hqTCEYAAAAAAAAAACMiMN2Hr5tCQZlcSlKpJdZA+G6gfEc4S6RhcmUw0n4AFSOSFHSFwYjtRRUjtNIak1IjvQAAAAAAAAAAwPiUjBapaqU1c16jJGnnu60DPmbcRstJWfroxutUv/CTmjhnkSRp/wHMGJGkoKszfOxHw9dppTUmUTEyiqxfv15LlizR7NmzZVmW1qxZ0+f+l19+uSzL0qpVq/o99qpVq3Tccccpl8tpzpw5+u53v6t8vvSHwBFHHCHLsrp9LFu2LNnnkksu6fb8Kaec0ud5X3/9dZ1//vnJ8Xta68qVK7Vw4UI1NjZq5syZOu+887Rp06aKfYwxuvnmmzV79mzlcjmdfvrpev3110ftdQMAAAAAAADon4mHjPhlrbQKBTV/bLIk6cP39g+4KqMjqjLJ5Sy1/fOj2vsP96hxalgxciAzRiTJRK20bDc8zmBnoGBkEYyMIh0dHTrxxBN111139bvvmjVr9Pzzz2v27Nn97vuLX/xC1113nW666Sa9+eabuueee/TAAw/o+uuvT/Z58cUXtWPHjuRj7dq1kqQLLrig4lif//znK/Z79NFH+zx3Z2enjjrqKN12221qamrqcZ8nn3xSy5Yt03PPPae1a9fK8zydddZZ6ujoSPb5wQ9+oB/+8Ie666679OKLL6qpqUmf+9zn1NbWNiqvGwAAAAAAAED/epoxYgpFTZqRU/3EjALPaNeW/QM6ZmdUMZLLhscO3GLSSqttT74UxtSg24yR6IeuHTcMSFwqRsYkWmmNIosXL9bixYv73W/btm264oor9Pjjj+ucc87pd/9nn31Wp556qi666CJJYZXEV7/6Vb3wwgvJPjNmzKh4zW233aajjz5aixYtqtiezWZ7DTh6snDhQi1cuFCSdN111/W4z2OPPVbxePXq1Zo5c6Y2bNigz3zmMzLGaNWqVbrhhhv0pS99SZL005/+VLNmzdL999+vyy+/fNRdNwAAAAAAAID+Ja20/PJgpCDLstT8scn6/cu7tP3tVs0+ZkrNx4xbaeUy0TGLblIx4hZ8FTo81U1I13SsuGLEqW6lVexKjoexZ1xUjBhj5Bb8EfkYSPpYiyAItHTpUl177bU6/vjja3rNaaedpg0bNiSBwLvvvqtHH32011ClWCzqvvvu02WXXSbLsiqeW7dunWbOnKljjz1Wf/7nf65du3Yd2AX1oLU17Bs4depUSdLmzZu1c+dOnXXWWck+2WxWixYt0jPPPNPrccbadQMAAAAAAADjTRBXjFTNGJGk2cdMkiTteKdlQMfsaIlaaTnhAHbjukplHOUmZiRJbQOYM9KtlVY0fD2uGPEIRsakcVEx4hUD/d3VT47Iub/5o0VKZ50hO97tt9+uVCqlq666qubXXHjhhdq9e7dOO+00GWPkeZ6+9a1v9VrBsWbNGrW0tOiSSy6p2L548WJdcMEFmjdvnjZv3qwVK1bos5/9rDZs2KBsNnsgl5Uwxmj58uU67bTTNH/+fEnSzp07JUmzZs2q2HfWrFl67733ej3WWLpuAAAAAAAAYDxKfrA88JJtQSEMNpqPnixJ2vFuq4LAyLat6pf3KK4YqbPCAMS4YUAycVqduvYXtX9Pl2bMbazpWH51K61oxogThOegYmRsGhfByKFiw4YN+tGPfqSXX365W0VDX9atW6dbbrlFd999t04++WS98847uvrqq9Xc3KwVK1Z02/+ee+7R4sWLu80v+cpXvpJ8Pn/+fJ100kmaN2+eHnnkkaTF1YG64oor9Morr+jpp5/u9lz1NRtj+nwfxtJ1AwAAAAAAAONRqZVWKRgx0RyPaYdPUKbOUTHva9+ODk07bEJNx+xoiYIRhW2vjOvKGKNsfXg73M3XHmZUV4wEccWIHwUjDF8fk8ZFMJLK2Prmjxb1v+NBOvdQeeqpp7Rr1y7NnTs32eb7vq655hqtWrVKW7Zs6fF1K1as0NKlS/WNb3xDknTCCSeoo6ND3/zmN3XDDTfItktrfO+99/TEE0/owQcf7Hc9zc3Nmjdvnt5+++0Du7DIlVdeqYcffljr16/X4YcfnmyPZ3vs3LlTzc3NyfZdu3Z1qyIpN1auGwAAAAAAABiv4ooRy+/eSsu2LTVMzqq4s1P5drfmY3a0hhUnWb+9tNHzkqoP36t9YHq3YCQfByPhOQYSsmD0GBfBiGVZQ9rOaqQsXbpUZ555ZsW2s88+W0uXLtWll17a6+s6OzsrQgBJchxHxphuM1Diwee1DHXfs2eP3n///YqwYjCMMbryyiv10EMPad26dTryyCMrnj/yyCPV1NSktWvXasGCBZLCeSBPPvmkbr/99l6PO9qvGwAAAAAAABjvTDRjpLxiJG6lJUmpTHhfdyCVGZ1RK61scb/iVxnXlZOKwg2/9rnQQRC30opmjHRSMXIoGBfByFjR3t6ud955J3m8efNmbdy4UVOnTtXcuXM1bdo0TZs2reI16XRaTU1NOu6445JtX/va13TYYYdp5cqVkqQlS5bohz/8oRYsWJC0lFqxYoXOPfdcOU4pMAqCQKtXr9bFF1+sVKryW6O9vV0333yzzj//fDU3N2vLli36/ve/r+nTp+uLX/xir9dULBb1xhtvJJ9v27ZNGzdu1IQJE/Sxj31MkrRs2TLdf//9+tWvfqXGxsZkpsikSZOUy+VkWZa+853v6NZbb9UxxxyjY445Rrfeeqvq6+t10UUXjcrrBgAAAAAAANC/UjBSVjFSKCSfxz/wXussD6/oq9AZhiyZQou64mO67gFWjEQzRqpbaTFjZEwiGBlFXnrpJZ1xxhnJ4+XLl0uSLr74Yt177701H2fr1q0VlRI33nijLMvSjTfeqG3btmnGjBlasmSJbrnllorXPfHEE9q6dasuu+yybsd0HEevvvqqfvazn6mlpUXNzc0644wz9MADD6ixsfdBRdu3b0+qPCTpjjvu0B133KFFixZp3bp1kqQf//jHkqTTTz+94rWrV69OBqF/73vfU1dXl7797W9r3759Ovnkk/XrX/+64tyj6boBAAAAAAAA9C9u7GKVDV8vD0biihGvWFuYEbfRSqVt2R2tpWO6rpx0FG5EYUd/M4zL9+11xgjByJhEMDKKnH766d1aPPWnp7kiceAQS6VSuummm3TTTTf1eayzzjqr1/Pncjk9/vjjA1qbJB1xxBH9XlMt12xZlm6++WbdfPPNve4zmq4bAAAAAAAAQP+SihGvrJVWsdRKKx3NcPZqbFnVEbXRqp+clfmgo3Qe15UThRu+Fyjf7uqBW1/Q0Qtm6rQLjun1eEkwYlcGI3Y0Y8QjGBmThm4yOAAAAAAAAAAAAxDEwUhQGq5eUTGSHdiMkY6W8LUNkzIKOjpLx3Rd2alSK63d77epfW9B77z0Yd/rK2ulZVxXcsN1pspmjAz0h90x8ghGAAAAAAAAAAAjIq4YscoqRuT7MtHjpJVWjZUZnVErrYbJWQUdPVeMBJ5J5ox07C/K93tv0xX4peHrQT6fbLeDqKrFSJ5b+8wSjA4EIwAAAAAAAACAEZEUW5QHI5KCfFiRUWqlVeOMkaRipHswklSM+EFpALsphSk9iStGHMdS0NmVbHf80mvcPO20xhqCEQAAAAAAAADAiEjaUPmVwYgphgHHgFtp7e89GCmvGAm8Uvur9n0FmcCo0OmqWvnwddNVas1lychxwudqnX+C0YNgBAAAAAAAAAAwIpLh69XBSCGuGBlYK61CZ3icbEOqtooRSe378nr8H17TP1zzlPZu76g4XqmVlp0MXo+l7XDtLgPYxxyCEQAAAAAAAADAiAjifMKrrNaIg5F4xohbYystP5r3YRuv7OCSKbpyyoavVwYjBf3+5d2Skf792R2V6yurGKkORhw7PAbByNhDMAIAAAAAAAAAGBG9VYwEhXCGRyqZMVJb+BAHHrZfFbR4npxU+fD1UiutfTtKVSITZ+Qq19FHMJKywzURjIw9BCMAAAAAAAAAgBGRzBiprhiJZoykoxkjNQcjccWIV5Ap227comyn54qR99/cm3weny9WOWOkKhgRwchYRTACAAAAAAAAABgRScWIV6zcXjVjpNbwIQ48Xvr1z/TUsXMUWNHxXLdUMeKbbq20uq0n0teMEUfegNaG0YNgBAAAAAAAAAAwIkyUT1he1EornZYkBcmMkfAWds0zRqIWWTvf/3e15zLqjI5nXLeiYiTwej5eUBWM+EFZK63OnoORWqtZMHoQjIwi69ev15IlSzR79mxZlqU1a9b0uf/ll18uy7K0atWqfo+9atUqHXfcccrlcpozZ46++93vKp/PJ88fccQRsiyr28eyZcuSfS655JJuz59yyil9nvf111/X+eefnxy/p7WuXLlSCxcuVGNjo2bOnKnzzjtPmzZtqtjnwQcf1Nlnn63p06fLsixt3Lix32seqnMP5roBAAAAAAAA9K+6lZZTX6+WXFaFtv2SpNQAW2l5brhfEA1eD+ywSiSsGAlvh4cVI6bH18ets6ofhzNGOiueSwXhmqkYGXsIRkaRjo4OnXjiibrrrrv63XfNmjV6/vnnNXv27H73/cUvfqHrrrtON910k958803dc889euCBB3T99dcn+7z44ovasWNH8rF27VpJ0gUXXFBxrM9//vMV+z366KN9nruzs1NHHXWUbrvtNjU1NfW4z5NPPqlly5bpueee09q1a+V5ns466yx1dJSGHnV0dOjUU0/Vbbfd1u/1DvW5B3PdAAAAAAAAAPqXtK5yw5DhrRmT9Myxh+tf1z8hqdRKayAzRowxMlEpSmCVByPh59UzRnpcTyRppWXb3WaMOCZs/0UwMvakRnoBKFm8eLEWL17c737btm3TFVdcoccff1znnHNOv/s/++yzOvXUU3XRRRdJCqtDvvrVr+qFF15I9pkxY0bFa2677TYdffTRWrRoUcX2bDbba8jQk4ULF2rhwoWSpOuuu67HfR577LGKx6tXr9bMmTO1YcMGfeYzn5EkLV26VJK0ZcuWYT+3NPDrBgAAAAAAANC/JIfwXLVn09rUELa+evv3YVeXVDxjZECttEpBRXkwYqd6Hr5esZ4+K0aiDjyOI/m+nIBgZKwaFxUjxhi5+fyIfCSlYEMkCAItXbpU1157rY4//viaXnPaaadpw4YNSRDy7rvv6tFHH+01VCkWi7rvvvt02WWXyYr+4IitW7dOM2fO1LHHHqs///M/165duw7sgnrQ2toqSZo6deqQH3uw5x6O6wYAAAAAAADGm7hCw/ie/m3uzGT7zGnhD3Kny1pp1XKv1XcDSaXQw8S3N11XjlMavl7rjJHKYCSsGHEmTw5/9cI5KB7ByJgzLipGvEJB/8/F/3lEzn3VT/9R6bq6ITve7bffrlQqpauuuqrm11x44YXavXu3TjvtNBlj5HmevvWtb/VaRbFmzRq1tLTokksuqdi+ePFiXXDBBZo3b542b96sFStW6LOf/aw2bNigbDZ7IJeVMMZo+fLlOu200zR//vwhOeaBnns4rhsAAAAAAAAYj+JgxHWMWutL91FN1MIqHr4uI3lukLTW6vFYxoSVIKasYsTurWKktxkjQdXj7jNGnMmT5e/ZEwYjKSpGxqJxEYwcKjZs2KAf/ehHevnll7tVcvRl3bp1uuWWW3T33Xfr5JNP1jvvvKOrr75azc3NWrFiRbf977nnHi1evLjb/JKvfOUryefz58/XSSedpHnz5umRRx7Rl770pcFfWJkrrrhCr7zyip5++ukhOd5QnHs4rhsAAAAAAAAYj+IikMCqDCpMEIYNqbIgxCv6fQYjQRJ29NxKy3HsZL+4lVY661QEG73OGHFsmc6oYmTSpHCbnw+DkRrnn2D0GBfBSCqb1VU//ccRO/dQeeqpp7Rr1y7NnTs32eb7vq655hqtWrWq1/kbK1as0NKlS/WNb3xDknTCCSeoo6ND3/zmN3XDDTfItksd1d577z098cQTevDBB/tdT3Nzs+bNm6e33377wC4scuWVV+rhhx/W+vXrdfjhhw/JMQ/GuYf6ugEAAAAAAIDxKg4i/KpgJAjioeeWnJQt3wvkFnzlJvR+rGRuiClVfVTOGImGr/ulGSMnnHG4Cp2eWnd16oN/39fPjJEoGJkyJfy12CVlqRgZi8ZFMGJZ1pC2sxopS5cu1Zlnnlmx7eyzz9bSpUt16aWX9vq6zs7OivBDkhzHkTGmW1++ePh4LUPd9+zZo/fff1/Nzc0DuIrujDG68sor9dBDD2ndunU68sgjD+h4B/vcQ3XdAAAAAAAAwHgXByOBXb29FG6ksmEw4vUzgN1zw+dNecVIVCViXFcpp3srrckz6/XxTzfrqQfeCoORvmaM5OMZI1HFSDFsrUUwMvaMi2BkrGhvb9c777yTPN68ebM2btyoqVOnau7cuZo2bZqmTZtW8Zp0Oq2mpiYdd9xxybavfe1rOuyww7Ry5UpJ0pIlS/TDH/5QCxYsSFpprVixQueee64cp1R6FgSBVq9erYsvvlipVOW3Rnt7u26++Wadf/75am5u1pYtW/T9739f06dP1xe/+MVer6lYLOqNN95IPt+2bZs2btyoCRMm6GMf+5gkadmyZbr//vv1q1/9So2Njdq5c6ckadKkScrlcpKkvXv3auvWrdq+fbskadOmTZKkpqYmNTU19XjdQ3HuwV43AAAAAAAAgP4Fpu+KEUlKZxwVOjx5/bSsiqtAHKfsWPX10t42maIrJx0NXy9rpeVEVSRWNJi9t1ZaTnkrrWj4uu0SjIxVBCOjyEsvvaQzzjgjebx8+XJJ0sUXX6x777235uNs3bq1okLkxhtvlGVZuvHGG7Vt2zbNmDFDS5Ys0S233FLxuieeeEJbt27VZZdd1u2YjuPo1Vdf1c9+9jO1tLSoublZZ5xxhh544AE1Njb2upbt27drwYIFyeM77rhDd9xxhxYtWqR169ZJkn784x9Lkk4//fSK165evToZAP/www9XVMVceOGFkqSbbrpJN998c4/XPRTnHux1AwAAAAAAAOhf3PUqsKq3l1WMRHNF+gsgfDeeB1J6ramvD391XdlxxYgflAKPaCC7HQ1pr6mVVhSMOIUwGOmvkgWjD8HIKHL66ad3a23Vn57misQ3/WOpVEo33XSTbrrppj6PddZZZ/V6/lwup8cff3xAa5OkI444ot9rquWaL7nkkiQk6U31dQ/FuQd73QAAAAAAAAD6F9+f86NgIpNKq+i5lRUj2TAY6S+AiKtA7IqKkbAjjXFdee+/JymqGHFrC0b8smDEqwpG7Hy7JMnNezVdK0YPu/9dAAAAAAAAAAAYWsYYKcohfDv8JJPOlJ6LpDLhbex+K0biYMQuvdZEs6eN62rv3/442R4fKw5G4lZafc4YqQ5GCh01rQujD8EIAAAAAAAAAGDYlc/ziFtpZTJxMFI5Y0SSPLfvACIevm6VtdJSWTBi9u1JNsdhhh3NGEkqRnqZMWI7tkxn2DorNWVKuK2rLTxWMRhwJyCMLIIRAAAAAAAAAMCwK8s+Sq20MllJpaHskpSKW2nVWDFSPnzdZMPjGdeV8p3J9uqKETsevt7LjBHLloJ8PnxNPGOk2BVdR2mYO8YGghEAAAAAAAAAwLArr7LwozvV2Vw0LN2UD1+PWmn1N2MkrhhRKUAxuVIwYrrakzSmmK8KRuzw115baRlfiuaeOJMmhduCYrKfVyAYGUsIRgAAAAAAAAAAw648hPCtsGIjG1VjxC2spLJWWsXaKkYsUxqGblLp8FfXlbryYcChUhuv6oqR6uHryTqKhWRbEoyYQE7UiqtYYAD7WHLIBiNBQEKHkcH3HgAAAAAAANC/8rEccSut+mnTw+dkktZVqSgY6Xf4elQxosBNtsWzS4zrKujqkhVUBhjxjBHL7i0YiR5HbbOsujpZmYysaBZKKh3eYqdiZGxJjfQChlomk5Ft29q+fbtmzJihTCYjK0obgYPJGKNisajdu3fLtu1kUBQAAAAAAACA7sqHr3tRMJGNBpsbWXK3b1f2qKOUjmeM9NdKK64YKWtx5Ufpi3FdBfmwYqQ8Xuk2Y6SXVlpWPgxG7MYJ4eNsVqZYVDotFbr6D20wuhxywYht2zryyCO1Y8cObd++faSXg3Govr5ec+fOTfoSAgAAAAAAAOiucsZIGEzUNYTBg7Ek94MPlD3qqLIZIzVWjPilYCSIZooE+S7JdbtVjJRmjEQVI9XBSPy4syPcv6EUjKitTU4UqDB8fWw55IIRKawamTt3rjzPk++T1GH4OI6jVCpFlRIAAAAAAADQj7L56vKjHzLO1jeEz8mSu22bpFIrrf5mjHg9BCN+FGwE+9skKZkxEnNqbKVl8mEwYk8IgxE7m5UvyVJ0/KpABaPbIRmMSJJlWUqn00qn0yO9FAAAAAAAAABAlbhtlWUZeVHlRbYhCkYsJcFI0kqrvxkjcdWGXxqUHkRVKf7+/eG5eqsYSVppldIaY0yptVZnZ7jfhLKKkWjtkmR8gpGxhF4/AAAAAAAAAIBhF1dZWCqrGMmFwYgsS4UPPpCkAbfSMl5ZMBIFHUFbVDHSTzBSXvlRUT3SFVeMhOuLgxGbipExiWAEAAAAAAAAADDs4hkjliV5SSut+uT5Ylwxkql1+HoUTrjlrbT8+GSSKltp2baVtNCye2ilVRGMdLZLkpwJjeH+ccWIouCFYGRMIRgBAAAAAAAAAAy7ZMaICZLh63ErLUkqbtsuSUpFrbTc/lppJRUj+dK2oDJMKW+lZadKc4J7mjES+GVttTrCYKRbK63oImilNbYQjAAAAAAAAAAAhl1pxogXlo2oNHxdkryWfQo6O8sqRmqbMWK8UsVIEFS+prxiJG6jJZXPGOm5YsS0R624klZamfBXWmmNSQQjAAAAAAAAAIBhF7fSkinNBEnncqXnFQ5gT0XBiNtPKy0vHr7ulo7n+5XBSHnFSEUwYvc+Y8SyraRixIkqRuxsXficiVtp9b02jC4EIwAAAAAAAACAYZeEECas8EhZthwnlTxvLEvFbdtKw9drbaXll80Y8WurGLGc7q20/KiVlu1Y8pNWWuGMkVIrLT86JxUjYwnBCAAAAAAAAABg+MVZgnElSSnHkWXbFU+7H2xTrjFsW+UVfLl9tNNKWmmZUvVG4HsV+9i9zBhx+milZTuWgrbqGSNRKy3D8PWxiGAEAAAAAAAAADDsqitG0rYjy7JkWeFta2NZ8ltalKlzkgHsHfsKPR5LKgUjkl+2rTIYsUzPrbTiQKZy+HpZMNIeByPhjJHUjBnhTl2d3V6H0Y9gBAAAAAAAAAAw7Ex1K62ojVYcUhhLMoW8LMvShMlh66qOlj6CETcORkoVI363ipFehq/b3VtplYIRuxSMNNTr9xuelznu2HCflr2V14IxgWAEAAAAAAAAADDsko5XUSutdCoMRmwnrA4xshTkwyCkIQpG2msIRkx5MFJjxYjt9DR8PTyO41jyOzokSdt37dSaH/z/9OzGFyTLkulo6/Y6jH4EIwAAAAAAAACAYWeMiX4Nw45UqoeKkXxekmqrGIlnjKhsgLrrylilWSKVFSOl7ZbdUzBSPmMkDEDa812SpP0te5U99tjSjBFaaY0pAw5G1q9fryVLlmj27NmyLEtr1qzpdd/LL79clmVp1apVFdsLhYKuvPJKTZ8+XQ0NDTr33HP1wQcfDHQpAAAAAAAAAIAxqtRKK64YSUsKW1dJ4YyRoBAGI7l0uE9fFSNe0kqrKqRIp5NPe60YiYIR01MrLduSKYTn9aIgpNDRofpPfpLh62PUgIORjo4OnXjiibrrrrv63G/NmjV6/vnnNXv27G7Pfec739FDDz2kX/7yl3r66afV3t6uP/3TP5Xv+z0cCQAAAAAAAABwqClVjETBSBRgWHbcSksy+YL89nZ13vcPkmqsGLEqQwqTySSfl1eM2DW20rLKjudG97ALne3KffI/yDLhY2aMjC2pgb5g8eLFWrx4cZ/7bNu2TVdccYUef/xxnXPOORXPtba26p577tHPf/5znXnmmZKk++67T3PmzNETTzyhs88+e6BLAgAAAAAAAACMMUEyKz0cvp6OAgzbrqwY8XbtUrZ9t6Tahq+HM0ZKoYdJl26D28FAZoxEFSNRBYpVV6diVMFS6OxUbsECWeal8NxdxVouGaPEkM8YCYJAS5cu1bXXXqvjjz++2/MbNmyQ67o666yzkm2zZ8/W/Pnz9cwzzwz1cgAAAAAAAAAAo1D3ipHqYCSsGAm6upQttEiS2vfVMmOkUpDprZVW9xkjPbXSsqJh7vaECSp2dcaLVzBpopy6cPaJ+9FH/VwtRpMBV4z05/bbb1cqldJVV13V4/M7d+5UJpPRlClTKrbPmjVLO3fu7PE1hUJBhULpG37//v1Dt2AAAAAAAAAAwLCL208ZE1eMhCFDqZWWJZPPy+TzSTDSub+gIDDJTJByScVIVSutoGzGSOXw9R4qRvyg9Lq4YiRql+VMmKBCV1fyfKGjQ3YqXGvgMiZiLBnSipENGzboRz/6ke69915ZVvdvzL4YY3p9zcqVKzVp0qTkY86cOUOxXAAAAAAAAADACInmlpeCkWwYjJSGr0tBoaCgK6+02yaZQCaQutp6blvle1HQUn2eslZa/Q5fN6XAxo9njJiyipHOjuQ1+Y52xfkMw9fHliENRp566int2rVLc+fOVSqVUiqV0nvvvadrrrlGRxxxhCSpqalJxWJR+/btq3jtrl27NGvWrB6Pe/3116u1tTX5eP/994dy2QAAAAAAAACAYVaqGIlaaWXqJElW3EorqRjpkm0CZYphJ6Ge2mkZY3ofvp7qv2LEKqtACaIWX0krrahixJ4wQYW4lZbCihErOkTgE4yMJUMajCxdulSvvPKKNm7cmHzMnj1b1157rR5//HFJ0ic/+Uml02mtXbs2ed2OHTv02muv6dOf/nSPx81ms5o4cWLFBwAAAAAAAABg7Aqqg5FoXocdt9KypKAYVoxIUl3UTqunAexxKCJJQVVjot4qRuyyGSNxKy2pNGckCUaige32hAYVO8uCkc52xU2QTFkLLox+A54x0t7ernfeeSd5vHnzZm3cuFFTp07V3LlzNW3atIr90+m0mpqadNxxx0mSJk2apK9//eu65pprNG3aNE2dOlV/8Rd/oRNOOEFnnnnmAV4OAAAAAAAAAGBMiIssorAiU5eTVFYxYlnh8PV8ONcj22cwUqrYMKpMRoJU6Ta4HfTSSqssGIkDm3jeiOWHr3EmNKq4vzQnu9DRIcuqDFEwNgw4GHnppZd0xhlnJI+XL18uSbr44ot177331nSM//E//odSqZS+/OUvq6urS3/yJ3+ie++9V47jDHQ5AAAAAAAAAIAxqFQxEgYPqWTGSDx8XWErrahiJA5G2nsKRtzuFSO24yjwfZmy+87xIHWp5xkjUinkSCpG/LhiZIKKH5YqRsIZI92Hth+qAt9X257dmjSzaciO+f7rr2jbv7+hk7/45SQQGw4DDkZOP/10GVN7+rVly5Zu2+rq6nTnnXfqzjvvHOjpAQAAAAAAAACHgPg+s1E03DwdzgIprxgJCgUF+TAYyRRbJPXdSssOXJkorMjU5ZTvaFeQKgUjVi8VI1afwUjY6stqqK+cMdLZofhe/ngYvv4vP/17bXz8/+rLN63UnD88YUiOue7n92jX5t9rzvF/pMP+4A+H5Ji1GL4IBgAAAAAAAACASDx8XSYMNVK5BkmSnQxfl+T7CtraJEmZYvhrV1ux27HiihE78BREIUc6F7bm6q1ipHzGiGVZSThigqpgxAvPZ3I5qaxooHz4uhkHrbT2bv9AkrRvx7YhO2YxCpoKnR1DdsxaEIwAAAAAAAAAAIZdnDHEFSOpCWEwYjml4euS5LfsC5/3w0oRt+CrWjJ83S9WVIxIUuD0XzHit7TIjueFxMFIEB7TuAV5tiUvm6k4Z0UrrXFQMeK7YUDke14/ew7gmNGx3EL3KqCDiWAEAAAAAAAAADDskoqRKBhJNzZKKqsYiUIHv6VFkuT0EYx4ScVIqZqkFIyUzRLpZcbIjhUrpGJ4/OpWWrvaXtQTxx+hlmK+4pyFjvZx1UrLK4YtxYIhDEbiY3lFghEAAAAAAAAAwCGuNHw9qhhJgpGowiOaOeLva5EkOV4YTLj53itG7KB0gz1ppVU21NuuqBgptdJyt++QFYUm1a208v4+Bbat7R99WHHOQmdZK61xEIwczIoRr9i9PdrBRDACAAAAAAAAABh21RUjqQlhMBIPX1cmbF3lt7ZI6rtiJJ4xYvVUMVIWjPTWSsu4rqwgPG51xUgc3LS07qs4Z6GjQ7Y9jlppeUNfMeJTMQIAAAAAAAAAGC9KM0bCT5xsVpJkxzNB0ilJkldDK63qYMSybKWj48XBiFVf32srLVMsyooCkHi2SOBHc0ui4Gbf3j2SpFQmPG6+o72sYqTmyx6z4lZavj+UrbTc6NhUjAAAAAAAAAAADnEmMDLGSNHQcycVBiFxxYiJWmkFLa2SKoevV7euKrXSKibHsqPjBVFVhzNhQu8VI+XBiF85hD0eDt/eFq6jcfoMSXHFiF2x76HMG+JWWsYYKkYAAAAAAAAAAOOHMUZxNYYk2U5lMGKlwmDEuGFVgeOXhp+7xcqqkXj4umXCm/d2KqVUFKzEQ9ztxsaKihG7bMZI4BaTGSNJIJK00qoMPSZGwYhbyCehTjAOKkbiGSNxlceBCvzS18ItEIwAAAAAAAAAAA5xYYFGWTCSCltoxcPXTdRKK3k+cKWo7VZ1O624YsQyUYiSSsmJgpUgyj/sCQ1Vw9fLK0bcpGLE9FIxEmucNqN0Xisa2H7oF4zIjwKqoaoYKZ9VQistAAAAAAAAAMAhLwiMVDHzIwxC4vZUSlUGI5aklB2GFN2CkWTGSCkYSVppWXErrcakKiTcp2r4ejJjpDoYqUw96iZMUCYXDXa3vGjf2q55rDJBkAQiQxWM+CMYjKT63wUAAAAAAAAAgKHVrZXW734u1U2UFQ9fT3W/fZ2yAnly5BZ8bX19j/bt7NSJfzJHXrEyGLFT6aSVVhyF2I2NfVSM9NxKyxjTLRjJ5uqVbZigYleXfDM+Kka8svZZwZAFI6VjusM8Y4RgBAAAAAAAAAAw7MIB6lGgIcl6ZLnkpGVP+l74fLqnYMSXlJab9/Uv9/272vcVNPf4qSoWwpv1dhDOISlvpWVPmya7oUGtxxyp1974nUyQl2XXJTNGTBBInpcEI5WttEy4uDKZ+nrV1TeoTbvlqzJMOVT5xVKIcXAqRpgxAgAAAAAAAAA4xJlAMlEYYVuWJCP5RdnRQHM5PQUj4c30Yt5TR2vYfqmr3ZWbj44TFKKXpuREFSPWlMk69oXn9dpHO7R9ygQF3pZon/D2uInaOCWttCqCkcqWXZKUiSpGJMk34XqMsbrtdyjx3FKrK3+ohq8zYwQAAAAAAAAAMJ6Ut9KyrVKwkFRuRMPYyznRcPXO/cWo4kQqdnkq5sOb7JYfBiN2KpXMLPFdV5bjqGPfHklSqrBPmTpbuQlhcNItGClrpVU+AyWWLQ9GFAcjA7/+sSQevC5Jgd/9PRnUMQlGAAAAAAAAAADjSXkrrWTguiQrnjvSQzCSioKR9r35ZJub90sVI6Y0fD2uGIkrHNr37ZMkHbH1n/Xlbx2pVCY8ft8VI92nqmdy9apraJAkeVHFyCHeSauqYmToZ4x4BVppAQAAAAAAAAAOccYoqcgorxixo/ZVxu69YqRtX+lGejHvqRgFI1YQ3sB3Uulkxojvuirmu+Tmu6J9XNWlA334N3+j9vXrZaJqiKRSJeinlVZ9TplcfXjscdJKq6Ji5KC00iIYAQAAAAAAAAAc4sorMmynrGIkbl/VU8VIFHyUV4wU877caPi6FQUndkXFiKeOfXtL57UsdW54SXvv+Yl2/fcf9tlKy/TQSiuTq1cmlwuPHb/mUK8YKR6MipGyYMSllRYAAAAAAAAA4BBX3krLKWulZZs+KkaiGSJtFcFITxUjZTNGPFcdLftK57UsBa2tkqSgvT0JRuwah69nc/VK18XBSFQxokO8YqSsSuRgBCNxNc9wIRgBAAAAAAAAAAy7ilZaFRUj0U14p/vt6zgYaS9rpRXOGKmsGKmYMeJWByNS0NkpSQoKBQVJxUi4lsAvC0hM9xkj2foGZerqwmMHfulaDmH+QagYKW/J5eWHt5VWaljPBgAAAAAAAACAwooRE1eMOD1UjDg9VIx4eSkj+W4psCjmPbmFqLLDeJIysqtmjFS30go6OsLdC4WyVlpVM0b8UsVI1vWUO/xwpXP1SmWzpRkjQTR8/RCvGPEqZowMUcWIX9ZKy3NljJFlDc/7SDACAAAAAAAAABh25a2q7IpgJLwJb+weKka8fLdtxS4/aaWlIAxGnKoZI+1lFSOBZSUVIyafLxu+HkT7l88aCY/rBEYX/+Au2em0LMtSJmql5QWeZB/6w9fLZ4D4QzR8vbzyxBijwPeSMOtgo5UWAAAAAAAAAGDYuXkvaVVVXjFiBdGN9/JgJPrcdrvPosh3uEkFiaXwZnv5jBHPLVZUjBjLUtAZHse4rkwhbOOUDF8vRsFMUBq+bhsjJ5uVHVWxpKNWWp4/TmaMuAd3xohUOeD9YCMYAQAAAAAAAAAMO7fLVTJ8PVUKFuwoGDFlbZWcxsbw12JHt+N0tpbNp4iCDCeV0sTpMyVJbR99pJYPdya7BJaSVlpSOIBdKrXS8gvh+cNWWuH67Ko2T5lcVDEyDoORoWqlVX0cghEAAAAAAAAAwCGt2FlU0qqqh4oRY5eFJZMnhfsVOrsdp70lDEZs+Yo7WtmplCZMnaYJU6bKmEA73v73ZH9T1kpLkvz9beF544qRQniDPghMaTh81TmTVlp+PGPk0L7VXtFKy/eH5JjVLbncwvANYD+0v1oAAAAAAAAAgFGp2OkmrbQqumaZHipGJkbBSA8VI240XyQlrxSMOGEbrVlHHxseKygNaw+qgpGgbb+ksoqRslZacXBjmcpzxsPXveTmvpUMbT8UlVdzBAdhxkh4DoIRAAAAAAAAAMAhzM17MnHFSFnyYPnhTXhjlW5fO5PCYMQqdA9GYinjKojClHi+SNPRx3Tbr1vFSFvcSiueMRJVgfiBklZaVceIZ4z4gS8Tv84cusHIwZgxQistAAAAAAAAAMC44hb9soqRUqhgB1HlgF1eMTIx3JTvPRhxTLF7MPKxY7vt123GSFvcSisMaeLh65WttCpniMQzRiRJJgpy/EM4GPEqgxEzBCGQ51ZWnni00gIAAAAAAAAAHMrcYtlwc5VVjATRjI+yfe1JYTCS6qGVViwVlAcjaUlS01HdK0aqW2n5bZUzRvyoYsT4Jqlosa3KYMRJpZPwRSoLUg5RFdUcxlS0Jhssv6pChFZaAAAAAAAAAIBDmueWZniUt9Kyo1ZaKp8xErXScvyym+dW9BFJ+YVkLokdhRZ1EyZoclNzxXmrW2kFVcFI4EattAJTqmjpYf3paAC7iSpGgkO4YqS6uqN6cPqgjllVIeK6tNICAAAAAAAAAByiTGDk+VYpeLBKFQi2n5dUWTESD1+3AzcJQ7K5lNJZp7SPn1cQPVeq5pCajq5sp2UsS/L95LFf3UrLi34tG75eXTEilbXTGoJgZCgqMA4mvyq0GIo5I16hqmKEVloAAAAAAAAAgEOVW4yDiTAQcMpiECsKRsrZExokO5z0kc6Et7Wz9Sll6koBiOPlu80YkaR5f7RAkjQ50xWesSrj6F4xEq4tnBnSRzASVYwoCNdrBtlK64M3X9Ndl12oV//l14N6/XDwqypGqgenD4ZbFYy4BCMAAAAAAAAAgEOVW4jCBxPeYLdVXjES3iAPTCDZ4S1sO5eTlc1KktLpMKTI1qeVqSurGHG7FNiVrbQk6fjPfFb/5b/eqlOnvxcetyrkiCtG7CCqFHHLKkZMHNx0D0bSdXXhJ6ZQ2n8QPnjjNRW7OrX11X8b1OuHg3cQKkaqZ4wUOrsHYgcLwQgAAAAAAAAAYFi5+agSIwgrEWyr1NrKCsKgwRgjKwofrLo6WZmMpFIwUteQUiZXVjHidiahRyoavi5Jlm1r1sxJStlRGFMVjFRXjPhlrbTi4euW3f1WeiZXHx3gwFppFQthIDCcw8cHqrpiZGhaaVUes6uts5c9hx7BCAAAAAAAAABgWMUVI5YJb46Xt9KKb1oHvi87qhKx63Kyo2Akzjyy9enKGSPFUjDipEvBiCSpa18y4L26YiRob4/WEq7B+PGvRjLxcPjeW2lZUcXIYFtpufmwxddwtpIaKK+quiPwh6BipKoKJd/RdcDHrFWq/10AAAAAAAAAABg6biG8sW5F1Ra2Kd1ot6IAwwRB0j7LzpVVjERZSLYhXdG+yil0yOTiVlpVwUi+RXZ83O4ZR3jesuHrJjAyRopnoNhW9xqDuJWWMQVZGnzFiJsPK0ZGdTByMCpGkmNakgyttAAAAAAAAAAAh65ivqpipKyVlq2osiMI1Pgnf6L0nDnKHndcEoyknPD5cPh6+YyRzmTGSCpVVRPQtU+OFQ1X76H6Q5LsTBimBH6gwMQhR9Tyy+6hYiQXDV83USutQVaMFLvCSglvFAcj1dUdQzF8PWnPZYVf1+IwBiNUjAAAAAAAAAAAhlWplVY0fN2UzRiJKzt8X03/9cZw1ohllYavp8LncxPSyXEkKeXn+2il1ZIELtUzRmJOXXiDPvBN2EYrXET4XA8VI3ErrTgYGWwrrWLcSmsUzxipDm18z+1lz9rFVSeWVSdjCip0Dd/1UzECAAAAAAAAABhWSaARxMFIqQKhvGJEkqwoyIgrRj5+dKA/OKVJxyycVVkx4heSYKRbK60eZoy01WXklg1Vt+vC4CXwTVL9YaJWWj0NX08nwYibvG4w4lZao7lipHswMgQVI/ExoooRt4uKEQAAAAAAAADAIcrNV1aMOCpVIMSzQILAr3iNFbW6mtZY1JEX/KEkKVNXusXteHkFUYCRqq4YybfITlppSe2ZtJ46bo6mt3Xqj9/dEb4mFwcjQSnkiCtGbEfV4lZa5gBbabljoGLErxq+PhTBSNKOywrfd7fAjBEAAAAAAAAAwCEqHr6ezPCIK0ZSdYo7XZmoYiRmZ8Ib6KbsJn0mVwpGUmUVI04PM0ZKw9ctdWXD5zszZcFKFIyYoLwtVhyM9NFKS3ErraDbPrUoFsZAxUjSOit8v4ZixkjgR+FYFIwM5/UTjAAAAAAAAAAAhlXSSiuZMRLdeK+fVmql5VdWjBRTjn43d6a2ffBesi2dLW+llU+Gr/fXSisOUAKrvJVWXbgtMGXVH1Fw4/TeSstE13DArbSKhUGHKwdb9aD0IZkxEn9942CkasD7wUQwAgAAAAAAAAAYVnErraRVVRDdaM9NLQ1frwoJXsq3aseURv3zk48n28orRspnjHRrpdXVUlYxIvlRgBIHKZKUqo+CjqA85AjXYNvdp1KUWmlFM0YOcPi6JHnF4QsHBsL340HpcTAyFBUjUSgWVaH4HsEIAAAAAAAAAOAQVYwrRuLgIakYmSJLPQcju90uVSsfvm77BcWvcHoIRpxkxoiVVIr4VikYcRqiihFTaqVlxcFNDxUjcSsto8EPXw8Cv6KF1GicM2KCQEH8tYiCkepqnsGIZ8ik/LhCyJPvD0/FDMEIAAAAAAAAAGBYuVXBiBMNMFduaq/D14tVQcn+xx5Tx0P/f0lSkoNYcSutqgqPfEvSokuW1WPFiNNQL0kyphRymKSVVkp66SfSvz2Q7B9XjEiDb6VVPVdjNM4Z8crbZg1hK604XEn74bFM4Op///Xz2vFOywEfuz8EIwAAAAAAAACAYVWaMVI1fL1+WnLTOuhn3saHK29T8ad3avrMtI6cZ1W2xephxkgcuEiSFw1TN5ZVqjKJgpHAWN1mjDgy0v/9rvTQN6Vih6TSjJEgCUYGXkVRjOaLxNxRGIz4xVIIErfSGpLh61HwlYnnl8hT664uvfTPWw742P0hGAEAAAAAAAAADCs3H99YDwOIuM2V6stmjPi+3EJe+z/aXTHTIpeObs53dsoJPJ1zptHJJ3rJfBGpqpWW70rF9tI5JHllrbHiQCU1oT5ZUdxKSyZq9VU6tLR3s6TyihFfxgQK3IEHI26+sj2YNwpbaZWGoluSwvd1KGaMmGS+TPjmOnZ4zFI10cFDMAIAAAAAAAAAGFbxzW8TzxiJqzlyU5OWV0EQaM0P/qv+ftml2rxxQ/LarBO2yTLRoHJv90cyhaJMHIxYlqyoIkSde6X92yvPodLwdUlJoOIkwYgtvxjf+I9njJQlI3t/L6k0YyS6okEFI90qRqoejwZ+Eow4UjybZUgqRuI2alFbs2DwLckGKtX/LgAAAAAAAAAADJ1iVDFiLCPJKgtGplRUjGx97RVJ0hN/f1fyWhMEMsaUgpGPPlJq+vQk4Eil0rIsS2r9QLrrj6WG6ZLCqg9LRkZWRcWIb1uSL6UmTJDUrsCy5XdFlRtxq6/ykpE970gKq1Is2w6HxJuiAm8QFSNdlRUjo3H4uhe30rJSshQOu/cKxT5eUZu4YiQVFfIEQVh543sHfwA7FSMAAAAAAAAAgGHl5uOKkbiVlpGcjJSpLxu+XrpB3tGyL/k8MIHk++GUdEne7t0yxYL8uPIjbqO1eb3kdkgt7yWvjatR4hkjUlnFSH1duCbLUZDMvYiqGqzyYORdSZJlWUnViDGuzCCCkWKhqpXWEM8Y2frGHm14bEupNdgglAatO5IVBiNu4cCHr5uoTVmq4m1z5XtUjAAAAAAAAAAADjHVcyRsBVKqTkrXK44gTC/D14OgVC0ilSpGTFTVYaei297bXu72WltGvqpnjISfp3JxMGIn1R9GPVSMRK20pHDOSKGzQzLFQVU6VLfOGsqKkbdf+lC//ofXJUmHHTdFTUdOGtRxvOi9tqyU4loLN39gFSPGmCQYcUwQhlyWJRl3WCpGCEYAAAAAAAAAAMMm8IOkKiCaux1WiTgZKVWXVIyUhn5Xvd4EVcHIbrnbGpNjJRUj26uCkUxjjxUjcaWJnQ2HuocVI1FwEw8It8uqGPb8PryR37I1GcBuBtlKq1g9fH2IKkbefulDrf3JG6XzdA5+JkjFjJGolZZbPLBgJPBL63F8X6kgkOc4MsZVQCstAAAAAAAAAMChpLxaxMRhhmWkVDaqGIlmjPRWMWKMjFtq5eTv/kjutg8qZozIK0o7Xw13mNAU/Tqj51ZacaVJXRyM2EkwklQ1lN9J79glrf0r6Ud/pKziWSSFQbXS6lYxMgTByGtPfqBf3/N6Rfsszx182OC5pRkjcSstr+DKmANpz1UWjAS+nHitxpU/DMPXCUYAAAAAAAAAAMMmDkaswJOJqzXiipF0qWKkN4Hp3kqr+MG2JBixUylp1+uSX5TqJktn3xLuOO/Tsq0wIPCcUmuswLIk25aTCRsslbfSkuKKkapFPPs/JUlZvzV8jSnI94eglVYh38uetdm9tU1P/u+3JCPN/8xhmjD59yq2P6Ji1+ADF98tzRixokgh31nUfSue1VMPvDW4Y5YHIyaQE4dgpkjFCAAAAAAAAADg0FKMBq87fiGpGLGtIKoYySUVI70JVFkxEnR0yN22Lan8cNLp0nyR2QukE/6z9L3N0qev7rWVlpXJJHNEjOXId/2oIiLc366+kx612Mr4bdHjwtC00jrAGSN7t7dLkpqOmqT/eOEx+mjzrxS4m7T9rY2DPmbc0iycMRJWjLTv7dD+j/La/MpHgzpmUBaM2IGnVFQlYjQ8M0YIRgAAAAAAAADgELb533brqQfeUjCIioaDIa4Ysb18UuXhJDNGct0qRhomT9E5V39Pp5/xeUlSYKSgesaF7yuIhq6nUunSfJHD/kP4a/1UKZVJju07la20rExGthMHI7aM5ymuFgnX1/O11Ln7wteYgsxQDF8/wFZacehUPymj1g93lD0z+CjA7YrDG0eywuMUOsN1xi26il2ePtyyv+b2Wr5XqkJxbKusYsRN5s/UKgh8vffKRhU6O2t+DcPXAQAAAAAAAOAQ9vzD72rPtg4d/cmZmv2xySO9nCQYSfmlUMBOZozUdbuFn87W6Q8+/Rl91FmQ/uUxGUsKCt2Hf9tTpoS/plLStt+FG2f/h7Id0nLi+SVWZSstK5WWZZeCkbCdUynoSPWUKzhZZexoHaaoYBCzMeKKkXS2Tm4hf8DD1+P3NpN1tP2tf0+2H0gVhtceVcVYpeHrha6inKzkF8Pzrbt/k95+8UN98S/+Q03fY6VWWo6cbEqpshkjJjAKApNU8PTn3/91vf75rv+uSXOOqPmaqBgBAAAAAAAAgENYsSO8+e4VBt7q6WAodITVAo5X+gl/R0ZyouHrVRUjqWw23KeuLtnm9zCLw5o2NdwvnZb2/j7cOOv40g5Opsf5JdUVI7Jsea6ftMsKN4XBgqmbJEnqaD5FOvwkZe3oBr8pKPAHP3y9flJ4XPcAW2kV8+F60nUp7Xh7U7LdK2s9NlBue3v0WUpS+B7Fc0fiipH9H3VV/NqfpJWWZStVl04qRoxxo+drD3J+/+JzkqQP33275tcQjAAAAAAAAADAIczvCAeEB7vfGeGVhPZs75Ak5fIfJtvCGSOZKLyo3D+dBCO5ZJuf72FI+eTJkqSU40he9HxuSul5JyXH6n7DPZwxkq6oUAgrIaIh8caErb4k7ZzxH/Vnxet1accV0qzjlXXCfYwpDGpouBtVjNRPDNd+wBUjUSutdJ2j7W+XKka8wuCDkdYPd0qSLLtBKT8OgsJrDfywusMrRkPti7W9BxUVI3XZUisthRU4/gCqb2Ye9bGa940RjAAAAAAAAADAIcwPwtvAQVd7P3sOjz0fhOuo79iWbAtnjGQly5KVzlXsn86GlSJOriwY6SFAsKNgxLbLbqpnG0uf91ExYmcySSstSVHFSHiz3jJGVtRWq8O39a/BCXphl629E46tqhgZeDBSjAKeXFwx0kMlzMCOF67HcTx99N6WZLt/ABUju7e9L0mynZlK+XELs1J1jFf0w/dLku/WGoxE67EcpXKZpJVWXDFS63EkyQQDf98JRgAAAAAAAADgEOYH4ahp3/X62XN4fLQtCkY6w+HglhV+KBVWhljpuor9U7VWjEwMQ5BkrnqmUbKd0vN2Wra6ByO+ZWtT1tbq735DJgjnaXjFQCa6+W8bI0WVJl1BaWz3v7Y3JcGIMQWZQcwYSVppRRUjBzp8Pa4Y6dr/gYwpBQaDbaVlgkAfRUPcrdRMpYMwGDFlwYjvBkmliFusrZ1YXDFiyVYqV6oYsRRuH0jINJgWZgQjAAAAAAAAAHAI8014Mz+Z6zCCinlP+3eH7aNyXWGLJseOblPHwUimXlZZgBFXjNjZrCwTbu8xGJkwITxM3C4rmgeScNI9ttIKbEvbHaP2vR8p8LZLCqsg4qoIO5Cs6POOsmDkwQ8alU1Fxxt0xUg4ZyWeMeId6IyRaI5M2573KrYPtmKk5cMdct2iJEeWPTUJRlQRugQDrhgJylpppRqycqJQybKiihGv9pDJBAQjAAAAAAAAAIBIEBgZhVUTvjvyw9f3bIvmi6Q9pbwwIElmezgZ+YHRfi9V0fIqnjFiZzOlYKSnAKGhIdwvrmaom1j5vGXJ7uGOeGDFdQqSFYSBi1s0yc1/2xjFIUmnX6pAeWpLp9KTZkqSjCkqOICKkYZJk8PHB1wxEl5JZ8uOiu2eN7hg5MPN4RB7254my7KVCeLjVLXSGmTFiCxHqfqcUkk7rDgYoWIEAAAAAAAAADAI5TeYA280BCNhG63JuYKMFQYiSTCSyuq3/75LW9tMjxUjViYThRSS1xFWWjjTpiXPmUw63BbdtN9vcjr3rqd1+2OlIeR29WR3Sb5tyYs3m7Aiwi0GKh++bpnw83avFIx4gVEhVR+9riB/EDfoSzNGJofHPNCKkaiVVr59ryTJSYehUlAcXDCyKwpGrNQsSVLGxDNGyipGikFSKeIPePi6rdSE+rLh6+E6B9RKK3rt4W21v3cEIwAAAAAAAABwiCpvbTQaWml9FA1en5TpUhAFI8lMECerLR91KK9MjxUjVjareK661xEeJzd/vho+/SlNvfhryc32OBh5aaevVz5o1X3PvScTBSpObxUj0fOWCW+ue56RTGnGSFxT0uaFB5g1MVxTp10fH6U0ULxGJgiSYetDVzESVbbsD4ORhslhRYvvD+5rv2vLu5IkK9UkScpGwUX83khSobN03V6NVUlB2fD19OSJcqLh60qGr9defRNXjKS7ump+DcEIAAAAAAAAAByi/GLphngwgPZEB8ueOBhJtSfBSKliJKMP9+eVN5VD0uPh61am1EorDkbshnrN/clPNPOaa5Lgx4lu3rcpDC3a8p72RTfveygYCStGovNZiitGjIy6t9Jqc8Nb6sfOCge9d9r1ipfqFXuYe9IHr1iUouupnxjOGImDksEqFjwZE6izNQxGJkwJKz0GM2PEGFNqpeWEAUsSjJRVjOQ7St9j3gArRiw5SjfWK+2konOG778/iOHr8fdGLQhGAAAAAAAAAOAQ5ReLyefeCFeMmMAkrbQmWftlopAiCSucrHbuz6tLWVllAUbSSsu2SxUjneGsEiudSfaLKzacaED4flMvJzr4e3vC/Z0eSkaKqVJ7rLiVlueVwhDLmGT4emsUjBw1PZxnsk8T5Cg8h+cOrNqjmI8qHCxLdY3hPBSvUEiqWwbKGCO3y5dMh0zgy3YcNUyZIUkKBlEx0rbnI+Xb9suSJcuZJktGGSeIztVbxUhtgYaXBDW2UhlH6Wg+jIKBzxiJh6/3kHn1imAEAAAAAAAAAA5Rfr50s76lrdjHngefW/TlFsKb2HXB/lLFSNw2K5XRrv0FFZSpqBiJW2lJpZvffkcYKljRXBGpdLPdjsKNNtXrmJkTJElb90YzScoykFhFMBJVRHiuylppKWml1VoMV3B0dNw9fr0cEwcjtbdykkqD19PZOmXq6squY3BfJ98LFARGJtgvSZowdXpSbTOYVlqdrS2SpKydkmWllHKMMslbVQpG8h1lwUiNw9e9QqmVlp1JKTMhfD/jipHAG3grLSpGAAAAAAAAAACVFSMtnSO4EinwSzeurUJp+Hr5jJGd+/PqMhlZVvfh61LphrbXFV5LecVI3ErL8sMwqM3U67imsOXVlo/C/e1+K0bCG/bhqIyyVlomPHbBhEHMUdPDG/m73VxSMeJ7Aws04oqRdDabBBhSWDUyGPF8ERO0SZImzpihdBQcBQOcfyKV2m9ZUfCTSklpJ46mDqyVlpcMg3eUyqSUnTgxWvvAK0biQe3WAAptCEYAAAAAAAAA4BDlF0o364NCbT/Nf7CYoOzOdSHfrWLEONGMEWVk9TBjJNw3CiE6o2AkU9ZKK64YCcJKjDblkoqR9/ZGrbTsHoKRsjISEwUjnqeq4evh5wWlVZ9x1DQpXNPOYp1ScTDiD2w+SFwxkqnLybYd2dGcjX07Wwd0nOQ6omDEsqJgZNoMpeJgJBj41z7fEa4vb4XhUjptKZOJ3j/jK5UN37dCx8CHryfBiGWHFSPRjJVkxshAgpGAihEAAAAAAAAAGFVMYPTEvW9ow2Nbhv3c5RUj5RUbIyGIghHLtiSvmMwYcaJgpMukVPACdSlbaq+lqoqROBiJhpRb6bJWWvGMkSig6LQbNG9aOLti656olVaq+y1xUzGRPQpGfEumfMZIFJgUldKU+oym1IeBzM5iVqloqb43sEqPrrYwrOnqMNry6kcKgjBo2PrahwM6TrLyQjzQPJzj0jh9plJRcGQG0UqrdVd4HFnhulIZR+nk/fM1aXpOUnUrrYHNGLGMJTudVnbylHCdxpcxwYC+V+NWWgMJOwhGAAAAAAAAAOAgat3dpU3P7dTvfr112M/tF0s3rc1IByPR+W3bUlAolFWMhDfTW4vh7eq80lXBSHnFSLiP1xUFI5nurbQcPwxB8s4EHREFI1v6CEbKJRUjvqV4joYdGCka6F5UWpNyaU2uz8iypFYzQanotb4/sFZaH32wLzxml6VH/ucrksKQxy0OrpVWXDFiTFkrrWz4/gTBwIMR3yu1u5KkdNYpq94xmnZ4vaSqYKTWipFoxoglS1YqpbqpU8uedQc2fD0KRkQrLQAAAAAAAAAYHTw3vMnrj0AwUR6MBIHVx54HXxyMWI4lUyiWZoxEd7T3RYPN8yar8pXWWjESt9Jy/HB2R8Fp1Nxp4c37j9oL+t8vbNXerr4DAhMNWfcDq6qVVjRjRGlNrk/LsS1Nqc+oVQ1KRev3/YEFGu37wooMy0pHv4YRS7FzYC25YvGMkcAPh69PnDZDqWx4bDOIYMQtlgakS1IgW07Z+52KEqFBzRjxyuaXPPU3Sk+eJMWtsIyrgFZaAAAAAAAAADB2xcOhR6JiwyuvGKn9XvNBEc8YsW1LplBQnNPEFSN781EwokxFxUjFjJFoRogfDSgvrxiJb7ano4qRgtMQVXeEN/Ovf/BV5cu+BnbZbJFkjaY8QIiHr0tWNBS8aFJJG62pDRm1mFIwEvhF7dzcKrfGWS4d+8JWWvWTGvTJxfOUyYUBUDE/uGCkmI9CHTecUdI4Y2ZSbWMCX2YAwYFUasNmRRUju3cU5GTKvhZRD7HKGSO1fZPFgZ0lydryW6X83UoF0e8T48r3Bt5Ka8/U42t+DcEIAAAAAAAAABxEcaVEEAx/MOKWD18f4WCkvJWWKZYqRmzFwUi4X/Xw9Z5aafnFgnY11uv1999NbvjHrbRSUTDipsPB6/GcEUkKrNIt8boJjd3XWB6MmPJKhHjGSFqToqBlakNYMZKOltpZ9PT/3r5BTz3wVk3vR+f+sGKkftIEnfKFo5XJhTM7BhuMuHlfJsjLRJUrE6fNUKYumjFi/AG1p5JKc0DiipGFZx8uuyyI2r35XxV4O5TvLAUjfrG2AMZzo3koxpJlGTk5W05QqhgZ0PD1KBjJ18+q+TUEIwAAAAAAAAO0/6Mu/f53uwb807cAxqc4EDCBGfY/N4r5UjBigpG9HZwMX3csBcXSjBEnqhjZ3RUPYc/0PnzdCa/ByNJrh0/Xi2/8Tns+CGe3xK20UvEA9fRESdK8qfXJ603ZLfFsfSkwSdZovORrFA9ft40pVYwopSlRMDKtIaMuZZOKEZkwkGjd3VXT+9HVFgY4dQ1hIBIPSnfzg50x4skE4XyRXONEpevqlM7Gra98+TVWc8TiaqO026VPvXCz/sOSo+Vks0nLqvf+7f/K7VyroKy6wxhVPO5NoTMMhWzZsmzJyRo5cXJnigMKRuLqoXxmSs2vIRgBAAAAAAAYoHX3b9Jj/+s17fx960gvBcAY4Pulm7zDnacWO0s32QMzsjNGKltplVeMhAFEnCd0rxgpC0bsaN6FJblRK6z9u3dJKg0Ld6xAvrEUpMJA5IjpPVeMZOtLgUnZKhUPXS+10jKSKVWMTM6FAcaUhowkS6noOkwUjMQtrfpT6AwvODcxXEcqalPlDrZipOAnwUjjtBnhMbNxhYdfc5urmOfGrbQsNaQKSqUcWem0smUD1k3Qfa21DGDvagv//nRMRpZtlMoGSsUBotwkTKxFEL1fJlXXz54lBCMAAAAAAAADtHtX+FO+rfsGd/MKwPhSfpN3uOeMuPmyGSNmhCtGyltplc0YcaIAYldHeEO9q2rGiHP/l6T8/ui1YRhiLEuBHR6gfd8eSZIftdJyrEDtyimbCaeDf/WP52jJibP1h80T5ZcHIw0Tel5oFIKUWmlJVhCGBAVTmlkyrSEMHZIjxsFIPwPepbB6Jh6yXj8xDG6SYKQw2IoRX8aEfz81TJkieQWl4mHpZuAVI/EcENtI9oRwjVYmrZN/v02fOvxj0V7dr7WWAez59igYUVqyJCflllWMDKyVlp+8X7V/fxOMAAAAAAAADNC+/eHNrE3b20Z4JQDGgvJgJBjmkhGvUApGRrpiJG6lZTvhjJGgqmJkV0d4MzxT16B4pWnbl7XlKemtxyRJTioMRnzbSipO2vfuDbe5ccWIUZvqlY32bZ6U051fXaCFR0ypqhjp3kpLkoyJ24+VKkasOPRQWpPLhq9LpbknccVIoYZgpLO1IBMFMPWTwnXEs1Q8d3DBiJv3pCgYybkfSbfOlvPB89Gzfk2BRTnPK80BcRqiYCSdVkPR04xM2P4rDo8qXldDxUgcjKSCtCzbyFKnUvGTAw1GivHXi2AEAAAAAADgoLGiez6FQm3tUgCMb0F5K61hrhjxCmVtj4wzrOeuZqKKANuxFBS7t9L6sDN8furkSUnFSDr+A/fdddFrw2vwnNKt7aRixC210moz9cqmKm9/Z1K2/LJb4la2t9ZLcZgUrscyRnFSUz5jJA5GFF2HokDF7ep/AHnbnnwSjGTqwpAhXReuxy8eQMVIELXnKu6SAk/OhxvDpQ1i+HoQvZ+WMbKj6hormoNiefHffwOvGAkCX4XOsALIMY4sW7KKbUo5qWitbk1zSqrXmXwdakAwAgAAAAAAMEBOdL/GG+BNJgDjU/lN3rhqYrh4xbJgZIRvB8eVM1bSSisavh4FI0XjKGVbmjJxoqw4GLHLghFj5EQ3z127dC0d+6KKkaSVltF+1SubrgyCsilHgVXa9v9u/FCBnVI3ccWIKRu+Hq2noPJWWtnoBdExTUHGeAoC0+88j/178knLrnRdeJxMXVwxUuz1dX0JK0bCisacwsoRp+PD6NnBzBiJW2lZsieEwYgdBSOOH39fGZmqqpH+gpF8W1sybCdl7PC9LbQpnYnnoQxs+LoJ4vNTMQIAAAAAAHBQGGPkRPdrBtqvHcD4VFExMszBSPmfU4FGtmIkaaVlS/J9xZ29bBMGGq5J6fApOaXqGmQrDkai9e/fJu15R3YqDDLKK0ba9sYzRkoVI/t7qxgpC0YKcioex0y0HpNUjCi5k15UqlsrLc/YisMRE7SH+/XTTqttb14mqkyJh8tncrnoOgYXjIQzRqKKERNVZHTujC7Kr6nFVbn4/bRlZEettBTNLLFct3zPitf1d56Oln3hJ1YunCtiKwpGwmDIGFe+X/vfr0E8m4RgBAAAAAAA4OAIvNLPXFMxAqAWvj9yFSPlwcioqRiJApHSjJEoGFFKc6c1KJ3NJa20UlbZTfZ318l2ugcjHfv2ygSBgqiKoTRjpKdWWqUgxLcceWXBSNymSz3NGLEk1zgysjUpV9lKK6+ULLsxekntwYiqWmllc2FAEgwyGHELvkwQzRjxwioap3179OzAh68HUQWOHZSGr8cVI3axLBgxldfaX8VIR2uLJMmy6mUHnizbSPn9StfFc0tc+W7tv0+86PvKGcAIHYIRAAAAAACAAXDL2tIExcHdvAIwvnit+5PPg2GeMVLekmikK0biahkrqgaJg5GUFa6xqJTmTa1XKlNfNny97Cb7u+vkpKNgpKyVVmdri9xCPnkczhjJJcPXY9mULa9s+HpgVVaQ1E+aHC3UjRccrtcYWbZRUSk1ZBylo1BmSkMYkBSMLcsOW00Z0xZeS77vqon28lZa0dD1TH1UMeIX+51R0pNi3pPiipEgHG7uFFriq5U7wLlYfjJ83ciJWmlZUcWIPE92Kvq8as5IfxUjnVHFiGU3yAq8MCgrtCmdKwUjwQAqRuJdG9K1/518SAYjg/mmAQAAAIAxhf/3ACOm/Cdh69u2jeBKAIwVbltn8vmwt9Iqu2dtRksrrSj18KPgIp4j4snRvGn1StVNKA1ft329GcwNX/Dev8qJbsaXV4xI0v7du5LPHSsIK0bS3StGAqs0U+Sq9EOabLUljxsmT5WkpMVV3CLKNpIsqai0JubSyf7ZlKPGbEoFKyVFFSMDaqVlKltp1dVHw+ADd8CD0iXJzfsy0YyReqfUVix5vuD2+LreBH48Y6T78HVTLCZfi4HOGElaadn1so0ny5ZU2K9MFL4YDez6/ej7qi5d+++tAQcj69ev15IlSzR79mxZlqU1a9Ykz7muq7/8y7/UCSecoIaGBs2ePVtf+9rXtH379opjFAoFXXnllZo+fboaGhp07rnn6oMPPhjoUnq04bEtWv29p9XyYWf/OwMAAADAWPTg5dLf/kdpkG0WAByYikHG/sD6tQMYn4Kyn6Af7lZaQdkfUyNdMVJqpRX+6kXzQjJRMOIqpXnTGpSty0mKW2kF2hAcEx6ga5+cHmaMSFLr7g+Tzx3LqK2HGSPZlCO37D1otPKaYHUljxumTAk/qWqlZSkcvl5QWhPrSsGIJE1pyCivdNJKy7Y7JEXVG31o31eQogAm2LZd737hPAWbfx+eXp7cwsD/finki5IpSJJyPQYjA/u3Y1wxEgYjYSutuGLEuK5S8bD0qJWWE73f5X9P9qTUSqshmS+jQpuyE6J2ZMaV79X++ySeBeOkDuKMkY6ODp144om66667uj3X2dmpl19+WStWrNDLL7+sBx98UG+99ZbOPffciv2+853v6KGHHtIvf/lLPf3002pvb9ef/umfyh+Cf0xs/reP1NXmaufm1gM+FgAAAACMSv/+f6UPX5X2bR7plQDjUnkrLcOMEQA1CLyyPzdGMhjpYdD4AfEHVoHQrZVWFG7E7bLcqGIkl03JWPFzvt41s5Nj2NEgCdeuCkZ2hcGIbYUzTMIZI5XXWz183bEDZa1SgNEwOQ5GemqlJRVNShNzpYoTSarPOOqy6mRZYbVDOhMGLX1VjPhuEAYf0Xnyzz6rwqZNKjz3XHJ+t59WXNWCwMjLh6GMZVnKWJ72v1+n3b+bmOzj5gcWjFRUjEzoXjGSSkfBSNRKq64hCq36mWVSaqVVXxGMZBqjtQ6wlVbcQSrl1B53pPrfpdLixYu1ePHiHp+bNGmS1q5dW7Htzjvv1B//8R9r69atmjt3rlpbW3XPPffo5z//uc4880xJ0n333ac5c+boiSee0Nlnnz3QJVXoagu/uAMdJAMAAAAAY0YQ/QfSK4zsOoBxqlD2U8ADuXEDjDrFDildX5qEjYOmYs7HcLfSCko3i4e0ldb/vkja9IiUbpA+tUz67A39viSpGIkCBy8adp62/GSw+dyp9XrrwzZ50ZSRtB3oAzNdrpVW2riK85BuFSNRMBJv7jKZHipGbLlKKa75SFlBUq2SymSVrQ+rIky34esKW2mZ7hUj2bSjTlPQ4ft3andaCvw2yZGKXb0HG/kOV8YEilt1aWe4dvP+B9K0eskMvGLEK/gyJuyiVFeX1t43GvXR61EFxh9ZkmUGXDESD7O3A5MMX6+sGIneiyjcqJuQVkdrcUAVI47ZHW01StdHoYvxBnR/Pw5G4mqiWhz0GSOtra2yLEuTJ0+WJG3YsEGu6+qss85K9pk9e7bmz5+vZ555psdjFAoF7d+/v+KjN51tYYrVXx8zAAAAABiz4p/OJBgBRkS+/KeAh3mIMjBkdr4m3TZPWvtXI72ScSHIlwaDB8NcaRYEpeArsFJSMETnf/vX4a9uh7Tx/hrXEs0YiSpGfLtUFeLJ0ayJWdWlHeXSjoKyipFdZoo6rXpJpeCjOtArBSPhsfPK9DhjxCurGElZQdJqKpPLJbM+4koOk7TSCk9XVFqTcpXBSF3KVrtyOnbz4+HbUQg7GfXVSqur3ZVUqrYxO3aEn+zdG23xKqoTa+EWfZkgGryetdW5O5M8Z0Uh08CDkagdVxDIbmjQzta8nn4vvD5TLCqVCYfGmyjgydZH819qrBiRXa+s25JsT9dno888+QP4+9VE309Ouvbg76AGI/l8Xtddd50uuugiTZwYlsHs3LlTmUxGU+J+bZFZs2Zp586dPR5n5cqVmjRpUvIxZ86cHvdzC768KEnz8vwHAQBwCMjvl/7pamnzUyO9EgAYsPW/fEv/ePtLgxociT4YI8UDLn3+3wOMhHzZzS7DiBGMVTv+TQpcaduGkV7JuOB3dSSfB27fsyeGmimvGLEcyR+CGWWBH37/xNza5j0nFSNR4ODbcVWIH84XmRpWJeQyjoK4YsQKtNtMUruiYMTp+d+W+3eF95adaH5JQWnVVbXSyqZsuVYp2HDsQKmyYCRTFwYjyfD1qLIlHhZfVKpi+Lok1aUdtVs51RXDr6tXaJcxfp+ttPIdbqldl2XJ+2BbeJ4oODLG7VYxYoJAXrH3r51X9KVo8HoubVRoDasnLCcoBSPFAQ5fD0ozRpwJE3Tro2/qv/9L2Mq1pxkjdROiYKTG4euW1aBccU+yPVMXVXwYf0ABoom/TgdzxkitXNfVhRdeqCAIdPfdd/e7vzFGVi9le9dff71aW1uTj/fff7/H/eI2WpLkffjO4BYOAMBo8vavpQ33Sk/995FeCQAM2Fsv7tSHm/er5cPa/qOMGgVl/8n28r3vB+CgKXSWfu8N96wAYMjEN7KH4iY5+lU+Y6T882E5tyndAg4sZ2h+sKL63yA1BiPJjJG4lVZ0Ozhj+yoqpXnTwvCjPpPSzIl5zc616pjGj7Rbk9VqwudSVuWfu1ZUWRIPX++rYiTbU8VINN8kU1evdF0uWmhVK60oWAiHr1e2a6pL23LttDJ+INsEkoxM0N53MNLuykTBSDqbVbAnDAecuJqnhxkja//hf+quS7+sfTu29XhMtxDImLBipE5F+QVHsqTcVFeWCdfvVVWMtO3Na8fve5/VbfwoGAl82RMmaEdrl1w7vP7ALZaCkWTGSBiM+H1Uu/iep672NkmSZTeovrg7eS5dF39tvAH+cFX4NU+n0/3sV3JQghHXdfXlL39Zmzdv1tq1a5NqEUlqampSsVjUvn37Kl6za9cuzZo1q8fjZbNZTZw4seKjJ11tpcTLz/MfhPHEp6crgENVPvoHSr5lRJcBAINhop8IDGgzM7TKh5zSSgsYEYWOruRz4zObAWNUMapgIBgZFvGsBkkK3OEORkpBgLFSMt4QfM2r/w3i5SunvPe2lmTGSNT1J/ojNG0HYcVIEow4aqg3+uoRr8jJ2ioqrVY/bLNk25X3ASfOmCFJKnaFfzY7UZhRMOluw9ezKUdFU1YxYpkeK0biCoh4Bkg81yQcvt69YsS3wugkF/8Ai2lXoZ8ZI/E50qmy9SRhu1fRimvv9m169TePy/c8bXruxR6P6RV9KQgDqnQ+fC8yTVPkZOPaG8mrqhh59Mev6MG/2aD9H3WpJ3HFiBMEsidMUFveS4IRFUsVIyb6esbBSF+ttLr2t4YV0LIkq045d2/yXCZnRcfz5A/g90nSSiszgq204lDk7bff1hNPPKFp06ZVPP/JT35S6XS6Ykj7jh079Nprr+nTn/70AZ27s7xipK8ebI9eKz1yzQGdC6PH1tf36O+vXq83/nX7SC8FAIaeG/3jpNA2susAgEGIe0jzQyxDrKJihGAEGAluV+n33rC10lp3u/Tg5dHNJGAIxP/XGIqb5OhXeVug4W6lFVTdAg4KB6FiRCp9T/W1lvjGv+fKKBk9Hs4YMY7mTotaaaUddZnwpvsuM1mStN/EM0Yq37+ph1WOXYhnhuTVffh6JmXLtUoVHykrSCpQMrlcUjGSDF+PKlviTkdhxUj1jJEwGJGkXPQDLCZok9vHjJF8uyspPEfKLt3MLwUjRsWyv2s2/N+Hks9bd/X89fOKflIxku4MA5LsMcfISkl2XDFS1orLGKO9O8KAtH1fz8c0UdjlBL7shga15T150XoD11Uq3XPFSF/35uPB67LqlXXblbJKa0o78XtW+/D1cPB6+L6VKlj6N+BgpL29XRs3btTGjRslSZs3b9bGjRu1detWeZ6n//yf/7Neeukl/eIXv5Dv+9q5c6d27typYvSmT5o0SV//+td1zTXX6De/+Y1+97vf6b/8l/+iE044QWeeeeZAl1Oha29pKLvXW6JU7JBe+DvpxX/gJtMhYsfvW+V7gd5/c2//OwPAGFPszOvp/ZdqZ8uMkV4KAAxY/B9fKkaGGMEIMOLK55pahWFKRv51lfTKL6V9W4bnfDj0uVSMDCe/IhgZ2JyHA1VeMRKefwiDkcyE0rYa2mklrbS8YjJfRCq10prZGFaF5DKO8qoMRtoVhhaOKgOHaYfP1YRp05PHjhX+udxjMOJUBiOOXWqlla4rG76eDEYPonOGay0q3UPFiF0WjHjRdbar0M+MkbiVlhMF3nUnnFBqpaVS28aOln16ff1vku1te9t7PKZbDJLh66n28Gtc9/HjZdflFHcfK68YKXR6Crzwid4GxZt4xkg0fL29UKoYqZ4xYtmWMrnwe62vipF48Lpl16suv0fl0zVS0foHMmMkni8iSamDWTHy0ksvacGCBVqwYIEkafny5VqwYIH+6q/+Sh988IEefvhhffDBB/rEJz6h5ubm5OOZZ55JjvE//sf/0Hnnnacvf/nLOvXUU1VfX69/+qd/kuPUvvCedO0ptefy3F7+81X+hz2J+CEh7rfX2crXE8Ch5733c/q3znP14p7Pj/RSAGDAklZaDF8fWswYAUacmy/7idtgGFppGVP6SewafiIbI2jfFunttf3uNioUmTEynMp/UMT0MUD7oJxblTMx/KE4v5vXpq5FemH/BQpSUThS7Oj7NSp7H9yifLt0azplha206tLh/eH68mBEkyWVVYxYlcFSKpPVvBM+kTxOWmkprWy6qpVW2laxbPh6WDFSaqWVTlpphe+RiWeMVAxfr54x4iTXUu+VKkaK+T5aabWXhq87UXV1/cKFSk2cKEXVHYXO8M/7f//XJ+WXhWmdrT0HUOXD1+2O8H3Ozv+E7Lqs7Ch8KT9OR2spIKse9B6LgxHHtmSl02ovlCpG5Lpy4pkexlMqYysVzXTpq2Kk0BWt38qGwYhd+r2R8uO/4zx5Nf4fIiirTk9lszW9RlLV74oanH766VF5Ss/6ei5WV1enO++8U3feeedAT9+nrn2lihHf6y0YKftPBH/wHxLcQvg17dzP1xPAoSffGQ2N83NSEJQamwLAKGcCk3R7oWJkiJXPGOH/NMCI8PKupLgP+oH9kGdNAk9xmxAC0VHuwcul95+TvvWMNOv4kV5N3xi+PqzK/z3kD3fFiFV5CzgYimDEy+uJ1u9Ikj4qztHixv8qq4aKkbii2HJLFSPpTFqWJXnGSSo86lKO8gpvcu82k5VN2UnFSEqV609lMpr3Rwv0+ronJJUqSgqml4qRslvijhVobkOL/q31cB154ieTGSNxNUfcL7E0Y6R7K61s2pEfDXSvK2ul1efw9Y6yYCT6fkgffpiyxx4ju7hfgUwyz6ptz0cVr+1q6zmAcgulVlpW1Cgp+/Hj1ZVNy44ykMqApVjx2p7ErbTS6ZQ6i778wJRmjEhJoYORp1TalpPuv2IkbudlKaVc156K0o2UX/oeCvzaWs6Zsvk96exBbKU1mnW2ln5qoteKkaD8PxGUnR8K4t+45SknABwqioXwHxNukJOKPZfLAsBoFJT9wJRPMDK0qBgBRpxXLP0+NGYYbq1UdL/g9/2o1r4z/LVtx8iuoxYMXx9WFRUjwx2MqKqV1hAEI8Yt/Vm0uXOBNnT855oq2uJWWnKL8qK0IZ0Ob7S7SiVBhm1b2mAdry6T0b8G83XUjAlqM1ErLVN5DzCdyWje/BOTx4UgvN6C0t2CkWzakau0/mjyDh09YY8mpIqa19CiLy/Yo2NO/nQyYyQOLeJWWnbSSiulST200gqiflDZuHrB5HttTyVFrbSiAMfOh+9lZs4cORMnyY7+Xil2hdsLnZ1Vr+0qzWop4xUDmWj4esYNZGek9GGzZWczsqJ/m3sVwUgNFSNRMOSkHLVHP5zuls1ESTlRSGJ8pTKOUpm4YqSPYCSecWOlVZffK8sqXYvjle57GAUV1SC9CYLS2lNVX5u+DLhiZDTrait9s+WLvVWMuD1/jjEr/o3r5n25BV/p7DD8tA4ADJP436tFkwtnY9VNHNkFAUCNTNl//mv5Dw0GgBkjwIjzi76k8OaL0TD8H7T89zrByOgWt213x8DXKf7pflrND4uy0RHDOnzdBEamumLEPfCvuZev/B5/s+tPdNJAWmkV82UVI+H6ikpVtL56PP0n+j8dn5YvR0tmTlD7rqiVlirPncpkVT9pcvJ4V75RUjRjpKqVVsax5cnR55rfqdhe54YjGpJWWvKi2RXR8PWo3VOxn+HrqegmvTGu3LyvIDCy7e4tF7vKWmlZUWVI+rDDo7ZX0VsUBSPFzuh9tXKS6ZLxXbXvzWvi9FzFMd2CJ0UVIxnfV2Z6VpZlyc5mklZaXkUrrb4rRsLOUFHFiG2pLe/qU/brujD122QfJ+lqEVaMxDM++mql5RbjYCQVttIqezsdt+wHQo2nD7e0qX1fXsecNKvX4wV+eTBSeyutQ6pipKuz9J+vXoPXgFZah5ry37hDWjWSbx26YwHAIBUL0U+lGCpGAIwt5T/FFvTW5haD00sw8vZLH+qh//6yOloIS4CDrfyGT/VQ44OiomKE3+OjmXHzcoPs2AiwmDEyrCqDkeH7YW2//AdUoiHVQzFjxM9X/llUDHI1DV9P/o1YLHSvGClrpSVJubQjX44yjq25U3NlFSOVlSnxAPApsw8PH1u+AmOFQUtVxUjasSqGr7ebMAjJufskY8qCEUnykvcsPkpRaTXW9TBjJGql5cTBT1TV8spv39dT/+etbuMnCtWttCxL6cNmy8rWlYKRqLIiHwUjlt0QHlqeWnZ1f68LXV2Kg4yM5yvVEL4vVl1WThDP/iv9O7KilVYP81DKW1k5KUtteU/fcB7VF1LPJhUyxddej67Xq6wY6aOVllsI/3y0lOo2Y8Qq7pcThUzGeHrsf72qX//D69q9ta3X45UHI+m68RqM5Ev/GPGDXi6NfryHnPJgZMgGsD//v6Tb5kmb/nlojgcAg1R0w7/PXFMnk+/9HwIAMNqYgIqRg6b8/zRlN95ef2qbtr/dovff3DsCiwLGl/LA11jDXDHC8PVR7Yldl+knu1dX/CT2qOVGP4UeuJV37XFQjFTFiF92gzrl56NtBx7MuFXBiGfq+gxG4mDAVFSMRFUWUXjhVQUZ9VH1wZSGtKY1ZNUWzRhxgsrzxMHI+dffrLl/cJy+cPgbKigtyeoWjFiWJcsulSj8f+z9d7hl2V0dio650k4nVequDtXqVisHBJKIBmOwMeB7bQMmPPsDp/uuedfmcYMvxr62v8vDmGBjjOUERnARGIGQQEgICSUktVJL6py7q7srp1Mn7LjSTO+PGdZc++x9wl77VJ2qWuP7+utT5+y99torzDXnb/zGGC/JOwEAociAfAQ/cEgPyWEUIzbnKYi2KECaoQdhSB4975U6vP3z73sRT/zZ+VJhX3CBLGY2x8QXAsHRo/DOfwGk9xI8/ZE0LStGCOnoXaHoXtn6LMjiYl7oCwlPK1u8ZrMIX2eOYqS/vZWWe52EQYBBytAh6jMu3XEEAJA++CV9dLgOX99ZMZKN9H6SEM1sA8Q9RdkAvm9+wW2m9OqZPqahIEY8BI3dW2ndNMSIFBJJXjB6gk+ZmJS6q26Ah1SNHbEvipGLjwKQwKXH57O9GjVq1JgRWWoe1R7ocPpEoEaNGjUOGlzFCO3VxO5cMUUFn8Xq99t16NWoUWM+4E6uqbgWLuUlQrRWjBxkXMleCSZb2Fi7Acbi3Ckui9pufr9RIkbYNSRGHCLX0/MGmlRXNPGsfM0wNCCzycTImafW8ev/+LN46dHVYo6YFVZaQaDquCpjpKjpWmKkHeHIQoSBVFZagSi7KQSRUgks33YcP/Bj/wD3LnSRQpEl7vacN9gfL8ijyKQupsdr8DwfxCsK8zZjROdgkMBVlCgoxYh6j29PdLnunA6L45WOWOk1gRDwIgn89vfAu/AFq+6gWjFiMkaIt6DeJhl6ExQjhkghOhHF07ZSLIzg6f2aqhjJtl6Tru1W6BMMM4am3udnvvE+NP7PfwrfKGGkttIKd1aMxD1F9ISBD18wgEigoW3D0z58m1tS7NP6hek2bdxaw3nwW7dg+HoWM0jn6/BpUlZRK0auJwSlePY9f4T+yy/PbZslxUh/TufUTDTrCWeNGjWuM9JR8Tyjo51lybuC4MC5L9djXI0aNfYVbsAo7dVWgHPFlPD1PFG/5zUxUqPGvkM4xMg1yRjhbsZIrRg5sBACXBdYeX4DEA2u+qheG+w7hCxUBvKaEiO6sC8oPD2HoEn18820YsQjxVyEJpPHpwtPX0QWM1x46kJBjKQJmG8UI+rYUPgI/eI4tTQxcrgT4UingaFRjLBykdwoRvROqM0jAiEobc+A+MXrN+Ui1qCL8qN1tX1dmJeSwSpFDEESbrVqaoZekTHCTPg6s8HlAJDGxZjQu7oJnr8Ez1PnwxcSXqiJF1/C1/ZdzBIj+vtqKy2ATrTSMufV0zZXXlsdr8fXMnjGRs2xxxrtEL5ekCgEQRhgkFI0oL7HEkkQv+0b4dlmKAY/9G3GCN8mfD0Z6hwUTVoRD1gX+rtlAwSBUX24xMj09YSweTcegsYtSIzE/fINzcWUjg1eZ4xcTzzy7k/izz61hA/9p8fmts19sdIy10Y9MahRo8Z1BhXFQ50Odw6y2xUe/13g178D+Oy/m8/2atSoUWMCSlZabLqUvsYMmJIxkifqOJsCSI0aNfYPnDkFTuKXVHL7glL4er1OPbDgOTgMMXLtCt8zgzrrC34DEDk3OFxiRNBrNzcyDRMsewqj/NOQklllQRUwrTAI0+I6YvHk7YqLT6l9ufgMpLFYzTOrGPE1ecFJCEIcYiScrBjx8rIauUSM6KaRTIZoBn5pewaeoxjZxAI2pAprR7ym98cQ3sV94WmCxA8nKEYCH8KGrzufJx1l76gYEx74nV8BHX0ANFH5HL4QMO5eni/h62PEqP4uI62waCoCR0qK7upWEirPcr2v+rh2mmBc4Eruwdeh8MK51+MdwteZVWL48EMfg5ShoRUjSyRGN2g5ihGOMPJsxogQspxv48BkjJjgduJJnMt0kHw2QBCF+nuWiZHxnBYDm3dDCILWLWillaxvAlDsJwBwPoUYqRUj1xWPP6Iuuc14ZS7bk1KWwoHieVlpmYkmryecNWrUuL7IZdGNko/mFOC4dlL9f/P0fLZXo0aNGhPgKkZ4TYzMF5xi9YlFnP/cIchcPRuklFYxUltp1aix/xC8XGjbd0LStc1L9tYsc/FkFxdPbs57j2pMAs/ApapHsRuAGJGulVZdI9t3lIgRfg2JEWaIkUdBxVkIdgksqX6+c22lFbAcnq6f0XTydk3YvGDUzhGJ5EXGiCZGhFeu57Yj9e9DnRBHFxoYQBEjvizX64yVFgBLjKSI0Agnl749vyieb8oFbEijGLmq/m5yRmRRRzZnL4gmECNRYaVF4CEg6vxKhxhJR8W2zj/9ldL7fSEhdbAI8SUCTWJwSsEotbkgCyuH9X4xDNYS0LEcD5ZrxYiehnvtNs5uxBh6ZSstKSXylJXIkEnh6zTV+0wKYqRJNDGCEXrCtySSlAy+E76u9mcKMRIrUocMFMFFCIpzkPXh2/NZ7FMWMww3J9dpeWpIIg/+rRi+nqwpqVMzV0GDHNFEFkk6A72suyyuOdJsvt6rgslSZ85oXlZahhBhcypC1qhRo8aMoCgmXfPwgQWA1SsE7776Dpy+dGQu26tRo0aNSRAlxUhdqJ8rBMPmyQ4G51vIV1X+FKPCHvNaMVKjxv6Dj+Wa7ruFnVPLGMW7J0Y4E/jj//Q4/vgdj4Ndww71WxYsd6y0DvjxFhzEbQatG0P3HVwWZdhrqaY18wJp1Q+sKHhXQKa34fEcvh6j2BRihGsyRPBijkgkB9e2R76u5AtS7vY3GSOH2xGOdCLkvlIVeCjXfMtWWlplgXBL8LoBcRQj3ZKVllaMBMZKyyVG1DkLG5MVI5wU+aCRZ87vZMXIuOrEFwK5JlF44MPXxBmjGfIXv2Bft3hMESPE45ASePGh1dJ2aDpGjCws4MXVIRK/gUCfIyk58oRtcd3JJyhG8syMC4oYcTNGlkiMbkoRthVZRQjDidcfgh94NpyeppMJ4ryrBQ46OwWexIY5BzRGaIgRWX7/NDutwhrOs1Zeu8HNQ4xoxUgz1V0QxCt1qRmkWY4rTy7hypNLSLK66H0tkSXFxdzw5uOTPy7zmpdihFGBS/lrIWjdMVGjRo3rCCnBHGIkj+czxr18/jA2+Qm8dOXuuWyvRo0aNSZBONL5OvNizhAMUts0SL2myZ25dn28a9TYfwhZbvrbb0LSbezk+e4zRhgVYBkHo2JiN3CN+UKyFFwHPh94tWQ+RrDVVlr7jnLGyLW30oLJu5AcfA7EiFGMeILC18RaHk9RjOiP5iViREA0VAHcZJ0Lv0yM/PWvvgtffWIF3/3mO+B5BMeW2hjIFnwyToy4ipEiY2Ri8DoAPxy30tJFeWOlZTIuXGJEf2YYtbZsrxl6Vv0iJSmIEZlj8bBa07sZI+3l28r7wyWIp/4+IG2EOgpCsBzpb/2QflWEhUNLev/V9p/6zPnSdliujr+xt/IWFnFydYiR37IqFIAjGdItsRQTrbSyccVIkTGyiBi9hCJoq2yQ5SWB13ztcRBCELXVMzKLJxMjXO9LoAkg4qGwMwMQROYZuztihMUFMeIHW63TpuGmIUbSnpLeRGnX/o5NYOfzwRB/2vwZ/GnrX4N2+9dq92oAuHKqZ38OvfmQUnlWvkHmFb7+8PmvxR9u/DyeP18XDWvUqHH9wPMM3CsmeNloPmNckqrH/zXM+6tRo8YtCNc7W0zxF64xIziFNDUOvQCuiZEaNa4dpJTWLslgv+87Y48CAGIPxIg7/tY2e/sPkRXn6cAfbzrWsFq7quw7pFOG3dXcSMyHPCnqo8X/Oa2+GDRzD1/k8IWej0wjRoRRjBBIXhAjXGdJBFriIL1ycPY3v/oo/ugf/Tm8/g5FCNyx3MQQLXikfPzKGSM6sFxOV4x4QUHAdEtWWjp8fcxKi0gJT4evN5oTFCOhD060pZQgiHx1bN723Xfird95j9ofx0qL0zIxFQiBwFfHrut3ENiMbIYR10QMaaCzrNQZEBReQLB6ZoArp4v6tskEMYHo/uICXlodYhQ0YQ+Z5EiHFCOtGIla6ru6xEj3SoyHPnwacV9bXsGH14gwTGlJMdKLKcIFRWi4z6lmRx3fLJ5MwHFdjAh0bh4hEgkiDKT6roYYMeH1h+9U5Mv6+cnESK4zcwjx4E8555Nw0xAj+UgN6CEdwawSWLJVlZAOUgwXT2C4cDfifq0YuZa4/FJBjLhhwlVgblojZ0sGdGqwz17QT5cBAIN4Kwtco0aNGtcKdFAOlMsH8yFG4lRNUhjffSdFjRo1auwVwllwi2TyIqbGbJCcArrr1BThTPA6ALDaSqtGjT1BCInh5u7rA0odoudRuv6w34oRTov9k3uwfHadNCY1j+Lkx4HTn6u0bzUKcIcYmVYQPDDQihFDtNcZI/sPgT1YaT3wi8DP3wNcfrLy53JdLJcolCPzyMAxKjTXSotOUwjotScXY1ZamoCwRIe3vQX/8eUWBrIFb0wxErqKEaqK+dk2GSNBULx+E4tYh1Yr6IwRP9Th3yiIEcMsNBqTFCOOlZYEGloxcviOEK0lVQNNtyFGfCERemr86HkFMSIlRcyMVVWE9rIiCFie4/63HgMAPPXAhWK7umHG07VRb3FJKUa8JjytIpFQxIix0lq5TX0flxj5yp+cwpc++DLOPHVF/8YDCUPEaWrVOktaMRIuamKEMjz+8Y/gt37yx+EHsf7O0xQjmhgxSjUCUBmgB/X9AnPetJXWK96obMDXLky2kqQ2M4eAkFtQMZLoG8/nOTx9cHm8lRgpPMcAOqfO25sZp59cQ3d1PrZXl18uiBEmImBCBsxeYW7ajrcOz5Ajc1CNMK5ujWuYhVWjRo0aW5APyg/9PJ7PoJTkahLI2O69N2vUqFFjr3AVI2aRVmNOoMWaplaM1KhRHV9434t41z/7Ah74vRdK+UjTwLLiHguYWi9zVn19ux24c9+DzkiMjI8NaR/43f8X8Ds/WNsozQkuMTJcP+DPPhoj6wV4/g+P4+qTi/U1cA0gUKy/dmzqPflxIB8CZx+s/rkZ1TnMOhAcHHwOmUNUj4W+oCBaMZJNWbPq3G8IQUpWWlxbXQWadJBeOPH9BoViBKW64iTFSIpwqpVWGAZ4TpzAVbmMi/II1sestLwxKy1PFlZajdYUKy1NjEghrZVW3ltHs622ZUgCKSVoXlZoeVKiEajfbXhL8M0BkwxDvqB+Jg0srHT0NgTu/xpFFlw94ypG1P6ajJIzeYgXV4cY+G1LjEAqK62RjiNYvq2tDxuH1OfGqEniXqEYIVGE3BEhLJIE/VGKaFk1l3PO8NSnP46rp18Gy04DmE4QC0OMaOVIuh6BwUdfqu/nW3mLJkberL5r9/II+YTcEpaa47m35s+bhxjRBXJP5PD0zThJMcIcD738erL32RBINq/f5+8Ca+eH+JP//AQ+/hvPVN6WEBJXThU3KkcEkVUnXAwxEnkJ2r4iXka96pOPjKlbI07rRWWNGjWuH4wa0iBL5rPgTqiayHFx00wDatSocQBRUozUCoa5Qjo5eFJ7P2clYqTu7qlRYy+4+GIXAPDkp8/jY+98ShcQp4Nq5QUR1HZJH1zFyDZ5T2kXEAygI2Bwueou1kDh7w+oQ3ugQROsb9yOL73l/8Jz+bfX4evXABIeBO9CimRnxchQd+rHG5U/VzWoOPe/5BBzaKIwxAiRDESo+Ug+pY5m6vxcjFlp6VwOoxiR/vYOM8eXmhhIVci3UeeEgHjO2tZkjMhoqpVWI/Dw1/N/hW/N/j0yRFuttMKtVlpE72Or1d6yvWbgYxi1wIkHmTMEUn1u/tn/hGagw+B1HfrC85sQ+tlxz5u+BrcHTSykOcJAbX/DX7YZIQDFkClihJAGFg4v2M8MQvUamjvjPCsrRn7pwVUklCMlDYdsmKwYUdvipX3N4oJwIGGIPB2rUcRdhxjhiHs9va/mO08eCA0xEurj0DqWgyJATxMjngld11Zat71iCQuHG5ASWD29NRrDZKGQW5UYyTLtncZz+PpmZPFW302WFQ+pPLmO7P2vfRvwH99m5V0HEZuXVafycKO65Vjcy5GPBb2x4WDKq3cPI9sLSYq2t64/q/rDnHI1AOZ1w0SNGjX2AimBL/0qcPZLc9ncODGSZ/Oxvkr0xIryWjFSo0aN/YNwgozcjuUa1SGdLkOzvnG753jv6jXfpxo1bmSEjWJO9NIjV9Fb3X6dbiypfE4Lx4o52NJsB0EzdNlxrNL795QF4SpZ6LiVVu7MNfsXUKM6uFNz4uyA29bmI1zEmzFcPIHzy99QW2ldAwhBkfffhXzw+9urzKQsiJGkOjHCcooiXwQAOPgcwt+ZcUGSDEQXsqetWYXQFqCclK20PPV7n+isCX9nxcgAqpBvitq+N7au1URyhukZI1HgIUOEGE0sNQOsQxEjUltpBTqcXbrEiMkYaWzNGPE8Atbs4EvH36C+p3+v2ofeKhpnPwJAKUaklHj8k+esRdRf/tEfw7d4bXgAvFAgkyHah4/AN+pFyTDiHf0hDXSWW/B8nWUitTBAj+1SSmubZhQjvUC9N5ERfDjEyCjHsKuO0/JtbRACCHYRV8+eU/ut1S2Zrp0TeCBRBJaXaxQ87iFcOaR+lgLxhqrNSqpsdKcRI1J//6U3vQEr33kCR98wgBdE6JOOPt5aXQOGKJQIGz7ueKUiYFxHIgMzH75liRGmHzi+yOFp+R9Pt05muKMYYel16qTiFFh7AYjXgf7F67MPu8Coq8OKkuoTPHOTRmQEw1LT0RyIkcwQIwkaRBE54wTMLOBSDcRm4K5Ro0aNXeHyE8BH/gnwof99LpujcXnRm9Pt/VZ3tc00B9WBZkxU316NGjVqTINbJKyJkflCOr7UQnfyuFZaLKveKJQnDC89sjo5k6BGjZsM4yqrwQ7NgUx35yrHCtMlvb/d9pxm+ODmT+EP1n8O+R5UxO74y/OxTm43fLt3vuou1kDZOvLAq7NpjEyohilBQoDVxMh+gyMBwCFFH0Jso9jIh8X9Ga9X/9yc2kK82RMxB/s/PfzBA4PUlkc0n1xHM0JiJogdlzwpwLQyIiB6HN6BGDm+7ChG9EcF/hgxolV1KaKpVlouYXKoE2FDqpwMwhIgH8ELzX4UVlom16SUZ+JuM/Twofu+CQAgzqh6LxU+mkKTBULi6tkBTj2xBkNUhY0GxEjVM71Aoo8OvHbHWmlJWVaMtBYjhJqYIfqYM10bFUza8xwIDhCJvt+xx8Lzxqy0uuqe76w04Acp8sF78Cf/4WfU62Mzv8z0Z6mMETbu/pN0ER0+ZP/JdDYK27yktjPa2nEupbTESOvwMjpfvQw/kkAQYeTp76rdoCAZWg11LI7fr4iRSy9tVYxw29l+ixIjXGdCeDyzExM2YWLihgux7DpN8l2VSLqV5TooGG6q48epqOxTbLxMfZIjJGq7bEIGzF5RECMpfKIlzHOQAwqpioXioE9katSocbBgLBLn0NUDAPmovCjP55AJkqwXNo5choWmuUaNGjXmDOkU53lNjMwXbsYINR19jmJkDsWORz56Bn/6357C0589uI1cNWrMC3zTXOfq3tmJGKFWMZJZu48s2V9iRLAMQ34EAiGyfHurmdL7HCutLRkjLjEy56ZNRjlOPnRlYlHsZoZwbCeEOODq7DxGrgvMnES1YmSfIaWEtEVbWbo3t2Bwpfh5HlZalKOkGJF8LlZvjJmaWbH9aTmW2ukIlBGbY0GkAJW6XqiL/NjBSuuO5RaG44oRf6zhjzmKkSnh65FDjKy0QgzRQqabpDFagz+WMUKkhKdzQ/xwa8YIoALYHzv2Ksi77oaf6n3gAQI5gq/347kHL8PkZgAqG8USI6HEyF8Eb3QKxQiKjBHPixA2fAQNRcwYcsGQ9TTnlqDyOYMXSiREvTZqtoscF3AkA4qhbohfWGnA84cAJIYbV8EYtw49hvQnkkCGIeRYxhXJemgcPrzlWLC4q77/BMUIZwzmedtqRZCalCV+iNRXyh0izDOVoeWpvx/XipErp3r2GrKfp8fevQSvAzcRMSI0MeJzWlhpZVsnM9zxOmb5dVqguZOPG4AYAaqrRpjuwAlIjkATI3Q0X2Ik0MQIm4OnMpdqIBbygE9katSocbBgbA3mZJM4bvlIxe4XwdOQbBTPHSYbdtJYo0aNGvMGd+ye3I5lmnOsnunv6OFfYzqEG2avrTDykUNEzYEY6a+r50Nv7eBa/9aoMS+YTtMVX9lJDS5vnwdqrbREYaVF91sxkmeQUMU/Ntx9Y0s5fH1srUwTXMxfr+y55myl9fyDl/Gxdz6Nr/zJqblu96CDZgUxwuUBL7nRETKobnJBwjp8fZ+h7KPMPSi2V9MOXWKkumKEZbktogOqMC7n0LRimtSVxZQuzk+xazZEDOdeyUqLCT2eWiut7de8xxYbGEIRen6kPj9aXiq/iO6cMRI5KpN2FCDyfaxDqUYQr8HXihFpw9dloRiZYKUFqAB2STzQv/I9CDTxlQsfoAmabTV+X36pV1LvBFEDPDaKEYHUX4RotJ3wdYqYq8+LIrVPRrFi9k0ICc6FejZJ83wS8AOBb3rdCfzb7/8qfO/XvRq+Z7bJ0V9LrGCgc6gB31dzSykE4u7I7p95PhIQUOKjgfI4EbEhfurTF5T9mwOaKlXHpPB15qwRmp0mpCZlPT9CFqhz4MvM7mu4oRSNR+5eQBB5yGKGzcvlmjLT9f5b1krLMPG+cBUjW9lu7kjBOT0AxEi2Vf5zUDDqFsWyvCIxYiS7AXKEOoCHJdUXWYYYoasCJC8zpTNDCDBdfBS1/36NGjc3LjwMXH1+ftszJMO8iBE9ifD0RIGKRmWFR7JR2BgyGR3orKsaNWrc2BCu3ZOz+P7ce0/ivT/3EM4+Mx913a0IQXM887ofwZff9pPglABSIh8M7d/5HLpAzUI2HdaFsho3P4zl0UqgrD+GV9a2fT3TgcMez0EMMZLvb7c9dwruLNl9KadEjIytlfPhCH+08a/w3vVfxMbF4fhbK2GkQ337V2+tuWbmWOGKg25bm8fINTHCvRCibpjaV6h70dyDYnvFyPBy8fMc3AhUw92YYmQOJjpc12IJERDapomJyVZYItUZI9QvxiXJwXQmXaCVDl6wvZWW7xGQxqJ+rdpm2O6UX6QbFlNEaIZTrLQcJUkj9NAMPSeAfQ1+MB6+Dvja7iuaYqXV1LZd8Z/7NgR63Z7RAKAxGh31vdbPD2EUI57vw/N9SN047gUSNFoGby5YxYiUDFQ/o6JIbd8qRkTx3GEZV2O8Jl18KeGFEkuLy/iBt59Au9Mpha8bYqHRDhBGvg1LB4Dhhht9oL4zAUFKfDRJ+Vm3SGI83JWOwkW/S+/bJMUITcxnETQ6DUhNypKwARqqc+Bz9RoJBv/8SdCLF+H7Hm6/V/19PGfECCEI2RvVcdMQI1w/cHxeeHy6Ewf7OocYuW72iTTBqfTteD751htGMeKGOc4CI9n1BAXvazIjnh8xwrsCtKduQs4qEiM8B+VqkKHJAZ/I1KhRY3akfSS/9oPI/5/vn982jWKEZ5jHTDMbqQdVI1fPCoomQEfbvWVHxL3i/UxElbdXo0aNGtMgM9dOpPj9UCsRuperq4dvVbA8w9WjX43h4j0Y4DjAKfJBcTzZXIgRtZF0WFur1Lj5YYiRZV8RI4P17deqNDNWJZmjGNnfe8VVpHC6+wY+t/g6bjudDTNIqG19+pmv3WJNUgUmtyWZB7kqJXD2wcK29gAjj4viorHoPrCgI+TEKEYCG9pcY38guISUzv24rWJkFc/G347fW/slDPrV70ua5lZJoD99Lo7KphZLPAHpK5KCiWjiWljosUbAt4oRiWInQq1EIMFk0sFF0FaWSiYMPYjGVCZMjeHbhq/7xe+bgY9W5NucEddKS5qMEUh4+i3BVMWI+o7JyhG07z6hfs5CpRjpmCzjIl8jiBqQQkDoqAEvlOCNFYj2ghO+TgGtnmhqhUyoiRHOchAdtMJyUbLS8oSEFwqQRlvvcweBVYwIO953VtS2SsTIptPEr69ZIglyeGiiPE7c3czRjzrwxhUjmihLRxScCpx7dsOqFpOhecaGaHYa1krLC0LQSJ1bX6jXNMUAxy9/Cb0PfhBAYac1TozUihHtA+fx3HbWmkT60uuoOwhdn2BtmY3wsd7/gU/0fhxJd75dGfOCEBJxrzh+kxi+vcBc/IRS+JoJzOPqUmNDjPg8A9I5KUZ4rvw1AfApTHeNGjVufLD+Gn7nyi/hfWd+Yi4khtpoOvnnGZFrT+ZG1lWbJC0gq/bcSHrFfkkSQKR1YbJGjRr7A+EUWNxam2liudV857cgHwEvfnKmbi2R5RCeWnxTtACWlrqUszkSI3MpataoccBhup5XFtU8adDbfk3JtHe8L6jNGGH5/t4r3GlWZGz3BXc3DJyOyg0x5nsAwKXRPXjm8/PLGTHr8mQwh2L72S8Cv/GdwAd/vPq29hnUscLlONjEiMxjS4xwLwLLa8XIfkKRlMW6c7vwdd67gi8OfwTr7D6cHr6xaMCbEcrizZkcSA4hqtdEhSVGCKS2pmJoqDnOGKQuQUv4tigvneMRGAIi3Nk+ut1R121BjIyRKY5iZGr4+phipBX6WIMquiOepBiRSjYCIGpMyxhR20ypwNJb36Z/DnDx8gBJ7/HihZYYiSCcpnEvECCtFaC5AN/WKBikVONKKxQQaQofhgzJEWiyhOZcWWNZxYgACYGGPjZBs43AF3abBgsr5tgV9/+oV9QcLNECIIG/hRj5n95+GMOotUUxIjxl9ZXFDI9/6hw++B8ew+OfPAcASAb6+iA+/HYDRAscvCCCbKpzEGli5PAxD+10Db33/xGklFg5rogek49iYMj4WzZjxCpGRG4zRvIJKwJXTcApwcalET7xm8+gu3rtCkM0jsFkC4CHuHcwZaXJILcMLlDdSstMijxG4XE9QCXVH7pupw50MJA7uZsFgmbKXxOAQLjFJ69GjRo3B+JuikwuYpPfDTkvOyl3wjqHbWaJGtcMMUJJE8gG27xjZ4wvTllSEyM1atTYH3BHtsC4+/uig+xWRv+j/wVf/pXfQ/LF39nzewWjkEQt9DPZAnhemq+b/MUqqK20atxK4DpbcvmY6gIejsJt1RNMB617PC8UI/tMjLhW4ZzvgRgZFgUuurFa3uZYM+nJr1zGvGBcI5LBHI5LT/nL4/IT1be1z3CVQwLBga4n8GwI6qkio/ACcLq/OTm3OgRzrbS2J0bOnfaQiBUAQMKXKwews4xBlhQjAnIeihGtiiI+AK3MYLJZjhCwn6heK0hgrbSEJhqCRgOeJiD8YGdiZKGjw8inKUZ2lTFSVow0w3HFyFYrLVNzj3ZQjKSUY/nP/TkAKmPkj780wqXn/wCCq/PY7BC93w0bvC6JOo5B5xBI2LJB6YCAlOp4tkKKyz/9r5A//AgAgGUZAm2vxXJtpeUoRmRA0IwCvW8RiGfsuYprwShGpChqqXHPbcbk9vun8CZmjDAvMFnqZcgEWcywdlbVMPpr6jPSofo/QQC/1QS0wMEPGhCNFbVdoY4LWVkGabWQnzmD7ORJRE31fcbr1FwvNrxbkRiRUtqwbNdKi06w0hJOECEXHp757EU8/+BlPP/g/CYAO4GOimJZNjyYDx7XRguoHr5uJLuEMfjWZ6565whNC8UI0YtvPqxmT8YcwoYjqMzM16hR42CCZ44dQUVC1WLOxIhp2mpkalxjpAnk1YiReFhWx7C4JkZq1KixP5B5MX/kztBjbF1udWLksScW8ZXh38Qzj+59TsyyHCCmAKEVI6lbbKmWkyelRDYqFCPyABf2atSYB0xxb/muoyDgENJHvI3SwdhaqYxTrRiZUH+YJ0Tq5KXynQuH9rVpMSdl/XLG6XguKx3NTzHA9LqcZtyG1c++MT3H7l2onLe336COsocjnIuKfL/A0tgSI9ILwbKD2bi7b8hHKnPyGj3jOBdw2YjtwtefPXu7/TkRy5VzRvK0KJgDKrdCiOolYQ7VVEwCAqIL8Iw0JhIjUs9bBHw7FxS66B41W7aW6+2CGFla1BkjhhgZV5no+y5DWFKGuGg42SPN0NNWWk7GiA5f95kaNz0pLbHQmJIxYtQpKRVYeNWr1D6EAUzpV+pif2dF7ZNSjGhiJPBACBAtHgWJXGIEgH5fO0gw/OwDNpidZilCrRgxVlpF+LqECAla+ns2Q9/abhFHqdM5pL6L4MX9H/edmoMsiJEE3paMkZBOz86WIoEUEmsX1P6b8THRmSoEHkijabO6/DACaa+o/ZXqPYwzRPfeq36+soogAnj+HJJBt/RZghvFyC2YMSKYtL6YhIiCGJmQi+EOPJz7thOK0Wv3cM2cycZocDCL7qMxYqSyYsRImnIKXzOBeVp94lj2dtXnclStaOgqTjgJVVZAjRo1bjpwp6uPz0s14S585qEY0cNPI+8CAIQXQSTVxrjRqDwBZ3NQ791IeOaBM/jkOx/aPuywRo0ac4FgTsaILLq3jGIku8WJkWGsFvHjhPVuQLNiDMvRBliGPC+WdkJWW+bRjFv1OKeiulVtjRoHGFJKmwVxzrsNHU/lWAw2ps+RDKHgc2oLOnyfM0aEm5cqol0Xc7mTTcJGZUvWeIwImWdOCl+/YH+ubMln1uSClkOpDyBY5hBYJJrLmmC/wLMRmN+2/6ajW6z28eGfAH7t24GXP31NPq4cvg6IKZKNdERxeuM+++9YrFRWjNBMbMkYkbK6lRaHmsuQ0IcXuVZaOyhGtJuPUYyEzaat6e1GMdLWYeveVCstQ4xsY6Xlu1ZavrbS0sSIY6VFhLoviJTwAolMBgj8yfOswkqLI2pp0tFVMGhLrPaSDlGPIghNEmiOCe2lI/DCFnxfgljlovqeHdEHv7rmECOFYoTmioS21ldSgoe+3adm6DksQHEtGCstwYpzlg5dKzStxJBALLZmjHj5AM3Qs1ZpLghXtYvNy2p7uSb4TV2cwIPXbIDoyAU/bMBvHwIAtKQaO3lOERxaUT93N3H5xUdBRx9G9+LHS5/FNTHiebcgMUKdCYJ3ZNFmWNAJVlolxYj0kOuHltwu9GjOSJzJRzyagwHwPmDYLU+QqipG7GKK8oIYmYP5MdXkis8za6E2KVtmL2DOxFEgrBUjNWrcpHC7+ng2P8XIyeSbsE7vsYFvVZDrYM0oK5Rw+aBixkhcngCz9OAu1uaNPGX47O89h+ce6uPio89f792pUeOmh6COtZOz+C4UIwdzHnytkGRqBZwleycd3GPL0FTEiJM5IJ1uzFkwni+Y1AHsNW5iuDWC//uLKRb9qwCA4dXpzShmHumJvMgY2WdihDsEJZWF9chOEG7GSFye92V2n02RbX7jstt8WjlnxF2Td89V29Y+w1XHcHKwFSM0icH9oqCcx7dYw8L6S+r/ay9ck48TXJbICTHFru/U41ctWQtoxUi8XumzVa9K2UqrahMFBLeKES8K4DXVz9MVI5qgIJ6NORBaFRE2mnYs9aeoMVyEDUWM+ER9p61WWo5iZIqVlqskaQYqY8RVjHiaGOG60O5JwAskKMKpORbWSotxNFrtrS/QIeqtxSJE3VhpkUBdDwsrR+GFLXi+xNFh+Tg2B4ogM3keLHestDJtpWWOo5Bg2iLM7JvU32WSlRZ3iRE3j0oaYoRgJDw0jZVWoHNW0h4WGgGESzHo40NYV29D/S/XAoZMP4s8aRQj6hkRhg2EWjHia9KM0Rz+iiJL+OYmRusX9XffLB0bM++9JTNGzIOHCA7/tqOOldbWxYCbrytEYMO7pw1I+4HEYeFnWQhdC4xbaeXDag9zMynyOIWnL3iaVZTTolAFuYoRE7gzK0reraQmRmrUuFnhBlFWzSYyWF/38bHeT+CTvR+fS3cY1f7RPo9tIBkdVVO3JFnZk9rtIrzZcerRVTChJuzJ2ZPXeW9q1Lj5wacQI3X4ukJClT91lu19SeYWHHPSAkuTUhEFKJQ5s2CcGKlzRmrczHBzSC/LZTR9rRi5OF2ZYJTHnmDWSkvk+0v2CmedS2UT6J4FPvJPgavbF3W50wzExuZ9Zj3dJIoEYnR+dRHmjEFJf57EyNlq29pncGd8FggPtGJkvB7lBsffEjDZjRVJh91CcAFZUoxMvt96V1RR+khwGoBWjFS00qI5gZTl8HVZlRhhqVWMeFEIv6XWWXwKMSJQKDdM87Tw1fwwbDZtxkiwC8VIU5MO/rSMEVZkjLSiyYqRaEwx0oycjJF4DX6gs4eN/ZSUIIFETqZnPLXCwkoraDQwXqKXmhiZlDHiB+q7LKwcg99QxMg962WbqnBTEfdGMZIPhggb41ZahWKEhYFDjHg2B0YphvTnaSst5qh8codEl1YxIjEUQMNYaS1qu7e0i3YUgJPiOK/cdlwdM17ef6MYyeNUbxPwmg345txHEdrtFoayicATer9y+IcUMcI2NzE8+azaLz4q1fK5JkZuScWIuaF8kYEcOQLjm8eyrYOMqwzhMrATgWtJjKSj4mGTZ9Wla/sBQ4w0iepSzofVCnE8K6TGvpbBsgnE1V7hZox4WilU1b/UnTiKmhipUeOmBXcWr2JOxEis1RixWJ44GdwrqNA+rT5HoMfOvAIxIoVElquJj2e2l9w6Y9wLXzxtf07Xrl6/HalR4xaB26ziLr7r8HWFlKpOuyzffYiygXtsGVrIJ9if8ApWwdlY13BlG5waNQ4w3PspRgTmqbnW4PLmtLfYeaQnqCVGeNUcjR0gnJomQxP4yq8DX/qv6r/t3ufYx7Kx5kSqv0fDU4pkxuZXn4id3KPk6vbzLinl9llGrjqmd8CJEdel5IDXE7LRWPbgBDv6mxrXnBiRcFUb08LP4w1VTF7m6lqfi2KEk/Jng0HIanlkYJmyiwMQNCOEbV1gJ5OttKRTODcNHiIwyommdYHxw50VI1FLzaECqxgZt9JS912KyJIV43AVIw2tGFlHoRgxxIgBkRJ+KMBQ/r0LY1uVUQ5CCKLGGGGjrbQaWmyhrLQUMRKEuvG7fQhhGAI+cKxfPo7euiLIPF3DTlcvb7HSMjVxXwhkQWC/fyPwUTrlel+MYoRmhUokd63GbcaIxECQQjGyoMgPpD10GmVi5MiJe9R7eNntwtTgs8QQIwSk2bTP0TBsYKERoIeOPbec5nh2tImv3Hcc+fo6ku6a2i0RlxruTV3/liRGjA+mx3P4i8sg+iKY1CXl5nRxGVq2Sl5Dr/EscTo9aMWBaJ8w6qpB5HCgZKpZxRA2E+7riSJjZBJxtVfkuUOMaCUKr9jlkjtdNJyEkAe4w6NGjRqzg1N3kTifBYshZplsWvluFVCpJlJpQOBrGX4+nH1MymJmvT+bqVrsZ7eIYiQZ5Dh3sjh2yWZvm1fXqFFjHuDMIaCx1UqLptx2d91q4FwgE6rbMWWNPYcJC4f0oKSJvKutFVgCoiXyVTIUa8VIjVsJXDfIeKDISIjYU9f/8PI68P7/Bbj85Jb3mAxNlxgRFZ0LdoJw1rkUrUI5MaEA6cLN1RtXhFjLa90dzLgPOaemUeqQLMnqlamvk1Lij37pUfzBv3l4+mffQFZarjWb8IK52OvuF/Ixi10+B1ePGwqZ7ma/lsSIw4ZMIwPjrrqn/SuKUMxlB2xQbe3CmF/OGJFiYibE3jaaWmLEbzUQLiglLPciyLFxSQpZIkbMV5daMRI1mwi00iHYBTHSai2o1+riedgYe49jpTVdMVL83mSMrBsrLRrDJ+V5lKcVI4xsR4wYxYgOlR+z05Iyg+cRBFERGi90vTQK9PlpraAReJC+KtofCpzvtq5JFF38z9bWEOjPZLmy0pKOYiQLI7tPjdCDCAJ4es4pZQY/8NDshGB5DsEc28XUPX9FmPuAETRMxsjCber/aR8LDR+5VxyXI3crYgSifB1YxYglRiRIo2Ft1IKoiYVGgL7slKy0nrlwGleXOriyehlJbAgcilG3IF6E/l7elPyXabgpiBGmu119niPodGD8MSd1OwjhLMoQWMXBtVSMZKlDjLC9d4hdCwwNMRKqSUdVr0nXg9U3BMYcVJqGXFHEiFYKVVgEAkDmykeJB0FvjaJhjRq3GpjjocznRIz0dfczlZPlw3uBlBJMqklQHHkIuCZGBrMTLrG2MQjoCAFXi7T8FpHMv/TIailgMO0fXL/nGjVuFpQUI459gtu8lN2iOSMu0ZCJDpB29/R+4ajgqddCtnYJABCwtLCXZfNTjNTESI2bGTxX80BPMHzH2gsYMDV2DdaGwOPvBj74/90SdM4tMcJAtAWIqHDP7QZbFCODi+YLbP8+x9aQc69k7cRiXbzrF8UlOifli+BFuSlZn66+oRnHxZNdXDnV30LKFjvqzNV7B5sY4U4dSpIAIjvAxEg6lj14HYgRIeQ1rcdZSHntFSM5RTl8ffLrRj3t4NJbBdE3ftKrljPJhA+jJFDglRUjPI0t2RE1QzQWNQlAPPCkvBYWU3KdrWKk2YKv928LyTEBrbb6rKYmso2CxEI3FaYyQnsaMeJkjzQDD63IxxAtS3z4orxeJCZjZFfEiDrPUadT+ntnGXjTX7gLnGnrKCdjxNNWWmgaYkTdn68PCYh/DGHzrWA9dRw7r34NACDvbm610rKKEYk0LBQzzdAH9QMEpilJ5uisRCCEIBmWLa9orsYt4pGSYqTPUISvL2rFSNbHQuThUueo+k5BiOVjymZLyvL4Z2rwVBMjvgC8ZhOBfo5GjQgdoxjxTCNVilQ/p4eDHhInH7Z/tbCYs8TIragYSbXNky9yBAuLgGb1ON/69aRDjHCERcbINQxfd7NPKG+Ug09mwMmHruAz735+rh13sSFGfK0YqRy+riVxgsLTE7dJ52cvEFyA60MX8MwSLlV5jCwpL/xuJf/9GjVuJQink9ntpKuCZKA7BhFC5NUK7zTjAFHj5Cj0rQ1hWoEYMWN5wGJrP3irECNXz6vFRETUxDOJxZ47tGvUqLE3uIX5Uvi68/tb1U4rdYKIM9HZc1HGVUgz0kS+obpKA544uXt1+HqNGruBUYwQzvGjn/ttvPnzDwMANtgJMBkCFx8FXvpk+T3U2HlT+EYxUiHXZzeQrFg/UzSA/iW9M9vfn27eE5MR0Dtf/E2/NWAj2AbTfD7zI7fomvSmNwy5VijTmhyvdp2i3UFXjIyVd/icLHv3A3lWtvmZZ8bMbiClxPt+/iH8/s9+ZW5KpV2DJoWCIq6W37FbsDyHa2c1LWNkONCE5aCPiCryJunPXpeSUoKLYEwxwisrRlhSXNuNToTWckFO0KR83XM2ue4p/CKE3ChGwj0oRt52+Dze8h3fjdd+0593NioAvXbOEFqyYhxuKHsz9HHvkQ4AgqtC5Yz4vFzU9yDhBRJ8m4wRs81Uf99Gq0yM3PGqNr7lB1+jr4VyxogXSqSkCQQRosCD1MdmRXbRWPoRrLRfB8kJSLOBzpvfDADI+4OylVbmZIwIiTRsWHuvZuAj8yOElhhJrY1WOhiU9pPrwurCSgNWMSIl+oygQYyVls4YkQKHQ4phqL5r+9AhtJaU8kagfN1yJsCpAE3VsfWFAGk04OvPiLRipCc7CHRtX/Di2hnGMRKnS6C/Vsyfzf3k+Xsj/G4KYiQxafY8R7SwAKnlNpxvPRhCOP7GiJBnO2eMfPH9L+H3fubLyOfkt5g7FlIpWyjkezPiY+98Gk89cAFPP3Ch6q4BUMfCTEhGT6qbNU+rPaSM36rnZIxwVo2dps6EzecZRpFibRmrdlnn2RgxMqdO8ho1ahwsuB6687rPac8Nt5wDMQIAUiAJQnhCZ4IMZi8imu5GtYjXxMgEX/qbEaYQu+ir4mHCF+bWcfj0Zy/goQ+fmsu2atS4meAuZFz7BHdxfKsSI8lmsQDlaIB1V/f0frepi3ktpJuqGztgSZF3UEkxUltp1bh1wHX3qenMXhpcQQtdCIRYXfkf1Ys+829LqhETLO4Jat8n9lkA57pfMNIEhtqeim9/f7qKEYaoFF6um5bhc4pAmkbDOSlGhEOMbDOGlImRyZ8du93n3bNbFDwHCVyM2VMdYGKEsjIxwvNre1xpxnH17ADr54fI91ut8tF/Dvz29wFc3w+ZUwi+VoqRNN3RSksKiSzV1kdZH2Gu9nM0mH2A4VTZZslxxQiq1eTselcKhK0GmkuLthF6nBgR+WQCtwhfbyEwipHxvJAJ6GglxrFmjK/9vh9Ae2nZ3TH7Y4oI7WgykeEqRhqBhx94+934vrfeZQPY1zfLhBmREl4gwMj0cHhDwiS6Bhq1y8RIrm2gmFZAuBkjfiAw8tRnR75vQ9+P5i/gNc3P4M3yw2pf770LrXvvBQDQJEagvx7LuB5PCyIj9ht2n0KfIAsCS4wcuTvEW779hNrfLcSIOoaLR5qQVjEi0HMVI81lIFTKnXtwBUzP9VuLy2gvrQAABLaO/XnGQDOjGBGmF1R9t8ZWYsRFl+dwfztw8qtuaWIk1fkXPs8Qdto2TIaLrQfDtdFgXtN2dcjuxanbf+HLl7F+fogrp6oRGPZznfEhFQtAOh+f88svzWc77iKKrKsJSNWaofHd9wQF0ewlE9VsxIwEiwgOIhlGOtSIVZQDjhNgtCZGatS4KZF0i3Axls2n4MOp84ypGGpuuvV8QSFbCyBaFZdPsxjYzTY16a38sM2k9dbwEjbWPR1PTXBTsQisnay8XSkkHnjPC/jSB0/ZfK4aFcAp8NKfAflo59fWOPBwlSFCLzuEkKX5eHarEiPd8gI029hbUaZMjDSR9tQ6RREj6phWyhjR56XRVvP1mhipcTODZzqzVDMbBECTK1XFpVf+Y8CPgHMPAucfKt5TmlNpYmSfXSgEHyNGoD9vJystZyzmiEqNIUI3FSrLazWPYfOy0pLFej9Jpoe6u583TekmXSstllyzQvYscJtxgfllGc4dUoKycgF6v8m9cbjnW+63i8vD71LKr/UX1b/HiZFrQLbxNIN0A9AnfGYWM0iprqEoHyLSxEg8mn3/TK6DqxiRkiub0woONsZdxRMMjU4LraUF6+TC0vK4ZCwLt2xDF/+jRhPhHqy0wqgBpo9THI+tG8aIkanh62OKkdD38O9+4C3I28oianPjaun1RCpVh9hGMWKttPS4a4iRtn7OZDpPxBAjoUOMkEBiFBxS7ws8cK0YIZzjO1Z+GXcNnlafcecymkIR45zANjyyXIA6jjeeEBiGLbtPhBDQoIFAuya85dtvx/1vVTkh6ZiVlpRqO4tHmnAzRjapQ4yELeCV3wYAeNvoM1ZJ015eRksTVcxjoPGfgdOX7bZpygvFDCSIKOaYUdTAQlNZafne1ufBZlB+lgxXi3Mkb2ViJNPdrr6g8FstSH1juQ9iAyGLr5z5i8XvR92p2zcdDMabvSooLfYhlwtAOh/Cpbs6H+9K7igxDDudU29qMNRuQNMiYyRtq0AmIab78u1qm1rtYxQouR48+YTzvhfkWXk2kMUHdCJTo0aNSkgdi0A6p/vcVazlVYkRJ9STLCwC2ndzypxyV+C5kdUya6XFsmu8ArpOEKmacLY81VWdiiVg7YXK26UZt00W81KW3tJ47HeA3/5e4IF/e733pMYc4Nq8moyRcQ/+W1YxMmYrk3a7e3o/d4Yb5jfBYlUECFhiAyyr2ESmmoRfvk11Am7X7X1QcPKhKzjz9MEtltY4uDDKYU8wiDvvAgCcH6p52Ic/v47u8W9UL7z6rH2PcWT1BAMhJrd0evF/HnAVGMxrFn/YQTHiqjD4mGLE5ID4vLC8npdihMtivZ/k0y3EqZPBOk3plsQNvGv1v+Hh4fepXzjf4aBBjhEjhng7cGAZMl7uZnebvK7JLjjEyL7njBgC0TTfuM4tPC8TJfsEkaVwM0YmfeORtsyK5BCeZIWVVjp7A7BZoxDhLiS5KvBX+N7UEiM5onYbraWOHUfyuHzdCzp5nDKqiDAqxosoak587ThynfWRJpOJESY9cPhTiZFxxQigyANv5W71/mGZGPGkttLytlOMaCstPe7e//avRwsUd2+o45xZxYhjpaXJEj+UGIWH7b4xXeCXnADER3JVHavW4FOIPvezAABOPHjSECMcuUPE+lJiFLRK4fN52LSKkcwhlKxihKh5n5Q5PI+gsxzBECOeEOhSWRAjQRN4898AALxp8xOgWjHSXlqxCh5JJHj2GFjyeTQX1PnKU1YoZoASuR85ihEPEmRsSMrCcr033txqpeUHtyIxkprw9QxeqwmpL/pJBXLpECPMLx4C02zGpZT2QZ0M5kWMFCcpk525KUa6q9WCfg3MxIlIhogqT3YpvUoTJENieKBAWxEYTFYlRjRryTMgIGANNXhyTB+kdrXdsTyV7KBOZGrUqFEJbnfavAhQ18IxrWhRZTsROUWwuAyhJyRZNvuChetJoyeo7ebh2cG1IpgneKwme1R/70QsQc5BMeIWdVmvLshVhjknm6ev627UmA/c7mlJfOVxPdYRmt6i4etJv9zQlPX2Vpgo5SZ6TVvcCumoyBipYN9irLRWblN+4QedGEkGOT7+60/jT//bU9fep77GDQ+Th+lJhuZrXwsAOLSpnketAceTm3p96agUCmKEqvRYlO/L/YBby+Beo2hw30Ex4hIjjESljA7j4uCJHB7Tnd5zIEY4F5YQB9S8a5qFqRv2Pi3fpDs4gqE4hhfSb1W/OMAB7PxGUYzQWNWjHPDrqBjZ99xf05We6xDzcULgGqiQeJaXVRsTXpPohuymUHVCoxhJ8+bMJ6hwW3HHCm2lVcHaPzcB2pwiajfRWV4sGpfH1sJiSrOGiR4uEyO7q+llULXFZFwxQtUcK9W1wdaU8PWGU0B3c0iaR+8FAPjpWun1RAKeLyG2I0b0NjM97r7hW74NP3z0FI4O1D5liVGMTMgYCSTSxhEAQOR74JoYEZxA+i0kl9QxbR3NbTA59wh8TY7TXIAapY5U1l9Dv4mmQwDRqIlAW926xEg6VNdZc+Gofn+GRidA1CqyaTxtpWUzRsIW8JrvBsIOVrKLCBcCpLfdjzd9+3eg0eng0B13OscutirkPOU2fD4ksFI1IQlajQiNwMOQLIAQwN+BtUj6XfuzGU1uSWIkTwo1Amk2IfXFw7G18O4qRlzQKYGCgknLXM9LMcJYQdhw0gAfzocYoSmHmEMAu2HtfamsVoi+CfIKditUe1V6ksFvqkGEI6oUfFvYzOSQoQ/RUsymICFkNrt6Zrx7mt4iwcQ1atxqcBde87rPXQvHrCIxYuTHnqAIVw6Da2Ikz2fvFmJ6IqZsH4zVSqXdvGFgFCN4WS2GBELQK2cqbzfrFs9wOpiPAvRWhhyto89ug0zqY3kzQAgJnj0DmnwOUqo5da0YUUjHGq6y/t7s45z4FjC/iVisAACivF9kjFQoxmWxOi9LS6rQmx7w8PXBRgopVUH3hlHvzak5rkZ1ZI4djCFGTqw/ixwSLUnw7Orb8cXBD4P2N+17uLa18gQF8dVad1wx0l9LcO6Z+YU6u4oRSfyiIVBsP466KgxOHCstKa2Lgy8ofD0ppEl1Jwo+Rq4w2QS99OLE17oNmNOstEzRvMduV3aM8whgv/AI8MtvBp58X/VtORjPbXCtbQ4UaIx8jBgZtwHbb7jXpqhQG9oRQhTZHlOJkf0PYOd5jpJiZAIzYuqODabmwlYxIlaAZLZ9NI3KRDpjhdSKkQoONqlTi20utNFabMPXRG02KDdu8ykZI8YhMAiKOuluFSMm6yNLYnzp5XW85ytaSaat91JE8D2C0J9MWpcUI2Hx88qd9wMAOnQsY8QjIB4gvOlN3tZKyxnLwkMNq9IwGSPGst/NGPFCgbxx1O4btYoRIO23IamAFwlESwyhVipyjxT2ZTkvVDwS8AOJ3G8i8F1ipF0oRkbF3HP9058GABy5U9mIQeaIWgGiZoDCSkuAekFZMRK1gdf9FQDAd7SewNmv+xHc/bo3ghCCH/n5d+A77nqd3l6qtwXkCYPQ10now5L7FAFaUQBCCOJwRX3EhJwRF+mouI+tlVYY4P2PnN/2fS5uCmKksFTK4TVbEJpp5Ai3FN7lFGKETVmUuQ/pZF7EiCizi1l/dunaeEfUPOy0XL9UAiXJB4AsmX3hyqjaTwIKTxMjDA2Azq5ycfdTOMQIAPBtrNF23NesfM1k6cFeCNa4frh8qofe1flY2NW49nAXXnRORRTuZCdVJUZ4qq4tT1C0Dh8G05Noyme3C+SJ2SYrOopvkPpRVQgd8NboD+HpTqZk9VLl7WbdokjC4vkoN29lvHhmGb+99qt4+PQbr/eu1JgDJJegyWfB0y9Dii4Ekzbvx+CWzRgZU2BkOjMRggMvfBQYbd+56namCz/CkOsOQzooiO85KEbidyirhnTEDrQSI14rSIYb4pp68FeAn78HeO5Prvee1ABsh60nKNqvV0WcO4dXcdlXtQA6/Do8MvobOHu2WMcXxAjTXiBbmzA//F+fwAff8RhWz8yH7BdjWZpU6uLhDlZaJVtDEkAkA/s+4+Lg8dzOj1hcfX3jjj/GPz5Zuzr5tW74+hQrLePCxdHASBwGks2Jr9sTTn5cWXI9+d7q23Igx85TNjyg4es0QY4xxQifvQFrFrhWWvv6jHHDUxwrrRE/hJPJN6l79xooRkRG4RIjYoJmxBAjUa7GDWNvH/PlmUkMmzEyZ8VIlhSxBo12C51GaHMs87GGCjGlG89kjBCXpNhFxggAUK3cyNIRfuI9j+Cn/+DLOLU2UjlEADKEaIc+yLgfk/kcN2PEURkcvUsRI8dIeZwhJrZhN1ZarBjXosNtm+uRJwmE4NZKKvnsZ0EvqsxrL5CgraN236ivHi6CEyRrWv1yJAchcBQjHjxjHZZzpCO93pcSJJCgXqu0f1mjjUA/E1IncH3worKYPrZkvptEoy0RNX0bvu4LAUE8tIxiJNDPoDcqi8M/7z2BkTOeh80mjpxQ9pRCcgSRrmdkHEIXISKPOMRIYXv2TPRVEJIgmBDeDgCBrrvk2QijL3wBm7/3Hkh9PwVBiA89sft1/s1HjLSagJZdcRLZG8JgnL23v59CmLh5E/GcrLSYKN/k2WD2gNFxD86Ni9XDSplj3wIAvj6GVRQjZuJICIffUjcPI41K4apm0uQJBhkGIO2CVWaD2TuwxoMqWZ0xUmMCzj+3gT/4hYfxx+947HrvSo0Z4cxV5keMOBaOVULSgWJB6fEcIh8g0xMQyme3C7TbFNR283B2U0wFdoSx7/EFQ0jVsycZ0soh32m3WEx0e8NK26oBXN5QfrQbo0PXeU9qzANCSJuPBEkhuNgyd90PxYiUEpde7CJLDi7zm4zUcSC62meL+Sc/Brz7B4GP/fNt3z/emd5ldwAwihFNfFewgzWKkXaiCplSyLkezyun+zg7xzyQ0Wphd5FtdhH3czzzuYsHVz1y6gH1/0tPXN/9qAEAyDUxQgRD895XgIURQsmxKcvP9dQhNBk3oeUU0GGwbhPm5uUR1i+oOcbq6TkQI1KWMjsAgApDjOwUvl4uvhoLF9ARuLaiceeGdA6NHixWx87jubUCmtZoSh0V97Tgdzd4vseOl8KVZ4bpvt94efvX7RHjlu7jWQsHBjRGpokRU3y/5oqRa2Wl5aqqHMXIA73/GR/r/QROp2+/NlZa+ZiV1jaKkVCTIDZ8na8A+WxN1TZjpFRkluDwKilGcu264PEcXrOBwPesKiUfa6wWdPLzmOliNvG0BZUM0JiSCbLlvZ4av/I0wc8lP4UvNn4Mm+urhWJERmhOsdEClF2VgasY8Q/dAwC4jZTrioYYkf52xIhRjBTn2VtoI/KcfNM0teNw/NGPgV64oF4XSIj2MbVvDjEiOUFyVe1f+8QCcOLrS4oRoh1zaC4sMeILCT+U4EGZGMnbi5akSbUNleQcuZ6PqhHB5L4IhM0AgI5GIAAIQYuY8HX9DDr6agDAMdLDcMyBp33iHnuh+765NhiEvifDwINkhWLEEEusdRQPy1eXFCPuzLfJQv2dY1z4Jz+Jyz/1U4XqLPDxyNkudoubohpi7FCUlVYLoqlDuEkDMisXPKYpRqSczCC6ipF4rTuHvQWYHCNGKnQQjBfx1y9UL8pwE/irGbzQEiOzLyyszybhCHXGiCARRDb7/pYUI40I4ULb2n6xCvZk4/PK2kqrxiQ8+AE1ga4VIzcuOHP82acswva8TWfBSiuQyQDAtGcrExdx/ksfQuopaTCV0eRZ9C6QWLlzYaU17oN8s4Lp800kt5L0VCwDvd3LbCchdnIB4kE9HlTFIFGT94zOroy6ZhhcwZd/9ufxuZ/6t5WsQW9mKNcKc2wEOJNbbF/Twfw7aS+80MUf/uIjeOB3n5/7tueFJFbjeCtVxEOa6ONixqT+hW3fP06MDIVeSJestGabw0oprWIkyvsIpDpH6ZxyRgQX+ON3PIYP/ecn5rbNeNPxyd7YwEMfOY1P/ffn8PyDl+ey/bnDBEfz6g1Yecrw1AMXMOrVzVyzgmZmfsTgt1rIj6sO10F8ChfubWAYdNXrHCcBY5/qCapN0svNlqceL8i6jctzUJQKBoHys7FQjGx/r49nOzH9fUETMKkKfL7I4etgZppUv5aMitYTuc0tnZZVtJvwdbdg3+N32AyBSjCF8M3TU4PhZ8F4M+7BJUYSUKLKoEad4Nq1XQvwaxW+7qqqTA0q6+Pq8AQAYLV74hoRIxRyh/B1Q4wEmlwsrLSWi33fI+w9JsvXuSSkWsaIyRIWFGg0EPe6kCYIPC3fy5PC14kwZtFQAR4AGHwE3u7ymoxyoz/o483kZSyRBGLtpB0fcoRob0OMeB7B97/tbnzra47h9kXHvmvhOBgCRF75eBXEyHZWWiZ83SnoRx002wyeKELPDTHiO9e9FwqIjp7P+R5yryBG4svqva1/+E7grX8HoVaMgBB7XSSDHFwfZ19wkEBA+GVbMhk00dBER9ZX5573esi1bVc4GiFqqfXYvV+1CCADpHomNLQarmkVI5p0aSvV8hKJkaUJcO7LwMf/byDtIbrnhLXu8nxts5YwSD1XbQYeKHWIEX2+Oo0AH+Nvt8oYADjkWKy1qSZQWAy+pp635kh2cwG6h5iJm6Iawk3WhFaMeK3iYPFBWfo0VTGCnYmRZHM+ElgGtX8BU5OFdDj7xGN84jAPYoQ5hANQKEZM59gsMIU34gmEzoDDRhWIEWY67RhkFCFcWLAqFx7Pfq7YGP/DDmqnWY3rhiymuHKq9r+/0eGuf4zdX1W42Va04prSFLSE1B1cMBOG1swqhzR1Fv6GGKlgzbVnSLmj3cN+wTTteJIXihGxWNmjetQtzgWtYFtTQ2GQLQEAcja7Muqa4Orz2PhPfwtfOft1ePzy2zA8Vz2v5maEKnKY8VVA8K1WWuk+EIqbF9X8cnB1drva/UaSqLVHO14FAGRm+DDFvh2KfnKM1DYhxy4xQmckRlgubOduwBJEbPui5l7RXU2Qxcqaa16KoVGvGH+zbheDdU3mHFRbLUOMsOoF6Gc/fwmfeffzePhP63FoVjDdyexJBtJoIHjFvQCAVyRX8ff+3lehpzt9M11clFJaVYCEANH+9S5x8fJjhW1U93J1VwewbItiJJe6KLXD3Gqcu7dK6Ty2OSXSI1YxwuZCjKjv7AuKQM+70tHkdbUbvj4tY8S1D+zxO+aiGEl6MT7f/zvYyG7bkYzeC8YJLJYe0HGIJsiJsiM3xAiX+0eM0IzjAz/7CTzxocfs71zrtGtvpTVA4iuF8ig/dG2stCgHdiBGjLIqTNSz19z2KZYgZyRGrJWWLN+DgpBKeVfGvScWL+Bdv/BT+K//4IfRxeMAAJaPK9UmECOSg5mGP006UARTra/GwXXRv9cfoANNhgw37fiQIrLWTNPwiz/wFrzr738dPJeM8TzEzdvhjeVb7EYx0mmo+3+QUpy8ouehYQvRAkOg51ZZHIPl2snBfn+JoC3gLd4OQClGcv05+SAAGwjA89B685uA9pESYWCyGYebGaQ+x74Q8AIJGZYVIzJooeEZtbK6nvjGBqhWz/i9PhptRZgev7eFdKifZaQDX5+XBsYUI80VSKKJlWwT+ORPA5//ZeAPfxTN177WEiPQJN9wM4NRoTQiD7leQ+cI7PlaaAT4uHgbfOccHFsqHAU6+hksZG7vKKN3WN1jg+rNQYywghghzabNsAAAPigPbnIKMTJVMeJ0LyR5E7JiuLngAoyoi6eZKulmOpq9g4DT8glfn4eVlp6YGGLEZIzkw9kWrmriqI+7JxAttG3wFR1VzxjxBYVsNhAtdApP5QqEi2Dla+HATmRqXDc8/6Ur9ucguimG0VsSrlJivFA38zZRPH/GJ4N7hfVm1j6tUstlGWkWEvA9IrPECLV+z0JeQ2Lk9/828O/ftDXs8BrAWKcRwRDq45fIZaB3ttJ2E0f1md+Cz4v+WlLyLq+EfIQhUx1HmWheNxJtV/jkT+PZq0UOCptDUO3NCLXW09eH5BBcbFGM7EceRHxG+STz9YNZKJZCIsvU2NtKFDGSpoFi7E3+Hi0X/Z79wiWcf75o+Jq2dolYbOfDdMacPNMMRSSHzzOEmhip0iTlwm3kYnQ+XdqjXlHsSfsDJFeUtzRfr6YK3BckXSDThag5FHd7F1WnZOLYid2o+LPfehYfe+dTNkD1WsFVjJAowvE3qQD27z3K8KrbFiC1332usygVcajJECIdYkSteUe9DFcc+6zNeShGeA4+VnDPtZVWnm1/HY0TI5xJNUDT2IYXy8VOYaU1h4zNZKjDhDmFb7JL8inEiJsxkk+eU/CsqOP02PFKWaUGL1y4G4/F34OHhj8ArL9UeXsGhhixY3E2PzUKhAA+/QvAyU9U3pTME1BPESONXI1JQk7vhK+KKw8/hvNnPTz5iZP2d9fMSsudU+p1AB3FYL4qAMdy5ZoQIyxnZSutCdTIyMkYke0WxKEl/VofaX+2697aSo4TIxKVFCPm2h6QlzDsqTkKhdoeYwHAcrX+e9dfBZ0Qvk6kAJNG+aD+x8ju16bSV2NzNliHrxUnPO4WxIiM0NpGMbId+NLdpaI8AEvewJ+egXJ8qYlvefVRCAn8o3c/giTnQNhCuMARGPvUeGQb6nwhcP+HP4T7/vJVBA0Bb/E2AIoYybSVVtZT92Xj1a+G1+kA7SPwiYSvj53QxIgU0p5jT0hlzRUUWcwAIMMmGr4m+xN1PbGNDWSakPDXN6xiJEtiJH1FjBB/xap6IumErwOA54E3DwMAmvlGoX5+4SPwH/81NAKdA95Tc96NiyNL4ERRhEznrXD4CDVBs9AIcFreAQTqGRU1Qhw6fMR+j5XFQzAXTa7zYczddHGPjTw3RUXPjHGeyBFnCUZ518pJ895uFSOTDwV1fPEEAmTnnqu0r9QJMjPESFLBh56PTVoGa0llCaLZplFfWGJkMFshSz3g9PH1JKLFju1UNp0ks6BQtjCg2URjabEgRuIKShQ+RoxMmZzVuHXx7Bcu2p/3VfJbY1/hehXPJYBciBIxwunuOl2mgekgXmk6MnRXBSWtmWXUpgDlCQqhJz9sHxdAW3D6s8Dw8ty9nHcDY8HgSW4tHVK+WHTtzgi3G/lWI9IvvdTDb/+LL+KBd8/HrohuriKVWjEi2teFQNst+OZ5PJ9+a/HvtCZGJkGt/9RzUo4pRoz9aZrM/zlqVN5iiiXL9UYaU0gYxYi20uILQLxRFPucnMT+WoI/+61n8cnffMb+blI+YkBHCG87YufD2Yx2sMZGK2QxCABfkzRVbHVdrJ13iJE5zbPjYbGdbBAj6avjJzaqqQL3Be5zh1UvQMdnTwEA6Oqpytu6nmCU49kvXMLJh1aRDK7t85Q5xIgXRWi+8j4AwO2bl0AIQbSgiqem0Fcq5hJZZIzoWsPpJ9YACazcrgpSw82set4NzyEwljHCVfGK7SBTHneJ4jJUqjRaKEa8xU4RmjyH+YwlRgQt1v7Z5GPghq9Ps9LKu0WxtMvv2EIez4IsVc+fDXZirnNToQu7po7C50mMPP67wKd/Fvidv1F5U9koAYh6lgRcPXvEPipG2EDVvygrPsNt9N3XdfWEjJFR32mCxsq1IUYow24VI1HeBzl2FFhatG4z2WA2YsQ0fEuUr0VBUCljhKYMUkpI4n4n9RlUNIHeOeCZDwCnHgDtTSDvBbfEiAmiHyeAt4Mwhfm42LZIunZ8yBDuqBiZhsaRV1iyxYCYqdc2ihFCCH7pB78axxYbeOHKEL/8iReAsK0VIzqAPY5tE2S0vILoSBPNFQYqfTQWVfE/8Aiysc9pvOpV6oeOek2ojzsbuedQK0akIkYQlokRErTQDNRrjFIjuXIFTFtpBZdXrWIkT2IMN1VTsOetAB7ggyMw15E5/gCkttNq0U3IYdFIjE//PBodtT3e1cTIpZHNIAybTUvuM+fcL2jlDY0W1b9bPhaPHLN/X77zOKAVb4bUMeTalURgl6Ij9d12/9KDC6EtUHye4dO/91u4dOZheJliodNuWRYm4YPTM+D09NjvpxEj5Qdu/MQnK+1r3leLfCKoDbiynsIzgOsLqKlDgaSs3s3FMjWxMhOYgGsrrRlD4t0cFOIDjcUFeKZrJJ59QuNaaaHVRnNpobCGSSoE2psucj1A85oYqTGGvpMrIvezs6XGvsItKo0TojOBZ+DEIUa4B3z+HUohsbn3rmWqg9OK4GI18WRec+bOHu4QylzbTgqE1y4fwSxi51AI2iuMHz8RHKEmRmK2XNlKK3f8c/mUTsibFZde6gIA1i7MwSIEwOBSYTuSy04laf9+4+zV25GIQs7N0trbfxLKXd8C3AlfN/Ngxry5qQYM4oG6F0048kGDKfoGNLbe4RlfAEZXgdwoRoq5xqirQ0SdDjgxQTES5QM07r67sNKa0Q7HrCVMISagxlZ3PmPceokYmc+5H46K45EMUqSZeh7PTdE2D0ip7oneOWywu/GZ3j/AaA7Dp9nGvGxBrxdcsmFeJNyuP9v65Csrreab3gQASB55BJvv+X1I3T1LZQtINkrrW+4REN2tapQCJnT9vhN9tEL1c/c3/9dqO8mykmUrAGRcFYV8uf3xGh8vmIyUnRCN7dw1XFm0yo55ECOZbvBxc+3oFHLItdIaz1A1kH5ZMcKyOQTE63V+j98BuT4nYkRKS2AZYmSu9+bJj81tUyNNIBPB4WlrnXG7tnnC2AQzUXwGu4aKkU90fxzvWftF28wydPpvUrKimhP2GSznts6kUL43hZBIBgUx4h8/DrKyAl8rIPLRbPUzc++5+SaAIkZkBWJEkX7l+1oSDimlykC6WjRPsWTrPUtk7v5DvW4PihGiC/N+4py7tGebS3ZjpTUNzaMTiBFTfw+2t/w9ttjAv/gfXg8A+NyLa0DQRLjAraWUyhjRuR233Q6MFGGwjiW0G+r+IISABmVlSuNV96sfNAkR6mMv3CgBaRohDTFSttJC2EYz0A00NIeUEoPLqvE34Bzk4iWrGMmTBIN1RXIQ7xAEgAac54OzbdI5CgC4C6sgrqJPULSWVeMb04oRRf7pJpxmE1ST+4wUY4OxJONanbPQkFg5fqf+bgJLrzgBohVvhWJEnS/q+Xjd8UXsFgdztbBHmABdT1JsXFInlDBtU9Utd9VyENDhH4EOP2ClO8A2ipFRuQMwef5LlfY1H+oFBksRGtY3m70gx/TDJfRSNIgJ3Kk2kbGKEUGRLSxbL/aNi3FpYNv1PpqJjhSQoYfG4oKV6eYVrCfc8HXSaqOz4ipGZp8oCTHW4XGDLzJqzB9ud6OU++yHWmPf4HroinkQIywFI8XkhTEfeOoPVKfM2Qf3vLlMBzVKPfkgkAAomNeEnLGT3lpPCgq+oCYSHNFc7Ah2hJRFB/QOIaH78vE6TFI2fQi9+Ivpsjo/FeA2ac6rwHejoKdJ4nl5+A+udO3PVLYgkmrECGcCj3787Fzy10qQEic3v6r8WVlNjEwCd4kRKSCYtCqOiA6taiSb4js/K7oDbdl6QG/JdKjn73RQdIHKBSDZnJgxYggJRoUlm+SErt4o7yO447hqGkIVKy31/kA/G/xcq8fnlLu3fr54hrFBdQJUCokkLRbTwz6zFkMHRTUkGMP7/vFv4/3/5L8jXz2L3137j3gq+W48ceZVlbc9itV3p2wOc5nrCHY9iRH9/CaSggQBGq98JY7+2I8BAC7/9E/j1S8+pPZLtoB4vVDg8hw8CAFtrSuJDymk/Xt06sM4BKXk2Tx1rppEmedbw9e1YmRHYmTsNmAyAuhIZYxoYqR5ZLlYo6fVB88sMTYx1G4325z8rHStpqZljLjfnaGFftVHO8vA9PyfySaGl1YrblCDU6sY8fejnnDl6bltKta1Lp+nQKT9+vfQrb9XcJ0xQYXTSOZmjOwnMSIYXs6+AWvsfnS1+mgwKGqAqb9cUh3sFzgbzxgZy10bUmVDKgVCOkR49BiCQ4dsbcqsD/eK3DrhjN1fRFa0ty+sm8b+ghwdYK2oH/JJbjGyGBMMacPJHsg5nXGxgoIY8LKezZEZoTGzlZZ36J4tVlq7UYwYvOmuZQDAy1dHkEGrpBjJRkMwHZLeuOMOQOd4rMlldKLiHqRhmRiJ7tfESGMJ8EJExmo7LQZEaRUjAl4o4EVlYoRETTQjTZRJCZZnGKwq8qNJOSSlCDURncUj9FeVNSnxVyA8giaca9BRjPgLSs3xWqJVsdEC0FZkSeeYaibjvav6c4v7IGi1kRsrLc9RjDS1YkTnyCyEOQ7f+0rcf2UTb7ywhoX7T4Boxcjpo8u4stSB0WBlno9X33aLESNSd4P5oBhtKkLE01LA8UBHfaup/+T2XVcAQMcK9/HaZqWQPGOl5fPMLoTydPZJrFmIB6BoemowMIutWZHrbXqCIr33Vbjt6mMAgNMvE2z8h+8DLj66t310OpRl2NDKDj05moNixBcUpLOAtkuMVAjANcVSQ1yJOWUP1Lg5wLnYIvOdJvvNEobHPnHWdnrWOFgQJWJkDrJxNqYYEQEw0hPsfO9EhunWk24XjswA4s2co+SOx2JBTRYYoh1DfucC99nJr/09Yay05OElcN2BkvClylZalBZTKXGLEelGPTevjIjBWnnBlPdm72ADgLNPr+MLf/AivvCHL1bazhbkI/TZkdKvasXIZJQVI1xZaenChydY0QE5p4K7QZapRfU1zVDaA0yIeUhHlnzI0LEd3ABK2ROuGtzMf+UEK62I9hEcOQoPxrZmtuKmtavVxcyiIFP9PKUjimG3WKuwQXcu23SPR3/gqjcPxricXL6IK/HduDS4C3/4gWL8yGm1+YeUEqNMFQ0Ym8Nc5jqCO+vufPPa5qWY+RFxbGaO/qN/iOXv+R6Ac5x49ssAgDRrA/G6JVI8wbDeaeFM0rdNl5wVyjg/X8ehQHmtb7C7SxZ5e4ajGCHaGyvNW1h7egFyJE2o00SMW+9x2QDyGDJPbBGyeeRQkTEyh0YPY9HiKkay0eR9dMeqaQrC8fF8c9SptoPxBqgsio7d1Tk1CfFsq5XWPEnL9ZM7v2aXSEfaKYRngO5S5/uoJDfEiEAIocP/SoqR/Ww25BRcX0P9obpXB4OiAE+DBfDR/iuVORMlO6vxb2zVImIITwpER44gOnIYAdfzpRndYfJYnWs5npkhObJKmceAVYy43kWSIsMCsFpEEUyq0RFdFwwaDXCm3V/2QIwQTYwcQXHuvLxvbdG6cnFmxQiWt2aMEF/bwTqEwDTcc7iNwCNIKMdQRgjbHIG+xuPVVQg9ZjfvvNNaT63JZbQbxf7mQZnUsFZahADtI4i8rcTIeMYIicpjpRe20YiYfWZkoxGGG6qO3qS6MUbvZx7H2LysiRHvEKSgBTHiN0rn3ChGXufppsOF24GGqjd0jq4AALitORTzyajVBNNOSNJRCy3q9XquM7oXSIzg8CG89vIGTnRHaL/yHhBffebVpQ4evu84pOjp9wRYaOz+vN8UxAg3XaA+R6ZZSGKIkbHQFVEyGttZMWIGEINYLBdBMjMg12xswNMiuyMLZrYVMcSIzDlanroIqipG8qRQjMhXvQad+DKOrT8GAHh0+L3AhUf2tD3TXe+JHDJqoLVUKEbSGaWAQDGBzUgPn7t4FptnX7C5KCyZfbtm0mUWqjaMnTPg2T8uCp019oZ4A3jv3wNerGZHd70xyQt7muz3mc9exOff9yIe+di1D3+VUuLLHzqFkw9d2fnFtyjcBRafUGDaM1g6gRjR3WczZIJYyTMpnlVSqrGNDmfz3hC5KUhSSC1p5SS8NooRtxhwHUK1TXe1OLICuaAmWKlcAgaXK1l7MVpM3ueSVXMDobeqi6UJm8tidjjWSZoPqrWDJudVkGp6fn6BqgCAeA2pKHchGQVvjTLG2ghUc4EuehHBioV+Ml9pR860WmAfvdKrwBQBA54iZGo8z7EAmQ2d8PXYLlrTfjHmm/nvpLVLlPfhHz4Eotc4s6rYzLzG04oeq2qZQxe/a6MFAGwO+TyjXvn+6zsFU35AGpwELfZxfXTU/uzJajkJ2YjZ65zyg0kE7hbutVB1/N8rTGODS4wQQnDHv/4Z3PXL/x5Mq2xz3gJGa+Cpuic8QXFhOcRqOoRgqhjEmbD3qS8pllfU+emyu6vlYvDcFtzNuDHYWMLVJ5ew/lxn27mVHLfS0mphlo5sC3Tr+GH4Qj2HaVq9MM50h7rHc3BdXJymatpRMTKW4wcA/Xj33cATEa+DucTIJpkLISBpBk5CCL6BnJ+BlHJ+xMjw6s6v2QOMisDnGdBUx4Ij3DdltyFGgMKynl8jYkRyai3O4r76nEFSLjrHI7E1kGfO4EyUrLTGv7G5FwL9bIgOHULryGEEFRtJaGKcCMY/kSOpoNrlDEWIdrMJPzTrIk2MXC2IETGpeVkrRqJmC0yHs4s9WGn52srpCCmaEMN8YImRDbmI9oyKESzfA48AxCGdPROdPKbkmITQ9/CKI+rZsZ55IB7QCNVYMLxY1JRbJ06A9VXNYA1jipHIIWB8gujEieLfDjFC0xSeb8aZcsaIH5UzRryohaAhHFuvGMN+FwDQMMSIVrP011aRDlSj2qtf/jggRmgSPT6EY+SQIUaMYmThdqCxAABotrQizdQ1jIWaBPxm21ppCW+rldbgyL1oehT3Ni+jcd99aL7lq7D81/4a2sePImh9M8LOX0domoaEtqf1fLSi3V9HNwUxYopbLHAmMkLddGlcHtjc+qVrpTU9Y6T8UEjECrA5e7Bdblh510qLLwCDi9u9bSos6z4SiJi20hpWJEYcK63G65Uv3j2nPw4AeCH98xjEO8vGXJiuD19QyEYT4eKC7UDLKyhGmL74Y7+HjFFcfPZRmzEyq/ciANtJYBaB1mLnuQ8B7/lh4GP/cuZt39J4/HeBp/8Q+MI7rveeVMKkIsO0SVzvqrqG4v61L5htXBrhKx86hc+/d35dRTcbBBzFyByKZzJPIbwxYsQsLPIZiBF9rQlnke5pL/p8RrtAYRcfDP6CmkhyNK4NMeIWA3a74Eo2gdOf37YLcrcw55ssLSA4okihjCwBkEC/QsMDLyaFYo4dgc8/eAmnnji4RDxnAsNNfU4lkM+hk3zQKxckZs02M2AblwGUCy5zQbxuiZHAU/d2NqNl0c2O0uNRmvB13Wkt90cxwigHMzZKB1Qxwhw7WNMoJUigrGDd8Vgr7bK11S3vnagYyQcIDh+GZzTyM+bkFTl+hhgx3ubVlVFr48RIhWYmg1GvvF+ZWLA/D6+xJdM08Cnk6ahiAdr97jc6McKdayHfoQHk7NPrePdPPYjLL8+nw9s4BBgy0ID4Ppa+67vA7lS+5hTaSku7QHiCgplilK4/MCosIdd/MUL88RcAAJvs7mrzLSd83WSlZbSFLFoCy/1t51bjRCrlDSAfIXaCnDu3HbFrdJpXn3cxXafwBYWJ8GRsSs0l34EY4Zkic1Cs0fvDha2v2wuSDWR5URjv5rcBg0vVtglAUKXupqOPYj14BpJftarlyrj0WPEzqb5N8+z1eQZisgfJPhIjtBiPmQ5HchUj+2mlJVjx2Ym20Bpl5WtolK3sewC7ajyYPi81tQZT1/IXl9A+dsTasmUzNpKYc60jFxE09PpFcqTDCpnHjMAU4oOogbCp7ikpKXLSAdZeKF47yXZWF8jDRgNcrxVdO6WdYGyiDpNCZR6xARBvAgA2sYjmrMTIks6zgEuM6PnbDhkjBq88pq6x1URdc42G+v/wakFytu65B2xQKEZchQt1Mjwaty2DhI6apn0YDU9bp+YpAv09paMYIb5EGI0RGM0l+JEobL3iIWItMGjpe9DX65orp1RzWbvVxisufh458QvFyJiaxeSeLBP9XFm4TVl+AWiGaruGJJf6vAdCwms1waghxYrvt9xSP588/NX4h695ECeC8yBE4L73vAd3/vzPIVhZgi8Y/Oh+RNYWXddPPH9PhNhNRYxQV3Glmcc0KQ+u0n2AuMTIlAeLq54AtGJkhhBduz2tQAl4Wkjn5cLMKhSXxAh1wayqlRbNzAOSov261wEAlgencdR/EQIBLl/Y2/YKOT4FGi14nU7RjTJjKCRQTJrMjT9YvQxiiZHZySE74dSTLhvKvP4i+uw2iO7sBbRbGueVNy+Gc/JvvU4wXZ4+imtXTAn2HHZN19W1NzmPtU1FPu+C4E0E10N3HsUzIwE14HA6SWZQjBg/YkEc0p+rcZ7OSP5q23l4nkDQ1p1h3jVSjEwo9u2IP/nHwG/+FeDlT1X+eKnT8kjko3nnYbVLXlv50M8YwC6lBBXFpJCL+RAjySDHJ971LD7260+PWREdHAzW0xJfNY+ckcGwfB/mw2qd5GY+M+9ioRisI5OqI93z1D05GtZWWpPgZnBJCAgmIHSxzBPcKkaq+FuPw1VOH1jFiDM39nlmCYhsmBbh64BV2mXOvWCUq5N84KO8D//QYRD93JhVLTFNMZJ2q9nbAcDa6XLH8zxs6GJNDoRi67OWHRDFSKptogKS4usXfgf3N74AwFlnzAjXrpXJvTWvHTRwZx6V7TD+v/TYVWxejvHSo/PpoLdN4uM2MxpBR82ZKJpAvGEVI4RTmJ4Iote3nApw3RhIN4HWQJH0PX4cMq8w1rEM3ChGdAbomdv+Ej7/TT+Hlxa/Y9titlGMWOKDR5D5EJkmeIjkaC13QHQ3L5tDowfPTXGOggeq1sLE5DHZXStNDF93bMRC3WxEBxXH93gdWeYQI+xOYKN6ADs3XfFSnWspRxB8TmU317lDVlc3GNten2eAmz24T8pul/Qyz/1rpRhxlb3GbjPmy6XXDPLDwIuf2Ld9AIy9o/OdxxQc1m1F36v+0iIWbz+KgOtcv3S2Y0QzlVFmxGOhDteW4EgqCPQE92xd1Q9DhA29/pUUubdQWv+JbMJ1peMNwmYLnG0tju+EoKGJERSKkSYvFCObcgHtcMZ1QNiCACkTI74+P7tQjADA/ZoYuaSJkWZTnYBRVxE3nhCITpyAGKgaWc9bgecV42/u2GBFev1q0TmKhq+fNZQi0FlX9nwICR54aI4pJ0jrMGjkF4qR0Qgj/fxdOKw+w9fE5dpZVfteWtBNhfCL8PWxYHijGLFYuF3ljABoBuoYMvOMtcSIgNdoghtixGkyveewGpOe3iAg5rP08xQAiOch0M/dpHNP6aN9cHRuJSstwQUkjGLE+YM+0GnmEiFyqpWWxOSDlml5YTNRXZuJWAG6sxMjJizJZykaWRcAMJRHIWcsthfECLOThGRztlBeu83MLFgpFo4dRhqpi7MlVUeOKTTsFjwvuuLQbMJrtwv/0hnDo9R2y/77vSuX7M+0Quchh5lwasWInsCdO8Xw22u/is+/9A0zb/uWxs1CjOgFfOSlMOLXaVZaZrE6z05YzgXWzg92LJbG2p+UH5DQ0YMIt6jE5xA0yMaIXtPZJiWZKWPEFHOkM3n2hM6mmrFgLEzh3hcI26p7hJOo2kJ9t2CuYmSXCy4zblRoSABUcdYQI14YYOm+uxDobss+v33mnBGWsdJ1JOe08E2GFJCKiJ1k33cQMO7FPRdiJFaTXlskrqD+BIquO8r3EOK4C+TddZgpNPHUcaD5wehKP2gQIKV/CS6tVQJxFSPdjbl9pjsPNs0uBw3cUYwAjlXVKC1nPlFDjDjFbz33Nx3gxCmMKcXIIVvcnbVmZho+iF5cG1XLoFf9WTG4qOaBgW4wYZMKJXuEsdJq9y9v+ZucE2FdFX3dmd8gI7x94X04Hil7ETGlULxbjLrFOMlkEzKvrsC5XnBJsnE76y2v1Y0/6WA+ne3mXiFk8vw6WlLFN0aUYoRr2y8iYthhTitGOBPgibHaYkVuJQKItKJixBIj5UrmU0d+aHsrLT1eWDJaNMDSETI9d/U4hd9uA5ZUrT6fMeSQJyi4LkzyKY1IrmJkIjHCc2ulZcYjllecu8frJTJxk98F9GZrlHEhdIiwdSeRzGaYVobOer2Yvx4DfqRS9i0A0NjYOmbwF1QBlpNw37IA6bAYn0z2bokY2UfFSOaoFXLaBFiGkVRF4EaqitTD/BDw1B/s2z4AWhUjp8/tS03FALzFRTSOHCmyvmY8NXkm4CpVGu2O2SEk8ezXpxC+LcQHUQORVYzkYF6rdO1LOokY0Y0NjYa1nHTtlHZCoG2iQqeRsMVHQKLmlZtYRCuacTwjBDlpwHfX4jpjxBsnBabg/mPqOF/QQ7bmoxAP1VzVkxLh8eOAzhgZBGXygzo2WI27j5U33j6CKFDHPucMoVVIMLttEXpohuXv3wh9bITLCIRRjIyQaD/opROvAACs6DWY0L9f1NdLSnzHSmtcMTJGjCwWGSNNrWwxS2UpzfyXgzQbYNpKC34xrt97VH33tRGFWDiufjkoz/NCkxtOyufjP0XvwFvO/x52ixueGHELBnnohv0YYsS5qQRHaQjahWIk090LLU2MxGIF2Dw98/4mOiwp4Cki2gUAUNJBujqblVZBYjBIPZlM1jdn3j8AYGlBjCwud7AWKSbd6yhp1F4tKVwrLdLqwGu1VFcCgDyevcuB6u8u7ASOgUvFbPIZ5b+CCxv4Y620tFXB1VU10GzERya/ucZ0DFeBni48xuv77t25nzChYT4yePra24kYmaeNy8MfPo33/MxX8PyXti7+XZh8JcHkge04v95wg93m0VU83vXK0MCXBz+EX199l/It3uv+6UeUcLsXhRrjsv6MihEt5feIRLCoZbXEg5iDx/uOKFlp7WJWT5OCsJjBisyFe496UYSV++5BK1WdRH1++8wL4WyzXMzlcwq+zR3rl/yA2MCMo79WvmaqEiOCC4wyNelux2p826kwthNopj3NxXy7qE3XPCEZ2htaxTXn8PCbBaWnj1Th69R2EXMEZj44Y27SJMRXCxsMCc8GvB4kmMKHLyjS5RWHGKFldZ0hRtzwdT1em6augBXHrpH30c1TXI36kJIWdrB7hBkziV40m4JM5etcCOTdLgCg7avxc5rF1F4Qa2KkE2+1wRFy6zG4cqqPT/7Ws1ssuKZCcODsl6rlUenv6enCVK4vUxZXW46P1ssqHjasruq5XnBtVvIdmufM3DqumK1pYBpHyBTFSGNFdb1yrwExXC8s4ERx/xFd4GNUgI3UeXCDx4HJ4cO7Bs9tJ7Unyts5nLy4vZWW9MDzF8EzZWvDeAM0GSA3xIig8FptQNvE8IqEHQCbJ+VzCt6I9H6EE+1R3fD1iU1dLLM5fiZfpbLaO94Ec4ppA35sLtZ+xXpAfyfJ5qdevPgozmdvwvs3fhbv3/jXlS2vWFpkwfpGSb6PVlqZS+RqFR1zzrfcR8WIa5Gf8yb4sIsUqgt+cajWGzE9BLz0qeqZsoIrO+AJUCpBZ14yRsaa2pkhRvylJfiHVqylZZbN9sygOUr1z6YhRsCRZI2Z83WE9GxzchBFjmJEHW/X2tKMCS7kBMWI3AMxEjZaW37XkcNSxshesibGQUkDnnOOPJ3p4e9SMWKstM7qnp1WWx3nVAfN+yAgUQQvVurHOCoTI6zpECP3HLc//+dPvYjfeKSPhiZGGIDA1MOtYkSABf6W8Plm6ONKtIKQ6waD0Qha0IJDr1NRCktXN/CXf/THbbj6UlMTI9JDw1ppTc4YsXAzRnz1fanZFVcx0mxaUkz6xZptsRni6IL6d9LUpNCY3WGgCRcyRoxEhOOutQewW9zwxIjtLpACeVB8HXNzprRVdE8IWlKMyJJiZIqVll5UtxN9ofJqVlppbGyqUrDlZTRStSjoXZ5tEkvNJFswSJ3XkfQqenJnRXfHwkIbPS3fMpM6U2jY9fZo8cAlrQWQILCLuCydfZJgSCHXf596RpJJZvKkdztUikmX2sehrsvl7GB2Hx5omK5vAIDcd+/O/YSZMIckh6fHkEmTOE6FtfPIkt+eRgABAABJREFU52ildeWUGiv6V7cvZMdOB504IDYSBw0lK609SHangY1lUnES4XT2tcjkIq5s7D0g0sjuSxJroYtko1x1TKR789Y2xAjxJJqLhTSXJfMrSk7FXsPX11/ChfwN+HTv/6PsZSqAO3Z3fiPEHa+5F61EjUPd/PaZrbSyzfKih4v5WDa5KrNsDtkd+wETvG6QVSRGht0MEh6IYGjHqmuqatAzsyHV4VzVc2lXTQh8FqOpc1BYxWv0pkVpLqbC1/PMUYxoa4h8ND9yNtkYuy+zg3duShYztx23BBFNKWhG8cjoe7DJ7iqIESeHwhTdTG6SsdQBlJXWg5/4CK5EAwh6qlAJ7nX/9P3i6cW16XhneUX1xQP/xn6XTlOvK+agtop1sa0z2p1i5PE/O4fnvnAJL+/WhumRdwG/8ZeBB/7NzPtoiRFtVTR4Wc078m6150a8XlaksmG30vauJ1z10E5NAUYRmMxLMWLmR1OIkc7RwnKHDvvFuCKd+ZMo1Nomg4QIBiK57RBnVRpRWGYVI54sf++QDXcgRgA6+hOM2GchJQUTEWg6AjVWSiKH124BuhuaierzYqEbFT2Rg+k2aYZoy35KKUtNZJPyHMFz29BEzHFGWM3yKV4v297CQ2+z+lzBBozr8VOCKRKnaqOa4MDwMh6P/yoAYMBvr06MaA7HEzmChglHDiuRwNvB2AQDxZr6Wllp5Q7plckFjFZXAeKBCIqFoWpSHvgnAMmBZz5Q7cN+/28Dv/haoLfVg16IshuABEpNjIWVlm5WXliEv7wMT6u98nzv9TPORJmQIQRR0xS1ucrNm7EJTSlGtPIoimzGiKdraalcxDq9B1foqyDZhHFdj2VRswk5AzESOcSBwaIcWWJqUy5sIQb2Auo3S1Zagc619sdzO6bAKEYuxWou0m6r9zNfq/h8NTYEsVLTxmGZGOHhgiXPolfcbX//3x88g9NpC42Q2e35vnGbMFl+EswP0NxCjHg4Hx6zGSOjSxeQ6/059DVvVd/7/Hm86du+A//Dj/8E7vuat+O+21TeSgwPTWOltYNihLdvs1ZaDZLY/ZRS2vPuCwHSaFpSDGPn/t4j6vj1fN2crpU1BrF/SP0wRox4RGKp/yJ2ixueGHHDiTK/+DpCDzaJWCrYWk7HOtdcxcgUv8tMvaOV6AtVHALfrBDSmhUhhvTIMbQ04dJbm60rMnfUHYH2gasavu4u1vxGhLilWV49OO/V1sMd3D3NTPtcd8blThfn4Arw3r8LnNods8esYsTxqtQ3HBcBkO+90Od+NxuGqTtm4kQvYHhjLkHAtwo4E3jvuyj+YP3ncJXep345mo8f8PWAKUgEJLNdf5MUI6UwzDl2Evc0ITJRZu7AtRao7bS2QkppF5eAttKqqGTKxhUjpKGeQShI9r2AC0/vp+PRr7sR894Q+I9vA37ju/a0TUP0Mp/j7NNfhGCKHGDxNSBG9hq+vn4SDw5+GE8n34kzZ3fXlTMNLjnoNxpYWFmCRxXJ2MuOA4PZVJtZt0xM8TkUEgAgd4IV52nFN0/0xhUjFfPNNi+reUErW7dF2FkDJg0Sh5Q2lg3zwEjbCTXjPnwzN6rznCZCTrLSsh3KzHZAzpqbNAnJRrlQLLJroIjbI8xcwhMUwd0nrJI6TSheXH8dvjj4O/j8+o9YC8IsLY4jTxOtgvdBRx/HIP9TSF2UCJFiNFDjkpQp+IyBv1YxYjNGTGfvLov4T74P+M/fAFwtQldx5ovAp38OmVBrgVyrbicWQfeIUVfbVGVdq74xmBRSb8bVXSt6X/oz9f+NUzPvIzX2OhB4UrzSNpzJoBoxMuqWr286rGapfD3hqofyHULpaVfbXFe0kDYw18m0POvOsUMgOqgtH46KfRXO8deFHk4FaKz2P7xjEWxpxZ5vXkWRwPPCYsYvHx9BwiJIbgIUP8gBSEBSMNEASwY279PjFF6rBRGosYbPwYZQUEOMUPC2zq8g0ZY1OmeitLSeGL7O0kItoxvTuKyWkSfidasY8fQYPIvCexwsG1eMULWvV5+rtuFMzVsv5m8sfleRGDGWaQQ51lefh+Cb+6oY4c4lSicRI/topUUdFXImOxhdVvWIRtZDlKvn5sBTxV88/f5qH3b+K0odv/rslj9JSSyRoH9TarI0z0TPKAqWFkE8D0Rf9znduwraZviYZ3oYwdch3lJyZHzBXl97hVpb6iYKRzHic02MiCW8f+Nn8P71n0HOJu27Vow0mhCaqZN+NWKkQaglo7tYrESMcK8J3yVG9qgYWWlHOLoQIdG2fZ3lMVK73QYGlxDmPTDpodc6Ufq7jFo49KoRFu9O0LhP2Vxd6ae41EuxKRfR0PvDPA+Bp8dcYmrkEjQItipGAh8X/GMItUpo7cWTACHwhMShr3oLEAQQoxHYpUt43Tf9eXzfP/0pdPRcJSe+oxgZOwbtwyUL3R9698tYZ4pAakLd75IQ+GIECeOkJOA1G/bcwy9fI/ceVXPGVWgCZEwxEgZa2RxsJUYCvvvnww1PjBj1gsczZF7xdYwtZiYXi+50wVBuGioGJEn8iXYzhrhqx1fgsxQCIbqD9p67dA1yTbQEPIU4eptVonS7s50KlhUkRmvQBQCkSbXTyswkRl+sSVsV9oiWN02yBtwOZuLoCwq/o0gWE1ydMmcge+aP1EPowV/Z1XZNh5lLjDBP3XBMRFPli9vBPoh4bll601U+0uFsmWyVvfJvMnAmSj6vVbF2bojVzUVcpq/De9f/LV5Mv/GGzhkxhBwf8m2JkeGmQ4wkc5L5c4HBur7GdzhHrrUAnxIOfytDcFla/aruqGr3dRZPJ0boDNw3lx7MZNHAEiMb66qzZ+3knrZpOozXIoazT3wRIn1Y7eu1sN5wFCNiFwdErJ7EmiZTq6qu7D0gBfyWmqBJTz2bevQ4kHRn2m7WVwUZU9Qsdx7OjpJi5IBaaRnFyCFfNYuk69VsBy4+p96/1Dtli+VpUm2BPEqc+cEci4WDvs6aoiN4uhDFD2gWDP7sXwMf+EfXraGjbGEr1BzD2sDywlo1mV8RZjBWKOZzCPeeN1xiZOG++xxihKG7pp4bg/iQVYykqbPGSXNAMEgE4PlzoNiEFF2EdIjo0AqSgb7WZ7FvESabxBQ0y8SIkIG1+dgWT78fuPos8NIni9+d+xKkBHKpFrnhi8q6JKlIqgIFMRvSIYKxQinPthY6bYD9buZHUgLnvoJcNCvZOlLdRc4Iwd8c/l/w9dghqhIjvfI8gQ6rWU9eT7C8+C5mzTwNhgBKRnwulrFGMTIldhQLRw/DNx3bw8QqgKQsxhuiLWE45eBa9XuhEeLR1nH4mhgZt13d0z7SQjEio3LxSCDYQTHiHCPJQGUDPBvZjAlf5CCtFqQuoEn4lRurjJUfIQJeU+0vR7iFGBknKHey0iI6bJgjKjfd7BFssGa32dIuHlXnHYBqlJJSoDCTZOp7P/ehahtO+8hFy46hatPVnm+Mqus08TZw9tkHwJIHVPjxPhEjrmCA6rwst9lvX620XOKVLGC42gWgCPVGrtZBibF92nh59g8SorDiyrbWDNVj1rnGpShFjmzNGFFzAklMbt7e1xpmXUG0StcPA/j22cORygUgnW0tKOHbPJ0galjFCNFF6XV6AplcBEcDCetsfb9RpjabEJoMGi+Ob4dJVloGI9IGRYB2VIEY8RvwnPMVBIYE2v15eOWxBSR6jdjxymNW4447gEtPAABelHchaIwRPUEDx9/Wx93fvAmi//bo2S4AYAOLiPxCgeLruqjnF4oRGgRojGWMNEMfF+RRRPqaWr+sGgSbUsJrNtG4T62/0xeK5hapn8/UC9AiJnx97Nh7PlJ/yf7zTLaIFzaNJevQXnMe6ztWWhK5H+GSbmrygjIpdp8mRs5Trdocyxj5i//z1+DE3R6+5rteW/o9wd7GkhueGLGKEZ7DfSwYYiRHB2KoBibJKaRrpSXLxYZJcyrGi6CyhZGSwq2xe2e20zKTPJ+lILcfLxQjw9Zs1k9OxkhDh7AleWPiBLG/luD9/+4RnHpi++KF0JMRw0pnC/riPqNuGLrH/A538SeiBj74734Ww0Bd+Bl3Bse+lhruktAw597tpmbQHW2iAcR7L9KYhZIvchs4yWUA5DFG+mbMRXvmB8eNgPf9wkP4nX/5xd0tfHeBtXPFsZLw8VT83TeFYkTGHFLfK5NkvyZfBFCTwF0tvnfAcDOzn8WvbF8Qd60FXNmyi42LI7znX38ZZ56+ca3NZsV4NxonYaXFFQCkmhgxQbi5v2gL5bNYSgvp20mD/Z3u0MiZnowJuicbAePHTLXUFjrMnY2uQYepc3zX+zsXbrpnL4Pp41c1p6co8jF4WjpOtAJ6IG+budkh66vFfSPrAgC4jOZSgD7oGSNCSPTX1fP2tlCNRelatXH94gtqHFrpnizyFtJqnZumMAUAdDC/azwe6kURHcGz1ilz2/z8ICXOfPyTeP4L54D13cvJ5wl3pJXQGSNpYaVVkGDzO4DDXnncZAdQMZKnRdPQwr2vsMRINspAuRqcGJqWGMl5USRgWQZwqht31BFe7L+Euy48AP/wYaSGBJR0bx78H/3nwC++CuhfdMLXOUQ7UvsnTUjnLs6VKaq5QfIsA5VNa1/cGW3ql1SfbxryPODpFsWI4FsLIiYUmu/GarR3Hk+vvhnvXP3vePLMq2beR25togTu618qFCOkIjEyHPOnvxYK0H0Cd4mRHWzbGNPKBuEX3dAVYEhEz5v8uQvHDheWd0lm81CELOY2Us/ZWJaDa4ZlxCVOrpywRc4qGSMsSyE8db20/S5Wui+gre3jBNmeGHHVexIMTEQQ+QjC1hIoSBhCNouiVNW5l+SFPZnfMvkVjR2JkUnuFJJl1kpLHwL1bzb7+M5H6+CeDnTXloQ7KfJ3AzW+O84k0hAjH9764hc+Clx4ZHcbTns4n7/Z/tPjeTUrMQCcG/ssvb4VCfgO11Klz3O6lI2Cgzs5YPtppeUq0jKygNG6Wos08i6YnstlhnSI12efz6fdQhEyYX0hJUF5diRK35tbG3oKSQCvo4rhUqu5qGjt2eWAWqt8db8EYQTfFKAlR4bFCoqRoMi0CEOEDTWH8TQJs5bfa1+bixakGICN/gyCd83eAVCKETnFTmk7kHE7Jwd96ODvCooREbTgO/XGwDe2YdM/dxz3H1tACjXWLHt93HlvYYkVRg3g0uMAgKflveiM56G43y9U18Jj57oAoBUj2krL8+AbCy3P1DQlsiCckDHi4SKOoqGtPbt9tb2WHlwbr3kNACB7oag3Sd0k/zr/HP5u+HG9P1vtxNJIKTu4JFjHEk4P1WcTOkJDuwd5rG+fl4EQ+NlPvIyrPXU/3nNspbQ9Y6X1UqpJy7WTwK98C/C7fwuQEvd89R34a//iL2Dl9kOl93nkFiNGTMHAZwkyh2rlBHYCn2qvYZHTsmxtjBiZVLhkejLt8wwLQ9UVuc7uBbqzESOG1A94Cv/4HVYx0qPHZirMFIoRhlATIwIB8sHWSfHLj13FxZNdPPO57S1DuJ5oGpnqi6//eqw1l+CnaqGRbO4xfN3moOR45vHP4+SXv4AzHfVdU7lou9OStQ18ovvjuLi+sqvtck2M8EnEiAyB0d6LvYYM4PnLePq2IQS7AkECyOEVjIS+ydEAH81WRDvo4FRg7dwQo16OUXc+E6L1l9WE/Wh4GgCQiOUDS4zsZgFgyEhf5IAmHCaNHa5iZLfb3gk9J1eExdsXll1LvWkdXw9+4CWsnRviQ//x8cr7dqPBXXwDekFZVTGiMwbsWOwVhazR5t4LH0L6dtJgYLKxcuFMkvZgI2AUcLZebBbxcywaT4WzeOX5zsf66kVHdTWDFZkLUwQjksPTE/bwiJpcjrxjkLMqRvQ5jwwxQiLIbHZbBwNXIXMQiZFkkGt7Mokjemw3geSzgOYcq+fUsTzUPYmAG/ugamGlZj4DADSufl4MzOUbuoqRg3eaILMBPtb93/GJ3v+G0YXZcnQM5lOsUIoR7oSvm4yRdA7FcYNkVB4vTLjwQULm2Ncs3nOXtXGhIwoqNTHiNQGWqLwC6RAjWjEiiA+jfn/1i+/BK0//CbyVFeSJutYlmFUJ7govf1oVgy4/aQkDTzDg8CIIJAKTBzNhjbEFZsFTIkZS2+ksIGyWH5vSvLEXUNPYxDNrxWcgJxwDU/zcTUd8/5mH8On+P4SEj6evvGHmfeS6VVoSgXsdYoQjnCn0Nt+8iNGFZxBr33Lf2tLNb6y71uBO3kxOty9TMFb8PZ5Dzoi5V4g/+XPDQyv2GOfUB4vNfeaOL/qcppmdb1FCgNe+3pLoxgZ7FtB4BKkLV/5CE2997D/gVS8ryx9FjEzftttICMnAZASZjcAzY5vHQAiBaLVsg09VmztjR+35QGCIEW+rYoSNzfEm3Zciz6zS29fd30oxMjsxIuK+tVOP9Nx9oo3XHkHTfEvNiZMQuPhIOXNicAV49w8Bv/P9uxsD0h7O5V9d7L8XKLumCjDZeIKYe49CeiFkRSXK1M/jxbwsHxXWcwb7aqXlqLFz0kG/q+6XZrqBdEE3YpGm4kNYOrtNmxvcPqG+J6RXuj7kGDFSNH5TyCgA0Y3dQhe3c7T2rF60NVOrGAmtlRbAkWN2xQhHANjw9UaRXaJJY6P+V/u+AJY9CZY/Bp4plUShGGmBaUcBP9yDXdh4ALiDTU2MVFGMyKAJ3yGyGoEmcvagGHnd8UUkmhghyTq+Rf6p/duou1EQI+JetBvlfSXu99NExGPnVH17XS4hMlZaPoFvCFli5tmKGBknhhqBjwvyCJqeyUFSaGslYkGMbFWMfEP4DF6H0+qXR8sqDQBoH7odAJBEhyDg4cWevuezAZoL6nz4+WYpYyRefRav8ZVF1uGlsqro3qNqvf7sUCtpLjwEXH4CeP5PShEMDe1MZODdaooRUzzw2BDcYXWlV8i+0001IHGaw7XPApid4ACTB2LjF66IEa0YofcCm6dn2l9KNdHCUrTvvtNml/TYHZAzhL8a6wZPUGVVpW1WknNbOwNj3UG3kw+4IaCJllbFr7gff/cv/3MMmurBmeZ7u2xMh73PKTavlkmZDEuQehB+6cwSnk+/DY9c/qZdbddMmlx7NIEcUmZqAVlBMcLYy0gDoYIrESJdXYVwvFbz/s1JjKRxMaGeRyEfANbOq4Lr3UuKTEzE0oG00rp6boB3/h8P4Ivv376rlmq7D49T6729k2IEmE8Au0uMTFOBGCS7yBhptIti/fj+3uwY79ibh5VWru8fQ4y4oHzvXs0c4VbFiJ7o5NKR2e5yUSiFtJ2ptl6st2+UD/sKRzEidgp1lBJrG8VEMK9YOBN6MudJDl9LrhdPHFbWPqShCkszFKaSobpvGo5Uns5BfXPQrbTMItYnFG1PffesQvj4lZd7EAJoy3U003X4ev6Ws2oe59zpFJ9nsZDpuVzARnauJNjBm1KzQc8WokdXZm9IOPmVK/i1/+0zOP3k3udV5Ww/AUGZLX4SyWwH9k62OXtBlpbPRb5T2HH3HHD+4bl9/m6QO13awdKiVWnzRIBKHVLsNQGablFosDgBBNN2iwpcd7nzlSIgGpLZ4uyuYAphnJYyRvzbVBCoWVdlVy9NfHsJVjHi3Hcss/kiklPV7YxygXsWSCmhGxnh82yLldYkcshaae2gGJFS4jN/WsyNF4K92/QamOteQuLe/uWCGCHhTMVN/o63wvvV77QWUK1U3Z/Z6OAppHaLPHOefXT7a5fy4u/JoFrXPABIra4i4eTr0V9cLEj7vA0+UutX4RIjxm0gyzRxCeQewTd/1zdaK60snv1ZSZ1zSxbVPNCS8zspRqSrhGHgMoLMR/Ytnt530V6ALzRRW1Wt6xAjYccoRqItRd0tipEJrgUuwR3o9YtSe1e43pNiP4xihM7BFjNLKVzFCEDBjEz5eUc1MloFIBUhvbmL/KK0h3PZW4p/Ew+CViMFmVCFUOmZDAp9PVUg8Lb9PEfJy+Jra6XlEq/ca2Kzq66jZroBHFUNsJIEyDwdfh3vvclWvW97YkSpJst62nLGiKnv5SUFF2loshVtINsjMWIUI5YYiQorLcmReZ3ZFSMktNeNCl9X17rQ1oIb4hX2tZlcAPTvzRrUNP1FzSaYvp6DPZAO2xEjG1IV4luViJFWSX3QCMw+7i58HQBee3wRqSy+093tYi4hhbTEyFNiq2KkFPIetsGFxBPn1XX1ihMnHGLEs88Zc4x9KZD54Zbv3ww9XJGHcZfooe0oqdotNUdrvObVAMaIEX1uiAdskmXg738U+Av/dMt3bS7fpraxcgcA4CWXGFlU5+P4pU/j9hPq2g64wL9v/hd8J/mSet2U8PUX08Utn4Uv/ufic9tlQuWWVYwQLcUiJmeEAEGuihNpT/1fUIYSMSJZSW49PhBzJmyXUcDSghipYKXFmO5GAcXhV9yFVqInsXIB2QPvBP7wH+xpoDPFCWP7FAgdcnRp6/6Zbpp0tH2RxVhPGAnWYjME93zkvrqoGd9b57PpsGcoikWBXsxJ4llFz2ikjn8/X9nVdgUDpBQwlrCBZpYl31QdJKMZiBEzEXMGao4Qo8tXSq/L+zdusOF2cDuT50GMSCmxvqq2c3xRnY+UL0IOq3nRcybwsV9/Gs98frbA5Em4cqoPwSUuvbg96cW07FfZrZW9uF0Mx4iGecj8+65iZJtCMaO89HnTiJGoVdzLO1ns3WzgWXlhKolfOaA3TwwxspVkoKJZhFbtEgLBFsWI0JNHKpxJ0i47mtzrwCrt9MQpH+x/IYXnMT7X/7t43/rPg9Ediv39i7ia3WP/OYorKkZyY3PG4LdUMeHI/a+wFlgDdgzI9z6uJ5oMa+Rd+zs2qu7vTg+4lZa5lnzkaHh6rhXPvpi9cLILADjGnwNBUYC1lnGz7ifdB2KEUzCuCtchHVlrA14OsTsQyHvF8yxem72ge+FkFywXOPfMxp7fOxYPDEE5OHUUI6bLnc7v+KV5+boxtlVT8e4fBH79LwH9XRT854TC1oLCW1wEtC80yz1QaGLEbwI0RjYcm08kRjHiEiPqZ7boLgz3SIyY4jzPbS4TkRzRHar7z96X61cmvr28LX3M3YYDliLTRJ3PE7uAdy3vZoEqIhG9j+kWxcikY2AV4jsoRtbOD3F29aj9dxWyVhjFCIxixGQlztaY0ZIJhlztW0T7hQVhfAMTI25H9w7Hmoni78k8FSNTLFdIECj7UgAZa4PrJgjuZMGZAh9LM91FDYgwwLe+7ZWWCMtGsxMjeWwyTv4YL1x5EoLABsKLHQKzRclOnIKhAUJH1haYmNzE9lJBWlZVjEh1jkjoIVpQ4xr3lFLFhcm2NBmkkz43c4iRsO3klcza1MRySFNHEcySXmlFhTIAsCSFHFOMUJNB99Knit/nzlh16bEdtyviHnr8eOl3VTO0uFYjmsxW073P8n2y0nIIfXO/XyvFCMvL8+m1viJAWuk6cNed1uL+vPxG9YJZiRHXGWMCMcInZIy439s8nzyRA81iPuO11LlipAmRbL9mGScX455pVFb3XuAoRiQ4qNeBTPS+TrEQm5jlJLhar8IhRrQyn+tmPoZizZphAUU91vy/sNLiukEj3ItiZMzOyQ3/XtfNGFXC1xG2S+HrJuw8auyeGHEVIwZ///6v4BVvfCO+/W/9LaCvnImeka/YohjxgiaEIbaDJl64MkCcc3QiH9/7ta9ErlWEzPPQJmpMISbYnHBkJEIzGCdGfOQIQUIf3/jiRSzp8fXwyhH191drYuTUKUgdMG3+TzyJvrcM3PMNAJkwd2+reUmwfAeOLkQYaBU08qFVjASsh3ZL76OQ8Hyp7Ccby8Arv7W0uU4jwG2LDazKwipLeCEAApz8KHBVkTdRu5zNMsUVcypueGLEFCUg1OCwfNvt9m8B03ZNAx1WnKU6CEtBgpUmz+Nd36VCpi+xMLoISIFEHEK8OlvnnZnEeYTi2OteBV9QNFK1WO0+/gXgifeUgwp3gJG6m8WFrwtyyZWti7u4bxQj23cACFn4gQJAqAkRqgcEJve2KDAhm0O/WJQTQhDorup4owdIiThWN+yAHYbkO0/ElLKl+C5H71FstBQ9RYzMohhJyywrJIUgIUZXyw/GfHDjBhtuh2zkKEY2qxfKB+sp8tyDB4rgMTVoSeIj621PPuyECy9s4uRXruDhD++iu2aXSLWv4U77ZhQjPs+tYkROmMSNNsoLc7cLblb01orF7nYd9OOdc9MW/q6H76nHDqa92X7BeH37Tpcmr+D7DABMT/CNPYgLOoPsmZPQjkVNHbwn9CSSooUL+RuxTu/Zdbec25FlxnNrzTWpgzHZBM4/NLfQZp4neC75dlyhr0W/v/1kUl59viS9phU7ik2Ynyc5Ah0KePw199nmhB6/faYA9kyHe4d0VBQS5mDZlA2LbeTx9s/s6wEzpgQkR5Oo6zpl0cwh9hdfUO87lj6vtqsLsFQ2K/lnc0epRZNq97dFvIGEq4l9SEcQegFjOmMPErJe0f2XdGdv6DDZcyVloZTA83+qrEC2QalJGRw8o05TD7XFKEbnc/ykkMiYDv7Uc2O609jePavsdwfza7bYCabw5wkKb2EB0M1IVDZBdRFBeBFEniLrdsvvTXKdMTJBMeIuDLV9y26DqZPUdMNnoNbjnKN9ryKprWJkYxfzQ9MIMJYxkusiRYOOCsVExXvHNvJIoRQ4uyBGzDXId8h/G14t3zf5DKG3dj+0j76fsTHFSLTnxgmpFY5XqCpedEaX4OtnUBbfuApgmjnrENGc2j3OKS+d16RbnQwyoeZeuB2ZqM5hytpgWm3AiUOM6KIyTXNr+3T86BKanbY93/lo9mca1fMBQV9Gmg0RR6FDsE230lLHcauVFqGxtQUmumFGdpbt3LhSQ4GUKqcTgB/6aCxqC1jiQaSTM0ZautFikio+M5mlPEdjSY1zYjvFyKd+DnjXX8PUcPJkA0x3cPsit+dnpwbS3UCtFccyRrwQL6dfh1HP2V+3kerSzrbGqjGzPB/mFQkMk+UnPGF/AxSNrfMGl07Diq61lYiRGdTbu4UYI9xSnXXbTNfhn7gHx64+CgB4MfkG9YKZiZEdFCNyvGI7phgxqmxOIdvFesnvFM+ffOg8m8ae8c89eAm/+uOfwQtfKUKq1y/qTMRUfSc/DEsZI4KEoKax6/0/Cvz7N5f2/akHLuD/+Sefw+qZMVUJS9VYXApfb+pvNUH5hba1ETN/NyRi2GxaBdRebKrGFSNd/7D9eU1UV4yQsGVDzQGggb3v40o7wvJiWfFwKErx/f/L38d9x9T5W4vuxhDtLYqRKPTxYfH1OL/wZmD5bpsv8lV3r+BtrziEAdENMYTg3oWL+N7/860g+rkUEoEcIVpRedww1mKjqIkG4/jGkxfwDS9ewKtf+0Yg3kDwB38VXsMHKEV2StXbZG4UI1LNW6ZhQSlGyMJxvP6OJQx1sw+yAZra7or6PnJ9vflcgATAM0vfDPzTM8Ar/8KWTd57tIM+2kh1HfrMHd8NvPavqD9+5Z0AYLdtcMuFr8emi0qoA7t07HZ4vlF56C5G3UVCkwyuYsRjCY6sP22zSMYZalPI9HiO/I5j8CSzmSBra7MdOiNX9DyOsNPGevuQZacfGX0vPt37UeTd3Q/CRgJuukV83TmcrG1dtBhiJIvptjJFEz4HT4DlObg+LlRPmDj2wODCyEmBYVAMpJxIRLo7N+kOgKyPhKlJDpOtLYvAifspiFV2eH6A1pKyD1BdMDMqRjIzedKTGcnASYDRWvkhkN/AMvXtkDm+0XQwO3lBc45zz2xg9YwmLMkFxI+dt/YoSb/a8eudVqx6VYLFRXZehUvtpAYyndyeoNsrRjbL33EeihHXSivZxnZkvHNOTCNGnG6S889vHkjLnv2CCc303dyLiooRk4MRsNQW5Ozf0AKy3RcmhbW9Uudy6cgx9QciICVHz7sTH9j4/+FDm/+i3HG2DSxBJgWYNMSIVvQlE66nD/wY8M6/uPtQSCGAjZenEik8j613vphgk+BicOaMklvD7HK1wpmx0iKCIdSKkcOvvEd1iQHo57ersMQ9IstMl3KicoegPMCrYuSMkS5JclBgF21gSPViIRWLwJWnZ9re6ll1bxwaKitD25mOzp7um3FwxwIzrWBf4mK0eVl9VwChzAC9uBDyABIjThPHsELh0BSPh90MUkp86neewxd++b8Dv/tDwJ/+5LbvLRUApICg1AatetJRjMxgNzgJWcKs2ttY3NHtFCNCFH73dE7k2S5g7egEhd/pgHh6ri2aheUKgCzOkW52S++lKVWKEacrkusiLHW6S6Vkqgi5S2uSXCspT632EKeF3VnnzjuBRqOwKN7FHD3fSLD+XAfCLd44ipF21rdkMt9LQPykz0qNd3oOAolQr4Vs8wrxt1glmsaQnRQjycWzAICWsQzkzZkDhYReD3XWhmizzCFG9p5xRrUK8mL+egDAcvdFezy3vd4POMbnyvkU9TobdEv/Tja6E1+3FwgEkCJGX8YQ0xr09PMuZ20n69IpgOs6g6vy6iy2QILAnm82g0WREBIXT24iHQnd5KmtUzyvsMDyAtttveX9XKKs32Po+3chTDYgRAApJa7KR/GhX/4FyIUl23DJqqiPWGprBn4jRGu5ULOxZDxjRH0fo0CVcmt+o7UyFhSNFTU/5N42GSMP/QZw6jPTCYd4A5TrugzPAW2LmY/mkHmUjuXagoEFS/hI95/h86edbuiSYmRnYiTV6m6fJbZ+NW4NvCcIAW6IEVP4lcbybX8IVuGM9yzXTbfOmoDvI7E7Ta3eTDfQvO9e3L6q1jtn+q8FFQ0g3rtKFsAYMbLVnkpinBgRljgHXCstCrSLTMlgsWPHeZv19elfAP7NK4H1l+zrPvmbzwIS+PIHiwbSTU2MRJn6TkHJSkuf80GirEWfeA/QO6ua4zQ+8+7nkQwoHvno2fKus0w38jG7XWul5U14vhLHRswSJMZKqwVfNzYEzQm2SdMwRoz0wtuK763XklUyRryoXbJlanmGBNp9+DoAvOqOQ1t/Ga/be/9sQzU6jO9rFHj4MfrjeOdrfhXwfDxyRjWbf809K3jVsQX0ySKIXnvTQQ93vmrFKr5CjyNDiMaYYmS5pebcvUgdH19K3NZZwqG//teAj/9LkM2X0VjUzTA6gN0qRnyAedvUg9/yN4E3/Q3g6/8B3njnMkaWGCkUI7nvIRtp9ZIQSjESLkxWoAB4813LAAiek/eAS4KHb/s+4PX/o/rjutq/RmeClVZjafp+juGGJ0aSkRo8hQ7dXjh0GJHuBvUMMaK9ebNRWnpI3XH5c7j/1AeLifO4YiQzwUcZxOIi8tvvLOy0euUDvxtwJmx3C/HVgLB++HZLjJzKvgFPJ9+Fcy/vvoBq8kDMZCtK9Xfubu1MTjQxIuX2nuVmcU8DiV/50R/B2898BF9332H42teQ7ZEYoTmDFAnSoJioCykQ5upBkXQTYHBZhXJrDC7v/CCSklibmajVKlhbSbViZIbwdd0dYTp+JJhSjHTLk450eICJkd554Iv/Zc/ekwCQ9Yv3VOkSevSjZ/DBdzyGj/7aUwCA9qbqwjTBdlUl7/3zqgMiZ9HcvEhTvYjJdpDuU0OYihzelIwRKSTigXrdgqfyVKra4UgpS1ZaxlN6EpIxVdi0PBJXMSK4xIXnZ7dauW648DDw6Z+f3hE2BSwzyp+sCJmsKkfPzXFm8Pk4MdLcU4HXFGuknqwuHDlS/FFmGPm3Q8LHSByGzHdXiLdd2jwHlWXJfJJNuO439IR6N77HAPD5Xwbe8TXAk++b+GeapDarifa2P9ZrF8pjLquYNUH1+VaKEfWsCJaW4FNV7Ormx2dSO1CbNZHYxUo2B8sm9xmd7JD/cvbpdXzwPzyK/tq1ey4ZstUnOfq6y5bKNvilvRMjLOe2KBLG6nyYkGeK9sRuu93CbeTI4vkUC1evXLTESKNBgECNxaJicXc/EPeKaycezk7OmyacUS9DbzXBM5+9iEefv0sp1p5+//ZvLnn8CvCc2u15PreKESr2NrechrRfkN522/k2hUiWwHZSs2t4D+ld6jYpfvMnfxxpUKikKCkW2+koLSl/AB0gK5glQ4BCMUJL3e668L7LMOFAmtdnSDTZ4EkB/9AxBCsrlhhJejvPL9e+lGL1sWX0n3AURSxFJhQxHTpkstijEn0cxXpNne+AmQKQzoAgWwOKDbm7U8ZIvKHGn1ao1iW57OxZ/WkgTK6MNGqhwgJJ7pGUy/MEUgKX8jcCAFa6L9nj6dpRVYGUEqMdntXzBhvLd5g2d6a98jox3pzNG98FJyFo8gBOdl/GH/2bn56stPLV73LeBpchpBTgxAlR1j9no+J54+kiIbFqkr2fn5ceXsX7/92jePzcm+A2eTLfszUAQQKdpzrhu3FRep9PB8i9BfR6R1TTphwhwwae/+JnIZthoRipooDNR/YZHLQaaC93bDGfjjUYmns4dO4tNjZumdB6RYyoZ/C2NnRmzj2tuE1jqy70eQ6uC4V7FG9NBM+22rcbnO6/prQPFpce31GhnWgXlJCO7PjBqhAJLAUjJvulUIxIKffNks9Vehmxi/uM4mz2ucqOnz1hPRzlPfiCYvHO29GTCZrJVTAZ4nT2tn3LGNn6RBaQrJin2PB1kQNOsTdYWiwah0zT1MmPAckGcP4rAID1C8U9dPTuosFs45J5Lqq1vhu+7ulMoXSYAc98wNktrZBz6gpLR8Zsq7IEIN5EKy05iRhBsfY094hxQwgbDUTa6ivqLE9662SMESPDyCFGdPj6uJXUXuA3yooRz/zs723e+rrjE8ie0RpwWdXLTgX3A1DWUS4i3fSfa7L4K6fVmPa19x2G5xEMgxWEhpQfDHTumrYk8wQyuTVjJPA9LDUDXG0Wx/nEr/xXnM0F5KO/AwBoLGvCTOeMCFcx4m2jljl8H/D9vwHc8Ra88c4lDI2VFkvQ0tczDRzFCAGILyEb08mw//UvvRq/9rffjs989S/hr+f/Cs/5r0VP560OeuqajpqtErHiEQl87f97+n6O4YYnRrKRUYyoE9VodxBqYsRn2t5Bd8LSNIM7FJlFxLSub5cYQasD//77sTBUnerrw6N7DmotdcGE6rNHx+7EsfUnABQ32ai/+04SwY3fnPpfW3e8JoO8YE2gCrduMXo7Oy3zwBoFElk8Qu+lZ/D7P/qNWF5RF7JbaOBc6GyG6ceCZhxSh8IT52INdUEq7qVA/yJisWL/Nri6/QRXSqkIHJcYaZpBUeWCzPIw41Y2WihGBAkxGpS/X1IhZHbf8emfBz76z4Anfm/Pb836xQSNVuiuXTtfXjS21i5DkiKUOunzSvY8vTV1PUl4My0wJiGNtUWRaO54PQPjGSPl18eDHEIQEHAsB4rEoaNqXeTJgJZyX7azbRknnnZjpQUAw80b0H7h4/838OmfK3v27gJGei55H4Rr6X5W7fubOS0hzAZX2r+RvVlpcXNuZPFsi7TSwYynACDhQ7jdYlJOtVJg1hrFydbSE6mEL2ztljaZG7vMMMHqM+q2Xn1m4p9zp0uSx9svfLqao/N0oStPG5XGDEOMEMERNp2JbKD2Y8COzlSAN+GvPs+sjUk6B4VH7swX7DxnCp7+3EWce3ZzpmDsWWHIVh8UyXMCprCcre0ie2AMJliagEPqYhLX54iTCDyejRgRQqqiifmcZD62EOurF5GZhVbLA9GLLX4AFSMl5VHqzXwPmWdI3M1LysVnk78ILN657XvL8aICLGeWWCOEWwspLhvbPnt3i3RTDR4hHVnSe9sOepdYrhLiOwFSSpx6Yg2Dja3zKTNF3+gIbFw8j4SoeS9FWTGSDLJS0wqgu+gFK2UGWGLEd5Z2JkR3B4WeQcpW8HL6dRCUIjPzYUExIBG8I4eKDItdNAfxVJ9XN7+KZYpYABCwuFBMYF7EiBorl3un4LMUR9dVsUERD446lAvbVLOjYqSnzp301PnJZQsynU3F5uYZtN7+NuCbv1n9gXgQ+d7mHzRNMODHMBRHQcCw3D9lvz+bk/r38U+ew2/+5Odx8it7H9dnxXh+Xj6YPHfeohjpVbt3JVfWXIKqbuhTjz2ML//Re7e+UN9fuWiBIQRkCrf528ypjAUmEQx+R83dDDHCZsiw6J5RFtm9UadUZGcesQVy6U0nRgSXJTvxheFpAMDp5GtBRcMpVAJM5IU1aBULynxoawZRK0JraaFQzYw1kFCtLBNrxf6PE7q53hdPUDQPaWLECyaP25wVRHcyjRhJQLU1nidyW0ux66szXwB6F3bxRbeC5aJ0TKVjq7USFPZGyEe4lL8Wm+xOZV/bO7ftduOh7gJnBTFCK2TWgKWFlVbpac2RD+ewJhxcAf70nwFXn3e2XBR9TbaYS4KJbP9qLGIC6dJM1fVx6NghPHDXV1vVyEvpnyvVkh76yGl8+Y9f3t0H7ZAxsqWnU0qbQQUU177HdQYZ1HwiXF6yjUO5qUWZtaX+nOe/VFxfvrZPyhJm1/iBrr+5VlqGGMlGtNzsoteBF3UOIAA0OuWiPU/1veyEr5smdTk1/HpcMaL+T6IGWnqN2uisTHnvBATlIn3cLKIVNuQiGoEHb6+BEw78qI2o6RDL5nvtkRh57e1O4V8rNRCvg3fVfX8Oar8nKUYAIGcCq4MUp9djEAK89R6lQEmiwwgNKT8cgDNmif3QY8gQojkhY+VwJ8KTd9yPw68b4hX/02vRfMMb8LHf/gVrQdVY0faCT6umNzdjRO7yu7/hzqVCMQKgre3gssBHnqpr2Qs9EALIbdQdS80Q3/GG29E4cgJPyVdiI87x4AU1HvZ1owTxPDQcO1kPsrDb2gVueGIkNx2AungUNApfO08zjmmiFwtjVlpmQWG7vsclm85Em3QWsPyG16GVqsLDkB+e/qCdtq+m+4pnkJpJze+4G0fXn8Lre7+LN7xabS/ZQ1efMGGfEQG5866i8Mw6yjNZIx3S0no4neJvKoS0FgS5HvfiXg9CcJCmCXwqClRPfuo83vcLD+GJT52fuo+qE1R990ZnAUQHRPo6AyYZUmBwqawYWdu+iKxILGK7qcNGE4FWjEhJlaRvJistE7pu/IoZhBdiGJcH3GRGf9jddu1VQl9P4nrTz8k0uIvdKn7sUbP80FwcnkW6fNhm4IzSBSCbvbur3yseblm/epcYALjzsO3UHVSrAjxQqzbjY6Sq8WFveT346Vhnx4wY7wYXchvFyHjGyJRik1FINZpq/9PhDWK/MLhcKETMfb5HGySeUUhJ0WMfQTJ6r/5dRcUI02S7J+yi0oB5zT2puKysXKgLM2q2ComoLN+bNHGurff8MPDLXzXxswrFiPM3IiElRyJW1KLMhSkY7lKR8sLZ2/Drq7+F8+cnd85niaMaZNtPUFNdxDZWOAyNXe/HJFCnUzdsFJM5osNAc9GeyUqLafsfn2e2Wzebg9Uiy4sxZSeLOzNeTVOG7QeYKSZSjqWnhvC5sdjZ+3hs5iNNb4gsVcczu63o9spntEwcD2/NU6oaB975lypdS4P1q7bY0+yEIMZKq2Jxdz/gNnFkrDOz+sY0Don/P3n/GS9bdlWH4mOnylUn3Xz7hk5SK7YCQUIIJAseyJJt8AMHbHDgkW3Af2yeseFhsMHG2GDZIsgGIZAEEjJIAuWsllrdanW3Oufum+MJFXdc6f9hxb2r6pxT57Yw/DS/3HCq9tlh7bXmmmOOMbjA1dMD8/+Pp98MViyQKwgOUlADCngeA6u7PjDXDl5lA3mNEY2NxMy2c3sJGHl2CzKXnh7iQ7/5AD78e9NMKs36ZEpCiysmOUHTdPACcl2uAhG0YAAjECVgRBVA3GRf5ci7anQRAp8f/RA+PPgZjPo148u00ZzgHb/9ZlxccjpVd1F4Fyrv4LmzFtIMOdfASGrAZObVduUllIwKXHi8P9XJrxvPQpaj6LbRSS7h1bf/K9xwyna+usBDuTt5hw5t1UiWe3qc+CDjveWdRv7YFzj5jneg9oY32vNYMP8gRYZL5PkAgDVxCgEvzP2k2bOzFlw9Ld+ly88MnpXjAZD7x0v3A/f9kSw8V6K6jhVzcvyq3G8yvra5g5MM8Hx4gd2L3v7ud2CyVW6y81WhkYgmmKhBiKqfjWoSSCwryG/IApg2N9/LWp2ffhAAkIoluN4VLPBLzCOazc4/JBht18T2RBbinsm+Xkq9Op6dhCQOY2Tvc6LIJ6BKh77WqqHV65gxSsYVYGRDnk/gSNFWGSNE1XwCTtBYWwYgpbR4MeOa3UakeYwRmqPQjBEwUxVjPAA2ngR+7/XAH3/f7i62ElJmzd7vWr6F9vi0/LVOY1s8yvGnW/8Jf7jxG3Jft4OcVjxRXoYkNkBbfk3PKLaMkYpZ/LnT5/Drf/IZsGtRZrjvncCdvwl84X/IfzNqvHwAgDAPQojSPCy+Qqbv8tdPX0sj24TwfKzuX8Znjr0Uq1uyuesqudGMHVIwfPH9z+BLHzy9O3Z2vIHbR/8I71x/88yaG/eqe3gO4Ug02kY2gqC3hHs++D685Ye/DzTgRn5UP/fz/SP47PAHQSYTCC7wxF0WyNZNdn3FFmnQPjyVF7hSWp7av6SXzgAX7sYz2dfhzvH3mCaA80/Y/WFVqaMw9SKXMaJqcnOBkYrHiJax8yJ0lXl4o7M857szIipLWuWtQ+bvA3SuSUYLAMJGG2HgMkbUdVUAmZ3iuYe6eEP+y/gX3r+CeP53yP9MNjG8Imu2t12W+fCUx4gDjNxzWj6L5x7sGjmsor6GmpECjEGcolYtZMhRQyOcrhstt2p4IjiGgy8ZoRU9AyEEXp9+wPy8tV+Oi+Tee8GLwvEYAXiwu2u/fq2NqFZHrpjBTX3OYQCqgJagrmryjZ1lr1Zbck3pxwUu5/LvdaeuUW9ZlpTviamxsV381QdGTHKuFopaHTVNWeVqo54HAGcSGHEmfa42Eabrm5YTfWI0a3P4nS6WX3CLAR4y0ZPFuUXOVR0vZDmE6vz1rpOGho3L59DsyoGSJLtHNPXGyvM4Wre+GHWF7G7S4xDrT5rPaX8RHfOAEXezkKvRIQRHNh4DTccMksiESXtIDK7ML/rSgpVR5KZKQoiS0ppQ0P5lEGERvlnddTPP02GMhHVHSsuvQezFfL3QElp6nMj7NCLSxKmm5L+yBbuxSM7wwd+4H7/7Lz+Hi08NFj6vhUIngHsAhtzO5OIaChS6EH/i+T28hL4Ly4OnsNlaAVcdCXGxtKfzA2THxHDimI8N9qj/WYkst4tmMejP/ZzuZvMcYERUZDr0+1YnIxRXNG382oAR3aVb91RXFZ8v27Jbxki8KZOnLpVSSdnVS9d0jn8RkV8+hT/6mY/gzl/57+o/VOfmgvrctCggeAIBCiHGEIKDptcIjDAfQghs+RdBabnri/oNiAWktKiSbIN6Z2rNpjEVcxkjAFC4dPdTn5MGwlvTXU1mHPDKWBQEqVieAkYe2HwV/njjvyAd7e7enl4/jFx0ceHKbCoscdadneRLJmoDrOX3CBrbM26KGHjPPwEe+pPZv9vxGPHDAKkqbIVrMgkrRGtvUlpK/idkmZXSehb0kV0pB7JDd6kBRnbofH42w4Jsam1XxeVsB9mvWaHzkbo3Bs9UI8vRY8b/J9+FbM+sqLIJScqk5vj5L+3eN2dGMAVye5yhttSEX1Pslr+EwIiWkgWAhC/ZxokFwx1blx6/ao8vlnBmeHOJoVyN8saYgRFq5Cc9cPCWY0o8vHY5x0yNF8kYUR3au2WMPMtSWg88IYuqp8/rdVuY8a7zd6pSD63FTdGQQLqKbEKNX4ExkycC4KTsMaK6IQv3WahiRzbcxXvJCGImc9089QA1Z2aB/HPciBCp+0MLYCe9GQ2MlIpcNDceIyFNwdS+gqIGMUOHvRqfeNsjeN+vfxlXT5fXUreRjaytggUhfMFNwRhQch/6NAoXGNl+3kyU34A3GRkGkuvdA0B2Q7/7HwKXH9z2WEIzpVS3bKNtN+yL+gTQPMPFQgIj+4nsxjbACNl7Z6wb2Xnp+RSfeuxZOR4A4GM/C7zlm4D3/TDwB39rqmjNWPncq2wpHWRSHgNJfG3rH9OAgtvlLzguPlm+9kA1fhWiAcprEKrWoH0udbNJltnCZtgqAyN7eT4aNxPwy+wO30fj+mPyZ34Aks4BRgiFy9+r5Zuo0yFy0cXF8CWl687TkfVMuwaJ2TwZgStgpN5uoN2q27m+orxANuX+I+C5eW+rzYTaeN5nBO01fb99kGzGGHHn9XmNrDQzjJEATOq5QMliaubG1Uf2xLTkhJfuaUSGuO7MBwEATEQGCE6G9jOb9MSOwEiaqC5wR0qruAZghKaJlEESApS7ORPBscu34Ucf+C489sTjc78/K5JRYetCE1Wk1zUzmpaYvJSFU4otfI4PyLMRfEaDaiPbAm+30WtEGOw7iiuq0TZlPcMYyZ39y5VT89cqDdrzySYeSr8NA3YU6+O1qc8xr1yoF+ClOqQrpRUur+CR2z6NeNDHOB7YBgW1T7p743V4KH09zpwJceX0yDRnAhZg0fJa3ewCuMoVXCktnVtkiiF52+gHcU/83Vi/JM/JldquPq8sqTJG6ka9R3hz5mVdj9XN6VoGSoToKHuEoLmAlFZQg6HuRS2IpjVf3xJdNGewJRaJqNEqS2lBgMIH/MWOe9OBDh7zrsd705di7Mvr45N1dIhkGF2FZIC06vMZI19SwMjXnrTXKFoWGMmzBCTT7DqBMBRgfoQwmC77r7Qi3MdvlJ43gzNInrkTJ7wroMJH7jdRX6IIVpYg0hTpffc5HiMCYpfAiO97eN7hHsaKNdJSMmFFGBhZ76Cmmo53AYystBUwkhBcSBXY4tQ1XMaI5wkgamG38VcfGFFdQjpJiOp1U3jXnbYp7QKTq6A5gdhGSsvV9gNsl0TAcgTdZdRvvhmR6njPeMdO9guea0BTFI0mRhvraNxwPQCgs34Jza6aiLPdv2TaD8TzBdovfjHWNh+Gxwk26I04/6BlDKS7BEZc86sisIlbPOjDczQOqdKEG2/u3D3GqDCTpXw+coBqqbM0AZKNctIyGWzPmrEmwhoYaRl0GsoXxMuGu+pAc4MoqRc9TvS4GjFFbUvkwp7vIAPjRpFR/Nmb7sPpBzdBcobb3/PkbN3aZyt0ArgHw7A8cTqG9mAOqEMXPU/eIPC8+APwIHCxtgSi7mdCl4DJ1e0OMTfSMQFlFhTIB8+OAXtWOFr0/fn3Tudrnk/NJplVulu0VF2UjxGqrqtrSVwBC4wsUfleUz6/CDcFjMzpTosVENYJJEiVrv/FSfHsNa4+9BS26HE8cemE/A/NPFqw01eyF9x5i6K4xk5/xn0Idhn9YB0J+3LpZ8ILQBcw5WYqqfGEZYxoYKTKGEncbmItezUDKNJSgV4VGAFBiqUyMMIIHo2/Cev0Rly8uLuCr36H8jmF/MKZN6vFj2roTYFuRqCob8+4eexDwMN/Ctz+ppk/JoX1GPnw7/0W3vIj/wjjzQ3U9skktMAeGSNcbaodxkiRbl8w3CkEF4Z9JM99+1RNFwXnMcO+EqHXYE9t5Oq6aWQP/lF5rI7hTeDrvdLxkwjVGC4me2N3VCVASMYtIH8NjEWumgZCGiPsLRk2Lfeia5J7+0pEntp3LuVLe5YFcTfCl8/I+1r35TN/Inv1tqBiyXwdHIwwCMV29sHAu0umA7IYquNkQ2n6uYf7mSn5MLdwxHYtpfXsMka2lD+dBgk+8XuP4Pd++vMYrqfgip3NdBOS2nRTrwEWWGCkSLlhKddVcw6jADirSGn5QBAgdzoFPaGBkV2Aiyw34B6nHFCSPNqQl9QiA1YWvGXMLueFUHkgL5x1lmYoDGMkQX7suDpRHzzd+RzXz8pi+KRffk6F08jGl5eRd+Tm2nOa4VjmFoucJrkd5s00lc/p5gefsBImVXmn+98FPPrnwJffse2x9OloYKTWalg5sXyxuZOSFJcUMLKaSf1vLeHJdmBk7jayWJ5wsvnsMLMBAE9/2jKeWTEF1jJWXu/IZPa4SBWTRIOf+jntNawkqbzm5YOHAQCXn3qi9LlAdasSNGUerhgjS/utdAsEgSbS+YIi6KjcTb1LO+U/s6KMm9l3qvt934tj/+3XzL/nMTw4yY2/BwBw38PhiWwQKPyuUWAAgGzUt8yOa9gLZiMHvIoEmrXAjPeqRCgdyAJ0wAort1UpYlPje0TQWrZdwfms5p1dMUYyECbn2sDn8FTxkSG0pugk2dN+Wu6DnfnH8xApyS8qaqapK3Ge14XihRBXHsVwPZ1bJ8hV86yUItSeNXt/RqZpTxSl3ykEBeE11D0CfnUxYPS9//VevPs/3IUsJiiGA9wfvxGTvtqnkKwkpUV5MAWAVRuVn82oeoICQDPbhN/pwvM8/Mhrb8QdB6UBNvWaYBO5L8pie07zgJHheoK3/svP4873PY3+IAIVsh6Z07DUSCC4APOqzY0CnLgeI1ZKK1haxtYFCdQxUOOdViQEEAI5lWM4mfCpxmL9Dml/kU52yeQNoQOMaHZp2rwZBW8i5hLMyeMC6bjA1kW75k0DI2npGK7HiNuQXg5m/hRCmLpbisAwRrCN38RUeJ71Gam1EbaWzY+2RHfKX2PRqDU6Vj7L8+B5AMX8BtV50YgCvFzJX33gaTkmxhceRU3N6VeFPO8qY6SuJRwZx91n5Hz0NSetkbvX2Y+a2kAVaWqAkYBz+OF8EGOlVcMELWy2b5L/8Tm5ljwgbsA6VuF5QPvWWwAAyZ13mkZgzxcQC7BlXnCkh1j5jLQa8lqyKDAkhUjJlIWtncGwlZYcs/2kwIVEPtc2UghVk3MN2H18lTFGtE6n7vAP6w2DUhKtnc6XgfFFmXSK8iIF2MS5ilBrY7CQ5Qi7PdSOHzdyESnvQYwXK+wWSjs7ZBkeYEP8/r/8MXSOHgD1fES0QF0BEWm++4Gmk0vPB5ovfhFqZIxDVyQ1+e577cBIRuUEZJ7HiJ6IPU7gfiMe9GVip03TVKFitKn13+cDBYx61pApsrqDPleySkmAtF/u/BmPtt8Mm2TJkZmxk7CUvwKwsM9IoV54o7OpZRiU/mY7Vn4RC9RPH/3CJVx+Zoh6K0RYD3D1zBjP/LefVjvbr0DoBG4PjBkX8HH9LBYNpjbmQXIFRG1Wzgcd5GpTkLEeEO8NGHH1zQGgGO2+C39eCCexALbvWmVUGe163LLNKhvaRBUHwzQ2ZqDkGrvItfF6O5ZG9tuZlU6Zr8/piPQUsNoNZKdCGn/lktFnKzR4UfC69HkyjJHFQI08yUvdXBAUxbXo9AJgPDRsDo7pIscirCGqu/5UYStypLSqjJFMa7gzYh19ZwAjVBfMKsCIEAQplsvASDGRLApsP7+7kRRynpx3mTSz41DsUBjQS7UBRrwdGCNXpJb8vAKt2TgKgnOPPwpGCNbPnELjwLL8ud9cmDEihAARDjCiCgnFggWuqXPNGVzRckrDbcF03ZjAt+l8/uwfPY4//x/3T1Hg9xoWGNEAlvIe2IPMZKYA+RqXz5c3WwgOHHT8DPbGtqMV01iWOTngLrrT5wXP9DXHCHo9BC2Z0zAvkoW+v0RBnKki5UsQe5DYBMpriJaT3F+7DwAwpIemZfh0CFFmjAgJjBh/PI/D6/XsOqkliv78J4HfeR1w5vaFz7VkTqvlLvNt1rZiAiFUPr1bP6VdhvHPUbdv49wYnAlsXphAqE21rmFzlSfnfgfC6SYtUoFE5WY1LS1IPYCRKY+RcG0NWezOk6po3N9FAwkjsmAHVdQjWp5HPj8aBIYxUog2cGW2lxQAqZfOgLSxBuEAI7TIkDlSWvTk9fZnk+1zuTylZu9CKjJ5JfP1lX1gXbm59gQ3+xZX8m0RKa0kl7lWrRhbYKg6J+k8ZCcfMc2UUgOi3mrAVw1cxYKd+UWWYsSk5GBX5YWatcjo4gWbWZEV8trjZI6Pw6LBOe489XL8r6vvxAX2Uvl/lX2akYhWz22en02qWDsNZSSck9o1eRQZKTOVFx69RZraX366DABGHc1yUlJaKp/q7tsHP9DvLUGhWCE+p4haqsCn3iVOFy+/5LlrZOKwWpZ6qB+1Pk80mb0GSdPcspz48U3Xm88eM966asf6nOPtJjQzlxVP4c/u/iQe+uCfGBmfIi4fV+dosslkNlhI1XvuCYpm1xa7Zvq6uY00cxgjRZ4aYCQMBBCp/Z2IyuN9B9+PWcGpZA7pYL6HhlpfqKibuWIyLgMjn3jw6/GOn7sD5x6dfc55Lt/tiMTwoD1r9r53K1TC7tPK/CsozjIpR0ST3TM5hRAYrqeghGNwJcHDp47g8+Pvx73nv0Z+oMIYYSKaAsC+osDIjEM30k2EPfmO/sCrb8DwOc8380+mnk+JMXJ6dv745JeuIIsJ7vnIGVweO3KwvFVqxpHrV2WuEtwYWwMWvA94AVJvgKpGBUoLwxjJUiY9YtS6naXC1vfUdKH9xTSw0Y4vmrwhiGrGY0TXUcfH/hYG3/NFe+5JMaV0UgWXjJSWow6jbQ2EoAh1XuUAs8bvSCi5fXW+CQ8MYwTb+E3MDF2or3UQOMDIANcOjIR1yxjRlgDU213TYDV++W+/CM0owL0bylrg6sPqPHsoVHPKlPm6Am37SYGHL8qx9HXXW8ZI1DuIWqCAkTw3UloBF/BDPhcYWVZA/9n2C+XvPf0xAMCd/PnYoqr2+UKZp8V33FmS0qoa3m8Xzz/cw0QzRiJVd/ftOlivq1rHboARxRjZigucmdhnMB4N5LG+mqW0tA637rSK6nVTIC88Rf8W+8EHl9TC4Upp6d2IKmRVpbQUAhqwHI1eD14Uga1JdE4gRNFfrLCru158miDnFEWaoCtSXGpLVJY/LaVPErJ7yg8XShswABrPex645+P60x+DD4KLW/txSU1mScXQfScpLZ/Tkk5xMhwgajcdzdEUtGBIhrpDdjvGiF+i1xlGjwaZ0tCY5ukukfFk+wmMVYCRqFH2GBFeII1QF5RrkkbxzCSvruaqJxiaqXzmpNj9BKvR++e/6ghe8jVyzN351IsgdCHvGuLej57Bn73py7ZDgBZ2Y7YH8/ncKVzuJN+yXbB1Kc3k3/MW0EROM5uNHmL1yqWit2fGSFXbc0rSYA9BMma6NwEgH87foFO1aeM+t0WXCmMkHcgEJEgmpuv5Wjp6AAsIdVJJN+deNNNEDrAMsVAl+XOlIhQwEvlaIu6aTvEvJDR4UfAWRNoHlJ7zop2+Uqu4rKdbXCN4xXhg5jrXaFFTlBcBXqysg5XSqmvGCCtvAnO9sXKLejPuh+maFpUHLQhyvwseOxuxfCKTeeweJM2Y/Hw+h+HgYjWcbZ9+WGBEvkvMq20vRXZFafjPYQJQVXTifAym2KHxoI/uPkVl9usLm3zLTbpKbFkuzTthN+97jaIiASXgl6Rfpj6vGSPb6JY/8rmLOPvwJkabz85LPtHGsqp4Gmo2bYZtZZVmhWHYUXkM7+AhNFeWbVfcZG+AJUnK18rde3gtjBH1GkUkRrDUQ9CSOSfzas+6efe1RlHYYhpHhGJjMQlYHbPWkHokQZaYr84HRhhBeVRyMMqM8ajncfhLS5YdpBsdLtwt/3S88nYbujHBZYyUWAvVKGJ8dPgv8fb130b2LMjguZGr4l9NM1fUfXRZnVQVKZg2UK50khaFZ7wS64WcoxjzAE5L9zY4eQIHfvqnkToAg2Y9Z4OdG0gEzcA0MMI4QPXmVf6WwoMFK0ULuDrtm2KCUzx+6Dtxxyt+EZeCW+y1FikyKtexWjNAcGC/KZbQZPtcbuQ0xVTnw5L08f4DEErWyIPjI+kUWXcrpcW5QKY8CCIysRImlbX86uYWBvQwrmxsX0DUTClP7TFqTcsYWTT/IHluvI7GqgHJeLbwSDaOXGOkRDU7sBWI09N+IIsGWT+DBybfDioa+Mz4n4GJcGqvwpT/gl77590XDZg3si01hrxSV/eiUQVGrnueBEauPPMkuLOm1ZYksEe8JqioQah8qtVbMvUHISgKIq/D5xSRYjBBvUvM8ZjAnb8FvPt7d5Smy919pwOMFGmKILL5FJnDjmOElAqTzPfQmVzCifrdU8ckaQyoRoW9NDuYc1Z1D8Hkfu/MA182vhjVhhui8heXMcJG5bFhuugFQdCwslxkkkoZ2Yv32Q8Xzpw3h/GRJDGIYv1GoQc/knMv8yLkkwTvWP8NfH70T/YGjDCBshdMgJqqoUjGiGr6cUCNC8WL8MSWLFCeum92/SIvtFl8buY27Re5l9CMc59V51+CMZNggVgAGOFMmAac8VaGwUTOn+O8JRmgJAP3HcaIiKbm4Hl722cj9Cvgsgkb2SZqy3LNiAIf3/f6F1uFGO0x5ciSrp8bz2Rot5Zs8fnh+P8yf4/jbsnfjeSs9C7KqAAjhfYoIkiclT7PEpMvpSkD8gmo6sTPMs/U9zrL8lyqjJHW5FJZSkt5jGhgJB5mGI6dRtGMYrJVnoOrwEiuZagd7xLdBA3OERD5LjZTd0xbxog790yoQAdqfd2FrFIpdAG83kGtI+u1Y9EEQYhWdI3NAlHTYYwoYGSP8rk3HejgF/7mC7Al5PvVIeq+9A7jJ153M77r5dfhxv3t0nc0MPLQhSEYFziy1MDhJVvwbywfQj1QDLISMCIZI/NAjNW2vIYno+eX/v9O/jyMFeOp9TwJvKcPPgg2GACQjBFvIcbIkgFGIhQIHFDEEwLNphxD9V34ymiPkXFGcWZIkata+KAv14uGwxhhfrSQ3NlfeWBEN8fqDv+oXjcvYxFIii1HhPjyVbVwOEmB5+HCvg6G2R+BFY+DVXwCckdKq9FTBakTx+GrhS3bTQeWEwaVZ5aO1mYpLnT2AwDid78bAJDQ7q4TWl3M9QIPfquF4cFjaOQDHOcS7dUdB0lF3iKboxlvzJ5YhsKZtONBH1GnXQJGXLreduawlIdwDZm0lBbzldETaSAZy593JnKjnWbRlHGqG6Zb1SkaWiktRcFltYVZEySncBMZd7Je23zYdMuRBbqxMmUI2OhGeGnzTxAix4Bdh8Fj23Tb7epcGe76wCmce7SP9/3avfJ5uF0xe/EYcQwbyTU0vnJVYAw8Aqo2bJvNJYxUN1WO3p70/AFgeLlc0JrXTbZIaOkNHUUFbGGU44m7LiMe5mZDw3yHMVKZO7KtAQC5kdadsLsxK90uhhuaMWJ9QFiq5hKaA3f+tvGV0IyRVicw5z8ruLqWiaJfpvm1a+RffmaI9/36l7F58doBq1mhu9cEAtB1p2i2oMcIyYuSTrMAvSZfHUAD1foYDEJIkzztk1EswhhRhXzBrY+SBpW1f5aOXBeO3aLsDAZNoai1VcYJRA54PlK3eFbEljGyG5CUM+RcrpOu1F3pmpyOx1JhYEboAlJNA72eDxpvI6l0Vc2n+Xim/I6WEaOw80c86KN30HanFAvOJVaCgCNg1viWbbN27SYKJX8UkonZvJ1/vI+Pv/XhKZq84MIYD8+T0mKMm43Mbtk/O0Wq3xW1ga2pjU/ClhYG5fOJMlRVYGDr1hejubbi6CjvrVhd7SJlbpfuNTBGoDqBIxrD7/UQaiaXF842gf0/GLTSxJFuLi4JAgD9GRJpXiSLXSlfApvMPq6gBeBs6gUYGOUQiu3sewLh0pLJLYs4lqDuQBWi9gA0GXNaas1p+XbvZBHjbP5STPh+nLn47MrR1ZWuekOUpWFSlRcKwaHJM3SO9CslAQr1HOuKMcJ4ID1GnCZy/8QJLL3xDchcYEQVH7LRzmsPJYXpPBVMQCi5DAOMMGrfSb4DY4TmmNSlFNHQP2z+m5EMOZPvS/PgKupda8ZcZXhVY1gCRipFVQWChjRHeOAIOgf2mZ9pqSXmmK+7HcrbMe1kUcwHBFfAiJx/s4oM0IPPHMY7N34TD5y+Ydtr4BVgpN5umuJutihjxJEKfDKW3cnGF8LpSN9rMMJBufZPqiF//PPXdDwAOHXXMyCq2DLIVvHl+DuAuAKMqCKH9nScN/8XqhgX0NSA6lUZ2UXCMGrVO3Pg+hsR1Rso0hT9i1buq7kii1nUb8j3xZF0dr0uifIB9DlBo6MKNb4GQdW8TDLgI/8aePTPgNO3bXt+ObVFKOE09RRpCs/zrGF5NnuvwUlR+h7zPRRJiJe132vO2Q0COY8sIh09dc6J9uOS92j9zDOmZZ+6eaUQxndFNpmoz1SAEaaaYT3BStfMBlvA278DeOd3Ob/cZYwMZp5flsQgqqgchgCUfA1DhPXLAkN2BE9l3wDsgWkpm0LdZlzfvOscEbgytXbZb/rdAIBGZ8Z+jHMUTKlueMSsb9fSjJOMZwMjQlBkoiWbTBfYr7tz86SfY5LKfUTGukA+gijiEvjPvNqUlFaxXSPDNYbGOCMHOGvkfQRdK9t07ORhA4zEYwYIYZjNgJwbN89Pz68uI3ud3mT+npF2SapXNptVn1mVMaIblQnGjo5eMhkb9Zo84UAxNsz1JA0sMLJSN+daZNQ0MrfGV4xijiulZaSsJgSDq3YtLjI21axVldLSYKxwzdcbdr4KladwO3Ebc5QVAuy98HwfaTyxxuaLSGkBJcaId/AF+BR7Cd7Kvh0A0LhGxgiiJnxN/VX3j/p7r5l899dch+ffVM4XmqvX4V9863PwX777VngOGxgAakpKi6h7f9PB8r3prh5CPVLACKcyl8bOwIhmjNzvP9f8HxU+7uHPMUBGbSlAdPw4QCnoZfkMvUAA0e4ZIzcf7CBWxxsOt9BoWhJAyDhaTTnGG7sARnrNSC+lGOfUnOdIeQ7XWxYY2a1BvI6/0sAIZ9x0nWqqd1ivG/oWrUVoZHJRHV4ZyuJgZZHa6jQACHB6BaIoJ1868Q1YjuaSLPiEN95oUeRddGC5oTuMPGqLOzUS47wCRmpqkqZogox2t3nliorvR0qG60Y5sHXxdHxVbqK0lFbHl5I58/SGzeLEyqBPPByg1mlZzdE0MzJawHSHqw4hhJKXUYUex3ydaqNJUcM4kQO3lVwxheRJf/4mwZoIWyktk5CqxCOlnYULNDSnZYqyA5I894l3GWqxNmvbTegidbPOUHv8PVgJZYLVf2ZvkhY6zj26ZZ7XaCPDh3/7wfL1ZoOFPVby3Ok6uoYaMRHyfREpN1JaG40lDBRin/ldIN+bN8jo8qD07yodey+RbZbHSVW65Zn71vHxtz6CO/70abNpE74jw1c1X1fScLViYgo++TUUJIuMGhZIa+wAI7rD8uH3Ah/5f4FP/nv5eQXCeKelLuy8jb82cF9X3TsZaVyz/82n3/EYLjzex7t+8a5rOs68cAGmYsPRpl7UfD0jKIOgBOQagRGGqAS2AESCY1SNgV2amAMA1d2LCmipNZqoNZQ/kwLXjdSBvicuY4ROz5+FTl4rHiW6mycZ2O+zZAyuumHGu+jCJOOh6VrSvhtT10RsYqqNh2eGEBDq55GzXpJ5wEiyZXXKOZ1ZTKVqo0WFXbfjQR9LB9fMO1otdu0U2vsiYAU8CFvge5YYIyHNjPfCne97Gk/cdQVP3l32NnPZPPMAULc7mjxLwAhRc4+vJCF1J3vCVxb2X8uGSiteAXxLL3sp2msr5trzPb6XSQWI1AUQedC9e1NxpjuaEwS9JdTbdrwbsPovSRBa3rhNtvYGCOWVQnTdGyP1c8gNrY90a/b95CRHSTJCcDAmrO+Iz1FbWbbeDXEK9E/DMgEXB0ZS9dhDMrGMkRmGqzpYNgExsoHPckFGA9wqb2AGGFFyBA7IzRiB4NNjndDA5Jy6WMyFD1oU0jBTBVV7mMzxZDDFDt38wRk2L0xw/yfPTQGpJE8MA4EzGGCEqf1VUVgJj5x3ILYDRlghpeUAFGgasDpgBQrITWv76H7Uum3rJ5DuBIzYn08DI7aRrX7oMNaOWr8H3VVNnOKS6zGyHWMkVWuilGXjZpymlbUiyWRna5rv0OGqgRG1/EXNhvUJWJQxoj7vgWFFAb1U5djSk+vaZGarygLxk9ubQu8mHr9P3s8DXbkXvXvyXVPStdo7U4PtRTL7naQqnwk4MftnXfzbS+hmSNez9OANsrh5yfEZ6eyTz5j6DWmi7crHlBr0FPjLCRqKVYhASzWpwvA5K1mz4/kxZ/1yGSOZarrk27MHpH+B6zHig+c+DuBRrKRPWyqkPm6g198Z7wfNJUt3h/2CaQbiukEsBVeAi1b8kL9khEKBcAHLjSTcFDCiWCW+yt3N/N6/InO/eN1Wvh3vKD6nFsBIavLVsObDrymPJS9CoVj+KV+C6C/OGJGMa7eeIEo1KO3VWroP7vdnNdMVE+Rqf+0HwuxBt2sk3SlSPY+w6vxLsYm/jrddfSvoAk1Dbr452cowLtTcyHvAZN34J9rfUivNxwDAybOTp84KDU5rCb4G6SPgBEHPzt37Dqwi1GBr3gby8dR8OMtnpCoJpiPnnTJjJKOYktKCkKwuyGYm3ZscsAJ91aUPyHqcWYdzTzFGlEdxERqGS3tZ7ccK7uwTBLw8B1VNqrVma0pKazLkGF61z5vkfKr5WUwBI2W2XVirIwgj+IGc55qxfH9W+o+7BzF/mhphVEMey2tlCBaSapIHUMBirYOjq138P/Sn8ev0u+U5RNdY8g4tY0RoYGSPUloA4Hkefuj1X1v6v/rq0bmf14wRHSfXyupCy/sOoR6qfa7vo1BjJuQCfiTg1+Z7jADAk8U+oCUbSh4UNyBG0wAOyMfofuu3lM/fB/wFgJFGFMBXQNeV9Q20tAIGJHjTacox1+yuzPy+G4HvGUAHAMYqf58MFTCimtU8CDA9JnYZf6WBEbfzUQMjkSPVxGo1Q9sabRTS8NGV0goA0tGFGjFtoKw6kwOWoaa6PRonThjN83S02IZNd734zkaIxGPc9txX4xPHXo4znTWzQYivbOD2P3kK5x7bHiAxwEioKLvPk1QoX3W8j68M5LkO5UK0GsrJKRvPLtCZxakCjCSDPmrtlulGommG8Rlb2C/S2YsYoxwCASxjxJqvF5E1YdskxwDITV8jk4tVtTO2fJ5am9A1X5cvqKcSsFF+YKoTaaegBSsZ0OkOmsPxHagXQ9MtNq/wNysy1Q3b2LoHIDGWQ1nA61+6tk3LqQfk2L6hJyW51s+OkW1tYoOcwGdHPyg7d+fJW8yJ3Clc5tnezRvzTXnNG/e3SoyRjUjetyLo7rljd6Q2xy0mr981jN9rZP3yfaqaAsYD+e/RRiq7ZwCIQMCDlrApJw2akVUjYysHk+8dcBhtKMm4IEeQJqYD0ph5bz6tTlRuNonRwJfzwCwNbc70uwlcgHwnOUKQa2S2uE0O8yT7riXyEjDiFGAXLKBJKrN7rfSadHoBCYyUuu5EgRoZG7B3EWNqbRSrwdnIYYwsDR7DCx55K3qj0/LM9Vro3oMZ90PTnauMkZDKdzF1vKhciTpCdp4Lsi37DhHemCmnRKkDjIhtuneKWDL+IDXTLVNxTuHsaqVAN0MmSYOXxLeb5WTQR2dtxcjDpJPFiir6fAKWgfWWjZQWm7PR3W3oDXHIMrMB0vrApFK4LeVBc7Ty3U3zs1X41YwmXZioqXse85WFZRLzkXomat5svuRWdPev2Llzj/NIpplUWqoHThJ/DYwRj+nO1hTBUg+Nrt2gsHR+3vJ/InRBXRdQ4uEez68indALrmKMFgJlwB5vOYDQl34XePwj8mukWgDg4JSX/PHqaytWcjLJgc2nnAtYHBjRWvxSSks1L2xX/HaKPtsBh/EwX/j94aqQxxGBc+4wRhQwUunSDao67wAoi5AryYVGJvcETIRgeQbh7OJInoNRAuJqYnqAEAzpmAJPfhz4pcP4/O9+Fp9/z5M490h5f+HKiAkGA15pVkqeJagJmX9Q1DHuZ/PfI1YYHXnitUzjgsdy+W8A7eNH0OgsAow4z6kqpaXZAyxHa/8+BCuOKSnX0j12fmfO96vdr24kGzLP1KxPPR9X/di0Z9aOEpHcjnsA8OpWDqhIF1x/FGDsezlWFAjCllXRHo1rkgsEpr3q4qsbwGR9z8fbuhTj3AX57L/1ladQiygY6phslZ87N4wReU3pnJxU+wYFLEc9HwAAJht7B7zzivl6ENVw6KbnACgbsHcPyrHFgjooak6XdN2R0nJkmDm1wIg299bAyDOOx0cxf/yzZGwaT2SUpbQAGPYAm1NU5kVRltJSneI0DvCKM7+Kk6f/rPT5LNCeaTPej0/9e+C3vgH48P+7LThCjfeAYyotlE+Sm1cmm5KFBpn36LxCG1+ba1DvmQcrqQUA3sQZ6xoQcRgBYo6UFieZ6bYPIx9+U3XZezXzfnFEKDYXa/YAgIx3UDWeFq98hfk7U/u3eTKpxawGm2yITK0FQc2u61XGxSJhPGQq3oN6f5SJHrLR7suFLgNmcmUTYyaLrRnvAvE6aFWz2fNLMlUAwNlXXkqrNzqD6099ADc/8S4AQHTsOvOZVj2Ep/LPhEgWtDlHNWyvzvAZmQeyF7xVBkaSdGpsQHDQXO8h7HF8TrB11TZEZpOx8bAkeQCejU1DQ0EbljHiyc5+mqVmDxCFAp7wQBRA2+h0DTACT8p7ZXmIS08P7O/Lhd2TaA+eSlMFNc2htgkagGGNrF76FF71hZ/ByuAJ51vc+Y6ay2s1FLG8T3nQKRcUdhOaMVLv4ECvgf/9I9+A17/wEELfwytvWFvsWNWImsZjRAMj/BqAEQDorhyq/Mfh2R/ENDByYq0stbW/1wZTgBcNfGQDOXdKxgiHPwdkMkbmKQWOfT0AKaP1wqM9I6WFfIz9P/7jaN56q/me5wv4C3h3AEC9LRUatrY20exaIDJkAu2mav7dBWMEAJZb9t5rACdR64VmjPieAA++qoAR1THACjDtau+Yr4taiGYmk9rhQEh5CxetrwU4q9gaAFPdFDZ0l2LAcvgtmcx1Dx80jJFFiyiGDuzouyfDAfiRo/ivL//7eHDtekPte/TODdz38bO440+fnns8IYQBRrxIvgzXv1xqUwbqhRhtyXPUncArGhiZ02WvF1fByxN+POij7kppXX4ao0/+jr22jM40dTWbTLXABlFkintFrWaMJK8UkulSKyaoq43feHP+Bp5VgJGo0USk0VD1f8Ps4MJSWnLxcBdojpfd+19w+MxnAMB0ixE0Z3ZkzwrDGLnwcQDA6jE5Off7AfZqwM65wJkH5bW9KPhjtH3598HFIb40+bt4KHk97ph870JyWoILFMTSWwndpnC5Q2jwgGfCbBg3Gz1sqo537tfmd3/vEMMtec9aWxKYy+aAcotENiiP92qHmu62SMaFLH5DAqtG37XKGFH5ZVRYtkCx2HRRCq2t3ar1wQt/upCgad7FBIxa2RxtiDwraXY7W66mdQSKRZBuLC7B5sbyAVskfOqevfnIbBfphn3vir6zSV+QMVJdD4Sg2/o47CYkw8LpEBMEYTGBr3ys0vHu33dDTRaWMaLZkB5PcfDqPRao1pIEJSmt6ftRqE5CgfJ41cW4ZOQU0B3WFKW7AEYGNumvGg2a4zgSW5qtNDPykSnoBrww8pW6K3gqtL+IOZkZGxZVLCCw80487CNa6pmibD5ebC4hsfUhE70ls0m/Vv9tDXaENDXggPmdFx+vfNbRsJ6zKXPf/936xewUes7zOUGwsoKaZoywxYER3agRFQmKWgP1m25Cd9Uacmfx3t7LTI0XDRCXGSN7LxoKNXZDmiHo9VDrNC1YfY1GTUVGp3y0riUIl/lWI5VNImm2x43cFDByBXzkoaWo6/FAnfPWKeCD/z/gfT8MQEtpVYARLiDggxVP4JEog2hEllmZkDIwMkMScKcoiLzGiMTG6HeW4aqOydD+jiKe/X5M+jne8bN34IO/8cBC5yKc4l+WMfMuJkpKy2PlPMhj08BIxjqGvadZ8FwEijFinwvN8xJbxAZFmgjgyY8BLMf46kCeQ6W7vnDmV54zA4xoqa88SYDVVbSV0fc6uRG4+ujsC6c5uJJLKfy2XJuEAJhvjOXbNx5Do+dIae0AKo62kdLKDcM/Q3t1CcHKMgDA7/WsLE9ucwdaMl/fBjTbkOM7KkZI9x2yUlqVvFMzIMV2TEhYsEnLa3u1mvVJWJAxopkBvlegpfJMsSbNWCnq1yYXCNvUpSPhq8D6nOe9TZCC4d2/dBf+6Be+CAEPh6JH8am+h6gm72E+Lr/jDGVgJMtmPx8tjxewAnXV/R1fdQrp574E/PH3Af0zuzrPIisUY1r+vjCKcOhGCYxcetKuu6tHZaFXeAEI2hXGiFpjHCAg4BTNtirOqL06g/KAefpTzgnEck/4+EemPDHyjfKaKkoeI4oxooGROdKnssbhMKX0XnwSwifMnLO+hlwb+c7yjHtaATp3vQW47Vdn/j7A5rGe04xDoeQAXWnLZAsZU8ocJLF7nEkZ6GI6F/WU9I4GBlxAUjOn8wnunnwX/nzrZwE6m0ksSGa67aN6iKClGmu9CMQBKtOtxZoMASkZLVBeePxXvtJ53+V5qvQEBy/fhec0PoQXND8q/38WIJgNkUPdp4ZvzNe385fb8TxVrasq0VtSz5jnYTIDFHMZ0xvnLaCXiy74eJoxAkw30W03J19rcDUHe4Li+jMfxv512Vxav/768gdVLSmlPSDZMl47+66T93/z4nQNY56XWSHKwAiNE8PmdH6hZba7e3ZO0L9S9oajgQLTaVSSoMxZ0zBGOk/8PgDZZKf3tkEg/7TASAeBYhkKD+iotV03YwLSN1DLDFvbkPJzp2ZvWQVGlL9MrYF6MYLHnOYLhzECwxiJQFN5n4qwXPjfVejif01+92XHV/Bb//DleOI/vB7/+FXXb/PFXUTUsowR9V/Ur83//G6i3gVcOa5tgJF6FRhZLTNGes0QxFe+Mr4PMlKS9lzADwWC2hxgRBmZD5ICeN3P4bPdN+B/0TfgdbccNIBDHg/h1+u47jfejPDQIfDQQ9Ric485Lzo92VQwGvbRWrbNK6HvQaWFCHbpK7PqMEbMear1QgMjHgRYtHvfbuCvODCii+4By8CU2FhYr6OmikciCtBMZeFsOKlDUA43KUhFDX1lLAXBp+RwdAFBAiPyJi8dPWA6h/JksYk7jTV13tEKHA5woCvPd1xrmUTw7NNy8tCd6rOCc2Hajvy6nNiOvkgCDK2BLG5O4gCccWO+bhgjyZzOUg2MCHmNnbV95jwbXQuMFFfPYsQO2C+KcpeADl200dcc1upGDqao1bEyeFIeX8gXpEZGFsxan78hNoumZow0GlZKSxX9RuTAwj4bjIgpndXu+DS6GxKtH0XyRSRea9ebDr1INTbuBACsvOxVAIA+OQxsPDH3e9vFlVMjpGOCmhfjcO0RLIdyMRtcHGCDngQAPJF+E+Iru+/ukp34dhNP+N4nfKHMvDRwMKq1QYIIqycPm6QwGS1ePRRCIFUmpFqr0vVF2Wvko3IxIa9sxPRck4xsFyRC33QtMQdUFUIgU+Z4LmOEkL1Pt8Z43V+H4J41JjTAiKJ555NS4dMYV88wsnNBgL/76Y8izFXXvNOZspegTkL7+J2Xt/nkAnH1UeBzvwaQrGQmXAyczeOiUlpElDctglzT5gKQXWZTjDOemuc1U5JgThBVJNKJppTS0jKE2vBbFZT0q+RIadEZ3Yc6edXdRtp0z1eU8XjkFNAdc1k2xzPEjXRgNwmFaEHM0CRmzCaAmq00M7KhAUZIr2fWHZrOWQ+vPFT+9wwJEUYYhKAgXnn99aIIvmYmJN6O0hBuGF17lsPrduGpbqLShn8PodfNgFrGiPnZcFA+B6fDfd5msqRh/awDIxTtV74C9cJljCwopaWA6JDEGJ64GV4QoBGF5l3KF3u1TeSqE9LKlDpMz2spGipgJGA5/N4S6q2WLeTM2PTv+rBc4I9+8Yt45/93J0ab1w6OCMaMRFQrlYW1jCzWPaUjrMhydoOrOHg5QUM1t8QjNZf2T8k/0z5AC3BalN8pwcGZABc+WP4wxh7HRv+KBScTAmw5DUELMkaEECBKiz+iljFSlX5wI3UahYrR7Pdj49wYlHBcfHKwbW46dT7OXDB2fo+V0irP0/4MYGQCmWuHJDbzAUMEmmamcxEASJEjHctx3eh0bbeloMiywPi2pExuPKtdurkDTIgxhRA+hODWx0QIiAMH0J3I46yTG+YbsDtSWsRvyefIKQqufbIomjedRKvXMUy7Yh7wraLkMVKZx9xGts7qMhq33AIAaL7kJSYPLVzz9ZKU1jZjQ8uikjHY4aPWY6Wylmt5vW0Bf8B66wRaUss3Be153hDzQn8+UHseEoTwV2RHJvVq1y6lNSjnxTFb2dO8uXUxxsa5CeAB++tn8cru2/HOpyJsqok9m1SMfT259zAeI443mRtC5YI+t4yRscsYueN/AI+8H7j/Xbs6T8kosuMiiGrGgP3q6acx6ct8c2Vf1wDhEvxzdfWngRGPEzQ1Y6RmPVswOg9ccoDWYgI8/iHgj/4u8LGfK51btlVRP6iYrwOOtO8c9oBcs+3PRF3tZychaO6bOkp3n2wYpcpbiLAKmF4kZUD0078EDM5iVpj31JHpokI+V8acHDDZNBJREY0R6D1OXB7DmpGl916aJUNcFQfdEJaN8UDyBpwtXo7LxXNnGrALkpm8IGyE8NuqiOb5yByQ3JWZ3U1wxiWAUWEFRO0WfFbevzG1N6yREY6Sj+BQTUogz2KM0MkAzJNjqd6q2T3oDlPHE1+6jA/91gMzGY9aMkyI8rp201PvhmBKonZGfWfr938K5/7j3ytJlgGWTQwAo1F5Psy2NsEUQO2zwu6Nxtubez+bocFrv8JqZwcP4Jl7vwShPX4V+JayHpBuIVMswd6a2ofNuCds41Tp372R/HeBcs1INoZWv89BCr2nkz/zWYGkXQNnFFGjid5+KRFJFGhJeA3EaYbIecdKaamGWSoiswfwPfW+KJWZRrtjpbR8D8sDpylFHzMNUKgaWJ3K3H4KGCG0DCrXNNgox+qgKd/tq/WO8y3m/Gmbp5nyqGWR+9ldhpZ2qnVL/+37s9eQRY9tGCOqVsavwWMEgMzRWg6TZQHGyMl95YK/53kgih1BAx/FWM6d2mMkqM3O/bWU1iAhEPtvwZuaP4Yt9PC8w13UWzJX3FBy8+G+fbjxox/B6DsPI6gJBAtIaQHAkgJDiniI9qq97kBJrsVo2q6RHUIDOgAMs4UoGTYtpeV7wsqr7TL+SgMjVoc7BVeDPqrXDULpBYGV0kp7Mvl1aKSRoKhxPRlz09mgQ1O1JTAij9k+5DBG8tpCm7ZMo/9O50Q8HOBAT04gk6hpNFU3rirPkAmZycQAyl2ggdLFDNfWkDdaqBcj+JAbm/FWjiyVx1hV/hZZPvvR68lYCHmNh1W3TDzoo+kAI2Q0wpgeKH13lh6m7nzVlMSSx0gUYd/mg6XPR8UYrURu4F3zp3nXrjufS+brajEb8wMLM0YYLXfiANKgLlAL6GBZvsgEDYh0Z8o2JcwUopp8HWjvx/Jz5D3t06MQF/em2avZIifq9yBoLWGlLv999ewYIyYnVo4ID3xx96yM6vMj4hqAkUCbDspjbjR6aEQ+Ttx4FJEyhJxsLl6gk6at8t3QG6F8zqZpkch0x5qaH6pgi36GbhFS1HwjpeUmSGSwYQxMOctR6A4NunNxeV5o4/WOkMlJYBgj6ry1v0IRm3P1BLUF5RkSUW7i1S5yM/dk18gYceely88Mn53u50/+IvDJXwAe+wAKB2DKhyMIARS8IU0sFwhO+ZSU1rMBjLjHXNm8H+3hg9BgbbHAKeZxDiEEhJrPXPN13e2jdZiZ7kp21qOtwXQBQ2+AuDqf7prcAOtOscnEkdKLXdkSub4MriRztYwTBxjhiMDiyu8XogS2GimJWZGNrNb96poBgOYVzvjlR9CnR3A2f4mUL5jhH8EJg2BbLvaLWDErdVd5ThqysLv++NT3Z4VmgQYsh+8AIzvJqex43BlSWjr6FZ+aMmNk51zh2fIYYaqzzRMUtRtvBGvIsVOIzpQu+E6hgY+IJqDPfYH5f+7pjtW9sReJAgL13Ea9Op7KvgG3jb7fGJ8uGowLcDWOQ5ohWJKMEcvi2zsw8vidlzHZysG5QP/SYoWYWUHjkena13lVRhfrntLhi3KxrRdewcpmbJhCpn41dHyfsgF4VvEYAQPnKEmsFpxZdlDGrDQkUPZN2kXQghspnojEZo3mfH6e4AIjdFZ3NICJ06R0+oHdr5Gc27Ebj22xdJbHCACATedsE18WQ+rFyLAEuRcqTxGXDZYb4/Vmt2u6NoWgyEgdGJ4DEyEKITeN+Xq5CcKVmhLCV5v/MiAWHlhDd6yBkRvnG7CzwhQNDDBCMySJLFiENEX92DG0lromn8nnAd+Q+YrrO1iV0nKBkajXRevlL8eNH/sojvzyL5kiNnEKdm5jyHbdybogWismCI4csSB65TXXY45vt64B4KohwAvsODPF3QVBa70Wh2pM1A4eRNSWhQrm1a/JRwkAsmF5joz56p6Ydnr9Wd7fwN9Z+QkcqT2KUziMTHXfxo5klxDCYYzI80/zGXsRRsGZBqgJGmo/MFLy0QDsOj6naF8NkpeBkbAWob28YuS0nrn3LuRJgstPPIJa6jA4HF19XRB0m258QRGprmyofSpDDXjio4DD+EIR2yYn/aeK3PEYkOEAI4qlaBgjc5jPJM1KhXqupLTSrQhkEpo6SmdFso60t5CWmjJx+UF5nM5BYPVG+X9z7jHX7BXhyNgpjxEmQsmaAcDGm0Zij3Jim7+SMjjHjBSdNWEHpNygCdUURNOxAWKH7BCQzgBGaG6AkVozQtSy62Oa2meTJXyhek8yIrJxtdJoGTRqBgjWxvSU6nFcYDKoo+bJ/59VU9HqBp5gaPQaBhiZJ6Oq496PnsWp+zdw4fFp5gsxz6gy/woCrqmWVcIILfChu16GPzv7Qxg//Vj5R9tIIqb9kWke8Tk1bPBsVP6OYPPn5GsN4TBGzP95Hm7/zMfw3l/5BTzz5bvlz9XePeNdJaWlAIclBW7OWDd0/vei1gfxTaNfxckzUlK0QHuGlFb5+wLcME70+uTzAmM1p69ddwwdVUwmkZKH5Y3S/S5EG4nKLTqBZZeaRnINooeOlJY2X/c8LA2nVWpIEZlaXoPJea8qP8kKAndOCtUxdaP6R098LX7/ed+Ou0+82PmWvn5hmqBCMDAFILHa7pgDpdCMkRIA8yxFiTGiJFKvlTECAO199u+93TFGPA+4bmU6l6eKKUMDH4UCzEIuEDQ4wjnsDi1JRbnAOKfYUEzRtU4dB/bLGsFoaOdOv16HH2lm0GKgQ3dJsUSKCVqr9rpD1aSZeLvfn7iMkVivHakcO/WWfP6+J4CvJsaIflEDmpaktHRXLQIYYGRID0AU5aQHAFpqUyLAQSqMEd2Fe6Ezxjt+9ReRxRNJy1aFioT0FuqMLHQXOreLTzoc4kBXLsouY0SH4GKuTr+elIVgoOqF8TwP7MgxeBBoC8kWuHpqoBYCjmUFjDDmz2R4aCSfKWDk4I03y/OcjFFr1m2BapRgxA6Wvls1ZwJsEUbTaCUwIgcpCyOs9B8z8iOA7OzUnY3DbYARy2xxZGbqOiGVPxuL/dZjJNkCLn557vHM9VOBagbAHKSZHFLX7Pkgk503CBq59z0hk50Tr8LywRY8j4OIFuJTNqEQQuCj/+shfOQtD+5ogK1Bo4PRk8DKCSz35P195pLSK1QL7kMPRrvWxNbdg5428BP1PRtxm82fSqo2m0v49hccwlq3AV8ZvMWDxY/tbmZ1h3Je7B1w0KGfkwZbsqxciJu1YRW1mi26OB4j2WnZSeWzApebXdBImXSJ2p7vp/ZV6anuHbNpyHLZjTu0wAg1usuFKfiyGfReN/ECLLsk2wNl3I2qbFf/yrUX+Mw8O75U6l4rxjE+deWH8LtX/gDrm7v3/QH0u16W0pphi7Hr4FxINpEzn113/uMQkU0YFynwyqK73UxGTWu+TpSOqC6SaXkB4bBEWDG9iTOMEdU1pDsDmfo9SWoTJ9eInBQRNs6P8c6fvxOfeJsqhF15BPjyO003+HhQ/n3FsFKUYaSkka1lIGdGPjKSddFK18rszDBHF5TiTx78e/jDjd/An/d/Hp8a/rOZXa2ccgjlS7T/5A3yHNNUGvJqLWXaAd767cBvfyMwujj//FToZoqAZQh7PSDUOvN7lyGU52WbPoIKE4pWNsDu/F7V/TXf+Qp4jGhpMp8TREePguy3HmnJggbfWW4L2Y1b7cZJ17ILurfNB1Fzoc6ruFfDbaMfwIPJG3F5a3lPx5ykObjqTg2YlNJqdFq2uDsDvGOM4/N//CRue/cTePyLl2duqBnhuOsDzzjnfu0Aln4HPcGMBFPGuwCbnVNuF8KYWaiuSe8KOlc2UdeMkUT93H1v0j5ollckI6SpqEBgmlCSPHW8uFDxGFkMaNL5sseJlLgzmtjzv5M7hVk6h9k56dvzOP3ghtwgFDs3nnBnvZoM7fyscw5UunQ9bo+pgW8NbtWKoV37EUlfDae4QvMcqQJGGu2uKdICBDlvQgzOyeevIu+XAUwNnAOA4J585pXCnlhbscAIvRFi48mZ1y1IZs6bBC0JcNEck1gWOwIQeFGEeqdtrjPfBlR0pT2A6W5dovZXIcvhq27B2vHj8NttwxhhjjSOm6ds6z8z0vnRGI39++DrJofKWs65klgV23eQCiUz64d2X2ElkOYM0k/+e+AP/pZDDZWh70GgmhhW3/gG1Lpy/8u9CDzZfh6mBcMn3/YInrlvNrM80+NVjbGYre6JMaLvdaDyji3eweufc53pWs6dV4Azq4SwNJTz4ThbmWaYZwPpZYayx0g8VOOVUQuwDpSU1uTqtudPc1JqbNHGwTe+XOquP3XXHfjdn/gBvPsX/jVA7VwtSlJaWtLZvje+c8ygIccH8yLp+eNGEVuWT2VuySsglXuepMoYmVMkJ3l5LhYKnJtclPcxU8UkXXzV/R3Ua4C7SKDeSx95qe12nuPhYfZszv3gIoPgqWwgU8C3y4Q9216x8neVvYuWrINqQjHNaaKOTw9/GF+a/B1zzDyZgCnQY8gOzz5H6jJGaog6TTPeJyP7jid8qQz67xBxX8mbVaRQw0ZtKldgDgOVDgJEnpLsnjEfZEM5LkKSoLHcgy4u8/lTmDx/9f4UMxpjDKtHlN8x5ntgGhhh5cYCdvUpeU8BJP0yeEW3Yf5lgwlYYoG8QOUiVd/b7XyfrjW0v5nLGBH7D2KwLmtPm+clyOfV5edy0St5jLRXlFzRDGZWruUNQ47NUWz21cRrVoCRDKhKaQkBSrSUlprbOUGsfG9WDx9FR3fcq7oCQR1kXJ4b9DungRHA5kW63kb8acYIILA8nGaMUF4zPkMNbyA/WXk+vKClOanKGImXVvCu534LgqWOqQuVGhPV2AtGZ1DP1XnvBdyoSGk9qxE6jBG17xXXyhgBgNaq/ft2jJHAzkeHew00oul9pmjK/KoIfBSxfC8DzhE22FwQoxEFaKpj9eMCG4rBua9TxzFV80zHg9J3dDNGWN8bMNIUKVjLAl++ahxI/d0/t+W2vfdBUzJleaYZ03LsBB6HV/sqAka0CWnI7GYjrNetDrsHI8tUiDZILkrm6wBQN/ROPuUTQNU/+02G/pVLuPzUE/A8D8LTRZTeQlraRV5mOQCSMfIdLz2KW69bwvNuvg4Rme5inCc5pJNNMnk/7jj3OEZqUu/dLDs4GlQmAWfvPQ0A6PhbyCBMYp9NpjfHVBV6GOTCdfDkDfB8HxACHs2NVn5StJAJOagbnhyIszpRrZSWeolqddRV1zMPfIQsx1piwYEaGRv5s8HVdD5bRoNCxpi4ZaS0uDYZ9fbZLpb/+c3A/3yN1JzdJjjzK13kMKDbfftuRGPfipnU8+HOGwTtL9IIE6lqcPIbUTz+KLoNeT/6ZyywRjKGp+65iqe/vD7z2bihx0TL3wKWT2BlTZ5jTJcBACuDJ9GgfRRFgM3zszSnp0N3Q+guLXi+ZSQsGFyJBeoNwUZjCX//645juRVZQ7N4cUBDbwQ9To1ufKFkM/bq1wJYKRcNpGqNch3VBNXjBKJRd2jMDuX6vNyMRWSCYbMHUVP6nQj2bJCnJSSWiSxIaCp2kaZSLk7rdhZjI+8TsNwaGM5ijOjEixEIeOZ+upJIe4lqsriI4fjc0AllsonCYR1kicCF7AXgXoQzTy22+DHmVRIzsq0O/U6hASm3U5AFPsjSKoRKpugCrKEiI2Yz6Xk+wsjKNFBVUNDHZaormeb22c0DRmRHpnz2PS2ZoM45cWR2Sl3Uoo7Nx2UhYPCkSpz//MeB9/8ocF7OqXGFCl+MK/MOTUvm1xzRfNmqbGgYI7UVK6U1ayzFZ57EVXKj+feAHpltvs4EOJMJ95GbbzHrRTwcwPPlfSxYS4JwrCgXZ+eENq0MWI5oeckaq/JwIUmuqeM6MqHa10qHqPi97EZKywWUny3GCDfACEV05Ahw5DrjGRYPdr9u0IKBcguMHHjpi+zPVPGQ8AZ26+nlhp633bwq5csAgCTdG6AeT4bSQwdAKAi8ZhNNx0B6FjBy/rE+7v/UOTz46fP4xO89gvvfe+fUZx694xImW/Yan758bf4AAJCr7tKApkaWJmVLuyrouyGEMAXdI+2P4WjrS1idPAafMtRVvjBJ5Puab57F3ZPvwuPpNwFpXxbtnOK9EByce8pnQklUxhMDANKclxuOFmSM6NxJskUksxOQhf55UTjSsnSObGDssBUuPr6J/FdeCPzH64DLD838vPydAtzptk5G9r6b6YFXxovDINH3VkctHwGqYxGeD5Kx0p6GFjnSkdoYdruO7x4FV0BKypfM56vNTNSRmuLch4APUSmW8W4HnfgCIDhSvoR4OGd9L1LDGKFBU0pd0gxJKoEZX3Xj+m0LKpJkft47rDBPq3mG3q95XiH3LCq8Ws36/ziMFFdKS4j5oHKi5HRqxQidg/vhebpwVR4nXLGEmZi9rulxqSUk/dAWNXYyzcbdbwWe+Yzs1HeCFfL3hGkKhCFW/sH3oLlsCws7+fidf7yPx+68jHs+MtuDI5vIsdlSe7KYr5aKe7sNvS75VI7NC19exT/8lR/EyctKZqbwzT1j2luNxwAbozORzXwXnqg07CRbRj4p4NZjJMka8lj904AaVxiek0Xx//4y4DdfOXffTvLCMCqCKIKnpOhu/BoJjJy67x6kSrfd890i+/ZSWiVgpKmltCJgXe19W6pztgSMVOR9ldyvBhHd9z5PEwghDEgwjzlKKlJhutatfSCLnpwbNGNEeAJCzd3FxiXggfdIMOfivfKLR15mi3oz2BgAwBWbueq1wdm69PbIBgAsOykkCZ5ePmoatqqNIEaqTjNG1B5sKI7gkfTbcPfku8z65jbSDOnhmefo0UwyvQHU2nXUWk0zH8WpnbtTtgQMd8c8AoBkS16PX2UEhoF5hoWaj6gCVQOWIxgw1Hwt1ze9IUkUsyIiMZrLPSvfyuavb5wLkzvPAluoUkjQTHI9fzLfN8CIqDT7TE5ZGXBWYYiQbeREs3EGqoBcTrfgK4bklJzeV44wYpo8PIc9FV5/PTJFex1vyvkuasmxlqEDJJsGXGiHivGUTNdW1gfy2k/TZTw9OWDyGuJXgJE0xywpLWaAETVnMoJcMT9byytoryoPKZUbUzSRb003aHtgaPkD8+/cACMFmOcZdli93TGSygIC9WKEWiHn0poCm4loGp+hhqeajHgVGLFyWH4QwFdFfD0f9tR63+51DDu4JOunm6dBsC+V64JX3wNj5KbXAc0V4OSrF//uThE1UVMSZoGaf3jwLDBGNLjsh3YtmBGulNbxtdn1Dq8jxwcJAuRD6zES1jmibUAMbcB+YZAiUXW2fZ0abrhONlt7xVh6kKgItb/zgsBIqPxDul6KsW+/6ytgJg92D4y4jBFt2O6pfc7+4yfhrXTxyn1n4S0Ikv2VBkaMTBO1k1NYq1nGiGDwODUvd0K6U9Q1E9pj5J3fDfzJDwCwOuGaTqr1RXkg/53yxRgjxCQINmFKhgM8/3AP7/9n34hbn3/MbF7dSOYUFg1rgm1CCIHLT8uFavm5skjkK+TsqYfkwnPIfwRnPr8fdcj7NYuJwnINjMhJqnfgIFpLy/L/JkP46mXos+PydwQF2gqVzifTi6FljCiaXK2GqKk1POUf+wdWYzUiEzSyTXiCghFeki8onaeR0lIdoc0mIkMTExCCIQ3XIAbnpPGeBkhOf27m8cxxeaVYCuB/vvBv4If/2k/h377qh7C0f8VqDM80uSxHpqQTGkLeo/94e4Cn/t73oHZedtn1txy/BKeTdx5LSIfejLaDPrByEstHynqKncl5tDI5Nsdbu+u41N0QjdxuQEhFz363oTsFNfuEr+3D112/iqVmBKrGUJItrnVuDMRYYZ4D4Q3gYz8L/Kfju5bAqYb2yzVAKm+WCnHVLuuAEYh6E57QwIidV7JLciNXK8bIusugDYfhsIeiJGccY1Uw6xHp2eG70hMu5V5wEEV5DFhhgZEZG25dJAh4gcn+g6ipjVi1c2fR0PeiFcnjJVcW8xuYGTqhjDdKtP6ctVEEqkNiQfyFM1SAcnptwIgGEZ0N8eMr12HrdW+AmKfVvN3xMmY7Eet1eJ5npLREp41LP/rTYEtywdceICRz5Kxm0P5ZTiVdXk07XeUhRdXmKuVLpkM7czZlFA3kFyXgZzZWuntOybilkwogVvHtAclAHGBEmo/OueHZ0GxWW92mWT9mGSOPniq/84VoztRW51SY7uzO6hraal2LB314ak3PuZNAJTvLQWVavoXmqC0vQShJS4baNZl7W5nQaSktXtkAz5TSevh9wMX7zP/Tr4D5utYx9zlF7ehRRIcOmfwlmePTMCsMU1EweCzDgZNH7e9QxUOCJjDDs2an0EB6RJLSJhjYuwl5NhnIMQYgaobwPA9Rq2nA6lnASFrJ4SbPTHuLXT1THi/xNc7DAJCrTsKQpkZOLGFLi/t2cAE9aTy3+Rm8svcWFBvy2ej8Os5kXrd+cYIvTv4BPjP6YbDJFkhe7YzkRg5FFyEnwwE8obW1KwWeBc9V504RiSGiCCLU3g/ztzsuhkznzNFuLsqFj8+v/x08HL8O/Oz8ZhupEe+Yr4+mQR4hqs/ZnkytIoVUL4YQXZs35QlDtet0orwIGh0rpaU9/jLeRRrZ9ytPy8UN4hjsSimtYIoxwhSQEeUyV1rvl3NP8/3cAUZCyxjJmZxjAzXn+k0rQ0fS+XmvNl7X3hxVxgilmjVP8OWPfgCPfk6aQ3tBYD08nOujFbkhNqdDOVaPrFZM0D18wMirlDwNaGHkU5moTYG4D3/uAn73X34Oj3/xsmFT+6EFVsz5zZPy1EBmpbCrmS4Bz9F7/esRHTyIxpLd59Jke2BErwXz5DG1+XpbGfLGdI9SWirBDken5b/X5T3Y31eel6Rl1myapRBCIB+9A7c/5zCW+pKBfb4qAZRugapn4DuMkZx3QDfOABtOXjA8D1y4ByjG0tfjf//TmY1ULKfWPDiyRZd9x04YbX8dtbpzz3SeFtVNh7S7z/dAsXXxAp784hcQGsZIzebu+6RUF4qxvb9VxogGqZIrpd8JAIJzUFKYNU7MWX5JVpRqIKwC4PGufJfbK1b73VcMtuLUvcCf/j/AH/5d4KlPyB8eeSnQ1MCIfT5ZTHDm4U1wLsCILqhrSdiWOuexzJPUni1Xc2NIY1zq9kBUnaL6mJgIwVkfZ8l9uP3dbzfAQCLkeXBEZrwVDkNsyA7NZIx4NAf1VHd7p4Go2TDARebkgwldluNolxFvamCkUvAPAjPfFWkOcAammr0ClqM5zBFhPmNkPJQ/i2iM1sqSlW/dBvjPJsRgtTN9MUgZGGkrVgL3PFw3uKSOH5XQisl5ey+qDZTbeUWlEwKS5uCsj0n+p5iQz8pzrNQ85jXFPhthGSN2cHVuugHZWAMjcm2r9eS7XHhdoH/a5Kqtx34PAGZKL6utHpgnsC8bIqJKLi1oleTXZeNbtR7JjfoEM4oOBIXaV7SWltFR7yYL1TPzQmT9aZWHuheDDCzoru9vwDMjxez5PmrNppXSEgJZEGH/uqzJrfRlnkrQQK6a+pq+nJ+qjB5OWIk5p0PPh221bnaW2ghYoQBX13tONU97AgdzWa/zm7aJY9fxsu8DfvoUcN3XLP7dnSKIcLgd4xX7zqK+T84ZrebePPtKocGQzqFt/TVcYOTk2uxif7gkLQ5Y4CNT9bvIY/ACGMWJWaH9Op6+KufdeuijUw+xrOwDOkhx1yk5fwohEGl/5/qC0rwK7FrDCAOnyVUDI8UCwIjrMdJT70Wg6lie76N2oI1bVy4jWPAc/2oDI6mWjFELalSD7wcGoRS0wGazZ7rAJ3wV0witDg4eD4EnPwY8+McAzcFYACEE9H4q1sBIQ6HIoguMd28urCn6vNLhRZTAdnvfqilOupHuwBjRKO3gijyX+smTAIAglpOw3jCsDJ9E7SIxJsuziu+0KEq69o1O1wAj+XhoJtlNfgIAEHuFoX0W/Wk6tinaaLkeB7jS3c6dzafhiwKdyXkISC3rDtveZ8QyRlSyVTJfB8BzcD9CwpeBL75FflYA6B6aeTzzNeGXEloAeOjADTjTOwzu+Vg9sGIkH/LR9psOwHZdN/0h+ugBH78DISnQimWy0Y97plPKLZprk69ZIYRAMpTJVsvvAysn0D18ECFsAtaOL6KeDAAsDoyEJLFeMuO9FfdMV5waL899wQ3wPA9LzQiF2sjnpDklDbBT6ETR5wVClXAUogVxz9sBEgOnP7+n89WeO4YxItqlwmg1QfV5AVZvWSktlzGiPDpqZAKsroG2ukZHleRUZvof/3ngqU/u6tyMz5AHNMhQ/X5dSMiB0QUIAWyS42AiBBnI3x+w3EhIzPIYIarLx+cE5PAxyxjZZuztJnQRtgM5xrMrO0sSbRtC4OGNl+MPN96E0WYB6tniugRGJGWSLShfxKcYI/SaupSMzqvTYbv23X8b//Afv95IFlBe33UrlOxoVUW+utZAVmw7RvHXfvyfQBGzjF+HC4zMKiiygptCXFivo9GRSQpVx0mxZDZ/suimDoWmkXIw4I7q9NOgVVYxo02q8yNNS+bXDJFkZswIno6McW+j27DAyAxgcXRWnm+kmIs5LZsc6hDMMkaDKEJLbf6SQR+e6r7KeQtc+BIY3Q0woudMlqO+1IOvzUzRlEyuPcZ2HiOiUuAtqoyRrVPAe/4R8Cffb/6/JKU1Yy6QFzMC3vp64Pb/vqtz5I75enjwIJrXHTEd7km8+02t7hQMSYK43kK37ejgRhoYadnxtkDojuqAFWZN0xFnzT2xDNPJ0AAjdZULusXdPJ5eb/PKnDqza7Pyf8HGM1OfWTR0sSmiqTE3J7y5MAvDLRof8DfRFjGSdTnWzTOnsqg26WtpkyaG632QtEDVY4QZ3w15X+JB30iWajYOzXxMLtYhFgVGFKAU0Rh+r2fmSCsFNh2urwid462m/S0OdGVu+lj21/CZ0Y/izNPzx1C143fW2NCdkp6SD+LO+jHFGCmGYD1b+C4yMVVcGW3I82v1eqZAEajmsUx0kdZP2POp9B25eQIXAeBNM0aIWovaWk5rsjaTISHSBNxXvht+BJIkAM2k1jqA0FdNU0EAT/vzbCPzp/cCKy1ZBKJJhUGi1n8SCXzqrb+Nj/72m8C5bsyazoOqjJN5bN5MAag1MkZtbRVaAbJs9hyDKJlIIupT79eGYm1vnBub3DioWWDESrLOOAFGLSO4siZpRbyA5Vj5nr8PAGguW+lJEm//7uh1YZYkDGBzwc5ENj8kYmVX3opTv2dLrtG+R/E28q0I1e2J1H1Kac9cmyyyEkDEIGGA7kg2kV14rHztItkyjRa6UUoXoSeP3VtukuJUMm50nP4c8IU3TZ0ny3OTE+piISAlqm9SrBEd9bZbiHaltGaYrwuC//1LP4s/+7VfRkGVsbAfmXd31L4VF4oXKMaIqgFUagGpWidbqW40qqwpaWrZA9QH7nkb8On/WGoSkcCgA4xQAuZ43aAj5956yyow+GrPUTzxBXVdDEg2kfIeHj57Ao89ehCXni6DDne892l84H/cj1P3rYMrZpWue7SXl839oagBVx4G4OQBxQRHvGdwvvkkhKAglXeCI4Sgl8HB8MSdtxvcOfWW7XVlibon9h4N6GGIWcAIy00TTtRuIGo37FoO27EekyVgcG7q+/Mi7it5M16eP6VnqZrv0gIgSWkcR5TBU01rRaoNrW0kRtovRtjtGgbhdr52bmPGrNxDm79rTzfNGCKBj9WJrOtkRafkWTS+bN/HYUXmbZZXVKj2l1kiUMQFBJfH4kJ5W8a2QQbYG2MkHub4wJvv39EDTM/BbkpQv/4kcgUkj9UevrUi95a53wE/e49Zz5uDuwEAFNNy4xowYADWspFhRwgvQOEA1Xla2P2IkbLipolRS90HnKBQIHqrt+T4/9gblA6n84q6N8apjx4wDTvZRLE5aF4yXncb7iA43n/jN+LGZ96PFz30Fhw7/ykA0h9Fg9ANfx5jhMPOg3ZtNIyRUJ7v6uqSqqFVxqHKgwKP4yZfrhfhXoARQMoFfYVCBHW8av8ZLDflfT2wsgdWSzU0Y2QbfxGgDIycmAOM1FaPwFNjcqJqEpFiudQ1aWBGaAP2JxUwsq8jmzFRl3l9x0txxzPynSdMoK7kt6NtjjkzDt8KhgA3+xeQjS1z01MgB41mN9rMCpcxsqbkH2ssBmUcnAsEqiEoaHwVMUa0lJavpCbCSvGI5hnW26umC3ziHZzfSgEO5rYcFzEYjwAwCPWSacYI1APM0d21qRtgKfp68dGRKFO1zv5V1Mh0QSftT4MlgPUDEeqahlclMFJTwEhrVF4clgcywQxVJ0o2A3AhmdXDB4CoVjfdA/GgD08V6lLI/+v7FNxTRav+dNJhF2HNGKmj3tIdI4rtMR7gxjNvx0vv++9Y70lplw6Vyd9wjj8BJRxCcAOuRI0mgjA0FNBaIc9lRA8A9/4+7hj/A7xt/XfnMlB0cB5MMUZedNCijfsPriLQHjMXT217LMDS5xv+CHdPbsLrz3wRANCO5bPq0yOm04Yk9tzy8fwNDcmZ6XYTGwk2PvIoROcolkJbgO7EF1FXSeB4c7fAiHpGjq49mSxuUCvBRLnQaw3Pl7xMetUst2rI1JqVi/bC3WfUaPoXptDDvcgkwou8j25kyly6oRkjaEI4hc0pYITmYLWaY3ynkhTOkSkpqoiM0ThwAEV3BaHaqBZxjvSxL+Dt73su7viD7dlLOkZKoihABq66aXViXSQZMDyPc8WteNfmm/D50T9FMZLjyWeFkZBgM+gU+SQ2n/OPnzRaqGnqJBXZcGFJIF1g6PoyoU6GixXhpoKkeCJ5Ffr0OM5e6oI4wMiYHYBQWqkLAyPChzvXCUFlV/EeJZC0rq7nFJKO90K0aiGEKfA2JIC3m+MVHK6pJ2A7PhghYJTC09JNStfcldISM7T5GeGAAkYa7Q6ihvJlUreu8LtgZ++Rf3eADurVzZxUsLpklejij+rkz/NyOpFUO95JZjrzgO2BERIPjc54s9uEfk4kn054R1fkHOIruQ/qNcBnFG84hylEBGGI9pJd14KGLcB/oP9zeNv67yLd2nnu08C/9pqIGgpgQWeu5vZuwvVPCyseI66ZM2DzIEDNQ7p45vx+uhvz9VO3AWe/AHz2P+8KsOaqW84HhReG6B0/ahgjcVbftY9FtinPN6Ixhq1leJ6H0cZVfPjN/xWkpiQnvL0xRnRHn88L0wWqY5Kt7Kn7OY8HIJoxojRuvXrdgtXJdI6RVySCSDE9x2gz6UA1OFSBkr1ENtZduKktlorGwlJargfDijdEGxmSDVV0VwWPHF2wrEDqSGRuXR0rw2unyiGsObruMMzGI1DVATkSh1DwBi59+SDO3baG5OnBQuc62pDvfkRihKur8BTDgIv560NR2CIomwGMCCGMx8ir1/4IL2m9D72afL8mg90DI8UMjyQNpGu/J+45wEheBUZGEMtWf1/qfpfHiZbUbXaXzJ4ooCrn5z2k4XX2fCrzqSsvxZWUYZUxomUcV4cy/90ojs9m6GUWGAEg8yKaoYB8dxzChPUJ2Gba6V+WY3m/Lwvebpcy50JKMwLIjbIqRa6kpEye5gAjrNI5PUvTXgiBVMlL1ooRgtVVeDUlW+mwH1Ekxu+CsOn3Szdy0ZwaxkhQd5lJqhg465V384XKmsIdYKR2nXyuzaWe9YLcQQpX7yPmgkKJkj+JL8n3FuGeGMVMgegFPLy38X0IihzwPDAlc5exrrk2lmelPVh7cgYeGIbreanJq0gnUooJQNiuw4OVAY5PPwlUvW80y2FZAYOPfmDqPHmWwxT3ovI88PV/++/i5W/8Trzgm18HAKi17QDeyWNk4m9hvCHzkzyV6x336xBCshLe/un/C+/b+g8YDAP7LuXlfb9uwmhkW3KtqexTizS145wL4IM/BXz2P0npMCUhzQpWqoHQosCVntKQD2vwVWd6VK+j0ZLFJJ/K8ynOlmXc7sx/EJ/53xfwybPfhPc3/huGT9sil35Ow/UUlMn7KFQBv9nVxc4qMKL3dgOEgoB7HBA5KCnP20yEpnlxcOWyAQZcYETPDe4aStFE0p+ep3yWg/l2HNVbjl8YbJEuZUvAxjTTc14kulhdBUYgygy5IjENQ3qN5iMlXyWmQcs00SzYGH63Y4GRbYD/xJE7JDPkubQ6iq5NacbQY8/7eniq+JjTVikHG2/ZfV0yKe/x8hk5kPalSlNPMmWEvkaVA6jr0vdgL9uwU7c/ijMPbeLBD9y97eeMlFbk3LMjtig93pJ7/+4B3TjWQtq3a3G3sE0rVT8fvY6IgmI5GyNguQF7UmfuzBNq9iOGYSEEONUqD1pKqzB+IK3eEtrLSkrL4+ZeVdn6AODHtvERcBgjzDJGGh05vmvNlqmd3fSD34vED7B/4wHDdsl9W/yv+3Je4pWuCkGFs1+dZoy86kQXP/baG/F1txyW512pxeoGjNDn2K+a3GrtZwF0eJaDBQro8VSdJ5ptaL5QLKmcbOXkth+rBS4wMpsF0Vrah7qS+0zVelALdQP5fOaENmB/8ooCRpT3tQFGkOKZdVUjIgx1Vfetb3PMmdHZj7PLXwsAOHj1M/b/u4pxG3V2fSiXMXJA5c9dJNhKCqSEoan2UlH9qwgYSdUmw+NlYEQjWIwQTJb3o5W4eqLbSWk5xnzJZIpGHg9k4hb25EDIvQ5E/wwEF7jtXU/godvmG3MJIcBUpy2vnEMyGgAAlvavlszXtXfHPCNTZiYm+RIMr0owoXZCJn692F53299CpCj2oSqeZQqQccPVtQfkBFeSHKl0qVz1PRC1MBczZJcKXRBwunD08xFKFLhGcqxefRIRjREfOibPN5fXMrg6O7FnlJc6s2vNlpS0UGOgrgrcw+IAUEzwRPoaJHwVVy9vjyTzGdIBrzopEznfA5b3r9qC/NN37FiIT5WUVtMbQTzOUWcEwvOMj8qY7Teso2JkF96sP13Y06GTnMhLsfmlBtbf8QGc/50PYTlQ409wtONLaGQKGNktY2SiKboOY+TJ24H/8hzgkT/b1TGAcifB5c4Sri4dwJFXyolwuRVB191ztBfWK9Zd+QFXHcAqsTASONpkccHIqRyTLcUYEV4IOpgPjMTkE7j8xJdBPDUWtD51vI6EynOpFRN0jx4E7a5YoGk8wpUzI4zYITzdv2VX59a/LAGvmpeCKWDEFuEKYHgeVzMpn7eRHTP0yZLHyAwprXSi7yVB64brLWMkUxrZD/5vKU/25Xfs6jx16OJKJ1CdRtfqMZINJYgGYDzyIDy7IR0JywDTBoa7DQmCuPMZkQW7BYuGOkyhxmn7LBSlXxgmQQtY393milFAOBKEgO2+0cfW9FNdzGO5s0Gh0+89p9wcs9Zo2rk49IzsXfLMg+r4zrl4ddPRxVADH14yP5sMFZioiou6+zerbo5oWmL7cC+aWwnLHJnCVrdlDEO1HKUJITAaqPGmZDng+ciq/iaA8hhQ61AYWsB/2EfYlGMnRwcXiheAiCY2Lu9c2Ne+YQHL4Xc7CJsKYPHb4JNngTFCM3Qn5wDBMfGUtIQ2911/AhhfRpFWGCP6uTvARNl8fU7BXZtmF2Pg/F07nqM2X/TUZnrtpJUCjdkKEE8zSGdFrvScQ5Ig6cpn8tCnP4FHPvdpJEqCknrNPXUqu4XDsMIYSfnSnoCRYjIC9RRjpKP97DzDjpwlB2RMO305JsiMYa8BrpavmL7ZzuNvp4gVmBm6azoaEMWCjBFn808nAE0C8MIHwhDrB4+Y9Si+cAoTsmI+O9rKJChfYjVwUxwuFfXDGM3kKigaePTYryAby00xmdENuV0MNuUzjUiMcHkZUJtJsc12RxfvAJhiqxt5Qk0ReS39Al7V+30cPqQNfuc/p8mkwraYMTaE6rxbPijXMu4wlqMKY6RejCDW9hn9fTn/zGaMNHtLiDRjROm4p7yH1D9gPptVDMSZM+Ysc6ZyDWEAf20NbZVfpnwJSKbnOpZmBtwGgHwgpbQ0oFACRrShaU5KkjxuDC7La2hdkQVvNydz/144XZWpYjxbU2qnUFpljMzwZyI5M2trRCYSaGvK+ZegCaHamkVhGSMU9an3Sxe5aE7AFeUkiBwpLdPpP2N/4h6rwhjRSjABy+GphsDWSs+Mj1myfqXrU+vCPG8qLTFbK0YmP5xMFq9YjrV/gMfwr2+VhY/w8CEIJSuVia4ZQyytdhMXWIME4VyfkTiemIJy86CUItGyfpMLFxwpLXVPtZ/HS/6B/PPqI1OMQZpyuB4jbrR6S3jN934/Dt0oZa+47yHS0tdOA4vegwpT+BXoh/b9yGILbjFEuDP5J859iiwwwglACzDCkafUPIuQJsgFNcc3dymzwIhHuR0cw3PSCw4SCHHnC84Y1pX0yuPLx+Gp+xHW66i35XPymfJy1AX1w7fK2ymeb68jqGPTEc/QgEQ2KcC47KrXdY+m8jERgkgpLQOMKHYXtWuyEFRKGzq5DPcic785o+C+Yh25wIjyuCB5eaxurk/PvxIYqYGRc3jP//xFnH3wLrOeCWf+SvkScOm+qe/Pi8lQHsOrPCdKiMmRWcYAEps5MVDvLevbeb3ayJIp+cOIxAi6XTPFbg+M2DoKWT899XMtxatZCJ0VuYa/7IY11BVrohBty9plBJOxw7LMymtEodYR36kX9cayVpJkdblvVT/TrAkNjNDsXtDsHgixeNd//Nm3ymu89PS2nzP5h8PaY2ur5u/paAhaFFi9btXkLkMm1+eo7hmVFACglblTqGbY6x+8gAACHmD2/7kjBVyklr1lGRbcguiF2qtwAq0u2lpaRkd5jBBa2CbdYrqYHCi2oK4BZCpP8akDjKh33PM88/dvf/FhnP3eH8Pl9hrWr7u+fEzkCNUelKfl3FkwOHU+m0/V1OdXasC/+rZb0F3pqvtRWXMcxoj5bnt56rr+T4dQ5u5LUHWC8FnwGHnh3wa+7ZeBv/az234sCuw7MQ8YaXZXDDCSqxyjHiqm0zayX5YxItef/R11XUr6quul6Cs5x4ww1E2z++JSYldPvBEA8KL+x420YqjyTF7bPTByQIE3rVqAdm/ZnOf3v+1ufMuvfRZNdcywsftjAn/VgRHVDaf1czUyWXOLR/v3yW4XE9swRhzOJtGFGbfrQzEiavvkQBFeiGLzEtbPjfHgZ87jzvfPn4wp4WZjVm1sjlUhc6XXBHeMuq6rS52/ZI4ZMstyReNTE7dijPjtNujqPjQym0QfqT2IYixfklB1EhczzMOL3DJGgiiC5/tGckRuuMr377wfmuS6GE13YxSa7u4kjpoxwkmOQukctBP13etvAADjjzFXSquwMjO+7yNUSaxeYDT9d5QfRM5bmHCZOJNtqPqccQgEUyZxtx5u4eYDHXzr8w8i6nWNGW7B6sBnfmXu8QCXMTLGykV5v0eve4PV++ZLxqeGOMVA3ek5K5KRldEisbx/8Yc/icZIFpia6ToCTtDIF2SMzCiiFI9+Sp7fQ3+yq2MA5Q6K97zwm/DJf/MbCBR9erkZGcZI4XUWLkxpM0mfFTjdO2RkZmK+gj49uifGCGccOVeFrrxvNtHF0PFaqQAjRFwBpwQXQqW/qrsNh+eQcTk/RGSMteNHgN6yodMWkzGIktPI2e46DbTuaeTl4ERrozodR8Pz6I/k5iZNOyjU53cCRnL1bvqsQO/AGqia6zKqut3veZv84Lkv7uo8dRjGSCA3g8k1EkaQDZFzubANstXSj8awus98UWBEBOXNpaByozanMLNT2M2Bs46o3aynCgDEawDn7tzV8eQeVZ6f3mwHYWg27CRN4df1hkZ26LvAiDcTGLHggNzEqzEYeNYf4qxcx0iFATJJbKGAXLFsucGWnHcKIhOpplp3dDHYfimT56mvz9uOMaJlyThq3abpNiQVw1sMz2GUy/XpYP8Zs4lJZ0iIlBkjUYkJGbXleQ2i46bzuN/fBTBipJpyfPTTH8HDm48aBme+tXfGiN7EhCxFb3wG3/iFf41TXD4XJiL5fv72NwJve0NJGotRYfXtnXtbMl+fx0QYOY0dT34c93/yHP70v9wzt/Cru5s1MNK+7ojpcI/Zyq7917It+b5FNEbRk89Em19yXxUevQB0MtjV8crnKMfwLCmtVCzNlFwD58D7fwy487dmHlPPrwBQV34P6XgEIeTaNEsOSL8LHeXHVtDp1JtM5Lm0Ank/xBzd/0UiVYX5kKYIlHSR8ELLsNxlaODf4wTDUy3QTJ5/uG8f6Mo+44URn34SI2bn5MmQK0PvMjBiwukaLFoNHD8v5SXvf+YmFH15P0W2Pcu3GhPD2JTAiGbVaZbKrHBlkUpMABWxYho3Wh4ir8C66OERxRTJKxKCbowHFVPaGd26GghZPig7VrlnP+OjfO21fAjsP2SlWHI+JaVlZEB6SzYfVp2fGe8atjcA5EW5+MtcvyJPF3jLc3Qex+i88pUIiWahzGbHkUpRPhulAM0MgBAptsD62dNIlDyHIBz4n6+VxtlOFCk1vnrRaTlPuUVP42XIGQrH0y0176oCABwwZDfASDq0OVLAcgTLy/CV3JDwAsOozuOxBYE8H0XFlFf/XpJT478XKrbmY1+4DWe9+8Dpxdk+OG6jRhUYUY0CAcvhqxyh0etYxsiMzm03dmSMZMpAl8amaS+LF9e4GasmRt/jeB5X3cDHjiNQ5sa56FgprTwr5WXM97GPSTBs84K9F2mSGAZq47DMfxsqd5tsToDLD8kPHnlp+WSe821ArSsbCCoMgCIPHI+R2V5DjY4qFDPqNF3aTulQ51Tqveb0PHLfPod4YBsWLxQvxMOT15p/5yMKno9ANChZTPD+N30Zf/Azt2OYSkAhIikSX5jfac49SeB52uBAPSPPB+DJ6xxfkT4AlT38xUMnAQD3HroFgmrJawuMeNpjRKhC3Lf8AsQPfwEbqczFdXHW7VrXNYF8kirZSW7wqVZPdYELIiWs1h8DGEEae6Xfp+8r5bWSNB1DVKrLUKi5zbeyO0Uq5x6alt+nfn9GsZ3m4EENgl4EowQXHr1/il0KAJm3JOelXe4P4rFab3UOr5qQaFEYhhwrhGSMqHHsaQPifohINd1NsQ5z+ZmQxvDbHdmxie0ZkclT95u/E9WI6wbjoWzeVeOnreSaaJGjrgqmhWhBaMbI1ilMqN2L0Xw2MNKmMo/zWYFWKsd9SpfAk7HJkwWY9BTKfAhBkJG7QNPPgu+ScWxicBZJIceoZiXOC4EALH8EV2vyevxWC6RWft/HWxtYPXzAsCYG9AgAoBERBfjMnju52hNo8IvvO2DqFPmEGSpMkVnwSzP3AW7AexorrwSeo1DJdrPXM8+GMWKYoAmza7oOvT5rsE3XogKagShj9HrHFow1eySLJ/jun/6neM3dn0Pna15SOmYkUmBJgiWi0t0jqB3rJcaIGveavVhrt1ST0hzGiAOMBHuV0voKBlHssp6n5qRgupFm4ai1gVf+2I6MEc/z8Kqb1nDD/jZuOjC72N/orqLpl+eMeiT/XW/OBlMAa76+ofYM+zqaMWJ/TxrLtTstLDCCcHHGjHjuG5GLCEfoObTaikGsgDENxOwmjq228K++7bn45e98EbyGHCsdpHjwwhCXhhlaag71al9FHiNZIh+gp3RFo5ouHkVmQxDs34d2YoERMUdKS4BDEDuYdAHW43ZB1h4jzYP7zCY729wyxfs8oXMNowzqLzioQv18NTlpKa1uI0LucTTSDbSxgaM1mdilo9nJLc3Lk8tofd1o6vrHT8gihbrew94jssMPsObhM7pqSVpYWrBCfY8+93kAgKe+dCdE5YX7zof/HGun5UYsn1GM0rISJtl0PEYgBPoVJK/3XCm51FQJ52COlBbJCzuRlmh7ajOnkqU+O4otetz8fJbXgvmZXuAqjJEIDB/7F9+Et3zv18Dvdo353WPpayDu+8NtfWZStRjV+QidOAM8D8d/6PvNJoOKJkhfXiuZ2IQwG82nwOsNYlMM4Bp7Rk9KXcblwVMAYBkjfQ2gbR+52ryUukt1sXcBCrG7wYy9CN9w4z7z714zQqzGf+HN9gLYLrRcUcALPLR2vRnLHxv8FP5w4807MoJmRTEcQk+FEYlNop87wKHbtePey8zPwellC4wMzsrOIkiPketuuA5Br2d8acgklr4gkCwXke9coMrVexp6BbJcSZQxXRhhwOgCEi4TI+K1zNwV8AJBoDqT6PS8lzv3srPSxVh1kaS8BzzwbuDsHeoid9+pLYQwiWJHASNpvjeTYxPZUG6cAQzYkdKPSoV2sdjvkRsJ57mCyk3XHrwMAICoLjV3U1+o/wtV0kG9xq6BJs4so8XVbNXzZ5GlCFRCTSE3j6KI8UT6atw5/gfADCktzst0Z9NE4Fk9+3i9L6VBaLmQOM6srABZtwCklw0ghEDB5Hlpnx6SVwooNAX17XXwbaS0aKoAUE4QtFrG52vKGPnSAxixA+r3bpr3LBtPr5mSMaI1fS1jJBkO0FiS504Cux7NIFROn6cqTPksw7mzzyApEgREMaUGe/NnAoBc0d5DVRCokRgnr8p7zngdYv0J3DX4Djx2/jrLyoQqYLvAiJqrylJac9ZAzRgBsPnQA/j8e57EpaeGOPPw5syPC2X26auCu99sGn+EmK7uuoCg71NEEjClE6sNpAWYKfzOarzYKbjqQglmSGll6M0G5jcelyy5z/ynmcckic4NGcJeG4Mrl/GWH/lHuOzdKbtgZwAaGlzqKhZd9d0CYPy8mooxwmeA2YtGbphHKepHrVRENonnfWVm6DXd5ww0DcAUaBqurgLLy3buuHAeI2ZZfEnsgxUFhGuyCeGsoU7O3Wrg0OUvwkOBcb/A/S/6UTxz8q8b8HG3kap3P6IxguVleIqaIDC/cES53dxRrzElcK79RaJI5gaP82PYUO9Ums4/v0m/PL7oDLYWV/dgSTNGHKldEQXGnwwAomKEBy4+gSyX4DrN+VShk6uu76YLjKiGq4z3kFI7x3GEJTaZ7lIFJDNQfqjy3sQTtF/5SiuzITplP6XLDwKDc1NyKumYSMaIZ4ERwTne8+//La4Ej0PwDCMcxu1nvgnDj/1O6bt9tQ9odXwESs+eOpKCROX1ActROPuBTIGNupNeOLlp1YS4KokCAOklmVPXyBik2YYXRQg6Hds8M1LNBBWN/aSyt3K7gDVjJGrUIITAB9/0n8E8CprdNRsYITEuFs/Ho8lrpzwShAJYA17AU4X8oOt6jMzf77j3YBYwwhhHoeapiEzsvjFbHBhham/teRzkrGR21o4fR9SVY6HwLDDC8qLE5KW+b9Z19zzTLDbeEM3rJBjbVM1gMVuVvixeANzwGudMPGD/c4FDL5T/vPxA6Tzzom4ZI844ckMXEHNSoDc+q0yErSSOYfWq94YT2dBw89d/AwAgGw8glC/qg8lfh1uGGa9znN1Yxu9ceQfumvwdoJjg6pkxioxhPZcFyZAmGHsCU1JaWWqBEX2buoeBgy+Qfz/7BdkgVQFSH3zpa/Az3/CD+Nyt3wJaqD1gvY5GW7K0PWa9HAEAB1+IpHETBJHzeG8sWfpZZq+DKHWNbP2qBEacPbVmjABUPj9OgPXHJVMdABVO3iqIAkYc2TwvKvmAcrXXd9lpmepsJhVG3HA845kqgFUz9waXzk/5ggBSIYQLH7h0/9TPADk2Rxv2PGPDrJLjSXfk0yI38xErPIAkZk7kz5H1j3QjQk0VXquNLAXR72SMoNuBXtaEC4yMrwBD2+iSPmPH+SzfoUK0ARBTTjByTUWOhjIgJ2iCarbT+qOY8P322vOKVKg65/b6afiCojc+jUjVPFLeA0sSmLXfAwAKLsqej3zKmHyHuPO3nX2w3avM0uTiCEDSz+CKtwn28pdg5R99H7K4nBONNzawdHDNSEwPqMyf6v4E43MN+GqdpZU8TXg651QM4KOHjPdRkdYkUw0ALYSZa/Q6LSAgFKgZqw2IxzOTLzV7S6i32qY25zHl78angZEa0XsoxRjRwAjJpxgj7t81W9/zPDSWOgbgAQA/zTH4kqxXTXmMcA+zpLRa6n1Px/Jcg2YTAcuna7GaMeI7z73exV+2aLXlOR1rajr6NdY3Fox3fP/X4xP/4ptRD2fns+3uKhpB+X2s1RiY8NCqzwcxXFkqwAFGwgaEkkQliXyGKXGBkcWBoUMHDuCTXDYsHOgpMLamQIzGYvJpP/bam/AdLz1qxkpXzZuvuGEVDc12jr6KgBHdYe8Ju5jraKquhGjfCprphqEW60VqyjBGcKPtBwCF7kyndrKM+1sQQqB1cL/tlko9DC+qAoBwzMYrYY3ic2N2tnRAJnNaSivwPST1Nr7u7l/G3xI/hdyX55yMZx8zz/LyQsKoKSg0n3cLPAggu4KoEeCJE3/DfM6i19NFWZJTk8RokOHkrS9Ha2kZyXCAOLRJiycYXnX2dgSKQZHN0E8uFHglnMQxrNeN0eQfP+e1uNSRhfNHV07gyElZ+GwqGY7xRgbGphfIIidGSqtWsy+77oDmvryGIa7DpgOMZNswRkxBv5JwkjyXJkQA/E4Xx85/Gj4rcIXcgrP5S7Y1ZNO6qZ5iY9RvvhlHXnQLJrWaKdSkG6qL1Hke2ohuVmgprYZaFMObbkIa1LCy8Rhee/Zn8Zyn/hhxWEc9VyaVOZsyf50VeWy7S7XsiNZNxuZTcwSQp4PpzbXgyPwaXnGD7SxpRIGh9xGvtbCUFlFdFAErcLGzz4zloSqYb4yXytIDuwh9/0OawBfMSKUVV2TCzxivdBNW6fe32yRheB4JU51dxRiHb7gO4dISAlWsJJPEgE0CAYrBzl3lhaJcUHB8MpOLiekYLZj8naoLlAZNUNUtFbAcXqAo5zM2/YUCaHxO0Op1MFJAbeF1wD/1Hy0VfwFWD+fC5KFtId/hlLZ3PXZmBYuHRtN/SA/N/xxqC/0ejrD8rgsipRn2yBix85+zjqQpLj7xKMajxyEEAfGawNkvzkzWq8GcRDNy1jbtoVWkKcKGMizz6gBJIUiKz42+H/fE3yU9FCpRBlucTbwnjAxFzJaAS/eDsHKiNGEW4Cw2bBHdy4YgGYNQBR8DjLgFw2wkGSMOMLIdY4RlGrQj8JtNMNdLxbl39PwDiLmcX5rZhnnPihnNBFx4M83X40EfreXp7ps43ZkiTbX0ibOZ12zFbDTbG2ynEEKYfCGiMajSF/72p78AACCijuGZc/hS/Pfw2eEPl9aNomCOhJow74NbBNwJGBECuP3Uq53Pz2kmUcCIKcYAKGry/xK+suv3KFfsyIjE8NfkGBtvyjHEBXNA5cXvp+6i9FlhpbTUhjvzerOBeS1lUkxmvqc01vNrBtFq4P2/+u/BCIHwKARPwIrpfMUwRrSUFgunjq0BgIYGRnZesncMzWYIaYLGjTfYnGMbRuqs0FJanqCgmW8YI8HqKoLVNcMYmVzZwohaxkia1lTRpHpPmCooOl3/9UgyXalko/VXn4fTJ9+A8+y5u7xWisfvvIR4YKVG/KUeci9Xsi1zgBFGQJwOU+I1pmQItb9InsuiQLF2C7ymnMuSbP42Kq0UyGkVLIYFRqyUln3wXrNmxq3PckzaEYb9KyiYbH6hBFOFTh2tpSVToPDUO5TyLp66WN40505HMncKz6bpQBcsVOE9T2K0X/kKhBoY4R3rxza+Ihkfb/+OKa+dZCLnJs3IqTUCjDc3kI6GgCcgRIKLuBX3Jd+B+x7bX/puX8loLXUK+EqCl4nQNKLpQlzAMmNUC0jGyOn778VV3AvONkpSVVUwYBZjJNEypsUYVLHZoqWekUbRYG1a2UtV3y86gzFSq9dw6cnHzWc8vwvGZ4zRIsZ7t34Jnxr9OJ46v6/0I+2r5krWJGlimgVdmcVZoRkjnIupQpfZMwiOgKYGCEuTxZuPzL32OYpzcr8UHT+G+rIsvlOvATZSjJEsh8u6Zb5nJJ7cvSBJbad9fd8y/HYbDZXDjLXE6spJYO0m85248yI8ds8Ad2z939ii1wGXysBIQRuwcpvzGCOqszpNcfzcR9EbWi+TyGXhajBA/XngxA2GFeZROa50F7qOnIbYiI+AI8LF4gUgk8nUOI1ojC/Wcoy88nt85dRT2Mq/BE4v2iahxjJw/JXy72fuUMcqH69RC3DfgedgpdcCyW2TqWaMQKh6AW8B7f1AZz+2Lsn3kdOJYYlmmX3viCqU51sbIKIFo+4QBKgr7xIhCKivcqwzt0ufGQCF47EEQaWkn2aMCCHzRgdoYXwa5C8mKcAoKC0X7SbptNY819OUZsxPxsCMY8LzJQh88T77f1ceNmy5j7/1Ybz9Z+/A1sUYnHFkiq0i1PysmUa0yAFfGXRTDyKfmHHsP/8W0DACKwKEYjZjRDcHhTSF3+0abwimgRHOgN95HfDbr5LndvlBJH17PbTCwCTjMVKsmnneDwI0u/JZkKJAe1kWFYnXRDFROd3645iwNXsPKzmlBthb6VX89a2fwq0P/KYBGHJ0IfKKx4TZhzmA1yL9EEUC3Pv7SNiyPIpuoHrvjwD//SVTfj0Cvnnea//u3+HAT/wEsnE5FxxvriNcXjYSggMi39V6cQUXvrBqVBtYpdlWS5ppf8/owAF4Ro2hDTz5cXmOxIcBVDU7TXDTxKhlIKGas6NGE1FNGmI31PPxlMxdwpdLvxMAQjrBpN40OZ9moQckAwm1x4jLGNHAiCPn3+uUPA4DmiI7q/LTqhKW03gWOcBIc0nWQxKljOM1mkpBY2fGyCLsgb+oqCkj7/1cSQU3l/9Cf7/nefD9+WtwZ2kFzbDCGKkR5KihXZ8P4tyw344F3wNefmJF/0LJsIQcU2nBkBbUeIzshTFyeLmB+4WUf/9rL/LxA29+K5Yj5YmzIDBiwvFCedVNa/ijH3gFXn1CASJfTcAI1xtlBXq4xaNmV97c9r4ePAhjdq03EfUprbUqY0RJoDC7oDBKkU3G6Bw5gJrW4xddDJ85bT4zJR+iQgMmIctA1UKmk6TE8eZIGh2ELMejxQk8CVnwSeY09+VZgerkMrwir/PA33wjAODr7/1v+LZ/fguSdVuA1VJQuhDuhtQGVeeqErwgDPG8V0u67yC0CX8zuQpfcFtIniEpkCtNZQuMyIldF/e+cPQF+Kff8q/x97/95/FvvvlHcfio3BBF8RhhwMC5mCkFRXJiOrNd3X0NjolI/r6BOIJNetLen8nsQhzgyI1UpAN0Fw0A+O0WIjLGdRduAwB8cfw9ll46IzRjxFOU/ObLZGF7cp31dNCGcIUjPaA7hmeFltLSRoPN60/i/OpRqWV5bhMBp7h/300IODWf2Y3PSDqh6rjjslErIAuYFXmDecHV/fIFw5FDa1hulQuMrCWfEQnai0tpTay0Adt/0AAjOjLeXVhOK91SZq2qo8Vs+C8+AwDTJrgV4Iyzqw4wcs4wRjyWIup1Ea0sm+JekWQgjo53Pti5eEgU0AGPoq1YADop4wUHxpeR+qpTxm+C6gSI5fCU6RabYSyqzyNgBYJ2G3GraebHSepsKBZg9bibuPHdqqNGNEA2zu/6GNXQXZmA08U6IyRrYnuz0anPuyCXoCB+a8/ASJ5qxohbhE7x+T/6A0zWHwMnp0H9BjC5vCsvHMYD0xk3jzFSU+8W82pAEYPlKTIhx1+eTdPJOfdKdGeziefUdn2zFeDC3SV5GQCmoAMAxaaVSQqLoZnnfJYbSS6iNfPO3QX8ykmwD/8MuB85x9sGGMl1MZDAazTBVbGrahw9PnMGgA+f5YjIxErWJdNrkRC+2Yz5YVTyzuocmKZsJ/n0JroahAbq2HaNCJRZaTre/Vh0gxbc4HsRSTDsyg2olkeB5yO+JO8/RR39K3ZuZ1SU76n6e9ljZPbaUvQ38L71X8A7Nn4b54qXmP+fl9PoDaDvO0CV0t/P0AOPd8kYMYB8jGi/XP91gwejhS1Czmjk2Ck4Vwy7UJjO+85EzkXE74Al03MbTSZ418av4VP9H5w5PpkqLAQsx/1XzmPjnPsuk5me81lFSouI5tRcRVSRk3vy+HyW34ATRUZx94dPz2XVAkChxKlDmqJx0w3WrDNezLdDS2n5nIFlPpiW81hbRWPfKjpKrvbUxX1G9x8Asrwlu8Wnivcc1dyVqQ641vB+vPzwafuc+O40jB/41Dl84m2PIhspRgKZYBMMpzbuAUk+KYHb+98N/PlPlL0FihgF7LtO/QZE5dlM7v8MAGDZk124r3zlq9FbVcUjOn+zmY0qXhOzgBHFEFnSUlrgZg0JOg0z/uvFCLmSJBVGGsrDNOgkQ0ppKWBEVf8y1gNJy+PKbZrhDqinu5j1d7ursiifTyaIjhwBX11S5xuCDG0nMTgB+mdQVHTns4RC0NwWsxshti44TUVOsTOJKxI4yni952+Z3Aew+u4avA1YjsK34EI6HuGhT38chTcGL56W0//n/ivwwHumpbRmNGCl6xLwiYoxoO59tNSdYt1XpW/zSvexBl1Izoy+fa0Z4ZHbPul8yp8th+M0+jx08fmlH3HlDRAo+bUnv/gFvOWHvw8JVz4s24B2AEwTjXuOOnSHcUgT5K06hNpnx6P5zKt5YaRcPQFyVubntWPH0d6/ZIHqofLQyq1qASAZIx6T3y8Bd0VhWALRUgfhvn2oK2Bkq6FYEidfBSwfk8fnHbzz1L/FJ9/2KO596kbcPvrH04wR1prZ9eyGYYzEE9R6Tbz4wTebn5XN13UDlG3GOHjDTeo65Hw5ZnK9q2dyrSQkNH4PGe+ae+JGSBL83A99AwJV69GF8S/88TuRs3UUk/eCadnA5jJwQgEjZ7+g5vHyvNsM5D3d16kpFQq59zfd5FxL/7aBA3L8PfXMAABQyzZMwTujdctQ1deQCunFYxp8GiVzeq4YPzh1m5HLJS5jDhSMR3atZGR3wEicA8XEsJiN90yxPPVZLUdnERKAiUH5Q2qMJmwJuPhl+X9PfBT4rW8A3vcjAICNC6qAfiVBMiIAPHiCQVtlWMZIYZgZjAVgWWrGcX2lh/H1shHANPlU9p9UrTcBy+F3OkYq0jAi+6elr0zaBx7/MHD3W82eFFAgstOUMbhPNtwEhRyDNVWAB6QqSXNFgZd+E8VEzvP5pWcUy0RdR6Xxkpr5uIC3PkHAiZEPz9CVTN5KUxpQZtvvRuXCxNbTQDFBrBkjXI2rxz8k74fxG5Ih52D5THPVbJk6gAAgm3O8KIKv9hR9LucRbyD3SXodolk5V9DMHc3UCA8cNN68uQOMMBbYupipXQrj3Zer+iZXwGRryT5DPQfp+mSKZQAw8x8gG0M2Wj1zHjqP94vcSGmVGCMa8HXuQ3OpZ/ZUgKxfapCaVmoKgvtWbcbZr7aU90OiPHT9ZqPkD2sPIOfLoASM/OVjjCCSc4qn5j2sXL/Nh//io9NqIgwr4HedIkeEVn3+2v1NN+/D27//6/CO7/963PEzr8NrbzngHECDDhk24xy5O+b3wBiphwHSumygEuNL6O0/gDpVyijtPcqn1eX32l6O3/u+l0sAUUvRfjVJaZnOvArDAbD0rXavCQ4P7Vh3uMoJu9aqFj14SW5GF6l9Xp704v4WVo4etkbFtIfhRSs1MU+P2yTuNANVaN/yIYlAJ0PbNU9acgD+UfxqDFVHZpoFMxeJIi0nkAAwUD4j7Zfcisvd/WiTGJPbPgXf2bzrpD6boXfMCHOSGHs/X/iab5HX72UQCsFuJ5dLxyMzLl13ownPMkYAIFLASE09u0Gjixee2IdoWW22CNAIVcI1mT4wdbxQSlJaakL2WlxqKaKFp7w32u+R+YutKepOASP2357ngdRbOH7u4whQYJ3eiM3z8yU+9LkLBe60Xv5yed233GIKiKnSoSap/T3aiGxWaCmtmgIVomPHsXlYTs7ag+K+A5KSa+S0duEzkijqb60YWY8R0cLF4nky0d6lnBbLFSWOUzznuO3w71++iN/9iR9Aj6mCR9CCSBcDRgpjGF6gfeSwATF0ZGJxYER7+NTIBFmzYze9/U0g2ZqhyV8dj9ys8aJ/TmrXA2A1H57nob6ybIGmJC8dLx/szJjRDBPP51jhluUBACIvIASQBcvy336IItM+JAW4WiDZjOFEVVeXzwt4zSay3gp6o9MAUCqMLgJeucAIuUDNeaaXFvd+sb9+enOoQSw3KGpTnb7bBfNqJRBDgEpGxzZA53aRVWQDASmvNVJ+CUKkEH4o36WzO8tpcRHM3KRrtiNJU9QUyMgUY4RmjszbeEZ3XOmYdQOyCEatPwRZBc5/CVQ0pr6voxjYNS8qRmaei0hsO/yJSsIu3AMIBtq/WjoG80PMM1/nas71eQG/1QRT+r8UddvRD2C0Je95M91AEjbgqbl7Fj4mhO3QCsIQbWUwGff76O6bZowkZOcEjSlghDtrRqASvGQ0H4TfLjIFinucwucFhqsygfQdeYdk04IOqTsFMoHC9Y/QwIgjdUByMZ1PCIHT59Zwgb245BEBAFl/9vuvN4Cek2vzla7c8Hg+0v7uGB65elYRTdE8dBBFliJX3SASGFFSHjvo5c8Kpvxi/EZg5uDl4TNGCicbThdVBldSbNLr8VT2qrK+vwqe64Jhiq2KlwAEqfr5ymtU4I+WFyS8MQXAmoKY9gJh26fnT9x1BV98/zO46wOn5n6GGPnUTGr6q3uQz2D3bheWMcJAcx8014yRNTQP7MfKQBYeLqY3lb6XkJ6S0ZlqL5xqMGAKYIuSEcTpu41kKRM1zLypldByVwAQsgTd8VkMFUol2EAyBD/5C9I768Ld9otFjMKz4IvwQrC0nFdMnpbyF9cHslmiefTFCHShi9XmMgCLCgDFKvmnENT4J/X2H5DdeQAgMgie4aK3Dk6VnFM+BOnqeYpDCAFKy3KQOvwgRK3ZcqRlFfucLSGC7U4FyowR9/x00VJ3cnb3ySJupt5N/qJbjcyGkR3VzTOcTDFGshSgRSqbAwA02hG2Ljm+Rk6xM83LUnMDBYx080sWIIYFfHXuHLIcxMF9svHIeEMKUPhFAnzyF4E//4kZUlozgJEt5YdBxgjUetFcXjJrnGbda782HUVSfe4KGCkYuJZaiTw89oXbnOunM4ERntk55mJ8Q0mVwAC/as449+iDAAAKuZYXxfa+a7RvZYCrzIRYNWBFJAatNyDU+5mT5kyZzu3CgC6+MIyR2onjaB3YZ5goGlyihd3bAQALPPP+u+CNK1lYX+6gfsstpjA4SZoofvBu4PW/CizJguZVciMIq8EP5QC5TG6BuPRg6d3NRacEZMwKXUwkeYbaoQPgCpgIwhCe7zvvnGaMOMDIjXJfxpmSo1HvYiuVcx1hNQMEzwNGEAKvfcERHFuS72erV8lTRG7WPTSWgONSwguXHwJIMVWQbKq9+f52DUQ1tUX1OupKSouruSOnbeCglCA7e1qOr+X4IkKlqpGJLpCPIYQwHftZEcmcWr3bYd1l1FAw3SjzzGeRQ95XFrhMAlJueGI5uFeDcIERNkMSPCESGOHyGroKZB+T/VNzNddyW05zC0U559H76JIB+4d/Wv75xEfk/VHgAMmp07w4Alf1nroZN7mRv2I8AhnZPWBrqYXsFnmPg2I2Y4Spor8PCr9eR8oG4GxoDcXXHRDgwT8GHvwTwygAgIJFJfnvrYelZHtDjcGo2TSFeloUqK/a4nSuGHKTKxVJv8oSxBT71ecF0k1V81GFZOY1kIt2ycvVviuuRNoCwMjoIoTwkCpghIqGlKQy7N/yes7hQ7NVs1iD29OMEQDw1fo34orR2dd7EzUnVRg4+jnovW/ra78GvpKHylgb555MkG5sgvIQVSktgIMrKgZRnhxcFXdbXfueNxWIAaFqR5CF30Zuc8oaibHRWjbqEvp2BiRHoaW0OvbZuh4jOtorXcu0hsx5PZ03VCROS3tLx3y9ZRgjChhpKGCkkrdEhdxTBm7a+5cRGKkyJFb/cgEjYeDDr5X/r9EkKBCiXZufD3ieh1ffvB/fePM+HOyVr9FTzJ2Ol6Ifk/Iecw+MEQBAT0n7jmWTQF0zo/bqK+N4odT0mqDf+68mxgg1Uh/TKKVmjLQ8gs1mD+34kioGyJdRG4CbEMyYHgHWvFUbu+uY9LewcnDNSGmN8gMYxrYANauIB1jGSEBTME8DI9OMEab0627ZOotXfvBLAOSEM6trk+QFUJH1GV2Vi5vnebj/ebJThHzkg2hekRuQ4sbnOMDIDLAl92wS4xTj9h07gf0nVPFdbdRayWWMD5+wwAirT0kj6W4HvcjpY+qCXOR0f/34625GoCTQBPVRF4qiO4M9QQpqFxVnEtYLutdpYXXrEfV9+1y3219XPUY05ddljACA3+mgRiZoePJe96/O3iQIIUzBkGtg5GUvAwCs3vpC4zOiC2iZA4xsp1udDFVXjzKsrx27DtmJG0ufudDZD9IKLDCyA2NEcGFMsusOMHLP5P/Ge7d+GV+Ov6OccG0TtqhJ0V2yC9sjt30Kg8uXsJRKkE74IUi8mG48VdJsviiwdvSg2aDqkIyRnbvx3UiHSse/GCM/dNRKzYk2cO4uA2RoSqqoeNBAMEMrjTcH4IjgCYagLRehxuqS08meIx85jJFdyO0wJXkVhALXN+Qv0oU9QTky0TUakACQULmw+CBmM8uEh2poybOAEfitNorlVaxtPQwAOJ1/jf3gAowR/Q75ooAHgahQAPLlS9t9bduodmMC5QRQB1sAGOFcqMLPs8cYKeJCAi2utFCWIu6r43Et+3ZoVz4jbqI5U0orS9HsamBEbh7zzD7nnM4CRnyUjULVJp4SELXWjckacOHLIEryJKDTKAMZ2XtUpyOkyhOpRibm85SqeVlphxesnEBxLwKf87y41oxXUlpQkmEEjRJQN5rIe9HMNnF6+Sh8db9oPp3acIcxEoQRuqv7ENUb4IwiqE0XxWK2ClFsz/rQnZElw2TVwZjG0wXL3YRurohoDA9AsqaAEcENVT7pzz+vq1vO+6q9iJzubSFmaMonWxiMJEN1efgkvuvbnsDXLf0JACBbv4hZoTeAXmjHnHfgoAH8k6F9tuce3cIH3nx/SYNbR6HApYCm6B45aNgiOnwqj6dlORcJpkxs/VaIfRsPoJFu4MDVe8y8lMzw8qJqQ0pFHSKfnp+1KXrAchSVhEIIAs6m51r9TIWvDNpRB0/sOyS4MOdaRMosnG1f1OwrOZNZ+ZEOxqw5c3TwgAVG0sXuJTceIxQsC8C0+fraKrqH9qM3OlXqLNSNSBlfVkzcnRkjVMswJBMUp0+ZAjgRDWDGHFQNXehe2X8/vvWRn0S9GKHQQAOoLEhrH52JBWlFEUtZTyeIW+gWArGSDekEGxDwgAO3wFeMs1y04ZoDl45Tuc+cVArfuhjneWi02mgYmZkMnDyN9fQqMibz2HoxAnOkLwCmiivTc1er14PneWZPxFXxc8T2I1DFSJ0bus1csywYPVUY7SqZO91hG916KyJ13dlIAYgOq5hWwII890DzzDBRGq0ati5YJqkGbwAgY80SKKmltFqj0/AgTNFJ52bFREus5iCOnEg6GSPWcqWCAZTh4eRbcXry3BJYDFjwz41kJMd0rRijtl9ef2N5yTbPTHTxsrxHqPqrGI8RIiAU8/LS5vkSs8R4nFWCVO7jqfvW7XEVMyBQXf9aMYArmYuC1a3n1Iwgzj3Qa4IQAh/6rQfwZ2+6D4ACRhpN09xW8MWZ3nr+8AQH25LPIzp2HN2D+8xeOh3GgBBybnIGIvN9+FQzpBzAxDT2EIS9Hloveyma6TrAMvCc409/dwv901vY+rPPgDMfW/QEAGDc9UAgUIg2tia2kYoUDBRNu6+cI6VVb7UMgMnX1sBU4ds0/TmFfxlWmuvg9YoxwjdKx9Qm7oVoIlfF/Iz3kI2n8yO/oZpE1L50ChjxOsbHBo1lWYBaOQlAIEy2UJ1324EGRgIDGoS1ut3/KgZHzlrAQckY2VLv49rorCOR1AHSLXAqpFQRgJT1JDMYtnlVKzwIEMsgLsbGR5AHznwmqJTeU3OBKHL1HYdRRCZTfgUko0ARI1cgU1MZf2eiA5GV95xmnXWaW6hn131PMAu45ctA/zQufPkpnL9s52LBhZlHScFLzYtcjRUrpVUAih1JRQ1kKPMdnxVoLHfhv/gl8veqnK3amKeZ3H4InH3oAVzt34di9Hb7zNcfsx9+5jNAPkQi1pzvN2yToxDon5X3pq5kImuNplk3SJGjtrJk9r75WD6HyWZ5vav0OJgG1IAR06wZsMzmr1gtfakZ63Vge8bIxSf7uPzMjGbC0QVkomvBIQBktIm7x9+JP9/6WbC03ODCHW9W3YSjGSPdtTJr2VO5PVdzbVRoD0/1vNPyO6rPoXj+Sdz8+c+h+23fBi+Q1/J0+Fr82dbP4fNvv1tKxBkprZr5tmaMaMBFs9GbLmNESWmh0ritmWeANF+/2lopNVQBgF8UoNp8vcQYmZbSai1b2UhANtj4uvZQ7XURAcxcV/IYWQYg1RNIngFRNFNKS+coYcPZtzb2WCT/Ska1yP6XjDECAH5Y3js0mpIx0oj2WPJ3ZKo24xx5rkE7b88eK7WVo/LQ6VVACDTVvrneXt7bOYZ1IFB1Eg2IalbPVxoYue222/A3/sbfwJEjR+B5Ht73vveVfi6EwL/7d/8OR44cQbPZxGte8xo8/PDDpc/keY5//s//Ofbt24d2u42/+Tf/Js6fX1xqJVe687pQ6UoqaYMvkcXYaK+hHV8CHAS6PsUYEeBM4E83fxkf7P8bZGoBwAxgpB4FCBW6fpa8rERTnGcQqg1Sfae7YfWwHBjjLZskcYXafuPFBxAxYjri0/H0RpbkZGonM7hiOwHOvuybAQC1B+7F8UtSkzh8xTeYwlVBph+/7PKdLsYBQEcZo+oOsnZ8BdmNz7EyQaIFDMvPkWhjM1Us1AtAvSkHak1N2qvtGl598z74esIH0OBykp8FCkldRy35Zc9TJ6Vep419mw9Of29+DWGKMaLBtSow0lhWGnhMnt9wa3YBrEipkViKSAK+th/hEckSWr75BkMtTWLVueBcZ5pOF1d0TAaqO24svx8dOw7/5ueUPrPRWEK/3d01YySLCYQqnkdkbIocVGlvXyE375oxQjVjRLDSO3nhMbnBj1gCT2nFZFuL6cYTJc3mg+DwiYNTjJGU9haX0lLAVETGCI4dNx1sMV0Bzt2JQrG9pFRP7nS16GfETRPSaEuBalkf4T75vrRWVhCqzWk+yZGNbUZhCgrbBCtUB7kvwJWsFFMLHOU1TMhq6fOJ8lzwwKDUbmaaejIN+KiufL62H/s2ZffQefJSsFf8pPyg3gTf8ZvA7W/a/lyJLaABMGM83Vif+52dIpmxOXQpwzqkz8bugBGz2ajo3NKgua003rbHTHJUgerJ1qaZPxqpBIdOZ18LXLx3x+NxOFJaLjDScIER+XfuR+B5DOroPGdsOqkUFRZKzfHaGqg9RcxWIQZnZacfrCl76VpzOz812MTK0TkmrUaKS2kwa1kDk1F7vvTJcmK0keLq6QGE6Tij8BpNQBUDmFcvMXpGSjO6kW1geN1JeCq5prQ2NdlLxogGRmR3575jsliSxoPSBgAAGOrIdhi3unuPOpt5bVaaL9ZUayJTnYfaeH3r5hean+licTyaj/DLhgl9goX6o3wviqpvyOiC8ZDpjC+gd/0r0FTzVzbHn8owRpwcPDp0yHYAT+wNuPtDp3HmoU08dW+ZNQQA1BgIEyxfd9j4i+jwuJKaTAkGV5IZDL7ZwRmH8EJw1sftzRwbtYv4hi/+PJZHz9h5aQarhyh/G4EAbJaOqSrAhyxDofwOtGcaBJE+Pu71EWYaMjYdmR8y7DufcdYE9a4bOZQ5MVQg0zwPGABgzJozhwcsMKLX0d2GlmL0BYPgHoqxKsiurGLlyAH4gmNp+LT5fG902rIFk2BG8Z5PsZ25Gqv18RDd9UtmQ09R35VEopZC9fkYQkmI5YbKyVSBTi3UiR1jNJmYYrU+z5JsG6dGT73jb8I7/GJwEeLoGZnP5LwDjC4B7/knwH1/WDqn6rPR84UOXfSot1rwfN92cIoMQmhpRlVkK4bgLQdcFhSER5jFGNH7H51vFypniSFBVk8wNDJZ+HGBkVn5sZZQ0gWjbDKBEALtwzb/yrVsoAOM8Kw8ARY0VIwROb6b7Tq2Ljr7BafhJOM9eU8hJa6G68qjb1OOMS2Lp5850Z6QLDNd7wCQjixjBKCYeAfxmdGP4hODf2GYuObaZzFGJkphgIzR2q/yudUls1bk8Ww2W/XY+v2mBTfmvE88JffFDbXPgLDG7G4UFbPkx75gWTZaWjRQhTe9/9Pd2BLEmN985LJm9PVnE4JT928AAmiJDRw7/2mwVgsIFWOEtxdqlgEAruYPTzfjrK4i6LTRO7TfFNaL9UsY/o/vAFk/XyqaUt83oJXL5NKyWj7LEXQ7aL7sZQhZjlse/l/gNQ+bF2J86Ne/iMv/6VfRv3gMG/lxAMB1D38KlxUr4Qp5rpHT0muBlo6bZ77u+b5hjfClnil862Ky3oOajniHMbJ2nWSvcMS28Cu49WUTLSSpnAMYamavZ0Jw+F3bzQ8ATQXQ6vCD5TJjBDA+I0ERG/keHa+5aQV/52uuw3fdapmiYa1mrpGp+SVjHXzsjpvwuXc/ATaU72o7vmxkxQuvA6T90vqsx7NRoajVbQOrIBB+BHrTG9T3VU0msHUaAQqKOpjq/GX63S41pwkIXh6PNOdAPlH+JkDDFIz9snwxo+CK3eI5wEgBu+4H1MrDjsSNuG30/XjfW87iz/v/H1LeBYI68pSaPSDJmGF5hDQxwFndNV/X+zdRR6HygIDlaHQ7aL70pRAAfCVrVmKMMGI8moJagEc+9ylzxkbqttLAKJkUVrefMAcYWX8M/ViOkSiXY7DWbJraDy0KBEuOFHScA8kWxhWZXl7xRtJeToFTlI/rbSsf7q3C3SstDR5T5+qA9CjHpJ/j/b9+H977X+/FcL3SiDC6KCWAnSAbF3F//EacLV6OjUsV8MKzOZo2Xc9UPWX/SVnoHqvcv+WV2TEhTbDeXDL5TV5Z57TXol8LEO7bB8/zENTk7xv7shl640KifIA0Y0TNNYKbuVIzkw1jxAFAdZ7AUJ4fGrk91xqZ4EprxezFdUgprRnm6+qYqePlF3U7RnpfXntqmzIrzVXVvaU5j2bTsO+S4VB6ZAgyBWZSdU5hy/GY+MvIGImcsd9YAlqr8z/7fyoqbMdGg4CgZrySFw7H2HwrLkCUlBbxapblvGB09l0nT5WlQD5CW7GfGt3lvZ0jAGh/EgOMqLH7lZbSiuMYt956K9785jfP/Pl//s//Gb/2a7+GN7/5zfjSl76EQ4cO4Vu/9VsxHtvk7Cd/8ifx3ve+F+9617vw+c9/HpPJBG984xvBZum9bBPcdNcoYKSka6foW6Mh4tX96MQX4W4gas3qjWLIWBuXyPNwOv9aJAMtB1ROeGOVZPtEbvCviueWfj7PcFUn0L7SBPSDAAeU3ujwymUUKuHzFGOiVikszpLlkEltedIbXrXASOPEMdx25MXwhEBbdb6uvfabEenCFZ1OwgkNzOLkMnAATJnKtZNL8G55vu2e4i3bkaePRyRYxqtdNarr+cYVeQ6/+l0vhud58IIAeV3LbMl7OUuejBbU6hmWgBHVTbGmut8rG3K6DUGBah1cdVyNymtDOloUuPdD70fRkwmcp8zPB4PZr5HW3Q9FJjufX/RiMzHtO37EMkaUmWGR2XPNiwDzYqIYI74qqteOXYfu854L5iz2Yt9+nGsdMJ31OzFG9PiKirHqTC6PtxE7uGtghKdaho4iaioPBEqN0WSQTxDoLrGtxXTjieok9wTByesOINTdGypxi7PewoyRxPFWqZ04YWjXV4qbgbN3mkQ/ZLmUcFLjPzBziPIEyEYYq0JtM9tE85DcaLTbVuKnSJgyXZORT3aungo1Lr0A4CqJY8pEi4kaRv9/9v47TJLsrBLGT/j0leWr2rvp6fFOFnkkBAIBQguCFR7EfrtiDe5DCL9ICLcyi2BZBMiwyAGSkEYOeWmk0fjuMRrT3dO+u3xV2vD33u+PayMyu8fxW6Tfw32eeaarKjMyIvLGve/7nveck0wXXj9kPEC0rBxMPHd0zFIvpQhlV741M4PG4Bz8tIecejg//zP8hXkMhJs4+dGP4MTNn7h0oq2SVbEmizkebT6xRLpwPf3RjkcvG6guJjmo5T+uzmLAKFgVEqwMzHKQDZ7cuWZxXjqe7kYCgCDia/OJ+JnA4LGBItMc3tzbPMN8vTahg7RsGCIzgJGEGQGmcUxTB9bxPKVRvenzNSfCFHL4qlgoJbbMkeZ6/7RBMVzdEK/taGCE1ThQJRgjSS5Ygpm+J0mp0/aj//MIPvQnh9HPeZHepinsagV2ne89uRUAcYe/mOTopULeJNqAc9nlsARlPSHVkeINg621+0VHzcwuDoxsLJ0vaukKUKK/XCzSm4MQqhJ/cyu1RBdXkjxxLXZA+0tJgKF/9Y14zUtehz+58d+rYnGYXFzX1ZR+1FJaxTghK/2M3gUMKV9HgmQL4T2HEVT5vEjGsBcZY6ozjrg2/ulP3ojjd96G6vZFHQ8IuaY8I1g5yefQuDhGSq4RUMzMtkcYI1JHeaU7iff+7m349DtGGx7GDVk0ZfkScgtYb+o5q9alwWjMmRtd/mMN30WRzsljpOJey6YRIAMpgdC6sYOiBwuWiEOzviGhahSTautCa5+OL8zJ0V2NRt5bHkQUfWyawpmeNhgjTwwYUR3fUq+6K4CR6SlMbuf73NTmQ+r11WgdgZQfCbVshRpslDGSpBGobWPXYBXVPFHn+viBEcFOTrsggjGW5PI6S0XnoZ5jqWxOYFQX+UwJrDzGUDQbrH/77yC65ndx/AUvxIH38RwopVWwb3wE+MaHgS//UeGcpKeILKSzMtglwI9KjRcoZF7CWKoadGQ8HiRd0Io5Jwhy6o8UOgEDGJEgm2MpmUyAd5OqTm/DC4nScUlukTFCSY48TXhRW4GgAoDdOIuPbv4Obun97IjJb5q7IGkEIqS0/EYRGGEFYKQJJpqs+idPgRIG1yZwVzko4EgmnJj7mcivLDJQZscA0F1bUb4JYAQDS7BeWANhX2iuS7+2MmOEMUQxX5u8tI/6PAeG6u2WKhRGooGOlNgneVJc57THCMRnrWJt7QJsx8FN3/394vPGAyNxSZZr9Yxek6hgmTkuwChV+Z/0rUlpbYTFb47UYJvJ2E2eq+1YeFn/1zC/dg9YvQnLE3kKq1/ymOOGBDYqpzsAAH8XByn86Sk1hw6Hr8DfPfjfcN/DcwWZHWJbCrAjhrZ5gfHcaqFy6BCIH2Db5sNY3taHV3HQoRNYmbsJSfM5WA+eBQDYvnUcTshBt6XsELDKi7LhpmQdCbneizBGAKP7v9VUhW9HgJC6GSwvqFQ4nqfYvnzwi/LTPjIJZKHKDZrF2FoXXdQWv243j+C2hVyQ2HtGGCOwNDAijYG3cwlnzkIurrtzNQd//IPXYaEuJIAcF47rKiktImTalp3rcOy+EPd98RyqonGlFq0qxk9iN7j0cDq6H9lCbsutVEYYNcNn/RYYs5DaEhgxGSMZiOUjjwXTMpFd9KWmF1qSpcwYkPaRMhlzDhSYmnQ6xgsT5UfBDInkzIrUOuKQRNVh7oxegftDLs1N4WE5PQSQpOAllaVE7ckOicEkY8QARmwhaUOYj6TXUZ9TnWhiem4S3YmGbmIw9neW9JXvp1P1sHFONwGWGSOd1nPw7tW/wme6v6iaHgHBul4/xn849hls5qJAmfLz8Ks1VafJkwSOwZDLwxTYOqmaaNR5lYAR2Rxi5mjdhV1qzwmtqcI8bPVEU4XpMVKKGU4eXuZMf8Jw2zs+DgyN2Lx7viAXBgDZ5oryQUlK3rLmjqkZIzxfmNuzDwBUg85UrY+5FS296ZAExyZ2qH0jLgHX8ntwPL2WO5Xiut4Lq7xRg0mJecNjRDTTslxIdQnGivmcSyktYhWfg0qypY7pZQNcqE2PMEYckiEda77Oj5kYUlpOva68bvh7Y1DBEGelWIEyp+BfKYdlWagJ8DYUc91GhnENHQDg1sR1Ov6T8q/4//kwgZFvQrYIADBfN9DYlMFxBIjxZIfP50kDETaHKXJRT86fwjEXZ6fRE8A16V5AHfyY1cbkpd526SGBNJn7/9+S0nrZy16GN77xjXjlK1858jfGGN72trfhN37jN/DKV74SV199Nd7znvcgDEO87328k6rb7eJv/uZv8OY3vxkveclLcMMNN+Dv/u7vcP/99+Nzn/vcEz0dLk0lHnJ3jPl61O8hn1tEkGwVFuKylBYDE9Q2Pvo92QFYDO5l91HuZSogMEfaH/0dAAyEj4HsJvWrNdRaE2hM8oRr7Qwv5joTxSDHSy4OjJgG5BK16wopLQCYb1bwJ097Ne6+8jkAgM1KC7NPu14xRrKStAljDDnxNOobFP8uAz4n68JL+6iFK6jt2wfmyoC5NlI0zTMt3QLoDUAyRn78pgV89OefgxdfobtViAggfCYCrnGMkUwn1o7xvcvj11o1LAd1THRPFM8nv3ixSjNG+Odpxgi/9w/f+hV88T1/hQdtcT6ZAEZ64xcHKXEh9e6qu3aqv1VmZ+BK0CvhBcTMAEYIcUflTsCLcZm4H37cAxwH3rZt2D7fxpkmN0uKHB97ds3h4dou1RXYX7u0ZFUoqb9pD8wCcrsYlPTIPNjqUUW1vtSQUiQ2IwqoWj35qOqctxiFLdg2UfeJaZ1nyrw0x+6ZOuqbR7D79D/j4NEPAgCSS3mM3P0e4PDfjfw6GvJj+mkf9YVZBCFPvlfyy8HOHUYmElMeIA/U5u9U9BrCGAW6Z5U+fyVex8T2eTDGYIddUEsAIzFDZkikJIPHvn4qgRFDoikPBOAEH/2kGKRmRueVfDZ5Qbz43Uk9cZtlsFwX3twcLADTgjVy+hGdkOcrJ/Dpzq/gnzu/jGxw8bk0yhgRUlrdJwaAmWNcx7qbxyMyarnlPwHGSFHmANBdbU/G5JkfU/szjRteyveOlfxyDAejz3Z5UBT9QOSQLI8sjlBr1VUgHA1CZKlesyPWhtJ4A6f7E8Nw3vV5B4lMVNfFnErspmZBMqq65cyRkGrh5+E6XwuDpKu7y1DjbKOIX3eWC1Nkg+VVliAZbMaghKGbc2adRQksx4Fd55+X2xXNGIm7qmBZSbYwdd01sBw+3zNaG5H74IX8on74zC4e2K6fPaUSZz/tKc3vwerFC0BmN3juG6GUaKZIstolZUwuNuS+IZPIWqvBpREbTc0YoRcPHs0iHSNScuaxGSO8i4+DW9Hhw6iIQkk85pGihCnD0E2H4tG7bsOdN38YzZ2GFKFoaFg5tq4KY9H5UdBa7smJa2Oq7o8AIxDAyNnuXoBpQOCxRiSTYcH6zQ3xYrkujXsOC34swzHxnJKnipBlAhiZlmzaDIzahdZ7qT0eWEP0SV1JE2VGs5As6ruIsevrh/nvWHBRA1JKmZIlGwG5zFOlYq9xeJIr9aLzMf5ylxqZkkgU4EMupbSmEbQnkNsOprZ0p2o1XldNGXGiJSPkYCC6k1rIOiRhiOarfli9Rs71xwuMSE3uBayACMZInMpCWg5qyE2ajBFZ3HbzUIO6xrrEslgVo9qHno7OZ74C0ulotqplIznN90x0zwOUghKKqJ+qaSALa+WhGCMy5q3xdc7Jemq/cMgAcyt3YX71TlDPMd6bI2eBwcDThQpZRJH7Ru66mFm/V/3dN5h95n43ztdGFiFr7bYC0ePhAK35GbVGRWKOr68ynEuvx4PRS0DTEhhLfJA0VowR5jDVaMZ/kQHCn4nBQbrOi/ybh78OAGg7Z0FEw5rsRM5FQ5mM0UCLQKZp7s6QI7Z0fiXZVPI+jDBGBisISVPcrz58waCrtFtwJWNESmmVnsERmS4JOoi1gyT8Gb/smc/BxLz04RsvpRUNZJOeXMu5vwxjjD8b4H4lg84miDB6VIwRNroPmiOLjJxDASMiLnRtWPI6GhOwhXFrgjowplniUoOJvcAVBWT/AJf+dSYn1RxaTg8BAIZ0ZoQxQkWsSgwaJhU+jA5N4DQasDwP2cErAACVUw/g2pv4M3Vi3/ehv9THlpDdrA8v4NrztwEAVtLLgQ2uphBu8mfUFjm6618KGBGFyVoVRDwTWkrLLOblqhnDdb2C7LO8Rj/tYcvj60uGqvILAACpwro/uA070juw6+zn4E0JYETsPbUSY4QxYkhpifkuvEF4l3qpWTCVBXjtLwLoQr6S4y0Xv2nGPTQE+yG1m5wxEo/uLdKr1fMDeBXx/Asgojv0kH7fu1Q8Ads8vxy5FSBLJAAp9nSxJikgmXQKn0cycMaIUDxw81jFnUnXWIuzGLlkNptsBYuBUT7HHRIjz3UcUKskmPf4XreU8TmbdPQzlnU3VWxoG932cs5kSQJHACM5fKQiDnBoikqzjsmaj7MTc2qNMRkj+XCg7pNXC7BueMdSywUoUQ2Mt7FfxJDO4Hj8PHFRgrWGAGyNvyZffgRdwlkMTs6v15TSytMEdqul5XHjHNg8qd4jmx8oK/oFyrliMkawd5+Ku0JrugB+ellH3j31u3Lsc+K2Y+rfx8/OYPm9b9R/7J1XSglyROvr6jkoy40WpLSkx4hogpGS8fFwgDSO0JibweXHPqheX43W8Wh7u8pxy/miZO44gV4/vFpxLclV04sERgwpLQWMiOdOgB/VMYyR3C7G8W4W4sCj/4S9Jz8ONxtiuTo9whhxiJbSqjyGlJbdaBTybDePQMQ+wErlY7ORr9xUrQzYpc+IlY9hEYvzq4vcJhht7PumGCYw8k3mLyKHFehzdATAmJeNR57IMKS0NocpciGlRawnJ6MFALum6lgWTbz98w/DE80cdTFXnsp5IunzWmX2fwkYudQ4efIklpeX8dKXvlT9LggCvOAFL8Ctt94KALj77ruRZVnhNdu2bcPVV1+tXlMeSZKg1+sV/pPDzwYgApn1jEJ+VTAvol4XbP9ByPKgel+ZMcKI0ngGgMFQUtuEbJEIFqRebToxhbYhHaDO9SKFzv6W6GwXgb/8fLkIr50+ya+hXQRGlEH3OMZIolHXyflF2I6DsNtRXUPzrQC57eI3L3sFfu8ZP4UP/+AvwqlUwAR6nbMAlOh7ksVELHayS7n4IMmC3Lalr+CZd76RS1/s3QlLdPMS+AUtR0Iol/AxACnlMSKuv0JTXLezDQCglODUfYdBxXfnkYtraNOcje2mlt/TVGDhoe1XYPuFW/j9Ed2MdEzioe6n1NgV1y9Redmlsn7mFD8fSUMc8OTa9JgpHC/RgTsA1XEGAJbrqsAwyieA4SrStPg4xmOYMorujRxeNoS3uAjL87BjsooTLV5M3KhO4IptEzhbn1dSWoPNSxcWwr4GRnLPRW6VgmdWQRQBGKyMeXdxEKGJbNEcXpXPjfMPF+X0kAtg5HEUiM2RKXPQHO2ah9ixsP/kxwQjDEisxnhgJOoAN/83/l+pWCkZO37Wx8TcNGza5/rxqGMzmUO2egqA0Gk3GCOesYYQxoDOWfQIB6eq0Qaa2xbw8K1fwUde9/9gPRA6+amF1ABG4v5jd+7KpLDyKL/3dq0GKgNrNiqlJYflWKCunlOSoqt+VpiqYEjNzyKzHMys847sh79+AQ9+7UpEGx7CC2dA4YHCu6QvCsmlPFeG1ek2PClZM3hiHcrmSKLROeKQWBU01GfbT4AxIp7NAp1XfK9J78lpIHHDQcEmGmPcOfRctARQe3Jw9WOCOBR6jXDHeYxEEWqthioghoMYSWYAI1YbMIzzwn7KZTxKHlK+ALzTqbbqCJfAhEMSlaCZIyU19M8HWL57AowCg47UYu+q9S6zqryzVEppCcaIQ2LVbZUaBSTZDQZASdfI7npXSIYR29dSZ3EHiWSukAT7n341HNXVWh0pCDEDGJEarLOCMbJ+5pRidVWjNaXV29+4uNSdnEMWzZAbBUvZYRnlTcWWeSJDNgK4eQhYQKPBr70xOaESzXISaNFMdeeRNEPOPDBmIRctymmpWDEiv9S7gMjmQWqQdBAeOYygKgxUxzBfzCJiKsCo/voapvbs0B5mfQrkKS780zvVa6PN0QJxJor3iefCd+0RKS3G+PG6OQedy6bJFxtSfscTDQxE7NsUlmJrDsLRDvkCMBKOrieWYIRIJgsA1eAClgHUAr76NvU3CRA5SYRDHzkBT3Q9JwYwIotJLksQRHJ9tXkhYswYbMXqWbkoY4RSXjgHAM+B5fuwqQRGnti+m0pwvpxkT07BsiwMKg0uV+vxc6oPl5R8SZTVR1gN3NBU7DvVqioYNn7838MSzUFFKa3HBqvTTb4/7mXnIWUuY9VhnoNaLm7v/3t8aOMPkPU76n2DjiiE5rFijZkeEWkcibUDqFY8RHffze9Fe0KBqel5UbShGTBcw5fe+wje/fqvYdDnz9Q4cBmAyi9ko5aMsfed+EfMrPEuVQqCqx96FypJB2mhWEQEYMO/m8CIRzQwwu8rdR3MGsCIl/YN02uDMcLGpISyCFmpqkJKMhggmJlW4FA8BBD30B3yc8hZZcRoPmMB8iTi+zSAuCTRuOv0J4DTH4Ilmkjidc7K3zzN2ZVT9inkQnZWrnW5MMyNxfdFhRyDBHAkUMCvgyCxRostChghpWdi8yQiIUfpp324U/wZd1otOKLgKfM9UmJg5WVfAEOHnrEMJOVd3Te+7HvVd8QYn6Pl5iOZB0jmJmOcDUcyqoqkbuCgu6zVAqiYE7w54RIMX4PdJtd0+X/HsVSt2JqYhCPkLFPrSUhpCWkdy6GY+a//BbM///MAeCxrk3FxUJEx4gn2YWowcaiQaQYZ4P5bvogkDOFfdz0AYPb0I9iWPgg/6SCuTOPB5DJQZsOiGarRGg4t3QkA2CI7EK9wZlK4JYERAb55Fy8kqSJ3xTektPzR9zECsxnDsm3t6yafq7SHtYDnkJlV1ZJSADpdYc7ubOGq9Xdiz5nPoDIzzUGxizJGDICt0ub/n+OAEW8OEd+viIFypYjA/y/PT4K1kn1UHrV4DRaAdCeXBM/cOthwE3k0+n1a4nnxKhWdr4v1/dgdJxDv+i5+TiQBNfYYDmj7yKISMCLiYunTylhxfyC5DaQDJQfrkkixgGMTGMk1MKK73cXPZF28N0Ean8HBox/A3soR/ORbvgtXvYA3OZ5Prxw5Zry1poDSAjAiGDh5msKV0rDMRy4K6w5J4NTraNd8nAtmtS+lsbYoqXZGYTcCzYaDKFJungSyEKvkEB49VozblPywZSNfOwUAWD7fB4PDlVEESO9Xq8XCdq2qGSMRBVk7hTPJDQCAqS1eV8mZD6Q6L5QNGY7BGJm48greoAxwL0dmPuM2nn/8tzG3fJv6nbkKxsMMFwTGvb3O99rDxw1f1d4FhKRduN7Bul6jErMRhDHF4uHHllJa/PUTs/MqnrvwyEOY3r0dXh7Cf/TvcOXGZzC19TAendiuc5hBZByaCclOwDaAkUrzIsyHEekpqnrZ5O0h4vkzAVCpZlJ+Nh2SYNe5z2Pv6U9hGFTQmp5W7Eo5LJJqKS3TfL0+Bhip14tM+jyCVZUMKyNWIHkRGCmtncqAvdfBI1//KnrOKvy0yPJSn9EQsfQ3o4wWUCyyf5MyRqyKBrxcEQuTfwlgxJKMEdls9uQZPbuna1hm/LsePPIlAEAXTXjVpwCISTAt6XG1BFnfMcGsxzH+RYGRZRGYzc/PF34/Pz+v/ra8vAzf9zE5OXnR15THH/zBH2BiYkL9t3On7rz30r4BjIxnjEzdcC0A4Ma7/xAAT5nKiCZgJJEABonU+uWLyuQCLxRJxki6uAPtjpYWssVGnQxHAQwAGPaEbimRwAj/ojQwwgtmlanifVFSWlujgShJiVqIaq0JLBzgsl6n7+cJ0PyEKJJZFr6+7Wpc92JOJSaThieKYWysCvFiIRyV0tIBhET+p/ftgjOhAzlTD1cXX4T8kW2rYKwuvv+B0TF2/M7b8KHf/y2cnBCdN1KrfRxjxABGzEBUgmN5msB/9rOxsHoXnn/LLymAhHfMjB+aoSGAEQHQyM6crSXOJMhFx8vOcxwYi7PKWPBGaV6L4MCfmy38XdbHQ9oG+isjbJZxx5TMoQrtcnPrnZwGu71dxYkJPkfXKxM4tNDEUn1aFYDiGMrvZNxQjJGsDxJ4GIxBgntk/nEZsMvg1WY5AlHAPyf8ReRgjJ9X8tgWG4Uh81zKCOq+i7DKn1OpXZraDbDhBrBV6kzuLwNgHA0odZ+GkZZLqE5PIq83lOzEUnYI2RYPkB2SYH71bngJL3Z6hk8Ro4wzRnLJGNmAPzuLU0d4ESVyRBCVuwVm2uMBhphgyXiCAr4+M4nl5EHQfA0EHoYlWrMargVmmHCVOyKlSbAlOsLajQqOzF2G6c0HMF0LkSYMd8y/FufumUW0oiXyskswKnKDMbLanlTzL4o9gIwv8j3WSNPR4qWbx6OeEJb/uDv0dTHRPCf+76j75ICRPNVrUnUkWQX6QRWz61zP+mT8DMWkuNjgRZIxUlqGx4hbq6oCYhzGyIiek7HVBkv0dzXsCAk+kawpTWwBjPjzM8pPRNLr3TwqBMZypLSKtfta2DpWx3AlwKDHv/cg6QJtSfMOQAZbhvl6VXx+qs1zY1PfXs/PIZM+OaKjSsgXwrKRS6mzqMOlQgCsB3Vctn0Kjuhmyth4KS1lrKoYI3sACKalKMBXog3V7d7dvPh8kvubSxKkxnNGhUZ2zJpFuv/jHCZjhHk2tgm5tOn5KbWXlPWU3TxW2r9pDLxn9a/wyc6vqWJHGUxI4xzrx84rIJN1LyByNfuGrK1j5R1cvzpOxrHNDGBERJGDrQ1MTdSUJ0I0sICHPobzyzqRCOMxkn5CXigT+6r0XFPFTWu8Xv9jjQ1hTu5kwpdJJMOrzRkN2IajoI/JwCgbawIAI8JbhfJny6tUtWcdy5HDB778h8ASf9Zl/OIkESxASWREBrs4C6XUqng2RDfdxWT9JOjDz/ciwEjaVx3l0rDXZlKC6LGZn+bIRPe/XZJhcUW8GtVasMDQby5h+uRH0BheQCD0rkMyMdId6JGulvRzPZXopwAWf/M3AddFKmLu3Aq4nONjjEjsk7aQz7KrFWWoCpaDWQ6+EX0nlrNDOHNef+9D4WHl5qGSjYiMBqfY2O+CNERyjHeYO899vmZHGcUR9M7hwv0nC9JMch+UQ+l0l+RgVQc0CCR5w2Q6JWaRg+Wi8CfW3rpe++X+o2J210E9XEFtyHMsz0pHJO+A8V5ksmDoV6uqkBIPBrCDAJaUp0kDYP0YumRBvS/LhNa6lIRhFc5cE8X8wbBTuicJJlmo2LXxJv/75iq/V212FmBF7fp8KOJb+X2JznSZrxVHrvw9zKGAkdK6QjdO8jUc/PtzBDBi1+u6m1s82yQuvpeUAE1iNqWwGACBZdlYvOwQPJW/5LxxqwQ+ypzST3vqOUrjvPDcuxUXnZUl/RGgYIxy9sElQAyTBSClqWSznONAGSe77Wn4oriXWZeW5xo3lOyKb2H2ta+Ft7io/2iNiQuNoiltNmCL2NFc+6XKdUwewmff8Xbc+9lPYv7bngEAuHzlGG75wMex5/Q/AwCW5r4NAFAPV5A3WvCzIVwRxy8vWQBjCDuC6S4Yhu6Y5hY5FJtidha2qEfIeMp2HEPLPYcCRoQ0l47lNDCyXBUyS3YVqaX3y96Ax2YVq48NUZOoz02D5LkC0MqMEe6nJLw9ggmcun8d3UEATOwUxUt+Pn5NF+oBgzEiVR3E38ug9q4zn4GX9rDjwq2wJyYQvfRl/HWWg7TXVbJ25pCMEdcPDKkxfv3nH97QzQPpANSM4WWzkpA2lP5f8vfq2kvSWoRYBWDEoan2jjTZ63mMjEmgis8xDbbwc3ZIgo3tu7Djwi2YPPY12LaFxed9OwBgPdsPwtyCV+RWJ1bPppxLlmXDF+B3niZwRdNJbvnIhlKRIIVdq8GxLaw3FtQaYzL0JYPVIQnCarHQSWADy7z2c1vEZZDrbaMmFutYNOtuAmmI9XXhf5JvKeaTV6kWpJBy21bNTiQCzhwLkbI6vKyLya2j4rP9QiOSZGqYMk47b7paNWrKM9afYaHWW8ZET7NCTCmt00cugDIbU+4Z3PB8HnN0Y1mjY0IKthgTD7f0nhyHxhym+QhjhDGmYoVKo4l9N/J15NG7b8f0858LALhx6R7MP/QJWGA42VpUOUxusEvN5kO3qpvUKhPjO9atMbL1jFAO3oi1ORcMqqKUFq9N0RJjxGTobAQT2L9jVEoLSBUwFIyR0ooN+VjLdQvvd0kMCPZLERhJQOGNldLi594GAPTWVvHJt/8PHJ/wsfvkh0buBwA4LVEn+2YFRlxDSeeblTFS1+CCI+XU7acgSyYAhyYibAxTEFFDo08BbFloVbBuCSns0zzXXKrse9KeJeZ5IukVm6n88c3rFxv/osCIHGWDF8bYY5q+XOo1r3/969HtdtV/Z89qerSfDZCLooS5uMjEIOr1cPm1B9D1awgySeMafXAByrUXxRiKLmzZsSsDbUn9ru3bi8nOcfX6isu71S6m3RyLjmnZZXgxxkhlugSMKI3+0S5tYniMOEGA3ddcBwA4c/8RAFxKyxwvEXJVdHZO621uaq17KfmgAsOS+bosyMkNdLPSxESrBnd62jAj1Ams7FK1xgAtzSlezB0YxvOb5/j3Ggn5H0/owyXjGCPE7PAwKIvSNCxJcP33vAiZ5cAliepcGEdVl0MWj2QXeaUhpbT4vdpa5olHCgbL8zDZ20QNfD50VkeDQam16giKqTtd9IJgFSFVgglgsIKcFs9t3HUPBYBREf4m/k6u1VvxHNx76Nm4c/4Q/mn/83DFYgvLtWm4ggLMmFXwaumuRVg9rQOZsKdlZHLfR+rrDbMu2Bg9Mg90DbPMiwwiAgWLEgSeA8YYzj/CgRHZiUGEf8y4buRLDWnUC5vCti0kNQmM8PvPLJd3UX72t4pvNJkuJW+KOBVFiayPxHVgtSeUkexyegjZBv/eHZJgYfVO7D31Mf76qgGMMAGMSMZIvAF3dharpzjgmYngJqMeL5yJ8XgMmpk0shPnfcomyOgANDvOpbQwN/6NgQvmGwXbkoa2NMyTwMhkzcct266FzSiuvv+v4Kc9DBvbcWrmJYjWDU328OInraW0MnSbE0puMMwntDeEPgHg478I3P6Xl7z+VPjtmEAIQ1YwhQO4AfnjkVwBgCxKRbHXTPoYGCOI+4+vI708KNFdgEG1NsIaiV0Pk1u8U3QtP6CYFOMGo4x7fMjAeQxjJIsiwPdhi0QyCSNutirPx+IJmyxqS2BEr8dS+kEwEhZm4Yuu1M1UACMkVoVcc2Skgjziz2I2dBCG/N9B2oE9r4G6bGOZ607TACkVSSpLVOe5aRSuPJ4ADBlfK23BXPOndJCciWIYoi0lcdOdnoHv2nAFG3IcY4RaultSMkaqzZZek9Dhv4vXVQLX61x8LsiuQIckyF29jkkN3oQ9ScaIWPfdPAQ8By+8fBZ//uob8drvuVYlPgkrJg2chSPYPv06YjaBpfgKZUScCU1wKcfywCfuxgff/AgO//U/AADijXVQh8+HakOsGSu8Y5syR4H8chDDcyIRYRujFE7UQy4S3iRxQZaPYjk9qN4XxaP7r2xWyIWx9GCD37OpbXwOEhT3wfK5XGysLwkpDGEsRm3ehbg5vU0B6VE8miyY3YXjgBEI3w4p0RXU64bhbobErvPi5ud+hx9PyshkujMUKBbcc1HwsNIUFpha69NuZ+y19QxgJE/p2KYHOuwqhqwtvCksyALjEwv9Zad2gTES+LBFsSdt8nh7c/0cdqzcAQCoiA5VLmdS/M582oUsjLiep9i5cb+Hie99OQ7dczeSa3k8Syz/cTFGiGgsWfW5RrgzOYWoL9cAAsaokggc9vV1SBDElGeMjAangob4gxzs8vftQ23/Ps26MNZd1jmP4aB4f8vAiPZZKnZYyrU9d2zkIs6mtq1KRElirsU5cquiCp2XYowwAa7MrfFGDX+6qo3TjbiwbKIL6BzIr1SNhib+jDLLYMedvwvdXBe8U9GJLdkyGSqGtxdFt1MEjYlt4YZzD6Au2DxRtw+Em9gI+V7QSnXsKQHiTMigRIJ5S4VO9czO3SPXUfZWkEPKxJQZtdHSOQA2wCjcfAhvgYM+luNAFnUlwEjTUmyV6PnOZa9c42fJIHBhWZZhRp3zru8SCJiEEoCP4TJZINY+BjZJ4dSqBX9JfrwEqTW6D5ojp/q88lgCRMJDyWGgmfBHmJxAIIp7mX1xea7zR7eweWG020l615hysGo4o78rSJJOTMAWP+dE1whoKiVd+DzuLF/A5DOfDlqpYiHcwo1n78PCyh1w8hjM5q+tD5dAf/4XkQVVTHd4bL4RzgLhJkLBFJa58TjWrxxSdialBNO/+N8A6GfNsiz1XsYMyUDZwCmBAVnMJyH6IgbLrBpyW3e3UiYkb+wBwoS/L5ieAsn0+lQryW8rgA3A12/18Yk/vw+f+ot7gfmrxPEEkFrVhXpAM0dkrCmvkYNs+vvYee5LeO6tr8euc1/E7M//PNoHdql7FveGCuQ3h/Rq9QLDYwQEjDGEXVs1g7h5D8yQf5X3SOYcRADQMs6uXwQYocQBkgFfHwF4M22Viwx7xnqeJyDU588odJMpP6aM72J0ns7lqFonHgLpdjExV0XmcgWKtWx/wWMkT6la5+R1O74H15PyVCn8WiDugI88lX4cCSwxh0h7SjNGenrvSPoaGOnbxT2VWhawfD8SWsPZwWUAgO/9L9cp428/7WnfElYBOmcQCU/MOu0glybxtRoc14Ut5JZImhpxg4fjR/nvJzfuU/EoB0b0ecqYzmSMTO3dCcuUlCwxRkjiKL8egMdqjDGc/sYGDn+SN2TuaT2MZNfTAIB78eQpB2mz4YjHiGzWAoBOx5gfJINpj5GEQ+RJotiF1WYT+5/2TADAo3fdgeCKQxjUWqjlCaw8R+z4WKu1VZNJFhsSYgZw61R0bNmYvkiRX8RTZlM3YwyIO8pjTsqaF6W0JJurOAcSR+/fm0ELB3aNSmlR1VDsFRrulMdIOAQ1/J5tI/628xhMMUaMm5gnvLY2xnwd0GvUuQcfACU5YFlIvfG1H3fHjcCOpwM3/eTYv/+rj28BjxGr2oYr9h1bMuWfArujbL5OhMcIeQpgi21biCq8djUdc5WXfvvQkz9HAGiJ+HPzhPYXsV3AeWKSX/+iwMiCCBzLzI/V1VXFIllYWECaptiS4pljXlMeQRCg1WoV/pPDS/ugbinggN7cknCIfdMVnJjcqSivsN1RYIRR5DACEoF4y81yagcvQPc31hEPBpi78gAag3NqsyUuD/LHyb7w8xCFCRHYBooxwpO4tTOnQClBY0YDI8yQfAi7owW/PGVav9TzsOua6wEAZx64F4xSzLf0pL12xwS2tUVhakKbaaUdXZyTCZIERrwSMCIlV+QGutWYhmVZCGan9SYe6k1C62wKDWfjnjeEkWN/QxeOhqIIkMoik9DWNc0h5aDUwjg9Q/nvLE3wjCt34NgcX7gKG/hFBklTESDx864a5uuUEHRFR1YShqg9i7NvGhmf692V0WBQFnAs0cHolIARS8jDJFYTpLeiOleUPMFgtJNKFkSqqWAt7Nih/tbYNo/ffvZrcPf2q7F/toGeX0PqOJpCbMgZfezNt+FDf3QnIiGhJZkoQdpDXqmCMF5UqoaraPY4+6JH5oG+7kq72JAdSDZyBK6D7uoK4n4PjuuqTgwiqM9J+sQWrFwk7rKxMRXglU11F3rMJoAHPwqc+LJ+43ANfTKDPpkuACMko0gJv++Rk+Ddb34DlpvARI8DlUvZIWRCokPOcQkM+pWKCg0oGMjmOWVgXIk3YE1PKXM8IoKbnPnIDQA2TkbNNstD6n4ryaS66CplGXLLxxBCAicuFtqp7+JYkiEPv8TPocwYEUmxyBnRrnr4+uLVIJYN5+xR7Dr7OX7r6ouItoyupUsAI7kBjEzOTiIR62dIJkaLxOfvBu56J/C53x2RjzBHlvFnthZqcCv3oDqq5PNCbB/s8XqMDIcoskXUkRE/QRaTHCTXa5IXBEoWRQ4n4F27ABDRCcRlLwVj6CLNaKApjzvsdvC3b/wNhCn/nrLeAHHJcP3Y4U387//8Jdz3xXOaMSL2IE8xRvj/Z1seIFh6WymXR3AMeRlzpLSKY9u+F7c9/TfRjyYRZTzBCpIu3B07NPC+chqr8Q68Y/V9uN16Db9PoFqf12gkMJOKUMxpywYe+fpXsfL598HK+PxOhF8XizqqI5BJM9c6v0+ZVR2REDGLAqaxqmSNNCsrmOg+inlnSTFGBv2Lh0jKYDOPkZkJnXieEgj22hMcsehC9rIh4qqPdNjH91y7iPn5qUKiaQ43j1XxKNvi55VRH5mQ0pJkLV/IHZw9zU/yzAn+h57w7fDSPia/8yX8uogGsMrsRWXQS3MkRlG+v7kBKopfCali5eQWCAI4ogs8Sn2loayOJQz8yATfb2XRVZpgErv4nJKcjhwDALaWh4Uu6o2lnrgOo2hh20inZgCIQk5eQ3nEhsxYFhXvd5ITUKUPzY9RqdV1rMQyRFYDsBzg0S8A5+/R32cegQHK58NsIlGdoDJWIKPdouYo+6yUpXsAIB/orm5HgE62iG1Irud1PMjGetgVjy9iQ6O47M1qQF5207P1NbQTwYouyEeVGCN5VxcMfR8VyfAW1x2QK5cAAQAASURBVGv5PtyaKAxYweMCvGURcRDwmIi2WwWpEbNDNYl0Uh4b0nXKnN5gjETSMw0pksP3AABqN92E2syUjqOZBkaS5dMFVigAeFmxkOxJoKRUSJANU7ltqziD/2yBWhbiUG9OjOUgVgDNGNHNLJLtLItxMvXZc/rT2N/9HLb9+PMNYMTozh9j/i3jYa9SRWOSxzd9sXdJ/4GENoDzd6NnMEYSiD1BzIPcqiKNxHdOEnTX18S58lxNXm8g1u2kH4GcvgsdIevYEIbZ8A3GiLgfsiOYgD83E/MLI4x3Nna/588lMBofRWscGPayIYbtmZL/I7+OPBPFw1IPk7lMj3iXSAaBIxv6ZKEp5zIsJdZrFup7pvy7DMaIQxLY1Ro6K8W8m7GEszuiLeBTvwY8dPPItedGo5hkequ13WYgAkCtT06gOsm/T2IHIMPRdamzEuKjbz2MT/yve0f+JplIlj2aH0tTdwBwM9kAaMzJalXFC8QARkgmO5cFi7KzBafRwM4/+H19cAeo9DXLvT68gMte9u049SP/AdWIf79b0SKwcRzDnmheFJJCZTkYc8giYjQYaAkqI0bTbBOinh8JliipJulpx3JMzvBnN3PrY1lNFbsPX6wpzuSkyrFgWahPFJspGctB4OKWe38Ah+/k933jQohu/UbhNSgZIxIYESBjWmSM+JWqXjikzFLSQbCTexH6e/di8t//CKbnp7TX0NZwvPwkk8BIUGq4zEHsNjorwmcj75TeJ84tlkBoJBp9iszsshk7oS5I3OeedAAq2+fUcx6ZRtx5LJRC9PvLLBQnT3DTC27C6eY8bMbQ+cotIJThrJjLS9khRF1DQjxjBmip55KcH1mSIGgI+XHLV16vZgGaTU2rZ93Mt4bSD4sk6NHiNTPLApbuw1a+XVyHj+ntDdCdQrY83lT7W84CYOUBxDm/1irpK2aibIAt+IyIaw1JGydD3rCwuHQnbLHw5fBAIr7OM2rISZlsg+lpEOi1jRn7MbEtkMRWrF5+PcAD//h5fPzt92Jjw4VrRXjAifDam3nTYkRbYINVoMeVPIas2CA4HBoxTld/Fs1TwGCjJMOhMl63HRdepYqdV18LNwjQ31jD2plTWL/iBvX6s41ZTDcrGqw1cxhjrffrOrac3aaf0VnvlPq3NQZIIJQBw3XkjAN2mS2ZYQZjRMRLtLSnRQZrdLPSxKFdMyOMERlPmzJaQNFvJDYM2M01m9oUlisBacPvLAuF3wQZuR5A12OXjj2sfpc6FwFGmjPAaz4HPP01Y//+rz6+FTxGKi1UXbGftfj5ysa3JzWaPK7baa1ia5iqOgt7KmALANpYKPxsCS+sJz0Wr+f/v3BE5wzeE2OLAP/CwMjevXuxsLCAz372s+p3aZriy1/+Mr7t2ziV9aabboLneYXXLC0t4YEHHlCveSLDz/og4gEroJ/1BixB2c7CITo79ilgxLKcMUEPVUUWc8jFe2r7Dkzv2AVGKU7ccwf2XnM5KIBrHngH8stdZB5PFJJ4fIFP1esE6CAToMlt2+D6XCuys7yM1pwunm/uuRy+SKjCMV4EeWqAA56PxQMH4QUVRP0e1s6cwlTdhyf0v196pQad/ImWlgAQ8jyAkSDR8YGhNGOXCcygzcGN+vycOp4ZdKQKGBEazsZi2Zzi1ymLIAAQdngxKqYi6dgShe4xvi2cml2URQFMxkgM17HReQ4v8liKMRKMZjFi5HHCjyn2ZtN8vbu2olD0PE1QfeELAABBjyd3nTGGsJKBYl+EMeJPNxU1Pt7YVFJuslt5nMfI1rIw5BUFVm9RLyw7Jvn8nar78F0b040AK/UpLRsiQJA8I+h1GCi1MDgn9HV7hsdIrQHiMzzr9t/F0+/+I0XB7Wbzj89jJJYJBkHg2egsc8ZJe2GbMprMRQKb5P4li+Ijx5bAiJjXuaBo3jezX4GU0YFX8xd/5U/U+/LuKj64/hb8w8abQVMdaMr5alGCoS++C9/GRPcEwBh6ZBGdTVFMFUGl7GopACMMGHQpGBzYJEVSr6ATDVX3k+zsyFBRwbq6/scYsovTdhha3/d9GCrt0gwUHmKhm10fFkGryGMYEoI85f4uI8CI7GIUiWm75mPg1/DAIkftpc9CZE8iMnw3yobZ5lBJNcnQmGhjIM1aaWsEGGEXjuCrvZ/GA93nXlxyiDFkOX8u6qGhoV3xVKenomdbNkj82AU0gCdYYztIWY7kScp+EWoDhieIVwJGfItgy68oAGvr/CUkLrKi1IoJUktgZOnYw+iurSBj/JnMBwPEKAa793y5A0oYThxZw6Aj5UbEeiTW46ro9m5bCRKRDHaoltKyjQRMSdbRKpbnn4mwvoiTznN4kMwovKwPf9dOLTWyfBIXkivBS7KCzQEbjqShG91WRSaALKQw3P3xjyA8cxQs5QzNWHgC5P2OkmWZuozLWVQESzJHZURCxOwSGweMTF+/A9/9sgou/5XXqO9oGBUDP0qZYrZkoZTHTJAbx5aMEWp5yHqXlksbNyRjxCZD3LI4h/f++i+BMQa7Xled0nJ4qSz+axAjFxI21PZUYVgWlGQ8Ib0ENgaTYJSity58jLIe2E++Bh9/7qtwam5BFTzKwIgJgCZGR1p/Yw3EkT4vNWxc4N/V9jZfmxizC8eiRhLttBrIswyhaJCQbFpijz6nZTmttbN9vO93b8fn3q0lG8P1oThHg13hWEj3HIAlksOY1Pn+c/xzwLtfDqwfV8VboAjcAcAgSkFFJ7zliE59gzECliG3G8iv/GH+8y1vLnjGbDYmdNemISOXy+I70XMKAJLeRYCRteI6N05OS4EqjILWXHSWl2CJe5nnovGHMnzw9+/A+//77QXGVnnIeWR2H0owBAC2XX05AOCajRNwREzjGZrjZSktN+/BZEsoxogBBAV10VVrB4/pxwRoXXNXXAc1Gqj4OehzT1IddyRSEi+PtKm2EXvJbmXHyhDefRcAoPa0m+BPTaqmk4TqosLgODdi960hmmwJtXBF67uLoczYy8BIRTJGLOSOUQS2bYT1CSShidqLPUIAI7LQCWjpCuVn4NggsLBSncTE634O7W0zqlAYh0bRiBWLFbyIStW5Nacl01sAI77wchHASJfoPCOBlKESBTPLQTyQTR4J+l0eX0h2h2y4kjK90SBH5+FvgMKF76TAOr/X2YSrGVWiCJsmUkeb3896e1LJs+mLGSfZRNUzNwKMSN+9rI/Brv146JYv4vaP/D3u/eynkItnPyMeQKmSnFL30fgoUmLqluUcVV7EclDbA0uLcz0VrBTHkA9NDcaIQxLYtXpBSosfL0VuV8Ae+Cfg9r8APvmrpUvXay8AELVXiHjXpoox0phuozGjJfGSMXKqp+9fA2NAf0MWr43PEvuNPabiYNek7E6GbUu3qnshR+466nOZsYkTydwT68hgk++1rZe9DNOv+VkAQPv5z0GtouNON91EY34Gle/9fqwL/72tWAAjkiksYpNLMkbqer2SwIIJxDmu/k4VACyltBRjgn/O0GKYX2xf9LMADozMC5NzDozoHH1+3wE87Xtfief88I/LOwNi+fjG9KsA6D3l1rO7xzNGBPskT4pKEZZtoyLltMQe2uqfwe7f/z3Mve512PkX/wuW52HWAEaGW8lYYETGnF4QFD1Bsw5ge7j3dl7cRj4Y+z4JjPB4kUIWtrWMWAkYYR6iXlfFh829O5R6QmxKc+cJMviacWJZKu+XTDmHxnjuoXk8uJMX7U7/48dw9Md/Eled+SoAYCk9hIHROEZyDYxIQMjxPF2bSBNUWvzeE8tXErOWMefd6Rkl62j6w0UDKe8VYysy9wIR3649gg7hsfu5cIh//sYy3tHdhLN6K3ad/bwha1gFztyGmPJ5XM1D3fBXlcCIBnIkVneaPRMZq6FhrWGqe0LlBgQ+YiGNaMZm0s/WbjRgBwGoY7KBiowR8//87xQbx3l9Yqd/BD84/1v4P/l1OCXYnBQe0o1loMfrCwPhuydj4kGk8+w0M5QT0gyFJolwiEj4vVWbTViWBc8PsOfaGwEAj951O/CMZ6vXn23O4zuvWtAsmtS4DtFAYtEcrgFSzB1YhE0SBPEWmo/cN3IPCkACE8AIfIDFRj3KZIzw742yvLDW5k0d83SCBg7tmCrkb/y+8e/ABEIALgEo65KJAYzAbPryHVgCQGOWoz47jaNLm6+L55TkBhvbGV9+vtS6+00xJDDiBEBznGTnv/5wqhOouEIBSDBzmFO51FsuPbZdDwC4wjqD7mAIKuJx6j41YMRrby/83Nx9/VM6HrYJAPPCEWBdNEQ0Zi/68ouNJwyMDAYDHDlyBEeOHAHADdePHDmCM2fOwLIs/MIv/ALe9KY34SMf+QgeeOAB/NRP/RRqtRpe/WperJyYmMDP/uzP4pd/+Zfx+c9/HocPH8aP/diP4ZprrsFLXvKSJ3wBfjYAlZ03RvHIsm0VGEe9LpxDV2hgxHbGSmnJzsXSb/nnVCq47JnPAQAcvf1W7JhtYbU+jcnucdx/5iHUVzoAgDgZo9HLGDJJ+xUdEDKJsW0HM0IO6Z//4m24851vxvsvfxE+cPDbYV91tZbSGo522vCuP91157gedlwpNu/7j8CyLFy7o43AtfE91+oHuDI5qTvdjMRbFiw07XU8Y0RuXsk0R+hrC7MqMOobMjTSUFR2P5pAS0MAI8POllosFWMkTUAswBGU1yQaTdgps8cuwvKcpV7qD/z6f8SX3vA36D3vRQC4pifS8S3hWZIWNmtTSkv6i6jPefrTAQBBhwfdnZXRYyopLZKBgQe05gjm51QS2F/pcOkccLYBUGR4yNERzJTagHc7uXM6EZXAyHSD34OD801cqM3o4tYm7yANt3RSkwr/DBMYyRoTIPU6atEaXBKjGolrTBcUY2SwlYzphOODikTBYgSBa6MjJMjaC4vqe5edIwmrPy79cDmkFBoTxcfTT3sRPrPrafjf13y/KlIMm09HJ9+GbFMX0vsrPSSsiYhOFDRBpQSDl/UVUymzLbgkRiXm93g5OQDgYsAI/zdjFL1Id+b0D1yJ1ZOPqs9hFqeNE7sCYgIj9LE3KynDYDUqaP7qL4OIoj1jGXK7gtzhAZjJqAAARUZhsku4JIcj7qUjNs620A794sI1AKD8JmK3rXxYACAaXvz7MqW0qhMt9DxDLq4EjKw9chr3ht+HW3qvAdk4Nf6AWaiKTjUDGEE1UOuKqVsbj5O+GXfYKIFMqC3L0lI4LOPF0ieooQ1w0E4BGX6gEgz9oQkemN6rAJ6tlYuDOER2BI7RoPXEcTXdmeuJk2GsilESNBoKOnl3NVQyfLILTx6zJTq/q0kPA9GdFAntT5fEyI2OTgkYZLSKNOCB+orP9xw/7cFmFNXdu+GJJDRauYBOrwgIE4sZ+rxGATIZXe9sG9hc4smRJfy5YvHMpkbhd3ob/4xaS8p9VIGkC0YZPvq2w/jkX9xXMFx0DE+QacEG7XY7mPqJH4e3bZvqco6zaoGd8LG3Hcbf/vqtSKNcFQAckiAz5B+YrSWr4q0nPo9iIWnJ6BC5baO3toIkHMLyPEXfl6PZ5/KTLolhi4YCybCCZSONxZolwFU/LRYeUlpF/9Gj6Ed8r6tYEd5y+wr+fOYZWGrOKKmgsqyjlOWzaIrUSHb6G+tgooCTsLpaX5uTHgJLsF/7BmPP8D7xGnUMRaOE43mYXORBM7FG95lyEb+zzM9TyrgwxpDIS6V6TXjT038Mzvd8nwKDIzYBtnkC+NqfAqduAR6+GbnxWMYlxshw0OUybQCYMBoPanXFVrbJEMwOcHzi5wBYwMMfR7LBmyfcPER3ckbvI4aXSTKUcymFNTun5bb6Tx4Ykf4LDklxZ7iKv/3V/wIqCscSRIgGGQZbCeJhhv7GxddO6TFSKN4YwMjOp18LALhmXe95vimbUWKMTERHUQ15QcMLAh2r901gRMabAWgS4rb334Wz9/P3PHzbEj7+Z/cq2TPGGKjoqHZFoS9rlDvF9LnHpKUYZalgebtE+yklhia5ZEHbyBB/gwNv1ZueBmdiQj0fHbKI9629Hbf2fxyDs5wl2nKW8V2D1+MZd75xhOklQaOy4a8sTBDXBSnpvEelznAVq0opLcPzrFqS0oLF8NMv/XX8xxf/Cnbunke9WYMjzt2sw9OyBx/T5+1VKip+G2zwuNESha+ENZCunUNI9ZxILP6dunmo1sMwEl3vJMFQNEJJmWLiOIDj6ng1trD5KF/fAneA3gl+j1b3TakuWPncyMJXJgCLentSgW16jD4jDs1U5++IlJaQ/fPSPno7tuOTf/ZmfPUDf4vP/fWfY73Kz5F7WXXU+ioLj9RgZJW9S5T8sVtkEMjvMy81d0ipHZckcAQDMI1yI7/ips1dwRiR3kyMxYBlI7sgCgT9C4DIG4BRcDmXe4X8PcsU4NMUwIhirAzjERbXibtPis+1DH9JPiTgJmVbzdFs5pjoPopdZz6jvP1Mdk+WpaAzohBo3FfJypKvNZvsZn/pl7Dzr/4Ki7/3e5g/OIuF5dtRC5fhVvj5755p4Ly47wNrHtg4Dok5Kt3/SzJGeExqAiOeyRhR/85R/r5NdiEA9BwLu3ZNj4DH5vCsIYgw+Hbak8hTGRf6sGwbL/ixn8EVz32BOG6O2G2DCC38HRe+BAC47yFfMMIkkCo9RqTc5mjeL32LnJzHQ83+aVQuvxzTP/1T8PfsAQBMNSqKlTno5mM9RuQ64gYBN6AX977Z43Jm3dNCzg7R2PflooEtixKYslla9qoEjMBHImIvixLUD+xTcsuF5tU8BmG+rstUKiNSZzZLUfddBM/jclrV22+Bdc9dOLR0NwBgI9+jZNgAPkfls6kZI56aE3maoiqBEdtDJnJAy5jzi3u2Kang1PADi4UflJ3H6IbFWI6CgfaWsZlxYOTK07fh9/7i0+jkBJetfxV+NlBs1YxVwM58HZEARoK0pxgjEpzXQE4KWwDgocXX/0XrHi75KYERy0M86PBjG7FIumcnYNsI9u/nx5o0GLoFYMQq/F9ekUyDth9s45Mvfj/OsHnkFuBYIj5aX0O8dgFr2V6EOY9haxGPt4aCDQMAaWYAwGlWeNbiwUDFWSaLQsppnTxyF+a+/fkgItc/25zDd1+zCFt8X2YMSxLR4EJzeDUNPNS2zWFh7wrqJz9YyFctxbDQzxwlDFl/BTkLlM9NUKsXGoArhjcImLGBz+j915qawkTNh2M8GxYoBMmxwDDVx5WAr55btq9zf6viAZ5egyUmk8YRqGV4jJTAjREfJACZIT9sjm96YETKzE/uGY/0fxMMt9ZGVfjaylO03IvvZ485JveCBhMIrBwLySllvo6nyBipTe9U/ybMwrbLrntKx8PsIe4Bk/aBO/+a/27v85/wYZ7wt3rXXXfhhhtuwA03cGTml37pl3DDDTfgt3/7twEAv/qrv4pf+IVfwGtf+1o87WlPw/nz5/GZz3wGTaN7561vfSte8YpX4FWvehWe85znoFar4eabb4ZzEWrVpYaX9hXgUS7kmwbsszdcawAjtkFdl8UrNtLlAgBMJOVeUMVlAjU+fe89yNMY3Rne/X7tA1/F5Q8eAwAkBjItRxLmvFoCqM3WlFmRnZEXjj6EtWMP4bZdB/GeK78bs7sWVbdVFNkj55fnjsEY4YvJbiGndfYbHJX+6594Gj7zi8/H3hkjaZrSUlpJXy+AijEyRtce0BRL2clGZnhBzZuZQZB2AAB9g74oGSOWMvvVD2atNQHbcQHGVIIUdrW8WrRtu9ZvjovfDSUUlLlqETYXUslqkR2OU40A/+mHvg0TE7JD4+KyDGmUQnae2LaDQIBXWZpi68KFwmtJrYJ0Zg7VkCca3ZVRDxhlvk5TkHpNaBPrUVuYU5IK3SV97RXRqT/OY0QyRoKOYIwsaGBkpwg6ZoVJ4lXbWjhfn9EdeFsdAEC4pjfmVFBzTY+RJd9GTtcV2VQyRvp0HugvY3NpiPf8+tfw2b/5xsj5ATpQsBmX0uoI4+72/KJiClEBjKSoFzq785Rg7Ux/7LMIaOo/cR3cefOH4Tkx3nrjj2BlZieYAPTOnbbw3vW34zNnX63e1980ZEtiDYyEqitwgERICiV5BmbZaAz5Pe5Rrlsog0qp/R0YjBEGoBfWxP3aQH7VdVg9pYtE/EWjTIsUtcdkzMhihePbxXnIMmROHbBsWIyAseIczCw5f3hXycWAEUsY804K6ZIvbL8e/g/8IB44xNf42GsjMvRbwzGAnRx6zudw6k1EojhFLH+ke75zns9zCg+bJ4rAoxpxl4Nn0IwRxjKcxwV0bX4vKvEmLFEUjnpjkrIxIw1jBWI4rmusdTkSWufyE09wUFb0BDGlHQGAEYLe/kOoCwPczfWLd2gTJQFzccZIcWSgcaqKUY1hcb0abCXoSh+kUpdSS6zjpLeBnl8MSt08Ag30niZ9A0J7mnu6ANio8W7xIO2CWjYau3fqfasTIszahWPmNgETIIcpARSPA9zcHImQGZJdi9IDJhtoveX6NP+MmlgDc6sCNtxAfzPGuYe3cPLe9QJDyARGZHIt/Qjc6WnFjAFsxdyjlOHCsQ6ifob1c30lceCQEMRItKjFVHEvWdeFqMc7ZLe6ZTAdhlJ61CrOmYWV21GLljG3ereW0qJ6n03iFJRQZZToZaOF9vU7voJ+xjvBqz7Bpx7g8zNraI8gCdbIoczcafF4/fU1IOD7XIoaIsbvrdVqoWbzQkVkyDblxlpcnahj8zwHwVozc6q4S63R56TsMyIL5LKZIBnmoER8x0Zi+JoffQF++Fl74FS4dwC1fISP3MNl/QAg3NQ+VijKDAFAZAIj4vBBvaGA1UrE7939dxNgz3P5McQccPMQg9ntqvhuXkMs5xJN4O3YofYa06BdDkZydJc74ifBRBzLGBG+JSRCRDJkSYzcEYUmwXoxJbQGWxdnAsquSAm+AYAzrZPw6hVX8Os32Lj6GdLnKUcl72DXmc8A4DGbjNVNxohkfxHbx4VvnMPdX+7hlnfyjvJ7Pn0apx/YwPlH+HNhFp89CYxUS+uvUYgJ6SQQ8rgmE4UyN49giz06M4pRqTD8tcIMyHN4u3bB276tIEl7LHoetsgOPBh+BwYpT5wbzgashMBmdKRr86KMEZGPeE+7CWxKAyHEsRC3y14CGhgHisBI2WMEeYa12iSY72Nxoopm1YMtWLtxquf7qJSW6Jp2HDiuq7wB+xLAFKye1KpzqVVjyL3IIZkqSkYJP0c7N4CRRQ6M+DfdiN3vf58GRmgLG8uCYX+W51eTB4a4b24/HCLZ5EJuRsihatmRSSWFq8YYxohNUsWCykprSpjw/c1P+8gN3ywAyFx+71NWBYZrIGKtkbE2ITrWH2kgMiTk+P+LzAcSF59D6QfkEM0YyRIi8hW+/9EgUPuX9GayqGRlG9/pkpa5yktNJLkA+iVAZOd9kFQ0AU200Jxuq/ken7gH+MNdwOffwM85o1g+YwCPpdxFyq5Y7qiPqD/dxk2H34J9pz6p4xbju8riCGSR5w2SeQIARKxhUk4m7HVVs4hl22g877lwp6aw/4YrceXDf4tn3fEGBLs42L5rqoY1wRgJnSmQtROIY6fw2Zf2GNEFxHFSWvK7LXqMFIERuR5teh727Z4f6+UmR+y4oKJ460y2x3+mAnIIEpevQU42xI5p/tpq3uA+qgpIFfmtiDWVx4hRpA1EcdcWPl11uw+71PBj2xZssafFoYVsMBrHSakryRaR8XYtEk0vzIZFCbz4bOF9EqTKxf6emDm642gfFAPABYAcPrItvu86JEawa6eSDkyN5lWWRVypQZ5fpaoZLUw2A6RwbAvP+N4XITQ6pGUBvk9mEYV6vyDE1mxQKcfl+Qr0zuIYXiB0/y0fqWyOM+Kcqw/tVCoXae5pdqME6UkIKppxbEc+3wSE2diIebGxNVzCf7rvI2j6DraLuF17jATAyjc4kx+At3Ja5bWaMaIZLk5Q3BeCjOe2cl+j8JCFXfF6qRSSIt+5G3s//CHs+Iv/BQCoHDxgSGyOY4wUgZFMMNbcag0PrOjnw7aEQsnGFv75n1v4+423gAjFDVmTGRogfUb195YnSUHGi5IcfeF1WzUYF1LKtbe2igMHduCBGf7zhcV9eObeKQVkUSP2kM1SNs3gCeBh4/xZHL39a3jma38Yf33FixEkRm4p2YPGc8wY0F1ZQ2o1Vc0gMNgnAAdZZT2OGcCIN6+74ytzc/AdWwE4AOftS0DCNHNX7zEAX/WeQD8vTr1izDdeiwOANAm5IoBaO8seI+2Rz0ovwhgZbVr/Jhu7nwNc9QPAC1/3r30mFx1evY2KI2J26evlPQXGiGXBWuSgxdX2SYSSUeQ+hWMCmFrYpf591tqGZnN0Tj6h4bjAAm/SwqNf4P/f96InfJgnDIy88IUvFGZyxf/e/e53A+Ddt7/7u7+LpaUlxHGML3/5y7j66qJuWKVSwdvf/nZsbGwgDEPcfPPN2Llz55hPe+zhZ31QUcLVFFU+5IMf9ro4eP3lYGLNdShRRStJOedjDCtDTCq/UsHs7r1ozy8iz1KcPHwX8kUegL7o3D2qiJ/mo8GUpGS7eQiZc/uGUeJVL/wOtGbnVbD1g1dO4r9/31WY2bGgGCM5cUaSX0LdkY6z+f3cdGvtzCkAwGTdx+7p4qJan26rboTQKCSqgkwpiJHDK0lp2SKhcaanlVTAMNTXnyUymRaMEWPBs2wbDdFxKA3YZaIEANblB1UgQ4lV6G5SUheKkq6P6xkeI+aQsgzU8kCT8YyRNM5UsFru8NhaLhYa48EAmJxCVbA7+mOKCrlijKQgZVkHABPbF1SQ0N2SwUSiildxvxhgJmGGUOjgVgf8nrmGL8/Lr13Ev7txB/7TC3h3xtXbJ7Bc10W+WOigDtc7+pqHIQihys/ES3tYjjfB4iXEwiywJwK2IaZBeuvYODcAGHD+mD6OOUgmAkpwxsiWYoxsU94yFhIwxjgwYhg53vrhR/H3b7qTFzLHHVsU8xOX4Ct/907U7vonAMBzL5sBEfP21BkHgI3NdIE7YgPod0y6qw6io67okkr7SESwngyHYHv2Kg1iORwUGSOVahWWAFsZgO6QBxWVeB3+DTdi9eSJ4snTUfAsQxXDC+dx4e7xIBMAZWTnBm6RuWQkA/XhEuJAPwc2SREXmDhEmWoCvMNW+u04FR+UEmS9TRycbyBzPLyq9ny8s8UL3tQJ0DW1w8dIvKlPUd4DGexGC/nUpPYpMLvn81RJlAHA2umLdNbHXaXfXgtXeDEzX0JI+ui5y9h9+lPYee7zqoM07o0pro8ZSShk88CDOFPOIqX1UaP4xzEIc6GADH/UYwQAtl1/SDFftrYu3ghA5Po1hjEywkQRr8tjKOPOxuDCyEtWTglJk5IObGuWB9O99TWkk8UuoiBehWV0DMlup8jXLBBq8+MESRdprYH69KT2xiITqjguR8zuxQb9NBiNQAwa+ji2D7H172T3lGjKQtrn+wMHRibFtfDPyp0K6NpRLR/GjwYAsGCprlrALHLIjsw2LEa1NF9PFuEyhWF21yItL0eK+0lOidbcPv2Nx5RlWz7RxeppvQaqohLV5z4UXmBWufO+dwrPuv0NWFy5QxvaEz1X0jgp7J1lE2gAWH/4FAbCG4nYOQZJju3tKtqLC4r5M+IxIoE7UgJGNtZgV6XPSw2RSLy/tEJRtTsAiowRKSFl0Rxeo4mzD94PANh2+RUqSSVjgZHi71JZOAkzMMrQXRcye9lWQULt8ikPnmPDbjbUXO7d/VlAMmmirUJRswyMxP0O7xKHAYwYHiNeugXQHKun+1ixuRSDNEz1sgjx4h5VnKCpPrFEybKlqOzYrqW0hqNxRfjg15ATFxYIWg7fo7JkdI5JnWjbmJ9EdNTnYu2XDREAMNi6lHeUjA1NxoheA9xt2wCj25LOcNaLlH5jhqY3fwFVcaTjB1qzv6+fg3pbdtX6iJY4C6MbtZBnRDFmZExsgkyukITJglKCbZz7kLQB4f9DpLl1HsEWzQS5Md3lvXVohsq112L7W9/CDZYnJlSMOqB8DU1YE+sZL6DUqxmINNYtGaB6JS+FsscIcV1khsFybtuozxeZdxrokdIYAnRwHFVIUYC6uKC9M3U4toW67wKi6zbLHcWKo1axAKYKmuI4mjHC7507wZ+FxGqga+8vvDe1RNESRAFBYcK/Z4v1wSiFZdlaXpVR+Dt36DWHNLGZ8bxwqnsa65UWXnflf8Q7rJer/T4NE1BCkUPKrvHPrjQaqJSSbDaGMWLTTDPt0mJxNQwFiyfrw54usnWIMAzPUOPACJXsEv69mib2ZcaI2n9LnhO8OY/ovV+MPJdGxrFmbEQ5YsUySxCJx6vamlByZzaRspdGl/bSEfXPrF+MuYjYf2UM52Yd0MxGZls4+ehR1FoN3VA3zAGSAie5j9/Sox1QovfUgWjCkkMxRsYAI7VZPa+rkYz7TWAkgV2V+ZthFi++c/W9Moah0Vwnx9yVl6l/LwrJv6rvIJ1s8XXWsrF5fqDW/bInyLihYoahKaVleoyYjBF5vJKyhXi2ookmJmcnlIzfuBGLPQe2DafV0p/pjftMpuR3HBJh8YpF+EkXjuViw90PxRhR5usCSFbAiD5mRTQ2za7ehm0XbsGu7eNLRrbIRZLYQyr2LBk/AVBFf1l3ketJqzrk3fv5EDfc+z9h23zOatYTv0fSZyeLMvU71zRyZ0WGBmE+aEcwNUkMb9uiqtFI9Q5+7bHYC2XDqmaMSCktS/z/pn2z+NqBZyF2PHxk//M4Q5qkYHDQC414mDoqHrHEOuV4HmoTbczu3gvGKC6c4fkesx2V31iW3iOv2z2FoSgcZ6wCtnWK/zvWMquA8MSQtSRGQJinPUbCZdy0ehTv370B1u2K94l1k1ZhgSFmfB57URdEFMz9Cj+eBkZSOFX9LPhWiDXRxKSktCzfAEaEFB9NYdUbqBw6pNil89ddreIus1FhsyZivZKUViZB4cDDQ8s6NqC2aBzZ6mFlXa9vQbyp2N7U8E/KmKHSkKYoswelf6zJGJE+XVG/h1bFxbtf+NP47Wf9DLa/5IVwHVuxPUjGsHamj/u+eBZRyOeYzXLlMfKJP/0T3PyWP4DbWcL8gd3Kv5Bfo5TZ0+saYwzr5/k668V8Dpdrm4D2wDUZI9Wdi+rf7R3zsG0LlqWDGYdlShljPDBSzIUAwBOsUIsR+BN1MMM0XYLoaRSKtXm0Jnexz8ou5jFyCabeN8UIGsAPvRu4+t/9a5/JRUelMakZI6K5336KIIYl5LSusU4givg8t7ynxhhZ2L4LRBTmV6r7H+PVj3NIOS2ASyn+32CMfLMNP+2DKtS1xBgxFraDCy08OsEL+Vm1gZ1XXoMDT382nvGKHzLeMQqMSCNRr8KLoJc9k/ugPHrX7YpK6jKqAkZC/TFatWLTzbTBVWDoAW+//Ar83J/9DS5/NqdqXjXt4Ce/bQ+8mWk4NFUdhmWDzJx6I90ts0IvfSBM4scNU0rL9O+Q2psyICjfz7L5erCdb8DuzIwCRsLE0HUUAIalgJHi8ZSR48YGsiRGGukOWW/fbq6bLq7PZE8kkUzSxwSkymOkmFxUGkbHQDgeGMmSrCDPpQKDZFRKKx4O4E1Pq0Cj3MHKf6eBEUxOj/x9atei6jDrZbxr2yWJ7pgrdd5sSRktbMIlMZx2G7bRld6u+Xjzq67Ds/fzz7pqWwtLNQ2MRF3+/nBTz4t0mKjCn8VIQXYkcR1QWPjS4iF+nZaNfjdH1Bc01kGmQL/ydTOWIWJrcC2iKP6mlJYFCrAEqV0v+JasnOTBVVkqBBDFfCF3l4oCjxv38LKrF/Bfvv2A6hbsRwI8oVoSqdfRCVlm6COHQhvWz/rIVJcXRf2Ga1EL1wqfbzkpLFcXdKpVU0qLodMTHZJZD5OX71fgpOywsHMd2KkOUsvGJ9/8RXzkr1awfOc9I9cMknNfHABuxVeyQvwz9TPR6p5EaFBjHZIgjk2N97ywLtGMKv1du1bBx978B/irn/9pvOm5LUzXfWwMU3T9ipIn28j2qPemY7qT5VBznubwGhOwZuf1fO4MgNWHgE//OnDqFnQyDeqtL40vHtPhFjcQBS8m7T31KUxtHOG3xgH2n/w47HyoNcfHdKuNG3Gkn3XP840usQwpqz1JxohXYIxIYMT1fFWo2rN7RkmebfXGMT/4kF2jzFiP5BgHuDCWIUn5fbIYKcqOyfMT8kdSk15JaQnGSH99DenV+3Dw6Adw4Pg/4obDb0V97S7YRreY7HYaZxAaJF3QZgtuu60A3yGZRGwVg2JKtwBQMNoDMdbNJBp95nNL/06yzJJYSDUJqUWXxGhMtQEAEzMiwXIqYKuPYGgA1kywOiy7WJyRCYZMBizXRd5oqGKeBEDMta67GmFTSKF5SRFAzbNMFQWSCMC5O0auS44sJfjo2w7jo289zAt8GVF7CTOMKodbgm1VkiIxiymq89lIArNBWtibzC5+mdit9xoIGU9c1wSI84obtoFNTOtnt1f8bogoPrMyY2RjHbYwFs2smupIjE6eATZE13g3MY4jvSsyOLWGAkZ2XXWtit8YqDKMlWOEMSJjF8bZIz3Bjqqla4VkW3o02K2W9s46t4JuvoC7Bj+IpDdUMlMAkEXFz0mHHWQoAiOVeh2u2IepxVDrPAQAuG+Jsyikybqbh3AXtqmYJk9dBdzr7u8UngGMpGPAwpV7jgAAJtwVBJYofsaja3Is9jmb6ngnd/n1EBYAjBXYO5dijMhmggJjZGoKYa+Lj/6P38eJe+5E7YpD6m/Vyw5wg17FjBDJmZSzI1AMbrcynjEiZfGI4yPp8GugcHH+vrMqIZfAiJItRQpXSGVmXpn9YDBGcsEY6S2hl3BQo5Kuq6agzPCMkPr2Nsmw88//DNWrruKfZUhpmeNsyjvr7iVtkEQCIyXGyIj5upTSEkBDOFRMFYAXjCrTxeYaRwAIsrgi72GtPakaNuRxaZ7hDd9/Jf7HD/Fzc2wLsHPxvVgKrDSLSfzY0huAz+/GtJTA3QSlBJXppji/KjrPeWvhrYnN/8YsppjRij0o1o1au62YLlkcw5mYUBJfIWlhA7yQ3RhewOHZg/iyfR1iO1DSXHmcK7YYAEhv7qBWH5XSGuMp5tBMfedJibE4GAiwhSVwBRAiZSdlXphbFbDBGoiQdZLzXQIl/BxLz3CJMVLskM2Rd4tNQbk4lktSw2MkRyzAVJck2Bjy/XZh3wElkSSlJ5MCMGIwRgZFD65crEFUxIle1gWjFh6dm8Qn3/OXOH74NgUExrmINfs8ljn7UJEN3Nso+3uJGNgdLTnsO7BD/TsyvTnke0kO5gvfLJjAiFhzjSLncLN4HgDg7dgBiMLjjAGSBAsLqAggZmldSEaRWDVQXlJKqz4qpVXwGJEsIJYDAhQe5zFikwTuwixak20FegEwTOgBz4qQPCDynZkZWI6jfEGKLBXz2RWNdjRG9eqrMLXJJQCZUbwMlJSWzGHHSGkJxkh9eAqHjn4Atf3jzYalZ1eSV5X3mlkAlsob8h7JezC1vYln3vEGXHv4T9DuPgpaE+uMAt1FV34imZG5jtsNVraSwhJxJ7F8pILx5eQx3Lk5JS+rpEYBkDQCQaDe7wVVQ9pO5MUC1LFtCzt++zfxX37kj/DXV70c/aCmGiNTqptPCfGQJpJtImXZPFiWheu/83sAAEcPf12pIqy7e/iVGkDcVN1HLBkBcJDf9zFx/ZKpy5/DSqNhdOfnSGmVS8MBsEXTivvnb+E/NxqKiZpmVTBmKY8RLxuCBMU9yPQY8Yz6ibd3BvcN+Dl7Df5aYnsgIb/3eSLBmxRWo7hnHXz29YaUlH5uLdEYbTJGGAjSXEgU+i4eXubX89wDM6Ciaai7kXGfJwCXHXsnbrj3T8cyr1LonIlLphfjunUhf1lvt9XvpKcHoxTJcIjrrr8MR7ZfhVc9TTDyxLwgBPjKBx7BLR88hrMP83tg0RxBtQJKCDbEsfsba3juTfvhZH3j88Ve4LiqlkAZsLnK50Y15utruXYGaBDDEmwum6Ro79Md+PO7+Xnahv+OTVMFjFTHASNiXYuM2mGtxkHOZv8sqlNt2EZcpeOwiNcTZD2ypDxQHdMYnI3ZC4BvASmtb4FRbU5hZ70L26Jo1IVS0lNhjADKZ+Rq+6QyX3+qjJEd0y2soQ0AGLQPXfrFj3eYwMi2G4Fq+wkf4lseGPGyAXKhce1VLiKl1evCd238nyu+EwDg1uvwqzV8/6/8Bq54nkmzGcMYEXdIbsALBw4CADqry5i+/IB6nWsIU4/IL4ikwzOAEZMxos5XSnr0eDHXEcGBLtDoJJYxJoLxYvdvUKujOcMTvXVRmDVHEg5hN43OHyOpSPr8d6qjaURKSwIjDhLbRX0P38zc6WklsSKp8oDutLPoaBAHQLEHBpsbynBVDrowDwvQuqDGPdUm8aKYYBxXeYyUuq6qzZrajMZqoEIAI9AdcpoxkmDrAgdGVOI6HKA6O601NsfUdaWXhU1T2LPzI3+f3KGl0jq5YN/ksZYQK5nOS3+RFuPd4CZbZNzYN9tAtzVlAC38fg07eq6mUaq6RoO8VzD8TF0HRyd34OHJ3aqI1EunEB/XBXwp7VW47owij76GdftB3P2+v1GmkJMLi/CM7lDGBsjsGrDxqPiZqWscJw1CMqKK+bkISvI4wttfdQ2u3dEG9YrLWcLqoEPRFdzXC3jY0+ccdXgA4Kd9ZEbXhn3wQIExwhhFx0nBajp4C6pVyDoPsxjCiM+NTmCjEm0iTxN4laqSyrOIThbdbKi6m1ZDDjCuP1SS3gKAdKC6e716FVtLJhNABzxBvgpaMRkjA6SJWcwkBWAkj/QzsMkSPHrXbfyH5ZN4z888A3uma7j2skX4wmdEducB44tw6lOMQqc3MQlvUXdqJf0IuOXNwG1/DvzjT6s5DwBrm+M32KRr3LM8wt7Tn8T8CpdTIZYFBiCp1FQHaVYyS77Y4JR0GcT5KvBkyLm8WdR5XMcxB7E8wyxdd57VJydVElqfaChJsH5UUwW9kWOp7tVRKS1vLGMkx5AKX5BsWDD7rTaLgaYs6sj1Te4Xw84W5nfOIQxPYte5L2KyexyxX4Nl7KumPm55+GkHVqsFu15ThbBhPonE5vvwDUfehmvu+zPofTYvdNOm4RjWnaE5TSGlBQKAZIodZJMEzTYP6KuzbX47LAe0s4rButkVKxPcIqhTEXFCGkUgorOatKdV92+4yr8vszGhux5hc1Uk4wkHUBuTHFxgjMIVyUpMm8Ajnxx/w8D39DylykxXy1kWwYCBAEaYUwR1HKLvjy1en0HHFnmcKj8Om6QFIGWnfwQAsJ7vRWjzcz8hOhJfcf12sMlZvf+WJJ1kwZ4x/nsph9PfWIcnZCszu4qQtAEA3/vwF2ALdmrYMQr1kZQjS2F5DlZOHAcA7LjyalRqdViWlCAtAjOm4SVQjGPiQYbuBb52V5P1QrItmy/8iQnVndzL53Hb4NW4ffCjeOTcInIDGCk1kSMfbCC3RDFAajXX6gab1sL8Ot8fj51rc6BG3HIvD1GfmVRd0ympKuDe9Avwd+xQzTDj1rOl4/w9bqMPz9LSOuUh/Rcsotf63ObPW27xZ2jY0fNhsD6+YQQAqDQVZTkgOv3c6Skc/vTNOH7n13HXzR9GYAAj9YM8NvYUQ0l0kYrvglEGKv7tBoGScDA9RhqCvcZsD1Gi97ZTh3VzgPQykIC8ayWwxJxKrOKzYhZbYzRB+huIjnwaA8bjqEq+oRkjppeBBEZoBsv0MfR9VfgyR0+wK/1TKzg+4M+FXZJxCpIOj0dlc48oBkjQO+x2lHwKAOSODTpTbK7xhHytvLfz+w/imT/wKnz7T/4H9Roz5v6RGxZx7Y62+pl6tgLp1+5/EEgGIMKMWwI5rCT9W5+YhGXZoIQg7HZRn9NMitXTRZA0t6sg6cM4W3kEyPjnDMmUOGM+1xqTU2qfzJIYlm0rNsaGfQC9lJ9vfbiEkxO8G7YRuKoolaeMsxcA2NlAgW1BrX5JKS1ZJC0wRkrA/FB4xvU9G7YwLJraLgp40vjecpB31xT7VgLPlOk1hAzLLD3NVAVKBXiWg6weL7xayt45uWaMZFGOZKiltNY2+R6048prlGG2JYqnCTEUAy4FjAjwU5rFyzkbCVBi7dwZBcwoYGSwDDCGsw8VG0n6W8VrloCG5Y1pqNjF72lvZhFH2zvw9DvfhEqJrQ1ZaLNsUMoAxpCjKryFRvdJc1iui9pNN8EKAlSuvVb9vrlzG6pCDunokMtkV6M1NYcuzRjh15+EITJpWj6GvcEM+Vx3REorg5/20Ni1HY1mVa35AFBTzBletHYe6gKWhdlf+AUAGM9ScY3zlTJQVobKVVdi99nPYnLzQaSJbvaSuazyGBknpSUKpbl4rb9339j7IftkYtZEJgBGM1aktmwwLTJGrLk51KNVzAxFDNXmc1VK9slaRC72Yb7v6xy9bGRvC/nRHD6SjD+/DolhBQFsRzJqda6Rp5EwuZZSWqbHiGi2sPS68cobd+CW3/wufP5XX4y57/4uBayZgzBP50hKgYJ/T1c854UIanX0NtZA81MAgAFr83tRKhRbE7rRLTvyUYAxLfEo4qFKvWHItuXYzHaBWQ6cPMKp7/538LZvBxMsBm/nTjhi/0/yChJWUxJ3XjY0alNlj5EEflvHlOFcFXMhf94r2xfEPXKRi0Y8M6azS8BIc9s8rHxQuDcAMDndxAMLl4NY5j2gyIQM4IBaSHOKpmvhPz/yCcwLSem1DX6OgdXDzvN3oxKtjwVGqOWrGIGzborx0vKjRwFwVQs5XM9T9yLsdfGGV1yNW3/txbhhF9/zZCc+zaH8G3ubMv/N4VYr6G+sgYriUDwY4OrtbXQqNUNOTHbzm4wRYKsjrkvUXcq1TcAARkSTgUNTzBzYre7hzsv4umoZ12qT1GCMjIIV46S0gmYV33bbb+P6w29F16WqMRqAYpomQkJM5ixltRnH9UbM3nMZR5bqjN/0UlrfAqM+MYXLW+v4r5ffioUJMSf9pwiMLF4PALjCOou6yDvspwi2VDwHSzaP65gJaDyVYR5n/7c/qUN8ywMjbjYAIeMZI2Xt8N/83isBAFNNvcgXfE1KKDJjRBm2ygVSFj+GW1vYca1OBC0wFWynUTEJksCInwxU9+I4YEQuVKEARlyh4ewJk8iwoxNcklG+qZU2XkCzRtbOnioc/8wD9+LPfvqHcfedX1MFEtPYKxEFYxmMjEhpiYAhdV28/jn/EdOzYoOo1eCK7qQo08mI8hihoxRdAMpvor+5jmGnU/hbWquA2pbuUDIYI4qmanRjqHOUwEipSytoVFVXeWQwBsyRJblR2AwK86kvDFQXhFRZPBygNjdrJJAAIcX5o815U/hzcyOf5zQacEXheSPfLV4bq4LcsFdMureEwWwz50CDa/iLjBuObWFx57z2GBFyWaHRsZuGmTZez3oFeuN7rnwp3vCMn8K55iwC4XsyzKcQr2j2zOa5UQkkklGQhBeHHvnK50CyDLbjojnNC7CyG4jRPvfI2OSAQNTP1JwZayYb6sQ1p7piJZ8XUi0nMjbSzhZACfqp7o4wmTiyG9xP+yBG0ZHt2omakZzR7ARONfp4aG5GPcNuEBSktKTB21q9CS/ia87E3DxqE0Jnn+guDIckqugoR39jdF7SuM+LWAAq9UpJSkvPD2vKh13R18/yYsDOWM5N58TIpUYkCXFsQ+v6dtdWcPX2CXzxV16It/77G+FlxeQZ0Ga1AHDh2Bbu/MRJBbrIz7BpBr/VRnPHgpYkGiTAJpcXY1EXHaKD0PXBNE94SyPp8vN08gi2BDalNqnFC5FZta79FUpr78VGGmU6iKtUDHmDHKlVA6KLAwAXG1zmTSdtcs+otScRiPW+VnEAFosCiqVMo8uDZqk4P9Fp9zg8RgaMP19eNkSQyueS4fJnahk0hyS6U1usb9VmSx1/p5/grjm9r8V+FXZNBz9eOvq8yxEkXbi798CyLFUQCMkkEofva5V4A63eUfV6xnJQQ94tS0pVaACp4bNBxb1NKAeupPyfTVM0RPEmmNT7T5LWMFgyCixMAiPFsCeo1SARTsmytKamdEPCKj9GmTHS25SSI3xtlAATAN4VBiDKW8Ajnxq5LnWOBuCfJUQV+VwWFdYjKaUFw7DQJql6Jvh9EM+A2R0XZ4bvT1YovuzoczC0T+YRuvzcVx0Xl883cdl8E97kJFwpa1OSqEsUMMLn7+IB3tkddjs6ibZs9Ajf9/ysryQiIxMYiTWQGvXWwCjFxPwCWjNzsGxbmXJLyS5ZeMzCYhHTjLniYYb1M/w78+ONsYyRYKqNigT7yTxWM76vd3tUdX8DQJ7aiIcZTj+wAUoZ8r4uAMqmGdNjhNg2di0fRg4GlgXYzHchIaIDMw/RnptW0nQprShmmtzvbJrC264ZIxIwUaO3hAsdvu/fgwo8++LASCoaM2R3KT8/KaVVAbIhQoOBOFi9OEuOGh4jnmjIsCen8MjXvwqAz8/KoSvU6935BWS1umHALuaglEihmjHCpbQkY0TvN60JPY9lQR0ATj2sv3vZfCPnuJVlsB/hfhRpqdHJNHSGZSPa7GDlMPfiqw2X4fgOLHl/iGHWKsBCh6awSjGs5V7cH+zasw9gbqPD39sortlB2sOhR96HRp8bVivGiGCSD0uNQu2ffy2wd0/hd17G12LJhHNcF8/9kZ9QrHZ+XH2+5WahzA/Q6vNu1rV/+l9g//izoIKRqxq9ZCe1iP1tx0F9ksf9g80NNOamVYwupRotgx1D0qPI7AQZ4zFrCP5eJvxN6pNT6tmRDBnpaZVmFYABfrQGPxvgVIsn0DMNXwEjNIPygHIzfc/8WlXNKS09qZ8R6WVheozIRiY5UtFZvlGtKXBjWgAjOc3BJNtrfUk1jvgidifMV8AWiUrM/ZKvjGVZSkqFsRxk7ZR+LaXcAwHCY0RKaQ2Gwm+BNwYsL/O4cOdV16g5JNnfSVYH6iL/6JwBQr6X5CXAJo9lk5d4VsV5pgKU2FpeUix9BYyQFHS4iY0L/BonXT6fwq5e4xljChixxwAjlSuuwPY//Z+o/9FbsFqbRHN4Hm457vQNoCmnQJ4gsyoAijGD2idLY+dfvQMHvvRFeEYeNr9nOyqi438l4/vX9MY3NGD7OIARMKbAmKLfh2SMpCO/cw35pyDtYWbvTriOrXw6ACjABgAc0cS07Y//GO1X/gAADYyYWv6WbcNSTR8i93Yo/D170EQfN9z355g68X71+sfHGBGsPSGpFVymm0HN4Qb8niWsgUzMy6DAGBHASIkxYppFOzMzcPbwjncpBydrEVQw+PKUGvJ+FR0LS6N0AX4Qy0NKJIM6g2VZkCpsKdO1F5JGIJZvAMAVdY6M8Rxhyd/A/V/8jHqPZVnYO1PHzEtfjGpcVBUQr1BAjmq+kqBYpYKrXvgSfk3xA/wllF9bGTSszc+qmtKHj/0MvvHx27QcsoiLg0bDmHcE6+ke/t5wBcGNN2D+N35DHc/btg2y2b+ftxRbxKZcmSOjMh8qMkbyNEFNSuwyigtV4KpNvm/Vr7tG30sRW0mA2aEp7Gabny4luHD0YZA8B6tYgi1jxr4xvuvj7we53OgaZxSJYP10jxyFxSh+7+6/xcTN/6DiwLUOv4Ya5c/g2cntSvqsPGSszZVBirHBYJOvA9KfSQ6zWdl3beXfym+ckJ+kloo/o4HOfy3fVzLiAG+m3T5ZxUp1UrGp5N5tO45ijCRWDZ0B/1wv4edVrsUBUIxIS8ToNkkxuziLdz3jh/GuG34Al10mGCMGsOeQBKlzCcaIOGYy1HuW32rAJTHWWgFuP3E/Tm5tcHURQOXsut5WnO+F8x3jMwKM5rNlf5J/G098NFuToMyCYzFUUz6HnKfKGJnah9CuI7AyXGPx59/2L6568XjHp/a8Dq/L/wN2P/3lT/lYAICZywBf5I37n7i/CPAtDoy42RAIRovickjGSNjjQda86Jx1DSqYZRcR6sIwghq5kdfbEhjZwI6Du5Ha+lhanqqkVSt9DEwprTFdv3oR5ufrCNq6MrJd0fIosoCsDISNhWhGACPrp08Vjn9cdIUvnTujkpksMXSuhTYoG1OMA/SGaYPikamdmDHolY7HzyeibYUiS0qt6oorS2lJveLNjRFt2GgwQF7zlZRPYpi/qu7QMfr7rtHlYI5KXXeVR4NRyRaA0/LVMSuVESCnNtFWHQXxYAB3aqogkVDWEk5V0SdFfZ4H5IxSnHngPiw/ypN3ifZLWrhLElXUDAfFYocsotYTPg+8+QWce+gBHP70zRc1K9+3d1FLaQ3pyHHTmGpgJO0V6I1btQY2qxNo7tyuZBv68RSiLZ20bJ0a9TLIcwrLLQYYE3NzsMWG3FTAyADU9pCvnuLXt6oLOHk4+h1lsmhJM+SZ/rtkWKE5+kwlnS4QbmDItHlmaui2SxaWl/VBDB10MjEBC6nWSKf8MwaBpzqQvaCigRHDsyOpVpCJZLjaaGp9TUPSxCGJegbl6HdGi1thvyvo74BbD9BbNVkseu65B3fDruv5yshG6Ug5qMEgyUPR2Zg8gFRH8eit8eNbloWZRgAnH/UkyA0w9RP/637ccfNJfO0fj4u/ye7aHNVGA5PbFwwpt5wn5gBC2kbGauApc4Kc+egsjUr/DQUw4uYRrDlekMuNNTu3bZBaXT2HaTzK+hs3uESOyRiREg4Zl+4arF78zWMGJZR/T4Y0ilwvG+0pLW+RJRgGNdSEAfs4xhUgpWv0mmcGxo7rjgSejGUYgs9xT9CeJzuPYNvuNczu1mCBn26p+WsWZqSc1jY3xp0LOjlJKzX4DV90N1MkVqlQa4wg7SK7fD8+/j//GIkrqO50QZm0v+mGH8SfXv9K46QJCNH7TxqPJjRpbhRYRMKTshoQd5BKw0uWwRbXZHuuNgLN6hisjTJGHMM8EOAMEkUhlwbsMzNK7iba7AAoMkY2zg2QZ5aQHxTPerOli3CiGD3M28DGceB9Pwzc9c6R6zMB/ywhqsjnk4GKFQBgIMzXmT8ab8ihJJosI/GPNSvHoWlBroPds4yaAFCp7aEaruBCJcA1O/h6VWm3Nduw5HUhi+5UACMzu/aovdetusrvRMoAetlAxTFhV5+DXC8cmmGwLop7V+quXpn87Tr9cRw8+gHF8sg6RYDOBJjiYYbuKj9vP9oqMUaExNZUG9WIr5Fr+X7V5U9TUmDH5cTBrR8+jo//2b04eWQNpC+LvwS5KPYEde0xQgMfDs1A0QEAnE5uQkL53HKzEFML00qaLqNV5WUkfWAcksDbtg1uzu9vHhb3hPThL2BNeFjcSQP4QmpuBECB1iO3DHAxF2tKbgdAGiJc0TKW/c3xcRFg+IaxHFM/+zOoP+95COdnsHWBAyvDzhYqhy5Xr3dnZ0CbE6pQLAsRshGJMauwDsnufpMxwkFk/j7TSHUw0AUk5TEi2clpBqQpvG3bLukxAgDh6ipWz/K52OqfBqpVWJJRwwwppKRY7DCH5V88hTILg95ksTvTphm2LX9dNR4ojxFV6CvFc1NThS5OAHAV6CRAtTGa3bbtqH3ILHYAQBZU0RTAyGq2H2RVM1b12lKU+gKKcXtrYU7F6FK2sD7UxSCt/S+PJ0yHBROwMTmlrllKTtmNYp4ws8ml6U61+DM62wwAMXcIsVVu4AipUr9ahW07aM7w/VCyPACi4uS6BEZoptfNEjAvvd3CShWJ8OOY3sELt4xR1QyWbSyDWHKdk/G8D0ij9NJ9Vx4WRpewKYcjGYr8x4gbZoM/e6465hCpYDIR1kWSxPAqVczvPaAK3lJ7Ps7rwPYbgUkhg7TMwcB8WPLGSorAiLwvRMQaneULClyMaBsI+D4xvLAEmjPYyDDjnuKfafgjUsoU07ts4ixH66UvxaFnXYutBn/OSUnuEsb7aE6BPEZmVQs5OjCeMQIAtu/DnSz6xOydb4GV4tuZjQdAFGPk4gU6swO6tzoqd6NAFYMxIiV15V4RJOuYXLkDOxfa/O/GtfhpV+UebjYEsy20vus71d/JGCkteV6ArgvYPvdTC67koPVlHd0EpczXYwmuj2GMiLnkPe1GzP3KL6N6441j74df5WtPgiYyIXtlrn9KkjwoMkbsXbsQXHkFWi9/Ofbd/DGkIgeTahJybcuFpFKeUs3uCIyGJhAwRlERYDqBj1gAIxLgcwJxDFSUtx1JYy7PrADgqlFHysDyJfSdCF//Rw0oyeHOzhmeOBcZlqzP6O9p+yHeoCtlSJnIG+3SszG1YwHzq3cDALpkG77+mS7yTEoUCLmyekM3xbIcKxHX6ffjdcwf2o/mt78IjRfx4mCwby9cj7+/T1raeD3lTDu5Nsp5YXqMtLe3sPfkJzB39pPonjuDhXALzHHQfO6z1PkykV9KxohNUvhiX3/wy1/A+3/rV3Dbh96PYLaBcq0tSxI0G1V4BQ8iipTwa6t96at40dnDOHTyXsCyVE7ZSfg8kb4i63suV3t4ecjYOsvSsX5TgGY+y1ETclphyY8JACwFjGhPmXgom5ByWL6PjgGMxMMBtrerWKlOoSIaTWHJpgYPlpj7A3sB3Zhfl5/y143zGFF+KKKuYJEQm2cexS++7Vfwn//sN1GX88nS98PJEySixnMpYMSMNdrTbQCaOdiPY1giLtMeI7LWN9qoLYdsKi8bsY8AI+74PeLfxuMfFd/FUMQNddG45z5VEMOygAUuxXqjzeuXrvfUgZHX/fj343Wv/31ctjDKYHpSw3aAH/jfwHe8Adj17Cd3iH+ZM/nXGc5kE9ve8Zfq51GPkaI0FRWSW45bLCpJpHZUSkt0inmeeljrbR5ckTxHlkRYe+krcGHvVegs7NIG7L1it0soCit+2ldFPW8sY0SbxQOAHQRIg6o2LlzTxU7NmpBU/MdmjMhifDQc6AA704tQPBQocElqRQ5zcXZpjjkDPXeqFsAoKFyFmksJAqvUISVHU0lprSPsFIGRsNsB8X0tK2UYPmu5EbkIG+CYoItRQkBynQi7NYMxMqboDkBIjohjBhU4rltINq9+4UtUMJwMB3CmpwqmmiO654ZueGNhDsvHj+Jdv/xa/MMbfh0f/N1f40U4txjYOyRW8kVZYhVMZmURVfoHuPNz+Mxfvh1feNdf4vidXx97TVftmoItpDSimF/LcGCAYYkGRry4X2CMVEUR7RU37kQi7vUgmUKU68Vw6/wYxkjOYFnFBbM9r03B6mKDlBt6vMaDBymjBQDZyqmR4+ah0NLM+yCZTrykDJs7Pbqwxt0+aG8ZQ+jCimkeLkEiP+0jN/TTk3CIcHGn6tySHfBp1YVV10G+AkYshlx0WzoVH7EooFWaTSXVY3buuiQZ0SfvD0cDgkFX31/iUtVhwj+UX0d9uIT6DdfDr+vnk7JO8UAsBzFYVLmgV8ui7uQil/PqrupCmefYau6YIzf01+U6dP+XziFLiSE7kqLWrGF+pqWKIlEvBxusIaItdH2u0z60CaY93n2wdnwUZBuIzkMvD1EV3WpmwTh3bMwsTCv2GEkeHzCSp6wQxCl5A+Rc3q13fuQ9j9x6Du/9jS9h49wYsEgUNk2zWjnnZ3btVslGEg4xqDeVnNY9/3wa54+Odmrnht8RLGsECPHKrBGWIbF4UOtnA9gsxw1H/hR7dj2C9pzea4JkU7EjzPW4JdgOE2SAjR2XoeeJpLlSg9eo4rLjH8Jlxz+EuF4M0KuhDvz9pIulaAuP3PoVdGv8eRmCAy5OHmOpPokHZ3abVwmWG3IxpcIUYwxxqotKDBkYY1zqLO4iFfr95SRHrvNJVsOgYx7z4gXEss9IZW5WMxy2BOPJYIzITqlqvK6o5ZVGUzFBmZCKWbMuB2PAp2+/Bjf/7QbYoNhhaAIjeUqVl1ZABgUAUHbC2iYwQor7WNngGQDyhCi5Nptkiong0giVZBPTXW4Curh8K246/BZsVFo4tMDvRWW6rWXwSubr0ndBFTinphUj0PXZCGhjk1ADTQPjmo31onfhNADe9SyH1CZu9I9hx4VbVLEo6xX3nTJjJOwLSZ24CIwkYt2bmp9Wa/tmrnWZcxKUgBFX7UvdtQhMdEU6JEYm1uKgVlcd9USsTfsyvqbdF343b3pgFH42wNy2Wbg1wWplVSXZJ8FmhyRw2m1YVl74vRwr9zwABge+H+K8XYXLZKF0dJ0motBp+oZJpiW1PJBoiHBLF0cHo8uaGlTKsYFg6kd/FLv+6h04ds8d6u9pFMEytPzdmRnUZ6fVM6SYb+LZo8zSzDXPUwl5GoUqbrNtG444XxMYMYdkDuWqSzWD/6ofxv7PfgZxyWdOxnZyDoVHD2M148XiVv80ahNN1XEcYQof+9Mj6K5FILFR7CixzdyqXkOr4Urhb4HBrvNniuevTWuLa7E/TiYRQBqHiMrAiJQkgS6ujBuKmb1RLOLllZoCRtay/SChXms1Y6Qo1cuPx+P2/uY62ttmC3FMEG9hsnPM/BRxikXGmfSLakxO62amLAWlBF67XnjtVOcoBtUm6gt8L5lpBEqOjlIXsZDocwSrTDYh7L/pGXjRT/4cXvwz/6lwPg5JVEEzpefxaGsJlGwWGLVgTMmKIfBVTtaanVN7sS0YO8nWulozZMEutzjwCGAE0FIeI8aerhszCDbWba0dlA45AAAgbbfV+p0MYgWGxhY/jx2HroTtOCrWkNKTCakDMweBRV7UkHJappwqoL3jqJCGkhJjuWApht0OmMWPea79fKDFi4jd87yJpOmsoWLzuDcO9V5pNozZZbDSGK5jo7KNH5OWgRHD5JXkDMhj5FZVeUPIMRjjMXKxsXe2jsSYlwF6aPVOgYo1/LG07mUe012TwIjJGClKaTmOq3IFmUdPbt4HOjyJ3VOiacZsdMoj1ZTgZUOQyUlYxvmM8zUBzKKimGMCsJC+SHVDSlMChmtnTiHPMnXMcYwR2mhg+jWvUddQHjVRC0jsBgSGjiDpKmBbMkZU84T4P7Et7Pvwh7H9f/wJ3MlJtca1SowR6ftFMg2MuIbHCB8Zajv4WkctH2ku7qtglzlG7JqIeIoKxohiehfY45n6/oZb3FPJHM5EqwCMuHmk9hY5mPD0MmsUvqqjiNfaHjfcDh/E1/7+vep1c7sWcejo+zFzite4ksxHmvJ5RcW8rzSaxvdFlPJESCPsmObXv+2P/hDzv/mbmPqZn4En2KohaShgxE8HIIZUk7yn8rsPux1MLc5i7+lPYvHC12Af5mANOXQV/NkZ1QQDsd8qKS2awhdMo3VRi1o/exqzB7fBbPoCoOToit6wBMQO1LH+25F/AAA0Xv2jquFCSoE5gv3GrrwacMY3iSYDKRmXYZxsvu04mJhbKPxO+RSXanqABkYyVlF9DHGoZQgtP0BnWee08XCAiudgODGNHee/hOn1+5XMvO260E8WV4PxyFD58xbnuTi3ppQk568ZZl/H+37jl4GVk9g1rXM+6f8DAHaePIb5Oq9vhaJ+8ZX3vgufueeryG1L5SNRmnD9MGhghKhGZPGs+aNr57f90Ktx/Xe+XDGm5DCloV3Pv+ga82/j8Q/LsjCw+LPXFrWgqYnmJd7x+EZtJ29aa1k8dmi3Gpd6+eMajm1hqn7xuOBJjSteDjznv6paxxMd39LAyORcA/ZuvhGYsjZySGBEFk6lfrg9AozwwUr0OksUHswilOv7qjg+3NrES972Brz4U/+IdGpWdYCffXANX3zvw4rZMNiUBs+Dx8kY0QlV1mqrgkJo6LamIige59+hGCNnToNRIXGT51g9yTvCwl5X0Q0zEgBESJRI5QVxQ8oMHBMo+NUX78WkMZmdRl1JNg03eEAnC13Ks6SEIkvz9cHmhpLSkkFJ2OuCVCpjGSO6CFLU6gWKWoymnJZdraoku2yyKAcp0HRFByjRwdB13/HdSnM1HnLGiAWmk9y8OH9kouHQFN7sDD7/zr9QHZZ5mmD97GmwZsXQ4eaIvptH6pgStKCEKkPyap8nIs7cnPLvePArX1DHWD97Gl94918i6vdw1bYJZeIbi6AqjIyOy9RCLApVXjpAahSdK2L+37BrElJZIiRtRcEFgK2N0SCE37JiEGlqd8p7KKWlorUtgFJ0V0clMsyRy+JPXiwuyqQ1mB8tniT9IcKVNcW64MfWCUg0FAF71gcxAt9o0AfdvhM1SWkXgWhEPSVx41UCVShhAIgtZCiqvup8rTZaKgBhhk7+WMZIXCwIAEDc0+a1QzE3ZecFRKG4NjiHuRuvgduqqUSEsHIgVwRGjh4R4Kv4jmd28XW0u7ZSYB/ZKBeXdPcWANWpDwDf+Mp51Tli05wDI62KSl6jyMU9w1finavvwh3V3wEArNo2ai4PHtdPjLI0hn1RyM1CVA7wbigTGMkcG526iy65FYxGyB+fxQjy3CpIWmjDxRy5UwW650Ayir9/05343LseBAB87m+PorNBcecHbhs9ngRFjaTt6he9BK9+45vxjFe8SnXepeEQYXMS2y58FS6LsHF+iH96y2GsnSkWT5Ik0cbrrjeyt7WkLJ2cC0ZSbRpsk3BQAEY8Q27ETKolY6S3vobnHJzFPXMHAQBZrQ6v3sDO81/CzvNfApmdU944ABBkuhg4cC2kYi/Jg2Jo4WV9dP06KmaBjOUFxkhefuZZH5QR5TNhgbN8MtSA4RqynC9KEsiXw5ZmunkNw6Geq1I6zR7TkSQLszIxbyzMqX13KAARU4JQjtpwWbHsqs2m6n6ybP5sb5Bd6L/87/Fo8m04k96E4ekThfeXpbRisc95JCzMc2m+bhlyeW4eY1jVgalVStwBvqdJg3uHptxAMVzF9o1bYQE48NA/4EeDn8YVD78XjKVYr7ZxcJ7fi/p0W80l2TShz1V0K8sC59S0anSwLFJY29wsRHd2h27wGBheR7J5Ik/RX+PrwLaDWpJJaZzLYpXYw/N+sQu77DESpyK5jzsFKS3JGKlMtZVvVuE4rC4KJeL+UV/tj/EgA0QB3iUxUhEbVAwprZxSMAC7j38RADCk/J5sW7oVNo0xMzeJoCk8FVBRXeVy3XJICrteB6SHQlZ8ji6c4dfZqeS4YekoBo/yv6el7m8AILKpwuhaznLj3/0ewqFl/M0dkYGVQxoy26KgwRjDI1+/pfCaKByi8YIXwJ6YQHDoECrTU9pkXHRDuuLZo9QytPx9npArOTu9Fqo4iF0EGNm4IK6ffy82SeHv2AnLcRT7SxY45XraGHLQO4x9rKRcQq3ZO43GZAu+E2LXmc/BYjnOPriJuz5x0gCFRjcXv6HniuzuBficd411sro4W3ifBDGVbE/JfH3kOuNYFWdk/uHIpgUpx2HI7JlDSvz11otxU16tozk4x2MLOo1eWFPHkwV4xW4w8osCY2RmssBu2XvqE6qgC+h7Xu7sJ5ZglxiMEX6dCfyZyQITu905huG23XjGXv65s81AAcQ585CI3MEWQJGUrXRcDzd+9/djbo/hi8AIZ25tPQwnj5BnjyDyMtDslJKL4yeYKRaIXQmUtFl9oq1YbNLcOOt1OAMLgCPmCEEAqNyl/GxKxojZ0CX34hyb6U5gQ4BL6VCxye3ZKdXQFoeJ8tcJXX7dO67kgLJcM6l4VhNSB2Yvx1b1afhC9+exeZyDYWVPFdmEJeNEgfsgM2K83BENQqkFNDmDt7skZGOdZQQWv9bU2NfMvMgRPniP3n07PvLHv4eNc5rBAAAz+zlITcoFDc/TeVZGwLIImT3KGLmYlNa4sWe6jp6l97XtOAILzABsL12sUU2SmVQu0K/XXfyiOc6IOZTcs+3gnrmDRhHTYAjnkdp7vXwIuqAbywCtiFCW+3IM9gAA+E3+c3CQs/mocV9nd+9FvT2JPE1w4ZGH9DFN2VYRtyYlEK08mpN8jsb2BDJhvuWSGI3BOTh5BCoK0ZoxIvbLEngdi7xJNlkwUM7GJwIYyZliLXlBRRRS+R64sK+GmUV+P4jtIWViXREFbLvV1PWErQ6/H1lclNKqVtW5MZarvVN6KpnDabUKkmduNiz4WzgkAfFGQTbZFGsy/hndwiBawe0f+aACqAIh+2YNenBFnDUUnktUeGFV6lpKi7EcfYfPk1XPxqJgzzitFqZ+7EfhTk7Cq/L7GNMaYsbXMS8bwNnP10g3CJQH39wenm8tP3oU7R08f5+Oe/iOo3zfrz3rWbArFb1WS0k2qZRBUgRNPn8kYDnsbOHAMw8pcFgOOQ8Kco+MKqaZTTP4NAdaE1j8hf8Ku5Q7+10ey00+4yYFmsshZZ+kVHyepCOfDwAT84sjTVPjanJqiEc6gc7bU7GkcsaIp+ozAJAIxQs6M4d291Fc98D/hrQyC2p1da1yP23FZw1W7aiUlpSKlE0GlPFnZ/N8cU2V8x8AnCxCdglgRDZIrp58FFma4J5PfhTrW+voVQMVgzPGANLh/xYNYiSORf1UAoGja+eOK67Gi3/mP6J+CcbIOEDl38aTG6EARmYsvj/PTY5+3094TBelFJ+yofs36fiWBkaqDR+5QJrHafDJjt3OyhIo1QyCUarWeMaITYQcQwmtrRs+I2o0m6rL6sgtXTx4ywXc/yUhMyCkI7zUMF+v1VAecqGKBwPVnWBNTmoprZ7eNGQHp+wyMROXycXtcFwXWRyht86LjetnTqkALur1wASqntI6EG6CUoY0c7kerLgd5cXYsiyFXL/yWh64pFGIw5++GaTRVNTZwQY/30xp9j4WY2RDBbSzO/cAAMLOFkilqjtWxzBG2Jjj2o6rOvS7BiXdCgLVzZFGowUuQHQiXYTdMjE3j9bsXMGcyhHzQAYGeclIWWm7kxSk3sDKCQ5MSTPujXNnYU9Po250XbskhgUtnyaBkXiYK3TeEwly0qgr4OvEPXcpgODWf3gvDn/qZtz2oQ/g0EITRBqKMh9pnBeMTOPIAEayIVKjI7kqJDgum28AotAZsrbqNAGAQVRRIJ26jwQjgUfbCOxVYi+KtOeGlwP9CwUprSwdBVwy0e1blomSwGdrx2z5LUj6EforxY58mVAyyhBGouhKioXpeNCHs3u3NmCXjBFiI6PCsC6oGMAAQW7zDT5o1XTnebOpJP2oATLYhseIK4oEw3yiAF7w8xAeGyRBJObm1A7Z4cx1WsnwJLbPtRG06koqJ0dJvoER1VV79qFN3HOrYJsMeGfz9PadgGUhT5JCEGi7Y7xeiO7eMn1BDn/mDNJQy45U6zVMN3xkYi7EpIkL6VUAbJw/ztfWSrQGJuRkOiujxT1VKM5D+PtHgZHcsXEs7iFla6D52ScAjNgasDWltJCDOBWQrXPYWh5i7Uwfj9y+jOh+DTx62aiusHr2JbDq8wRj8bLLhYmfYIxEIeKJObQGZ/Gy9V/B9CJfTzfOF78vLsOnQZby+N5f/DX84G++EfPC88iUyyl064cD+FVXGbB70pTd0DUHeCcsAPTXV/G8y2bxgctfjMOzl+HhG14Iv6UDf2dxsZD8uc0Mbh7CTzo4s7BTJY/Ut1VCAnBG1sCrIjDey5CDEv1dlj1GKOHPbXtxm5KhAIu5B8zWaaRUdDPa5URIdH3nTQxTc58dLUjJIZ9RmZhXZme0N5NYloaboy319eGyYtlV6k21r1s+1zGmxMWpwVXq9dFykYlk7mvcfF3Mn3xYYIxIKS1ZWAK47066e7/62Wajk5+mVJuv0wwuifHsO/479j/4IX6eOUO6yufg8YntoJaNywVjpNVqwBXF1zgqrsd5mgr5QA2MSNYRy6KCybuf9UH37NWMkVDLNkijVrAhmAAamtPaZFoWOTNbJ8j8faVuZ+M+bi2HwvyYIog7yicO0B4jdqsFL4+Uhrc6DqupgijA98xINKTEayuA2Ou8bIBULDbcY0TqkjOwWhXBygnkPr+e7fYRHDz2QRDf5V3RoiM+N4ARIiQyLCuH5ThgIj83QWhQigsDvvbfn2X4ndvfDUd0lkf9MYwRoUfOjH0nzxJAGjifvAMhKSZL/a0YtOSVBgBMyuuIZ2iwuYHO8hL3nBAFwmFnCzv+7O247Mtfgjs5CafdNjxG+PsCkfgSZhW0/G3bUabRcs8DdONPiPbIOQFaQiwSsYHZpSqBEclwAMthUYK6kDFcyQ4iZhNgjKIxPAenXgcqFRw48RFcGX2EH2OYKR+ksoE6AASGD0q7cxy+WF+DZAvuvn2Y+IEfQPuHfgiVxWInqmaMCL8ysf84rje2Uz2NYxVTSGBCevddTCJQDllklD55cuT1FhyaopXxNelCyiUUSXQX1tlXwWhssBvGACMb67AdB0mg48GFldtL5rdyDyiuTUR0SzenpuF4nipuZnGE+uKcKgrbpAc/G8A6cBl++jl78W37p/HvbtwBWzRAERYgEUwYS+RrQcnk1XYco3Mwh5uHaA7O4flf/X/hpaKQzvJiY1MeKcaIUw0UA7g20dYMYBEzxrGjGm9s4bWQW74CRsoAxDgWjqvWj5x3fa9wJh/SIXJbyOxOTyiWYBxmqvEqcvnzvOOKq/n11yRrkc/XlNYQVg7gY1+5Ag9FL8GRR3gsnpckhXMxz2WRkvR5Id0ERoiQyCQJBRp8Tvc2+OdPuEuo2IIxY0iaynXIogS2KILd+bEP48Tdd+Dvf+/1WD97Wr12z1V8P6NivZe5AvM8Lc+YxJwpZtmjjJGLSGmNGxXPQVL1VJyyjRwRny0B28fHGJGjIKXlSzBWMEaMWEt+13cuHMI/Pf0VmJDeiIYEUGpRDYxkQ2Dn3sJn5QqMKcaGpt8EAFQm+VoYHOSNLnIvtG0blmVh9zXXAwBO33ePktLyClJamul8qTE5VwcYl5MdSJYwSXHT4bfg2bf/rgGMCGaVAB8kU0AOtcYZMQCQg1B+XYRYhpRWIGoS/Jgv/okDqE0I5qblq/hQ2q64rZb2LO3y51kCIxLA8itV9f1YLIGT6VxI+lDIYTeb3CtCANNePg4YEQxKY/1U9SQjXpO5MKMUG+c4cOnO8HvQTCLUHD6vQ8L3WirmSlBvwDO/c7GOdtoT8N3R8p4n5lrOKohEg6OXD2Hv26uuX47FyziYtnT8GOypSQyfzzv99/d4M8LcC54Lq1qFI/YyS8RDkk3s0EwDI+K5HG5tYeray9HqHi2c1zjGCDPqcXK/nP25n4XbbCK1i/FoNdrCRqWFfVcfVB5uckh/VMksHGe+DozKaAGmT7GeB4/efTuO3X4rLNEgmRnStbKRxRJ+ZGUpLQBwF4RsK/Q6F9Trag+0RQNlMzynmnrGMUZkLUoyA6XUsGygOP/IQ3jwK1/Aum9pEI6Eag2ojjFfX9h3GRzXRdjt4JGvfUXVTDPb1t6e0DUY6atb6ZyEeU8vBSqXr8UvMUb+bfzLjNgpxkH/IiBGCRiB+2/AyDfdqDR8vZmPWThas7NwPA8ky9BfXzOktIoJhO7GFRucSOAtURQo6/vpRFAHYXZrQnUjyCH1j2W3pZv1VMfGOPN12bXKGFXJYWBonYdDw6hWBOqqQ9kI4hzXNWiyPOhcflRvRIxREBHAp6gBg2Wjw4eoJKLMGDHvhWRjfPUD/wdfeNdf4ryTc+osgOGGCI6jEmOkBDZIE0eS51g/y4OBmd17+LX2uqDVujZ/NTqQZHeo8kIxjmtZlpYSO3NK/d6uaimtcVr2AMCxqKKm8oTwNXjeq38KgA7U4+EQ7rQARsh4xojqAqUZ1nqbYIwby+6+9gYAwMa5M6hs317QZJaBlZTTGoouZVl4dZEgDwWl0egQpCRXHZzr4jt/+NavwGIUVtVV3cRbyyGY8dinqYNIeOL42QCZ8RxVSYxmxeWSaUL3ObbaiAQwIguQpgQWPxdrRN7GBEaCOg+W3JQntI+mzwE2HkVnWRdEknA0cJGFfUZLsmuikD87qzcCV3Y6DzIM1ksmk4nUA83AmChI0WKSGPX7qO3bqxgjOgGzEFNRZA40YwSMgjj83lVbDVWUqTaaquuEGkaRTCToALBtYQgHKQAbAxEUq/swlAWfDLEoHLbndZHl0MPvwkoVIMMuVu77PGhyHIAuPKh1huXq/n35/Y8AsLBj/SsIhLlbpdFU7ANTTksm+oAG63KRpJjydgAH8UKpscoyOK6DRuAiFh39MW2iT2cK73nhyS+j+vCWuNZikgsAsfha3GwIb3EbvO3bkRseUY0f/VFkVdnhlYHk2vNlsBVf1HuHUO0H4phSWmI9jdc7iE4/ol7/0N9pinujOQa0E2u9kjYsrZ1mgkmnhEl6NMTsgpC3K7ERsjBV5zcW9F9YxO5rrlfr8cKS7t4O0i6Y/NqGQ4BSxRrxxBrt+kXKsixq99ZW8dzLZnC6tYhff87/g43Ax9nzx1WKUtu+rZD82bvm8Iw734Sn3/1H2Nh3pUogqGsXmHAWCQHLQkCN62QElOq1iETF+cQEMDK1bbumjdOIS4tsnVQdgazcISa6QLt0EYANW5qYS5+DMQWPUY+RaXX+cRoAjGHQEYw9W68/tXBZsewqzZZ+3uoVJbPw4Nc0nT5cK0lp9Y0O/jhT0lpuXmSMZHGENI7g1vVcsGiK7VdxYAxBoKRPzEFyZgD0plSMvmfrF3hCeLS9A+2apyQymxUXtiU6lFOn8Cxx1l0KJvSLG5NTSoYgG2wVTN69bIDqwYNq/SDEUuC07C40fVpM4EreT8UYkVJaYbGgksT62tfPiiKm3dEyD2JIxojbbvPPi4rfR0JrShIR4KyOWEi2xeurgADs3bSHnPBjc48RvW/6N3Ad9u3V42jUvo4XsrfBZhSZKODUheRjZlVAhSQkEV22ytBTdJrmxIiZok1sZjyuW1h6WNwPwQYdw4KVX3e5eGjnolBw9A4komu0bvN94PCnT+Evfv5LePjrS4X3yKYMCYzIIntjalp978POJizLgi1iCKfdhpf2C/PGlRr4VpExAvAmAgCIDAN2CfYxjC/66xhbSGmRFH69BsaYKhA0Db16L+vDTzsAgJPx0/kx8h4cmuPRNMQJ5GAAfOE9kMUEVMj92RgFRmrTE/DTHmySojk4oyQSg6SDYOcObPuDN2HxDb8Hr1aMfWWhh5b8noDxuUEWhWptksAELeUt4yQCAb2290uMESY6TidiHi8uZZypRbIHkVldUHIBmpWtn0kpzTXY4nNmevnL8NIerj/yp7ANtgn/EMkwKt67XMqATk4VGq6yJEZz26JinQRdzrCbvOoKXLNjAu/7uWfhup1tVeDLrACx8BuyhFRpMKbpTIJGjBHVOGCBqWIPQ6bAP37gWDGAPdEUZFl2odHFEmvWINMFck8wiIjlA2nRjFjdEultZqxzWkorxxbZAbrMgRESD0EFQONNaymtLGZIhgyMMeRiDZa5SlDl8TUVcnwhm8SnPmph0OfXsTloApSOMOdzMc8jIV9q0xwz734PKNX3hdr8PTS3gCZ/7rtb4vOdZQS2uGZjCigzd5rBFkUw2bQWdjv40O//lir0X339QXH/ZPFOALeup1hWJI4Q9cU9FfGEXH+HTwAYAQBrbgYLy7djIjmFbckRfkhowPZSQ9YB5BgnpdXo82a4AjtInKsDgl3TBkvcKPbGQaAMmivJFtydWu4RMBgjpZzaZA8AQH2Wz9XgwH7AslTToyOKsDIXPX3/EVWUdgtSWjwuSsNijlcerZlJJR2Y2Pw7s2kCh2bwsgEoGy+llRmFcEoJYgHAKDAb4KAlfIAS0XSnZa/4/6vqWF7FAWM5qO0iYfzeCos7+O0JeKKekPRErpnHILangBEvqOi9nKbYefZT6jT6m0WGqWXbsKseAgGGu1moGK0A35tz8b2bnfCyEMwMsLghGtQAYFWwiqXH7FQ6hGPLWFrEBQ5/pqoNAxgx1lg6V5yb6rNF/EitqvYYyQbA3Gzh3ABgeucu+NUqsjjCxtkzuPK3XofU4deRuD4a119XYIy4WQowpiTEbZKi0uJ7unwuh50t2NUqnv/yYh5IsgyUksJ8MBuVT+29AlOveQ2mfuIn+Of7xXggSLbw8NQe7J9vwKoUn4lqzPepRKwZZIz5OjBqvA6M+hRnaYKb3/qHuPmtf4hMAplWsYxKSQcX7C/hix94T4ExEgvmYG27AKaN+D6o1lTdbVvEmaeTnQcvyRiR58bKwEi/i9VTJ/CB3/5/8ak/fwuOVgOQ5DB/kwBdXNcZ2yDm+j7m9vHi9x0f+5D6fe7YhUYtSjv8cKIxstk5Vph/lwKVyzLQBcbIY6y5/zYe/0jcksyVO56N/ITGCDAyOi///2F8SwMj1aarkqhKfVQ/zbYdTAoJn83z57R2cRkYQbFwUhELqdTXL9PbZaeI2Z3itprwSt2HkhKXCG8HJ9eF33GUecd1VdFYJnWNhVktQRHr806k5uFFzI4kK2H5OAdEpL+IHLQqJBhYDax7QRU5zXMctxirICTmRcdjd9zKf3YszRjZ5PctFwAEsyQwUpbm8lRwKWW+JKgR9rogtYbqqjc7a1PFGBnvhTKrpMR0sGEHgQpaxhmVArygX2aMvPL1/x3/7td/D5c/+3kAdDdaMhzAmSozRoqbraibwCEplpY4e2jHoat5dz445bF12b4CMCJlaoJEMEa6QrJEJBeOlYJmkr1RLIQ9+JUvIE9T1aUQdjs4fd9h+JOTqvtopDOdBAZjZKCKzADQYDFefu0iLMuC0+bf+9CZBQXfvFohp2xunipqa1Om7+Oe627EwWc9F7uuvl79XRYhKQ0BRrFCD6F/5rSSCgOAdDhafJbapURsyq3ZeXWdALAwUwO3VWNK5zoepuhvFgtDuShuKW+VbIC8VFOIB31MXn4A1VAyRkYLT15QMaS09HfRmGwajJEWaqIzQzJ3AIBaBNNrR9Dsn8Hdto/A4s9O/5wuogJaQ90mKWKRbTanZlTiNbn5DWzsugzH7rgV/aWTyLJv8K5lEVRWW2151UgHIRhl6j7vO/sJ7XkUVFRiLTWTAZ3oA7qImDP+OylvF9Rd+IKiLaVZZBHJsizkonMpRhMDUgyIa9EqKpHsJB/9zqNIFM2SLTgTLez5+w/CuepK9Xf3mqtUwAmWqQLjQ7cu4T2vvxUPfvXCyDEBgDAXEgT1DCkt2YUbxxX0D9+uXv9A/zvUv2k+GlRL41iTMWIOX0lpRXCFKWweO6hV+euHneIcTaNEr0VjAGo5JKBTiVfx3LU/xsLy7ZhbvRtM+BjMb94PvHEWV84eQZudRqvHn4vyWqzlVlYx39JrQPveT+CRB+7ARpM//5Pz0wUdZfvgPlSSLQRpD/FV12vGiEVVIRwAqLivFRMYQV4ERkqMOxnE19uTRtNAjNyuAVunuEcDAHjFh9cRbMhNcHk4HRpcnDEiu4BlV5czPaP23Zg0gXADkfAjWvQeVu+rh8vIBFAX1OsqyK9PtpRkz8Y5veaGG0VKvkrQwX1/JBPUzcJCIgLw5NJr6LiBshw1IXHg79g+1mOEZJZijJhJuzmsFV6kOtbeiYPzTQWYNSsegIh3gjIbUV+vX3mcKRad43rwgooCbIdrK4DxWV7aR/PQQTg0U4CJXHsTYerOhIl7uQtXFjllEqn22sjQsCcUeaLnzuYFkYBam8r/RQ7pMeIuLoJVq6iVzFNj2irILkb2FCSjOI4IIPZeJ9NzO6jWYDuOargJnskL7ofu/if0qo/AEes2EXOjOcsLR8QKkMQiVhJgu6z/UxF/EOYBX/tT/u/uCmLG5+n3Hf0sPw/pORCOfrdUsFBYqVvfyjsAgN45HifYFsWUy+OTR+7g+90dN58sMEeYAEZsUYSV3bONyekCY8QczuSkYF3p48hOamoZ5usiGa42iqyteDAAIctFYMUq7sOZiLmSUEo4pnBqVaRRBCoCMAWMsBxB2kMgmUusDQDII/6c3rdxAWtZjH7FV01OWUJ4ERgaFDJHbWYSNx5+C552z5/AyyPFRgmSDrxF3QzilBq3VJHXLoJDwPjcII1jAxiZUe9t9E5BypSNkwg0r78spUUa/HubCAUwkgoJOyV/RTRjxFgzG8qzRDRVpGfw3Ftfj6kObyQYGnK2EgSghgEsYwREzEl5LNlFncYx2jsXUBNx1/alOwEAO592TeHcg5pgHiFALCRSpI+JMh83hpZPzmGTCMMKf43qgmWakc1fpoGRaiD8pFot2LajpLQgmmkkMGJRgkB06DPLBZHPdgnEHe8xIuOPGAQBeqf5nMwGulO/Mt2CLfbPPLeQDAEgU4IHcu+ROaSMSc+5N2H51BC2aCDYyraBbZ3SjShSflVMb9nxbSFH/TJDhgxAbgtpX+rgQrgXKa2g2xf5gLOMntD8lww4/m/ZLJPDqdaRZ5nKnS3bxmBrUwElC3P/H3vvHW/bVVYNj9V33/vsU+8595zbS8pN742EJIQemogIiEh7EQRfEFRQQFERG76iUhQFlOKL0glICYQQEtLbbbm5ub2dtvvqa35/zLrW3vvcE8v3yu+X+U9y99lltTnn8zzjGWPUsGwXQfQ0MKLpmmBsRZ6HHmO76MyncGSaSsD0mo2Ut+TpRm7NGpyx559x6cG/gB4ESCB7BoxMXpkdKwMj9Jrw5sqUlBKL2UZs4LVXSSZIrLwnLBew8YmvY9uez2Hy5N0orKPASBLH2Hvn7dJXMQuMCH8MejOr0/QY9Xwe1txsijECAHOMMXLyicexxGSeVZBfNPR003ljduRHKqIzX5wDi8tUj69+xoiMB71OR9RM8pWqZAkjQkioNF0ca2I/4zG2pchvf/+zH0bQ/hyg6egxX0mLNXflarJ51WPgH8lIaVm5vABciK4hVsCqTsajCQC0Ulk0wPQxRiJP3NMUMCYKwbGQby90ZEPc/EFat+B5QsXvINHStSVOtHYUKS0R30Ye8jMTfccKAHaJS706+Gp4HT2esIuErRl2ToLKum5gahMFKo/t3Y3C7Frsv+5mAMDBdWdCs21o+bxouLFDH5jfI/ZiIwmQrxRZkxrzdIkjeJ02CldfxY5frtV+ryf2bAAp1Ynw4ssw+Y63Q+d+VMV0/pLzlzG/bisc04BeSO+1OSaZ6nc4K0VhjCjNYYMYI1kprc7SIuIwBCEJutpg5ZEkPACiJXjo1u8IlRZAzqHaOlr/4XuPlctDNwwRd2/sfhevHHs9Rpb2SMbIgByQM0b4fOB7rdtqCdYRHyRhHiyE2wMMByBmttH8msu+82NVgZyENacmMQEah2D7LQgPN10f2qQB9CvwWClg5CnGyH/VCE1ZE4+KU8DsJf/5L63MpAGWpxgj//NGvmQLAGEQLQyQAdPSsaNikRrOGKGLZd5jQVvS7zECSF13tTvFrlURG+lJ7bsx4jhBGLHXWUeTquOYHYXMQlxaNyeltMIiwLp3fO49wLuPMgvK7FnUJOfgQ/cBkAAJH0mOmWBqFuLlY/AZa8BgnXK6YQ5c3EQC47s4uX+fSJATQxOMkdYSvW68my/RBwMYALDxAlpE4B0wY7O0mEWSBFGxJLrqVfNX341o8ZcbumXOnbNO5g8eEK9pCmMkzBbg+DVJNKlfyoKu+vRarD/3AvGenOIxoudygGMr2rfpgqlIqPUIR/fuAgDMnHEmRpkU0uLRw5g8c2sKGIEWgWjaAMYIA0ZYd4BWKKDNEuUN518EgN7jY3t3p7xydt72fZQmxiUwwoyjhawYcYREmxV2ECsb8KgZ4Y9eRJ+jPCvmJKz9Ro99lBoMGHlcbqAAECca+Fy64Nk343m//pup7itxDU0dVdYR+OA9CdSYKEz6k/yQdYVy/4zZM6l0AGeMTNZy+NdSgH8reCJY9ToJWs2MDAzrjOOgk+03UzRR+rk2xrdvQrlzBGbYgx71U8mplJZkjIjzG6lKj5GUlJbS0YMEuncSF9/7x3jalz8EZ5GuJZ0T6Y431cjOZUlEoTYi5uF8oYrW2RfItYgwCSa2pBVrrOOORPBdj85JdjlM3xVJi+U4qDKgSWWMFGpy7ePXNGZGoxysdAqWkGryA5YQahG+98m/xad+480IbfobXW0cIaGB91iugXzvJCqtA9LHwO+/567Pkn1/GXq5DHN0FKGS+LqtlugCp4V2umYdfISuS4/f3y97RRJCC45KgSILjLhBEb3DMrhsJzLRiDLzHAAiBmARxWNEHbxY4/e6cCYpCBF5OooO/VyWMRJ5gUwAVwRGmHSArqPaeAxn7v40rLgDwkyB650jaB82sGX/b+GZzXfDYt3SWeBGSGktLiJJYly0jibUo4R12LE9szZRl0ybyIW9ZRNuXXs+bll3KQrTE2Idj+NQFCABIGJrZJYxQshwYERNVjkwAsK0xZcPIARL8hwDD37nFtz7ja8AAAo51hmr0Q6wUj6AZWuKhMkAKS32/VwyxZwYF0xNn5QQn9oPn+WmU7YERgq9k0Kz1ykURCGhOD2OUie9LgKA20x3XnptWTQLey48rpfvewgNLfXezvIS7LJMXBPEKF50EaBpKF56mWDwqSOJiQANVN3+QWPvyCy2TcpgupwzEVmaaBRZOi7XwNgPpQcO29eFdOmpE0iUY7HDDkbPpjI9BpOO4rEBZ29yE/dssWkoY0RhfWZ9MbgkjIFOyl8EoPNv1+0/wHf//m9gbt0mkmY+ekkt9W+iyRjI8zQQZrZlRC12fHkRJ/G5mL/2WuiVCowjh2AcjRAH9D7GbN8rTXA5DAvdDt/TGJOCFS9jVhwPkQO+8zvAfZ+Gy9ZljcSo9xbY9WAd5Fl/niRBzDx4Yi09r7SEHnszokCW6beQZDyO2kse9t8rQWVJRpJSWgAtbHPmL/eJ48MQHiMKMOIwmZ8UY4QeJ0/0ebPTZ3/nHWgH30cSHRCfLxh0TuWYoWTIzOkDxjwy4hB6voBekybulpOToCoi2EFLsCkBIASB1tgJAghptMjQYTLj7KWGBxKnwX51FMfqKLjzKHXptZo+djtGFx/GzPHbYSmFFrPgCNauloTQ2CYs/AxUxoiSb3B5Da/bFnEOByATTcO5D39EvLdfIpgODnqr5uv3fO3fcPTAfXAtA+UujeN6zOBesjti6TGixG8lAbScQmthHrFiHHvLxc9HPDUpf5xIAEh4XzEQVDdMse4KxojnorRmEtv2fhYX3P/nmJt/AJHtoHrGNnZsBPd8/UvY29wHQgJEsOExU10uGTeIMSLiTxKDkBBuhZ5rKHKcGAoxAiRwkTBgxLFY8ZLlZpzZxBnAbULvh5H4yI3J9YszdPuAkQHXlN9/x6f3aPFoFyAk5Z2Tq5SgsU7xMLIR+IbodNc0XcQcPNbg8SY3KF577hg0xAhIEd0De8W6yXMsDoxEzINPRygaBeSRMz17vYgv3TKH7zffglaX/l5FP4HWo2z9CuW6GTM3bi2JYBaKaM2fAghJNeO4in8DmZKMaNEVrRExf/yeix4rcnLgoToxKdZhDhqsZlRYY4HXMxAHekqW0xzQQKGOFaW02L2NBhi5831irmLieecqxVilwYPUqnCCJmaO3w4jCVFaT/PiXbf/AF/7iw/iwe/cwn4znftaiiSsRmKMrpPywrmtW8V6w/OW0kidepISAq/TRm1yDWa2y8YjGbcOZ4zc+a+fx/e//03RGMlHmOd+H3IPNjNgRqRIafFmMjtfgGGaCos7QgQHCF0kiSKllWGMLB4+CL/XAYnnQQhBT6ega65E18V8vSakubst+rsk8uk85x4juVwqNvaVNTUrpQUARrWKvEdzDCvsivgEYFJa7Bkatr5zicGcK/daDowYtRrAnukg69HEmn9ypZKo/fB1O+ctYmRdf5EfAGzW4KRDR4/Q9cwOO4jZtcyC8tNbadx2/DEa817zgd/EbS98I6bf+7sAAE3x/gkjB9j9NQRdvhcHcIoF+L2uyAsA2kAhfFQK0lus38dD8SYqpdf0uFpOsYEdvwnCpASNkgRbtCQUTaacjR0HodjXBMgN6a+hDimlRb9DfQa6sdv3fvqjmXUj4522Zu04PMMSew8HhzThMQKUMA/iIZWfZwdncxFEzD+RXq9eu9W/Bia8AYk1D+SHF7Q5MKKOyNARKXlTkrAGuJgAB3+CmJjCw/F04IblpJ8xp6BKaT3FGPmvGgVNWYte8ndAbnCN/EkNXQdGpXzzU4yR/4GjUHFEsjDISAgA6tOsO//YYcVjJD35slJalRbdmHgRqc9jpMYYI0qHXK4+gkLvROp9gRuJbnyNJKLo5gygyvORLzPDeCZJ4mzbKgo0IckjXKSJYY91SZEhxZ5155wHADixfx+ap04Kk7sRRhckeVMUc/3Fk/DZgm8yxsiwYpwqpbXv7jvF6xGICIxayyzB5BrXWr/kFR8XPPvm1L/Lo+MikQ0LRekx0me+LpP97EI8Pke7cOYPPiG6DSnlk7EvhjFGEqOPMZIdPHnnRlpatSw0NrMF05gVaWOLCGBq7Rlnoz5D70F3eQm1tZPId+VzE+sAcSzpMZJljPCgcGoKbeYfs2bzNnFfH/7+twHITofH77kLpUmp2Xz0CXqPCj1aZAlJHr0OZ050hSYqQI2iY1YsKEyPp8x9rbCLcpsWjk8eTIMGCdEHdhrywVk3oaFjcp4Cd4/sp4Ec1/uNSH+SH3Q8pmtPN/c1W2jQxgOqWt6CvSaPE0UdGgta3J6GVocztrieO/2+XovLlrXg8fmjBDH5cgkNJ4fL7/pdOF6aFQOwZ0Qk1ok4frNUgMeKO/lyRdwLoiUieCU6Qcem68BUdxE5nwIb7YV0IsrNiY04QM+l17lYGxHJwHsv/2WMTk+KjhxCglSyrBaFQjcQfjCalgBBpGiY5lFhSWpLYYyURqtCUogzRhLNRBwmQt4uVzBRKKfnS9sO8MC3v0G9jRzGwjBq9LqFPez41rtx+U9/D2bsCdkMP3IENZcPN6THn/OXYTDwWzWCVH2EQCIx53jX+In9zZQPCsDmqaZLjyLLViQImKdPWIK7NLhLjgNrqde4JJBiDKkOXqwJ3C6Ka+h1jlwDJZsZfDcywIgfKYyR4UEsL4bEuoaux2jytgni0PNZ3lfEkR+N4tQ9OQQtc6B0C0A7vzVdRxJH6DaW8YlXXYR33rRV3BsOHKrAiBl2UCrY+NBFv4j/c/7PYdxSOry8HqxAJjohK86qjBGCiHlB0MFNjuXgwFBOSmkRD4lhI146TIvGAIhN8N2/+2v84NOfwJGdj6DMpKB6Br3OJauJfEnxlBkQuHPGCAc0zdFR6Ekg1rzGE4cEiLPWfggAUMZxmLGPmCXPdr4gZXBGR1Hq9LOVeu303qPKx4Wuhx4zqdQ9X7IkWOdkd3kJTlUmfYkBFC6+GFvv/AkmfuMdAxkjSaRRs0kAYbKIUwqwEikSAL6dx7HiKLZOyUTRMnT4toMSA+75nAKAOFCfTyY7yeQSu8tLSJSgnMQeRudo0mlk/LhCVpxLWMJW6mOM0PPl7BmdzU+VITLMMJzE3VS3Kn2vix98+u/w0He/BW/TOhTZPmiw4gZnQw4anmchYdJW3HiZJ6cAYLI4MTZ0jLz8FwAAZz12BHHArjN7xnLjsnjKC3wxY+GBSURoRfpdvsa+/4HPorfAiv1JBxoIildeKYAR9XrQE20jTNh6oHOpJTbX2LE3Y3q/HK8JpycBeUuj6+tDX/guwAACjvtzxkhbBUaq/dKyAFA4/3wWdyjASIEXOtFncpxTfH6SJBYdi0l4UHx+7PBPkdcbWHPyJ/Q0WV0tZDJ8ehJAz+eE/19xZER2fpMIWtSDp3SUPmTHmEkaiHQOVdBnzWGNEM12QItxYHtmZtgjtdS/S73jOPfhj6LSPgRrWjJGtFxOdLzrSSTiDFH4UIpxqpRWkUm+LR8/BhACwzQFAyTRtZRk3bAuTeExsjAv4uEHv3sLQq+DpWIeRjvbCU2fJWo+zNdMuU7XJtdgatMWxGGIb/7Vn2LhkmvQsgr4zGUvw6987APQ1W5UHs/pushjCJOgKo6MCMYtL5aEvg9zdBRW5KLWpCzyyrOeBT2fRxyF+Pbffhg//MzfY6G7gCQ8jFizwWurfO8exBgxlIJxoiUI62PUoU3ILEYpdZXIk0Uv26D3rcBMY3mxPmbsiYMObZzS4wD5yTERw4ZLNDaJvTQzA2If6meM2CwOXGyXgYXHRDOQEftwKmXAYs8NbACa8Auy83mRx0r/SpKSMPvikQVUC/TaL+8/gtDn3gj0Nzh7M2Im9BriPuP4IGN6vN+/FEFC59PyMkH1GD3+KJbnFvuczUVBSx6zVScmUWCM5p6i4b/5Ta8V/8+vNUDE/ub1XAGGSfm0EgoMVG8P6OwfNiY2MfmcbkyBEaWD/HSyLqVVSGnxPVyNOfi9VovFAGA4ikH7WE1Vu0Rl03oA6OsEz8YyqiSbGXYxMiEZ2s4WFRiRa8WmCy8FQPPIX/j9P0nLQrJnKfQ9JHE2PgOO7H4UP/6Xf8K+XY8AYYbtztgJghnIPEEAxYBe8VRUm8n4++m5hAwY6dFnlMi4UP2vynQHIrgGvT9OgdYCnJr0GOmx5ycJAxDdEHJEVi5P7zvPAxWwqj0AGLFGRjBx6n7koiWMLT6S9t+LfQRsz+V7JECfK7FW81wtlvNs/uATOPnE4/j+P34MZJbGTSTjqcaweuSK5RToCwBm0MT0RK3vWAHAYf5m0Ezk2XJkhV3ELF/IAiNrGDBybC8FRkZrRbzhj96Kiy+h7EJN06Cz9SxMHGDX1+VeTALoptknb9ddXkYcMslh2xb3r7cCMKIypQFAHx0TNQ07aEEnEUbPoQV9Dv4AgBl5Uo6d3XMau9JjLihG4AOltCpcSksyRvjoBN0hUs3peJR/LweZZ+oFzOdrYm3g3moGmycJAbyGBY0Akc3lHPtzQMkMDLF1z6fF626rJdi70puRMf0YsJ0rpK+nOqa3ndH3mnXllUJujR4jB0YS4NAdrLGH59Mrr5v9jBEZ7zzlMfJfNx4fvx4x0fCNiTdA23D1f90Xp4CRpxgj/+PGhnPHRFE0PxQYoRvL8rGjosjbL6XFBgtc68u7ccndH8DYwj0A+hkjokNOWfDzI1XMHLsd249/EZecRUGIwI3gtlmwjjZiFoQP0hAW35NhjOS2b4cRe6LD3z1Kk0SusSr9OzLSKPUxyr4gBN/6m78AIQlG1kwLia3EtgTo0FtoojtPg1XeGT9MvkV2dnl4/B4JjARJLD1G2vQ68sbuWDBG+r9zbHad0DkFgEKtJjarJF8QhTlPKSD5PVmUod+bXkxH185C03S4CnKu5XIiaIn9/gQXABJiiKBr0LECsqgfhQGiIIBeqw1kjCRxIjq1OnkNcRShOFJHbXINnEJRSAg0F0+inc/BZtcuMA0gZ8NhwEiXASO8kMR/y5qaQnOeAiOV8QnR2cGlzbZcfDnKY+OIwgAd24LNruPycXrPCy4NIolmCKDADtpQGPAApKRbee0UbEU+xA47qLYo2+PUvC1MuOh11DGoK44PQQHVCCZO3Qcj9qjnA4AiKyZG6N8gvY4LIAIYU4hTX7l8j65ruOWtV+Pe99woAgHPN9Du0fnLwSDOTOkyORc7aMNn8g9cj9tl3R2LI1OwIlcm0PwcDYtqzIq1hN0f1iXDg/xcqQKnUFQCYZZwGxp6tlxXcoyl1l4OoVJnYt69Fwfo9RRghFPSSYTpWk7KmJBA6bRXup9IhMgLhD+PpftAogmpGcvJDWSMlEdrQjs4r3RXB34kGSNFC3kFGCGE4HBRdnSTzFRy/GWx5s6PTos5TqCL4+Pf04tq7PpQxghAATs+GiclMEIQIiYWojBG8xSTQvHiVEEXkN3qfK4btvQY4a95UQle1F9gAdLGovI11oE2ZD1WO++q07QjMvJ1FPQGgH5ghOrgrp4xEuk6Aia1GDk5gMsLnKL3pXM8B79lCu3u7JqpG4aUXJmfx0jRxqsvnBCG2CKIr1XFOepJD2Ulma/pCuiRJNCU9SKygF+/YWtaSotEdM1lI2HrJzfEJkoXX47J7HC5FD/QEWlc8kACWHd+6QuoT7OOWWZaW9ROIV+SLLZBoDdfk3hXl2YYCGsjsJic1uIhOr9sdJFfOI5n1f4I10YfBkAL4QBteOCJZWRosHP98kY91wAi+bqneCmFrg+fSaeYkScAF+7P9MT99+DAzh+JwiJhEnVGtQrNcVJm93wkiSFAu3lrJ+7ZMAWfMVx2ja0X79tfnwXRdGxXgBEA8J0ciqwbfumYvM5JEEP6cTHJmVJZJGuRLguLsRbDyDmILVPEMbyJgBsIJ0yWoI8xwgsztoVI0xFbJPV5gMUDA4YRewL45d30vVZTxATJmilMnLoXI0e/j3N2fir1WW2AX4sX5eEzw1LeqaxKQaiGsvVXvQpaLoeJxXl0jtHXtRrd862xutjHe11qYs/3O8L0sTkwEmk5apDeOIzeEp1PFuuALD/jGRIYyT5qXovKjwCIWUGf75eE0PvYjOhzZQetVLfvMzZ+BToiHO/O4Za/+CHmD7VBMuCAlNKqi4JkVkrL3rQJ9vhoik3Jn5VEk+brXH+dd2+6nbbwSQMATZex/fTjd+OXRl6D8cM0Ng9ik11z1vQUB9ByOXQZY6RYq8tkm0SItAhJgftNJHgcS9hx+GFECqgQGRp0VrixCQQL0dD7iyAGAy4AwNm2LfU3a1p27WqOI+65FgdAvQ4Cab6a9hiRcUExw04vjY6J98YK6wYY3IQCAGUmyRL6HvxuF4Hnin0zNHQ0fAeGrnTsi8JOjEHyg5qm4Tm/9k7Y+TyO7n4UG8+ZwMnPfBW/8/H3oFqwYKQ03pn8kaHDYjEtX79UEJQbKIeeC71YRGDLhHv8ZS8FADzw7W/g0R9+T341CQBNR8urseNm+8UAYCTlvWAC2tgELdhqXG4uAlFkHSNX7lPcN4znJbzZhHt4cGzKiH3kpybEGucvMGCPrXHc20QwLgd4jFgBfW6XojlgzzelLE3sI18tQctIoJghfS7UnDJV3CTyPGYe+Q6cIj22paNNxCHdY3v+rYiDvYjZ+cesQUEnsSjmcTZgFPnYuvsfUTzyLSwbvshxSvoCDi/XRU4Zx7YoGkpgJIJZLIn4sjIx2ZfvAkD+qivY9TFFN3GUxAJYDDxXxJ6aAgyNMSa+6qd5ujG7ZT27jhGiniGBA8NYUQ4GOB1jhAEjfP9R5rf008kAI3l5b4ujZcQ2k7u2TTgMgM2yFrKxDM+3CGKYYRcVRXLI2bpFgC26wuK49EUvxYt/6/146Xv/KFUoBtIgo9qQBNAY7wef+oT8bSbRyEdQ5QAiAz+V6yP2SgUcEvLDLNYzFTAz1ihjJCa6APukLBf9b0v1byOR8H7Yd/QefOZdb4WrQUhzu6zRkudXKmNE0zQBbPmKj+cgKS2rWsXo8i5c9+i7MLq0s8983WfPE8/3AaQ8lXiMS86QxWi/28U//eZb8cC3v4ETO+jrIyzX5yPSJGNEvU701DuYrqVrVnzYVc4yMDDGwG4r7Ajfxmxtas1muqctHz8qWBPZYXBgJHaA4w8g6vJ8LkDguegsZYCR5rLwFDKV3KuPMcLiBi2JYRfT52NOjDOZTmqufrxQx9b1k+wcy2INNiNXAL9ehzXhhJJdwRuq7Xy+79lX/87rIKp8fhiHIEkWzAGQicOnNm0BQH1UwsDHTC2P+XxNNJvxGNJgYGVCdHiLbP1gfxvkoazGnv82LdkubrspYrEqY5dqAhhhDKXi4NyWn3OWPaOtm0sJshL4IImLJIpBDt6BOLFO21TMR5/HiLJfGQPY/E+N/9g451mvxXvO+BbO+Lnf/a/94tEt8v+fYoz8zxynZ4xQtHbp2JEVzNe5TwDrrIsDlLrHkbDNJ4twlhhjRO2QK4yOwEhCrD/27xjJ0w3a70Vwm3RRdpIWQhYgrASMFBSEevcdt6EdRwgLZYGO95aZ7IwAClgxaUABmgMOR3Y9AgC48DkvRJEt/rFtoNihOrbzpzQsHGfSDBwYGbK48UVt/tABLByWyWsQhSK5dpnPAA+0ueHbMCT5wue8AIDUaC9UmWyTZcnzbgUi0PbdECoqnw1gLSeHGisCzB+gxXtN14WRp+pBq44EhuwiH3L+Tr6gyBt0YNZHRMIbKFIwauGmzWTLZradKTpmVDmt9tgajDT2ACSBoblAIS+AEs5q4N+nM3DP3rRJMEYqY+OC/sjl4kZn5zDCCmquDlHg43XJvDufKlhoJIIRewiSdNGXz6+RmUnR8QfQYKrQOwUr6SJKzJSOfkJ0yWQacM95sG0yM9TL73ovrq/8JXZUfoot+75Iz0Oz+9gDfi8UgAcgzSZ7rQZu//xn8JHX/DzcxXkUHROEJa1+aKMT0qCUy13ETKCV69w7QQs+C854AsiD9PY4fY6yev+EmdBJwIPNwziAbltC3ilfppr9QhKAyfPFlgk/J4MTAYws+cCHNgLffje9lgHvMvUFWFMcGRF0bCsJMVPLS5A28bB17z8BoAGHGjRHQYzApffFYpq1kjHiiOupMkZq43VMH7sd5dYB1Jd2iYAz9GLpMVIwka/I+ZKEe9BTbruW2Ttz/jIeesVb8YGLX4UnLr8JOolhxjx4TUvkRIR1hSUd6LYNkiQIFDPTLGMkISaWT/SgNvKceLyR+n1eRNMYg4wyRjhtn/6+HxXhJekiMR+9k/1+M6HLqcrppI0PWzFfr69lUiOJhpxHu/F7zSD1vEdBctq1iP4Ol9LSwOX33eIowApNcUCfz8g14C7ZQxkjgOwsbrF1RS108iDeqFQAjbOjfOZDwT6PdKLvK34AiWPirTdswaUzalAcpxkjbEnnZpaqISbvIuQm3X5YpCbsAGIi16WDD92P0Y0xCgoLrxQdxOZzTielxbrVO/K74lGZfC2epOdmum0c/mEds/G9qIa0ASJiveYqYyTouRjdsUl0KHbYNXOTKtA8LK+Rq9xzLwCrx8KMPbHm8CRl549uxdHd9yEOqCwjseWapOl6n8k2QH2z/B5j2mm0U50n+3snNqHJWGuPlKZh6BrMgw8JrXEA8HNFBRiRAGMSSvabWvDg62dsyHsfMSPxOC+NOvl+xiUiY8YwyQIjnGllbNqIW17+G4iZlAxnowKSMWJmdLit0BPdqqKIpSwMcZ3GbOc/9q+otZ5IF/CjburfAG0iaEesa050KqvACCvu+h7Meh3l668HIMFJa4zK1Rk1aaLsNz3EviziaIzNYNfy9LprBr7X/DWQ1nH0lljhyG0CmobyDdfDZIXBOMp0NPgtsXZyfwcecyTs2JsxTZrtoIVy+zBAEkw7u7H+9e/DRdto3LT/CQdf+vP7ECc6kngJh5wuWvOnhPF2qT7cY0TTNBSvuAJq56fNYjsCTYC0vEDMJYq8dgvH9uxSvontgXEAOwrwF0deIiRLONMmEvtkAD0v98NibUSsdVrigiRLQK2A7bs/g97C7bhh/w9gxDGMc84WvxbrOgxWsLOgCWBE09PPA0BBST6KV16Z+pvqMaLn8+LZ9/3b8O2ZGrp2f2EcSEutZOeD6i+mT01i9jOyU1TTB6dzlu2IAnRr4RQWDh0Q8yA0DRRDDzDUe8fOkyjASCaOq02twVUvexUA4MTOB/D882aQt+l1Mgt8L03Ed8WGyhjhDR4qMCIZIwDgcDPgzZuRP+88AMCRXY+mjsH2aZ7FvWISdqyDGCNyP45BbAPTW+bSMR2JqDceGyGL37QkFEx/nmNKeSdWiGTsCDtoIzc+JlhxwSJdNzkTkoMGg+TJ+P03QxpvL0brgD3fhMuAETP2kK+UoZWKKQCcAylqcUnXDbEP8T0h787jlY9+CU02L5YXEkSRjiQ6DJ8cQeTdzRqaFE8QLYbPmlAqE5OC0VVpPIhL930NZz/+HfGbFeMEusuO2O8AHaHHmioYY1FPQljFUoYxwvJdRUqLy+yYtiOeiyiKhHRO4AYsB4QAfux8AWuZlA7Pd1czZmdG0bHobzSWChKsPY2MFpB+funxqqwQJiPF4yZlrvP9UgVG9t19J9ouUzggCcoTVSxbdD08VZKd2p1M972vNAkBSIHAWuxCVxiTjiqlpeTMlu1g/XkXDowJDdMUsXGQ+a1dP/4hTu7fJ/6txRm2O2sgFc1XSh1FgkP9Ulo81rNETB4h0hhjhBjgTGLevMnXSzVv4UAHAPS8FghJ0PB6UprbTUAIQcKbJDPyXPycfYUpx/e81PVh4E/Yoe/LAiMBiyFUYIQeM52fToHghe+4AKVrrur7bgAA85aZOiWZQrSRgn6vUyzJdYStC0HiYao6pLGzzsAqzUKde1zErqim2Jmidb5cEcV1td6jDt4wcIg1WoQteo0PFo/jE2/+FSwePZx6f7exjCiUuZcERrLAC1uHkgB2MV0zcyYnRUNdzl/GgcoabF9Dnxu7Uhb3wYxcmFyRwGV7kQKMrNm6HXM7zsPFz3uxohyjnD9b86PAR+h5fcBkEh3u+wyPV3gD7I6nP0PUjPxOB+WchWP1GdFsJuoh7N89YsNdpPc0yTyP6jAtW9Qyd4/NitdVxgiX3SS8eZf5nIp8ashYfx5lQdaZH67f6yBgcnrCVzVZBuksYum4h1Y0BhkrnA4YSddT1frqU4yR/7qxcbyEP3rZZdg4Xjr9m5/MUA3Yn2KM/M8ckjEyWD+NSwx1G8uiyNsHjIjggRU3efKuyMyoQzJGlkWxvsy0ZeNAhxFSkCHwInisy8CKu7KzdAUaG1+IH/3h9/CNv/wQvvt3f41w/SZpBMtkjwIWGCZDfDYApLwxSqNjOOvaG0RwH+kaKm260Z1cKmGBdYPywDyrQc8H38SO7KTBJ/eLCIJAsBziSEcUxIgS7mNCPzuMhbH+3Avw9Ne8Ec980/8GIAPO2EhowZgkiEIiCtlBLxKFd0MxrVIHN2CfP3RAvMY7jgYojiBJCO1+Og3qrem6QOr9bgfm6JhIeD1PFqZCVeqDdfbyAAOAkNNaPHIY4fRanLH7M7jyJ+9Gx2rgcKUkrqWQ0mLJisbAPXvjRmGmWRmf6KM/jq6dQ5kVYrpJLIIIPnJeA2Ykg1KbBbVcZ5snWjxYGRutQg9l4GuFXWggGHFpAeXEfqXjkBhYDWMEAJadAuygg/X+7dhx8q/FMwn0e8EEbiTZEE5OdHjEYYj7bvkq/G4Xhx+lMjfc16aRrEEE2k0tGCMMsOs1aCHNDlrwWYGZd2f73S6SOEYwtRYEMsER52iyYgujqopkNwlgcE13TRPPikimGWMksh2EigwLB0aafh0HmpvRu/0z9DzYNdDiLpKEd7nURIelRUJsmyqLQCg2NBQ7B+h55QsKtT5GHESiiGihy96vSGmNc2DkFAj7rfL4CNYe+xEuvu9PYIcdId0RuBE81rWXUzxGACAJaRDPAyjdlDJmAGWMfKG8DT+eOQf2hvX09znduSWLm51FGohZYQdgXaiBly5+theULi5CGSNZhshx5dkE5NwUwIhti2CNd9T4cREemIyXlw6Gw/76M3yXAbdcNnCox0gPYyMlBEwyx1h+AtDo+uMqoFAcxspatAJjhAMgug6HIb5JvgBt0B6TaAIIG/SdwmeErSsqIzIpl2BNT9NCoM6unx6ilJN7aT4js+EbykLL5K1CVbOcRIihACNs2nCGEr8/Vk76BHDJAS8oIWKMkIRLXrI165FH7sW2vZ8T31vw9mJqxsfs4e8CGBy486Ks22nj2N5d2Hnb96FPTAgZucVF5iPhdwBo8Jom4khDAinqaBcKIrEMvB7GLr8E1SaV5Vx3jEr/9OIasHxA/K7nyb0r6PoII/o7euQJuQS+V4gR0zVZy8vzuPPfvoDdtYOIw3SilhADvutDbSTgIFd+bg4765RB+vDYJty8JsT3/+ZP8aU/fr+Ia4J8WUhpLR6T0gFJRAbulRwYSQxZIEjy9B4nxWKflBYHOLjvQ7YLV3iMaBquevlzETMQKlKAAM4yyxqp54MuYpaQqlIWfAS2BcLmvQaloxsU4FaLHHw0YsYC4FrNgxgjjKGTv5DHXxSMuufYHtz1pX+B7jjQOdOjHSLsKv4evHtwpIqzdn4SWhLiUHABHuo+C715ug7ZQRvmtu0wR0fFXIzjTHez10KUYYyMrqVJLvdz6SS04OYELZR6xzHb/DSuev0F+Kt7egjWeviFsbdAQ4LQixEmeYTdb2DeCvDFP/zdlMcI7/zvZYARACheqQIjOky29ycaJEhrccaRlLM7tlcCI8K3id2fkUNNCYxoNpKESA+2mAEjDSmlxde6sYX7ERZjYHwc0yfuxMyp+/DsA5T1nH/Os8XvRboOLWRSPQAiwnTZBzFGFGCkcOEF0Pi6r+swJybE3yhjhHUpJycRa0CjqBQEVCktxSOjNJIuqJXqo+J6afU6zDlaONMNc2AczAdnA7YXF4SGPUDXgnzkIzS4OWsMSFExrCSJyoG2bEHLLvFzkWtOpGuSccyK2TlF353nFXx/L8zRNW/kpS8V57V45KC4BgDguMdTvxvrvFg4ABgRzNkYWt7CmnPPTPvKkUiwHwAg6nAJqxAkpHM9K6WV6Fxyiu0Nvd34ylc/jzigxxk3aIMBYWscN35eyXzdClsASdCIZ7D8xFH4S6xhLfaRrxRhVkdSsRTP17ISOAIcYte61ngMADC9kzKtltpFumZwMF1hbyYR39FiaogNmueV2TznwPr6Y3cI8LhqnkCuEcBIQpkPsfjQdyVjxC7k0WKMker4lLimqoyOBEakzE4YhWL+BG4PQY8fNwdG8gow8uhAiRtCCH7yr59LsY4sQ8fiLC30mF4ifY9O0/XMfzPFEhkgpSX+nTLflqAAIQSthVP4yp9+AMuLe2B4T6DSOoDqeB3zNt2zTtUk84yvuzy+XHvmjtTvyEa0OMUWAgB7bk6ar2ca4FYaIt/N+Izsuv0HqX8nhtJxGM6jGXWgzc0hZDJNXG0BkM976Mlj5IwEvi6oUlqxbgNBj8k0Z6W0OGNEsio4e8wI24Kd0AsDIVEdLLfxvffdAJ3NUdGEw+I3/tuhwhhpLy72PVc6qzslIQPAFI8RPXYRsN/m6y8f/Bl45uu2YXpzrQ90EqNURP7885HzGsr3ynghVyyJZ4s3UvUQYbLSX7B88DvfxLe/+DGQxEVsOIKtnCvbAqCy8v15Az/2rCQWHwaLLw7EMzjoX4Dj8ZkgSQzX8OG1W9h75+2p93eXl5Q5bon7mGWkSGZ6CCcDjBRnpkSzp+Mv43h9GlPsnHPVigRGYlfKsbNlM4kSsQbbuTx+7j0fwGUvftnAc7OcnFine62mmH8cJOa5buq4WVy8/apr8Ya//RTWnnG2mEOcgXf71S/CVzZRZhyfFwYDK9vIw11izFoGqA6S0tI0TXz2XVdNitdD3xNzoTrBa04MGGHPSEmJWwaNq172KrzwN9+LS25+CT33ZlOAWbVx5nEWL6Nz7AS+sPjn+EnvNX2eg8NGFnyznzJf/9kaYypj5Clg5H/kEObr5cHAiFMoiGSbI97ZIF/PeIwILwpFZkYd/PtC3xPdy1xrOAl15E5QOaPAjeAvMa2/wFOAlpU8Ruh5NBnVffnkcTjbt0mTTVZ8DwNCDcgx3Nh85oyzRBJ18fNeDNOyUGDU/4jEqDCPiPnuFBrzNBAo9Gi36DApLb6ILR6ln53YSIPKIAhEsk+PL0bCil4rdSkDdIE//6bnYvNFVOuUd8h6fg86iZELGwCA9qKHJCEIPCnjYRjmoK8cDIywgjUPYtQhZbDSuumDhjAP73TgTExAZwVJr6t0yQacfeQjYECcymoanaFJ5dLRwzDXrYdOEphhG/N6C486OnRm7uq2A5r4c2CEGRkmayYRhyE0TUepPob69FqxWQNUoqzCgZHAR06Rypju3Y2J+XtT+tRW2EGiaYhZdZLfA679Wy/aIIoMDg9KKg0GjOyT35/AGJj88WGYlri+B6p0k/UaFsIWoUkVS7bCjG566CcigLXzeVhOTilG0XnIZVII61IONBpkO96yYCVwLeXePJMhCFoIODAyKbs8vW4HmJ3rY4sAADgwItYSXpjxoQX0d3LFktDyFesTcUFIAi8+CLcon11+f9rJBL7ReA9+0Hsb/Vaf6313xfcYpikC+LdcM4f19bxILImmUTk2pBkjhERIIiKAEYfJqahSWuXRMeiGiTiKhEybmQGcTb4O9XwhYeNkPEZ4gM5lyTQtUjoJgTjq4T4m6VbZQvUqzYAVvJfkc9Q+Sf/f8ZZBWLKUTc6I0tVNECGGjaWj9Nyq4/QanXg8A4x4XEqLdy1ZyLM5zQ1Vu1ENPnt21h38NkYXH8bUCVpE46CYOnw3gFoIygLLwmOk10UlZ8LlyfHJY0KGTDVgT8JEFJ5XZb6uJHAkX4A+IMEBgBbTch+0FvP1ggfVage4feUV2Pj1r0EzTdjJEaw9cits4wTGSw6mqzlsnSwBXkaP3JZJpF5NJwYAeyZTwAh9Frkko0xWFQNlZtzr1S9BZNBzD7q0eMT9qpZPncSYtoANT3wdY9pjmDXuBlk6BIsVkYwBoFBe6Vb/8p98ALf89Z8jrFdFQ8Jil+75IrFum4hcQ3R9AUxKS3jJuChceAG27/lnnPPQ32Dj0dsAMMYIA0aiIBYgLQCEvUBqsxO5Nk9tVDp0AIAVnvSSjEuO7HoE0AASpyUXSGLQZ1ORnuSmj2Ob1uGvL3gJ3nP5a3H31Bm4ji19jRPHhaZ0UKyg0DsJjcQI3EhIvtFtoh+448Cy6jGiVVi8UypL2cmIMz/onyLWfT3MfN13exgtOoL9EMUKMMLWIavbShlyFrtNGcPl830NLm6njYIiYZECRpLBwEgMdq4mPY6cyhjJdMEWLrxQ/G25kEOn18Y93/gyCCEwWIwZdSKETHZRjwNoTHPfrFRR6h7H5IlbAQD7vCvRa0ogv3zF5QAAjXsOJJl91msiJA7timV7E+/+SzLMLv5MH1pM8I67dPzZd/bi9+9zUDePwGEydRHyIDEFTJePHRHyGKX6qIgpu80GkiRGHEX41z96L279x4+jePnlgp2gaZroVFbN1/laJBgjnTaOqowRnnCz+3PxyV2pexMFMeKANyaEVEqLAyNVyRiJNQ0Lm3fAYADwBfOPoRD5sDdvhrZZ6iZHhg4tDMH39AD0HutmP/CgAiP2hg2wZmjcZE5OQlMasKjHHe9yp8fKC8yapqc6uFOMkZEMY2R0THSfx2EgdP+HGa/zwffi9sI85g8eEK+HhgEdBEHCi21KzEUU8/UB358XvkzpgpbD57vCbCCaJqW0uOSV0inKz5l7Dky86zcx8ZvvEl49YeBj+QQFQqaZt5zjK9I5oP58wBDzddGxH8Eo51G+8UaM/Na7lHdEgjEBQHh76EmAmO1rfVJaGS15PzmMhZPHEcU0Jo5bDYAQ0YglYyDOplYZBiyeJCEqy3TtfbR3I8hh2uhjRB6MYhF2tSpYYvR1ek2zKgT8GhAFGPGcAkZbNG9bDtYgJrYAHQG5F/MGBV1L4PeYXE2xCIeBmiFr9HKCJkaaVLaqoM9jskXXBA4A8XU5YMVvnUSw8znhBVGdmBSemu4wYISvqWEgGtuino+gl47hnHwBU5u3wLRsuK0mlo5K1iMfi4cP4o5/+Wf8+8f+KsVU2PHcp4v/F34Yp5lPAGPEKfNTvZ/ZvGcQCAZCEIch7viXz4q/bdv9d7jggb9AYaQK16H3sDUywd5ORGH2FX/4YbzqQ3+FubPPTf+O0ggFLf18aqYpGSNPwuSYe6L6qdiN4MTjFGzjAGmsXLLI+wmWTu1H8KbXYeRtbwMg82ZAkYAdKKXFgBFVSkunUloJTIWVzYARtnak2DN8zwhkMb/ruciz5oluNI4btHuQD7hXK8srM4bu6ogCv89zx8goleiqhx5jxumG0adowoFMDgT7rI7Em9P48LtdVF/4AtEsBABGxHzwbAembaea3wCgZ2kpJjcf937zqzh5YB8I8+ziGE++VhAKB9miNSDB+SxbSRwPaxg4nqzFrc03AQDWHv2ekCk8umenOF6A5hUxm+OGtYLHCFdhSMI+xkhtZg0qrQMAgGpzP+L1GwWAnq9VUowRnecMjD1PokSCLqeZ55qmSbm/dkvMv00XXMIOccA1GaCWIWpGbA6Nj49goUC/l4PYXN5uIagKBhJZwXxd/WwxSrO1Gmyv5IwRDibGrJGmlPFGyw47l8fG8y8WezxXEQCksgCIj9aSlFOUjPzTMUbS52Ipe9dT5us/A+Mp8/X/+YMXbod5jABAnRV5F1iRvJ8xwi6DIocDQKG6pRdlO5cXGxuX0+KdAyTRkAvoIuJ2Q3hNlvR6Pfl9Q4pWQL8kWK/RwOiOs8QxeT2uKa0BSIRByqACtGU7uPaXXosd19+Ec66/iX4/65z0ohBl1p2/EK5Dz68DJEGeGcifjjHCJZsm1m9kfyGIdU3q63YjENatyaVGBlHcB41R1iHb63JvA5oAtRZcabTKdXqHLKTj62kn7JGdj4jkkRuHcmkEdUTc+HcVXdqOssmZY5NKJ5MsrPCOWCMOELD7njL6Yue4fOwoypvpNeTMEnqQPYAkIISCI7FLA3kOjLhlegyl+igMk3YLcp+RXLGEQrUmpJE6bheTJ+/G9oOfw/rax3Hxsb+FFbmpQpAVdkQHnabrwm+CJyy2qSNSVCZ58lNaOAAAOPF4BhgZoE2tDh4oHK7QTdZvWAg6JjTI+ZcFRqKQpIARek3T80UUc5307+bdeQFgcT+TXoMFg0FLFJYL1Zp4Tr1OG9bmLfCN/mVS43IWfC0hvLslAHwOYsiOSGGURnyQ6Cg8dz/arEvzobFNcPxl5F1JBW8GNBjl3YZc/oQXDnkwOV00qJ660snkcb3YXF7pwIgQR4nornaSTkrj3HIc6IaBiQ30WeQdu3oGGOHdikG3Kz1GCmmPET6Hqgxk0iJfSOIBgKsUXyY3zSE2LcFocpcb4m+dBdZB5i8DrJt4aGcVvViINBtLh+kzcMaVawANaC14KdBBMEYUPyFpUk9f62Icgc7mWPcYzn34oxhboEWKMOkvkAVekKLvZ4ND/kzFUYQ4DNFjbKFoYQHFKgNGFJ+ROCLiWFZaizjASMoy6XSqFehDNGQbxdrA4wOAyvhwKa3A9xBpwFf/7A9xdK6OYPlenLjwEtimju+9/Vp8/S1X9xXI4hzzJUhiWOM1EEJSyTUQp4AR7mPgMANa3vGYNl+nr/W2vBJEt0CSHqJeC9A0zJ11DgCaINvr1mHDwVtwsfenyOldGKd2K92gw6W04igSa15SKQr5l07MpF0YUBK0TfhNU5qrsvkjpbR6sDduRD4PjC09KorPHqkiWTpA/7+bLlwEXoSYmXtDkXnbfMnleO7b3oWLnvcidj1Zgbwq4xLRzZfRN46JidALAWXt5oWtyvpZ5CcncO/kdpw1XcGYIkXFu0HD8gh0EqMY0LVpkbGxkhjieVebCDgrMlFk1Kwxem31mpSdFBJaMZOGYE0LWcYInzdBr4dK3hQeWJGyhwspragnmGcAUGqcTDW3ZOMut91C7qyzxL/VgqM+hDEi38yOL1XskVJaAOBs3ix8kfg199otLB09DJ3dj8iLEbJii5EEMNj7eaPN6CItkjaiNXAj+lt20ELpCtptqDtM/gZOWnrSb1HDWvRLT8aZglnBpfN9oreMH+6lsVanvAkesZDXZLFC02vi/3lBq1QfpQbKmgaSJPDabZzcvw8HHrgX93/769DrIzjnoY/Q8wMRZqCJpiFh8SGPx/kcXDh8MC2LwtdBVli2kjjdQNHuIBaNKFnGSF2sdfdPbEHz/EthT0vmrm/nsOb3fy8du+k6SKTBZvMh0IYDI5pto/bzP4/yjTfAXr9eACOqvwgAaI4CjLCCus+MfVVjcyBrvp4GRkr1MelfEIRImB+ZbvbHtOoQBuyL8ynGyHKenlv1FGOaKQAqQbxig4sKjBClAz0v1qX0c2ZwxojCBOTDdNKgYm7bVoy++tUCXFo6chggBPlyRYCvZiD3Jy2JlPyqf+/jcRAhMZx6EZphwFQ8YQiJQDR5H8IePQ4jCRExcIDHmnwvShK5ptIvYcAH88H6zsKb8OAtu0UjjlibBlxTy+aeFAY2HKFg6G736fBcekxm7EMvFJAfqaQYIzpjUPZ14fJiW9QGSIJK83F0fuGXKWuaJPBIFR1tXKzhhMQsbgeSmPCLKvbrXLEkYvaIraOhbmLbns/jHOsrMJP9MNl8FHJFAhjhUloMGDklgRF+TQczRhwJmAUBdIbYRK6P0OUNQ4w9kM/DMC1hFn1k18PIjuUTTNosjnD8MelDUr/iMvH/T4YxAihyWpqWBj8y88VUGSPKfnl83x48eptksBAthk4SFEerOMrkcebX0XMK3J6YH5XxcYyv29DHEuNrA0EEGP2skPF3/gYAwB4d7fvbsKGynflozZ+C125BN0zBWklyhvTmYqCASxLENbpOpICRXHqvBCTAOkhKK9ZtKqUFE3w/kMDIgK5l7h+o+J50u23hk9hKxmlsFOcYC4SBLVyieEghur2UZqVyKS3xbyVmSNh6UByp98kcSiCY7TEMmLjw2c/H2dc9A2ddewMAWmMoXnEldBILYFljjBHuE2EqOR4ABKX+Y0+SGC0mYcdVHgCaz9njddngO6A2xWOyocAI23rq+hp0k1GUkxOYPfwt+QaWm46vWw+AS2nx3MYWz0Kfx4iQtg+RK6drcPXpcaw5+kNc9eN3YXL+PhSVtbwwogIjHmCwaxzbiMOEMUZYrW8VAGhBAW+5nBpn32KAfG3Wew+QcSJfT5937hrUTcbYYfeRN0dMtel1PlIcE77IQ4ER9lnO8ueDNwxyxogRdTBx6j4krOGqWk8zmIYNPvc5IGTl8kqjeCyZe8p5n471YZhW6rqre9fpQJWnxv+AkR8BRjZQ+d/ixOnf/zM4fuaBEc4YGeYxAvRLUeiZYi3X/wMSaCQWGq7DpLQAGRDxgoReLArZBiOkC3EcJHCbrPja6wgDZ3tARxMfWYAniSPkt6wXC32Te05EsvgMDNfmO/fGZ+MZr3+LWHCEmZTvIectwYo6AvGt+EeESdPpPEb4qM+sFb8dmro4Tm46TwgRRznI3GrQ4B0o7eVFEAA5ly7KKjDCTfesIec9d/a5yFeqaC/OY/cdt+H4Y3uwaC2BkEQUxtUhAZeVzx9IG/WaY6Oi+zPo9TNGjCRAyIJX9fw58NBenMf4dlqMDpWuwVjXkCNSTityWfdJEiKujaDr8w4TqT/LfUZGZ+egaZroEux02jCSEGuP3Ibt9gOIPFbMUxkjflcwDXKlMvLsWDvLS9h714/h93qIDVl46epA0y6g0joEIEG7EYvic6yYrw/rAOBB8klWqPUbFsIuMzkVhrJZYEQDQZryXKjUUu/hBRGjkAFGvAVxn3gCyGvsdtACb9x2iqXU/a2um8FfXvhzfcevWTRQ0cXzx5JdEoB4dM6rUhGqtIGQ0zI0/MHFr8RXnvla6CTBxT/9A3y3QAOcMLGAJEHCKoGJnpaaEZ10nofuclrCRAAjqscIiRDFhlJEdEXREJDByQyTZOMa7yTT3SGYaz1XeowUzZSUFi+u1FhQlvidFGOkZRA8Z8ca3HTWJM5dP4pwaloAJ15TFs65lJbjL4OUyzi+b08fYyQ1CGWMLO6jXZFTG6sYmaRrreqBEzJwWQVXeTckT6h6Wh2hQV/joA2XAYrJgPWjF6S+b1AixAGO5qkT6JZq9OeaLRRrvJNKSariwVJF2cGDVKLsKWtnxmBX5LPXKJYRavSZd1mQP1BKK8sYURIhr9vFgYfux2M/vQN6Yz9+4+pfhcaelbxtwDZ1wdYS55DXMX3sdmw48A2UxkcR+T7iSCmWkQgJFAk2Nglrzf2YPfxdmKwb1nIcUTTlwEjreINdJ1pkqa+ZEcU/v9eDvX4dAGCxwwCP47v7OtTVYTpOf8NEOS+YcXwIxkjHht8piRiBd1Xy4rvv9qDpOirPeAY0y4KW45J7OjyWoHJgUVxjl4jrQVhXv10oQNcNbLv8auGXlnOPYO7Qv6O0RhYAO2zdI0h/Z0IMhEEkuiwBKp+TQENt3SzOmqbX51eu2oCOkvTv+cmPKIhXputNyaVFpaWjDBhJdOmBo+zBwmMkkYXm4jQtwpgjoxKcZl3EcawBCECYJGgpo9vOE/XQ91C0dARsyYoVYMRX1jShO601YS6ckh5KjtNnytxrNVG45GL6O+vWpdaoYYwRPrg82GApLdbEYBjCHyFQ9vYjux4V3c9xCEQsWdbjAGalDJIksEZpQXykQZtXPFLFUkTvvx204GyiMYNRkPM4JT3pNalhLetgNSxL7JVEiRvXHvouRliH+rhLn6Hn7FiDm85Zi11kHXK6BDtVE3SA7uGWTecNL5J3G8tYOHyA/k6SoLO0hLk3vpweQ85JM0b0dBFycuNm5MqVlM8PIIufarxCGyjYXtRaFr5xehJAc5yBHiM6EowUbOQ3bIRnWOiYOTzwa7+PwvnnpwDbSNcQBSYsBu4lzCTLYODW8X178A+//kbc982vAADWvP99WPtXfwVN12HNUEBE9Rfxuh18+eN/CT9+PHX9OWMkG7unzNcz86E8OipiqigMxHqqD2FOi8+xWLA5fyrFol7M031iy35eSFbX5xgrSaLmRTNYAk9pWMhVytBjP7XmALLTWVMAbz7sXHruZAdn+4/NrpP+GYhR7NF1yYp6Ir8aJKXFr3GltQ/VOfoce6kmi0jEhQAQdOhx6HGAoMtyTM4Y4TIqREr66rEPGKzQ5R5DvncSPinj9q8eR5iwYivLC/m6qTYN8WKSV6mivrQLmubDJyXs8qhPkRF70PJ5FEbSjBEuLZlljPBi28zR72LHI5+ANz6CzddeBiMJReNBy1irAGEKY4Q1KGhaAo+Btk6hKIp75Ve9Ept/+EMs1qdQcOdxnvc5HFtSit4CGGFeK9zgOvEQxpGY39Uh5usRk7FTGSNR4ItGlsjzEfl0v+A+L3z/VeW0+OBzpHFS+o6pwEnurLOgs/hJxAirlHQpMeDStOwUSJH9vDp/dMMQscY9X/9SqqmJxxPl0Tq+fenNeOVN78HJsy8CIIuTTrE4UFon9Tskgmb3l3fMWbqHZGsgKw3VH48PzhYZX7ceRcYYjB0bDpM15Xm022nD73DWkfKMCCktxWOknTFfV6S0iG4i6nWZGkG6IWPQtRBxUCKPudNswIw6lNUPDQ+GOxDFNuial/aTdTJgiygQZwzYjWzjmCKlRZhkZdZfBJD5KwckuH9DeWwcN73x17DxfHrP/W4XFvNb4t57GmMH8PxSved6HABjtb7f6ywuinkwnpPnEJs5mGNjgrkyCBjhUplZfw0+TF7X0ukzvza6WzB71THJmM/dxrJorDAtW4DifYwRRcEll2GMjJZzWM5VYIcdhJqB6R0SGHEUKS0j7iG2Ymgsd+s2fcaIWx3TEpD7HJXSomsn97BVm+HEGAB8y5oCvXc3nzeD551B1w7hMcLASoOd9976nLxOQ+Y7/2wrA4wAADRNyCODRDh759+LBp2sROewIRo6WeODUyikWGmBxwBFtDA2fy891lWAG2odMWW+/hRj5GdjvPJLwGv+HShPnv69P4PjZxoYicJQmhyvAIxMs4IxH9nFUNclMKLHASdhDGWMAJLizgsSmqbBY9TXRKGHNpfpImmFPURs0q9svt5/HlG9LpgYHvNFiGIr1d212gWFBzEuK7SXO9LTYaS1R1KJh0pppRfo6viUpFgbCjDC9fKVAslK90gdI2tmoGk6fLeHwDSQ63FgxJNFEBbwDAVwnBwuZNIqP/rcp/DZ97wdJ6xFJNFhJAwYmT/Uxjf/9iEsHe/C67BrybvZVgiMeUDSbSzDqNclY0TRS+VFfT0ORM+mem+LI3Vomo44ijA6VUegmynN48jQkYtpoNBt+oh8rtMbQlu/URQveTETAHZcfxO2XX41Ln8JLURwWm67sUTZAaGOjTiO2GfAiMoYCbri93PFkjBFvPsrX8TX/vyP8NMv/wsSRx5fV9dwanQGZuyhmtDkdOEw3fQTTb5v2HPJN9yFAus6XHYQtNMGdkLyiI040kQgwjfTfIYxwouzVrmQMqksuPOiYzMhJmI/gh+xIDhoIWbBSK5UEoG5225jopzDvtpM3/HrTE5JUNKJDOKIK2Wv+LCFtEEgirta6OL26XMws2UdEt2ASWL4jBEUkTwQdMCNBrg0TZEl5zwZCHxPsNb48Fgnqp3LpzrIwtgRwIgeeKJoCMh5xNfKY3t2YtePf4i/fvOv4MgI69YvFEVSHnR9kfjmMowRnvjz7vGo3QRRkvlF08QHX7wDH3vlRbAMHWTtOlHQTHmMLLHuUW8Ze3QPn33327H3rh8DGPxcEUTwjSraIV2b68ZBOAwgU4uGIQdXBGPEFnNaBy129JxxRCZ9xpy1dI6J5weDgNVQJGOD2HaargtG1+Gdj8CtMnmEposiM0rsNmVSpUoVrU5KSx6TUSqiqmgM9+Y2Y3edgs0heyYHmq+PccbIPJVtUBkjvR56jQYAoEQ8vO2GLfjFy+ZSn+fFDdEZmLOwfe/nsP7Qt1GaGkvJaNERIdFMIGLyTEzKRCcBtjz+JWj8eubyIrHggEHzFEt4Q7r2TG7cLOZY6Lkw5mhHF/FY0D3/mCjEDioKaJqWkiIEgMDQqUeIso5wvw3fHUXYjEWMwPf0AjeiZoXZqfe/D1tu/xHCCy8R4J+77wFg9zfhddNJVc9VnqvMOgfIOCQmHjbt/wpO7Pkxbv/8pxFHITzO1skwRhJYdB3NSGkt5isYr5fw+y84G596zSV44fkzqcTXa7dw4MF7EdXoHC71jgIAlvbuoz+TaAOBOw6MRGEXWuwj3zuF8ix9zRkbF+BiyIoscWIIyQk7n+/r/lRjLysOEHAWqgJOBl0pmyCBkWUgjhEzkNhyHFE848NtNVG+8UbM/v3fYebDf5Hy3DLiMFXkUEETM+wiYR4+afN13vUu44AC8xkJFTbo0d2PQmNzO4k0sR4ZsQ+rXMY3P/JnuOtv3ocDlXHYsQeDyR4uRXS+2UFLJNF6uSiZE55SiG4cQqQ5Yq9xCkW5B2kEM0e+B6I/jK37vyTi3TG3CQMJ3nrDFqwfK+LhZAPyCjCSHWrBp6g89wuHZEzZXphH6XoqVaMrZqGwrb4iZK5Uwi9+4M8wuZFqGEvJGckIUocERhpChk9HBE3T0GVxgAqMFA2C68+YRHm8jjc9/e147Y3vwqanUflWT5FIiS0TiACTpIv0BttX7/3GV7B07Ahu/dQncOunPpHSnS9eeSVgWSkj9gMP3IvDe3aiR2inLi+mc2Pf7FqszvlcuZzKV8r1MVGYiMMAScSL7KcBRphO/NFdj4guZQAITAOeYWGixYDVFJgRSbB/wJppmJZY91SfkVy1xO5NBhhhnc6c8abua1lQMTsEMDK3XhpyG7qQcjKCLiL2PA1ipvN4obj0IIpn0RgnyEjvEM0U99Lr0rmvxR5ctu/xZzxXKMpmOtbkUu4cAWG+YVri4rKf/j5Mtld1NQYMr8AYEc/AyAg0EKBJwcpmQmPPiHRw7LE9sCrlFGNEY+yUPo8Rtgfb/jzGFx+Cdt6FmDibNjJUW3J+igIyiRFraWAEOhHSQbmSZIyElglrcgKdNXQ92oPL8cRJuXfyecr3t8gPQBIXx/Uf4TMfeh/9vnIFdr4gcqJeq4nDjz6Ej73xVdj1ox+w62OLe9ltLENnxczEDxEyhDyB9AoAJDBy8KH70Zo/he/+/d/ir37pJTjw0P1onpSeNCpwolkW8kz28MmYrwOyUSk7h/s8RjLxKn/eVfYWQHPormXhOx//MNb2jmAhX0OFNVW0ua/TCkVNIcmWBDBLUd/f41WuF+oYxBg5uZ8CI5MbN4vnIrZNOB5fR1i9ot0WcZ/qLSkau1QprW7afF0277D8ernFpLTSXfSDGSPs3HU5V9qLC4jyReSYnNbXw5sQJLk001uALemYmzfXtjPggJ6paaQkHtn8Lw+4X6Lhg0tp9dIAp1OQDAPNtpFUa0JiVmPqAXyOy2cvRs5bhD3Z38XdUJ59vVYU7Hcz6sEcG0fIGSODpLTYPj/IYyQKQxA9zZooRqcGyk9PbKASPN3GklAcUaW0+szXhQpDhEI+fT9yloFmnq45R8oT2LZWMiv1YklIPoNEiGxLXLtuM2CMuNVJaQGybrN49LBgaI6wODcL/gMY2DCUZYyo/y88RrhXjk3vweMTG0Xd53RSWlnGCD9u/jzFugYC2aCTHxnve//A7880Gdj5AiyH1xRieIy552AZY4sPAlgtMJIb+P9PASM/I6O+AZi9+P/1Ufy3jZ9pYIRTLzVdT2k9Z8fmiy9LFfr7gBHezUcSkbgDsntjJd3FBqPnAkDAKNwPBptg8AIOK/ZaURcJ6+JdCRgZZCLvuV1ozMg2ZMWzKHGgUtdWMl5UB+8ajKMIka6h3JTmUZWlfVJ6Yoh8Sxa5rk5MisU5NAwRGHgMGOG0TztfWLV+oGnbUgbKsZBn5setRRcBo2frLPhe6TvPu+k5sPOFdJcHcRET+pldPz6GJx5cwO6fHBdBvDZAHiQ7eOfDsb27YIzUhSdN5ClyJQIY8RGywoUqi2CYpgg4km4TJ8vjKaO3SNfhMBpwrxUgEnT0EPktm1PG63zkS2U8923vwrod5wGgAQ0HXzgbJAk1xD5jZigJlhV2ELINKlcq9YFYJ/bvAynIDc/N2YjmaNeqwzxg3A5jCSmfG5Zg8GBgOVfEfHkMSaAa2LGCh5sOuKLEVrRgV2aMOLWyNLsEkHcXZLcyTPQO7wFAJRjMqCe8VfKlcooxMlPLw2FdtzlFGku3hzNGYjfd0QMoyXriCYkgjRC8+KwRvO7azUjYs2AH9JjDJAf4LRBmqhvr9Nh54VV2WLp9jBFecLEy5ushyUtgxPNTIChnOHDW0fzhg/jx5z8NQhIs1dh5zKwVvjRhzxNSQE7RBFFAMyGlxeZwEoWIiCzGNMvFlAautX6dZIx0ZGLRbjKpLn8ZPdaBdPCh+wH0mxny33Uteh3z+jLyn38WzIRp5Aeyg4nLZKiFXadQEJq4IB58h81VkuBHoHNB+CNo/c905Mki0sBEDcDaM2nSfnjnw+iuoVJ/YVtHsUCfnZTHSKx0Sq9kvs7WqYgkQrZnX2sRd863xTysbt2Kj+54Ab64+WnoTc+Jc84OzjALPRd+t5tmjPS6oqMr6HXwthu2YqKcPk/+9zpj/GmWXM8qk+N9wAghMWLNBnwGqLJiNxnLo/bSlyLOyY5ADloQhBS0aTH2V0QZI5MbN6cLYkxuJc/WutHgpDAeHVYUyCvzFQA8EmOkuQ+X3/ke3DzyHlw9/0GRUMZNGnskrNGA7+kVwVrpwu91oek6jGoV+ek1QpbruLsB//7Ru3Hy7vtSv+cGrDM99hGxc1djBc54mC/X8acXvQTNg7tx91f/NdPJl07UEpgIvQSqlNbjtTX4hzOfjYmKg4lyDk/bOg5N09Bm+yRnbN73za9Cr9P9pdCm3bbzj9PrnRBDPu/KXlkaqdPkhhDsePBDuOCBD2Nkjhb3imNyr/Q6HBjRQdgczXbHA8yPindTd1pw9XnEwWOIFXAyaNHPq8CIxcAEwmU5nJxk6rLnwG01oWkaSldeCXtuLtUooJE0Y6TQk9JOdtgRTS4pxojS3cxH/nwGjGQZI2y/iGMNEZftiX3AMbD7jtsQuV3ct4bur6bH7y9dYxM9gsbmr1mry/1SYVpEB+5Eollir3EKxRQwtOGJL8PYTzv8OpNrAcOESRK8+dwatk6WsWG0iIfJhhRjRGWaAEOAkWZDFLEBoLU4j4R1G+qGIWJt59JLZBFSieFqU2vwC7//Ifzc7/whrnnFL7Mf5lJaLqB0HcvzbiFhBhO6FiOJY7EWFWsjMBm7c2PdwXmzNYwULBwvjqGVK+O82RqAdMEiYfu/mWSAEcdAGPjYf9/d4rX7vvkVHHz4AfHvyo03Ytu996D2wheI17hfF0hMJS4YO4rHZP3AiDLnc2lvnNJoVkqLxZmnYYxMrN8EaJqQQ+Hxbc1K0Lr0afKNaqGHxBDeaUPibJ6vqB3/hWqZ3ptM0cj2TmHDE19DoXOIHUN/cSRQQBt1cBnksdl1EiDWdYws0TjOCRbF+j6okY0f/zd2PANnbqVFThUM42AVl5HymURIQhpI4ghOoSgYiZqui2YwwsCzcvsw4hKT/TMNaCDIacwnUGMsXxGP9rOp+R7vjNYAAHP7v438iFxXTzj78IX3vgs9DbLoB0Caj2cZI7JZDQBmrrsSRqmIbm0Mo4uPKJ+X8m5Es0ASgoQwxogupS+dQjHlrQgAyRyNYR46Ucdckz7jWj4PkzFjukw1IPQCkGQZRItFzs4Z8wVFv3/3Hbehs7yEPXf8iF0TW0g1N04cFzIwcRAhYrlCwiQY+do+ve0MVCen4LZb+OSvvwEP/vs3EEcR9t19p/CoAYDje3cLmRoAgjmYsHsySG5z0ODrXnYOm5nPZ/MgPv94QXOMeWIeL4/irq078Pg9d2L9cbrO8FiZx2ODGAjZ35k6cQe86DC+98mPIknkui3WiycFjHB50C6SOAZJEsEYmdq0VTwXiaELr0ReHPa6CjAyyGPE90U3ussYIzwOEzUIlvP5zQ5tpMnE2dlmTfoZdm8VQ/j20gKiQgl5l17zR6MdqZzSdBzhCdmvjEEbbTpZKa1KOmZUmyki1sxWGpCr2Jn1jjNHeAwrclDOJh0bF2wcDozw96gygTlvCUVFKpKPhvLsJ6Uiztz1j1h75Ac4+9G/zzBG+tdOwRhZ7meM/N/ffzf2Nr4HojTABnGY8t7jY3IDrZv43a44L9V8ncviy8HiBhIiN4D91C3TuXegMoVtk/I+GKUicixmMuM2QtsRHi3dhg8SE0VK6/TznNdC5g/QxoZCtaawn+QeZ3K5aAF8yzUhlzFfByQYxmNI3qD92W034i/Pewke2H6peO+wnJJ/dtC9KVRrUvre0KlEKIu5VguM5Aql1L+dglpTSOCyGoDRDhDz/GoVbDu1pmrZsv6wWqbeU+Op8d85fqaBEU9oUlb6pEvUYefy2HLx5eLfwzxGCGOMxDzx4BTBAZsFLyAeeuRB8VrIgJFTQQ2OThe9To9+1gq7SNgilu1cVEehUmO0XF10X3abDWjMNCkKARInCElOBPPZIGylYeWkYXVgmqiw7iENMWoL+4Qc2GoYI5quozw6JrVnc7bCGGEdV8zUcSWps0FDdGjkbSmlNS8ZIzrbiFf0AikUceFzbk69RpjcDgB4DGRx24EARgTav8L3rt1OdcmP7t4JvVgQjJE4UEA1XoiN2UaoaSkGAaB2aJ/CTy9/LvaMSGZCaOhwQi6l5aPXk4yR6vat6C6fvntIBV/cEn3mIl9HHHAprbTHSFKlwUWuVO471qVjR6DX5HMblouwmHGtyRgSHAxTyyfDipD8mbFJiH/efF36uFnxLFSN7ghBGxOQHiOsQ5sxRrjutARGqqkO07w7D53Ijv/ePjpvqWcAEfR9p1iS2tmtJuZGC3j5+bQ4qBqzcwNnDpAQFsRpJBSyZymPEXa85fY+VJdlt9pvP30OWyfLsCbob1RcGsBFcJC05wW7KdbpMyY8RoRGrd+n/dqzOTMt7TESoICAsXC0nj8Q+C3WRijTgxChBR0yvxZz7SyMSIJWnDGiOTqe/bc/hoAeCAdMZJdhwIARK2gjnkzTL4tzc5Ix0pVPT7tJixQ5fxkRwyy4qSYv4qeG0vk1VV0Awh7MLn1/HEpgxO/SBFsYy1o2dN2QhqWJIqkTudiVo4kNn+eq/BMfYRArFP/BQezsGVSL+cjOhxGvZ0lC00TRob/XU6W0lI78FRkjwvDZp0bHAO57Yi92H3gc7Ry997M7tuLI2Cz+/uznIW9zOan+77ScnEgCWgun0GtKwM3vdkSxMfL9VKcfH/zvXH9XMzW4ho0jpXGMjZT6JHKACKGeB/HpOkcIMyM2NEy9/32IWBJv5ZzUXALx4DI5QJLQz45Mz8AwTem5Mk7vmc0Mq0kizZ6H+h6V00mu63sg0JD3W5giuzDS2Eu7edXBklCHMQisnARxVHp7eW5GaET/uPMreMy7Gnf9mGmys4JZxAB7I3IR1mkyqsYK/PnM2zo6myn7KIljnHh8n3JtssCIhdDXU51te+pr8cO5CzFaTD8DvBvyml/8ZeiGiUOPPAiNJePFZVrMXHTH4XVCBKQwcK/UdF3MTT1uwAxamJij62auLj1Gul0uu2gCQos77afABy967bvnLiRkGZF7h9jDAcDvsFggcmGydcRkc5h775gKY2R8HS3oue2W6BDXCgXoCqsNWgIjGQyMWGFHJP5q4ig8RpSu9/w5O6CXSmINBah8ZgIG3MQ6QpfLPgRoLp8U0iqPj9Bnq9qUzTcAEOcUfebaSIo5AQAIeoiP7aTfz4GRYhG6YcjOfEPH7BJlARnr1sGaomvyG7bR81k/VsAjWcZI5tlSC3Q8Dlk+fkwUsQEqyyeKcbohPUaUuCDb3GKYFubOPkfsw7yrXY8DFC+iQBNRmnDCdgcxayDQ9ZiyRgmBpuvIVyoikeeA1YaxIl58wVq87fqtouioysRwNhDf68RxOhYOPHgfQs9FeWwcmy6i3gTLx9JGz3qmSMr9Uuh8kddQSGll1mK1+9/OF8QarxsGCtWqOJ8kjhCFAbtmK3uM1Kdn8Oy3vEOsj7yzHl4PF7yaSoWe/dgnoSWqFEwscoxhcZzQX1f8pQrVCi3eZ/2OdB0bDn5LMCcGma8/9tM78NE3vkowQ/ngYNvo7Drx3sjQMDb/MC5pfwwb9v8rACqLPEj6mBdcXnfVOlQZizTISGkBQBzRNZlLhMSEronj69N+DiI+ZnlIqXtEgNkcjHDA/KiYV5nOPR9WYIzoDFzZ0DiEYLu85pEW0CYVrwdDiduFkX0fY4R1+VeriKojmHsa8yTasAlji49KlpOImQiVGY4TEMK9BqXcWK5YEmCQAEs20w7wjUd2Y8sy9agpXnaJkNJqMxnpyAv7Oqs5m1iVYzu2l7JkuD6+advIlysYYR6hAfM7SoKISUkDicYlkOj5m5aFl/7uH2JkzYzoSgeAU0/sSzFGojBI7ZvFy+n10UakNNZqxjBgZLWMET7GZqn059TzbsJZL302ACDH4qKyQ58D3gCxEjDC19LQ0NFc2IcHvv11HHpY1ig4GKQbK68X6uANGd3mMj75ttfjM7/1thRjhD8XsUbgcGCEPVduu93XGQ+k6wvcU8bl5uuc1czeo7F92G26iImBPo+RgVJa7Hmz5BoU+T5IpYQCY4wUYhufDp4l5oD6PWpjqGk7Qsb08KNp75p+KS2FMcKNrlcjpcXNzwVjhM1fLmW3ZkpIaXEp5lyRMWvEsxWh1D2K2toBwIjy7Mf5HMzYx9Z9/xf15d0wx8fE+q3eIz5U83WVHRm4PRzbsxMJiUUcDgA/6q5FpMg081GfmRXzgCtemLbT5zHC3yNz6gh5q/95bYzTdeHk7BYUHblW6sUiNj7xdZz/wIdR6e1DaOdgM8ZIr0WltMiTkNLiPh2Hd9J7XxypK89vIvbInMfzJR4Xq1Ja9F4tHTuKL33o9/D4vXfJe8vqhhqbk107h2+tvwxFJc4bxsLgz4nq8cVHsTaSyh25p5mOBFZxcKydHdw7Uf09OTdiBB1WgwwC4Ve6mgboLEuE3/PVgCpPjafGf/f4mQZGeu3T+4vwcebVSvE1w66QE58yRiLWhS4KhwN0F9edez4A4Nie3Qg8F71WEyFHb4M8bI0FhQkrKoZdxIyCNuj7+DBtG897+2/h+e94t6Ae9poN6KwzJo401hmoy47nJ7mYFFiXq28ZGGnsxZSxC2c734QVebKLfJj5upJ0VMYnoBuGCMLDvCOBkRZnjNCgKCt5dLrBOzTaBUcYpnWWPeFdojO2gzkESefjshe/DC//wJ9hMwfGSEiLKoSI5MfthKKovxpd/4kNm2A6DrxOG8vNZckYUYERjwND7PxL5b5gtKJI17zst18P47nPk583dNlF34sQMDaKEYfIbd4sWALDikniNxijxGcmcWFH2WwzjJGI6XjmSuW+YK6zuABzTAmaRquoX0TngM4o1vwa8gIkNG0oYMkL5iNmhO/OXoSEgQ6uYSuMEXl8fqMBTx+RwAh7DrdfcQ1mtp+Fa36RdpcGbg9h4KNYr4oEDQDtIGG68DEs9I7RopDtN2knBQv4csUSRph+6CnWIXL5HD3WYm0EhBVVy8wMThddTby7JUAoqOOqlBadI7Y3j1JHmt/xYLDACqzjoQww/VMHERLW8aFlgBFRhHP7pLQ67G92Li9MPUEihFoRbpuxVbq+YkycnuvTW89I/TvkDJR1c0JKy3dDYa656Ic42fbR03jQLCWquNRAwOjWjr8Me+3a1PdXpscFMNLrMe3ohKDbZQUGbxkhC/x40lwcGVW8odgpKkWn9TMmHv/GBNCia0cUygTJE15A6c5NwfBhDCiASmk8tOMalF75Kiydfx79lNYfTMcBEb8/jG03tXkrTMtGr9mAPUXvY9g1UUhowttRgBFqRM7WolVIaUW+j4nffBfGfvu3ELBiGe9ILm1cj2u20LWmwmLWYXuG6jPSUZhIJElShshcD1r8nRBBhR+dYYyR2Mfrr38n/vc1b0a9aPdLaZEYRDMR8Q5UxgLQTYI4DEWwb+eosaoAPYgPP5H/D0jjZs4cJcyjIWm2EYcaSKIYqw4FaxkwzNambrOBHiv8hT0DUa8/OSPM48lWDH85a0Slt1fnZgRjhMcECfPJ4MUEPszYQ8yAEdWPjCfNeQT4w+dsEq8ff2yXPB6e8DH2QwyLFpGUwlQu8TFWcmAoyWsY+KLRZHrbGdhx/U0AgN6u20EA5L0GRvTDAHQ88sPD8LWqKFhk90p+HfeMrMW3NlyOUWbGbNSqMOK07nxCpJTWIMYIIAGhRVYcJQglaytJBNBpxi5GGnugkxCjES1W8yI3Bf3oMzJ31jn02kSRKExomgZNV5PLROzrQBYY6SJgANlAjxHFUFbP57H+c5+FfvZZqXMKCL3ncWwg9FlxO/Exf+yAeM+2bWvhlqood6U2vp6EiMtyH86N1CRLl0vfHb0XUcyecZLuROXPU2To2NSigMv49s3CEyM8dgzRwgKmq3mcwATcx9Ti9nBghLPhdt72/VSRvL0wr3QpG8IkXDU7H5YMi0IVL96aBIULqOSNce75ojs37HYogwmAZiSiOaJQrUHXDQUYYTGZpuHPXnou3nrDFvFbKSktVtDQwjRj1cw5eOxOWrDfeumVopO2l5UAyQzeYECQpOYhZwhngXQ7o7/N/10cqdPzUa4Xv46nY4wAwBlXPg2/+Ad/jvOf9Txc8/JX02MiCcgYBZEnjt6Lcx76P/IDp/EYARTGiHLP80xKi2SeFy7dyYtmKTkN3tkahuguL+Gxu+4Qf/M6HVEUHpudg5XnwAhlZkzP3wUrZA0xhcJA9jwvUiVhgB/+0yfx4He+mfYrI1zajs7r0GeNaGgAACY3yPUWkF3tnDEyfd46+KzrOjJ06o2I9HOh5/k96pcn489oDILe3EboIDh+7+2ozvZguwsgjDHbdDsibreTNldaHcoYKT7tapz1/e9AZ+vU2NnbYEVdxD7dm9KeVDE1J2bACIy03ItgjLDXatu30mvjNmCAYHnL2ciddbZoSHKZLCrNhWQss/3Kp+Gi575AXAO+NqmAKr0m9JngEqSBRvfPJEoQJVT2TAAjyj5ZGZvAy97/x7joeS/Cja97MwBg/uAB0aiwZgv1IziySzJn8mefhek//iDKL30pPa5VqhtwueJcpqDcB/ZmzdgzMR0HRvTQEx6Ftk/Pd7ZOz201UlpcZu/BiQ3itUdu/Y74/yRafUGYDx5THdn5CJqnTmL+wH4ErgvTsjE2u05KaSUxij2+1tHf8ToqY0TZK5UYmbMVeEwppbTYOsfiDK/lMplmes+FlNagRiS2Z+hOupHFHq0i79HnoE409JISMABctBRvRTufxxlXXQvdMHFk1yM4unsnbv3UJ/CDT38CeqauoStrXmDSOVseAIxIKS0PhBD4DBjhsY6QJ/c9xFGE3JopjC88iFLnCPI9GtvkGIjK9wPHW0D92G2YHOuvtaiMkchK33tjtC7W10FMfF5jiHxfADgAUsxQASyDwPDbonGE5//5cgWmZYn8le+JpmWJ/Y0DmdKPUzYb5gYAIw9d9yL89hWvx6mnPSv1umZZiHVgpPEYklwBoZOHw5qSuo2Afi3P11cxD7ZcejmgaeL4yvXRzDNHzz3HvJsG1eX4HNlzx23Yf+9P8dMvf1GAzpIxwmIYVosom0R8D/9bdvStO8q8KlRrqXWGN2JYBgFWaCRXh6ZpKSa+nS8o3xkjYjmMnkjGyGrqkWpThG6aMNleuFpVmafGU+O/c/xMAyOCMbIKYGSOyQsBSKHeQFpKS48DJCzhyeqHq2NkahrVySkkcYQHvv0N/N1bXot9Bbpwnv/AXiTLaf1wK+oiYovwSlJaALDx/Iux+aJLhdlfr9mAxoGR2EDQoJsY7+56sigr/96wTLUYn2P9Li7VP00vQZ53YQwBRpQNoZoJCmPHFt3+LtPoBQMGnixjhMt5dBwHdtCCjhCEAIu7aZcP19Y1VzCyB+hms2bLNoVeHyGCA4TSyN1tqYwR3q00vBhpmKYoHh87dAAGZ4z4MiiKeOJP6OY3yHheACPzp7B5ooTtdblJh4YOnSXmoR+LrlI9ieBs3oROg5uLDi4mid9gwIjHCkTcxyMwzZR0iB12EbF7nyuWMLPtTFz98lfj537nD8SxWyUNUyfuwsSp+2DOTGDDBWfCM21YPkuE2j6QxII5oGnDu5J4Z8qEQxDrBg7d/AoAwP3jWxSDb1lgWj5IAzudGXjy5Hh83Qa87P1/jM0XXy6Sj16jgVK9JjqxrbAFM/ZBSvT8Es1Cr8MKW0ELXRaYWDlqVs59No4yA3KeQNv5AiossNs4Ra+7YfP5wIo/CBH00gE+AEVuTkeoBCW8oGAzFsWvnVcFpxD3ThxCxICRSAAjdXGsAA2cu41MYZV1sNj5gniOecdea57ORyP0RGEmm1hwA3Y+Qq7RftGF4t50WqGQnTjFnnsBjCiBIQ+EI51ew1LnGKrr0sBIYXxMMkYYE8DthNSMmyRwggaCKL2eOoUC7EIGYGbJUK5ooXDXrQjaJuIlen1VKS2Py2RAXif6OXq/kkQW/UniY27tGGbf/VvwmXFloqXX270/PYFTjVFkTSGzw7RtkZTn3AUkDisQLVKgLOUxQnT5fauQ0iIkgT42htxzni3+xjtXrbl1+OCLd+AjLz8fU8XBuvZ88DVp8cihlBY9ACwfPyr+Xy2EAfQ55B3ZnDGSuB0sFGpo20XUi7Yw4RReHuz8ApYQc/NbzdBTxWX+fAq5TBLAt1hhiklWclkBDkCGBDAYuLDgPQ23+BeDS6cPKwrMnX0OdMPABcybqttYhl+jieKiN4KQASPO9u3iM6TODRSVwsy4BLz5cKanGTutf+QywIgReUhqdL+0U4wRJtXSc1PXn3fa0gOic89moHqsOdSPTEnYR60Er75yfeo3eWJsOTk4hSIufeHPwbAs+Mf244kRVjhN6O/c/x3KHrF9JleQeT75vdh53fMRvuUdMHQNhBBopZJgjEQBZ1+ZQkqrNIwxwq7B4tHD7BxDxLoNfOMdwB+vg9diLJHIxdSpe/Gi3puxKUevNcnJrtLzn/V8nP/M5+Gi575QzFFVAkgzZFyoaUT4gJhRD3Ygr7cVdhDGkhUnXh8AjACAs2ULAgby8bgmIvT7YmIicDkjwsPJJ/aKz12yxsbEM5+BQu+UvBZBC0QptORHqkJap7PMzuXQT8S+wf0c+LPDWTOqBnhp4wZhGj7/V/8Hj111NZY+8Qm8+MRDQEM5lyxjRCnQbbrwEmiajvZiWuu6vTgvdLl13YDBCvhCMknThnYvixiU/65tYPSXX421H/kr1H/treK8/a4rZPh0Q7JGi9V0NzcHRgYNvydBW35tdMUrBgCMnIXH770LALD1sisV4+jG0O8FZHcsLRZGfX/P7hdZKS1eOCrX6TxUi6z8Oq5WGmdsdh2e/uo3YHzdBjFvI6UgSDQ1N5LeRMNYdvmy9IjgwygWB0ppcQY+B0hSHdoZlofKVlw4QgtwpdEx6pXDC2nsOngN6c9nD5FU5jnSwuGDuOdr/4ZbP/WJDIMxAiEEMfN4C33m28Pm6QSTgeGDswtrSw9i8sRPMfvqFwiQimgaYl2DQ9LrvVYqQE9CycIZIKUVBQHq11Fps4md98ElJ3Dp3e8X72u0WyIGy8fLiEWOmmWMMHaH5wpQBAAq22n8UWbeLCnzYBIhCiVjBKYuu5oHACNrztyCUInxjee/EEZFNiR5bSZ95UfiWZjcsBnP+bXfwJrN28TnCkOa5nhTD4+ZfAY0kTBBnFgA5HzOyl0XqjU87RWvwdlPvxGm4yAKqGSTaVNgBgAe/cF3ESmskurNN8Nk6+BqC3SzZ56Nq1/+alz7S69Pvd7HGMnMH/XZL1Rrslmx1xV1DS3y8fGfPxPPOYeC1qtjjNDfnbTlee27+yciXhBr8SqAVD74nFo4cij1+viGjdANQzQUBaGPyZN3Y/vOTwq5QE8xX1elhTVdFxJTjRPHEQa+iB9zQ6S0gk4oYjhAzpmVPEb0zG308w7yjDEyCh0WIYpnifweNaax83mUR8dwxlXXAgD+9Y/ei/u++RXc+42voBek93qSl/tqwOKJQfeLP6+B59I4m9Wk+DxW40m/24E1OYlS9zguueePYAX0ORDeFBzITwI07RymKv3XQ2WMBFEEQ5lzQS6HJI6haXpK7psPy8lJyaYl2YSneonxa4ioi+3LB8Qeum7HeZjavBU7nv4MALKxr8marAzLxigDBfmQ586BkRjWIGmu8Rrun9iKM2fl9e21mvjah/8YJ2uMiVYoIMwVYDPmc7fps6YztgavYh6U62OYO2uH+HdpZJTmEEJ6OaR5Kmf0KEoE4pwyAEbj5HHBWBTAiMEZHfRZqDBgbaXGuKyfFpevBui11nUDGgNVhKeZsTrZfXns8jeo+TqbVIQC1ACtSwlp1FUo2Kj7vWGaIn5ZjT/JU+Op8d89fqaBEfdJACO6YeBFv/V+nHvjs7Dt8qvSfxM09ARGEqA2M4UEENSwYQyP9efQjvkfffYfaec2QhAAThSm/BsA2mUYDenuGTa40XK3sQydbbJxYsJn0jl6cnqfjUFD+IyM0cJR2DXQdenim7BzHVaMU5FevgjzhVOV0uq2ODDSY7/5JIERxhjpOhY0AGVCk8uFPTQ400W36vBNQx2yQMwYI0FHAiOdEF6XatdzYGQl+RoAWHsG7QA99vhe4V2RBEo3IE+SWGFi0PmXWXc2LyZw7V6AgXKMJRL5MUJWzNVIAH1kBD2W/POuxWGjyoARl0lGfL5xLQBguTQKjcjEwgo7iGxpgqppGi65+SWYO/tccS8MM8GZuz+Ns3f+PcpzM1gzUsS++pxktjRaQOSLzmxtSJcDILuHRkx6zW7fcDF+9Zm/jY/veP5AYGTpMD1fM6QJeDYR0jRNADjdxjKq4yMiQeNmexil9yDWLPR6TCYvaMFjMly8MDe9ZRs0TUdr/iTaSwuiS8YpSLNI/nwYCqUWoN0tPqeEK4wRHuw1ckUsFmSCwAsKJgNGrOUF6Eyb1l84TkE8ABHrapKMEa5R6wnt4X6jtLwMmtm9bi2yYnvswS0OTiw2XngJcqWySEjDnI3Nt34f1UsuFt2K7QbXjddwtN3Dh8yPYcpghXOFdcUZI7HRw4X3/SlGD38L0+MZ+vlIXT5DAT3ezjL9HSdsgiBBHKeLLE6h2G+yyn53444q3PupfIDGOtOjlJQWfb4I16dmzxIv6AaKH0pEIszV6d81tjYmuiXA9aN7l/GdT+4EIQbKLQrarrR2rD2TBtjR0X1wK/R95jFapHDbAeKYHmeSSPmjYQwU+lvy3oW+R2Vk+L8NA5plwVozhbGSg+eeM42Yga3D1k1e1D++b4/4fg5k8C4veqxpYIQXmE1L+kNF3TZylo4NIw72/fhWYTRaEskXPT+/3UWSEBCNM0Y0UVw2LEskDDxBJ8QDNIMVmNIFaiEh4nZRYIaqS9/Yi20/PCQZI0P2y/Of+Tz82qe/iDOveToAuo4krBh5pFUX3kzFSy8Rn+FSTeqerkok8mFNTQrGSHZICj4dZuyBDPAYEVJvJEmBLqeeeFz5NHtm2G+FegmAJhNXALNF4E3Xpgt93IerNDoGTdNQro8JudADNbqH1H0KTAQefUYdAYykkxl+L1527hh+69kUZL33G1/GJz7yIXg6Pa6YeXDFsEDIKhkjRzgwQo2Sk/s/D/gtsU9woF+74E2IGduMd/9bjoPRmVk8/ZffgFJ9VEjhqAVd3ZIJY2IaMhYIOoo/AN0rfV7EGeAxEmYK6gBEEZZLhCYM6E4SEz7zVQrJQsqfpNtsoHL1VSi4KjDShjYmuzqtWlXslz3me6MCI4i5UWs/YwQAIieP0tVXweSMkYM0vpr/yEdw00P/LtZlAKKgy4da8MmXKyImUn+PSmn1e4xw0NVcwR+Pr21CSitvQ7NtlG+4AeU1E9CFbKuLmMkbaqYCjIxkgZH++8KHr8ZevFNV8YwDgFbYReC6KNVHsWbzNhQq/c9QdpAkEesA0ZKBZq1984etc4ZpwrAs8VzxQqJ6HQPWtGE8CWkcPvh+F5IYROxtyr0gEf4jjBHNcaDHkiXAB88tYoMzVZVCZOb7VbbiEpv3YwxUtAVjhD7DQdsU/5+NgeT302vMQao4DDMdzwRAgpizPkLaQBcyyTvudSHOm8V2G2/cime98xroG9an/h7pOkzSTb2mVyvsunCmqrzvKng3eQNVN7jw1B488tgxASgBQGN5UcRgUegN9cHkIIbfTR+Ds4Wu+9uX7menrd6jCHEQyQYFXUrM5YrFPgPhNaMlHC2zvc4qYMuLnwejWhEgMmf3x2GClZj4HFzLDlMAI7QRwdO6ICRBEgMRsUXBXDfMoc+nrhtCOhGgOetZT7sehWoNy8eP4t6vfyn1filNt7qcWtN1XHLzS/qaibLPc/bfaoxYHh0Xkox+ryckpQDgglFNFIWfjJSW6cnviKMIu27/gfh/4MmtF6JQzWLejRdcjK2XXYUrXvwLAOSzFngeNBJjbPF+8VnKGOmm3sfHOPNVmT/4hGCL6IYhYh4hpcViF68nTbMBTTS4DJbSYgoLmcfNtUzhMVKKNNgEipSWvCfqd/Ljufj5LwaAVMNQY35eAI+a44A4BrtUBAG7xKV6PwvDUoARzhbRdF3E5bour4PX7cKckNLBHATmABJ/VhNdw2Kugskq/Y5DjzyIT//Gm/Hjf/nnFGMk6HVhb5TrmcuWl2KtNrRpSMppSS+LeZXhxeb3eOsQtjaOiPW4VB/DL/7Bn+NqxlDkNQ8O/pm2LaTJ+ZDsa36v+/dMAPhf127Ce55zBl51xXrx2qM/+C72/uRHOFyn3xEXCnCdnDRfb6SBkdU2FGy/8lrx/9S7VRNMT0JCKuPKG03FWqdKaaWf/V6z0ecrw9k1OldFMDgzargqSna/45LigKwf8rWRM0YMe/WgKD0+eex2oSieN4IYUcIkIJNA5FerYYyo58TjHHqsTwEjT43/9+NnGxhpcf+KfsPyQWPDeRfihtf+al/QIzcDyhjJT4yLThxgODCyjgEj6hBSVEo3PkCN90SX4WlYDnxwo+VesyGBEWIiZImYzn5jteAAH3yRjlnXwO7WLP69dxEAgDC5r6GMESUA59qLgjFiSWCk12LFRwaMrAa8UgcvIASsw77EgJH5Lt2ghYzHKkEhUfwlISLNAfFawq9ESmnFAAsSTodcc43mo3t2glNxk0E+BoxqP5AxwjuLWbKmdrCFug6dFXVDPxZsFAMR/G5HBLiFAR0e6uCBiMsC4RorAPilqjhugJuv03uey5gQ83uhhx08UZnCkeIYahvmoGkaFtZulkXtZg9J6EGABCsE3zzJKrGurx/vW8D+XB0dqyCeoaCrMEaO0+BaZ9Jsgwz3isp8KY5UBQuh2GNFxEn67BDNQsdlsnZBG/oaeh8KrMPUzhdEMnVszy5RfLDzBbHW8OfJdNh84EUjLZYmggMYI02ngP1VGbyIgjILfKNTp6Br7L435hERh/risO8vZs3XfQ8dVgjiWsx82Pm8MJ7lwAiXIjUjF72SlJlRR7k+hjf93Wdx8zveA4AG5sbkBOxiQZivd9rM6LRowTu+Gy81f4jNBmU+qN4D/HiJbaDaegILuSJmaun11BipwWK6436Uo+baS6zw6DcQDXiO7HxhgFcTBTfXkoMAmx9gniqxIqXl98K0DANb30VHJGQBzUeMOSZlYJRkEMrn44n99P7VnSOYPnabOO9hgxebu8cOoMGMG8mhfdBNDSA0cAfAujZXZqAANJHk+1foe6kiXTwxjsrznpeah7w4OGx951Jaxx+jwEhxZETKUyk6tlm/EP67+WpVrPWh5+KWX70Cf3yRjm//7Ydx3y1fZd9ZZ+dIr6HX7qU8YHRbFz4N6rMpkgAO6BJ5n/i9U7WZp//0TzDxzndCLxSgESKKfislQ4Yp6f5xGKI0S/e4xxbonI0NE/nzzhPvj9mzowIYg6S09EoFuqINvy13qzyvrJRW5IHwQp8Se5iKSaEqa8b3AgBiHeJrn/h95bf7JM0giy7lugQn+J51qkjvZ2Up3TFqsS68fsYIfa55AY0Qgvu/9TUQkqBnMolRNh8TzQQY+zPr8cIHv7ayIEHn713LN+PT8x9FO6ZAHJdwiZeWEBykRc/E4Ky49DGqpr98GDle1Igxn9yPBZMWZK2wg54uO+mNsCPYB85pPEb44IUfHjPxwk0MS7BVXY3eA/4s95oNOJs30Q5XlizbQQvWuCyS6OWylNLqdIE4Ag7/FCGh86aPMcL+ywsX8Z/8FayZGVjT0+I7NdsGwhClblMwj+igz9nmiy/D2Nx6sZbxsfmSy8X/rz+HeoG0FuaF+a+u62Lu8aLASvGbZIywdbCsFNIr5ZSfHeEyfJYuGgWk/j+TaYoiJEkspL3U4Sl+E0EQQMvl+jxGFjsNADSPoP4lnDEyXEqr22ykvA5A+p+NbKxZGZ/AeTc9F1e89BXQNE3sT6okCy8gCMbIk+gA54PPU7fThs7A3FgBqQhi0f1qDmWM9Juva5oGnQR9QFrCQGTJGJFzsr52lgE+9Dx6Cgt26Ridh1xeVwAj4kA1ARAMy6144UVlNHG/MjkiJB59DqJIA0kaIFqS8hjgg69VUaWM4hVXiLWOj9A0sKs3kXrNHKlSRv0KHiNR4CN/3nmIcgVUgy42HXtMXC8AaMyfwsjyLuTcebjNI0NVDZwBZr8AYG+kkmC1k7sxt3QnbH9B/I2QGLHngjAWSGzKZ8EpFqUhNMshbFPH8TF6T+7acinq9TL0ckXo+fsd1uQRxit6Nw5jjPBnfGx2HSwnR4HFZAkkBouLud9gfii4CqRl0GpTa+AUirj2lb8CALjz374g8i/13Pqabp7kMLKeI5mYQ332K2PjArD2u51UbMXlswAIX8lB0kzZ303FBAAe/cH3AKjm66tvpsxei/XnXYjn/fpvYv15tPFE7Yb3TSP1vCZxLIrpTqY4zHOs+UNPiHPOlcriXopmRrZXep4mYkZd+Y3BjBG25jJfH75meIYGx1+GBgKDAHnNwUCPEeX+8DxjdO0szrjqWmi6LmKjxslj0JlMtVGtQrPYcREPhJ3HoOZFkb+5LoKe3KPV5zinePpYii+jAEbYfREyfJqGxUINY0UH93/ra/jiB34H84cO4M5//VyKxRq4LuyN9Npr+Ty6jC05yCSeDx6zdxU/y4XDB5R30GuYd+cRa7oEqjOs/vp0Okc1LRvl0TEhSUc/w4E4nhP0+2cAwGQlh9devRHVvHyWj+2lKg8xY0c8oTdxonkCWtSgx98MKL4nzNdXt29uufQK8V4OTKqM1hQwMoAxkgUF1cHnF292MFheWjTY3rsSYyQDjPD4EpC1IQGMcI8RezjQcrrfcAoFec1IjJg1bhpxKGqfT9Z8XTdMCeg+JaX11PgfMH62gZE2K8YM6ThZ7ZATnTJGjNG6CLQNyxraPTJ39rl9Hgpc110FRozYR5xzELBOwpU8RtRRZPTabqNBC2cAYmKh26CJmM66AVdDXVOHADJYoe977QtwZ492vPAOy2HAgKq9WeGMEZ5sm4bQfebdQgQMGGAsldUOp1CUiadtohDThCZiCT+YZNdq/VVkQB4Bmg6v3ULgMh1hP6Yd6kr31OmAkanNW2GYJjrLS4gMVnQOZfHEZWbpCVYARjIFNDWJCfI5Yf4a+rHoeNcQieAkVyqfdiPhUlpdFlzMdulvxZUaiKKpboVdIa2U3cR5Uhgvn8Jbrv11vPH638D0KOs23HqGKMK5vRiJ70N0Y6yQrPOgz2HJzYFFVjCzHYUxIgsTS/NcbiRtUqcOlTFiVCqoNfZCjwOMLj4CjE/AKMp51+gyUCBsA3X6nKk04mnWAXZ0z07R0WPnC1h75g5ouo6pjbTzTniMcDBIi0SQrxrY88QnRwLkFKZOj61hPPANDh8WEmpxawmhlhc68ZquiyBFyLZ4rigi1LPASC4vu1Yynapm5MJl93mQWammaRIgIwRepwPNMKCzYnS3x3w5CiacecrOyOtNxqRgAZ1ti04jv1TEkdI4vjd3EdaOpO+dUa3CYEVNAgOhF6O9xHS03eWU9BgfVEpLdtbyMffEl2D/9FvyPJg0hiqlFboxUqAgS1JEoUiX18rVIIARTUnsuFRexLrhKvHRoZ4t6uCmo92lBZyq0GTDO7KAUo1+prPM1w1DFFBON8fls+CnGCOFF70A03/4B6n38oLusPWtzNYL/j3FWj2l382Hm/EY6TWZV06lCqdQFEH+mB0ibpxMvVfOi5h9l5vygDGGASOCMeKn/mvnC+L3pNxUF7rjYPQ1v4zR172Wvp8n3KcpCpi2LeZZeYYmi3OL9Bx61VHkzjoL0DQ4WzYjjPr1qfmaq7I6NE0DbI5KJrhk6vvyvLJSWrEnJCPUdU7V+1XZO+ogGSktPvi6CdBEOysnKvTLle5GDh40cuwYTjYxYtBiYjk8NrDTElALrvQYFg4flJ3aXIs6SEASgkSzpDfPkM64wUWqGI/2bhKgCCA9s4JDhxEdpx2SMXsusl5ksqgtC7p2gc4JEi8iIC30NHr/7LCDUzl5DIkdK59RdMmHSGmFgS86kUemKACRsHNOiMnWIyDW6PPM955eswF7dhZAgpxH93w7aCE3Jc/ZqFTE/ttthsDCXiDowNNZTMwK8VkprbumtuMNT38HdtxwBX19M93PjNFRrP/C50UXrMoY4XvI017xK/ilP/lIXxfkZmZGDgAbzqeNNoHbk9IwSuGbF/RX0vIX3hvsObNHJHCmF4tCSstty2dZd0x0mQwTZyCpa93X/vyD+OgbX9XH8lA760Pfg715o2gCAKjx+6ll+jysY6APnx8rMUZUABMAZg5/q+892WKxpmm4/jVvxCU3vwSAnJO8QQWQewJnsz4ZzwA+ZKG7LaQ804yRWBaQVskY8Xs9/OPb34R5fRf6GCOcWS48RpQ1c2wCr/nwx/Erf/lxekxdCT4uMgCDx6E2W48SELFOCsPzIQVt/gyo3jaEZApuJILPZPniWAOJ6Zo1Pre+T+6N72Ec8MwCEKGho5CRWLNHaykmjaFo/XNWaBSG0CwLpSspyHj1sQdFkRGga4kZnMQVd70PVyQ7h/pgZmWv+DBKRZjTa6AB2PzQZ2AFqj9dhNjzBGOEAyOm48AwLSmZ5PYE2PmTa16Mz2x/BvY95+X0+6sVISkTumDyZESsHYNio2FNc8KQ3jAwtZn6mSTRccSJQdmlAhhZudFwYr0CjLD4a/tV12J66xmIAh+P/VT62XSWGHNyBfBhNeO0HiPKnC+PjUuGj9tLAyMMyEviGN1GA4AsUg/+3XRcN731DGi6jlMHHkfz1Alhvm6YxqCPDxxZsJErCPBhmKbY+9rFcup5BWRDzVDGyKEDIp5Um/KyUoqBb0LmlvL4V5LSipl059gcBQJckkAnCQo6XQfyekEAL2nPI4Uxopz/M9/06/hfH/8nbLv8agBA4+QJGOz5NaoVyhghiTAjz5crA2Nt/swGnttnvM6HytAyFWAkysgG8nseGgZ+dN4zEHoubv3UJ0BIImVrleH3unA20Othjo2t6C/CBwd3Oqz2QAjJSGnR6513F/DbV7we31l30cBzyjbv8drV2u2yyUKu4Wx91gYDI9lBCBHy1wkDqDqxD9qqxzwsmz7zUHpyXju5Ygnn3PAsmJYt/NTkHA5hRj3p2SqkpOWcH2RqD9DnjB8D9xEp2fTYC0zRYKV8Um3MAdLACJcS5XLfPperyq28XmZHTtlTnXxBAVUT2tgE6n0nGCOrkMPic80wTdpIweLCLKD81Hhq/L8YP+PACN18nqxMU3bIiR5Dj0OYY+Mr+ovw4RSKuOTml2DdOedLM61CAdbatTCVDk0z7CIcnxTJ4GqltFIeIwztjWGjy0ztdO6z8STpZzxAidiCu6a7gLk2TeCSlQzNkGGMMJRfGIUZhtLtTzcHwZhYJatHHdzgMDR0VMJjqb/xDvjVahKKzYUBKq2FpjBfB4DlEz3whEVdqId+n+0IyZTIpBuY2iAXuNzHgF6PQcCIoJV2O7SAoMg5hPm8BAj8WIAuOmLBEBikB5od3DPAZWylsV6Dfk9tRHTTGrEPIwkRsEQxnwmmeELqzh9HrBuIdQNTVfp8FM49VzGJB2LfE52CK3Vmi0DB7+FXr5OJy7rJijhvn/vUAFheYksVA4usAeAivx7dxjJOzZ9AtfEIrrn97Zicvw+5dXMw8zLA6PhMAidoI2TfpRrZz7BATWWMOPkCLrn5JXjLP/wLZpmBryUk2lgHNELRQarec2F+S0JMK9Ofv9ecoM9CePgwbNa9qvXaCLWC6IxTO4p4YEGlSuhv19bIrl+AMUYyHiN8mJELj93nYYGXYZriuPlaa4iOV8YYKZgYbe4EQIERSX/mUlosONNivO6Gd+GW9ZdhZiQjg6briHO2Io0SCimtnL+M0OzfpuxCUSRs5VHZQb3u6K1o3PYjdgK6MFBWpbRCn4ikWtMkfV0UinR5Dh1DxxyjZVvlCjR2n4XkxpGHAQAF/5RkC67AGCmPjgojv8YYk6851UFphN7PDgOEEhiyy/I067upsIfUIp26nvBxOmBk9swdqcS7OFJPyQXxwZsS+ODgbnGkDk3TlE7iVqrLDJBGo0ACQgi6LU8wRrQkhOY4orisJqv8WRxduBfF7jEkrBteTab5M6GaKY+84hX01zTOGDl9IwEvqibr6bFOuA0AQDAyCntuDus++8+Y/djHhNSIWjwYJKUFAAWng7lD/w49fwiV8SLGTCqBVXDnhfcGQAv8EdJspuz5NecHAyNCSivjZ6InMh5J4riveN9mUlpqcszXL9eykEBD2AgwY1AQdE3vfuV5z5qvy4IrADx+z13ibzGXkFLAfik9MES+c1C8REL4RCaFRuRKgP5BeozG6CgiVgjKytEVBkhp2ZyRQHhTR4La8i7MHPsReoqUReLI2FA1xbQzayUfqkwIfzb4ehzDFn4GHCzhnfHdxjI020a7PiHktOygheIamfzq5TKKXRobtRsW0KaAUNtk72ExYlZK6/7JLThUmRL+L7nzzsPMn/8Z1n/2n5E74wys/euPwP35VwF59TkZLocDUEBw44WXIFcsYcN5F4qiTOPkCXH+XMKFsyhW6i6U+xL1f8iPyzhft20RA3JfKpAEes5Bd5nHRzV6vMpv7LvnTritJk7sk14uSRKnTGVBCIxNmwXwQg9hGc1WA5qmY27HuQAGg2vZ0ZxPrwGV1p6+95wuhr3i516O577tXTjzmuvFa0am0L9aSRB1cE8tr9OBM0XjjzjVeR+B3/Nh38+b0vgz/8T9d2PxyCG4+lJfM0ZSyFPBKs4YyRQ0qxOTKI+Ni0IRB+c5s2M0wxgBpB8MZ5X2s0jpWE2OREiE5eN0r4pjHUlE19iJjPE6INnAbocBQp1+YGSuIRl2JGnjyNI+OO4hgK3tasMdL5zz/Xnk6VROKxeHKT8gAOgU6TnaB/YJma3hRdVuHwheuOgi8f9xBgiLXFdIWhIj3Silgk4cSKxtWo/Pbn8Gzt5CYxm9XIYT0PmQxDoCN6JedCtIaan5e10puqvvnVi/gR3iEsKE3n+VMbLSUGXQqpP0ODVNE9J/fH0CFLmq0f8cMJIFQrL/Vp/9NGOkm2o6aS/S4+k2l0FIwtgKw+sd2d8ZmZ7BLCvkPvbTnyiMkSfvMcJHlj0FyBpAt1QRwGffezJxJGeMLBw8oDS5ylhOMkboMfuRJZJslQWdlZGjnwlhRC58Fufw3+qyPLgQ099zjNJAxojapa/OLd0wkC9XhGRR48QxGKy28VDRwr1aG+v2fwHTR24BMBxgkx4jnowhs+BmQbK+zBRjJL3WiXuuAWR2Dice3wuSJKiMT+CF7/wd8Tkee/i9HnJn0vzWnpuTsd8AyS8++Hnw+dFZXkyzxtk1zIdL2FVfJ5rZ+oGRdI7K1+UZRYaTzwUigJH0+jVsNE4eF3txALqXxZzlTuj+7vcidMmE9Hl6Esyp637pdXjLp/+vaG7hc5hKaXmi5kcGSCWqNRXV71idEzqrOVYYMJLXOTAynOGRzc1qUwowwuMf9nnOGLFKT65eqh4jldLia4fMk/UkFE0Vq5LSYs8/z8WMpxgjT43/QeNnGxjhndn/SWCET0bCPEbK110Lg5nUnS7ouuplr8JL3v37Aqmd+JuPYOJd70wxRqywg6ReFxqdq2aMVLk00DJ0RwIjvXYWGHlyi4kAMljXyFR3CZs7J1KvZeWU+LBzOdGtwYMDro8aaJooarOGIgEM/EfukQq4jPoP49LLXMza92PE2wfHo5v5ahFmnmRz0/bl+S7PTwDQDZMXKwzDXJGazQc/p9iQvgB8BB7r+mfdKIOCWadQkFrcC/PwuoqUliOZE5EXQqg/aLGUijiNvwj93Rr9viRGrJxSfnwUTB5SaK56LIjsA0ZYstI6eRwXz1Vx7toq1lTpMzy3dR10ZqzteTpiX2oor1SAlB1tXfzGTdvxezefhbxl4PnnTkNnCQ+XOgv9GO2u7M4ABgfDHBjZe+ft+MIH34eHZieEXqczOwujUBAFyF5Er4sVduCzwjufb4CUPDp1YL+kgrOATU1qpPk6/Z1ID0BIAjufzwAjUqc3bDfE67ygYE5OAZylxlhXUWwyxkh/AsiPgVPmK+OTQveaDzuXVxKltKyFEXvwS2lZsEFDFLjbLRx65CGE5GjKiNgpWph1abEnrzczrCsHJd6169Nnu5wzU9RnPsKSlD7zmh3BnMj5y/Dy/cfnFAoiUS8wkzmAFr/tOMTx0hicM7fCEGbP8vyjSHouqDIM/JnUTAmitAwDs8xjxCyVoSeMgcKAkZDR4A0SiMBwpQ4fw7Rk99Uok2dqxShVabApGCNEMkZOt8bxwDny04wRdT0R5y6AkcHHmCuW8LL3fwg1VkCoTUz2dSUBstjLx9KxdFcvBxY6S4uCjXDZi1+GG1/3Zpx93Y3qEcHthoLRoycRNDuHYCBjhM6hO0Zq+MtRA18q0OdQ7VznBaHAlcCIUS6jfOON0mNkFUUB7jcUjY3COfdc8XrCwOzC+efDmp6W3X5K8YDLkXWXllKSFvrEJDbv/wqSpf1IKmtxU+1Pcfauv0O19YRY6wHAiF2EbMHPJpb8dzqKxEZqCCmtniJFAGhxGgjJgmayU1Ymx7wbfCyX4EiJJtU7vH/F0yofx9blr8pEKAuMKJ3oAIRhNaDslZGU0xKFiSHP5GB5HNbEgBgvcN6JC+//c+hs7SHs2XE2bkQopOOyjJF+b4RcjTGSuKmvBpzz8F9jdGknClvWi/eREl2/soUe3tHfXphPFdpVmRDB1uXMGVhgZBIBGnGDdq/TRhxFcNfMYmzxEehJiFpjHyqzMvk1ymWUOnTutToloMcKaWx/4+fCiyj8Wp47mcO///o1IITgix94Nz73O+9A6Zk3wV5HgcDiZZdhzf9+G2KbQI99VkhgBd0V1qOb3/5uvPHjn0GhWhNNGdz4VTfMvoaTFaW0UvtShMp0usiksfvt+1zOIUCYc4TEB4+PVE8OHoOrxVC/p4AiHDxdN5eS0koi2h07tWmLaNgRcmydtuigz45WhtkVDJCFPB0wki9XsO3yq1PXKssYGWZgv9LgMb7XacOcGMYYWZm1mJXS2n//PfQPGhGMPj5ix04V4gftk5qmCQmQzvISQt8TAHN9LY1DdcMQxRcOGgjGyJDO3JWYSXJEaBxjwEhigCQUYBtjne3q4LEWXz+yzAzXyaGkeEdF3v14Yu/dyC3dIl5T77s0X6fXrPLc58JaS9eTbAd+r8zWqTBcgTFC35PEEaKM59H4W95C5fKAlOwRECHseSCEwG99Frta9Lqrnje8oMXP9203bsW7n30GXn4pXTeMahVGEsLkLLZGgCSSckinA0Y2X3Rp3zUBAEt0OUcICDueqM3OfeVGw9HZdWLd4XENILurVVYXj1XKI/85YETXjdScXMl8vTw6Jq5x6LmpZ4kzRo7selQcv76Cd2O2KJkvV7D5EsoKfOyuO0Q88mSk99Tiq50vDMw7BeOlWOoD8vjnssc9smYGhmUh9D2cePwx+j1KDsPXB94gFEQ2BFCrHL+6jsh1nnbx8xh4ggEjLluncyfp7+m6uWqPEXVIYOQ4DCaldUpLEIOg2Lof1QZlLgyrewg/MrenxJCDwU2v24VRq0Fja1hsGqn38zmlAZiqWDi+dzcA6s0zvfUM0cQ3uYGyQkPPRe7SSzDzl3+JNb/3fgGMrCSlJRkjdH6obBE66H2prangHc/dgSKLZU7HGOHHPqP4jIh5z/Yeoq8OGDnG2CIAEJJEqLcAQKTFoknO0+rg+fqTAQg1XU83wihSn5QxkvYYUeOkytg4Lnvxy3Dtq16HWSbDDqTBZv7sllnjTX4VjJHsM1OdmKJzQ9NQZGCWyfYG7jHiVE5fN1KHuqdmpbT4II4O1Oizbq5CwcZWGCMArbeYjoPxdRtX+thT46nx/8v4mQZGPN6Z/R9gI6hDpYYtGQdw309/jNHffBeA1bM7eILgdzswR0clrQ5UpkgbpYuRarB1usELq3EUQcvRBSTSHLiMjaHH3KD2P8YYCVmiO+MtY1ObJoo+DxyGACOGaeGG1/0qrn/N/xIBrSO+D6kCDwAkLDEfxJhY9XGaOr7pXYhf29/Dc+u/jyv3f1AyRlYJCgkjN8Y4aMz3az2friMyO/j5R6yQShRgJGQeBDGT5SkoRXd18CJaa+FUqlgVW6YokIdeiIShGrqeCHPR0ioYI1TWhslXKIHC9jPWwc4RnPfAX+LsRz6BqFoTv5/PzKfy6BhMx0ESR/jYzevx5V+9EgZLcDe8aJPhAADEL0lEQVRPlEAcGlgSaHCb7kAN5b7j4ibJTNblVZevx8PvewZ+9brNMNgzEzB/iOUTNMmywxZibTi4yJ+xxSO0U6+Tk/fRml2LxLSgsWSKS7LZYUewadSAn+qeToAkiQjaB0kKWeJZoccaMOP0kTUzKXDNtB0R+Kga57xj2SgVseYP/gD1X/ol0anaS+qApiudcfL3s2DG3Nnn9B2fnS9IRouq00oSGLGPJM9YMysAI1xLu724gC998H14eGoEaw9JORDd1LCVUFPtGftRmJGi2W+agjGiufT1rIwWH0l1RDKPlpal+bq3DL/Qf6/tvJTSypfLYn7Huo6uU8Cfnf/zeKKyFnrMtPyVQmUcGQJsUplHHIgtmgqTrDaCco4ZOOdzTAoDiFjxtcG+1kgCxBqd/ytpwgJyzqNYheGw9ZZ1NHHGCIEBSfc+jZQWu8eh76W6l7M+IIAsvKy0xtUmp/ALH/hTXP8rb8KFz33hQENbt7MyMKL6J/Ei/tSmrTjnhmem9xYSw3cle8BIQmi5nMIYUbSe2X7QcgpYzlVgs8KbKtHAC8BexnR2+k8+BJ2xslZTJOPrdbexjPHXv068Prt1fep9PteHVuZmoVKFYZogJEmxZcpraTJ99n3fw87f+ym0o01MnKRGpfy5AihjJGDPbV+yzH+HDEsWWVIW+ykWCm8IEMedKeTxztSy0inL5S/PGjEwfSmVD4qXQpxduIVqCvPnfQWPkc7yUqo7P2LyjUmsytuxfXfIvBkUg/EmhnIxxEh0EKXuMdHhLD63aaMwQs+ul6LTXfGHKNa5dKC8F7Guo2PlMbl5jkqekQRaie6nuUwnbb5UFgUE1dhZACPFkphLCbs3sWYjCpnfB0uER6amhURrr9UAWTuHtUd/iGt+9HbUG3tQn5Vdl3q5jHLnKH2vX0XYoPdx3uVd1RwALqT+e9naArZOluF1Ozj0yEM4sW8vWvNS+g0AxksOfMtmsmxpJuCwQT2P6PziwEjzFGeM6NAzEi4rSmkpv1Nt7MTUljXpNzDfPT9m0krhQfykeQrLx4/BtB1Mbdoy9Jj5MQGy+910HNFwkRSLqVg2jqjPxbpzLxCviQYSQtA8dRKf/Z134Kdf+SIAKg9z/7e+huXjR1O/O4j9+GQ9AgFZAOWMkf+slJY1yRkj6vHFON0eVFAAxiSJ8cQD98o/JmwNZnFQbJmyEK9pQ8+bN1N0m8tYPn4MIAS5UjnVsGNlDNilpv0QxsgKz6xa6GnN0304SQxRMB30nTwuklJa6f2mM7kGtsraY3KogdIUol5T1XydEALdcTDJctBsoblbZE0xuiaubZYpY+XyYg3p8xmZnUX91a+W38EPkcRwOx5AXJD4BCLWba0CF6IAznKFmVoer7tmI0oOk0Jh14WzRroNn/rarcAKVIvHGy9UgRG7//9JhAD0GPSY5QWnaTQ0LQvbr7gapdExrNm8TbzOpaBVWUrJGBleJF7tUPPyPsaIar4+Np6WgFP2dn48u26j0pvbrrh6xd/sb1IoY/PFVOLw2N5dQt7zyZivq00f9Zm1A5sGhQpFqZgB2/hx9AOWumGIJoADbN1INblw6VQGqgUkJ5sX1bmTMrJn941EyOm+WNvH5ihw1+t2YIyNodRQZaC4lJYqi6l6jPQ/Xxxga5w4Do1LzLF6SmjofT4g2cGf2cDzUlLN6lBzZE3ThKoAZ+QIwFJ5zi6dq+L4PtqoNr2FPus3vPZN2HbFNbjsxS8T7ws9D5WbngFrZkbxlxsOBkrzdRrPLqjG65DXsH7GOrzhaZtw+Sz3NEufU65YStWC+D6mspBkbMrqKqk1iuDRH34P//C//xfu/9bXUq+rwAgAlH/vveL/A9MQ3kcAoBEuKffk900+ZN482GMkW5u68qWvwIXPuTllkK6CDny9vmiuhl+4ZBZnTTC575UYI5mmtXy5gme+6W248XVvFg0cFvNB9Zl0Y34k7X11uqGuTXa+oIBJsqaQFC04558PYHX1SH5O/Ppf9+rX41f/7nNC6vCp8dT4fzl+poGRLtNw/c8yRvhEJkkXDfsUbv/CZ9BjnUCDOtMHDbWz2hgZEUagAGBFPZijtNDi5AurYiMATOucBwdsLYo1Bz7TpObFjtUW8vkQwW0UAoYBIwqhBz40x4HPOqHzQ4xQAWDHdc/AeTc9R/ybb+BBHKWSSUKIYExki+1P5jhDQwfcAMeCAh5ONiByDaVbdXVJpdhcWDGtvRz1v4mbfK4SbOHFlZCrPBGlQ4EBIxHrnBgm98bprY0TJ1JdpgmIIqUVSTaKnjwpxoimaSJ5Lfziy1F62tNQuPRS1J91E/RyGfXGXhS8BZC1a4UOenY+abqO+hoauCyfOJp6fufqBcQmYDAgsNv0sJqCLr+3JEmkEauhQ9M0EbSEAQ00F47QQKnQOyEl7lZgjPARKp12xvQ07rjje+j1/m9KWsAwE/RY4Sr7+bmzzxXHCAwu0EkPD/qekN3vbGeMpml9lHQgLcNRe+ELMPLKV4r73olpMKoN8FXJnv/c2ef2HZ+Vz4u1gWhEnLcZedB1gsRO+5UMGnxdO/n4XkRhgETTMH5KdoC3Ti3BZJJ0VfMELt/1e/Q3TAuapslnNAxgJQHOmh68Dmi1EckYWW6iLczXl+GzJELt9nMKRdHJli9XRCJTesHzcfQj/4RHRzfgVrckisORwp6IElOCTcp15AXdoh4I0LhciQUQaZeKkjHSZUBGjwXYcSA9Rk6zJnEPCkcz4FTp9zmH7gQAtDljRDOVYsJpgJGcBEZUxkjWBwSAmOOn2zMKlSrOe8azmWdI/3OflQvqA0YUwJevVyWlg1uuIRF8LxFSWnoSQnfywmNEvT+i6511flUYCJmW0uIeI0oXOAA9l4M2UgOwumRImE02llG67jrYm6icSnVDWl9b6kPL49R0XcppKVI6s9tp1+KE24ARxmjsl9dV3TfN2EPAzb37GCOZe5GJJUThIAkEWwqQ0pN8LB07gu998qNYPEoLvoMYI5zl6LabmL6MFoS9Je7DoQ193qWUVgeHHn6AHg/vdmTdf0mii3su9t0hz+RgKS2maT1axBe8pwMAotlZlQQKZ+Mm8Rxl4wQhg6RIwlWnavSrlWsV6Ro6hQpG1k5hx8MfwzkPfxR6jd7rQd3pvLtc7ajkIGKuXBHXJkkiEJIg1hxEMWe7MSnLSkXKqDYasJkeuE5itK0CCiV6PXrNBr796U+gY4cs6deweIKe7yIDRiA6N9kx8/nB9tyuwjxSjakBuh/7tkMBa5UJuEr5CT4Hmidp4ZF2UWcZIyuALLohYvMzd/8jRtan5x6v4fusgzwO9yEiCcZm1+Hn3/dBCUCj//6ngREaX+SKJXGdYttKeYxECT2HdeecJ4/PMMTas+fHt+H43t24/5avAgC+9/d/g+//w8ew87ZbU787kDHyH5CP+K80X/c6HVF0S1JFqBCCJTSUMULnUeC6OLLzUeEnQz9P10ZeoIl1XfqL2M7QPIgzRrrLy2J9qs/Mpt7P10W+BgnpliGFyJWKNQXhURmh3aDnG8MUa+mgdSmvGNcD/UBzPDkp4hlAFg59ZS9XGQWy8E9EV3/p+uthzcyIa6axB77DClwcMNE0vQ9U1jRN5nmZYwOAsTe+Ac4ZZyBOdfFHcDs+VG+Yc254Jq546S+Kf+eGmLqL383nQXRN+Ix0Gj5r6lpJSqtG/1utYXLjZnGe6nt5AxIhEQItC4ycvnnxWW9+O17/kU+mCu9VDozMnwQhBGHgCxD7P+sxAqTndT8wokppTcAwzYGNAe2FeXQbyzjwEG2gOPPq61b8zezv5MtllOtjWMOK5Ht/QmVmn5T5unJ9s/4i4j18LywWhLzbwL9nxjjz/uCNBNNbzxB/4/cqYXMnQAFCjUCZz7puiPVdSlWGqBSkagfPx0LfQ+6KKwTLko5+KS1riJQWH5XxSWiajtD3EFWKIAAC1lQa6XqfD0h2cBAm9Dwp1Zx5b9YnyJycRAIpd8hjQTWefcm5kzj2GAVG1mzZDoDG5M996zsxuWGTeK8aH7d57LcK83UOohx6hMqVCo9dEqHQO4HyBTvo97vDZeNVOS2+Lmuahste9PMojdRx1rU3sL+y+JA9T0kc48sf+j1862/+AktHD+ORH3wXAPCdT3wEH33DK7FX8QoCgF5JXs/ANOAowIho3vxPACNSpjqEFbmIePMIj8GH7Dm1KXn+KhuLs1Emyzb+6EXnwOYAywqNdqbjpPYRO1/AGVddi3Ouv0m+xvJD3hhbWUVDrTrS5utSSosojBHNoP5YwOriGd6oxEEWTdOedB3zqfHU+O8aP9PASNDrwikWhaHtf3SIYILr5xOCxgmq2zysAyk7uJ6y22nDrNf7GCMWM3ge1HW+0uAJMmG6g4luIXBZoMzYD6ujicsh9Gd7XVjTcpG2tmwWG9qTMbTnG3gQhWnGCPG4FcF/yAdGMFEMAwV2Pd8XvApuzxLBwWqTSkuhPQJApzUgKXuSviW8cBSzzsU0MEL183mH7DDGDE/e5w8+kXo9UkCmMCACGNEMKB4jq6NE8iJQ7pk3YfZjH8W6T/0jrMlJmFVZpNbW0sDRsKyBhfLyGA2aeGDEOwRNQ0eSc2BFkjq/kp4wH6btiA3W76WTLE1jxexIQ2fZw51fplr81cZ+0Y00qEusmGHlRLomCmVBtQzfd0FIF6rxtj5eFYXvPmBE0QKlv9k/d+2MVFUggJHpvvcOLDC3mmmgplzqA0Z4Aqh2LmXv0exZ5/SBJVRKS70H7L7ELhJHg6lzhsPpgRHOmgGARE+ww/omDEvH9J4vY99XprDzO2vRPJJDTNLz0s7lxb36+5/bivc+78w+zWsAMOt1kUwvn2ij16TXwPGXhQfMxMbNskOyUMCWS67A1OatOOOq60TwWHnFL+LZV2zDTC2PvXZdeowETGaHEMTEkvJkSid5nmmu27GPx6wYbdLF1l3/gC+8/7fYb+bl93VoYmFpdM4fiEbFs3l6xghN3nKRB73GGFC7aZDfWWTmr+RJMEaE6bOf8Rh58lJag4YqpcU/pxbAQs8THiMj03Qd4eBP4+RxdBlYw4sNmqaJcyIkRuBLWSU9DqHn84IxYg4wX796XQmff/1leOvVFIRJMUZ4l12vv3CTxP3dhsNGSRTnlqDpOmb+7E8x8qpXovr8m1PvG2acye9xSyk223PrUu9xF5XCicIYMSJXNGZk16Rs8pwFYFOMEeU7tSQNjNzxL/+MB779dXz9Lz6I4/v2iDWQHzcgC1a9ZhO5rbSw4rfomp0owMigLlWAPn+8G3dyI+3ej9i2myS6uOdkBWNees6DYia6ht++4OPH7hnoOBa+WzXw8HoZC9obNwqGlMo8oufWb5xdHq9BS6IUYyQydPjlGiZm16DSOYyxpUcBpvE/iEk1yvxz5pWOSimlVUoXiIiPWLOpbA9JBDCSK5VT/nLlrZvFR1oFuWff8/UvYfcdt2H/ZF0UehZOJliOptGNaZcwyUhPCi17pmuuSrLxOayOIFeAFXQgJEx0XRZDTjN4bMMBF9VjhA/jdKAveybGf+fdMJhmNh8aM1j1CL0mGmt6OfOap6fYIsAAxkhKSov7BBXFdYpMU+zDhBAQJglbm0jnGjy2OrqXdqt2lpcQeK4AxrIG3+EA0+P/EGOEXTde4PqPSGnx4r7XbQtgJO05oaxJQ+Jsp1gUz8PO276X+lupRSVd+DWKNE3skSvJd3IZw25jGUscGMn4GnDGCKkzycPTma8PKYCZjiPiE0IiIdkaEwsYoBXPB8/3/E4HJEn6gAJzYowCI/z+s2sZsHXIYI0j4v3KM8DXLE3TsPFrX0XxxS8CAIzN0u76DrtHqozWIJDJWQHE0AsFzH3+syDqx0gMtxtI/X3DwI2vezPWqtIvpXSxNjs0TQNypihCdps+CNFkTjDgWs5sPxObL74cV/zcy2Falihuq9dExrGRQES1hO29q2xezK5b5dFxQNMQ+T7cVlOshZaTG/ocPZmhSulkwWR+boZpSuUF5Tc5ONReXMDuH/8QJEmwZsu2Aft9evRJaTFpqk0KEwd4cowR3TBEjDkywF8EkDHYyFh5MGNkGDDCJK4AmsPsUGRWZcNLCEIIPL02tOjM9wm+59RGElz2lmsA0NgsVyoL8Ni8+AIUuyeEX+BppbQGxB/qc0quuAKll7xE5JqUMcJki4bUe+SaIxUg+uXw0sCmOTGRktXjgJWmaeK+Lx45BK/dgmFZmNjQL0vEgRrOUiGEoLMKj5Ha5BQ0TUd7YR7f++RHceDB+6AbBrZedhUAYOLU3Tj3ob9G/hwq2zUsLgbSMau6L1/586/8/9h77zhJqnL//1Opc09PntnZ2dnZHNlEWHLOCCIgUSUYUMGs13xBr2K4BvSLX/Ua0Wv66r2Yrpf7w4ugKAaSIgILyy6bd2cnT+fuqt8fVefUqerume6qWrZ35nm/XryY7emprq6qc85znvB58IYv320nwBk69NJeDBefxva/PY7H7/0FXnjsL/bYsOyVLX/8PTLjY3xPwj5z1PLhAUA2pCEsSEBzKS0PCQUM9oxEM7vRM/RnZEMha29brvhuIo6KEXHMuxQlmATidFJakiQJlUNaVX9YyLW/jycam9siFVJaVeS5ZYMn3dUjb8/mbOopQjQjR3RgBAA2XfDyGTN0Z8KO/NpO/bF9pi5yo1Ja2YkJyC0tvP8HYAZGZEsXtt7jMdgGWVdtCzaXMycTuwF5Y9/fLqGfQmiBkAGyxFxIJUmuOyAE2AZ4uVx2aJkbVvm4Fo3V5YyqdZ5FRUasmENrTMOzxQVQyoaPihGrx0S6ckFUrAyvuqXO2IbPsjF12McsFw0ARb7xiNcIjDAH+h5rY80cv6V8DrAyokslCWWrZEhWIFSM1Bf5504WwQl037/dheeGn+PFkEqfueGPJluqbrLiXPd5FCN7duMrN78a/33X58zvGolwGaT0RJE3H5tugZQkiRu+UyMjrt8xTVkF//3VvyM7WUSbsgMLX7yXZ89VG0cxl+MEksQ3jw45JuaIK05Bn9/Pr4vbCblw7XrHv6ttlsT+RABQsIztahuYcFQsSbUyU0sl5NNp7rCWE0JgpOQMjLibADK0cASJtnbHmFW1kJmFJt4DphdeyiIdjkLTmdNsusCIeY/2v7CVv1aUZcwvPYbX33kquv5mOvSlYR17/tCOopX9LG7QWABvUayMbb+/H1967dWOvgMAEOnsQHLKdIJsfzYPwzA15EOFSZSssZtoa8eJV1yL9edcgGRHF3oWL8V1H/8cBtauE+Sk8tAUGTeeNIjdia6KHiPlkm7JVNk9Rhhs0y8XMviveBE/i+yHpJcxumcX8pk0wvEoP15xKi1eUmR0teGKETU7hlzKvE7KmPkMTo2Yc6bucJrU12OkmMshM+4MjLiDUPVIabkRHcAs8CFWjLANSCTZwudEtkHd+/wWwDAgK4ojOG5/fgnFvOSsGInYFSMOSQPrPOJSAccv7kDJcmhWk1/IuypGADujqa6KkVbbOQcAkZUr0fuBD0BxbSrYBtO9XiY7LKew4GyOHXcsem+/Dfn3/jMAwCgJFW1iQkE5y521Cddm1T3v9ViNgfncZLAAk7NihK17DFbhc3Dni/jJxz4EAFhx4qkOuRrm0Czmc5Cs5uPFjAJDNytG9CqZvYBgX2TSvD8Ac4CUJNMZoBtKpZRWrYqRKrYIC6bs0Q0sjeiYjIRgABiP2+NZXTjAN5kVPUZcvREAINzZAa2UcVSMlGUZscEB9PR32zJDMfNY1daDLlYxYvW5AOx+LtFEi6nTH2ZNO63AiKHaSTkwN6L8+RsfQ+dq28mfTrTyn5//i1llVtRUJNKmZNPuAyn8cvTDgBRBy8S2CslA5kxh42NKkHqbqBIYKUUT0Ippfr2n07d34866lhWlwiFeb9A3tGFDxe/kMGs6a94Xdt+0Ko5St8Nw7MA+PjcyuZWwWDGiKlC5LauDVU64g96sGleU8djz7NN8/PL3WTZYQanccnnJlHRXjPiV0uIVIxXN163Pq3GfJEniY+mpB52BEVZJbdvJMrSjzIzi6QIjtozhiNB43emQZY4Vw5L+YwGnWg7tWrZoJBYXNO1LyBQSKJd005afJvOX2UWGoSOXSfMxziuzWhPIKyo0SzmAywFZgRE17Dymoqq27V+w5x85FoPUa1Y2sMbhrJq1bGVSazWkpMQ+ftUoFd1V8yVLSsv63lXG+nRVKPabQggVxgAwKS1l2uC3Ggrh5e/+INafcyEAYP4Ks2qgTcisFqW0GJLV7DhcRWq1HlRN43PU+IH93EGcaO+oW9VhpuMzKpuvWxXOHZ08YCM+u8zOKuZzePx/fgkAWH3KmTN+pvtzmORbjytQ3EhvBfPczHWjVsVIxLKL5AXzIc2vTAqrFRhhAexwLI7z3/wOR/DKnUSQUdtRK1jJ5nxmWyOkoiyzc0ua85Q1V0srVkCWdMTSZnDcltKq3nzdXbXLYA7uNHSk3noLf72k2BUj1ZInAGuPYD1jLCBXW0rLHL9ajx0Y0cIRZw8bK1C+8x9PAgC6Fy2pOmeHXYkR2ckJs0JNkpBor51oGUu14thLzADtE9bzuOHci9A9aPqM5PIUorkRaANm8JbbxVXmplqBEcBcT+zvpaOc/zsK+gT+4+Mfxu9/9O8AgFOuvZ6fe3pslCee9C41pXptmTM7MJIJ2XMS9DL3y/ipGGHPy7y9v0OiuAvhiIRQ3k40qeX0j8QTfM0UK4rcUttcTniGRDv2nNRa+9z3oFEfpLtiRK7WfF2VUC6wipE6AiOsP06DbQAI4qXgiA6MaJEoNl1wie/jcCNVCGYwZ48XKS1JkgBNcGyV0ihbk2i9x2OwDbIhS5CsUs1c3pyoJL0x6ScGr/DIZqD0CxuOAdPoiSQSdWcFApbhYC3yhpCNDyujx0t/EfE8i4qMWCmHr7/mGPQUrB4R1qJfb7WMHewwDetspnJjplgO6JkWIgZ3HDEpLdjnopckGLqtXV1rI8gcKSwzTuwbko3Z96AE8+8lTUZ6zJKmqbdixHo2WQDA0HX8/YH7MJkZ5304jPZWx3vdMOd2emwE+55/Fnq5jF2WEVYKR7lswNRYyXbAz+AgZqW+2x7/C38tn0ljUjMbmKdLrTiwfQKhsIEzjM/AzBazAiN1SGkB5rMjxWLIlETHoLVJK0zB6OkBDAOSJFfIvcVSrY6MpmpVKmG+YbOMGWvj5s5wBJzO03hbB78+P//cHbjrxisxum8PJEWBZJ1fWrcy7FlmXI0N8Lxlyyt+zzbLpmwRe46sDW8ph4OhFJRyZQm5G1Y5xhzqgJWdmcuhvPVJoFAGZANlTQV0oKSbxp04LlkAb2psFM//5WHk02nc++UvYGzfXjzyy3uw7fFHEO/uQMuk2RtmeMS8LtHyCCQYKFnjMRyL44QrrsHZr7ulYuPKNjLsPK84uh8jLZ18jixZ/WoKWZalzpxo9j1hjqJyLgMYBuK67Vwf27cXkZDKpbSKaSuAYVVyGeWynUFfZ48RfWIEf2sxHdvGQau/ShYoFsowhO83s/NQkNKy5CUB08Au5mw5gVx6ilcEsmqAehANbrYxFmW6qmX1sg0qczbEW9sda4rojCoWVN5jBOU0CrLENwUOKS1X0ENsal35nkpnkM4ajzYopVWLcslubFtRMWJ9fzFrTZJltF19NQYvvxRFyZU5rwvjS7Xlj9wBF/HfkiTz+YnppQOmRNPW9hzyxb/z9xpwO8FsCtkswrE4zrj+9Y7XQ9EoH8eFaBi6ogK6hFJWhl4SKkZc8wcPVBkGhneaY5o1P4UEwMhDh3nPzYx6897XWi/EgLL9hcxxvXr/33DporjQa8C8rnIsBkMIlLvXdLZ2Z8btij0llcLiF36OxOQL/H2J17wGJ3z8g4iGNTy25Bi80DofkVbz+1VzenRaFSMHd+7gx2VBRHZd+N8ZOZTlEEoIwbACI+F4HLKi8ESK9Ngouvt7MR6yHBqW03h4907ev6KoqUhaFSPPDy3GRLkXhj6Jo578Cq/QYc6dEJfSqgyMVKsYKcZTZq8ELj3RQGDEZZ/IioL2vn7MW76SvzaTY4LPbYW8I8hr9mFw2qgyk5ysYmu5HeOlfJ7LDua4lFacr6ElWRKClYKMmFuSjUtJ2WvFC5Y9E29rR/fgEvQuWWZLuXhovl4Nu/m6JaXlKTAiSGlZPaEcFSMC01WkiDZjKBrjfQPymvk3zK4q5nLoeM+7AUxvcySEuZevLf1Ohyy7T3qreeyS9f1r9hhxOWBYQlIoFocaYf0HczAgY3I4izJCmC5gq6gaP4fsxAQPFKS6zHm4XMhj/7J1PGEIVsUee597TRelRMTACADkrXvM+ieUYUCXhIqRGnvK8AxBDLbGMgyjjHy6yL93tXseFmQSayHFInbFyFgeuiHDvpYz763OfePb8Novfr1qjyDHOmawasDGHH0i7H6NH9hn91ro6JjuT+pGfObc95uNPac8rP09kh2d/D3j+/chFI1hxUmnzviZFVJa1jFYAoV9Po3NF8uOPwmtPfMc1UMiXN1BVZCwKpyq/d5N34pVuOCWd+LK2z7hqFYFzDnOTiLIQZfDdjWTK7C48sRT0NE/gAWrzcBrMZ9z9PYChD6who7o+vU8maC6lNb0zdcBoK3XdsCL40HsMVLLWS3JMv8M9ty5AzBuKS1tfj8/rjtZhD1rO58y9+Ssv4gb9l3YesXW/HiqdcZ9xolXvgq9S829ZiTZghOuuJavz+Gjj8bgT37C92VFJqVVZT5mQT+guv9GERzv4ngv5nOYt3wljnnZK3ggbPczT/Hzue7jn8M5r7+V21mje23bO6faVWxtJdu+87JuMthcVpZllMIKtJYYjnn0k8J3q72ut1rrj1NKy1KF0d2BkdprJWBX9NfyD4Rd1dKNqtaIigGhqNh83a6GlTS5bplmAJi/cg3WnH62o+8NQTQLR3RgZP3ZF1Rt6tUoKpf1sA1SXjFS5yTCMohyU+Ym2IgKZZnFNMrWQu5VSqtkFLnzJFs2N2OGNH3JXi0cRsq8Hv5jucf8uZZzvBaSbFeYiNeQVYzEPfaAYedZUhQMhA0cM9iOywfM76pb17Pe784WcJbZny9WLiJyiQUypl+IGDHrOpWshuCGpKBc1DF2IINyWQJruDidjBjTJOfHbG3jRs5US4gvPrpkVQlpMtKjlvSTx4qR7OSEXa7JHEpJp/Hohm9WR0cwaTk7p0ZHUMzlUI7F7IqRSR0sk0CLTH9vlm8+EQCw5U+2NugD3/kGno8XoRef568tVe5HPD/kbNxZxfkcikSx+RVXYsN5F9njRpER6u93NEFmxnWoOAkjZh4n1tpaNRt24bqN9vGr9RjR7EZkhpFH2bpfoo4ow5l5EeMOg51P/Q3lUolnnbLTSBuWY8kK2NYy0AfXH13xe2YkiRturpldymJHuBtSmQUHpmnuJjbKtigqMkKZMeS/8QbzfJNArtd0inOJO+H+8KDa6AjvuZCbnMA333EzHvzuN/BfX/xXJHo6TTkYwdiKFs3nXLcMsUiN7CsAjooRAGiNhXDeuvkoh6zeL3n2f2vTz/u2VPYYMXQdKVVHrGQ718f270VYkyFb81spY/UC0S291VLJlgmZKTBiOc1zYwfxvtjrUZZkqNkcNJjzxdRIDjqEwMgMwV92/9JjIyhbVREsCJGdnMDWR/+MfCbNHalxV3XRTIibu3Yrc7eQzXAt9JE95nHbhQ1P0rXJdWej2fN2GcWSxitGxozf4X8f+g3fsDkqRljQw8qgYxvGsKvUW3yPCLs29QTTxUBwLQpC0Mk9NrsWDgIADmx/AW5aW6LY32Jfn0w47JDSKmrm/JTs6Kr4W/FehBMJLN98EnqXLsfG817GXzfK+zAcB7L6M/YfWmPf0fgyHEa35TA5+ZrrKwLLZn8q8/25qSlIln1QTKvIF9SaUlqKajs0hqzKiZbuHrtfmpGFbqgo5WwnHFB73FS3mcy/u+D5X0P61c+4k7BoDZvQ4sVIj1oOh3i8YtPf0tUNWVFQzOcwOXwQhq4jq5fRt+9hJCfstSd87NHQrO998Y++hvX//XPACiiHY5W2Z3v/AkiSjJyVzciuHWDPL7y/lpFHWQ6hjDCvGGHvEaW0NEXGvpRZ0VlMmc8lqxYBTAepqJkuowSt/Ceowvxl9xipLaU1MVwZGCknUlbSgzV2GpCeiLvGvCwrkGQZF976bv6a2Pi4GmwdGd+/D1990/X4zbf/DYCpK/5U+q/Qy3bgUi2a9k219Ux8RtncOGbJaeWFeYQ5WUsQqrisIJwpAej8/tVsu22PPQLADJK96hOfx7Uf/5xdidJRmczir/k6k9LyExiZhByJQE6lXBUjJrIkTZtBL17bEy6/mjs4des6s2tUyGXryoJlPUYmhg7wNau9zxUYYRUj1r6rpE6foe2e81kT7nAsxq9/qGA+SxO79qMsadP2GAGAiCVTlJua4GsRk3XOZ6aw8vKLLBk6AHAGO6qtQew8xCQUACha91jsKSj2MaiV0T5TdQezlThGyUwc4UHQynN0O2urIScTjsCIAbkueV2GqmkVTXhVVwISAMDaD1fLSq+XlGWLjR/Yj0nWeL0tmMDIdM3XF208BideeR1Ove5G/ppox0TiCbuROEyZoWgVW9yN+/qyBIBosoX3VAEal94784abcdMX/q2mv4U/a1NTKFjVvmKvylp/J0kSVp96Jq88qDgu+868otJKanN9z1OuvQE3fPb/crutlM87JCwBu7ovOzmB2ObjkJiyAiNVpbSm7zEC2EGt0X17ea8hwFUxMo0kG1sTpiw7xd2PhFWws7U69YpLEX/lFebvXOfEnq99W7cAAHqWLK/6me7kIv7MTyOjxT9DVXHx29+HZcediAve/A5EEgl7n9fWiujaNQCAcqnIneTVrl27WDFSJXjgeDaF8R5LteKc190CSZb5GrPraTMwwsYxACGguJe/VpIl9Bx4FJ3FZ7Fsym7aHkTFSFmW8HRHB/6iZVBQrf6/jsqXSroWDAJwXnfJ2viznqZsfp7JPmBrXq3n1J0oUmu9qAXbdzMFCqVaxYgmo8wCI3VUgaiahvPf9HYuxUYQzcSRHRg598JAjmM3ULYNRbaoNlwxMmEGRpSEkL1dTKNoTSaNlrGxCT+XS/ONGqseMKzeFo2Wo4lyDnqnPTHrVtVApMHACGAbRrpQMcKaL7JeHF6PWVRkxA7uw+QDD+C6pVa1TKjRwIj1faE7XldLdqafYmWIT+coFuEVI0Im4wPf/Ru+989/RLbUykt0p7vn0WSLQ3IiEk9wR1A2nnA4zADA0GS+uayn+Tpgb0yZbIiYJcqkHYqWgVOzYkTQfWaBEcCUpChHEzwwkpm0NTa10PTXcfHRx0FWVIzs3onhXWZm4O5n/2F+T92W6lkQehSlrCxkyEVqbtRPvvo1OOumN3HjqKjI0BYscDiAHFJalkSduz8JY6HVZ6SmfifXSNdhlO1eJdUczw6nZixeca3ZOcoqO6IVDKsRGDn7dW/GypNOw0arak508ovzliLIFgFmj5HhcBvvQTDd8+6uogGsYFN2EvltpjPuj8lVQL+ZKV1N4o5phk+NjjjkWpgBmM+kkVclKHoRWs7+fSRvBUasVapW1hkgVIwIm/2rjxtA2bqWJSt1mlWMgGcXC/N0KMw3GNcf3Y0VSXtcj+3bi4iqQLKenQILjFh9heIKBEfx9IYsCxoUMhmkoip2JbogAYgZ5rgaH8qCjSFJkmeUdWCfN37ADDppkSh3rD76Xz/DTz/9Ufz2e9/iGVTV+t9Mh+hsau/r51VbbI10N14HzHlEDI65nQ3sOhtGCcVymPeAKRlTKJfLvKeN5ugx4nTq2hJFQsUI75+VqZARY4GcemQdWZAgn06j6HJUMZi+v9gvidGzyOwLMbzzRS7hJTLZbV+rqUSLKzBinne1BrDivBJNJNHaOw/XffxzWCU0ZWWVioawcTGs/hXifehZtASXf+CjeOWHP47151xQ9TuytTszMY7oQjMTPDemQc9K/Dmotgaz+ZeNx2R7J5f1MHuPySikbdkWoLYdU20uZWtrNHsQ+uioHeCHAQNAeMlijFob49aeyudd1TT+vB7csR1/+PH38LV33IwDHSmUBbkjlpEPAG3xEPrbYvz5qxao1UJhng140OozwsYJS57h85iRgy6HUJQiMPSsdczKwAgA7OszA1j5frPyZqsYGJGAWOYAVMt5dFziB5g3sdOhR84lqVjGaBUprWoVI0ZLB7TipJ2p20B1srtihGlot/b04sK3vBuKpmHd2edPewx23i8++QTSoyP4x2/vh2EY2PrIn2DAgFG2AqilKb5OVpPS4o40SeJZr6wBu6PHCKsYgcH7BNoO8sqG4dEqgZEx67lrmzcfkiw7khNYg14RT1Ja7HjW89lIzwCGKKVlGAa07i4ezBCRZ6geF6vzNl5wcYWDLyoGRqxg8rQVI9bce3DHdpRLJSTaOxyOL0CQIrXmhlIVOSIR8RqHolG0W1UtYUFKiwXWJnbtgy7ZFSO1G89bDdgnJ+3AiOV8zk9Nof+Cc+yKEcNpx1ezJWeqGIkmkrado8jQrYq4WlJa0/UYASorRoAyCjmdrxvVGnTXI6WlpNoQFqW0DJVnfnttsKtqzop/QOif1OCeWqTF6hk0MXSA29/TNaFuBGU6Ka1QGCdcfo0jICA6LCPJFh4Y6RpcjA11+jrca6gYkGA2CVCfDeRmOjtUDJixOYlVRou/bxR2/gbv/8oaUlefP5hEWSmfR9adkJC098GxTZt4MkE1Ka1qdqeblFUxMr5/r7PnnqLMOB8BtsOaBScqq4OdQUglmUT03HOrHpcF4VjyT3uNXjT2+m8lRrD+InVWSbV0deOSd30AizcdC8BOSBODuaLNVK2KIdUzzxwPQn8MEUeQ3/LJnfOGt+DmL9/NK6TZHmqXVTHieNZY5X9JqC6TDITyozhlzyfQnbMrqb2MA4bGK0YkDEVjKELHiCXlqijqtOPlxCuvwzlveAvWnGrL48mWvfb07x7Ad977VhzYZspXz+SPiljXsFbAw73WNjpftvb2oW/5KqyypPzE/pAMSVNtqWLqG0Ic4RzRgREvDb2rYQ/kQsXvGu4xYm2CtZRQImcUkcuzjW9jjY9arQUuPTnu1CEHuNOvVpbUdLBsBKPHXFBCCxeiYDkqmcHf0PFYFqQkLEbWZr/a5rEemDFVbkkCpRJ2veWtmPjpT81Dq0yypz5Dm20odMlwOMyiGdsZwPqj1FsxwgMjepkfc8/ft9tvMGZ2PAO2nBZgGnHMWCiFIlBcTXNLIda8Mlp/0I7LhowBcMrDFFUFalcX8gWW5TODlNboCG+mCphOAD2e5FJa6YzEHQmh8PT3JhyLY+G6DQCA5/78BxTzOYxZzlux8mhB6K8o5RSUlNoyWm4iQml3eOlSZ2DE2lyFClNcp7lW9U3/6qMwuOHomg6cEKsYMcowSuZn1GqQKGY+h2PxivmLZQ7JIZeTw7oWbsN5/TkX4qK3vodvstVQmGfDigYp24zKVhBQLWUR6+lE2dqATyulVSVLraTIOKgO4EDWdC48174UnSvNTRfvsyGU78YtZ+zIrh3cMfKK996GM254A7oHTYffcNqcN5OTO+3zzpmOChbMnDYwUsWpsHlRO2BdypIVXeEVIwZzorllgMzve93GLpw5YH+H0X17MLptC8aNv8LQ0yhkLYmuknntl2x7mvcgmKn0ORSJ8s9ZEivghZTpSGUVMuP7RU3/mZdo9h3Gh8zs61gqxe8b6+Wy6x9/t7Nv51XKvE2HuHmJp9r42GISQTwwIujAS5Lk2Ky4nfyOHiNGFMVc3jS0reo7JkElOjntoEfabMY5TcWIXi5VZN7agZGZs8TC8Ti3CzJjY1XfYzeYrJyPkp1diCRboJfLGN75YsXvy0Ij9tG2BY61vWDN8ckqDhrRHhGdHuJ3Gtj+MwDOjQsbQ2LlTu+SZYi1pDCwdn3NTVxMWDsiVj+yqd1hu98Gqmd/u+2cZEcHfyZZECAn6NnLqlpTvlP8zrwSyShBKWV5YkNJ+NtSKITEaafxql+x2aUIq9YcenEbnn/EHCdTvT2OgEIxl8XEwQP426/v5XMLrzCo4fRgTZLdgRHuoOHOHvOel+UIz4hltlecB0bMOeGxs6/Eu09+M8ZOOgNj+/Zi7/PP2t/XDBHguKmvYXPie1iLX2DJPx7n10SLRCt07PNZM3DIqmoAs8eIO5gotfUgmh2G7SSu37GpRSKOsSFmUK46+XTc+s0fzSiFy+c2K4iRS09h/wvPc1uG2Qm9Y4/xir1qUlrM+d3S2cXlAFkDdtaDIRK3m68X8nnICm+na55Llec8VsNeApwVdHZFo9sZ7U9KSy/XLw/ohj2P5VIJxVwWandPVSktZYY16MQrX4VEewde+eGPQ1G1CjuFy3Hm87zKrlrwihFzVa4tO+7EirmBNy9OtcCAXSlWMzAiPLfRlhSWHrMZqZ5eLD/hZH791aI5Tif2jaIshbgTtlbPMLHihktpWY72XCYNtbMTISswYrh6PFUbR7wv13PPOF4v5qyErWiUO79KsgxYfZ9mrhgxn2+9XMbovj0VUi0co4xSXheqO6r0KJim+TpLdAl39fCKkcxEAWVowjG99QNVePJitcCIj4oRK5A1PrSfJ3xVS0jwgqPHSB0OWHEfH00mcdRZ56N36XKc/6a3113hISuKYw8gfm734qWO9wWJ+FwwG7+ly654nc52n45aFSO1+iLyqqtiAdnJcesYTjWE7OQEouvXI1lRMVK5ZwJqP18tVkXv5MiwQ0qrJAtSWtNVuVtzoC3HWr35em5yEo//zy/x4pNP8IBGpZSW8/mqZfPYyUWsYoQ9896CgcxXIlafMbtYDYerqjComoaL3voenHfzW6tWEsmCXCezkbRw2PHMsms/9OI2899VKkZEJMn0BZSyCqZ0+9lpRDLeDbMHypKMvCWNW2B+qRnW43hrG9addZ5j/8muVT6TxtD2F/h3m1FKi1WM1JKRdM25jQZGFFXFNf/yrzjvjW81z5N/NzvJWI5onvpXEkQzckQHRoJCnmazV6/RJS66hmFA62iHyrKFIhKPzIvOonpg2b0To8OQSy5Hj+XU9ZKNwSs8Ui1Y8PWvo//LXxa0sBsPjPAMUdmeLFnFSKPSXAxmbJXiUbRceCFQLCLzJ9OBwTLb6u2vwhcXCRBLAKNZ28kvs4zDOnuMMKeRAQOSlaU7lTEXHckoQy5bDRlncOR3Cn0sIokEX+gK4WhFMKxkOeITdcpoiefJqplEWanQKaeg9yO383s/Y8XI+Jgj639s317oiRTfAGZyGtj1DVXZWLlZdpwpp/Xcn/6AgztftDTnwY3VdvVFhOUMSlk7C0erY2Fn1zB22SvQcdONPOgA2BmgWnESRatnRLX+JID5fF3+/o/gzBturvp7jT9/OlA2x3itjHxHxUg8XhEwZMEbNew0qgypvsw4SZJsLXlHJYS18S9NWv/PoXegry4N02rPQ1GW8XhuEV7cb/7dGecfj9alZuYbb8gsHJNlgO59znTmxVKtWLzpWGy64BKuNz9s3Z/2cVt6yLA29GXL+ROZJvuKO54EZ7gkSZA083zKVmVHweo1YsuT1diMTE1iSgggju/fh3v+5X3IYC9KuT+jkCsChoGybn6urBfsoFAd8wdbB169pgXdG0zdZi03Zn7Wjj1gY6ieTGB2/yYsWZpYS4rPx0y6bGTvbp6B1HDFiHDdoy0p/kw89MPv4jvvfSt3/Le5Ai7iZsVd3SZKYxSNKArZAsQG4czJIgbY7KBHGaVCpVSC+f4o76kjNmA3dJ07EevJaJIkaUY5rVqN19nfM13v/S88j99+71t48N+/yX8fW2Y7KfSubmdgxOpPVm2zKt4LcZ02S/fNeUMpWc+tZPD51LACTo6KkRpyCyI8qD4xDs3qR5YeCvNnXZLkqjI+7r4voWiMV6IaVmVmbjLHnVuKOr0NxjbFdlVSEdHsQS44JwYzFvzql2i58ELefLOthpOAZR/ueuYpHLSe4fBZp0Nds5q/p5DL4qEffAf3fe0ubPnT783zZhUGNZweLDP3H7/7DXS9LGidJ/n1MC+E7Zg03FJarPm6FZQ7anEPnupcjDUL2vHQj74LABhYu57/fUmR0Tv2KI5J/ATDT8chl8tQ16/j14/BnaiGgWIu60gYKOayFb151K4etI1twYKd/2P+u0HHZlyoGnE7SerZQLN5ncleAcA/fne//QYrMNI98hhKPChfu/l6a8887rweP7AP+UwGO5/6GwBTGoldq2IuAzkWMqsqmVO3yrzulItx2s2OJrOuvxUdJ14akLod614kQUKRKJ/LR/fugdrdXV1Ka4Y1aNVJp+HmL9/Nn0d3cEIMHmXGLbmzadbIuNAbCACWHXdCxXuY5JmRakHf17/GX6/ZfF2Y82PJFDr6B/C6L34dR51xLr/+Ssm0YccPZFCChpkrRuw9H3OMsmeLBUri87usYGPJ8bfVHOVMWvbZh3/neJ1lYIciUW4DSoODUNeZ/RRqassLWfyP/PIefO2WG/HNt70Bj/+32Ty5lHP1GEEJZis+y/aoUvFdq2Lkl3d+Cv92y40Y2bMb4e4+hAoTkIwyDAMoyTG+tnt1mrF5wBACIzrbZ/ioGOGBkQP7+B4h6dFJ7Eb8rvXsUx1rezyJpcdsxnUf/1xNmaman2s9z0zqjdEjBEb8SAhVQ3wuWPDTWTHSePImINh2ZRZgtPZuNQIj4rzC1ja+pgpSWkoqheRgD2LpvXZgRLA1JVlG1+BixFKtNSuIWAAtMzbm6O1XrFdKy7VO1Wy+nknj/m9+Bfd++U6hqXn1HiOAWW1UsxG3q8cYS5JM1Kk+4YZXjAiBEWZ3TyfZtOy4E7H2jHOq/k6pUjHi3qPaCTKmXdvSZcvE1fJfFazAyF6rd6dcRzX+dLA97mgkAcjmeeStwIjqYXzVCtLM1LOSzfO15kHN1WOkERnlalST0lLCoYaarxNEM0OBEUzvKGm0YqRcLKKYzyHc1Y5Vz3wPy577f9ASCndQuRuMzURrTy8kSUaxkIdUnnD8rswkZjz0WRFLXxMnn4Tw4kUzOseng2WDllRhoalDSqqec8yn05j36U+h7brr+O/K1sfUu1F3GOSCAy4mBEaYFEO9xrsaCvFNiWzdGx3monFh/n1Y9MJPAcwcGHFUjMQT3HgphyIVgZG8dc8b0cG15VDGADjlM9SN65E880weNKkZGEm1AZIEQ9d5Q0zAbDyHljZeMWLqCbNMu5mv45JjNgOShAPbt2Lb44/av7AcHvO0Z2BoMZRy8ozNJkXYs6OsXgUllapeMVKcQtbSxawVGJkJRQiMGGXzutaqGBENRbNixLzWvKeMdY5azDkf6RLbAM78vZmsghg8Ulwbf7WUxaJl/basxbRSWpXVXiVFhjQ5if5Jc0479bzjEbJkdqrJSTGnOMsyFOdA5jwespyYqQk7u74lYx6/WLS0pKfZXFWT0gIAQ2WBERWGYaCQtTbW1vMVcjXuZBuxfHrKEUAc3rVDOGgBpXwZKKRRkqxqnHKx7ubrgJ1NN1/L4fxLTJ1VxXKgju8ZcWTSzwTbDDKnZizVWpmJZRjY/tfHATibH9aDeN1jqRSXRNr6yB8xtP0F6OUyIomkQ8MacN7npCsLkzv2jBJ0SUN2Mgu38whwOjkdQY90uqJ3A2AFB6v0GSmXBSO+zk0Lc9DVasBuV4xUX99Y/46/3vff+MvP/wOP/OI/+dzbtUZoQN3TA9mqDJTLBRRUVjFSOceLWWHuDSDbUBYcDbJLgKFDt9ZLMUAlNrethSjpFOq3nhtdEiTzQlU3l+K5MQcCsxFYEkFu3K4YUaYZM7Ks4KzXvgmnXnej3azWKCGasyUdHVUepndPqBipHghk6+72vz7GN9j5UkkQAzWdkiwRgElN5XmFQXW766izzkM4FsfQi9vw1IP/y6uI2bjhf1cWAneuwAhvvm5VRtx65lL8+QNnYX14As/+4beAJOG0V7+Wj4+iIqOYUVDKyRjfZr4Wv5RJLNrPjBq2qwpzU1M88MKc3245La2zFxIMJCe2WX9fXzUtQ3S4yErj2w02tzEZUAB45ve/5T/Hpl5EbGoL2kefnbZihElPtc3r430gDmx/AT//7McwvGsHoi0pLD/+JLtiJJuFHI9BKedtqZUq311cHwfXb3L8TrQD3IGAmCDd6alixPU3XjPAO6zqpuFdOxBZvbp6xUiD/UvcTrlwPMGfOTaXTmdzKKrGg6jRZAvmr1xT8R5mCxVyOcgrV1h/p9a8luLr7qpo9julbI7rkVEJhlT9b0WYrZyZGOdrAQuMFLJZ6OUyOi84A9XWtWp7Tqa3vvuZfzjkapmUVjga42O548MfhDxg3rta6w+bZ7Y++ic8+N1v8LVn+19NO7taj5Fi0a7uqGa/s/kpK2TIF7IZbPnj7zE1Moxffv4TMFpaIMFAuGyPWXZtvVaMiBWmDN2Sh/RVMWI5VCeGhvjcF1TFyHRSWtVwJKB4UG3gn2VdK/cxxAbsFffeJ3wsjI/bUlpiFr/PihGlxHwf1l6ohr0gPl9s3WZ2hzheASC6YSM2PXEnFNabyjW/X/uxz+K1X/xazYqxWEsKsqLAMHQuBQ0A5WgEJSspsJ4eI4y40P8NqLxmU8MH+T7dLVeoCEmI7v48zs90ytGydbWWUsRMsHFZdEhpTW8Xz4QYIDBqBEbcfrRUd6WUlpu8qmA0k8DekBlolKusdY3A1vTtrT08QceuGGlcTqrWGj5TxQizidnaU/H3FRUj3udLQNg/CRXpSiTE+8qQlBZxpEOBEQCyVtvwr3cSUcO2Pn1uchKxrk50Df8NC3Y/CLmjExMHTSdf0qWVOxOKqnEnmqGP2a+X8zww4sXoCFfJ/LG1sD0ERqyFtRQJcWe+MY2BXQ+8qqVcRqlURM+HPoieD38IsROOh24tIvVWjCiqKmS22sZ1OD8CyaoakCznVCMbVb4xLjszqGLFg1xXd6ZnqEJKyzIo9FDYERiRywWMWZJX81dVbhZnOkeWrSdmQLN7PlNQTFYUXnmiC07Gsf37ILW02VrKAHjGWR2ZA7GWFOZZmcuP/88v+essk3hx5GEMb34fctkQ136vZ0yK2TaGYTiCQXzjV5hElvVr8RoYEZyshm5eg1obK9GYDcfiWH3qWehftRanvspswMjOMRxzGjKGzDaAdVTKWO8JV5HSYhVsaimNFSsGUMxVNzpFqhmZRUXGkvHdUA0diCeg9vUhtNDqMVKl70DcpTUvZpIx5/GBF1+AEYsjkd4NHaaTMpYbNmUyrADOdOX4zEit6AcRtuYHSYZeNlDMMK1i1hzQVTHC5TGmHFVGWUFDGHICpUIZRnbC0iIHpIF+6NZ3rrWREmFBhH1bn0N4hekkj0yY9398pAS7YmTm+a1b0I4GWMVI5ThmFRPuyo6ZiMQTWHvGuVh7xjmIJlsc8mqDG47Ghbe+C1fd/smKgIN4nysqRniPEXOcp0enKuRGAOezKQY9pkZH+PdxP6Pi2GfoJfvY9W5abPlAOzDy8E9+gF/e+SnoeplnxtUal8wRcWD7Vv4aC7Yt3rgKurWd0jo6IFuNZJVyDnlrwzZT83W3zB2zPxyBEaMErZzlDs+k1VMsEk/YQYZpEPtTaQvsBsjMCV0rCCiOVZbdxwIDks6yFfPgfY9mGDPrzjofx15yOf88wygiObkDuvVciVJa7L6P8R4jNaS0Fg7COhh/LTc16dDILuayfI1kgV3ek6LGfBRrSWHzZVcBAH73/btt50PC1WNEtwMj7Jqw+Ydds5yVjS5JErpbIrxaZPUpZ6B7cDF/1ouKmQ2ZG9UAXYKxYADyoPn9xEQCSdD1Ht23B4ahQ5JkdFg9FyZcgZGWTvP66g1Uw4nEHYGRxrMoqznQxSBJ5/BjiG/7OaZKYW4fVKsYabOCY/OWrUSr5UAYenEbdvz9b9AiUVz+/o8g2dFpO9yzWcjJJJRyDpimP4Ioh9m7ZBkPJCqa5nDeqK7se7Eqwlvzdecc5lUrvcPqDXZw1w60XXctlEWLKt7TaP+SCpkXIYGIrakzOXtYlenSY4+v6jBidk4ha1c5uZ2FIqItGnM5IHlgxJLlG8+kIGbD1m6+bjX53Wc3+W0RHHT5TBrx7lRFfxEAUKvsOZMdnZi/0qxW2/LHh/jrrPm6Fo3y9a+QzaCQqy3lCIh7PPP6cOlAS+KvsndWGblSjO9bqo29ahUje5/fwisTh3ZsxyPbzf5gkeIYAEAySpDL5pzqtWLETqQQ5CGtKkg/FSOJjg7IigK9XOJBu2oSll4QM6frktISK0Z8BEbY3OBOnBD3dqzyICiYrVLM57jUsmj/eUneBOzvILH9tcHUCKo/R5IkcRthdI8plcUTM5gtw/a6mzYhVJziPQzdc5KqadMm4UmyzG1ENqYAoGDoKFs2xXSBEVG2cu0Z5/LxyT+/yndkVbDhmPO8xGetloPc/DtnjzEWJIq1tNb8m+ngCWmChDGvcPMaGJEkgIUarMCI285MugIj01WMsPm+oMqIFfNYmLCCF1VkvhqBzY8JwfeT15jEe+PrsehXEdeomfaTa884B6/88B047tIrqv5eFedxSfYcnGZUldKK2sckKS3iSIcCI5hJSqu+yV2SJEdpdaJX2BR1dvIMoEYrRgA741EXGlKrxQxKxsza+7WwJWPsSd2flJb53QuRMGTuzK8tQVAPajjMN9PMOdB+3XVY+K1vcXkdpYFJmJUUig44rZQVGiSycu/6zzeWrAyMhKQ0lFKJS53N1GOkra+ff89IIsk3eIYrMCKV8xi2dFMXbTim/nO0jJ5iPodiPudw9LHMLzswUrsfTLXgwdi+vZDaunjFCAAozAFfp3EwuOFoAHA0sGsZ34INw3djIPxX/EfpZAxlU1wqo57AiFgRlZua5E3pTCzjujiJjLWp9hoYcWT0G8yBP30Zs/lzDN2Di3HV7Z/kcmLpsVHoehmRpPN5MaT6AyPsPY4eI9b81jn8OObt+T26h/6KcEcbdyzPlL3JjsmMvZIiI1Uwr1t0+TJIkgSlsxNSLFajYsR5bcXgcOeCAciKaja57mqHohexZkMI2zCJeHovxkNR3htiunJ85nhiFSMTB4dw39fuQl7o11Iq6ihMmffIqBEYYc//6L493KFQYeQaRRQLBkpp+3mVTzvNrmKrY75j2aFPP/QAJkp5KN3dvNn8ZDbaULPj+StW4agzz+X/VkPhmllTkixXVHbUw3lvfCvOe+PbADgrKM666U1YdcoZ6FywsOJvxIzBih4jGqu0Me9HdiLv0A9nuB2xbGyNW7JhsqJWNheMVQZGxAboslrfhog5dVkg2TAM/Omn/w/PPvw7DG3fxjeXtUrTu4UMTQa7dp2dKQwlzOOrySgMydoAlnLIW+u6u8oGcDVorRUYUZwVI1ppivcEWbB6HVaedBpOue6GumQEeMWIIKUFAOVpGq+b5yYERnjFiFNKa3KsaCdP1GkjsCSL7gN/wsDOXyN+xSvNb6nY3yWfyaBULGLyoGlz1dLbTrR1VFzD7OQkz3gEzIx0tjay/+enpu8xAgAbz78Yqe4eZCfGoZfLUMNhRK3KTXZtJEFKC1YVDW/QHovzyob9254HYD5/e559GgBwzMWXmcdivbQUGaWMgsKUee/DixZzSRP3HMfmc1b5GW9t5XOCu2KktbMVgH2/Z7Jl3IjrqpeqhplssZJsOjug206mas6szZddiev/9S6sPuUMdA4sRLKzC6oWwsJ1G3H5Bz7KZWZYUKWQy0JpSUEt2/NStXMRAyNt8+ZzmcK23j5H5mtFxYhwXTw1X3ftWTxXjPSbwc7hnS9CkmVeWeb4rAaDLu5xoYZCvMKZOStnCoz0rVgFWVGw5vTqciuaIHnG5vnp7AMxaO+ugmX3VdKzkIwSDCiOtahWQI+N1VErAKtFotBCYf7d8uk0OvoTjn55/Hxq7DlXnHAKAODZP9hyWtUqRgrZDAqZ6fu1uBPmjr34MkCSkB4dQWZiHEWXlBaMEnRo0/ZWYXvNiaED+Nqtr8XTDz2APVvMOYkFoLfuNKvLWEXfgsmHeBAjiIoR5lBmiYF+AiOyrHD7G3AmgPlFvMfKNMmXDNGOYLKLXmC2VbUkt3Nefyv6V6/FmtPO8nz8qp8ZCvG5nqljRBIJfg7u5Kh6Yc+wZFUc8QrTaexi9tyyAA0L2nD/jFV1Edu4AQZsWe5G1zbA7tnGemOa5yisRbHae9UFa0ypy6MvuhTn3vyWmu+JJJJ8jLN+fqFo9ebrQO1EEMDZYwwQK0a8PfNalUp9W2LWe2WCxGswyo7PYbj9aGIQLuoaO0x+tWCtGcmM+Z3r6d84Hew5iwuVvywpycuaLioUHHvJ5fbnRKafMxVVxcDadTUDKOLrSiTqSz7M/DxBJcN61pWoPXYa6UNHEM0IBUYwk5RW/ZO7o7lXp+3UUDtboZfLkGS5IQkkBivJL2GSv6YU0yhaTfQ89Rip0kSPO8c9lFWyTUIpZFeMcO1Oj8awJEkOaRuGXi6jYBn19TYgF89DLtnHUko5xNPmxka2FrhGNBL5tRKyP2PyKPSSVLf0k6Kq3LEYS6W4gWyoGpSyvakySrtRKpcQSbagd+nMMigMswmfaZhnJyYwNV3FyDT3Xsz+ZA7KyYNDUFIdjoqRxNQO/r3qYfHGyiCPUprCwrEHMWok8Kn7d6M1P8XlUuq559wATKddMlpCJVNhChmr6bdXw12UmdBhST5FawVGBCktYczGWlshSTIMXUdmbAyxlHOjx5uP1zEXsflKEySimJEWzg1h1ZbvQyulYcTtY9VqZMhgY7tzwSAAYF9ceA6Wmc+hJEkIDQw4JHb4e2Jxx4ZYNGIVVUOn1Yh6MmV+zrHLCrho6X5IMDDU2WcdX562YSuvGLEM9D//9P/hb7++FwcsKSEAKBXKyKetwEiNrMguK4t82+OPmN9DCzkqusw/LkAvAaW0PR9HWmJ2X4w6nLx9y1dh8dHHwdB1/OH/fQ+xozchnB8DAOiGCh5UrjO4ePprXsd/7uhf4NgUi5ue1p5e3/rSq089EwBw7MuvmLZsX7zPFVJa1vPB+jplJ8uAQ8TIpEKHOcYCI2bPgUgiUWHoR6oERnQruCbJctWGkNVwS2llJyd4gHX8wD4+d9ZykLd291Y4bcSg0j9OvxSPdi/Dlr/8Cs+1mI2vlVIaJWtdr6Zt7ZTScq77apWKEcMoQylMwbDGZTgex0VvfQ/WnXX+DN/ehK0HmfFxKK2tkFmfF1axOUNjYqDSMcECyFOTutD4tF5JTPN9SikN2dDRd/UrofX3oyT8fSGTxsTQfhiGDi0SrcgQZ0iSVDG2s5MTjoqRQjbLk0dyU5MoFQpcMmBaaT9NwyvedztOvuZ6nP6a1+PKD9/B7Q9mrxm6GBgxP1O8bj2DVsWR1Rsol57ifaFYsIc9eyVFRrkgIz9uPgPxRQt54M5tw7J1aHi36WSJt3XwDMyJYVdgJBmFoYoVIw0GRvxKac2wNpVkGaliBpLleJVkuao9L8sKOgcGIckytHAEr/8/38Ct3/4Rrvjgv2D+ilX8fXaPkRzU1jbTlp0meCfaS23z+ngSk1tO0+0oifsMjLjXBS/VOADQaVUKDVtBMjHzt9ZnzYQ7UKxqIf58jfEgwvT39cwbb8brv/Qtx70RYetCPpMVnvPa41GSJG7Xx1wOY3b9DUlCPGcG3JmNqKpqTUcSk/tikn1sXIuNqDv7k7jozZXfoVawadnmkwAAe7duMauddZ1XzIaEipF8ZuaKEXF9kBUFS47ZzNfroRe3VTRfN3iVjOWMjFbeo1R3D89snxjaj99+71vY/cw/AIA724vFAsqShMXbfo6B/r9j2fDPeGDeazaxvSczYDrkdJ6E41ca5oJb34WjL7oUANCxYKGvhswiDUtpCXsCX1Ja1mdVC4ysO/t8XHXbJwML/oi0uNQwtEgUF731n3Dem97uKSEUsNdDw2BrsvlsTvccuecWVgEk+mcAQFu40CEd2Gg1JGAn/PDemAKhaHRaW/PYiy/Dm7/+fZz+mtfVnGOu+NC/4PV3fYM790eswHJF8Fl4vqaX0rIC/7xixAoSeZbSqqzUL8xQSV0XknMMuu9Nor3D7KgOS2VjGruYSQeXW8xnKW9dQ6/JBPY5Vc6PvMeIh+DAhvNfhrZ583H+m9+BxZuO46/Xu1+phXie8YS3Xj8izv2jOR55xYgkBd6/iCBeaigwguknyOkaSLlhxkx2cgJKu70h1NrMySjZ0elpMmZZaGXYjh6Va276qxipKqXloWKE/U1RU80sOwibC48VI4CzgSAjMz4GGAYkWW4oiMMMJtaEGgDUchZHPfV1HPfnj3EnXSPny52OhqBnL+cdgZHpHLqMM254PY57+RVYuG6T7XBRVUfFSLlk9l9YtH5TQ4ulJEmICpm/YsVIPj0FwzDq6i8jbuZ7Fi2FGg7DMHTosoxQYQJ9ex7CEjyEUME8fr3lpD2Ll1ZkrJRkGUZZwo7RLiya2AcZhh1oqkdKS9icugMjEJqvpy15Ma8VI5Isw1J+4vJf9VaMMGRZ4U7YqZFhxNuc47nMKlzqaJrGPkM8PsvgYI3REY1yKRxZUWbMCGXZrT2LTUfdWCSGz5xwPWLHb0brlVfy94UWLqy6AZYkyVE14t4kMcmhiYilV7t7D5ZuMxviDp5tVlaE4/FpM12YgV6yDPR9W005h7xkQLak8spFHZlJZ2DE7XjvWWwGelhPkXh7e0WPAsMoolQCilZgRNaLUOO28VlvVuTJV78GkCRs+eNDyC9binDelohhWZv1GtihaAyv/cLXcPLVr8GqU85wbA5WnXw6/7lW/5tG2HDeRbjx81/FKddcP+372vrmQ1FVJDu6KjZJbCPHAyNp1JDScl7LiDswUmXtCwlBUUbZktJqpMTdbr5uzmfiPDJ+YD9vCC2W8YtIsoz+1WsB2L0WxKywN3zqnTj57ruQn5pAUdEBPYtIxsy21cKRqgEXce5zVzuw584tpaUWhfWuQccUqzbMTIxBkiReNSL1mk6QWkkPog2RsHqlMHkQ1k8jm5XA+z3VWzFiva8sS0hHEtD6+rD4v34J9NhOmVw6bfcX6emddt7gcloW6TFbos3979zUpB1sk6QZbcOO+Quw+dJX4uiLXo55y1bw1+31wV7b2TURrxurONpvBUZYJm4s1WoHWaxxXrAkAzMHzPsbGlggVIy4mrpazxWrGEm0d6DFCl65K0ba4iHomswlEkNVnKXTIfYYkTxs8N1zqdt+LisSOopTQhJKpK6MSEmWq657Yo8Rra3D7DGC2pXEiqrh+MuvxvpzLkRrbx9vQM7+X+t7iIkYXrLo3fZKvVVwbjqshJzxA/tRzOcclXWMRjNA3YkhaijEnZNMLmSmAJuiatM2BLZ7jGT5HmamprJMh7+iYsRaE8qyhNgUk8Uq8/OoBd/zWOOM2TgR154lFDUq/rbWOpRoazczvg0De5971hG80KJRoWIki9zk9Ps1cf3oW74K4VgcXQOmVNrBHdsrAiNcporv26r06lFVvOZTX8Qb/u+3EUm2YGpkGC/+zexdNrjhaD4+C6qM8MQoBmIPmmOoSsJMIzj/rsT7QQI+HbAwv9Ppr3kdXvOvd+Hy93/E17FE2HNVbzKGI+nBg5w1/1zrWnlRfvCDmAgDmGN04boNWHv62Z6PyZ5tAy6fwjR2nGM+lSQenI8JUlqGrkOSJCy45z/5+7zMw9P1o5lO2o8xk2y5LCsIRWN8f8iDpG4pLWF81FUxksmgWMjz4/mtGCkXi9CthB6/PUZM3IER51ykqBqXW3QH5MSxE47F+TpStK4ZbxI+TWJLPVTzE7Hqo+l65tWirbcPN935Vaw57Sy0983HvKUrEEm2oH1+Y9LH051nI/7MWjj7XpoBQVYxomrVew4SxJEEBUYwfbaV1kA2SiTJFt5JR2Akq7Bmqt6yJpg+clG2jUHW7FsNhRvO6AKcjmN+njM04J4OthgVZUlw5rMeI94DI6w8XjxP5qiKpVobChCI2ab8tVIWajmHRGavIA/SgJSWZVCI2Z8FuYifF05oqCdG/6q1OOXaG6BqGjdeJMlwVIyUdDPTYVGVCosZzzNpN2B39xjJZ9J8wzqdtq24UU12dHEDTMpPQVYMrNzyAxw39RXuRKnXCSnJckXj0rIiIz+uQrsvjzsfugsAoFvPQj2BpkjM1leedAdGrCoCychyR7rnwIhkF/0yamWQixsf93uYgT01OoJwq/07wyhBt7KR3I3Cq7H+nAuw+OjjsNzKPARso5llR2nt7XxTXE8G8MlXvRobz78Yq045AwDQF5PwmbveiYXf/jaia+1eN6GBgapSWoDTEeQ2ZDutzXq6xbxnY/fcg/TDDwMAkkeb5eYzVcWJFSOlYhFDL24HABT0Em9sXSroyGWsDRYLNrkMxe7BRbzBN2A5KiqkeEoo6xJyk+acJJeLUCyj2ww01Zcx0zUwiPkrTE3xqfYU1HLO0rQH6smMc9PaOw+bX3ElQpEoly0CgEUbjuZzehCBEVlW0N43f0YDONaSwjUf+yyuvO0TFb+z5UvM+5HLqbx6QMSd/WdXjJiZvdU2/5EqPUaYHFsj2UxsvmO9f8SeM+MH9nO9Z5a4UI3z3vg2XHnbJ7gkzJRQMaIqMpSsHQw75tGPo2/nr8zP7uisen1lWeHzn/u7szHAmrebFKHlhc9s0MkZS9k9RgzD4H1G5D7zO9d6Ph09RljFCJPSMph9IDUspaXywIiM8d4BSJIEORzmQQDArBhh96aWjBajb5nZ34cFsMouxzALRgCmXcf7i0RjnjOL2bURJXbYNXFUjLAeNZaUFgtaiHYkmxcLViZgYcJcc0MDA7bWt7vqyrJHeGCkrR1Jy6k1vGuHQ/s8HlJQ1mQeSG90wy/O+16SgtzrU99yZ/Z9SZYhOWRL/WWPa9zhnoHSkkTn8N+hWBXGtZ7Rk658Fc5+3ZshSRJWn3IG3vS172HDeRe5vod7PfRXMbLipFNxzhtuRd+K1YgkWyquS73EWlLm2mAYGNm9i9tD4p6iEblaoDKBQ9FCPPDGmEkeZMbPsO5zMZvhvZ6mk7YD7CCHO1uerUW6JCHOAiN1OGDd+6S11hzPbDkWnK2QrJrhuPOWm3PSni1Pc1kaWVGgaiGHlBZvIl1D/lbs68Dsa95n5MVtvLrWHmPmd2a2kVrjHkmyjGRHJ1YLCRdqKIyuhYv4NSmEreqc4b0QpPM9ZeUDrr2EUeINs2VF9bT/rUbXwKDnfUA1eO+aOs+PJX1AkuyfPaBwKa2XODDikmhtRM2hFizwr/O+oDP3rxSfsURrG7f5mI/C0HXkrHXcSLVYf1NfQN3NdAogfu6hG3ePPvdcJwZwU73TVIxwKa00l9GSFXXGubMWotOdVRsGERiRXBUj1YIQrAox5UpMijgqr1p4cg+bkwwuedy4dJrIdHvnIPpsXP0vn8Yb7vqm78CveJ71JFfOhGMPZZQhlwuQrfsT1FxMEIcTCoxg+hL/RhZ3lt0wNTqMdCEPWJvJtBVJdzsE64U5s4pSgW9aJavqYTpd3elwV4zoepkbC14yTdh3LxgGZObM99Czo+Z5Cr1Q0uOmo6dRI5YtrnJZDIzYmxYW7W9kUeOBEdiOmfjQCLRMiffEaFS7lBspekloZJ9H2RgDACxct7Gh4wG2g2t0z26H8yc3NWWXFocj0waxxOud7OzkgZHy2EFAs3R/c5IdGGlAm3rNaWcBksSDPiVZQjGtQjIA1cr21i3nc11SWkLWXmXFSBlaMY1c1MqujUY96csy3KGRWpmLzoqRGoGRkWGEWoXxJziL6wmwLVizDq/4p392zDXseWZyKEpHB2+yW8/3Hli7HmfeeDO//3o+i7Z45RgJLRSktFwGUkJ4dtyZZUynt5hMQNI05J9+GkYmA6WrE3qXafxOJ1sDiE0A8zi4YzvP8i4U87yPRSmXQz5jPUusb4vrWdLCEa67DpiOPTbeuJPVKKCsK8hZFQmyXoBqlRI3Otex6pl8JIxSKMLltLjD2KOBLVaMdA4M8oz1roWVzXUPJT2LllQt7Vd4xYjtJAff/Nq4HZ1svZsYYoGRyoCZqIMOAE//7jdcs72ROYk97xleMWIHlMcP7MMoC4z01g6MxFpSWLD6KJ7xlxECIwAwZfUeAwBZz/CeONX6i/BjWnO5e/1jDgFdcNgv2Pn/oX/3/wIw54FGN/+xllZAklAulZCdGEdkhfkcKQML+DGr4ewxYjV8TzqzP81/NCa3yd5XliW0bzSDpoZhcL19wNS4HmUVI9PcG8DU9H/Z29+Li97ynorNOGBVp1rkpiaRtbK0vVTpMphNo0MIjFjXRExM6Lb6Xozu3YN8JsPn7JYu28nMpbRc82NowQIUa0jtsL9hCSaJtnb0LV8JVQth6MVteOqBX/P3SpKEUkizg+oNzm9ipaC35utCtmM8jv5VZiCeBSNZpUi5gerc6WAZlfl0GnIiif7dD2LgRTNYWW8lcTWZGvffsvVekmVPshuyrGDdWefjmo9+Grd8/fs8iOaFjgWmnNbBnS/ybNpwWOhRFkCPEXez3EYl2dw4KkZYsHIGG4FVrbiDpTxxJKQhkWYVIyyQXl9gJN7axqWkehaZ43b/C2ZAU5TmY0znLGfB2j1bnnEENyVJsr93NjOj/G04ZgdvWWCESYUOvbidB2z4nMP6qvCg0PTP5doz7P4vvUuXQVFVnnmesxzOsYkh6ELjGi/POmDOQ9whZ5S5YkIQjr5DBbvH9Y6fVHcvYqlW9C1b6UvOiz2XyU5v/gavpFz+jWACI+azqUuuZ3M6KS1hbhHlSFXN7pfIkkDZGPAasHNXjIg2WT0VI/Xilnp2V+WxajhVCyExjSx0WJDSygoyWl6z/MXxzPqM2D1G/EhpOc+n2nrBnm+3X00Nhfh6G0km+ZxUsPx8bI8q+5R8mu6Z8aOSwjCToPytk4DzPP0GWQC3tFfZVEwImdey0SQKgmhGKDCC2hs2NRRuKMOUGah/+dlP8PW3vg5TJx+P0OAgMlbGt9shWC8tXd2QFQWGZAAGk29hmwFvG3S7+Xra+v8UbxrmKTBiffe8XjrkUlpMCqrRwAhbXGWhWZZasjctZQ/l3mzRtbNggfahfdi8/2lB3qGxxYhtLI1iXujXYv5fUVRP+rDsPFkmPTO885k0d5DMJEsmZq0k2zvRbml3ZvZuBzTz2hWnVNsB30D2wMKjNuDNX/8+Tr3uRgC2o0OkbDlJ6pLSErLGRfkawJRR0opTyFnObL9ZYjKElDhJqumccfYYqVUxMgwtlYSsmw4KllWshsOeNVGZ8cquqdTWhgfu/hoA87rXC3sui7ksL5sWSZ59NiQrW6miYsR6dkLRaMV35yXumSkkL7B7HyROORUFLpMxQ2DEGrOlQh77X3jO+cuS+XyX0lMo5MzmnawZaLVniTXiBUynYf/KNbjlmz/kz6ZhFKHrMvLW3KmUC4AlZdPoBos3+B4fQ3b5KkFOy8ra9LphszaE8bZ2xFvbcMYNN+OMG97gkNU6nPA5Vhez5meW0mKOEF4xUmX9G7QCWf/43W/w7MMP4Vd3fRZ/+PH3AHgLjKTHx6DrZUeA9eDOF/m8MpPzHbDvs9jfCYCjmq0kS8haTVqnqy49+7VvxqnX3VgR5Kq2iWobeYpnvHvJkBNlcEb37kHH616L/q98GeHjjuW/r4azx4jVfN1ywOlGQahKaMxGYO9TBgex7r1vM4+Qzzs0vvPpKd7LYDpZCcBcB1eccAoS7R2ODOtq5KYmebWl6PBvFN5jBEUYhgHDKPMsbfG6xVpS/Dk4sH0rbyYrShEy+6gsrC2GLEHr65umYsRpjyTaO5Ds6MSJV14HAHjgO193POulcFioAm1s4ytWmeqlyvE9E2IgJpZqw7GXXI4zbngDTrn2BvOYVrKEKKXlByaLl52cQCniDDT6qXx2/22yvQOnXHsDzrjhDb61zv3S0W/KaQ29uI2PI/E6yg33GKkmpRV0YMSqnMjl+N5gJkfcxe94P6785ztq9n8xIhHE02aw26jDASsGMdedfT5/L5Mc3W9VehVzjQVGWMXI3uee5XKQbN1j3zGXTvPASK39gCwrOOWa63Hcy6/gsnxMSmt414s8s5vPOXz9nfm7A2aSBZMeZcEc5pQvtlrB+/QU770my7Ivhz+zYw2UIFuJgUE43w8V7HzrdcBqkQhe93++jqtu/6Svzz3t1TfhnNffWrV346HE4d+QpECcw+zZLEuGZTOwipFppLSEz026+rSxPS6rluBVUx7XDXfFiFg14zVptfrnOO2NCikt61lL9fROO8ZCgpRWxmfjdcDq3eTq78jtjoAqRmpV4S/ffBLirW1Ycszmit+x5yaaSPJEorylea1a/Vn99sKY7vn2W40SJI6KkQACI4CQDGrokPUil/KkihFiNkCBEQCKa2PCJtVGm7q5o/rGRRdg8a/+C5OWBIeY6dcIsqIg1W06HPXymPmizoxab4ERd8CBGdnhWNzTghGxZDLKug6JBx4aa6xa/biVvVCYI7/RhtkarxgxF27JKHOZHUDIOmzgfNmmRBeyYEP5CcfxGt2sp6wM66mD+7iWrsGrb7xF5GM8MGJq2IsOI1byP5OEmni9Ex0dWGDpaB94+m/QVXOhzI1pDUtpMaKJpJ0BKxh3irXRNKxnoS4pLaHSiEngcCeqUUIivQd5Hhjx1nidIQvSI0o4WjP7Rg2FMW/5SrT39Vd8JjOwp0ZGILe0CAEx8/770QblG3/LmH5GKmB41w5EW1I49VU31X0c0fHAMrR3P/s0/vLz/4Ch61BaWxFat87xmQzmGG7p7K64PrGUlZk/Po62q6/hrydOPZVXsc2UDcocT8V8nmdqMnTdnC/KmTSKOWeT72obIjEwws47Ek/YRqVRRNlQUMiY90bRC9CtObPRzSC/76MjUI/agBALjLAeIx7He1tvHy5863twyTs/AEmS0NrTi00XXHLYnXAMtpGThGBIfGqH801VdJ/DlkQek/6rpvE8uOFodA0MopjL4r+++GnH7xpZ22KpVkCSYOg6shMTDikt5jiOJFvqWoN5v5JRV8WI6IBWZOStwEiivfacNLh+E4695PKKcaRUcdzqsmSvax4du8yROLpvD+RYDMnTT0epbDq7am0AWzq7ICsqWrq6+bjh8m6SAT4GG5TSYt/BSCagWFU4LEORkc9kMG71f5muEakbUau/WvWIXi5j1GrcOV3/g5lwzmUFPsdXk1Dp5nJaW3nFSLLDdkAx54sh2Kp6WxukUAh57qCo3nzd/PsEzyY/+qJL0btkGfKZNB77758DAJ778x9wIB73lDRifrb9WazRayOI83O8tRWhaAybLriEO9p167uUPVbnugnHYvzeTlpVh16/u4h7XVBDIRz38iuw8byXeT5mULAKSXHdFO2Nhu95Faedu6+Y3wBWOJ4ws4oNg4/16ZqvA2bj8AVr1lW8zrJcjZCGaPYgFKMAHhyYVrIngvkrV6Otrx9HX/QK/jqzH4Z3vohSoYBCFSmt6QL0XQOD0MIRFLIZ7Nu6xfxuls3LxtPEwQM84DBdQtOxl1yOU669ga8Vqe4eaJEoyqUSDmx/wfx7a/2S2F7ImLm/CuOsm96I5Secgo3nX2ydi7nPKFnyNeWMhJJh2hyy4s9pxp1uRolX/Yd9Nl4/lLAgciP7IC0c8W2jtfX2Yd3Z57/ktp7Ya63eXk8zwWwrU/6oyAOW011T0c5h1aoMdwP2RiSFqyHan2oo7KjWCMoJDVSpGHFLaQmBkelgf6eXSzy5yE9gBLCvN5NhnLCO6ydoKdpf1exaAFhxwsl441e/iwWrj6r4XdTa60cEKa2cXkb3e9+LtutfA8BbBavIdLZGEFJaQRF0jxHADowYVsUIU91pNHGGIJoRCowAkFwGBAtCNBoYWXnSqTj+8qu59EpmfAySLHNJD7fObiPY5c6W8Wo5zD1XjLgCDqyR33Q9JqYjFI1yQ0zSrQwpnnXlX0rL2WPEytr0WDHCzk8pZWEIxptuOaVUrf7zjfLAiB1gCRVMo6vEdK8bfI7a++ZDVhQUMhmUZXYt/QWZ2HkO7zIbuCc7OrnhxvTYZwqMiFkryY4u9K9aCzUcRnZ8FGOsRHdC5YGRRiUYANvYMGQJrAJ//j9/CEvu/W+U2tus7zJzDxzmfCoVCxi2tNSZg697/x+x8tnvoWBdy5jPihHR/FemqQ6SJAnXfOTTuP4zX6pw0IoVI3IiwQMjCsuMCyIwYl3bLRPm+Dnrpjc2VH2kqBp3FOQz5ni8/1tfwW+/9y089+c/ALCNY7dhyBrIsWavIiyjp5DNQFuzGomzz0J4xQokTjmZS9nM9GxyKa18HvssBw97BgzdPEYpm0YpDz6HSpJcdW5yV4ww7M1TETpUHhiR9SLvJ9So85k5wNOjw0iuX4twYcz6jf9qu1UnnYY+K/u02WAbW0FlA6nxZ80frPmjmu6zOyt45UmnVRxbkiQc+/IrAIA7j9yfWw+yovDxkR4brag8A4C2GXpYMERZLrGHw6QgpVWSZRSt58hLn69qm7GyJNnydl6DbCwwsnc3f42N81pSb9FkC6792Gfwyg/fYZ9fOAzF2owazEbQq88XtRDHOaNQERhJ834cLS796ekQbZ+YFXRxc3CnuX5Opy0+E45KZD3PG69H4omKbE+eff7C85g8aNmR1SpGNNuGlaxKzmINre8Fa9ZBC0ew8qTTcP1n/y9fe2RFwbpzLgAA7Nv6HDIT4/jF5z+J5yIRlKznslEpHHH8ZifHp3lndUSHVTwlyJRY9kbJqvxj5xdEBnn7fDNQMF4wn1EeGPExF7uf72ZynHRY35clzUCSHA6URhNcxD5IsqJAVhSHpA3gv2JE1TTu9GSVGV4ztDXrmdZVFRIMJEt77eBAuPZ9kiQJV93+KdzwmS851qVkRxeiyRbo5TKGdmzjFSOio3q6zFpZUdC7dDkAYPtfHzPP0XremWNz3KqIC0VjDVVBSrKMzgHTBmNzGUtqY0kKvMdIHfd93rIVuPjt7+VzCFu3jIQ1PrMKSgaT1vWZoc1tKzswogXofA4adv3mSha1mPjpV9KQ4VgrjRx4JXWdPUbcFSNiA3ZADIx4m9tFydNIIjFtH0k/uH0d7mMzibwFq9ZOe5xwLMYTf/dueRpA7YqzelGFpLRnH34IO//xJGRFqRqErhfRDvISRBcrRti1y2fSaLnuGiBp2ky+5yMtVCH5xWimAIGiqvx6BiU9aNt1ZSh6EYrKJLSb53sThFcoMALwzTqDZRk2KoEUiSdw0pWv4lIemfExGIZhZ/p57DFinotlaFhOPd6s06eUVj6Thq6XkZ0yHbBeHDKAOVHykmw9Yzl/GssGrQavbJmqVjHS2tCx3A1/1VIOuaR9/XjWdwObVq6BKujjhwumA8CuGGnMSFRUjTujCoqVbcYza71tKOdZGy3WhDje1s7PfXiXGTiop2JE0TTIioKWzi6omoYBy/g5YC24hi55rhgBnN+PVY2Ely0zJems0t94qnXG44SjMW60sIzCvhWmk1gpZ6GW88hbuqyNPkduRNtInWGjJsly1Uwuu2JkGEoyyQMjsiWD02iQVoRLEETCKEsSilYm7OD6oxs+li1RZjrdWNB32xOPArCbF7sDDkuOPg6X/tOHceaNN1ceMxbn2TvZyQksuOsuLP7ZTyHH4/zesWB1LVhAIjs1iWFrw7/sOLMBvW5YgcpsFuWSxOXJQtHq1T1dCxdxQ1KUj+NBO6OIsqGilLYCI+UC7yfUqPMsLjT47lw4n/cYsR0z/uUImhH2fLDqPQDQCmbgIWXJEVRbN8QN4bylK2r2TFlxwik8e27zK67kr4sB9nrgclpjow7ZK8Z0/UUcx7GCyqViwdEUXqxCKSl2YMTLprraumVWjPhz7LLv6AyMFGp+JqNn8VJHxYYkSbYD0bJf2P1XQ/Wta2x9KBaEwEjGGRgZ3bsHpWIBkCQu41UPYsVIrYoQ5kz0I78oSZLQgD3HK0aqNcudt8Rct3c985RtR1YJjIjdeZLWOsca0rvXjsH1m/CWu3+Mi976norv2T1oVahs34q9zz0DQ9dhSECWOfl8OPTZ+t0I4joiXnM2FxeyOUSPO06o9vUvYcEDI1bwvywFL6XlJ1koaNh8y+YlVQtxzXqgdsbudLBxzhxEqqaZFXgWQWins14hzAbxqunP7gV7hhLZ3bD3LtOfpyRJFfacJEnoWWLKtezf+jx3vorZ5TM5zlhCw7bHHwFgZ/raPUbMse3FqcnmFCadzOcdw1nF50UvPmYlLZWtgFIpKyNvmM+Sl/2ACE/wMUo8ua25K0as7+0hQexIRAtHeAKe34owhsOvUM4I/W/qlNJyVaqxPS5bi+weI97OV4tEuK0WSSQdwdmZqtwbwS3d6V7Tl28+CW/6t3/H0S97BWaivc9MUtv97D8ABBAYsa735MEh/O83vwwAOO7SVzp6NTaKrNj7Mi/+Ix4YSbYgHI/zsZgZG4VeYv2j/AVGJEmqaRM0UzBUkiR+Df34EdzHBAAYOoql7Ti4w6w+FO0GgjhSocAIUGHYtlkZd15lqmKCNnk+neYZQ+5y8kZgC7cBltVjOia8Lr5ipUk+k+HZfFEP/UUYPFvIyELcqvvZTFevGBkD4HRa1gNr5MlKxtVSFllhs+2l+TrXC5d0GJYzM2QFRkoeAyOA2TAZAHIKu99WxYhHg3Ng7XosOeZ4/u94axt/vnc/8xQA+7mvhRoK4ZJ3fQAXv+P93BhctNHUmj8oNOvUrVnFy4ZAUVVusJRlGbl4C9SODhiGwRsX1+OUkmTZkcXX0tXDJUiYo7BgfY5vKS3hZ68ZbGLFiBSJQC6bzyjLjPNTMcI2uFJnJ4rWGJAV1ZORZGvUplEqFpGzAqrbn3gUhmHUrBiRZQVLjt5c1QiXJIlXjWRdzrOxA/VJ4jDjPDsxDr1cRrQlhYGjTKm3stWXqZTLoVRWeHC5ViWXFo5g8aZjEUkk0T242P7ubOwZReiSilLaukd6EWVLWqjhihErIJYeGUG8q8Nuvs51vpvHgRYkbOMQyo9g0bZf4FL9bdwx1b9qLcLxOPqWr6r4O3FMH3X2eTWPLysKLn//R3DxO96Hk656NX+9WtXHdPDAyOgIl70SA8it8+oLjGihsN30WpDTEpuvF2UZRcsWmanfRTWqZWuVZYk7dj1XjPSZ33Fs7x7+mj3OG3s+xaxfwK7erLtihMk2CBUjbimtiSFTyiHR2tbQGuRuplyNkd27zGNXkXBrhIgQGDGmqf6dv3INZEXB5MEh/uyKzUaZIyZftu2t+CIzI7xWjxEANWVOOhcMQFZU5NNpPPvwQ/z1bKjxpBEGc4gPeMggFe0dsbKTJS0Zho6ef/0U5KVLrfcHUTFiOo7GLHvDDix6d/a5/7aZKkYS7Z0O6RJV0xzjWp2maqIWbK4Tv6e4/wkigOVuou612S87R5bQE8tP2pI9Htdf3oB92/N8HIrZ6zMFCQYsmVqGW0qLUU/1tJt5y1Y4/s0qRlgyRj1Z+bXgPUasMVPMKkgb5r0O+UzysB3eJcBaN5q6YiTUuJTWkQ5rwB5UxQhgO7mV4ijsHiP1VYwkXFJaEbeUFguM+Ajk8GqpRNIh53eoKkZkRalqd8VSrXXJl7F9ftBSWn9/4D5kJ8bR0T+A4y+7ytcxRRUXL2vFwnUboYUj6F+9FpIk8T3+1OgoTw7123wdqJ1s1EzrO2Bfw6CktGTrOTP0EUzof8Sffvpj83Oa7HsThBcoMILKwMjKE0/FpgsuwQmvvNbT8dhGMDM+hglL/iCabPG1GRCdcgCgS1azTo8VI4qq8vPJTkwgYwUb/CySdmAkzzM7AH/OPeYgyjsqRiwprVRjWZtsAdeKY9AKE+gc/jtygl532bIpGsmsdegpG3nIehFqKQsDsOV1PBhdnZbkUE61riOT0vJhcJ554838nifaOvizw4xE0Qlci8Ubj8XSY+0Ay6INZtXBuBJC0XJs6hLTm/S2IWDnWJIlFBaYGeGFbNbMAgYcmYfTIY6N3qXLKzbABathmN/m6yIz6VzXgmU259NpZMbHILPAouG/kR03hvrnY96PfgDA3FB70QBmzod8JsMDVYBZ8XBwx/a6MsmrwXRgmXQWo+6KEdeYXbR+E9qtqqsSzOBSIZNDWdfsipFpxtLL3/0h3Pzlux3OUnv+LqFsKCjnLAMbJdtR3HDFiF1JUIqE7ebrrGJklhqa7HvpMrDoxXsRzw2hbD2PLZ3deONXvotL3vn+ir8T19CVJ5w67We0zZuP5cefDEmSsPz4kz2dJ9tQTRwc4kG7+StX259RZ8WIeSzzXu9+9in86v98BsO7d/IgP2BWjLA5yd1roh6qzbdlSbb7L/juMbKXS5PZ47yxY7JxynpmserNunuMTCOl5R57jVboio3Pw/FE1bGsl+2KSz9wSQOjyKtnqjlStEjE4chUtZBjTmLBlIJQQaMtMDM1WcVII85DRdW47bHl4d/x14usuaaH+ehVn7gT57z+VkflVr04pLQcgRH7dT0cRuy8cype9wqTlhq1mt3rHnrPuXH/bTM5ThRVRUKorFJDIce64yU4wJ5v0bkuNmAPojGz2CcPsPtPNQq7F2Wr8Xzv1gfQPvyk+TuP5ylK4LFxKDppZwrY9q9e65hj3M3XGV72a5WBEStIazmd68nKrwWbm/K6eazdk52QrDXD79jka41R4utGM1eMpCwZxxYfShFHGky6MghJQwZ7PtXiCA9YTjd/imtGTSkt3nzdX8UIIPQhdFeMBBgYUVSNB3VCsbiv/i2sYoQRVMUIk6weXL/Jd5WULPsLjKw/5wLc+u0fod+SFmP7rPTYSGAVI9OdW7MFQ1VeMRKUlJZpExn6pOP1ZpIQIwivUGAElU2Yoi0pnHHDG9C/co2n47GFJjM+ZvcX8WkcMYc4c+qVFdPY9BoYAeyMq5HdO7lEBJMR8IItK5UHywhlGsOej+mqGDEMw5bSatA5wTc5Rh4n/+H9aN9/H7ZqRUxGrLJvq7S8EQeSLCt8sTGMPEL5cejrNnJnFOCtfNGuGHFuVvxktrR0duH8N78dC1YfheXHn+RwBAGoKUszHanuHrTN6wMkCWNx87oxTXuvxgG7XmVFRni5KUmQGTfvuRaJ1m0oiRvleWJgxHJ0sK4wCZ+BEeFWe9bwDEVjvLfF1kf+hJBiWMe2KsN8bACjrBpjfBx5K0PKa2UYM/bz6SlMubLvtz3xqGeHKasYEeVWCrksD5S4s0PdiJ8nyTKOv+Ia87kEoEtFGHoO6fEsDCg8yDjdRl2SpIrNl/jclSUZpbw5B0socWmfRp3PWijM57hMNgNVZwHg+nW+j0TY9ypba0Mpp9hyOJEI1FCoot8CACxcvxFHX/RyXPKuDzQ0F573prdh/TkX4IoPfayh82QbKtaoVlFV9DIpEthBg7qOZc0zD9z9dTz90AO4/5tfhmHYPVBMKS2rYsTDul5tzOmy0GPEo5Mv1dUDWVFQKuS5nFityrCZ4PfMWs8ko7H5gvcYKRZ4kIZlZLt7uDXa000MOIQi0WmdO36ar5vHt/sV8WrQGuvagjV29niys8vhFBElUSXLgRSy9MaZxFij9gdr+M4yK0W8OPSTHZ1Yd/b5nhwcYkBBDIxIssyPV8hl+TMQTMWIaQNPDA+hLInN1/30GBHWJ0n23fg1aFJCLx4lFIIqXEcv80a1ihFR1iYIx6k7KO21YoQFgUpla83NTaB99O8AvGfAMlvu4M4XeVWt6KSdaV2XZcXRP6tWxYgXp2ZLV48juYgntEG3/s+y8j0ERqzzyVlJTO25ScjWcTUfe1VA3L+VAM20j4OShjkU9CxZhld94k6c98a3H+5Teclgfo4g7wvbp3bv/z0US3pzOsc7l8yW5Ip1mq0hbO/CAyM+9tWsz4jZY0QMjARbzcQkpP0GA92BEbY/9ApboycOmL4uv9W0AABhrvBqt4rBlUQr6+U4wu2aICTuRPtEtB+brdcGs5WC7jHC+uMx2D6JII5kKDACQFacl8FPZhhgL77ZiQlertjS6S8wwg0Ny6lXtuZ8r83XAdsRPvTiNt54kTXx8gLTqtVR5Bmhms8FgmWSp8dGYBiGWTlgZYs22huCLQ5lWYYEYFd7ElP5KezpaoMBQLecVI1u/rmcmZFDqDCB8KrVaLnpJgC1GzzPBK8YkXUYhj6j86Relh9/Mq687RNIdnQ6pOLC8bgjo68RktazzbKduSPBa8WItfkryTL6NpjBSS99ZSIJ20gVK0bY+eWt+x1k83WvDUABYNlxJwIAtvzp99B4YMRy4vswaJhBnR4fsyXzPPYS4oGRTIZXbjG2//Uxzw5TMZjMYHNnJJGcMftKnLNXn3IG2nr7EIrG+Fxs6GNIj1sa2rB7jDSC+J3KEqCzw0Hnc5IXI17sM4IQAEO3db5nqT412ziUrEBAOVdfZYMsKzj9Na/nY6VeQpEozn7dLVh41IaG/o5trJkec7ytg2vyA0BrIxUj1rHYZnzHU086fl+SZZQtbWUvCQ/V5tuyJPGAk1fHrqwovGJrbJ8pp1XMN1bpwc+RO0SZlBbrSVTffCE+GywIy/odufXEG01GcQRGYjHH/OCuUvTTfB2wpZUMoyBUg1Zf2wfW2hJU7u/IbA+9XEbnB9+Pzltu4ckELFO9UfmE7kW1K0df6ozAWoERwJ6/i7kcl0QJwiEXb21DKBoz5TsjYSEw4v27i3+rhkK+Mn4PBeJYUbUQ1Kj9LHqpWmTPnDgnMSktSZIDyaitlNLy2mPEsgtLRSjt5hzN++R5vOfJji5o4QgMXedJZ0lHj5GZv/+qk0/nPxtG9UCAFztOkiRH1QivGJGsID2zPXxIaeUEecNyABVX5vmY18xAGVLYkiluYiktSZLQs3hp4A7yZobtWwNxjltE4paUVmncrmaappcBe87ibW0VSZlsnpu0lDxsO8b7vpopLXT0Dzikzf34ZqrB7EevvZQYbsnsWDKY5ussySeIey8JtlAQsot2xcgoyiXT3gqmYoRJUytIOKQSmysw0rd8JVQtxHvI+YUHnfS84/VG91cE0YxQYASuihFJ8q3rHk22AJIEw9BxYNvzAICWLu/9RQAx07IASS/ZDhSPfVAAOzCyb+sWjOwxtbO7BhqvGmBExB4jdZS81kNr7zzIiopCNouJoQPcQR6KxhpeMNkixiRbSlZArBiL8I2Ql3NmsieGkUe4MI74wHy0XHeN+ZmRiKdNcKqr29xYSYChj3LnSRASBPy8haqBroWLPG/W2WaoYBmhfpqvA3Y2bVmWkFhpbuCYwzzWgHwaqxiRZBk9i5ZwY0WXJOgA8paB5Df7F44MXh+Bkc1ms/CdT/0NkmrVsyjmOPKTYcllqibGuGya98CIuckrZNK8VwLbDO1+5h/IZxvrGcCIMvlBoWKkXhktwDSemWF64pXX8deZI9HQ02A9r6WyuWnXIo1tWCVZhmQZhGUYKBcl63V/Gyy2kUiPjqDckkKoMMGzNptJciVIuDOKV4zIjoqRZmHRhmMAADlr3CTaO3iVSKKtvSGnR4Vkn+XsYhRUhc+dXnqH1Wy+LvmT0gLAq69YA3avknluKS074F9nxYjweWMH9mHnU3/jUlruDbk7iDATEaH5eSgSdVQfiAEwRdN8N1bl87lRmrGCbd6ylTyQ6E6w0cIR7vwJn3oqut5yKyRJQrlUQrloXdtGK0am2Ty/1PORGg5z+9y9TtuNqDO8j18Qc4ckSVxOK93aYjdf92F7KarK71MzzuktQsWIGgo5AvJegvN2xYjQCNlan7VIOJDAUIWUlscxyc5RL5ehLhoEYDvzvWb+SpKElNUXjdkx8bYObivWYxuL0rbMvlBUzXFOXqWP5y0VAyPWvk1iARjvPUa4VNHkBGTLGRlEYNH8e/M+tYw/h1DY6ucYoGQT4Z+VJ52GS971AZx89WsCOybzcRQVO3lmOsczSzpwy2gB9vo5MXQAhq77br4OABvOfxle/akvYuMFFyPs6DESbECMKRv4PW5rT6+jGtt3jxHXuhhEYET0yfkNqAIQeozYUlpB9Bhhz42ZvGffl+kCd4eDs193C978je/P2KuzXtjzwypG5i1dgdNf8zqcdOWrAjk+QRxOKDACQFadeoZ+jXZZUbjjce/W5wCAN372CjMAkxPPYeWz3+NO/SAqRrb/9XEYuo5IPOFrUWPyPJKUw7LnzF4Gfh35iqqio9/cpA7t2G73F/GQ5c8rRqxrx5qjl3u6IfWKG8PGzpndg9ToUxjY+b9ILOgXGp96M7gkWeYOZ6M8bGeVBhkYEZ6d7oUz9xepBQ+MqAoMAAbb/HnMdmcOKXXtWkSPMjVC01ZgpJGKEXZfOgcGoYUjjooRVt0iybLDIeYFWZgvoj7GY3vffHQuWAi9XIaum4FKVWbVDd6N4Zh1zUr5PCYOmrrpXpp2AvY1zWXSSFvyZvNXroYWiUIvl2wHVaNSWqxiROhbMm41Xk/VYcxJsoxX3fF5vOH/ftvhPLQ3PEXksuZ4l8qsb0vjm2pJsbIWJQPlsmVYy4bnHiOA7fCbGhkG2jvNPiOsx8gsrRjhQUpro2tKaVkO/ADnOL+09s7DwnUb+b8Tbe3oXrQEp153I85749saOlbNNcuaP/KtLdY/ZU8On2qOp7IsBeKYqgiMFD32GBF04sX/13scSZa5w+5XX/xX/L+PfgAvPPpnAOZ6Jo7pRqt0RXnBUDTmuAeibE+ird23jcifcaPA5VFryUCpmoY+q69NiyvYI0mSQ96QwapFgMadh90LF/Fn0u0cfaklImRZwbk3vwVn3vTGiqoddr0KuSwKVhVWUI5SJqeViUcDkdIS/97vcQ4FKbFiJBRyVHp4qfxlFa6K4CBiCQ5ee4G40SIRR7DMq43kqOYZNG1uFqD2M2e6EzrC0SivpKknMCJJEi573+2Yt3wljr/M7s8jVg977Q8gVoxEHfZv2a4Y8eDc48lxug6jx3qmWs1z9D1+rGvWNfQo9LB5X4KShiGCQVFVLDvuRM+JV9XgcpGqUnNdEpm3bAVC0RiWHL254nfJjk5IsoxyqYT02KgQGPH+bMqygu7BxZBlxeEcD2qeY/CKEZ9VUoqqOYLKvnuMuMZ1MoDASCouVowEEBgRK0bKTOY9uObr0WSL4740m5SWJEmBVN4wZBZYs/rjRVMpHH3RpXOqnxIxe6HACNyNnoLZtDD5mlGrEiOoipFwfhjz9v8ZRctA8NKklcECI6yhaOfCQV8bfuZgLoQ0xNNmIy4/WaqMLqvfxsEXtwn9RRoPjHB9csspzoJLencX5n3v3wE4MzDrhWWq9e77HVIT26D19dkGlw8jpsMKjOjlg7Y02SGsGPGKHRiRYQiPj9+KkeQ1V0OyjsEc5o1UjMQs5/+8pWZPALax0iUJeU2xjtfqGP9e0GNCBp+PCi4AWLbZlAgqGLtw4sMfREQzDQ8/G0AzKGQ1yNu1wzxPrxUjUbFihAUp27njlNHovY9VqRgZszItWwXpoumIt7ZVZImxedMwisgXzPsk6Sxo2bgTTeYGbxFF3TI0VdmztBDglNLSOjsRLoyBSQ15cU4cCTCHEwuiihUjQVbFBcH6cy/kPyfaOyBJEo695HIMbji6oeOIPbHWnHY2/5k58HMxa42Pxar2V5mJalmUuiT77jECCA3Y95pSWlw6rsH13T4HVjHCKqPqPw47BpOo2fv8swCsYIZgD7mDCDMREaW0olFHkEWc3+I+ZbQAsWdcEWysTzd3nHTlq7DkmM1Ye+Y5Fb9jGbU5ITBStBIzFE1rWDJCi0R4xcTC9Rsdvzsc1Q5rTjsLG897WcXrdsVINtCKEQBon2/qsKcFKS2/thf7++asGBEDI2HHXOLFjqtWMdK9aAmOv/wanHH9632cqRNWyaWGw56lUUQnlmwlYdWTmT7jufU47RYtEuV7BbXOhIdFG4/Btf/yGUeQRZyXvCa49C5ZBlULQdE0V8CxDMPwXjGiahp3EOqd5jypLTOl/fwHFu1kCraHo4qR2Q8bMwVhfE9nF3cNDOKWb/4Am19xZcXvZEXhe4TxoQOB9BhxnqsgTx1w0I5JYPmVZRePJSuK7+pX93oWhH0Ui9jHDMKhX73HSNAVI/Z1bDYpraBhPjJWMRJk0IUgDjfN1QHwMCGW1AW1QMZSrYC1cQf8L2ZsI12SJRgASlZDu7APR2ysJYVEe4eZqQx/znEAiFpaleWQamfZBXA9OxcuAn73Gwzt2M43BfEGHOQMFqTh8i2W8yk7OcGbe3upRGEZLaxxrtY3D4UXtwLwXjHiOBehwVWQC5Aow+YrMNJiS2mJkmReAyPsWS8KWa+8YsSVNTod686+AMVCHkdf+HIA9kavLEvIW2Pey/12Y4RUMEdfPOHPyJy/0uypMiUZiOTHoEfDwGTjOvEikiQhlkphYugAhneZAUuvgZGQ0GOEVUnE29rQ3tePA9u28vd5br4+Lkpp7QVQX8VILfh4MYrIl8yfWWDEy1wvh0JAxnRoFgzrXmuq0FvFe8VIenQEfd1diL5wELCkIup1oBxpsGtfhiknVXZUjDSXkb1k03F8nfRTUdk9uBiQJAysWYd1Z5+Hpx78NQCgo38BJob2I582td68rum1K0YsKSAfDlnmgBzbZ45Jz83XxQa6sHXtGzmOGg4DVkNjkXAshkgsjqnhgwA89BgREgXCroqRVlfFiF8czddnqBgBTI3oS9/z4aq/s/s+pflr+SxrvO5t3Tjn9bdi51N/Q/fiJdj6yJ/4682UCcnuTyGbRYH1GAlo7mDjPK/K0EvBBGzVpg6MCM3XNc1hu3mRHGFJN2IwSZIknCTIXAZBa+887Hr6774SxCRJgqJpKBeLUPpNhyGvGPHRC8VdMaJFImjv68fE0AG01JnsUQ3RAee1P0AoGsNlH/gI9FLZ2ZvFKIMnZXj87tGWFhSyGYQvuhDhRAu0dSuAvS8GJqVVliSULFuBKkZmP2x/ndPsBLaZ7OLpkt1auroxMXQAE0P77cBIQOsG31NLku+Ag5vVp5yBSCyB/jVH+T5We18/Xnj0z4i2pIKrfoUpy+VnzmSIyalBJEqxpKT02Cj0Q9BjpKJiZJYmtDEkdn8oMELMQigwAnfFSICBEYFG9a7d2H0XTJ1Npk7upUmrSNfCRXZgxEd/EcB2LBRlUS/ef0YPqxgZenEbd5L6kdIqWiWUrGLEDIyMAai8b/XANhYlRUZR1aC0taHwjPesdPu45kIr6VkYknnOaqCBEUv6TJbR0T/g+TjMyV5UnYERr05d9qyLciB28/X673uquwdn3nCzfT4s40ySecVIEIERSZg/4j4rRtj55GBg0T3/icf//evAgb2+y6djqVa+GQCc2dGNwHqo5DNp3q+kWsVI483XWwGYfVAYY1bzdbeWeCOIgZGCYY8nSN6ktOQw6w1QRB7Wxiek+qoYYY2cp0aH0TK4BgM7/xO7w/3IaN6bvzY77H7rMMweGIX6mq8fDmRFwRk3vAGP/OI/seL4kz0fp3PBQtz4uS8j3toOLRxGKBpFIZtF+/wF2Pb4I/x9npsIV60YkQKRAmLaxOND+2HoOndEN9x8nTfqNDenOgwAUkPHqfV8aJEoD9yGorGGr6M4J2pRu8dIOBbngVsgmMCIKsxLtkymt7WdyxtOCVJaTMrTYzPy+StXY/7K1dgvBLuB5nLqszWxmBMrRoLJIGfyInlVQVkPZl7SQs0bGEl2dECSZBiGblaMCLabFztu+eYTsWfL01h39vlBnmYFzDbw25BYDYVQLhYhzTPnOT2AOdOd0BGKxvCyt78XkweHeEWWF0Rb0GvFCAAsWG07WFUthFKxYPZf4xUjHgMjyRaM798HY0E/+u/8PJ7/ztfN4/kNjFjnE960EWXdkpilipFZT1iU0gIgAZ4qahmprh7swt8xcQgqRiLxBE6++jWQVTVwZ7GialxRwC/tfWZFZCwAyTNxjgyivwjgDFoE0nzd2ldnJsaFfk1BSGmZ5xZNOnuMzPaKEcXyofGKkUhz7dkIwg8UGIGrx0hAC6TYC0ENh31rbmphVjEi88oERVV9lyd3LVzEnTIsAOEVLqUFI1C9eFbNMLpvj9DIsHHnBMs80F09RvLpNCaHzeCQp8CI5SwuKjKybV2QJMmW0vLxPPENkJ6DIZvHCVJKq6N/AOFYHH0rVvnatIg9RlhgRFYUz8arrR1uV8r4CVwxlJBYMcICI/6dXJJkf0+/gUpmwOXTU1CXLkXOygL2W5bt1pH1LKVlPeuZ8TEue5Voa0fBMrQBc9PSqNEpVowYhgEYBiZYj5E6mq/XghlsrMkzAMilNKB5c0ArrGG7UUBB7oReHsP+7F9Q/JPplPQyjkQprfjmLkwUJqAVxwEtMmt7jISiUSiqinKphIKqIFosNWXzdcbyzSdh+eaTfB+nXRgnmy64BM8+/DssPfZ4PPrLe/jrXueQao6ssizZjl0fa0eyowuyoqBcLGJy5CAmhg6YrzeY8GGfg5mVrEtmYKSRrMBa7w3HYnye9KJ1rGoatHAExXzOrBixggqRZNJRTeLF9nATEiT+Zmq+PhNsLmdrJAAUWcWIT8ehu0KzmQK1YsVIEPaWCLMz8poKo+hfig6w14ZmqrphKKqGRHsHJoeHoGqaI+PVS+VALNWKC299V5CnWBUmeSYGLr0QTbQgn06jFI1C0jQzWA9/mb9uuyUUiSAciyM84C+I4wyM+PveDCWkoVQsQCtOIGfJG3p17vEG7JZ9WCp460flhv29tmolClYVm9+EIaL5YYER1hdS9lnhwGyDiaEDKOZYQlNwNmc1Ca9mY3DDJqR6erHixFN9H0u0K4PoLwI4K0aC8HnEWlKQZBmGrmPSqigOovk6k2sVK4oBf5WGRwL82hkUoCZmHxQYgR39BIKsGLEz0Vs6u32XK/KKEUVCUWi87ve43YNW021JQscC71UDgFA5YOg86BBEo8l4axtiqVZkxsew9ZE/AjCrARqF3VvLT4SSYl+74d07rM9qbfi4rMlaUZHRvcS8hnbGpnfDnTvDjRwAS6YrQAMu1pLCzV+52/dG3a4YkaGm/DeNDlWR0goiMCJqFOc1JqXl/XgcxQ6M+M1cjMQTkBUVermEzPgYr+by64xz92bxGhjpHlwCADi4w5YJdFfdeBnzbIOvl0vIZ9Io5nIol0oOTWAvcIPNsAMjku5dZkZlvQFQQkZth55/HKXiGADzOvSvWtvwMRPtTEprFIrVO0mvo8nkkYwkSYi2pDA1Mow8D4wE0+T4SOGkq16Nk656Na+GY3iVYBCvmxoKo1TIQxektPxcV1lR0NLZjbH9e7HrH39HqZCHrKhIdTW2DvNzYBUjHhrD18rcF6tEGu0vwuhftQZ7n3sWbfPm24GReNLRjyuIihG7kq0g9A/ztrazap4xS3oQsKstvVaMMNwZ6c1U7aAJlaVcSivgipGcIE/m27HbxFJagOkwnBweghoKOew3r5JKLwWLNx2HE195HQY3bPJ1nHhbO8b278XU+ChCgwuhl8xEBz+Zv+65MbA+BtaYVrVQYPsBdr+jmT2YVFjfJ2/fndmWrKLYDoz4e+7Zc1gqFALZXxFHBqxKnTVe9+vzYLLm44dASutIIdneidd98euBHEtMGEgE0F8EcDZGD+LeSLKMeKoVU6MjPKkniKSzjRdcjK6Fi9C/ei2eeuB/+euzdd/GsK+dqV0z18YPMbuh5utwlmUeCiktL9mLbuweIzIPjPjNTgfMngbhWBwDa9f7/u7i+TCpoqA2gZ1WNUu5VELXwCCWHnt8w8dgmQdlw0BZAnThvg/vNAMjfipGSoqC5ObjACCQZqBcP1fPcUdS0I2JtXDEV1kyIPQYURXMO3kMgL/NNLtmLAvUMAxPUlpumLFiSHbFiN9KLgDIa7bTLOJTV1aSZZ79OLZvD3+O/JYouzMqvX7vZEcn2ubNh2HoMAwdkCTEUq2OjBkvY14LhbkTLzM+zps8t3R2O7KHGj6uKFnDMMwsMS99W/h4NoowJBWGdayjzjoPN3/5bkdFQL3EW9t5MCyrmmORBUZma/N1wJbTKqgKDNjzcTNWjBxK3M5rr+u6+Kyw8V6WZC4Zqfl0kjNpmG1PPArA1PdvdGyyNdgwSpBKGRgSkymq/5471kDBSSIGRpIee7q94r234Q1f/jYiiQSfO6JJZ2AkiIoR3nwdRbD+VF6f+5QlJzRmVdMCQmKGz0CBomqO57GZeh7x5uuZTOCSKO6AkCQ1XgXpxpbSas7Ab8rap5jN14XASBPdczeKquKEK67BvKUrfB2H2Vfp0RGEFi2GLrFgsvf9ixoK8eNKkhzYfWf7giD6AzDY91z44i/s1zz3GLGqf3nFiHeZURF2/Yr5HB/vfgO/RPMTdtlD0/UPqQfWT8msGCEpIL9oh0BKy6HiEpDPg9ltEweHAATUYyQUxqINR0MLhZ1SWk2a/BAUbv9OkEomBHG4ocAIzAwEtsEPbBIWAyMd/vqLAEKzWkFKK4jmXom2drzu/3wDl77nQ76PJSsK30RnrYz8oK4nk/mSZBnnventnjZrzKFiwEDJ5dA5uNPMgHdn1tcDuw/KhnXofNObAAgZmz4cEywbSiuMIpIxs0GbMTIfTZhOBAMSsrp5X/wERkIuKa1CNoNy0XQexXxUeIibXBa4Ex1eXpmI2M5wvxUjgB382f/C8wBMyaegJVH8aFMPrF3Pf461pCArCsKxGDc8vToTWFAyMzGG0b27ANhSGV6xHbF2YMSwZHy8ZBtyDXurhJj9P55q9RxgVFQV7X1m09dxSwKHV080sVPKL+wZ1Bf08+8LNF+PkUONGgo7nh23I6Du4whZalGrKW9ZtitMoz7nOlaluf2vjwEAf2YbOkdrPMp6Fm1jz9ivN1IxItgU/SvX8J/D0SiWHncC2ub1YcXx3mTPJFnmayzru9U5MAg1FOLzRTIQe876DnoRsPTyPVeM9JqBkXGhYoRla2sBZFRHrXlZ0TTfSRRBwtbE9PgYYBiO1/xSERAKh307oZu9YqTf6jnRtXCRYy5p5oqRoGBVYJMjwwgtXmSvvz4zf5mclhaJBBbEYPNQEEk9DFYZo0u68Jr3HiOAIKVVDKZihP19Znycv0YVI7OfikQRxe+YtKS0Dh5ALm1WhpEUkHccFSOBSWnZQYugkkHZ/pQlG/pJuKuGo/n6LF8zlbBzDAbZ+5YgDjfNs8s5zLAshKA1ioFgKkbYwm3KAAWX7Q7AkR3p+1hWn5FcyGoWHpCTa/nxJyEci+PUa29Az+Klno4hGj85zbkoFiyHpBdppYjlDBd7YvDmtL6ar5vHLUs65LIp6dCMkXk1FIJs3ecDRfP++8kytCtGTAMmPTYGwDQ8/DhNxU1uzjJcghhDkmVglSUlEIPIHRgJwtiMCvORYmnpe2Vg7Tr+s5g9zRqwex3zrIIgOz6OkT27rWM27nwVscefGRgJF8dRsla9UKzxsenoDQDAYBqrPjfozAk7OjYCQKwYaU4nWhCwNdIYXMjlnoDmdRweKiRJclQvee4xIly3GAs6SRKKVmac3yAwc/LlpiYBAG0eqqPY/J0aexYrn/m2+aIkNeSEE+eXlSfZGtmhWAyD6zbipjv/DQvWrKv2pw2x5OjjcOPnv4pTrrkeAHDWTW/ECVdcy+c5P4SsnnHh/EGoJdPR59X2ZA2oJ4aGUC4VYeg6/v7ArwEAvR5tJREWVG82eQg256atOROSFOjcIa6ZQdhdzdx8HQCOOvNcvPnr38fa0892VYzMfsVlsWKk5fzzYViBS7/2HJO589o/qBo8MOIjucUN+55FQRZWdE42ArNfp0ZMLf/geoyY42bc6j0XjsdnvQOSMO+7OB/5dWgn2jshSTLKxSKKuSwSHZ08uYBonEPRY0Rx9BgJZu5MuPqJ+t1buplTzddd32+uVfkTsxsKjFiw0r3ApLQEB7tXvWsRsdQzawUdWFZoM8GqB4KuGOlbvgq3fPOHOObiyzwfQw3ZmryZGhI13ipGTEdWXtCj5s1PfZR6M2dZSZHtxsRNGBgBADVmOt2+lj8fgF8pLdZjxAwuZbiMVquPMzSzgWXrOuZ4xYh/OTrWiKykBhtU3b8tuMCIWDESTSR9ZS8uWLOOS9gkBGmz9nmmo9Rvxcjk8BBG9gRbMcKktOLZvbz/kZdgRjjqDLQwWS7fgRGrv9Pwnl1QUinee6GZZUz8wp333V08Q1eRlabKSn+pCAmbqrDHqjNxs8LGklgx4jcw4nYetHvYWLLsP122+4toocay8dmY1sIRLN50HH/d63Wbjva++dwRs/rUM3HiK68NJPPbluQrQIeZpe01azXe2gY1HIZh6JgYOoDn/vIwRnbvRDgex7qzL/B9rqzfRrM59Jk0XHrUtA+CkAUViQmNrYNI8LErRprThgPsRBFHj5FZvAYxWMXI1MgwIitXQlmwAID/e2VXjASXkd4x3zw3Ji8cBCzoyWQXZVnxPM+1uqT9innTRgqqYoT13QuqnwHR/IjJIl4DdgxFVZHosJ+dEy6/Zk7McYcK9ZBIaR2KihF7r3rUWedh4bqNgRyXIdqfzWYrBY17XWxGJROC8Mrc80DUgC22QWX2sOxnAEgGUDGiqBrfoDOnfpAZQ0HBKkbyVqldkJvAIBwS7JqVly2p+nu35FA9MKMtn7YDI3YzUP89RnShr0yzLkBhy+mWKVn33UeWYUhoqgpYUhnw13idwTJRmLZ9JOF/DLG5o6wGZMBZwYaxfaY0ShDGpujk8VslE022oHvhYvO4QmDErhjxZhR2D5rH3Lf1OYyywMg8n4ERXuFhZi1GM3v55t9Lj5Gwq2KESWmJjm0vdC5YCAAY3rUDSnu73Xx9FvcYYYH9YiyCMvu+AcmNHGmIgTXvzdcFKS1rvJtBdTbX+QsCMycfw0/FSFmW7Xve4HzB3t82bz6SHZ049pLLcfTLXnFIAiOHCjYvlRSJ3x+vWXeSJHFn5Oi+Pfjjf/4IALDx/IsdWYxeYZUTzbbZ51JaVsVIkFn5gLMvVxAJKSwwGUQyxqHGUTEyB7LymY3FnO5M/slvjy/WlynIjNolx2zG9Z/5Eq9kCwL2PYuWcoLiIyufBdAnDg6hVCzyHiNBBUYYfvoNEkcW4truNzACACmrz0jbvPlYe/rZvo83l3EGRjoDOaZ8CCpGuqz9Zf/qtTjrpjcGJm3ImFtSWs570qwJuwThhdlfI10nbCIOSitPUVW0z1+AiQP7eYaPX0LhCHKZtFAx0nyBEaZjbliaz82WHRdNpjAxdAA47RTg1/dW/N5LDwvefL1YQKlQgBoK2c0BffUYsf+2FHBFU9BEki2YBBAvmZqtfiSANFdgZGTPTgDBBEZURUWxaPebiCb99xhhc4ceWMWIc8MXRHmyGMAIIqC67LgTcGD7VnQP2gHG+atMvX+v8928pcsBALuefgqTlgyD/4oR1hPE7CsSntoPdJgGsZdgRpTJb1l9AVjAxa8DsqOfBUZ2Qm5vg27J68zmTDY2nrOZNK+I8xNQPZIJBS6lZTp1WUN7SZI9BQJFmCwMw0+PkbIk2fe8wU0VsynY3HDqdTc2fB6HGzswolS85oXWnl4c3LEd/3jwfgxtfwFaOIJNF1zi+zwB+1lqNnkIZh/p5bLj30EhJjcFYcduOO8iKKoaSBXPoUada4ERq/pganQEhmHY8k8+n/nB9ZvQu2QZVp92lu9zZEiSxBMpgsJdMaL5WIdjqVZo4QiK+RwmhvYL19KnlJbrXogyrsTsJiwEk4OwiQfXb8KeLc/g9Ne8LvBeE3MNTaiEDKLvLeAMfgXldF96zPF41Se/gM4FCw+JPGS0pQWKqkJSlKbzewWN2w/VrH4pgvDC3PRCVMFuvh7cAL/q9k+ikM0GFsDQeGCkmStGnOfUbJFkds3GD+yv+J0aDnsKZIQiUVNayDCQz6ShhkK8Z4mfEnpZVqBForzXBjvHZiRm3ffWoqWX7sMwCEVMB14xl0N6bBSP/OIeAMDg+qN9nqW1yWfXU5ICMeRkRYUOQNeCmTvckmFBVIxEEglIkgzD0BEJQILvuEtfif5VazFv+Ur+2rylK/D6L33Ts8RB79IVAEwpLcAMOEZb/J0rkyA0LOmrSNaUd4AkeZrro1YARNat6rCApLRae3uhaBpKhTyyHd3AsDmOmi1LO0jYvc2Mj6P74x8D7v4KwgGV4h9phAWnrueKkSpSWvyYiYRvmaFwLI5IIonc1CQiyRZPdg0bc2VZ5lJajW4iF67biKce/F8s3+ytwXozUG3u8bNmpqyKkS1//D0AYNnmEwOzO9l61GxzkdtW40HwgBArRoL47sn2Tpz4yut8H+elwNljZPYHRuLtppO9VMgjn06jbCXP+L3vsZYUrrvj877P71DDgp5FSwJZ8ZGVL0kSWnvnYejFbRjbt5cHRvzuBd33IkGBkTmDmCzS0um/UmjzK67EpgsvIYduAHT0L8CCNevQu2RZYFUYh6LHiCRJ6FlUXSkkCEKRKF7+7g9BVtRZH2xTIy4pLeoxQswiKDBiwSLUWiQ4x3OsJeWQsPFLKBYDRodRsKoHgjx2ULg3483myGcO/LH9eyt+50VGCzB7V4RjMeTTaUyNDGPi4AEUsqbz3W8WYzjqDIw0qyGXsJwInUVT1qLbhwEiNl9/8LvfQCGbQc/iZVh7hv+S51AyCUxOAAAisThk2b8BI6sadABGKKDAiKtiJIjAiCwriLa0IDM+FojDTFYU9K9eW/F6S6d32cBIIoG2vn5bRquv37ehzccLk7zKHwTQjnA06unYrGLE0M2ACK8Y8RkYkWUF7fMXYGj7CxiP2nPmbHZKsfUrOzkOqdeUNtACzvo+UnBKaXmrGJEVsz+LoesVtkE0IPme1p5e7Jua9NRfBLCDIGVZkJBqMCAwuG4j3vRv/x64FMJLiXsdV7WQr8BVmyVfYxhmv5LlxwcXNGqxZEearULZbVuxPk1BIVaMNFuCz6FGDIzMdlkQwJyDIvEEcukpTI0Oc/mnZquSOlSw+12OmfOS34zq1h4rMLJ/b2BSWu57EW+lwMhcQZTSiqaC8Xs06176SENRNVz5z3cEekyxx8iRdJ8WbTzmcJ/CS4IWdjVfP4LuEUHMBPUYsZCbvIcDUOk0araNKlApTeQnC/JQwCpGJoYOAHBm1sZ8aNaGY6bj6Vd3fRbf/+C7MLxrBwD/kfSQSze9WTfore3Oa9e/qtJpXi8sE7RcKuHphx4AJAlnv+7NgQQxFOF5jAQgowUAoUVrsCvSh/RC/xUtQOVzGFSTSfasN+O8wehbtoL/3O6hh4Eb9ixJegEtB5+AVDYrubxWeESsObgMU5qLB1x8BkYAoLPfdOxlBm0pstksY8Kc95mJcd6gtZnX30OJKOvmVUoLsAMP7jEeiQcz17E+I20eZLQAe/0qyxLKkiWl5cFhdiQHRQDT8Sg6H/0m5LCKEfNYUSw8KrjGogvXbcA5r78VZ954c2DHDAJxzo23tuG0V90U6PGdFSPNaXcdKsTqM3mOyBuyBJTJ4YMol8z1vdmqpA4VLPilWwF01XcFrDkfDb24HbkpU17Xb3V2RcVIOwVG5gpiX6bZbBMTJqKUVrMl1xLVpLToHhGzBwqMWPCKkSZ2zLibSzajg9PdzLrZFjXW8NfQzczKlKCb7rViBLCN/pHdOx2v++kxAjgz0WVZadoSTfezOH/las/HcjuJNp7/MvQuWeb5eCKOBsUBNF4HgM75/bhn3ssRW7wmkOO5pbSSHcE0tLMDI8E4SQ8F84TASJvHrHQRNv8Yko7VT9+NshUA9xrICFvjuSTpMIwyYAVI/DZfB4AOKzAydNAM2iqqesQ7gKeDNwjP55GdsKTDmmy9eKlwVIz4aCKe6u6BrKho6e5xON6Davi8cN1GQJKwaIO3IDC7v7oso6xIjtfmGqKt6UdyEwBvvg4AS44+LlCHriwrWHf2+YEEqoMkHE/wa3jhW94TeDNmqhip/Hk2w3pWiDK7cycwYn3PftPm0hL+ghitXNrvd9DLJbR0dSPZ0eXrmO4kO2q+PndgiYfA3KnimsswP4cky4ekHwjhjxBJaRGzGJpxLFp7ejGye2cgzrhDhXvz7Fd//1BwpFSMMFq7e7F3yzMA/DX3FrN81XAYWigMXS8j2elvMyA6XJt58RGva0f/gK+gnSgfpKgqTrn6el/nJiJmQgZVMXLx+j6oioRTlvm714xQNAZVC6FULEBW1MACoKtOOg0TQ/tN52aTwvqMAP4brwPOMRMyipiQzWfLayCDN02WdF4tAvgPgAJCYOTFbQBm/wYwFI1C0TSUi0WMD5nOqLnmgGSwALiqhXw54175oY8hOzmJWEsKaijMM58jiWDmuqPOPBcrTzzV81ok2gMF3tdtbt5zLRpFLm1mU/udP1o6uyArCvRy+YjuvdIIqqbhlR/+OAzDQJ/Q6yooRMmWuRa8iyQS6BpcDDUU8t2A/EiBVYyIMrtz5bsrVt/KfMasqPX7vVnFCJMUHly3yXeShztAR83X5w4RodpIDc2NQO1chgVDtHB4VieHHam47f9m8/MRhB8oMGLxsre/F1OjI2jr7Tvcp1ITMcPQ7Gvhv3F00LgdMM2WceV2MosVI7GUHykt+14MrFmHl73jfSgXioFWjDR1YES4rn5ktBgd/QMY3rUDl773tkC/t/g8BuUsjGgKXrExuGxaSZIQa23DxNB+JNrbfTdNZqw94xysPeOcQI51qOgaGEQoGkMhm0HngoW+j6dqIUiSBMMwUJJllKyKEa89QZiDTJN17JIm0GW9FkRWU0uX2Z+lkDWdE7M9U1eSJERbUpgaPsilDZu5YvNQwipGwj4rO2KpVh7gV0Mh5DNpAMHNdYC/dUicf1mvtLnifHTjrBjx99zLioLjLn0lhnfumDM614CzwjBoxESZubbxl2UFr/7EnQCOfNm6ekmywMg+MzAiyXLTVmgHDUvsmhoZBgAoPvdtYgUbAAxu2OTreEClnF2CeozMGcS+a7M9YYiwK0bm6n6g2RHteFlRA/NREEQzQIERCy0caeqgCODMKowmW5pyw9LszdfdVTbx1naenR+ElBYADKxdDy0UDmQz7agYaWIjwRkY8S8pdcUH/wX5TAYd/QtmfnMDiE64aIDOwqCJp1rNwEhA/UWOFGRFwcvf/UGkR0cCqd6TJAlqKIxiPoeyLKFkyfd4ldJic7BmlHDT2zfhF7d/z3fjdYa7cf1ccBjHeGBkbleMhGLmcxVksoMzCByMlJZfmDRCuVRCTjPNz0gTSoK+FIjSqH6ltADgpCtf5fsYhE0kFudVOM2W4PNSMNecHXHL1ho/sA/A3OorwyrbS0WzClas2vZCoqODz/OSLGNg7Xrf5yiOwVA01tSJYkSwOBQZ5oBdPNc5EqTt5zJiIqDftYIgmo25Zfke4YiGYKwJZbSASnmiZnN0uQM34VgMEUsGKubq7dAIEVdgJCjCQmCk2YJMImJ25fwAAiOJ9o7AgyKAy1nYxL02WAP2RED9RY4kBtaux6pTzgjseHbDZxkl2V+PEWao6+USwqWsr2O5CcfjDgepos3+vAW2jo1bFSPqHN0Isd5XYsNnv4iOvSArRvzCHBvZqHl+sZa5GRgRxzo5AJoPSZZ5Ik0z215EMLiltNRZXrEp4u7/4fe7y7KClm6zGr9v+cpAAv6yokCSTPstQTJac4qwIzAyd8blXEVm1cS07jYlsih3ToFKYpZBgZEjCM1VMdKMaKGwYzFrtqwrd0ApFI2he3AxJElG98LFno/LmsNFW1KBSAAxRKdrMztPYi0pHHPxZTjhimuQbG9eZ76iBd98/VCQaDMDI8l22gD6JRS1GqbLMpTVqwEA4Zi3DG1NaDqXHhu1jh9MYESSJLQIPYnmQmYcczyy5uvNFkh/qRhcvwnHXfpKnHJNcP2URCm2ZgqMaNZ4zKfM+bcZe6W9FIjPeoiyn5sSZi/ONSmtuQiT0irl8wD8y0kdSbS4eiEGUSHV3mdW/A6u8y+jBbDqX/O8qL/I3EJUZJjtErME0GZJ8bX3BSdRTQSHWDHidS9NEM3K7E9JnUUwBx/QvIERwHQ4T+aHADSfoysST0CSZBiGDsDsNXDJO9+P7MQEzxjzAusPsGjD0YFKEIiZVs12Ld2c9qqbDvcpzEgzystUY+0Z52Ji6ADWnN7cPUGOBFhAuetjH0V2zw7gvv/2HMxQVA2yokIvl5AeHQEQrGGY7OzC8K4d5mfNgcCIO1DdzMHfQ4mqaYEGRQB3xUjzzHXsHmdKpmxLs1a/HmqoYqT5sfv1NLftRfinvX8BX9sBQJtDgZGkqzI5COfzSVe+Cm3z5mPTRS/3fSyGEgqhmM9RxcgcI0I9RuYUnQODeO0Xv07jvEkRAyPRJlbeIAgvUGDkCELMKmzmLMtIMonJYTMw0mwbSkmWEUkmeYZyKBaDomq+giIAsPKkUxGKRgNpPC7irBhprmt5JOKU0mre4GLvkmW47P0fOdynMStgTkepswP5558B4K/KIxSJIJeewuTwQd/HciNmbs6FzDj3OtZs68WRjGOuizfP5oVVlBq6mZzAZMTmGkE2XycODStPOg0TB4cwcFRw8qhEc6KFwuhdsgx7tjwNYG45YLVwBJFkC3KTEwCCqVbtWrgIpy1c5Ps4IlQxMjcRK0bU0Oy3iwmgtaf3cJ8CUQNZCIxQUg8x2yAprSMIh5RWE+tys6bWsqJCVpTDfDaViNU2QTk1FVXDsuNODLySJ3yENF8/UhCdhc3cfJ0IDuZ0LOZyKGQzAPw1uWZBVFbZEWTDbLEB+1zQUl604Wi7P5EkoXuRdzlDwomzOq555jq3LNFc7THibL5Oa3szsvb0s3HT579Ckh5zhH6hP95cWH9FxKqRZk3KYFU8casHHzE3CEdjgCQBmBsSswTRzIgVI2S7ErMNqhg5ghAnoGbOsmTBgWatcIi1pDCyeycApzxZMyIGbqgRmX9Eo7qZnIXEoYMFFIv5HApZ/w3TW7q6cXDnixjasd33sdwk51jFSPfgYrzxq99FbmoShmHMWVmlQ0GzSmm517Fmrn49lJCUFkE0F/NXrQF+9hMAc696saWzC0PbXwDQvNUy7LxIYmduIckyIrE4cumppn02CWKuoAjN11WyXYlZBlWMHEGEwkdGxQiTKGpWR/6hqBg5VDh7jNAC5BdHxQhpY84JxIqRPKsY8REQZf2EuBxfkFJaHXOr+TpgNlWNJlsoKBIwYsazqNF9uHEnTDRzv7RDiXgdKOuOIA4/81es5j/n0lOH8UxeesSKkWatllmw+iiEolH0LV91uE+FeIlhclokpUUQhxdHxUiT+vkIwitUMXIE4awYaV5nAnM4uyUzmgUWVFI0rWk3AAxnjxFynviFZRvJiurI2CVmL0yypiBIaYViPipGBLkrINiqs7lWMUIcOlgQOBSNNZWkpbOSJdlU5/ZSIq4/IVqLCOKwIyYiHbQqQucKSTEpo0kbz59548047dWvdTjmiLlBqmcexg/sR6LNXz9QgiD8QT1GiNkMWRdHEKImdTNn17LeDc1qXDMZsiPBGRGKiXIbzRloOpJgz2Q0mYRkadYSsxtVlNLKWIERX1JaPY5/h30EWdwk2jtMLWXDoMAI4QsWgGg2yUBxHZurMloAoEWoYoQgmo1IIonc1OThPo2XHGdSRnPu3QBQUGSOcsEt78TI7p3oWbz0cJ8KQcxpxDk4RLYrMcsgKa0jCEfz9SauGDlSpLT8ZI2/VDiltJrzeh5JsAqhZnMWEocOu8dI3q4Y8RUY6XL8O0gpLUVVuX52s1ezEc0NCwI3U38RwFkx0swJHoeaEPUYIYim45Uf/jhae+bhorf90+E+lZcUUcZT0Sj4QDQXibZ2DKxdf7hPgyDmPGKPEbJdidkGWT9HEMxJLklyUwdG+leuQSzVisUbjz3cp1KVmCWl1ez9RQBz0ZEkGYahN22g6Ugiackgtc3rO8xnQrxUsIyW3NQkyqUSAH9VHqmKipF4jXd6o6WzG1Mjw02dtUk0P3ZgpLmCwGKAfy4HRsQNJVWMEERz0D24GK/94tcO92m85IgVI3OlvxlBEATRGA4pLbJdiVkGBUaOICKJBE6++jXQIpGmlakCzObEb/zqd5tWqqhvxSqE43EMrtt4uE9lRiRJQigWRT6dpsh8APQtX4mrbv8kOvoHDvepEC8RbNykR0fs13wYc9GWFNRQGKVCHkCwPUYAy0Gx5WmS0iJ8wXp8RZssMCJWjLB+X3MRcQ6itZ0giMNJoq3dTsKiwAhBEARRBYV6jBCzmMCltEqlEj70oQ9h0aJFiEajWLx4MT760Y9C13X+HsMwcPvtt6Ovrw/RaBSnn346nnrqqaBPZVay+RVXYtMFlxzu05iRZg2KAECquxdv/vr3cep1Nx7uU6kLVtlCC5B/JElC/6q1TV1xRQQLc0Cmx0asf0chy94bPkuShBYhuzLoyrP+lWsAAF0LFwV6XGJusWzziVi08RisP+eCw30qDqhixCTkaL5OaztBEIcPWVHMHmcAlBAlZRAEQRCVOAMjpGRCzC4Crxj51Kc+ha985Su4++67sWbNGjzyyCO48cYbkUql8La3vQ0A8OlPfxqf+9zn8O1vfxvLly/Hxz72MZxzzjl49tlnkUw2V3YjMTvx4xh9qYmnWjF5cKjptOIJ4kiABUamRkcBAOEAKjxaunswsmeXebyAexVtOO8iLD/h5DntNCb8k+ruxWXvu/1wn0YFKjVfB+C8DpT0QBDE4WbxpmPwzO9/i64BSsogCIIgKpEV23WsUlIPMcsIPDDy8MMP4+UvfzkuuugiAMDg4CB+8IMf4JFHHgFgVovceeed+OAHP4jLLrsMAHD33Xejp6cH3//+93HzzTcHfUoEcURzxg1vwO5n/oH5K1Yf7lMhiCMO3nw9lwUQTIXHoawYAeZ2Jj0xu9FCFBgBXM3XI8HK8REEQTTK2a+7BWfccLMjI5ggCIIgGJIkQVZU6OUSJfUQs47ApbROPvlk/O///i+2bNkCAPjrX/+Khx56CBdeeCEAYNu2bdi3bx/OPfdc/jfhcBinnXYa/vCHP1Q9Zj6fx8TEhOM/gpgr9C1fhWMvuRySHPhwJYhZj7vUN4ieIC1CA/ZDERghiNmKWCkRS87dwEgkkYAWjiAST0CLkBwBQRCHHwqKEARBENPB1gkKjBCzjcAtoPe+970YHx/HypUroSgKyuUyPv7xj+Oaa64BAOzbtw8A0NPT4/i7np4evPjii1WP+YlPfAIf+chHgj5VgiAIYpbjzsbuXbrc9zFburoBmI2kyZFAEPWjhan5OmBuKK+6/ZOQVfWIkvYkCIIgCIIg5iaKqqKYpx4jxOwj8BT0H/3oR/j3f/93fP/738djjz2Gu+++G5/5zGdw9913O97nbs5tGEbNht3vf//7MT4+zv/buXNn0KdNEARBzELEjBZZUXHsxZf7PmbKqhgJx+O+j0UQcwk1RM3XGT2Ll6JrYPBwnwZBEARBEARBzMjKk09H79Ll6OhfcLhPhSACJfBU1/e85z143/veh6uvvhoAcNRRR+HFF1/EJz7xCVx//fXo7e0FYFaOzJs3j//dgQMHKqpIGOFwGGGKShIEQRANIsrUrDn9LF7t4Yd5S5djw3kXoWfRUt/HIoi5BFWMEARBEARBEMSRx1k3vfFwnwJBHBICrxjJZDKQXb0QFEWBrusAgEWLFqG3txf33Xcf/32hUMCDDz6IE088MejTIQiCIOYwkXiC/7z50lcGckxJlnHWTW/C2jPOCeR4BDFXYE3HI/EEFFU7zGdDEARBEARBEARBzGUCrxi5+OKL8fGPfxwDAwNYs2YNHn/8cXzuc5/DTTfdBMCU0Hr729+OO+64A8uWLcOyZctwxx13IBaL4dprrw36dAiCIIg5jBaO4OqP/itkWUaqu/dwnw5BzGk6+gew/pwL0LVw8eE+FYIgCIIgCIIgCGKOIxmGYQR5wMnJSXz4wx/GPffcgwMHDqCvrw/XXHMN/vmf/xmhUAiA2U/kIx/5CL761a9idHQUmzdvxpe+9CWsXbu2rs+YmJhAKpXC+Pg4WkiKgSAIgiAIgiAIgiAIgiAIgiDmNI3EDQIPjLwUUGCEIAiCIAiCIAiCIAiCIAiCIAhGI3GDwHuMEARBEARBEARBEARBEARBEARBNCsUGCEIgiAIgiAIgiAIgiAIgiAIYs5AgRGCIAiCIAiCIAiCIAiCIAiCIOYMFBghCIIgCIIgCIIgCIIgCIIgCGLOQIERgiAIgiAIgiAIgiAIgiAIgiDmDBQYIQiCIAiCIAiCIAiCIAiCIAhizkCBEYIgCIIgCIIgCIIgCIIgCIIg5gwUGCEIgiAIgiAIgiAIgiAIgiAIYs5AgRGCIAiCIAiCIAiCIAiCIAiCIOYMFBghCIIgCIIgCIIgCIIgCIIgCGLOQIERgiAIgiAIgiAIgiAIgiAIgiDmDBQYIQiCIAiCIAiCIAiCIAiCIAhizkCBEYIgCIIgCIIgCIIgCIIgCIIg5gwUGCEIgiAIgiAIgiAIgiAIgiAIYs5AgRGCIAiCIAiCIAiCIAiCIAiCIOYMFBghCIIgCIIgCIIgCIIgCIIgCGLOQIERgiAIgiAIgiAIgiAIgiAIgiDmDOrhPgEvGIYBAJiYmDjMZ0IQBEEQBEEQBEEQBEEQBEEQxOGGxQtY/GA6jsjAyOTkJABgwYIFh/lMCIIgCIIgCIIgCIIgCIIgCIJoFiYnJ5FKpaZ9j2TUEz5pMnRdx549e5BMJiFJUiDHnJiYwIIFC7Bz5060tLQEckwieI499lj85S9/OdynQVSBxlDzQ+OnuaEx1PzQGGpeaPwcGdAYal5oDB0Z0BhqXmgMNT80fpobGkPND42h5obGkI1hGJicnERfXx9kefouIkdkxYgsy+jv7z8kx25paZnzD1AzoygK3Z8mh8ZQ80Lj58iAxlDzQmOo+aHx09zQGGp+aAw1NzSGmh8aQ80LjZ8jAxpDzQuNoSMDGkMmM1WKMKj5OnFEccsttxzuUyCIIxYaPwThDxpDBOEPGkME4Q8aQwThHRo/BOEPGkPEbOSIlNI6FExMTCCVSmF8fJwiawThARpDBOEPGkME4R0aPwThDxpDBOEPGkME4Q8aQwThDxpD3qCKEYtwOIzbbrsN4XD4cJ8KQRyR0BgiCH/QGCII79D4IQh/0BgiCH/QGCIIf9AYIgh/0BjyBlWMEARBEARBEARBEARBEARBEAQxZ6CKEYIgCIIgCIIgCIIgCIIgCIIg5gwUGCEIgiAIgiAIgiAIgiAIgiAIYs5AgRGCIAiCIAiCIAiCIAiCIAiCIOYMFBghCIIgCIIgCIIgCIIgCIIgCGLOMKsCI7/97W9x8cUXo6+vD5Ik4ac//anj9/v378cNN9yAvr4+xGIxnH/++XjuueeqHsswDFxwwQVVj/PYY4/hnHPOQWtrKzo6OvCGN7wBU1NTh+hbEcRLRxBj6PTTT4ckSY7/rr76asd7aAwRs5Wg1qGHH34YZ555JuLxOFpbW3H66acjm83y39MYImYjfsfP9u3bK9Yf9t+Pf/xj/j4aP8RsJYg1aN++fXj1q1+N3t5exONxbNq0CT/5yU8c76ExRMxWghhDW7duxSte8Qp0dXWhpaUFV155Jfbv3+94D40hYjbyiU98AsceeyySySS6u7tx6aWX4tlnn3W8xzAM3H777ejr60M0GsXpp5+Op556yvGefD6Pt7zlLejs7EQ8Hscll1yCXbt2Od5DY4iYjQQ1hv7t3/4Np59+OlpaWiBJEsbGxio+i8aQzawKjKTTaaxfvx533XVXxe8Mw8Cll16KF154AT/72c/w+OOPY+HChTj77LORTqcr3n/nnXdCkqSK1/fs2YOzzz4bS5cuxZ/+9Cfce++9eOqpp3DDDTcciq9EEC8pQY2h17/+9di7dy//76tf/Sr/HY0hYjYTxBh6+OGHcf755+Pcc8/Fn//8Z/zlL3/BrbfeClk2l2waQ8Rsxe/4WbBggWPt2bt3Lz7ykY8gHo/jggsuAEDjh5jdBLEGvfrVr8azzz6Ln//853jyySdx2WWX4aqrrsLjjz8OgMYQMbvxO4bS6TTOPfdcSJKE+++/H7///e9RKBRw8cUXQ9d1ADSGiNnLgw8+iFtuuQV//OMfcd9996FUKuHcc891rDGf/vSn8bnPfQ533XUX/vKXv6C3txfnnHMOJicn+Xve/va345577sEPf/hDPPTQQ5iamsLLXvYylMtlADSGiNlLUGMok8ng/PPPxwc+8IGqn0NjyIUxSwFg3HPPPfzfzz77rAHA+Pvf/85fK5VKRnt7u/G1r33N8bdPPPGE0d/fb+zdu7fiOF/96leN7u5uo1wu89cef/xxA4Dx3HPPHbLvQxAvNV7H0GmnnWa87W1vq3lcGkPEXMHrGNq8ebPxoQ99qOZxaQwRcwE/dpzIhg0bjJtuuon/m8YPMVfwOobi8bjxne98x3Gs9vZ24+tf/7phGDSGiLmDlzH0P//zP4Ysy8b4+Dh/z8jIiAHAuO+++wzDoDFEzB0OHDhgADAefPBBwzAMQ9d1o7e31/jkJz/J35PL5YxUKmV85StfMQzDMMbGxgxN04wf/vCH/D27d+82ZFk27r33XsMwaAwRcwcvY0jkN7/5jQHAGB0ddbxOY8jJrKoYmY58Pg8AiEQi/DVFURAKhfDQQw/x1zKZDK655hrcdddd6O3trXqcUCjEM3cBIBqNAoDjOAQx26h3DAHA9773PXR2dmLNmjV497vf7Yhe0xgi5ir1jKEDBw7gT3/6E7q7u3HiiSeip6cHp512mmNs0Bgi5iKNrEGMRx99FE888QRe+9rXOo5D44eYi9Q7hk4++WT86Ec/wsjICHRdxw9/+EPk83mcfvrp/Dg0hoi5SD1jKJ/PQ5IkhMNh/p5IJAJZlh3voTFEzAXGx8cBAO3t7QCAbdu2Yd++fTj33HP5e8LhME477TT84Q9/AGDabsVi0fGevr4+rF27lr+HxhAxV/AyhuqBxpCTORMYWblyJRYuXIj3v//9GB0dRaFQwCc/+Uns27cPe/fu5e97xzvegRNPPBEvf/nLqx7nzDPPxL59+/Cv//qvKBQKGB0d5eVJ4nEIYrZR7xi67rrr8IMf/AAPPPAAPvzhD+M//uM/cNlll/Hf0xgi5ir1jKEXXngBAHD77bfj9a9/Pe69915s2rQJZ511FtewpjFEzEXqXYNEvvGNb2DVqlU48cQT+Ws0foi5Sr1j6Ec/+hFKpRI6OjoQDodx880345577sGSJUsA0Bgi5i71jKHjjz8e8Xgc733ve5HJZJBOp/Ge97wHuq7z99AYIuYChmHgne98J04++WSsXbsWgNnDCgB6enoc7+3p6eG/27dvH0KhENra2mq+h8YQMRfwOobqgcaQkzkTGNE0Df/xH/+BLVu2oL29HbFYDA888AAuuOACKIoCAPj5z3+O+++/H3feeWfN46xZswZ33303PvvZzyIWi6G3txeLFy9GT08PPw5BzEbqGUOA2V/k7LPPxtq1a3H11VfjJz/5CX7961/jscceA0BjiJi71DOGmP70zTffjBtvvBEbN27E5z//eaxYsQLf/OY3AdAYIuYm9a5BjGw2i+9///uOahGAxg8xd6l3DH3oQx/C6Ogofv3rX+ORRx7BO9/5Trzyla/Ek08+CYDGEDF3qWcMdXV14cc//jF+8YtfIJFIIJVKYXx8HJs2beLvoTFEzAVuvfVW/O1vf8MPfvCDit+5e/kahlG1v2+t99AYIuYCQY8hERpDTuZMYAQAjj76aDzxxBMYGxvD3r17ce+992J4eBiLFi0CANx///3YunUrWltboaoqVFUFAFx++eW8fBwArr32Wuzbtw+7d+/G8PAwbr/9dgwNDfHjEMRsZaYxVI1NmzZB0zSe7Q7QGCLmLjONoXnz5gEAVq9e7fi7VatWYceOHfzfNIaIuUgja9BPfvITZDIZvOY1r6n4HY0fYq4y0xjaunUr7rrrLnzzm9/EWWedhfXr1+O2227DMcccgy996Uv8ODSGiLlKPevQueeei61bt+LAgQM4ePAgvvvd72L37t2O99AYImYzb3nLW/Dzn/8cv/nNb9Df389fZ1L17sz2AwcO8Az43t5ensFe6z0AjSFiduNnDNULjSGbORUYYaRSKXR1deG5557DI488wmWz3ve+9+Fvf/sbnnjiCf4fAHz+85/Ht771rYrj9PT0IJFI4Ec/+hEikQjOOeecl/JrEMRho9YYqsZTTz2FYrHIHb4iNIaIuUqtMTQ4OIi+vj48++yzjvdv2bIFCxcurDgOjSFiLlLPGvSNb3wDl1xyCbq6umoeh8YPMVepNYYymQwAODSnAbOPAqtoFKExRMxV6lmHOjs70draivvvvx8HDhzAJZdcUvEeGkPEbMIwDNx66634z//8T9x///0VDtZFixaht7cX9913H3+tUCjgwQcf5LKnRx99NDRNc7xn7969+Pvf/+6QRmXQGCJmE0GMoUahMQSoh/sEgmRqagrPP/88//e2bdvwxBNPoL29HQMDA/jxj3+Mrq4uDAwM4Mknn8Tb3vY2XHrppbxxTW9vb9WG6wMDA44H8q677sKJJ56IRCKB++67D+95z3vwyU9+Eq2trYf8OxLEocTvGNq6dSu+973v4cILL0RnZyf+8Y9/4F3vehc2btyIk046iR+XxhAxW/E7hiRJwnve8x7cdtttWL9+PTZs2IC7774bzzzzDH7yk5/w49IYImYjfscP4/nnn8dvf/tb/OpXv6r6OTR+iNmK3zG0cuVKLF26FDfffDM+85nPoKOjAz/96U9x33334Ze//CU/Lo0hYrYSxDr0rW99C6tWrUJXVxcefvhhvO1tb8M73vEOrFixgr+HxhAxG7nlllvw/e9/Hz/72c+QTCZ5VnsqlUI0GoUkSXj729+OO+64A8uWLcOyZctwxx13IBaL4dprr+Xvfe1rX4t3vetd6OjoQHt7O9797nfjqKOOwtlnn80/i8YQMRsJYgwBZkXJvn37+Hr25JNPIplMYmBggDdypzEkYMwifvOb3xgAKv67/vrrDcMwjC984QtGf3+/oWmaMTAwYHzoQx8y8vn8tMcEYNxzzz2O11796lcb7e3tRigUMtatW2d85zvfOUTfiCBeWvyOoR07dhinnnoqHx9Lliwx3vrWtxrDw8OOz6ExRMxWglqHPvGJTxj9/f1GLBYzTjjhBON3v/ud4/c0hojZSFDj5/3vf7/R399vlMvlqp9D44eYrQQxhrZs2WJcdtllRnd3txGLxaqOERpDxGwliDH03ve+1+jp6TE0TTOWLVtmfPaznzV0XXe8h8YQMRupNnYAGN/61rf4e3RdN2677Tajt7fXCIfDxqmnnmo8+eSTjuNks1nj1ltvNdrb241oNGq87GUvM3bs2OF4D40hYjYS1Bi67bbbZjwOjSEbyTAMI/hwC0EQBEEQBEEQBEEQBEEQBEEQRPMxJ3uMEARBEARBEARBEARBEARBEAQxN6HACEEQBEEQBEEQBEEQBEEQBEEQcwYKjBAEQRAEQRAEQRAEQRAEQRAEMWegwAhBEARBEARBEARBEARBEARBEHMGCowQBEEQBEEQBEEQBEEQBEEQBDFnoMAIQRAEQRAEQRAEQRAEQRAEQRBzBgqMEARBEARBEARBEARBEARBEAQxZ6DACEEQBEEQBEEQTckDDzwASZIwNjZ2uE+FIAiCIAiCIIhZhGQYhnG4T4IgCIIgCIIgCOL000/Hhg0bcOeddwIACoUCRkZG0NPTA0mSDu/JEQRBEARBEAQxa1AP9wkQBEEQBEEQBEFUIxQKobe393CfBkEQBEEQBEEQswyS0iIIgiAIgiAI4rBzww034MEHH8QXvvAFSJIESZLw7W9/2yGl9e1vfxutra345S9/iRUrViAWi+GKK65AOp3G3XffjcHBQbS1teEtb3kLyuUyP3ahUMA//dM/Yf78+YjH49i8eTMeeOCBw/NFCYIgCIIgCII47FDFCEEQBEEQBEEQh50vfOEL2LJlC9auXYuPfvSjAICnnnqq4n2ZTAZf/OIX8cMf/hCTk5O47LLLcNlll6G1tRW/+tWv8MILL+Dyyy/HySefjKuuugoAcOONN2L79u344Q9/iL6+Ptxzzz04//zz8eSTT2LZsmUv6fckCIIgCIIgCOLwQ4ERgiAIgiAIgiAOO6lUCqFQCLFYjMtnPfPMMxXvKxaL+PKXv4wlS5YAAK644gp897vfxf79+5FIJLB69WqcccYZ+M1vfoOrrroKW7duxQ9+8APs2rULfX19AIB3v/vduPfee/Gtb30Ld9xxx0v3JQmCIAiCIAiCaAooMEIQBEEQBEEQxBFDLBbjQREA6OnpweDgIBKJhOO1AwcOAAAee+wxGIaB5cuXO46Tz+fR0dHx0pw0QRAEQRAEQRBNBQVGCIIgCIIgCII4YtA0zfFvSZKqvqbrOgBA13UoioJHH30UiqI43icGUwji/2/vjk0UCIAwjP53gh0YCkYKZhZgCzYgbBPahFXYgaE9LBahGIotyJodXHzLqcx7BQyTfwwDAEAdwggAAPAWhsPhr6fpfVgsFnk8Hrndblkul73OBgAAPtP3qxcAAABIkslkkrZtc7lccr/ff64+/mI6nWa9XqdpmhwOh5zP55xOp+x2uxyPxx62BgAAPo0wAgAAvIXtdpvBYJD5fJ7RaJTr9drL3P1+n6ZpstlsMpvNslqt0rZtxuNxL/MBAIDP8tV1XffqJQAAAAAAAP6DixEAAAAAAKAMYQQAAAAAAChDGAEAAAAAAMoQRgAAAAAAgDKEEQAAAAAAoAxhBAAAAAAAKEMYAQAAAAAAyhBGAAAAAACAMoQRAAAAAACgDGEEAAAAAAAoQxgBAAAAAADKEEYAAAAAAIAynoBIzDR8fNS5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots(figsize=(20,6))\n", + "\n", + "df = manila_hi.groupby([pd.Grouper(key='time', freq='M'), 'lat', 'lon']).max().reset_index()\n", + "#df = df.groupby(['time', 'lat', 'lon']).mean().reset_index()\n", + "\n", + "for lat in [14.375, 14.625, 14.875]:\n", + " for lon in [120.875, 121.125]:\n", + " df1 = df[(df['lat']==lat)&(df['lon']==lon)]\n", + " df1.plot(x='time', y='heat_index', label = str(lat)+' '+(str(lon)), ax=ax)" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [], + "source": [ + "#DAVAO.explore()" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 111, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAAINCAYAAABrm8NBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZyN9RfA8c9zl1nu7PtmhrH7IZQUEpKdaCVlaxEqyZKQIkVFCpFSlmRJaLVWWpRkKSKyDrPv+3q35/fHNVMTZZY7c2c479drXpn7PM/3e+406z3POUdRVVVFCCGEEEIIIYQQQgghhBDiGqBxdABCCCGEEEIIIYQQQgghhBDVRRIjQgghhBBCCCGEEEIIIYS4ZkhiRAghhBBCCCGEEEIIIYQQ1wxJjAghhBBCCCGEEEIIIYQQ4pohiREhhBBCCCGEEEIIIYQQQlwzJDEihBBCCCGEEEIIIYQQQohrhiRGhBBCCCGEEEIIIYQQQghxzZDEiBBCCCGEEEIIIYQQQgghrhk6RwdQEVarlfj4eDw8PFAUxdHhCCGEEEIIIYQQQgghhBDCgVRVJScnh9DQUDSa/64JqZWJkfj4eMLDwx0dhhBCCCGEEEIIIYQQQgghapCYmBjq1Knzn+fUysSIh4cHYHuCnp6eDo5GCCGEEEIIIYQQQgghhBCOlJ2dTXh4eEn+4L/UysRIcfssT09PSYwIIYQQQgghhBBCCCGEEAKgTOM3ZPi6EEIIIYQQQgghhBBCCCGuGZIYEUIIIYQQQgghhBBCCCHENUMSI0IIIYQQQgghhBBCCCGEuGbUyhkjZaGqKmazGYvF4uhQhINptVp0Ol2ZessJIYQQQgghhBBCCCGEuLpdlYkRo9FIQkIC+fn5jg5F1BAGg4GQkBCcnJwcHYoQQgghhBBCCCGEEEIIB7rqEiNWq5WoqCi0Wi2hoaE4OTlJpcA1TFVVjEYjKSkpREVF0ahRIzQa6SAnhBBCCCGEEEIIIYQQ16qrLjFiNBqxWq2Eh4djMBgcHY6oAVxdXdHr9Vy4cAGj0YiLi4ujQxJCCCGEEEIIIYQQQgjhIFftrfNSFSD+Tj4fhBBCCCGEEEIIIYQQQsBVnBgRQgghhBBCCCGEEEIIIYT4J0mMCCGEEEIIIYQQQgghhBDimiGJkWvYqlWr8Pb2Lnl/5syZtG7d2mHxCCGEEEIIIYQQQgghhBBVTRIjNciIESNQFIXRo0dfcmzs2LEoisKIESPstt+gQYM4deqU3dYTQgghhBBCCCGEEEIIIWo6SYzUMOHh4WzYsIGCgoKSxwoLC1m/fj0RERF23cvV1ZXAwEC7rimEEEIIIYQQQgghhBBC1GTXRGJEVVXyjWaHvKmqWq5Yr7/+eiIiItiyZUvJY1u2bCE8PJw2bdqUPLZjxw5uueUWvL298fPzo1+/fpw9e7bk+Pnz51EUhS1bttC1a1cMBgOtWrXi559/Ljnnn620/unAgQN0794df39/vLy86Ny5M7/++mu5no8QQgghhBBCCCGEEEIIUZPoHB1AdSgwWfjf8zsdsvfxF3ticCrfh3nkyJGsXLmSBx54AIAVK1bw0EMP8d1335Wck5eXx4QJE2jZsiV5eXk8//zz3HnnnRw+fBiN5q981/Tp05k/fz6NGjVi+vTp3H///Zw5cwad7sox5eTkMHz4cBYtWgTA66+/Tp8+fTh9+jQeHh7lek5CCCGEEEIIIYQQQgghRE1wTSRGapuhQ4cyderUkqqPn376iQ0bNpRKjNx9992lrnn//fcJDAzk+PHjtGjRouTxSZMm0bdvXwBmzZpF8+bNOXPmDE2bNr1iHLfddlup99955x18fHz4/vvv6devXyWeoRBCCCGEEEIIIYQQQgjhGNdEYsRVr+X4iz0dtnd5+fv707dvX1avXo2qqvTt2xd/f/9S55w9e5YZM2awb98+UlNTsVqtAERHR5dKjFx33XUl/w4JCQEgOTm5TImR5ORknn/+eXbv3k1SUhIWi4X8/Hyio6PL/ZyEEEIIIYS4lpkzMij680+c6tVDFxyMoiiODkkIIYQQQohr1jWRGFEUpdztrBztoYce4oknngBgyZIllxzv378/4eHhLF++nNDQUKxWKy1atMBoNJY6T6/Xl/y7+I+v4iTKlYwYMYKUlBTefPNN6tati7OzM+3bt79kDyGEEEIIIcS/U1WVmMdGU/j77wBoPD1xadwY56ZNcW7SGJcmTXBu2BCNweDgSIUQQgghhLg2lHv4+g8//ED//v0JDQ1FURQ+/fTTUse3bNlCz5498ff3R1EUDh8+fMkaRUVFPPnkk/j7++Pm5sYdd9xBbGxsRZ/DValXr14YjUaMRiM9e5audklLS+PEiRM899xzdOvWjWbNmpGRkWH3GPbs2cO4cePo06cPzZs3x9nZmdTUVLvvI4QQQgghxNUs/5dfbEkRrRZ0OqzZ2eQfPEjGhx+SOON5zt83iJM3tOVsz17EjnuKlKVLyfnmG4yxsahlvKlJCCGEEEIIUXblLqPIy8ujVatWjBw58pI5F8XHO3bsyL333sujjz562TXGjx/PF198wYYNG/Dz82PixIn069ePQ4cOodWWv/XU1Uir1XLixImSf/+dj48Pfn5+vPvuu4SEhBAdHc2zzz5r9xgaNmzImjVraNu2LdnZ2UyePBlXV1e77yOEEEIIIcTVLG3FCgB8Bg0i8NkpGM+epfDkSYpOnqLo5EkKT53CkpqK8cIFjBcukLNrV8m1Gjc3nBs3tlWWNG2Kc+MmODduhNbd3VFPRwghhBBCiFqv3ImR3r1707t37389PnToUADOnz9/2eNZWVm8//77rFmzhttvvx2ADz/8kPDwcL7++utLqiOuZZ6enpd9XKPRsGHDBsaNG0eLFi1o0qQJixYtokuXLnbdf8WKFYwaNYo2bdoQERHBnDlzmDRpkl33EEIIIYQQ4mpWdPo0eT/sAUXBd/gwNE5OuDRrhkuzZqXOM6emXpIsMZ45gzUvj4LffqPgt99Kna+vUwfnJk1wv6Uj3oMGoWjK3QxACCGEEKJCcr79Fuf69XGqW9fRoQhRYYqqqmqFL1YUPvnkEwYOHHjJsfPnzxMZGclvv/1G69atSx7fvXs33bp1Iz09HR8fn5LHW7VqxcCBA5k1a9YV983OzsbLy4usrKxLkgeFhYVERUURGRmJi4tLRZ+auMrI54UQQgghhHCE+OnTydq8BY/u3amzeFG5rlVNJoznz1P450mKTp0sSZyYk5JKnRf8wvP43H+/PcMWQgghhLis3D0/EvPoo7i2bk29DesdHY4QpfxX3uCfqn0ieWJiIk5OTqWSIgBBQUEkJiZe9pqioiKKiopK3s/Ozq7SGIUQQgghhBCisswpKWR//gUAviNHlvt6Ra/HuVEjnBs1Avr9tW5GBkWnTpOzaxcZa9eSvOANPG6/HV1AgL1CF0IIIYS4rOwvvwSg8NQpVFVFURQHRyRExdSYeuv/+kKaO3cuXl5eJW/h4eHVHJ0QQgghhBBClE/6unWoJhOurVtjuL6N3dbV+fjgdlM7gqZNxaVFC6w5OSTNfcVu6wshhBBCXI7VaCRn924A1Px8LGlpDo7o3x2Ly+LeZXv55LdYR4ciaqhqT4wEBwdjNBrJyMgo9XhycjJBQUGXvWbq1KlkZWWVvMXExFRHqEIIIYQQQghRIdb8fDLX2dpLVKRapCwUrZbgWTNBoyF72zZyf/ypSvYRQgghhADI27sXa05OyfvG6Jr5Gu1v0Rncv3wfB85nMHfbn5gtVkeHJGqgak+M3HDDDej1er766quSxxISEjh27BgdOnS47DXOzs54enqWehNCCCGEEEKImirz00+xZGWhDw/H4/ZuVbaPa/Pm+Dz4AACJs2ZhLSyssr0qQrVYiJ8yhQsjRmL6l9bJQgghhKgdcnbuKvW+KSbaQZH8uwPn0xn6/n5yCs0AJOcU8e3JFAdHJWqicidGcnNzOXz4MIcPHwYgKiqKw4cPEx1t+0JIT0/n8OHDHD9+HICTJ09y+PDhkvkhXl5ePPzww0ycOJFvvvmG3377jQcffJCWLVty++232+lpCSGEEEIIIYRjqBYL6atWA+A7fDiKVlul+wWMewpdUBCmmBhSly2r0r3KK/Wdd8j67HPy9+3jwoNDMcZKOwshhBCiNlKNRnK++QYAp8hIoOZVjPx8No3hK/aTW2SmfX0/Hrw5AoCPDtS8BI5wvHInRg4ePEibNm1o08bWI3fChAm0adOG559/HoDPP/+cNm3a0LdvXwAGDx5MmzZtWPa3X9DfeOMNBg4cyH333UfHjh0xGAx88cUXaKv4DwYhhBBCCCGEqGo5u3djio5G4+WF9113Vvl+Wnc3gqZPAyDt/RUUnT1b5XuWRf6vv5G6ZCkAWl9fTLGxXHjgQYrORTk4MiGEEEKUV96+fVizs9H6++M14A4ATLE1JzGy53QKI1ftJ99ooVMjf1aMuJGRHW0JnN1/JpOYVbOqaoXjlTsx0qVLF1RVveRt1apVAIwYMeKyx2fOnFmyhouLC4sXLyYtLY38/Hy++OILGaguhBBCCCGEuCqkr1gJgM/gwWgMhmrZ06N7d9w7dwaTicSZs1BVtVr2/TeWnBziJ08GiwXPO/oT+eknODVsgDkpiQtDh1J48qRD4xNCCCFE+WTv2AmAZ4/uONWtC9ScipFv/0zm4dUHKTRZua1pIMuHtcXVSUuDAHfa1fPFqsKmQzUjVlFzVPuMESGEEEIIIYS4WuX/9hsFv/2Gotfj88CQattXURSCZsxAcXEh/8ABsj75tNr2/idVVUmcOQtTXBz6OnUIfv559IGB1P3gA5z/1wxLWhoXhg2n4OhRh8UohBBCiLJTTaaSNloePXuhr2O7wd0Y4/hkw84/Ehm15iBGs5WezYNY9uANuOj/6ko06EZbrB8djMFqdeyNI6JmkcTIVWbmzJm0bt3a0WEIIYQQQghxTUpfuQoAz/790QcGVuveTnXCCHjicQCSX3sNc0ZGte5fLPvzz8neuhW0WsLmz0Pr7g6AzteXuqtW4dqqFdasLKJHjCT/0CGHxCiEEEKIssvbtw9rVhZaPz8MbW/AKcKWbLCkpmLNy3NYXFt/T+Dxtb9isqj0vS6Et4Zcj5Ou9MvdfVqG4OGiIya9gL1n0xwUqaiJJDFSwyQmJvLkk09Sv359nJ2dCQ8Pp3///nxzMSsrhBBCCCGEqJmM0dHkfP01AL4jhjskBt/hw3Fu3BhLZibJ8+ZX+/7G6GgSZ70IQMCTT+D6j5u2tJ6ehL//PoZ27bDm5RH98CPk/vRTtccphBBCiLLL3mlro+XR/XYUrRatlxcaLy8AjLFxDonps8NxPLn+V8xWlTvbhLFwUGv02ktf6nZ10jKwdRgAG2QIu/gbSYzUIOfPn+eGG25g9+7dvPbaaxw9epQdO3bQtWtXHn/8cUeHJ4QQQgghhPgP6as/AKsVt06dcGnc2CExKHo9wRfnO2Zt2UL+gQPVtrdqMhE3aTLW/HwMbdvi9+ijlz1P6+5G+Lvv4HZrJ9TCQmJHjyFn97fVFuflFJ2LInbcU8Q/9xyq0ejQWIQQQoiaRDWZyP3KduOHZ69eJY87XZwXbYqp/mTDxwdjGP/RYawq3HtDHebf2wrdZZIixYrbae36I4n0PPk5L2wkMVKDjB07FkVR2L9/P/fccw+NGzemefPmTJgwgX379gGQlZXFqFGjCAwMxNPTk9tuu40jR45cstY777xDeHg4BoOBe++9l8zMzJJjXbp0Yfz48aXOHzhwICNGjKjCZyeEEEIIIcTVy5KZSeaWLQD4jRzh0FgM17fB+777AEiYOavaXuhPeWsJhb//jsbTk9B5r6Fotf96rsbFhTpvvYVH9+6oJhOx48aRvX17tcT5d9aiIlIWLSZqwABydu0ia9Nm4qdOQ7Vaqz0WIYQQoibK+2U/lqwstL6+GNq2LXlcH14HqP4B7Ot+iWbypt9RVXjgpghevfs6tBrlP69pEeZFyzAvjBYrW36NraZIRU13bSRGVBWMeY55U8s21Cc9PZ0dO3bw+OOP4+bmdslxb29vVFWlb9++JCYmsm3bNg4dOsT1119Pt27dSE9PLzn3zJkzbNy4kS+++IIdO3Zw+PBhqTgRQgghhBCiCmVs+Ai1oADnpk0xtG/v6HAInPA0Wl9fjGfPkrZiZZXvl/fLftLefReAkBdfRB8ScsVrNE5OhL2xAM87+oPZTNzESWRu+aSqQy2R++NPnLvjDlKXLkU1mTDceCPodGRv3UrS3FdQy/i3nBBCCHE1y9m5AwCP7t1RdLqSx53CIwAwxVZfYmT13vNM++QoACM61OOlgS3QXCEpUqxkCPuBGPkZLwDQXfmUq4ApH+aEOmbvafHgdGmi45/OnDmDqqo0bdr0X8/59ttvOXr0KMnJyTg7OwMwf/58Pv30UzZt2sSoUaMAKCwsZPXq1dSpY8vcLl68mL59+/L6668THBxshyclhBBCCCGEKGY1Gklf+yFgqxZRlLL9gV6VtN7eBD07hfhnppD69tt49umNU0RElexlycwk/plnQFXxuuduPHv1LPO1ik5H6CuvoHF2IfPjj0mYNg1rYQG+Q4ZUSawApuRkkl95lext2wDQBQYSNH06Hj26k711G/GTJpGxZg06Pz/8Rz9WZXEIIYQQNZ1qMpFT0kar9M/34gHs1VUxsvyHc7y87QQAj91an2d7Ny3X71x3tA7l5a0nOJ2cy6/RmdxQ16eqQhW1xLVRMVILFGcq/+sL+tChQ+Tm5uLn54e7u3vJW1RUFGfPni05LyIioiQpAtC+fXusVisnT56suicghBBCCCHENSr7iy+xpKSiCwrCs3dvR4dTwrN/fwztb0YtKiLxxdlVcnekqqokzHgec1ISTvXqETx1arnXUDQagl+chc+woQAkvTibtPfft3eoqBYL6WvXcq5PX1tSRKPBd/gw6m/bhmfPHiiKgle/vgRNmwZAyptvkrFxo93jEEIIIWqL/AMHsGRmovXxsVVW/o2+zsXESDXMGFny7ZmSpMgTXRuWOykC4Omip+91torWDftlCLu4VipG9AZb5Yaj9i6DRo0aoSgKJ06cYODAgZc9x2q1EhISwnfffXfJMW9v739du/gbRfF/NRrNJX8UmUymMsUphBBCCCGE+IuqqqSvsrWq8h36IIqTk4Mj+ouiKAQ//zxRdwwg78cfydm+Hc8+fey6R+bHH5Pz1Veg1xM6fz6ay7QFLmusQVOnojEYSFv2Dsnz5mPNL8D/icftUoFT8McfJM6cReFRW/sNl5YtCZk1E5f//e+Sc32HDcWclkbaO++QOHMWWh8fPLt3r3QMQgghRG2TvWMnAB63316qjRb8VTFiiotHNZsvOW4Pqqry5tenWfjNaQAmdG/MuG6NKrze4BvD2XQoli9/T+D5/v/Dw0Vvr1BFLXRtVIwoiq2dlSPeyvhLvK+vLz179mTJkiXk5eVdcjwzM5Prr7+exMREdDodDRs2LPXm7+9fcm50dDTx8X8lgn7++Wc0Gg2NGzcGICAggISEhJLjFouFY8eOVfSjK4QQQgghxDUr78cfKTp9Bo3BUDLwvCZxjozE7zFbO6jEuXOx5OTYbe2ic+dImjMXgMDx43Ft0bxS6ymKQuD48QQ8/TQAqUuWkDxvfqUqXSy5uSTOmcP5e++j8OhRNO7uBD0/g3ob1l82KVIsYPxTeN97D1itxE+cRN7+/RWOQQghhKiNVLPZdvMD4HGZNpm6oCAUvR7MZkyJSfbfX1WZt/NkSVJkSq+mlUqKANxQ14eGge4UmCx8fsRBN9GLGuPaSIzUEkuXLsVisdCuXTs2b97M6dOnOXHiBIsWLaJ9+/bcfvvttG/fnoEDB7Jz507Onz/P3r17ee655zh48GDJOi4uLgwfPpwjR46wZ88exo0bx3333VcyX+S2225j69atbN26lT///JOxY8eSmZnpoGcthBBCCCFE7ZW+0lYt4n3vPWg9PR0czeX5jXoUp3r1sKSkkvLGm3ZZ02o0EjdpEmphIW4d2uM7coRd1gXwf2xUSTur9BUrSHzxRVSrtVxrqKpK9o6dnOvTl4wP1oDVimffvjTYvg3fIUNQtNr/vF5RFIJfeAH327uhGo3Ejn2cwhMnKvychBBCiNom/8ABLBkZaL29cbvppkuOK1ot+out/E12bqelqiovbz3B0u9sowOe69uMMV0aVHpdRVEY/Lch7OLaJomRGiQyMpJff/2Vrl27MnHiRFq0aEH37t355ptvePvtt1EUhW3btnHrrbfy0EMP0bhxYwYPHsz58+cJCgoqWadhw4bcdddd9OnThx49etCiRQuWLl1acvyhhx5i+PDhDBs2jM6dOxMZGUnXrl0d8ZSFEEIIIYSotQr//JO8vT+DVovP0GGODudfaZycCJ75AgAZ69dT8PvvlV4z5Y03KTp+Aq2PDyGvvIKise+flr7DhhI8+0VQFDLXbyBh6jRUs7lM1xpjYoh57DHixo/HnJyMvm4E4e+/R9jr89EFBJQ5BkWnI+z11zHceCPW3FyiHx2FMVp6kgshhLg2lLTR6n5pG61i+nBbYsSeA9itVpWZn//Bez9GATB7QHMe6VTfbuvf2SYMvVbh99gs/ojPstu6ovZR1KqYwFfFsrOz8fLyIisrC89/3JVVWFhIVFQUkZGRuLi4OChCUdPI54UQQgghhLC3+ClTyPrsczz79CZswQJHh3NFcc88Q/bnX+DcrBmRH2+scC/w3B9/IuaRRwCos3QpHrdV3U1WWV98Sfyzz4LFgkevXoS99uq/znFRjUbSVqwk9e23UYuKUPR6/EaNwm/Uo2icnSscgyUnhwtDh1H055/oIyKot/bDciVYhBBCiNpGNZs5fWtnLOnphC9fjnunWy57XuLsl8hYuxa/Rx8hcOLESu9rtapM//Qo6/fHoCgw986WDG4XUel1/+nxdb+y9fcEhrWvy4sDWth9feE4/5U3+CepGBFCCCGEEEKIcjIlJpK1dRsAviMfcnA0ZRM0ZQoaLy+KTpwg/cMPK7SGOS3NlqgAfIYMqdKkCIBX/37UWfgmil5Pzo4dxI57CmtR0SXn5e3fz7k77yLlzTdRi4owtL+ZyM8/I+DJJyqVFAHQengQsfxd9OHhmKKjiR71mF1ntQghhBA1Tf7BQ1jS09F6eeF286VttIoVD2C3R8WIxaoyedPvrN8fg0aB+fe0qpKkCFDSTuuT3+IoNFmqZA9R80liRAghhBBCCCHKKePDD8FsxtC2La4ta8edhjo/PwInTgAgZdFiTAkJ5bpeVVUSpk3HkpqKc6OGBD4zuSrCvITH7bdTZ+lSFGdncr/7jpjRo7Hm5wNgTk8n/tmpRA8bjvHsWbR+foTOe42IFStwjoy0Wwy6gAAi3n8PrZ8fRSdOEPv4E5dN0AghhBBXg+ydOwBwv72bbcD6v9CH2xIXxkrOGLFaVSZsPMzmX2PRahTeGNSau2+oU6k1/0vHBv7U8XElp9DM9mPl+31IXD0kMSKEEEIIIYQQ5WDJzSPjo40A+D5UO6pFinnfcw+u11+Pmp9P0pw55bo2Y+06cr//HsXJidD5r6Opxha17p1uIXz5u2gMBvJ/3kf0I4+SsX49Z3v3IevTT0FR8B48iAbbtuLVvz+Kotg9BqeICCKWv4vGzY38/fuJnzQZ1SJ3mQohhLi6qBYLOV99DYBnr17/ea7TxRkjpugYKjOt4aezqXx2OB6dRuGt+9swoHVYhdcqC41GYVBbW9XI+v0yhP1aJYkRIYQQQgghhCiHrM2bsObk4BQZiXuXzo4Op1wUjcY2iF2nI+err8nZ/W2Zris8eYrk114DIPCZZ3Bp0rgqw7wst3btiFjxPhpPTwp+/ZXEWS9izcrCuWlT6q1fR8jMmWi9vKo0Bpf//Y86S5bYWnt99RWJs16s1AtBQgghRE2Tf/AQltRUNF5euN1883+eqw+3JResublYMjMrvOeFNFslaJcmAfRuGVLhdcrjnrZ10CiwPyqdcym51bKnqFkkMSKEEEIIIYQQZaSazaSv/gAA3xEjUDS1708ql8aN8Rs5AoDEl2aXtKX6N9bCQuInTUQ1GnHv3BmfB4ZUQ5SX59q6NXVXr0Lr54diMBD47BQiN32Ma+vW1RaD2803Efr6fNBoyNy4kZRFi6ptbyGEEKKq5Vxso+XR7b/baAFoXFzQBQYCYIqpeOVFaq6tPWWAR+XmgpVHiJcrXZrYYv/ooFSNXItq32/xQgghhBBCCOEgObt2YYqPR+vri9eAOxwdToX5jxmDPjQUc3wCKW8t+c9zk1+bR9HpM2gD/AmZO6dK2lSVh0uzZjTctZNGP/yA34gRKDpdtcfg2aMHwS+8AEDa28tIX1OxYfZCCCFETaJaLGR/9RUAnj17lOma4qqRygxgL06M+LtXX2IE/hrCvvlQLEaztVr3Fo4niREhhBBCCCGEKANVVUlbuQoAnyFDqnXGhr1pDAaCnp8BQPrq1RT++edlz8vZ/S0Z69YBEDr3FXS+vtUW43/RuLmhdXdzaAw+g+4j4KlxACS9/DJZX251aDxClJc5I8PRIQghapiCX3/FkpKKxtMTt/bty3SN08XEiCm2EomRHCNQ/YmRrk0DCfBwJjXXyO4/k6p1b+F4khgRQgghhBBCiDIoOHiQwqNHUZyd8Rlyv6PDqTSPLl3w6NEDLBYSX5iJai19p6QpKZmEadMAW9sw91s6OiLMGs1v9Gh8HngAgPipU8n98ScHRyTElamqStLcVzjdvgMZ69c7OpxqZUpKJvPTT0ldtoyCP/6QGUFC/EP2jp0AeNx2G4qTU5mu0UfU3ooRvVbDPTfYBshvOCDttK41khgRQgghhBBCiDIorhbxGjiwxlROVFbQ9Glo3NwoOHKEzI0flzyuWq0kTH0WS2Ymzs2aETDhaQdGWXMpikLQ9Gl49ukDJhOx48ZR8Pvvjg5LiP+UvmIF6atXA5Cy+K0rzhmqzax5eeR89x2Jc+Zwtl8/znTuTMKzU0l5cyHn776Hc336krJ0KcboaEeHKoTDqVYrObt2AeDRq2eZr3MKjwDAVImvo78SI2VLxtjToLa2xM73p1KIyyyo9v2F40hiRHD+/HkUReHw4cOODkUIIYQQQogaqehcFLm7dwPgO3y4g6OxH31QEAFPPQVA8oIFmFNTAUhfuYq8vT+juLgQ9vp8NGW8a/RapGg0hL4yF7cOHVDz84kZ9RhF5845OiwhLivriy9JnjcfAMVgwJKeTsb6DQ6Oyn5Us5mCw4dJWbqUCw8O5eTN7YkdPYaMD9ZgPHMWFAWXFi1wv+02FGdnjFFRpC5azNkePYkaNIj0NR+WfB8U4lpT8OuvmFNS0Hh44NahQ5mvcwq3VVwYKzV8/WIrrWocvl6snr8b7ev7oarwsQxhv6ZIYqSG+O6771AU5V/funbt6ugQhRBCCCGEuGYV313tftttONePdHA09uXzwBBcmjfHmp1N0iuvUvDHHyS/+SYAQdOm4ly/vmMDrAUUJyfCFi3CpWVLLJmZRD/yCKbEREeHJUQpefv2EV/cHm/4MIKfew6AtPffr7VVI6qqYjx/noz164l98klOte/A+cH3k7poMfkHD4LJhD4sDO977yXszTdotPcnIjd9TPjSJTT66UdC5tqSmmg0FB75naSXX+Z05y5EP/IomZ9+iiU3z9FPUYhq81cbra7luiFCH2GrGDEnJWEtKir3vgVGC7lFZqD6W2kVG9zOVjWy8UAMFqu02LtW6BwdgLDp0KEDCQkJlzz++eefM3r0aMaOHeuAqIQQQgghhBDm9HSyPv0UAL+RIxwaS1VQtFqCZ87k/KBBZH/5JXm/7AOTCY/u3fG+915Hh1draN3dCH9nGReGPIDx/HmiH3mEeh9+iNbb29GhCUHhyZPEPvGk7Wu7Vy8Cp0wBq5XUZcswRUeTsX49fg8/7Ogwy8SckUH+vn3k7d1L3k97McXHlzqu8fTE7aabcOvYAbcOHXC6+KLtP2nd3fG+cyDedw7EnJJC9vbtZH3xJYVHj5L344/k/fgjiS6z8LitK579+uF+yy1lnrkgRG1Tqo1Wz17lulbr44PGzQ1rXh6m2FicGzQo1/XFbbSctBo8XRzzUnXP5sF4ueqJzypkz+kUujQJdEgconpJxUgN4eTkRHBwcKm3jIwMJk+ezLRp07j33nuxWCw8/PDDREZG4urqSpMmTVi4cGGpdUaMGMHAgQOZM2cOQUFBeHt7M2vWLMxmM5MnT8bX15c6deqwYsWKS2L4888/6dChAy4uLjRv3pzvvvuu1PHvv/+edu3a4ezsTEhICM8++yxms7nk+I4dO7jlllvw9vbGz8+Pfv36cfbs2ZLjxS27tmzZQteuXTEYDLRq1Yqff/651D7Lly8nPDwcg8HAnXfeyYIFC/D+2x8TZ8+eZcCAAQQFBeHu7s6NN97I119/XYmPvhBCCCGEEP8uY9161KIiXFq0wLVtW0eHUyVcW7bAZ8gQACwpqeiCggiZ/SKKojg4stpF5+tLxPvvoQsMxHjmLDGjx2AtkH7lNZkxNhbVZHJ0GFXKFB9PzKOjsObmYmjbltBXX0HRaFB0OvzHjAEg7b2aWzViLSoi7+efSX79daLuupvTHToS9/QEMj/eZEuK6PUYbryRgPFPUW/jRzT+eS91Fi/CZ/Dgf02K/JMuIADfYcOI/HgjDXZsx/+JJ3CqWxe1sJDsbduJHfs4pzrdSsLzL5B/4ACq1VrFz1pcqzI2fETOt99W+74Fhw9jTk5G4+6O2y0dy3WtoiglVSMVmdeT8rf5Io76vcNFr+XONmEAfCRD2K8Z10RiRFVV8k35DnlT1YqVX2VmZjJw4EA6d+7M7NmzAbBardSpU4eNGzdy/Phxnn/+eaZNm8bGjRtLXbt7927i4+P54YcfWLBgATNnzqRfv374+Pjwyy+/MHr0aEaPHk3MP3r/TZ48mYkTJ/Lbb7/RoUMH7rjjDtLS0gCIi4ujT58+3HjjjRw5coS3336b999/n5deeqnk+ry8PCZMmMCBAwf45ptv0Gg03HnnnVj/8QvD9OnTmTRpEocPH6Zx48bcf//9JQmWn376idGjR/PUU09x+PBhunfvzssvv1zq+tzcXPr06cPXX3/Nb7/9Rs+ePenfvz/RMixNCCGEEELYmbWwkIy1awHwe2jkVZ0oCBj/FLqQENBqCX3tNal0qCB9WBjh7y1H4+lJweHDnBs4kLgJE0lZ/BZZW7dSePx4jX0B+lqTtnIVZ2/vTsJzMxwdSpWxZGURPWoU5uRknBo2oM6St9A4/9Wqxqt/P/QREVgyMshYv96BkV5e5qefcuqmm4ke+RBpy9+j8PhxUFWcGzXCd/hwwt99hyb7fqbumg/wHz0a1+uuQ9FqK7WnU716BDzxOPV3bKfexx/jO3wY2gB/rFlZZG7cyIWhwzjT7XaS58+n8OTJCr/uI8Q/5f/2G4kzZxL7xJMUVPMc4OwdOwBwL2cbrWJOdWxzRkwxseW+NjXnYmLEAfNF/q64ndZXx5NIySl/SzBR+yhqLfwOnp2djZeXF1lZWXh6epY6VlhYSFRUFJGRkbi4uACQb8rnpnU3OSJUfhnyCwa9oVzXWK1W+vXrx/nz59m3b98lz/HvHn/8cZKSkti0aRNgqxj57rvvOHfuHBqNLe/VtGlTAgMD+eGHHwCwWCx4eXnx3nvvMXjwYM6fP09kZCSvvPIKU6ZMAcBsNhMZGcmTTz7JM888w/Tp09m8eTMnTpwo+WNw6dKlTJkyhaysrJK9/i4lJYXAwECOHj1KixYtSvZ57733ePhiie7x48dp3rw5J06coGnTpgwePJjc3Fy+/PLLknUefPBBvvzySzIzM//149C8eXPGjBnDE088cdnjl/u8EEIIIYQQ4koyPtpI4gsvoA8NpcGunSi6q7sbsTklBUtOjswVsYP8X38l+pFHUf8lCaILCcE5sh5O9SJxiozEqX4kzpGR6IKDUS7z95Wwr+yvviJu3FNw8SWReh9vxLVlSwdHZV/WoiJiHn6E/IMH0QUGUm/DevShoZecl/nJpyRMnYrWx4eGX3+Fxs3NAdFeypSYyNnefVALCtAFBODWoQNuHdpjaN8efWD1trlRLRbyf/mFrC+3krNrF9bc3JJjzo0a4tmvP559++JUJ6xa4xJXl6RXXiV91SoA9OHhRH6yBa27e5Xvq1qtnOl6G+akJOosXYLHbbeVe42kefNIf38FPkOHEjx9WrmuXfdLNNM+OUq3poG8P+LGcu9tTwOX/MThmEym9m7KY53L1xJM1Az/lTf4p6v7t/paatq0afz888/s37//kv+By5Yt47333uPChQsUFBRgNBpp3bp1qXOaN29eKlERFBREixYtSt7XarX4+fmRnJxc6rr27duX/Fun09G2bVtOnDgBwIkTJ2jfvn2pO+Q6duxIbm4usbGxREREcPbsWWbMmMG+fftITU0tqRSJjo4utf91111X8u+QkBAAkpOTadq0KSdPnuTOO+8sFVe7du1KJUry8vKYNWsWX375JfHx8ZjNZgoKCqRiRAghhBBC2JVqtZa8QOE7fNhVnxQBWzsZXUCAo8O4Khiuv56GX+2i4MgRjFFRFJ07hzHqPMaoKCwZGZgTEjAnJJC3t3RrYcXFBafIyL+SJvXr4xRZD+d69WrMC9a1XcGxP4if/AyoKlofHywZGSS/No+ID1ZfNVVhqtVK/LPPkn/wIBp3d8KXv3vZpAjYqkZS3377r1kjjzxSzdFeXvK8+agFBbi2aUPdtR86NGGoaLUXEzMdsD4/g9zvvid765fkfvc9RafPkPLGG6S88QZuHTrgfd99eNzWVeaRiHJRVbVkxofi7IwpJoak2S8R+uorVb53weEjmJOS0Li54daxfG20ijmF21ppmSrw2lxqSSstx1aMAAy+MZzDMZl8dCCGUbfWv2p+JojLu/p/swdcda78MuQXh+1dHh999BHz589n69atNGrUqNSxjRs38vTTT/P666/Tvn17PDw8mDdvHr/8Uvq56fX6Uu8rinLZx/7Z4upyir8BqKp6yTeD4mKj4sf79+9PeHg4y5cvJzQ0FKvVSosWLTAajf8aX/G1xbH81z7FJk+ezM6dO5k/fz4NGzbE1dWVe+6555J9hBBCCCGEqIzc777HGBWFxsMDr7vvcXQ4ohbS+fld9s5bc0ZGSZLEeD6KonNRtn9HR6MWFlJ04gRFF29SK7VeUBBO9SNxa9cOr7vvrva75q8GpoQEYseMQS0sxO2WWwh+4XnO9e1H/oED5H7/PR5dujg6RLtIfvU1crbvAL2eOm8txqVJk389t3jWSMLUqaS9vwKf++93eBIu/8ABsrduBUUh6LnpNaqKSuPigmevnnj26oklK4ucr74i64svyf/lF9tA+L170fr54X3XnXjfcw9Odes6OmRRCxQe+wNTfDyKwUD4W4uJfuRRsj77DLdbO+HVt2+V7p2z82Ibra5dS7XaKw99uK2VljGm/PM5ShIjHo5PJvZvFcrsL49zLjWP/VHp3FTfz9EhiSp0TSRGFEUpdzsrRzh8+DAPPfQQr7zyCj179rzk+J49e+jQoQNjx44teezvw80ra9++fdx6662ArZXWoUOHSlpT/e9//2Pz5s2lEhd79+7Fw8ODsLAw0tLSOHHiBO+88w6dOnUC4Mcffyx3DE2bNmX//v2lHjt48GCp9/fs2cOIESNKKktyc3M5f/58ufcSQgghhBDiv6SvXAmAz6D70LrLnfrCfnQ+Puh8fDBc36bU46rJhDE29rJJE0t6OuakJMxJSeT/vI+UJUvx7NEdn/vvx7VtW7mrtQwsuXnEjB6DOSUF50aNCHvzDbTu7vgOG0rae++TPH8+7rfcUuurw9JWrSJ99WoAQufMwe3mm694jVf/fqQuexvTBcdXjahmM4kv2WaNet93H67NmzsslivRennhfc89eN9zD8aYGDI3bSZzy2YsKamkLX+PtOXvYWh/Mz733YdHt25SRSL+Vc6unQC4d74Vtw4d8B89mtSlS0mcOQtD69bow6qmTZtqtZK901ap4tnr0tciy8rp4vB1U2wsqtVarmRmTaoYcXPW0b9VKBsOxPDRgRhJjFzlak7K/RqXmprKwIED6dKlCw8++CCJiYml3lJSUmjYsCEHDx5k586dnDp1ihkzZnDgwAG7xbBkyRI++eQT/vzzTx5//HEyMjJ46KGHABg7diwxMTE8+eST/Pnnn3z22We88MILTJgwAY1Gg4+PD35+frz77rucOXOG3bt3M2HChHLH8OSTT7Jt2zYWLFjA6dOneeedd9i+fXupX/IbNmzIli1bOHz4MEeOHGHIkCFlqn4RQgghhBCirAqOHiP/wAHQ6fB58EFHhyOuEYpej3NkJB63dcXv4YcImT2bems/pPHen2i872fqrl9H8KxZuLZpA2Yz2du2c2HoMKIGDCRjwwYsuXmOfgo1lmo2EzdxAkUnT6L19yd82dslvfv9Ro1C6+WF8cxZsj791LGBVlL29u0kv/IqAIGTJuLVv1+ZriuuGgFIe38F1jzHfS5lbNxI0cmTaLy8CBj/lMPiKC+n8HACnx5Po927CVu8CLdOnUBRyP95H3FPT+B0l64kzZuHUW7sFP+gqirZF9toefboAYD/2DG4tmqFNSeHuClTUC2WKtm78PffMScmojEYcLvllgqvow8JAZ0O1WjE/I/W/VeSmmPrAFMTEiMAg260DWHfejSBrAKTg6MRVUkSIzXE1q1buXDhAtu2bSMkJOSStxtvvJHRo0dz1113MWjQIG666SbS0tJKVY9U1iuvvMKrr75Kq1at2LNnD5999hn+/v4AhIWFsW3bNvbv30+rVq0YPXo0Dz/8MM899xwAGo2GDRs2cOjQIVq0aMHTTz/NvHnzyh1Dx44dWbZsGQsWLKBVq1bs2LGDp59+utTA9DfeeAMfHx86dOhA//796dmzJ9dff719PghCCCGEEELwV7WIV98+6IODHRyNEKD19sbQpg0+g+6j3vp1RH6yBe9770VxdaXo1CkSZ87iTOfOJM5+iaIzZxwdbo2T9Mqr5H3/A4qLC+FLl5S6+1rr6YnfmNEApCxajDU/31FhVkre/v3EPzMFAJ8HHsD34YfLdb1Xv37o60Zgycggfd26qgjxiswZGaQsXARAwFPj0Pn4OCSOylD0ejy7dydi+bs0+Oor/MaMRhcQgCU9nfT3V3C2V28uDB9B1tatWKUluACKTp7EdCEaxdkZ94udXBSdjtD589C4uVFw8BBp775bJXtn77hYqdK1K5q/vfZWXopOVzLHyFjOOSNVVTGSa8xl/oH5HE05Wq7rWod70zTYgyKzlc8Ox9k1JlGzKOo/BzjUAv81Xb6wsJCoqCgiIyNLvZguaq9HH32UP//8kz179lR4Dfm8EEIIIYQQZWWKi+NMj55gsRD56Se4NG3q6JCE+FeW7GyyPv2UjHXrS92JbrjpJnzuvx+Pbreh/GPm5LUmfc2HJL1sa80UtnAhnj17XHKO1WjkXO8+mOLiCBj/FP6jR1d3mJVSdPo05x94EGt2Nh7dbyfszTdRtNpyr5P56ackPDsVrbc3Db/5utpnjSS8MJPMjz7CuUkTIjdvqvVtzYqpZjO5339PxsaN5P2wBy6+FKf19sbrzjvxvvdenOtHOjhK4SgpixaRuvRt3G/vRvhbb5U6lvXZZ8RPeRa0WuqtW4trq1Z221dVVc5064Y5PoGwxYvw7N69UutFP/QweXv3EvLyS3jffXeZr2s5cyc5hWa+nnArDQM9KhXD3y04tICVx1bS3K85G/ptKNe1K3+KYtYXx2kW4sm2cbdIu8pa5L/yBv8kFSOixpk/fz5HjhzhzJkzLF68mNWrVzN8+HBHhyWEEEIIIa4RaatWg8WCW4f2khQRNZ7W0xPfYcOov20r4e+/h/vt3UCjIf+XX4gbP54z3W4nZckSTOVsbXK1yPnuO5LmzgUgYOKEyyZFADROTgQ8/TQAacvfw5yWVm0xVpYpKYnoR0dhzc7G9frrCZ03r0JJEbBVjTjVrYslM7Paq0YK/viDzI0bAQh+bvpVkxQB2930Ht26EfHOOzT85mv8x45FFxRk+zivXMm5Pn24MHQYWV9uxVpU5OhwRTUrmfFxmXnDnnfcgWffvmCxEDdpsl1bJhb+/jvm+AQUgwH3i/OCK0MfYWtBVZ4B7IUmCzmFZsC+FSO5xlw+PvkxAH+k/UFqQWq5rr+zTRhOOg0nErI5Gpdlt7hEzSKJEVHj7N+/n+7du9OyZUuWLVvGokWLeMSBg9+EEEIIIcS1o/D4cTIuvhhY3jY0QjiSotHg3rEj4W+9RcOvv8LvscfQ+vpiTk4mdfFbnLmtG7FPP03e/v3UwsYRFVL455/ET5gIVite99x9xYHinn1649K8Oda8PFKXvl1NUVaOJSeHmEdHYU5MxCkykjpL3qp0Oxz/sbZZI+nvr6i2uTWqqpL00sugqnj27YvhxhurZV9H0IeGEjDuSRp+8zV1li7FvUsXWzLzwAHiJ03iTOcuJL3yKkXnzjk6VFENis6cwXj2LOj1ts+Ff1AUheAXnkcfGoopJoakl16y297FCRmPLp0r9X2jmFP4xQHs0WVPjKTl2drJ6bUKXq72q27cfHozuabckvd/ivupXNd7G5zo3cLWSnXDgbI/H1G7SGJE1DgbN24kOTmZgoIC/vjjD0bXshJmIYQQQojaTlVV0j9YQ9Rdd9sGkF8jVLOZ+OeeA4sFj169cO/Y0dEhCVEh+tBQAp8eT8PvviV03jxcr78ezGZytu8gethwou64g/R1667qYe2mpGRiRo/Bmp+P4eabCXnhhSu2QlE0GgInTwYg46OPavyQbKvRSOwTT1J06hTaAH/Cly+3y0wOz759S6pGMqqpaiT7iy8o+O03FIOBwGcmV8uejqbodHjc1pXwZW/bqkieeAJdSIitimTVKs716cuFB4eSvX07qkkGQF+tioeuu3fogNbj8m2ktJ6ehM57DTQasj79lOxt2yq9r6qq5OzYAYBHz16VXg9AH14HKF/FSGqOrULKz83Zbu2qTFYTH574EIAID1uyZk9c+dvzFw9h//xwPPlGs11iEzWLJEaEEEIIIYQQJaxFRSQ8O5WkOXMoPH7c1rYhO9vRYVWLtJUrKTp+Ao2XF8HPTXd0OEJUmsbJCa/+/ai3bq1tWPt999mGtZ8+Q9KLszlz660kvvgiRadPOzpUu7Lm5xM7ZoytiqJ+feosfLPMc1bcbr4Jt1s7gdlM8psLqzjSilOtVhKmTiP/l1/QGAxEvPsuTnXCrnxhGZSqGllR9VUjltw8kufNB8D/scfQBwVV6X41kT4khIAnHqfh119RZ9nbuN92m62K5OBB4p6ewJnbu5P69tu1qsWbKJuc4qqNHpdv81fMcMMN+I9+DLDN4jHFx1dq38JjxzDFx6O4uuJ+a+XbaAE4RVysGClPYqR48LqHk11iANh5fieJeYn4ufjxQvsXANgbtxeztXzJjfb1/ajnZyC3yMyXvyfYLT5Rc0hiRAghhBBCCAHY+tRfGDqMrM8+A40GrZ8f5qQkkl551dGhVbmiqChSF9sGngY9+yw6f38HRySEfbk0a0bIi7No9P13BE2bilO9eljz88lYt55z/e+4ar7OVYuFuMnPUHj8OFofH8LfWYbWy6tcawROnASKQs6OHRQcOVJFkVZO8uuvk711K+h0hC1ehEuzZnZd37NvX5zq1bNVjaxda9e1/ylt2duYU1LQ143Ad+SIKt2rplO0Wjy6dCF86RIafrsb/7FjSn4WpyxcxJkuXYmfMoWCo0cdHaqwA+P58xSdPAk6HR7dbrvi+f5jx+LaqhXWnBzinnkG1WKp8N7ZF6tF3Lt0RuPqWuF1/k5fx1ZhYcnMxJKTU6ZrShIjdpovoqoqq46tAmBIsyHcEHQD3s7e5JhyOJJSvu/niqJw38WqkY+kndZVSRIjQgghhBBCCAoOH+b8PfdS+PvvaLy8iHhvOXUWLQRFIWvLFnJ/+MHRIVYZ1WolYcYMVKMRt44d8Ro4wNEhCVFlSoa1b99GxMoVeHS/HYD0VauuisqR5Pmvk/vNNyhOTtRZsgSn8PByr+HSpDFed94JQNK8eTVuJkv6mg9Jf38FACEvza6Stn/VVTVSdC6KtNUfABA0dSoaJ/vdNV7b6YOCCBg3jobf7iZ03mu4tLoO1WQi67PPOX/vfUQNGkTW559jNRodHaqooOxdXwHg1q4dWm/vK56v6HSEznsNjcFAwcFDpC1fXqF9bW20dgKXH/heUVp3N7R+fgAYo6PLdE1qru3z116JkX0J+ziZcRJXnSv3Nb4PrUZLxzDb98g9seVvp3XP9XXQahQOXcjgdFLZkj2i9pDEiBBCCCGEENe4zM1buDB0GOaUFJwbNSTy4424deiA4YYb8B02FICEGc9ftS21MjdupODgIRSDgeBZs+zW41qImkxRFNzat6fO4sUlLVxS33nXwVFVTsaGj0hfuRKAkDlzMFzfpsJrBYx7EsXZmYKDh8j99lt7hVhp2Tt3kTRnDgAB48fjPXBgle3l2aePrWokK6tKqkZUVSVp7lwwmXDv3BmPywyeFsUt8foT+dFH1Pt4I14D7kDR6yk88jvxz0zhzG3dSFm0CFNSsqNDFeWUc3G+iEc5khNOEREEPT8DgJTFb1Woqq3w2B+Y4uJQXFxwv/XWcl//n/HVsc0ZKWs7rZQc+1aMrPpjFQB3NrwTbxdvADqF2VqFVWTOSKCnC92aBgIyhP1qJIkRIYQQQgghrlGqyUTiy3NImD4d1WTCo/vt1F2/oaRHNNheeNPXjbC11Hr16mi183emhISS3vaB48fbrUe/ELVJcd/67G3bavzA8X+T++NPJM6eDYD/uCfx6te3Uuvpg4PxHT4csFWhqGbHD97NP3SI+MmTQVXxHjwIv8dGVel+VV01kvvtt+Tt2YOi1xM09Vm7rn21cm3ZktBXX6Xhd98S8NQ4dIGBWFJTSV36Nme6dSNuwgTyf/21xlU5iUsZY+MoPHYMNBo8bu9Wrmu9BgzAs08fuNg6sLxfmzm7bNUi7p07ozEYynXtlegv/g5Z1gHsf7XSqny12Mn0k+yN34tG0TD0f0NLHu8Y2hEFhVMZp0jMSyz3uoPb2SoPt/waS5G54u3LRM0jiREhhBBCCCGuQeaMDKIfHUXGmjUA+D/xBGELF6J1dyt1nsbVldA5c2wttTZfXS21VFUlceYsrHl5uLZujc8DQxwdkhAO4fK//+HepQtYraRWsDWLIxWdPk3c+PFgseA14A78x4yxy7p+jz6C1tsb47lzZG7eYpc1K6ro7Flixj6OajTiftttBM+YUS3VbSWzRrKyyPjwQ7utay0qImnuKwD4jhiBU716dlv7WqDz88N/zBgafvM1YW8swPWGG8BsJnvbdi4MeYCou+8mc/MWrIWFjg5V/Iucr2xttAxt26K72H6qrBRFIXjmC+hCQzBFR5P08stlvlZVVbKL22j1sl8brWLF7QtN0eVLjAR4VL5iZPUfqwHoXrc7dTzqlDzu7eLNdQHXAfBj3I/lXvfWRgEEe7qQkW/iq+NJlY5T1BySGBFCCCGEEOIaU3jyJOfvvY/8ffvQGAzUeWsxAU88jqK5/J8Hl7TUKuNAzZoue+s2cr//HkWvJ+Sl2SharaNDEsJhiqtGsj77HGNsnIOjKTtzaioxj43GmpuLa9sbCJ49224JA62HB/5jxwKQ8tZirHlVM2fjSkxJycQ8OgprVhaurVoR9vr8avt+pWi1+D9u+xikr1yJJTfXLuumr1yJKSYGXVBQyeeeKD9Fr8ezd2/qrf2QyE+24HXP3SjOzhQdP0HC9Omc6dKV5NdfxxQf7+hQxT/k7LQlJ4pbGZaX1tOTsNdeA42GrE8+IXv79jJdV3j8OKaYmCppowWgj7AlRspeMWKfGSOJeYlsj7J9DEY2H3nJ8ZJ2WhWYM6LTarivrS3RsmG/tNO6mkhipAYZMWIEiqKgKAp6vZ6goCC6d+/OihUrsFqtjg5PCCGEEEJcBbJ37uL84PsxxcaiDw+n7ob1eNx++xWvK9VS65VXqiHSqmVOTy+5w9JvzGicGzZ0cERCOJZr69a4dWgPZjNp77/n6HDKxFpYSMzjj2OKj0dfN4I6ixfbfXi3z+BB6MPDsaSkkrZqlV3XLgtTUhLRw4djio/HqW5d6ix7G42ra7XGUGrWyIeVnzViSkgomWcTOHkyGje3K1whysKlWTNCX3qJht99S+CkiehDQ7FkZpK2/D3O3N6d2CefJG/fL9JmqwYwJSVRcPgwAB7du1d4HUPbtiUt9RKef6FMCbDioevunTpVyddeScVIuVtpVS4xsvbEWsyqmbZBbWnu3/yS453q2BIjPyf8jNFiLPf697YNR1HgxzOpxKTnVypWUXNIYqSG6dWrFwkJCZw/f57t27fTtWtXnnrqKfr164e5BvQ0FUIIIYQQtZNqtZKyaBFxTz2FWlCAW4f2RH68EZfGjct0/dXWUitpzlwsGRk4N26M/yOPODocIWqE4hZUWZs21/hBzqrVSvyzUyk88jsaLy/Cly1D5+Nj930UJycCJzwNQNr7KzCnptp9j39jSkjgwtBhGM+fRx8aSvj771fJc7ySv1eNpNmhaiTptddQCwpwbXsDnn372CNE8Tc6Hx/8HnmEBl/tos5bizHcfDNYreR89TXRI0ZwYfD9dqv8ERWTs8vWRsu1TRv0QYGVWitg7FhcWl2HNSeH+GemoFr+fQaGqqpkF1eqVEEbLQB9cWIkIQHV+N8JCJPFSma+CajcjJEcYw4fn/oYgJEtLq0WAWjq2xR/V38KzAUcSjpU7j3CfQ3c0tAfgI9kCPtVQxIjNYyzszPBwcGEhYVx/fXXM23aND777DO2b9/Oqot3pyxYsICWLVvi5uZGeHg4Y8eOJffiD7WsrCxcXV3ZsWNHqXW3bNmCm5tbyXlTpkyhcePGGAwG6tevz4wZMzCZTKWuefvtt2nQoAFOTk40adKENRf7TwshhBBCiNrFkptL7BNPkrr0bQB8hw8n/N130Xp7l2udq6WlVs5335H95Zeg0RDy8ksodr7DXIjaynDjjbi2vQHVZCJ9xfuODuc/pSxcRM6OHaDXU2fxIpwjI6tsL49evXBp2RI1P5+UJUuqbJ+/M8XHc2HYcEzR0ejr1CHigw9wqhNWLXtfjmefPjhFRmKt5KyRvF/2k7N9B2g0BD/3XLXMSblWKVotHrffTt1VK6n/xed4Dx6E4upKwZEjJfPFhGPk7NoFgEfPirXR+jtFryds3jw0BgP5Bw+StvzfK/6KTpzAFB2N4uyMR5culd77cnQBASguLmC1XrGCJe1iGy2tRsHHUPHfxTaf2kyeKY/6XvW5JeyWy56jUTQlx/bElb+dFsDgG22D5T8+FIPZIp19rgbXRGJEVVWs+fkOebNHieJtt91Gq1at2LLFNuxNo9GwaNEijh07xurVq9m9ezfPPPMMAF5eXvTt25e1a0uXt65bt44BAwbg7u4OgIeHB6tWreL48eMsXLiQ5cuX88Ybb5Sc/8knn/DUU08xceJEjh07xmOPPcbIkSP59ttvK/18hBBCCCFE9TFeuMD5wYPJ3b0bxcmJkLlzCZr6LIpOV6H1antLLUtuLokzZwG2BJFry5YOjkiImsV/tK1qJOOjjZjT0hwczeVlbvmEtHfeASDkxRdxa9euSvdTFIXAyZNse2/8mKJzUVW6nzE2jgtDh2GKiUEfEUHdD1Y7NCkCF6tGxhZXjayqUMWBajaXtDD0GTwIl6ZN7Rqj+HfOjRoRMnMmIbNnA5C2arVUjTiIOTWV/IMHAfCsRButv3OKiCBoxgwAUt56i4Lff7/sedk7bQkZ91urpo0W2L5fOoXb5nFcac5IcRstXzcnNJqKJUlNFhNrTtgSfSOaj0Cj/PtL3ZWZMwJw+/8C8XVzIim7iO9PpVRoDVGzVOyvoVpGLSjg5PU3OGTvJr8eQjEYKr1O06ZN+f3iN7bx48eXPB4ZGcns2bMZM2YMS5cuBeCBBx5g2LBh5OfnYzAYyM7OZuvWrWzevLnkuueee67k3/Xq1WPixIl89NFHJQmW+fPnM2LECMZe/MVnwoQJ7Nu3j/nz59O1a9dKPx8hhBBCiGuZKSkZnY93lVcq5P74E3ETJmDNzkYXGEidtxbjet11lVpT4+pK6Msvc2HoMLI2b8GzVy/cO3WyU8RVL/n11zEnJqIPDydg3JOODkeIGsetYwdcrruOwt9/J33VagInTnB0SKXk/bKfhBdeAMBv9GN43zmwWvZ1a9cO965dyf32W1LeWECdxYurZB9jTAwXhg/HHJ+AU926RKxehT44uEr2Ki/PPr1JXboUY1QUGR9+iP/o0eW6PmP9BopOnULr5UXAuHFVFKX4L569e9n+H547R8aHa2XwvQPkfP0NqCouLVuiD7NfwtNr4ADy9vxA9rbtxE2aTOSWLWjd/0p+qKpqq7IDPHr2stu+l6MPj6Do9JkrJkZS7DBfZMf5HSTnJ+Pv6k/f+n3/89z2oe3RKTrOZ58nJjuGcM/wcu3lrNNy9/VhLN8TxaZDsXRrFlThuEXNcE1UjFwNVFUtKTH99ttv6d69O2FhYXh4eDBs2DDS0tLIy8sDoG/fvuh0Oj7//HMANm/ejIeHBz16/FWit2nTJm655RaCg4Nxd3dnxowZREdHlxw/ceIEHTt2LBVDx44dOXHiRFU/VSGEEEKIq1r6B2s407kzJ29oS9S995EwaxaZmzdTePIkqp1myqmqStrKVcSMGoU1OxvXVq2ot+njSidFihnatsVn6INA7WqplX/wIJnrNwAQMnt2tQ8wFqI2UBSl5AXvjLVrsWRmOjagvyk6F0XsuHFgMuHZp3e1v7geOHECaDTkfPU1+b/+avf1jRcucGHoMFtSJDKSiA8+qDFJEbhM1Ug5vveb09NJuZhMCnh6fLlbOQr7ULRa/MfYvr7TV67Ekpvn4IiuPTm7Ls746GGfapFiiqIQPHMmutAQTNHRJM2ZU+p40cmTGC9cQHFywr2K2mgVKxnAHn2FipGc4sRIxW4UUlWVVX+sAuCBZg/gpP3vdTycPGgT1AaoeDutAa1tyaxvTyaTb5RZ0LXdNVExori60uTX8g/Wsdfe9nDixAkiIyO5cOECffr0YfTo0cyePRtfX19+/PFHHn744ZIZIU5OTtxzzz2sW7eOwYMHs27dOgYNGoTuYruEffv2MXjwYGbNmkXPnj3x8vJiw4YNvP7666Vj/0evz78nZ4QQQgghRPkVHj9O0rx5AKgmE4VHj1J49CiZF48rzs64NGuGS4sWuLRojmuLFjhFRqJotWXew1pYSMLzz5P9+RcAeN11F8EzX0Bj5+qUwKefJve7721/fL/6KqEvvWTX9e3NWlhIwnRb1bT3vffgdvNNDo5IiJrLvWsXnJs2pejPP0lf8yEBTz7h6JCwZGYSM3o01qwsXFu1ImTOHBRN9d7r6dywId5330Xmx5tIfm0eddevs9vfyEVRUUQPH4E5ORmnBg2IWLkCfWDlhjJXBc8+vUl9++2LFQcf4j9mTJmuS3njTazZ2Tj/rxne995bxVGK/+LZpw+pS5ZiPH+ejPXr8H/0UUeHdM0wZ2SQ98t+ADx7VH6+yD9pPT0Je/VVLgwfQdaWLbjf2gnPXrbqkOyL1SJunTqVqiSpCvoIW2Lkyq20bDNGAipYMfJz/M+cyjiFq86VexuX7ftKp7BOHEg8wJ64PQxpNqTcezYP9STC10B0ej7fnUyhT8uQcq8hao5romJEURQ0BoND3uzxS9Lu3bs5evQod999NwcPHsRsNvP6669z880307hxY+IvM8zogQceYMeOHfzxxx98++23PPDAAyXHfvrpJ+rWrcv06dNp27YtjRo14sKFC6Wub9asGT/++GOpx/bu3UuzZs0q/XyEEEIIIa5F1oIC4iZNBpMJ927daLBrJ2FvLMD34Ycw3HQTGnd31KIiCg4fJuPDD0l4dirn+vXn5I3tOP/ggyTNfYWsL76kKCoK1Xr5gY+mxEQuPDjUlhTRagmaPp2Ql1+ye1IELrbUmvMyKApZmzaTu6did95Vl9QlSzFeuIAuIIDAyZMdHY4QNZqtasTWYid9zZoaMYsg8cXZtkHkYWHUWboEjYuLQ+Lwf+JJFBcXCg4fJuerr+yyZtG5c0QPG445ORnnRg2pu3pVjUyKwD+qRlatLlPVSMHRY2Ru2gRgG7hejmS/sD9Fq8Wv+Ot7xUqseVI1Ul1yd+8GiwXnpk1xqlu3SvYw3HgjfqNsya6E51/AFB9/sY2WrVLFs1fPKtn370oqRso4Y8Tfo2KJkZV/rATg7kZ34+XsVaZriueMHEg8QIG5oNx7KopC75a2Sr5tRxPKfb2oWa6JxEhtUlRURGJiInFxcfz666/MmTOHAQMG0K9fP4YNG0aDBg0wm80sXryYc+fOsWbNGpYtW3bJOp07dyYoKIgHHniAevXqcfPNN5cca9iwIdHR0WzYsIGzZ8+yaNEiPvnkk1LXT548mVWrVrFs2TJOnz7NggUL2LJlC5MmTaryj4EQQgghxNUo6dVXMZ47hy4ggJCXZuMUEYFn794ETZ5M3dWraLz/F+pv30bovHm2oeBtb0AxGFDz8yk4eIj01auJnzyZc737cKrdTVwYPoKkefPI3r4dY0wM+b/+StQ991J47Bhab28i3n8P36EPVmnFb21pqVV4/DhpK1YAEDzzBbSeng6OSIiaz6NHD5waNMCanU3GuvUOjSV7xw6yt20DrZawN99A5+fnsFj0QYH4jhwBQMrrC1Avdm6oqKIzZ7gwbDjmlBScGzcmYvVqdP7+doi06nj27oVT/fpYs7LI+PDD/zxXtVpJeuklUFU87+iP4frrqylK8V+8+vVDXzcCS0YGGRs2ODqca0b2Ltvwc8+e9q8W+buAxx/HpdV1WLOziX9mCkV//onx/HlbG61qmBusv5gYMcbGoqrqv55XkhipQCutP9P/ZF/CPrSKlgf/92CZr2vg3YAQtxCKLEUcSDxQ7n0BerewVYns/jOZQpOlQmuImkESIzXMjh07CAkJoV69evTq1Ytvv/2WRYsW8dlnn6HVamndujULFizg1VdfpUWLFqxdu5a5c+deso6iKNx///0cOXKkVLUIwIABA3j66ad54oknaN26NXv37mXGjBmlzhk4cCALFy5k3rx5NG/enHfeeYeVK1fSpYr7EAohhBDi2lF05gzmjAxHh1EtcnbvJnPDRwCEvDIXnY/PJecoGg3OkZF49e9H0NRnqffhhzQ5sJ/6X35ByCtz8XnwQVxbtUJxdsaam0v+L7+Q/v4K4p6ewNnuPbgw5AEsqak4N25MvU0f4/a3G2OqUuDTT6OPiMCcmEjSq69Wy57loZpMxE9/DiwWPHr1wqNbN0eHJEStoGg0+D82CrDNIrDm5zskDnNqKokzZwHg/9goXFu2dEgcf+f38MNofX0xXrhQUglREYWnTnFh2HDb9+6mTYlYvQqdr68dI60a5Zk1kvX55xQcOYLGYCBwotxoWVMoOh3+j9lmjaS9vwJrQfnvnK9KhSdOVMkcH0eyZGeTt/dnwJZ4rkqKXk/YvHloDAbyDx4k9qnxALjdcgtad/cq3RvAKSwMNBrU/Hwsqan/el5qJYavF88W6VG3B2HuZR9iryhKSdXIntiKVTu3quNFqJcL+UYLP5xKqdAaomZQ1P9K3dVQ2dnZeHl5kZWVhec/7vYqLCwkKiqKyMhIXBxUWitqHvm8EEIIIWqW7J27iHvqKRRnZzz79sX3wQdw+d//HB1WlTAlJxM1YCCWjAx8R44kaMozlVpPNZkoOnuWwmPHKDh2jMJjf1B48iSYTHj06EHo3Dlo3Kq2d/Q/5R88yIWhw0BVCV/+Lu6dOlXr/v8l9d3lpCxYgMbLiwZbv6zxd2ILUZOoZjNn+/TFFB1N4LNT8Bsxonr3V1ViH3+C3N27cW7WjMiPNqBUQWvAikhfu5ak2S+h9fOjwc6d5e7ZX3jyJNEjRmLJyMDlf/8jYsX7tWoguWqxcO6OARjPnsV/3JMEXEyU/J0lN5ezvXpjSU0lcNJE/B55xAGRin+jmky2r++YGAKnTMHvYiWUoxmjoznX/w7UoiLC3nyzWlo/VYeszz4jfsqzODVsQIMvv6yWPTO3fELCtGkl74e+9iped9xRLXufua0bpvh46q5b+6+VYj3f+IGTSTl88FA7bm0cUOa1E/MS6bW5FxbVwoZ+G2ju17xcsX0X8x1P7n6SMPcwtt+1vULV1bO/PM77P0ZxZ5sw3hjUutzXi6rzX3mDf5KKESGEEEIIUa0suXkkvfwyAGpREVlbthB1192cv38IWVu3ohqNDo7QflSrlYRnp2LJyMC5WTMCnh5f6TUVvR6Xpk3xvuceQmbOJHLTxzQ5dJBGe36gzqKF1Z4UgZrbUqsoKorUt94CIGjqs5IUEaKcFJ0O/4u96tPfX4G1qKha98/67DNbT369ntBXXqkxSREAn/vuw6luXSxpaaRfbNVXVoXHjxM9bLgtKdKiBRErV9SqpAgUV43YBq+n/8uskdQlS7GkpuJUrx6+w4ZVd4jiChS9vqQqLO3992tE1YiqqiTOfgn14vea+ClTyP/tNwdHZR/Zu2wziTx7VF+ix+vOgXj0tg1fV/T6ammjVUxfhjkjFa0YWXN8DRbVQrvgduVOigC0C26HXqMnLjeOqKyocl8P0OfinJGvjydRZJZ2WrWVJEaEEEIIIUS1Sn17KebkZPTh4UR8sBrPfv1Ar6fgt9+InziJM91uJ+WtJZhTan9pevoHH5C3dy+Kiwth8+dVyRB0AI2TE7qAst9pVxUCx4+vUS21VKuVhBkzUI1G3Dp2xGvAAEeHJESt5HXHHehCQjCnpJC5eXO17WtKTCTp5TkABDzxBC5NGlfb3mWh6PUETJgAQNrKlZiSk8t0XcGxP7gw8iEsWVm4tLrOViniVbahwTWNZ69eJXNo0j/4oNSxorNnSV+zBoCg6dNqVFJL/MVrwAD0YWFYUlPJ3LjR0eGQs2MHeXv2oOj1GNq1Qy0qInbs4xgvXHB0aJViyc0jb4+tbZNHFc8X+TtFUQiZOROP7t0JGD8erYdHte3tFHFxzkj05RMjZouV9HzbzVD+HmX//pBtzGbTKVsLwxHNR1QoNoPewI3BNwKwJ65i7bTahPsQ5OlMTpGZvWfSKrSGcDxJjAghhBBCiGpTdOYM6attL54ETZ+GW7t2hM2fR8Nvvsb/iSfQBvhjTkkh9a23OH1bN+ImTiL/t9/+c3BjTVV44gQpry8AIOjZKTg3aODgiKqWxmAgdM7LoChkbdpM7p4fHRpP5kcfUXDwEIrBQPCsWVU6hF6Iq5ni5ITfIw8DkPbee9VS1aeqKgnTn8Oak4NLq+vwe/ihKt+zIjx6dMe1VSvUggJS31pyxfMLjh4leuRIrFlZuLZuTcR776G9QpuPmqxU1cjqD7BkZwO2/39Jc+aC2Yx71641qr2iKE3R6/G7WDWS+t57WAsLHRaLJSfH9nkD+D32GOHL3salRQssGRlEjxpVq+fS5f3wParRiFPdujg3rt4kr9bLizqLF1X791F9eAQAxpjoyx5PzzeiqqAo4Gsoe2Jk06lN5JvzaejdkFvCbqlwfJWdM6LRKPRqbqsa2XY0ocJxCMeSxIgQQgghhKgWxe0RMJtxv+02PLp0KTmmDwwk4InHafTNN4TOn49rmzZgMpG9dSsX7h/C+XvuJXPLJ9XexqWirAUFxE2ajGoy4X7bbXgPGuTokKqFoW1bfB4sbqk1w2EttUwJCSTPfx2wDYd3qlP2oZxCiEt53323LXEdn0DWF19U+X6ZH20k76efUJydCZ37CopOV+V7VoSiKAQ+MxmAzE2bKDp79l/PLTh8mOiRD2HNycH1hhsIf++9ar17u6qUqhq5WCGS+803tv9/Tk4ETX3WwRGKK/EeOBBdaAiWlFQyP97ksDhS3lyIOSUFp7p18Xv0ETQGA+FvL0UfGorpQjSxYx+vNb8H/lP2zl2Abej6tXKjhlN4HQBMMbGXPZ6aY0uy+xqc0GnL9vK0yWJi7fG1AAxvPrxSH8tOdWyJkUPJh8g15lZojd4tQwDYdTwJk8Va4ViE40hiRAghhBBCVIvsrdvI/+UXFGdngv42CPLvFCcnvPr1pd76ddTbvAmvO+9EcXKi8I8/SJg2jTNdupK84A1MCTX7zqzkefMwnj2LNsCfkJdmXzN/BAMEPu3YllqqqpI4cxbWvDxcW7fGZ8j91R6DEFcbjYsLfg/ZqkZS33kX1Wyusr2MMTEkvfYaAIETnsa5fmSV7WUPhhtuwP32bmC1knyxSvCf8n/9jeiHH8Gam4uhbVsi3n2n3MPaaypFqyXgcdvg9fTVH2BOSSFp7isA+D40EqeICEeGJ8pAcXLCf9TFWSPLlzsk+VBw9BgZ69YBEDzzBTTOtpkTuoAAwt99B42Hh63l6pRnUa216wVoa0EBuT/8AIBHz6tjkHxZ/FUxcvlWWikVmC+yLWobyQXJBLgG0CeyT6Xiq+tZl7qedTFbzfyS8EuF1rixni/+7k5kFZj4+ay006qNrtrESG1styCqjnw+CCGEEI5lyc0l+eKL5P6jHyvTHfyuzZsTOncODb//joAJE9CFhGDJyCDt3Xc50+12Yp8cR94v+2vcz/mcb78lY916AELnvoLO19fBEVUvR7fUyv5yK7nff4+i19uSUlptte4vxNXKZ9B9aL29MUVHk719e5XsoVqtJEydhpqfj+HGG/EZOrRK9rG3wAkTQKsld/du8g8cKHUs/9AhYh55BGteHoabbrK9yOt2dSRFinn07IlTQ1vVyPkHH8QUF4cuOLjkxXZR83nddRe64GDMyclkbqreqhHVYiHxhRdAVfHs3x+39u1LHXdu2JA6ixeDXk/Ojh0kv/56tcZXWbl79qAWFKAPC8Ol+f8cHU61KZ4xYklNxZqXd8nx1BxbYiTAo2yJEVVVWfXHKgAeaPYATtrKzy0qaadVwTkjWo1Cj4vttLYfS6x0PKL6XXWJEb1eD0B+fr6DIxE1SfHnQ/HnhxBCCCGqV+rFYer6uhH4PlS+Hsc6Hx/8Rz1Kw692EbZoIYabbgKrlZyvviJ6+HCi7hhAxoaPsNaA3//MKSkkTJsOgO/w4bjf0tHBETmGo1pqmdPTSZpjG9bsP3YMzg0bVsu+QlwLNAYDviNGAJC67J0quWs7Y80a8g8eRDEYCJk7B0VTO16ycK5fH+977wEgad78koR93v79RD86Cmt+Pm4d2hO+7G00BoMjQ60SilZLwFhb1Yjpgm2eQNAzk6/K53q10jg54TfqUQDSlr+HtRpmCRXLWLuOwuPH0Xh6EjTlmcue43bzTYS+/BIA6e+vIGP9+mqLr7Jydn0FXFtttAC0np5ovbwAMMZe2k4rtaRipGwJjp/if+JM5hkMOgP3NrnXLjH+fc5IRW+06tPiYjutPxIxSzutWqdmNuqsBK1Wi7e3N8nJyQAYDIZr6huPKE1VVfLz80lOTsbb2xut3DEohBBCVLvCU6dK+o4HP/dcSXuE8lJ0Ojx79MCzRw8KT50iY+06sj7/nKLTp0mcOZPkBQvwvusufEeORB8UaM+nUCaq1Ur81GlYMjJwbtKEgAlPV3sMNUng0+PJ/f57TNHRJL/2GiGzZ1f5nklz5to+/o0b4/fww1W+nxDXGp8HHyBtxQqMZ8+S89XXePbsYbe1i85FkbzgDQCCnnkGpzp17LZ2dQh4/HGyPv+Cwt9/J2fnTrTe3sSMHoNaWIhbx47UWfIWGhcXR4dZZWxVI0sxnjmLoV07PHr3dnRIopy8776btGXvYE5MJGvLFnwGD67yPU1JSaQsXAjYKq90/v7/eq7XHXdgiosjZeEiEme/hC4kpNS8uprIajSS++23AHj06O7gaKqfPjwcS1YWppgYXJo0KXUstZyttIqrRe5ufDeeTp52ie+G4Btw1bmSXJDMqYxTNPFtcuWL/uGm+r74GPSk5RnZfz6dDg3+/XNY1DzlToz88MMPzJs3j0OHDpGQkMAnn3zCwIEDS46rqsqsWbN49913ycjI4KabbmLJkiU0b9685JwuXbrw/fffl1p30KBBbNiwoeLP5G+Cg21lTMXJESG8vb1LPi+EEEIIUX1UVSXpxdlgseDR/XbcO3Wyy7oujRsTMmsmgROeJvOTT8hYtx5TdDTpq1aR9emnhL76Cu6dO9tlr7LK+PBD8n78EcXZmbDX51c4AXS10BgMhL78EheGDiPz40149OiJe6dbqmy/nO++I/vLL0GjIeTll1CcKt9iQQhRmtbdHd8HHyR16VJSly3Do0d3u9yIqJrNxE99FrWoCLeOHfEedJ8doq1euoAA/EaOJHXJEluSNivL9nxu7USdxYuv+p8JilZL6Ny5pK9cRcDT4+UG1VpI4+yM36OPkvTyy6S++y7ed91V5T9Lk+bMtc0Ea9UK7/uuXAXgN3o0xthYsjZvIW7CROp+8AGuLZpf8TpHyfvpJ6x5eeiCgnBt1crR4VQ7p4hwCo8dwxh96ZyR1FxbVZJ/GVppHU87zi8Jv6BVtAxtZr8Wi85aZ24KvonvYr9jT9yeCiVG9FoN3f8XxMaDsWw/miiJkVqm3ImRvLw8WrVqxciRI7n77rsvOf7aa6+xYMECVq1aRePGjXnppZfo3r07J0+exMPDo+S8Rx99lBdffLHkfVdX1wo+hUspikJISAiBgYGYTCa7rStqJ71eL5UiQgghhINkf/mlrS2KiwtBzz5r9/W1Xl74jRiB77Bh5O3ZQ/LChRQdP0HMY6PxffghAsePR6mGVpqFJ0+SPG8+AIFTnpEWThcVzwjIWLOGhBkzqP/F52j/9jeBvVhyc0mcOQsA3xEjcG3Z0u57CCFsfIcNJX3VKopOnCD3u+/w6Nq10mumvb+CwiO/o/HwsCU2a+mL6r4jR5Lx0UeYL96k6d65M2GLF6G5RhK1ri1bEragds1/EKV533cvae++izk+gcxPPsWnCpOUud9/T87OnaDVEjxrZpla5ymKQsjMmZgTEsnbu5eYMaOJ/Ogj9KGhVRZnZeTs3AWAR/futaY1oD39NYA9+pJj5akYWf3HagB61utJiHuIHSOETnU68V3sd/wQ+wOPtHykQmv0bhnCxoOx7PgjkVl3NEejqZ0/w65F5U6M9O7dm97/UhKpqipvvvkm06dP56677gJg9erVBAUFsW7dOh577LGScw0GQ5Xfwa/VauUFcSGEEEIIB7Hk5JD02msA+I8Zgz7sygPXK0rRaHDv3BlD+/Ykv/oaGWvXkv7+CgoOHiJswetVure1sJD4SZNQTSbcu3TB5/77q2yv2qg6Wmolv/465sRE9BERBDz5hN3XF0L8Revtjc8DQ0hb/h6py5bh3qVLpRIZhSdPkvLWWwAEPzcdfS2u9Ne6uxE0eRLxU6fh0a0boa/Pv2aSIuLqYKsaeYSkOXNJe+cdvO+6s0puMLEWFJA42zYzxHfYMFyaNi3ztYpeT9iihVwY8gBFp04R89hj1F27Fq2nfdor2YtqNJKzezeAXdsO1iZO4baWiKbLVIyk5JRtxkh8bjw7z+8EYETzEfYNELglzFbNfCTlCFlFWXg5e5V7jY4N/PFw0ZGSU8Sh6AxurOdr7zBFFbFrujIqKorExER69PjrC97Z2ZnOnTuzd+/eUueuXbsWf39/mjdvzqRJk8j5j4GMRUVFZGdnl3oTQgghhBA1W8rixVhSUnGqVw/fkSOqZU+NkxPBM54jbOFCNB4eFBw5wrm77ibnm2+qbM/kefMpOn0Grb9/rb7TuaoUt9QCyPx4E7l7fizztVajEXNGBsbYWApPniT/11/J3fMj2Tt2krl5C+kfrCF5wRtkrre15A158UU0dqxEF0Jcnu+IESguLhQe+Z28f/ytXx6q0Uj8lGfBZMK9Wzc877jDjlE6hteAATTe+xN1rqFKEXF18b7vPrT+/pji48n67LMq2SP17WWYYmPRhYQQ8MTj5b5e6+5O+DvL0AUGUnT6DLHjnkKtxoHxZZH3y36s2dlo/fxwvf56R4fjECUVI7H/0UrrChUja46vwaJauCnkJpr5NbN7jKHuoTT0bohVtbI3vmI/z5x0tnZaANuOJtgzPFHF7Dp8PTExEYCgoKBSjwcFBXHhwoWS9x944AEiIyMJDg7m2LFjTJ06lSNHjvDVV19ddt25c+cya9Yse4YqhBBCCCGqUOGff5Lx4VoAgp57rtpfHPLs2QOX5v8j7ukJFB49SuzjT+AzbChBkybZtV927vffk7HW9jxD585B5+dnt7WvJoYbb8TnwQfJ+PBDEmbMwKt/f6x5eba3/Dysefkl/7bkXXw/Px/K0RbX+957cbv5pip8FkKIYjo/P7zvu5eMD9aQ9vYy3Dt2rNA6qcuWUfTnn2i9vQmZNfOqSSxrvb0dHYIQFaZxccHv4YdJfvVVUpe9g9eAAXatGik6fZq0FSsAW5WYxs2tQuvoQ0IIf2cZFx54kPx9+0iY8Twhr8ytMd9HcnYVt9G6HeUa7WbjFBEOgCkuHtVsRtHZXoa2WFXS82wVIwH/MWMkqyiLzac3AzCy+cgqi7NTWCfOZJ5hT+weekdevkvSlfRuEcKWX+PYcSyRGX3/J+20agm7JkaK/fObkKqqpR579NFHS/7dokULGjVqRNu2bfn111+5/jJZ1KlTpzJhwoSS97OzswkPD6+CyIUQQgghRGWpqkrii7PBasWjZ0/cb6nYC2aV5VSnDvXWfkjygjdIX7WKjA/WUPDrb4S9sQAnO/wuaU5NJX7adAB8hg2122D5q1XghKfJ/eEHTNHRpC1fXq5rFRcXNG5uf3szoHFzQ+vmhmIwoA8MxO/hh6sociHE5fg9/DCZ6zeQf/Ag+QcOYLjxxnJdX3D0KKnvvAtA8MyZ6PxlYK0QNYXP4EGkvfcepthYsr74Eu+77rTLuqqqkjBrFpjNuN92Gx7dulVqPZdmzQhb+CYxo8eQ9dln6MPDK1SBYm+q2UzO118D4Nnj2myjBaALCkLR61FNJkyJiTjVsbXWysg3YlVt5/i6/fsNSx+f+pgCcwGNfBrRIbRDlcXZqU4nVv6xkh/jfsSqWtEo5W+w1KmRP25OWhKyCjkSm0mbCJ8qiFTYm10TI8UzQxITEwkJ+WsYTnJy8iVVJH93/fXXo9frOX369GUTI87Ozjg7X3kYjxBCCCGEcLyszz6j4NdfUVxdCXp2ikNjUZycCHp2CoZ27YifOpXCY8eIuvMuQl56Cc9ePSu8rqqqxE+bhiUtDefGjQmcONGOUV+dNAYDdRYvJmPDehS9Ho3BUJLo0JZKevztzWBAYzCU3GEohKg59EFBeN19F5kbPiL17WVElCMxYi0qIv7ZqWCx4NmnT6W+Hwsh7E/j6orfQyNJnjef1GXL8Lqjv11+Fmdt+YSCg4dQXF0Jfm66HSIF906dCH7heRKff4HUt95CHxaG950D7bJ2ReUfPIQlIwOtt3e5k8ZXE0WjQV+nDsaoKEwxMSWJkeLB6z4GPXrt5ZMQRouRdSfWAbbZIlVZCdQ6sDXuencyijL4I/UPWga0LPcaLnot3ZoF8fmReLYfS5TESC1h1xkjxe2x/t4Sy2g08v3339Ohw79n9v744w9MJlOpZIoQQgghhKh9LNnZJM+bD4D/2DHoa8jvdx63daX+J1twbdMGa24ucePHkzBrFtaiogqtl/HhWvJ+2IPi5ETo/Hlo5CaeMnFp0piQF14geNo0AsePx//RR/EdMgSvAQPwuP123Nq3x/W663Bu0AB9cDBaT09JighRg/k98ihoteTt3UvBkSNlvi5l4SKMZ8+iDfAnaMZzVRihEKKifO6/H62PD6boaLK+/LLS65kzMkieNw+AgCeeQB8aWuk1i/ncdx9+o0YBkDBjBnk//2y3tSsiZ5dtWLh7t9uqZHh9baK/2E7L+LcB7Kk5V54vsvXcVlIKUgg0BNK7XsXaW5U5Ro2e9qHtAdgTt6fC6/RpaSsY2HY0AVVV7RKbqFrlTozk5uZy+PBhDh8+DNgGrh8+fJjo6GgURWH8+PHMmTOHTz75hGPHjjFixAgMBgNDhgwB4OzZs7z44oscPHiQ8+fPs23bNu69917atGlDxwr2JRVCCCGEEDVDyqLFWNLScKpfH7/hwx0dTin60FDqfrAav4ttXTPXb+D8oMEURUWVa53Ck6dK/rAPfOYZXBo3tnusQghRGzjVCcPr4sD01GXvlOma/EOHSF+5EoCQF19E5yN31QpRE2kMBnwfss11SHt7GarZXKn1kufNx5KZiXOTJvgOG2qPEEsJGP8Unn36gNlM7JPjKDx1yu57lIVqtZJ98YZxz55SDed0cQC7KSa65LHiipF/S4yoqsrqP1YD8GCzB9Frqz651CnM1hJ3T2zFEyOdGwfiqtcSm1HAH/HZ9gpNVKFyJ0YOHjxImzZtaNOmDQATJkygTZs2PP/88wA888wzjB8/nrFjx9K2bVvi4uLYtWsXHh4eADg5OfHNN9/Qs2dPmjRpwrhx4+jRowdff/012mt0GJEQQgghxNWg8PhxMtbZSt6DZzxn1yHn9qLo9QROnED48nfR+vhQ9OefnL/7HrK+KNudkNaiIuInTUI1GnHrfCs+Dwyp4oiFEKJm8xv1KGg05H77LYUnTvznuda8PFsLLVXF6+678OjatZqiFEJUhO+QIWi9vTFeuED29u0VXif/wAGytmwBRSF45gtVUkWhaDSEvDIX17Y3YM3NJWb0aEzJyXbf50oKfvsNS0oqGg8P3G6+udr3r2mcLlcxUpwY+ZfB63vi9nA26yxuejfuaXxP1QcJ3BJ2CwDH0o6RWpBaoTVcnbR0bRoA2KpGRM1X7sRIly5dUFX1krdVq1YBtsHrM2fOJCEhgcLCQr7//ntatGhRcn14eDjff/89aWlpFBUVcebMGRYuXIivr6/dnpQQQgghhKheqtVaMnDds09v3Nq3d3RI/8m9UyciP/0Uw403Ys3PJ37yZBJmzMBaUPCf1yXPf52i06fR+vkR+vLLVdrvWAghagPnyEg8e9vanFypaiT59dcxxcSgCwkh6NlnqyM8IUQlaNzc8B0xAoDUpW+jWizlXkM1Gm0D1wHv++7DcPFG66qgcXIi/K23cIqMxByfQOzoMVjz8qpsv8vJ3mlro+VxW9caeZNQddPXuZgYif0rMZJSUjFy+Y9PcbXIPY3uwcPJo4ojtAkwBNDMtxkAe+P3Vnid3i1sbYSlnVbtYNcZI0IIIYQQ4tqU9cmnFBw+jGIwEDjFsQPXy0ofFEjEyhX4jx0LikLmx5s4f98gis6evez5uT/8QMaaNQCEznkZnb9/dYYrhBA1lt9jtt7+Obt2UXTmzGXPydu7l4x16wEIffkltB7V82KXEKJyfB58AI2XF8aoKLK37yj39WkrV2E8cxatry+BE56ugghL03p7E/7uO2h9fSk8fpzYCRMq3QasrFSrlZxdtjZaHj16VMueNV1xxYgpOqYkUfBfM0b+SPuD/Yn70Sk6Hvzfg9UXKNCpTuXbaXVtGoizTsP5tHz+TMyxV2iiikhiRAghhBBCVIolK4vk+baB6wGPP44+KMjBEZWdotMRMO5JIla8j9bfn6LTp4m6514yP/m01HnmtDTip00HwOfBB3Hv3NkB0QohRM3k0rgxHt1vB1Ul9d13LzluyckhfrptyLrPkCG4dehQ3SEKISpI6+6O3wjb3LjUt8tXNWKMiSF16VIAgp6dgtbLq0pi/Cen8HDC316K4uJC3vc/kPjSS9Vy937h0aOYExPRGAy4yRxlAPR16gBgzc3FkpkJ/NVKK+AyiZHVx2zVIr0iexHsFlw9QV5UPGfkp/ifMFsrlkxzd9Zxa2NbO63txxLtFpuoGpIYEUIIIYQQlZKycCGWjAycGjaokmGa1cGtfXvqf7IFQ/ubUQsKSJg6lfgpz2LNy0NVVeKnTcOSmopzo0YETp7k6HCFEKLG8Rs9GoDsL7divHCh1LGkua9gTkhAHxFB4KSJjghPCFEJPg8+iMbTE+PZs+Ts2lWma1RVJXH2bNSiIgw334xn//5VHGVprq1aETZ/nq0qeMNHpK9YUeV7Zl/82Lh36YzGxaXK96sNNC4u6AIDATDF2Npp/TVjpHQrrbjcOHZdsH0MRzQfUX1BXtTSvyVezl7kGHM4knKkwuv0aWlL6GyXOSM1niRGhBBCCCFEhRUc+4OM9RsACJ7xfJUM06wuuoAAIt57j4CnxoFGQ9ZnnxF1730kz5tP3vc/oDg5ETp/Phrnyw+KFEKIa5lr8+a4db4VrFZSly8veTzn229Lhi6Hzp2DxmBwYJRCiIrQenjgO2wYAKlLl6JarVe8JmfnLvJ+2IOi1xP8/PMOmcvmcfvtBE21zTNKnjef7G3bqmwvVVXJ2Wl7Ud+jR88q26c20v9jAHtJYuQfFSMfHv8Qi2qhfUh7mvg2qd4gAa1GS8dQW6VPZdppdWsWhF6rcDo5l9NJ0k6rJpPEiBBCCCGEqBDVaiVx9ougqnj264fbTe0cHVKlKVot/mPGELFqJbrAQIznzpXcYRg4aRIuTRo7OEIhhKi5/C9WjWR9+hmm+HjMGRkkPP88AL4jR2K44QZHhieEqATfYUPReHhQdPpMyRyNf2PJzSVpzhwA/EaNwrl+ZHWEeFm+w4bhc7GiOW7CROKeeQZTov1bHBWdOIEpNhbFxQX3WzvZff3azCk8AgBTTDRWq0pa7qUzRrKKsth8ejMAI1qMqPYYi5XMGYmreGLE00XPLQ1tswilnVbNJokRIYQQQghRIZmbN1N45Hc0bm4ETp7s6HDsyq1dOyI//QS3TrY/jtw634rP0OodACmEELWNoU0bDO1vBrOZtPfeI2n2S1hSUnFq0MBWjSeEqLW0np74DrUlGK5UNZKycBHm5GT0dSPwG/VodYX4r4KmTMH7/sEAZH/+BWd79SblrSVYCwrstkf2xWoR906dpDLuH5z+VjGSVWDCbLXNe/Fz/6uV1v7E/RSYC6jvVZ/2Ie0dEifALaG3oKBwKuMUiXkVT2r0bhkCSGKkppPEiBDXKFN8PNb8fEeHIYQQopYyZ2SQ8voCAPyffAJ9UKCDI7I/na8v4e8sI/KTLYQvWeKQFhBCCFHb+I8eA0DGho9sbWu0WkJfeUXaEApxFfAdNhSNmxtFp06R8803lz2n4NgfZKxdC0DICy/UiK99Rasl5IUXqLdpE6433IBaWEjqW29xtncfsr74okytwf6LrY3WTgA8evSwR8hXFX0dW2LEFBNT0kbL00WHs05bck5KfgoADbwbOPR3bm8Xb64LuA6AH+N+rPA6Pf4XhE6jcCIhm6jUPHuFJ+xMEiNCXGNUVSVtxUrOdLudMz17kvPdd44OSQghRC2U8uZCLJmZODdqhO8DDzg6nCqjaDS4NGuGotM5OhQhhKgVDO1uxPX66+HiC43+j43CtWULB0clhLAHrbd3SQVt6tK3UVW11HHVYiFx5kywWm1tVjt0cECU/861RXPqfriGsDffQB8aijkxkfjJz3D+/vspOHy4wusWnT6N8fx5FL0e965d7BXuVaOkYiQmhpSSweulE2ZphWkA+Lr4Vm9wl9Ep7GI7rUrMGfE2ONG+gR8A24/JEPaaShIjQlxDVKORhBkzSH7tNVBVLCmpxI4eQ8KMGVhyJYMthBCibAqOHiVz40YAgp+fUasHrgshhLAvRVEIePIJUBRc/ve/krkjQoirg+/w4WgMBopOnCB39+5SxzLWb6Dw2DE0Hh4ETXnGQRH+N0VR8OzVi/rbtxHw9NNoDAYKj/zO+cH3EzdpMqaE8r+IXTxzxa1jR7Tu7vYOudbTR9hmjJiTkkhLtw0j/+fg9fTCdAD8XP2qN7jLKJ4zsi9hH0aLscLr9G5xsZ3WUWmnVVNJYkSIa4QlM5PoRx4la9Nm0GgIfHYKviNHgqKQ+fEmogYMIG//fkeHKYQQooZTLRYSZ9kGrnsNuAPDjTc6OiQhhBA1jFv79tT/8gsiPvgAxcnpyhcIIWoNnY8PPg9erBpZsrSkasSUlEzKG28AEDhxArqAAIfFWBYaZ2f8HxtF/R3b8br7LlAUsr/8krO9+5CyaHG5Wo+XtNHq2bOqwq3VtN7eaNzcAMiNigYg4B+JkbQCW8WIn4vjEyNNfZvi7+pPvjmfX5N/rfA6PZoHoVHgaFwWMenSyr4mksSIENeAoqgozg8aTP7+/Wjc3Ahf9jZ+I0YQNOUZIlavQh8WhikujujhI0h65VWsRUWODhkA1Wql4MgRLDk5jg5FCCHERZmbNtvuBHR3J3DSJEeHI4QQooZybtAArbubo8MQQlQB35EjUAwGCo8fJ/die+6kV+ZizcvDpdV1eN93n2MDLAd9YCChL79MvU0f49r24vyRpUs526s3WZ99dsX5I0Xnoig6fRp0Ojxu61pNUdcuiqKUVI0UxdgSI/7upZPmxa20akJiRKNouCXsFqBy7bT83Z25KdL2fHbIEPYaSRIjQlzl8vbt4/ygwRgvXEAfGkrd9etwv/XWkuNu7doR+dlneN97D6gq6atWEXX33RQc+8NhMatWK9m7dhF1512cHzSYsz17kfnJp5f0LxVCCFG9zBkZpCywDVwPGDeuxt8JKIQQQggh7E/n44PvkPsBW9VI7p495GzfAVotIbNmoWhq38uNrs2bU3fNGsIWLkQfFoY5OZn4Kc/abjL99bd/vS5n1y4A3G6+Ga2XV3WFW+s4hdvmjBAXC1ymlVaBrZWWr6vjZ4zAX3NGfoj9oVLr9GkZDMA2mTNSI9W+71RCiDLL2LiR6EcexZqdjWvr1tT7eCMujRtfcp7W3Y2Q2bOps+xttAH+GM+c5fzgwaQsWYJqMlVbvKrVSvaOnUQNvJO4cU9RdPIkAJb0dBKmTuXC0KEUnjpVbfEIIYQoLWXBAixZWTg3aYLPxT+GhRBCCCHEtcd35EgUV1cKjx0jbsJE22NDh+LStKmDI6s4RVHw7NmD+tu2EjBxgm3+yNGjXBgyhLgJEzHFxV1yTXFixKNH9+oOt1YpHsCuS7IlCP5t+HpNqBgBaB/aHq2i5Xz2eWKyYyq8Ts/mwSgK/BadSUJWgR0jFPYgiREhrkKqxULSK6+S+PwLYDbj2a8fEatXofP77x8wHl26UP/zz/Ho1QvMZlIXv8X5+4dQdPZs1cZrtZK9YwdRAwYSN348RadOoXF3x2/MaBr9uIfASRNRXF0pOHiIqDvvIum1eVjzZFi8EEJUp4LDh8n8eBMAwS88j6LTOTgiIYQQQgjhKDo/P3wGDwbAmpODLjiYgCefcHBU9qFxdsb/0UdpsHOHrbuGopC9bRtn+/QleeHCktcjjDExFB4/DhoNHrff7uCoazZ9HVtixJBqayn194qRfFM+BWZb0qAmDF8H8HDyoE1gGwD2xFW8nVagpwtt6/oA0k6rJpLEiBBXGUtuHrGPP0H6qlUABDw1jtB5r6Fxdv7vCy/S+fgQ9sYCQufPR+PlReGxY0TddTfpq1dfsbdmeakWC9nbthE1YABx45+m6PRpNO7u+I8dS8NvvibwqafQ+fvj98gjNNj6JR7du4PFQvqKFZzt05fsHTulvZYQQlQDS2YmiS/OBsDrzjsxXH+9gyMSQgghhBCO5vfwQyguLgAEPze9ZMD21UIXEEDI7NlEbtmM4cYbUYuKSHt7GWd79Sbzk0/J3rEDAMONN6LzrRktoGqq4ooRr8xkoPSMkfRCWxstZ60zBp2h+oP7F53q2NppVSYxAtC7RQgA249KYqSmkcSIEFcRU3w8F4YMIfe771CcnQl7YwH+Y8agKEq51lEUBa9+fan/+We43XILalERSXNfIXrESIyxl5aOlpdqsZC1dSvn7hhA3ISJFJ0+g8bDA//HH6fhN18TMO7JS3pz6kNDqbN4EeHvLEMfHo45KYm48eOJeXQUxvPnKx2TEEKISxljYkic/RKnu95G4fHjaDw8CJw00dFhCSGEEEKIGkDn70/Ee8sJe2MB7t26OTqcKuPSrBkRH6wmbNFC9HXqYE5JIWHqVFLeeBMAj549HBtgLVA8fN0/Jw1FtZaqGPl7G63yvn5VlW4Ns83nPZB4oKSipSJ6tbDNGTlwIZ3knEK7xOYoFuvVdXOyJEaEuEoUHDlC1H2DKDp1Cq2/P3XXfIBn796VWlMfFET48ncJnjkTxdWV/P37iRowgMzNmytUqaFaLGR98SXn+t9B/MRJGM+eRePpif8TT9gSIk8+ccVhZe6dO1P/i8/xHzsWRa8n78cfOdf/DlIWLcZaWLt/wAghRE1RcPgwseOe4mzPXmSsXYtaUIBz06bUeeutK7ZlFEIIIYQQ1w5D27Z49u5do17QrgqKouDZwzZ/JHDSRFt1jNUKiiJttMpAHxwMOh1OVjN+BdkE/G3GSMngdZeaVXXTwLsBIW4hFFmKOJB4oMLrhHq70jrcG1WFnX8k2THC6lNktjB1y1FaztzJ9qNXzyB5SYwIcRXI2rqVC0OHYUlNxblpUyI3foTrddfZZW1FUfAZPIj6n32K6/XXY83LI2H6c8SOfRxzSkqZ1rAlRL7gXL/+xE+ejPHcOVtCZNyTtoTIE4+j9fQsc0waFxcCxj1J/S8+x61jR1STidSlSznX/w5yf/ihok9VCCGuaarFQvZXX3H+/iGcH3y/bZCk1Ypbp05ErFxB5CdbcLupnaPDFEIIIYQQwmE0Tk62dt87d+D32GOEvDQbfWCgo8Oq8RSdDoJslRP1TZm46LUlx0oqRmrIfJFiiqLQKexiO63YyrXT6tPS9txrY1IhKbuQwe/uY/3+aPKNFmZ/eZwis8XRYdmFJEaEqMVUVSXlrSXET5yEajTi3rUr9dZ+iD401O57OUVEUHfNB7ZB6Ho9ud9+y7n+d5C9Y+e/x2c2k/XZZ5zr24/4yc9gjIpC4+VFwFPjbAmRsWPRenhUPKZ69Qh/bzlhb76JLigIU0wMMaMeI/bJcZgSat8PGyGEcARrfj7pa9dytncf4p4cR8Fvv6Ho9XjddReRn39GxPJ3cWvf/qq/C1AIIYQQQoiy0vn7E/j0eLzvvtvRodQa5iDba1UNzJmlHi+eMVLTEiNQes5IZWbcFs8Z2XcujbTcIrvEVh1+jc6g/+If+S06E08XHX5uTsRnFbJhf4yjQ7MLSYwIUUtZi4qInzSZ1LfeAsB35EjqvLW4SoedKVotfo88Qr1Nm3Bu2hRLZiZx48cTN/kZLFlZJeepZjOZn35qS4hMeRbj+fNovbwIGD+eht98jf+YMZVKiJSKSVHw7NWT+lu34jtyJGi15Hz1FWf79CXtvfdQTSa77PNfzGlp5P/6K4WnTmHJzJSB8EKIWsGckkLym29yputtJM1+CVN0NBovL/wee4wG33xN6JyXcWnc2NFhCiGEEEIIIa4Cef62qom6hRmlHk8rsFWM1LRWWgDtgtuh1+iJy40jKjuqwuuE+xpoGeaFVYVdx2tHO62PDkQz+J19JOcU0TjInS+evIXx3W1/H7717RkKjLW/akTn6ACEEOVnTk0l9vEnKDhyBHQ6gl94Hp977622/V2aNCZy40ekLF1K2rvLyf7iC/L37yfkxVmY0zNIXfY2pgvRAGi9vfEdORKfBx5A6151SRutuxtBU57Ba+BAEl98kYJDh0ie/zqZn35K8PPP49au8u1frIWFFJ05S9HJkxSdOkXR6VMUnjyFJS2t1HmKiwu6wED0gYHogoJsb4EB6Ev+HYQ+MADFyanSMQkhRHkVnT5N2qpVZH/+RUnyWB8eju/w4XjfdScag8HBEQohhBBCCCGuNpleAXgBwXmlX0P5+/D1msagN3Bj8I3sjd/Lntg91PeqX+G1erUI5mhcFtuPJXJ/uwg7RmlfJouV2V8e54OfLwDQq3kw8+9rhbuzjkFeriz77ixxmQWs2XeeUbc2cHC0lSOJESFqmcKTp4gZMxpzfAIaLy/qLFyI2803VXscipMTgePH49Gli60q5MIFYh4bXXJc6+2N78MP4XP/kCpNiPyTS5PG1P1wDVmffkbya69hPHOW6GHD8RpwB4GTJ6Pz97/iGqrViikujqKTJyk8dYqik6coOnUK44ULtuFq/6Qo6ENCsObn2ypGCgsxRUdjio7+z320vr7oAgPRBQWiD7yYNAkKtCVQAgPRh4RccRi9EKL2sxYWopotVfq9UlVV8vftI23lSvJ++Ks/rmvr1viOHInH7d1QtNr/WEEIIYQQQggh/s/efUdHUXcNHP/O1vReIYXQe5EqRUA6KCqKKBbAju+jYu+KomLFLqIiTUFQbIiACFJFmoD0DkmA9F63zfvHpFACpGyyCdzPOXsy2Z35zV0SEpg7997KS/YOJhoIyjpzXm1xK63aWDEC0Kt+r5LEyJhWYyq9zpDWYbyzbD9/H0ohI8+Cn0ftu1k2JaeQB7/9l01Hta/J4wOa8n99G6PTaW2VTQYdj/RvwlM//MfUVYcZ3TUaL3PdTS/U3ciFuAxlr1rFyccex5GXhyk6mojPp2KOiXFpTO7t2xPz808kvfse6d9+i97fn8C778L/1lurta3XhSiKgt8N1+Pdtw9JH3xAxvwFZP7yK9kr/yJ4wiP433JLyQVAe0aGlvw4cPC0SpCDOPLyylxb7+eHuVkzzM2a4ta0qbbdqFHJHdaOwkJsSUnYEhOxJiZiS9S2bclJWIu3ExNRrVbsaWnY09Io3Lev7DdiMBD24ov4j7q5Ov6YhBC1QMGBA8TecSf2zEwUDw8MwUEYgoPP+zCGhKDz9S33vA/VaiVryRJSZ8ykcO9e7UlFwbt/fwLGjcPjig7V+O6EEEIIIYQQQnPSU0t8eKclnfF8cSut2jhjBLQ5I29tfoutSVvJseTgZfKq1DoNg71oHubNvoRslu9JZGSnSCdHWjU74zO5f84WTmYW4GU28MGo9vRvGXrOfiM61GfqqsMcTcllxrqjPNSviQuidQ5JjAhRB6iqSvrs2SS+9TY4HHh07UrEhx+g9/NzdWgA6NzdCXvxBQLvvgu9vz86d3dXhwRoSYzwiRPxu/FGEia+QsHu3SROeo2MHxZiCA6icP8BbIll93ZUjEZMjRtryY/iBEjTJhiCgy94QVJnNmOKjMQUef5fcKqqYs/I0JIkSUlnJFCsSUXbCQnYMzJInDwZzx7dMUVEVPnPQwhRu1iTkoh74IGSGU1qXh7W47ElrQjPRzGZMAQVJVBCyk6g6Hx8yV62lLQ532BLSNCOc3fH74YbCBhzJ6bo6Gp/f0IIIYQQQghR7JjJDwBTXjb2rCz0Pj7AacPXa2ErLYBon2iivKOIzY5l46mN9IvuV+m1hrQOZ19CNkt2JdSqxMjP207w9ML/KLQ5aBjkyRd3dqJxSNkJIINex4T+TXjku+18sfYId17ZAF8PYw1H7BySGBGillNVlcRJk0ifOw8Av5E3Efbii7VyPoWxXj1Xh1Am9zZtaLBgPunz55P8/gcU7t1L4d7S14316hUlPpri1kxLhJiio1GM1fODXVEUDP7+GPz9oXnzMvdRVZXYsePI27iRhFdeJfKLaeW+Q1wIUfs58vKIf/D/sJ08halBA6JmzkAtrjhLTi77kZSMPTMT1WLBevIk1pMny3UufVAQAbffht+oUdrPHSGEEEIIIYSoYSctOtLNXvgX5mCJi8O9VSusDisZhRkABLg7t5WWPSuL5A8+wOeaa/C44ooqrdUrohff7v2WtSfWVikxMrRNGO//eYB1B1PIKrDi4+bahILN7uDNJfv4ap02WP7q5iF8cEv7i8Z1bdt6fPbXYfYnZvPl2iM8MahZTYTrdJIYEaKWy9u4SUuKKAohTz1FwNgxcoG8EhS9noDRo/EZOJDMn39G5+WlVYI0aYLe29vV4Z1DURTCJr7M0eHXkbt2LdlLluAzdKirwxKiTsn85RdUmx3fETfUqp+bqt3OiSefomDXLvT+/kR+MQ1jWBjARSs5HBYL9uRkrOdNoKRgS07GnpqKuXFjAsaOwefaa9HVwmS6EEIIIYQQ4vKRkl3IKc9A/AtzsBYlRtIL0gHQK3r8zH7OPd+0aaTPnUf+rt3ELJhfpbV61S9KjMSvRVXVSv//skmoN41DvDiUlMPKvUlc36F+leKqivRcCw/N28a6QykA/K9vYx4d0BS97uLvTadTeHRAUx74Zitfrz/KuB4NCPQyV3fITieJESFquazFvwHge+MIAseNdW0wlwBDUBCB99zj6jDKxRwTQ+AD95Py8SckvDEZz549S0pNhRAXlrdlCyeffgaAwgMHCHnm6VqTHEl6511yVqxAMZmI+PQTTFFR5T5WZzKhq18fY/0L/wNadThQdLqqhiqEEEIIIYQQVaaqKik5hZzyCKRl2nEssXFAaRstfzd/dIrz/v/iyM0lY8H3ABTs3o09Jwe9V+VmgwB0CuuEu8GdpPwkDqQfoFlA5SskhrYO46OVh/h95ymXJUb2JWRx7+wtxKXl42HS8+7IdgxtE16hNQa1CqV1fR92ncji89WHeX5Yy2qKtvrI/5jrmOw//yTxnXewZ2S4OhRRA1SLhaw/lgPge801Lo5GuELgvfdiionBnpJC0pQprg5HiDpBVVWSprxf8nnarFkkvfkmqqq6MKqiWObOJW3mTADCJ79R5ZLu85GkiBBCCCGEEKK2yCm0UWhzcMpTmyNijdMSI8WD1wPcnNtGK+Pnn3FkZ2uf2O3kb91apfXMejNdw7oCsPbE2iqtNbi1loBYfSCZ3EJbldaqjN93nmLEZ38Tl5ZPZIA7Pz7YvcJJEdA6nTw+UEsQzd5wnMSsAmeHWu3kf811SOGRo5x49DHSpn/N0ZtGUrBvn6tDEtUsZ/16HJmZGIKD8ejc2dXhCBfQmUyEvTIRgIzv5pO3bZtrAxKiDshZvZr8f/9FMZsJfuRhANJmzSZx8mSXJkdyVq8m8bXXAQieMAHfYcNcFosQQgghhBBC1JSUHAsAab7BAFjizqwYcebgddXhIH32HAD0vr4A5G7cVOV1e0X0AmBtfNUSIy3CvWkQ6EGhzcFf+5OqHFd5ORwq7yzbx4Pf/kuexU7PxkH8+n89aR5W+c4kfZoG0zHan0Kbg0//OuTEaGuGJEbqCFVVSXxtEqrVCoqCNT6eY7fcSuai31wdmqhGWYt/B8B7yGAUvd7F0QhX8ezSBd8RIwBIeOll7eeAEKJMqsNBclG1SMAdtxM0fjxhr74CQPrsOS5LjhTs28eJRx8DhwPfESMIvP++Go9BCCGEEEIIIVwhJacQgIJgrTLBGhsLnFYx4sTB6zmrV2M5fhydtzfBjz0GQN7GjVVet2f9ngBsT95OZmFmpddRFIUhRRUaS3YmVDmu8sgqsHLP7C18+tdhAO7tFcPMcZ3x96zaLEqtaqQpAPM2xRKfnlflWGuSJEbqiOylS8n9ewOKyUSDBQvw7NULtaCAk08+ScIbb8iF0kuQIz+f7JUrAeSuYkHIk0+g9/en8OBBUova8AghzpW1eDGFBw6g8/YumSfkf/PNhE16FXBNcsSamEjc/Q/gyMvDo1s3wie+XGvmnQghhBBCCCFEdUvJ1hIj9rB6AFgTElAtFlILtMSIMytG0mbPBsBv5Ei8+vQBoGDvXuxZWVVat55XPRr7NcahOthwckOV1hpa1E5r5b4k8i32Kq11MYeScrj+k/Ws3JeE2aDj/VHteH5YSwx656QFujcKonujQKx2lY9X1K2qEUmM1AH2nBwS35gMQOD99+HepjWRn08l8IH7Ae0iT+y4u7ClpLgyTOFkOX/9hZqXhzEiAre2bV0djnAxg78/IU8/BUDKp5+VlJ0KIUqpFgvJH34EQOA996D38yt5zX/kyDOTI2/UTHLEkZtL3Pjx2BITMTVqRMRHH6KYqnZXjhBCCCGEEELUJcUVI24hwSju7uBwYD15srSVlrtzEiMF+/eTt+Ef0OsJuP02jKEhmBo0AIeDvC1VmzMC0Ku+1k7rh4M/VOn/k63r+xDh706+1c7qA8lVjut8/tyTyPWfrudISi71fN344YHu3NAhwunnKa4a+eHfeI6m5Dp9/eoiiZE6IOXjT7AlJ2OMjiq5+1XR6wmZMIGITz5G5+lJ3pYtHL3xJvJ37HBxtMJZMovaaPkMHSp3FgsAfK+7Do+uXVELCkh45dVaMUhaiNok/fvvscbHow8OIuCO28953X/kSMJfmwSKQvqcOSS+/ka1/j1S7XZOPP4EhXv2og8IIHLa5+h9Kt+/VQghhBBCCCHqouSiGSNBPm6YIrQL85a4OKcPXy+uFvEeMABjPa06xaOrNjTdGe20RjQZgVlvZuOpjczbN6/S6yiKwpDWYQAs2XWqynGdrdBm5+MVB7l3zhZyCm10aRDArw/1pE2Er9PPBdAxOoC+zYKxO1Q+/PNAtZyjOkhipJYr2L+ftG++ASDshRfRmc1nvO7dvz8Nvv8eU6NG2BITOX77HaTPX+CKUIUT2bOyyF2zBgAfaaMliiiKQtjEl1GMRnLXrSN7yRJXh1Qt7NnZZP/1F6rD4epQRB3iyM0lZernAAQ/+CA6D48y9/O76abS5Mg331RrciTxzbfIWbUKxWwm8rNPS/4DIIQQQgghhBCXk+KKkSAvM8aoKAAssbFObaVlS00lq2gWc8CYO0ue9+jSGYDczVUfwN7AtwGPddTmlkzZOoXDGYcrvVbxnJEVe5MosFatnVZaroXlexKZvGQvIz//mzYT/+C95QdQVbjzymi+uacrQV7miy9UBY8NaAbALztOciAxu1rP5SySGKnFVIeDhImvgN2O96BBePXqWeZ+5oYxNJg/H+8BA1CtVhJefplTL76Io7CwhiMWzpK9/E9UqxVzk8a4NWvq6nBELWKOiSlpo5fwxuQq98isbVSrldh77iF+/IOkfvmVq8O5oOy//uLk88+Tt2WLq0MRQNqcOdhTUjBGReF3000X3NfvxhvPTI689rrTkyNps+eQPmcOAPXeegv39u2dur4QQgghhBBC1BXFM0aCvUyYIiMBsMbFk5avtdJyxvD19O++Q7VYcGvb9oz/f3l26QJA4d592DMyqnyeW5vfSo/6PSi0F/LM2mew2is397l9hB/hvm7kFNpYd7D84xFUVeVQUg7zN8fy5Pc7uPq9VVwxaTn3zt7CtNVH2HwsHYvNQaCnibdubMOr17XGZKj+FECbCF8GtwpDVeH95XWjakQSI7VY5k8/k79tG4qHB6HPPnPBffVentT/6EOCH3sMdDoyvv+B43fcifWU88uxRPXLWrwYkGoRUbbAe+/FFBODPSWFpClTXB2OUyV/9DEFO/4DIHXaNGzJ1ddrsypsycmcfOJJMhf+yPHb7+DY7beTs3attDdzEVt6OqlfTQcg+OGHUYzGix6jJUde05Ij335L4qTXnPb1y175F4lvvglAyBOP4zN4kFPWFUIIIYQQQoi66IyKkcjiVlqxpTNGqlgx4rBYSJ/3HQABd955Rkt6Q3AwpkaNQFWdcmOjoihM6j4JP7Mf+9L28cn2Tyq1jk6nMKhVcTuthPPuV2C1s+loGp+tOsTdMzfTYdJy+k9ZzdMLd/L91niOJGszPRoFezKqUyRv39SWFY/3ZssL/RnVOapSsVXWowOaoija+9l1IrNGz10ZkhippewZGSS9+y4Awf/3fxjDwi56jKIoBN13L5FffIHe15eC//7j6I03kbux6qVioubYUlLI/ecfQJsvIsTZdCYTYa9MBCDju/nkbdvm2oCcJPfvv0n9SqsSMYSG4sjLI/njyv0Do7olf/QRjtxcDMHBKEYj+Vu2EnfvfRy78Saylv0hbcBqWOqXX+HIycHcvDk+Q4eU+zi/G0eUJkfmznVKciR/925OPP44OBz4jRxJwN13V2k9IYQQQgghhKjrUopnjHibMRW10io4fhybagOqnhjJWvw79pQUDKGh+AwaeM7rJe20NjnnGmmwRzATr5wIwIxdM9iSULmEy9CidlrL9yRgsWnXEZKyC1i66xSv/baH6z9dT5uJy7h52gbeXrqfFfuSyMizYjbo6BITwPg+jZg+phPbXhzAisf78NZNbbm5UySNgr1cMq+4WZg3w9tps12m1IGqEUmM1FJJ73+APT0dc5PGBNx5R4WO9erZgwYLf8DcogX2tDRi77qL1Jkz5U7mOiJr6TJwOHBr06bkl4UQZ/Ps0gXfESMASHjpZVRr5Uo3awtbWhonnn4aVBW/UaOo/75WCZPxww8UHKhdv0wL9u4l44eFANT/8AMa/bmcgLFjUdzdKdizhxOPPMKRa4eT8fPPdf7rUhdYExJIL5rFFfLYoyi6iv3Txu/GEYS//vppyZFJlf59aT11ivgHxqPm5+PZvTthL73okn+MCiGEEEIIIURtcnrFSHErLVt8PKgq3iZvjPqLV/2fj6qqJUPX/W+7rcwOAp4lA9idd/N4v+h+3ND4BlRUnlv3HNmWis/V6BjtT7C3mawCG/fM3sJVb/9Fl9dX8MA3//LVuqNsj8vAalcJ9jYzpHUYLwxrwU8PdmfnxEEsuP9Knh7cnH4tQvH3NDntfVXVI/2aoNcprNyXxNbj6a4O54IkMVIL5f/3HxkLtAHqYS+9VK6WIGczRUTQYO63+F43HOx2kt58i5NPPIkjL8/Z4QonK22jJdUi4sJCnnwCvb8/hQcPkjpzpqvDqTRVVTn57LPYk1MwNW5E6DNP43HFFXgPHAgOB0nvvOvqEEuoqkriG5NBVfEZOgSPK67AGBpK6DNP03jlCoIeHI/OxwfL4cOceuZZDg8eQvq8eTLzqRqlfPopqsWCR6dOePbqVak1/EbcQPgbbxQlR+ZVKjliz8kl7oHx2JKTMTdpTP0PP6jU728hhBBCCCGEuJTkWWzkWbTh4kFeJoz16oFOBwWF+OZWvVokb9NmCvfuRXFzw//mkWXu49FZqxgp3L8fW7rzLtY/3eVpIrwiOJV7ijc2vlHh4/U6hcFF7bTWHEgmNi0PRYHmYd7c1jWK90e1Y+1Tfdn0XD+m3t6Re3o1pEOUf43MDKmshsFe3HhFfQCmLN/v4mgurPb+KV6mVLtdG7iuqvhed13JX9zK0Lm7E/7mm4Q+/zwYDGQtXsyxW27FEhvrxIiFM1lPnCB/2zZQFHyGSGJEXJjB35+Qp58CIOXTz7DExbk4ospJnzOH3NVrUEwm6r83BZ27O6DNZsBoJHftWnLWrnNxlJrsP/8kb/NmFJOJkMcfP+M1g78/wQ8/TOOVKwh+/DH0gYFYT5wg4ZVXOdS/P6nTv8aek+uiyC9NhUeOkLHwRwCCH3usStUZfjdcf0ZyJOHVV8vdEk212Tjx2KMU7t+PPiiIyM8/R+/tXelYhBBCCCGEEOJSkZKttdEyG3R4mQ0oJlPJyICwDAhwq9rg9eJqEd/rr0Pv51fmPobAQMxNGgOQt3lzlc53Ok+jJ5N7TUan6PjtyG8sObqkwmv8X9/GjOwYwcNXN2bWXV3Y8fJAlk64itdvaMMNHSKIDPCoc50IHu7XBKNeYf2hVP4+XP7B8jVNEiO1TPp331GwZw86Hx9CnnyiyuspikLAHbcTPXMG+qAgCg8c4OhNI8lZs8YJ0Qpny1qi/QD16NwZY2iIi6MRdYHvddfh0bUrakEBCa+8Wuda5hXs2VNSERLyzNO4NWta8popKoqA224DIOntt1HtdpfEWMxhsZTEGnDXOIz165e5n97Li6B776Xxn8sJfeEFDOHh2JNTSHrnHQ7160fyJ59iz8iowcgvXckffgQOB159++JxRYcqr3d6ciRj3nckTJp00eSIqqokvP46uWvWori5ETn1s/N+bwghhBBCCCHE5Sb5tDZaxRf4jUWt40PTVQLdK18xYjl+nJyVKwFt6PqFeHRxfjstgPYh7bmv7X0ATPpnEgm55x+kXpYwXzfeGdmOxwY2o3fTYHzc6n7ngQh/D27ton2Np/xxoNZeq5LESC1iS0kh+YMPAQie8AiGoCCnre3RqRMxCxfi3r49jqws4u5/gOTPPpMBwbVM5uLfAfAZNszFkYi6QlEUwia+jGI0krtuHdlLKn53gqs4cnM58djjqFYrXv364X/rrefsEzT+AfS+vhQePEjGwoUuiLJU+pxvsMbGog8OIujeey+6v87dnYDbb6PxsqWEv/46pgYNcGRmkvLJJxy6uh+J77yDNSmpBiK/NOXv3En2smWgKARPmOC0df1uuJ7wyaclRy5SOZI2axYZ874DRaH+u+/g3qaN02IRQgghhBBCiLquZL6It7nkueI5I6EZapVaaaV98y2oKp5X9cLcsOEF9/Xo2gWAvE0bK32+87mv7X20CWpDtiWb59c9j0OV663/17cxZoOOLcfTWX0g2dXhlEkSI7VI0jvv4MjOxq1VK/xHjXL6+sbQEKJnz8LvllGgqqR89DHx/3sIe3bFhwMJ5ys8coTCvXvBYMB74ABXhyPqEHNMDIEP3A9AwhuTsWdluTii8kl44w0sx45hCA0l/LVJZZaG6n19Cfq/BwGtOsBVrahsqamkTJ0KQMijj6Hz9Cz3sYrJhN+NI2i4+Dfqvz8Fc/PmOPLySJv+NYf7D+DUK69giT9RXaFfspLffx8A3+HXnlFp5Ax+119PvTcna8mR7+Zr1VhlJEey//yTpLfeBiDk6afw7t/fqXEIIYQQQgghRF1XnBgJ9iodEG4sToykQ4B75Vpp2bOzySy6gTJgzJiL7l8yZ+TgIWypqZU65/kYdUYm95qMu8GdTQmbmLNnjlPXr4tCfdy488poAN6rpVUjkhipJXI3bSLzl1+h+O5vvb5azqOYTIRPnEj466+hmEzkrFzJsZE3U3joULWcT5Rf1m/a0HXPHt0x+Pu7OBpR1wTeey+mmBjsKSkkTZni6nAuKnPxYjIX/giKQr133r7g97z/Lbdgio7GnppK6ldf1mCUpZI/+hhHTg5uLVvie/11lVpD0evxGTKEmJ9+JOLzqbi3b49qsZAx7zsODxrEyaefofDIESdHfmnK3bCB3L83gNFI0EMPVcs5fK+7rjQ5Mv/c5Ej+zl2ceOJJUFX8R99arn+ICyGEEEIIIcTlpnjGSJDXaRUjUVWvGMn4YSGOvDxMjRvh2b37Rfc3+PtjbtYMcO6ckWLRPtE82flJAD7890P2p9XuweM14YHejfAw6dl5IpM/9iS6OpxzSGKkFlCtVhJefRUAv1E310gbDr8bbyT6228xhIdjOXaMY6NuIX/37mo/ryibqqpkLdYSI77SRktUgs5kIuyViQBkfDefvG3bXBvQBVji40l4eSKgtcry7NLlgvsrJlPJzKW0GTOxnjpV3SGeoWD/fjK+/x6A0GefQdFV7Venoih49+lD9Ly5RM2apf0Dzm4n85dfODLsGuIfepi8LVtq5d0UtYGqqiRN0apF/EeNwhQRUW3n8r3uOuq99SbodFpyZOIrqA4H1hMniHtwPGpBAZ5X9SL0uefq3DA8IYQQQgghhKgJKafNGCl2esVIZRIjqs1G+hytKiPgzjvL/f+x4nZauRud304L4KYmN9Enog9Wh5Vn1j5Dob2wWs5TVwR6mbmrRwygzRpxOGrXdQ5JjNQCabNnYzl0GH1AACGPPlpj53Vv05qYhT/g3qkjjtxc4h8Yj/XkyRo7vyhVsGcPluPHUcxmvK7u5+pwRB3l2aULviNGAJDw0suoVquLIzqXarVy8vEncOTk4N6hA0EPPliu47z69cOjUyfUwkKSiloo1QRVVUl8801wOPAeNKik9NYZFEXBs2sXor6eToMF8/Hq3w9Ulezlyzl++x0cHXEjGQsX4igocNo5LwXZy5dTsHMniocHQUUt5KqT7/DhWuWITkfGggWcevFF4h4Yjz05BXOzZtSf8j6KwVDtcQghhBBCCCFEXVSaGCltpWUqGr7ulweBavlbVRfLXrES68mT6P388B0+vNzHFd+YmbfJ+RUjoP0/f2L3iQS4BXAo4xAf/vthtZynLrm3V0O83QzsT8zmt501e6PrxUhixMWsp06R/OlnAIQ88QR6X98aPb8hIIDIqVMxN2mCLTmZuPsfkJkjLpBVNHTdq29f9F4V/4UgRLGQJ59A7+9P4cGDpM6c6epwzpH8yafk79iBztub+u++U+4LyoqiEPLMMwBk/bqI/J27qjPMEjl//UXehn9QjMaSqpXq4N62LZGffELDRb/iN3IkipsbhXv3cur5FzjUpy9J770niWu0u4KSP9D+YRk4dgyGoKAaOa/v8OEllSOZC3+k8OBBDCEhRE77XH5mCyGEEEIIIcQFlDV8Xe/tTY67tu2XWvGqirTZs7VjbxmFzs2t3Md5dO4MioLl8GFsydUzEDzQPZBJPSYBMGfPHDac3FAt56krfD2M3NerIQAfLD+AzV57BtNLYsTFEie/iZqXh3vHjpXuW19Vem9vIqd9jiE4mMKDB4l/+GFUi8UlsVyOVIeDrN+1xIjPsKEujkbUdQZ/f0KfeRqAlE8/wxIX5+KISuX+8w+pX3wBQPikVzHWr1+h491bt8L3Ou1OkKS33qr2VlOqxULiW28BEDB2bLW2bCpmbtKE8Emv0mTVX4Q8+QTGevWwZ2SQ+uVXHOo/gPiHHiZ346bLts1W5i+/YDlyBL2fHwHjxtXouX2vvbYkOaJ4eBAx9TOMYWE1GoMQQgghhBBC1DUpOefOGMmz5pHgp217JlfsBu38nbvI37oVjEb8bx1doWP1vr6YWzQHtHnP1eWqiKsY1WwUAC+se4HMwsxqO1ddMK5nDP4eRo6k5PLTthOuDqeEJEZcKGftWrL/+AP0esJeeqnKfeurwlivHpHTPkfx8CBvwz+cmvjKZXvhrabl//svtoQEdF5eeF11lavDEZcAn+HD8ejWDbWgQBsYXQv+LtvS0zn55FOgqviNHInP4MGVWid4wgQUs5m8LVvI/vNPJ0d5prRv52I9Hos+KIjA+++r1nOdTe/nR+Ddd9No+R9EfPIxHt26gcNB9vLlxI4Zw9Hrrid9wQIc+fk1GpcrOQoLSf74EwAC778fvbd3jcfge+21NFz0K41+W4R7q1Y1fn4hhBBCCCGEqGtSss+dMZJakEqinzYXRDlRsaHcxdUiPkMGYwwNqXA8np2rt51Wscc7PU4DnwYk5Sfx6obacW3GVbzMBsb3aQTAhysOYrHVjqoRSYy4iKOwkIRJrwEQcMcduDVr6uKIwK1lSyLen6K1CvnxR1KmTnV1SJeFzKKh6979+6Mzmy+ytxAXpygKYS+/hGIykbtuXUlFkquoqsqpZ5/DlpyMqVEjQp97ttJrGcPDCRg3FoCkd9+ttuo2W1oaKZ8VtTmc8Ah6L69qOc/FKHo93v37Ez1zBjG//oLfqFEo7u4UHjhAwksvc7BPXxLfeQdLfO2546K6pM+dhy0hAUNYGP6jb3VZHOZGjTDWq+ey8wshhBBCCCFEXVFgtZNdaAMg+LTESFpBGon+2rY1Pr7c61kTE8lasgSAgDvHVComj65dAcirpgHsxdwN7rzZ600MioE/jv/Bb0d+q9bz1XZ3dGtAsLeZ+PR8FmypHd1NJDHiIqlffoU1NhZDSAhB//ufq8Mp4dW7N2EvvQhAykcfk/nrry6O6NKmWq1kL10GgM+wYS6ORlxKzDExBBYNpk6c/Cb2TNeVbaZ/8y05q1ahmEzUf+9ddO7uVVov8J570QcFYT0eS/p33zkpyjMlf/wxjuxszC1a4HvDDdVyjopya9qU8Fcmam22nn4aY0QEjsxM0qZ/zeGBA4n7v/+Ru2HDJXkXij07m9Rp0wAIfuh/kkQWQgghhBBCiDqgeL6ISa/Dx710xmhqfmnFiDW2/BfJ0+fOA5sN904dcW9duSp+j04dQafDcuwY1sSkSq1RXq2CWjG+/XgAXt/4OidyLv2bGs/H3aTnf30bA/DxyoMUWO0ujkgSIy5hiY0t6bMf+uwztW5wq/8ttxB4z90AnHz+BXL/qd4M6uUs95+N2NPT0QcE4HllN1eHIy4xgffcg6lhQ+wpKSRNed8lMRTs20fS228DEPLUU7g1b17lNfVengQ//BAAyZ9+hj0jo8prnq7gwAEy5i8AIPSZZ1D0eqeuX1V6X18Cx42l0bKlRHz2GZ7du4PDQc6KFcSOu4ujw4eT/t13OPLyXB2q06TNmIE9IwNTw4b4XueaeVxCCCGEEEIIISqmeL5IoJcJRVFKnk8rSCPBX/u8vLNRHfn5ZMyfD0DAmMpViwDofXxwa9ECgLxqnDNS7O7Wd9MhpAO51lyeW/scdofrEwKuckuXSOr5upGYVci3G2NdHY4kRmqaqqokTHoN1WLBs3t3vCvZZ7+6BT/2mBab1Ur8Qw9ReOiQq0O6JGUVtdHyGTwIxWC4yN5CVIzOZCL8lYkAZMyfT96/22r0/I68PE489jiq1YpX377431axoWgX4nfjjZibNMGRmUnK1M+dtq6qqiS9+RY4HHgPGIBn1y5OW9vZFL0e76v7EvX1dBou/g3/0beieHhQePAQCRNf4WDvPiS++Va5/5FZW9lSUkidOQuA4AmPyM9KIYQQQgghhKgjiueLBHufWfWvVYxo29aTJ1FttouulfnrIuwZGRjr18f76qurFFdJO61N1X8zuF6n542eb+Bp9OTfpH+ZsXtGtZ+ztjIb9DzcrwkAU1cdIrfw4l/36iSJkRqWvXw5uWvXohiNhL74whnZ0tpE0emo99abuHfogCM7m7j77seWnOzqsC4pjsLCkuHR0kZLVBePzp3xvXEEAAkvv4xqtdbYuRMnT8Zy5AiGkBDC33jdqT/vFL2ekKefBiBt7lwsx487Zd2c1avJ/ftvFKORkCefcMqaNcHcqBFhL71Ek9WrCH32GYxRUTiys0mbOZPDAwcR/9DD2LOyXB1mpaR8Pg01Lw+3Nm3wHjDA1eEIIYQQQgghhCin4lZapw9eB234ero32I16sNmwJiRccB1VVUuGrvvfcXuVOzsU3wSZu7H6K0YAIrwjeLaLNm/1022fsjt1d42ctza6sWME0YEepORYmLXhmEtjkcRIDXLk5pL4xmQAAu65G3NMjIsjujCd2UzEZ59ijI7CevIkceMfvKRas7hazurVOHJyMISH496hg6vDEZewkCeeQO/vT+HBg6TOmFkj58xasoSM738ARaHe229j8Pd3+jm8evbAs1cvsFpJeve9Kq+nWq1atQjgf+cdmKKiqrxmTdN7exMwZgyNli4hctrnePbsCapK9vLlxN51t0tnzVSGJT6e9KJS6ZDHH6u1NxMIIYQQQgghhDhXcnZxYsR0xvNpBWmoioI1xA8Aa+yF2yrlrluP5fBhdJ6e+N10U5Xjcu/YEfR6rLGxWE+dqvJ65TG80XAGRA/Aptp4Zs0z5Nvya+S8tY1Rr2NCf61qZNrqI2QV1NwNvGeTxEgNSpk6FVtCAsaICILuv9/V4ZSLwd+fqC++QO/nR8GuXZx44klU++XbC8+Zshb/DoDPkCEoOvmrKKqPwd+f0Ge06oqUTz8le9Wqaq0cscSf4NRLLwMQeP99eHbrWm3nCn3qSdDpyF6+nLwtW6q0Vvq8eViOHUMfEEDQAw84KULXUHQ6vHr3JuqrL2nw/fclP8OPjxuHLT3d1eGVW8rHH4PVimf37nh2kzlMQgghhBBCCFGXnLdiJD8VAEf9UAAsFxnAXlwt4nvjCPReXlWOS+/lhVsrbXh7TcwZAVAUhZe6vUSwezDHso7x3paq3+BZVw1vV5/GIV5k5luZvvaoy+Ko01dj7Tk5rg6h3AoPHizpkR76/HPo3NxcHFH5maKjifjsMxSTiZyVK0mc/Caqqro6rDrNnpNDzqpVAPgMG+raYMRlwWf4cDy6dUMtLCT+gfEc7NmLUy++SM669U5Nkqg2GyefeAJHdjbu7dsT/H//57S1y2Ju0qTkbpHEt95GdTgqtY4tPZ3kTz4FIPiRR9B7ezstRldzb9OaqFmz0AcEULhnL7Hj7sKWlubqsC6qYP8BMn9dBEDwo4+6OBohhBBCCCGEEBVVPHz97MRIWoH2f1JDRH0ArPHnT4wUHj5M7tq1oCgE3HGH02IraadVQ4kRAD83P17r8RoA8/fPZ038mho7d22i1yk8NqApANPXHWV/QrZL4qjTiZHjY8ZSeOSIq8O4KFVVSXh1EthsePXrh3ffvq4OqcI8ruhAvbe1FjPp33xDelGmVlROzsqVqIWFmBo0wK1lS1eHIy4DiqJQf8p7+N16C/qAAOyZmWR8/wNx99zDwV5XcerFl8hZv75cA88uJPnTT8nfvh2dlxf13n0XxWh00js4v+CHH0Ln4UHBzp1kLV5cqTVSPvkUR1YW5mbN8LvpRidH6HpuzZoSPXsW+qAgCvftI3bMWGypqa4O64KSP/gAVBXvwYNxb9Pa1eEIIYQQQgghhKig5OKKkbOHrxdo/x91i2oAXLhiJG32HAC8+l2NKTLSabF5dNESI3k1NGekWPf63bm9xe0AvLT+pZIk0eVmcKswWob7kFNoY9AHaxj0/ho+/PMgh5JqLklSpxMj1mPHODbyZrKWL3d1KBeUtWgReZs3o7i5Efbcs64Op9J8Bg8uGUac+OZbtf7PvTbLLLp46zNsmPTMFzXGEBBA+Msv02TNaqJmzsDvllFakiQjg4zvvyfu7qIkyUsvk/v33xVOkuRu3ETq59MACH/1FUxFd35UN0NQEIH33QdA0pT3cRQUVOj4wkOHSP/uOwBCn32mykPcaitz48ZEz56FITiYwoMHOT5mDLbkZFeHVaa8f/8l56+/QK8n+OGHXR2OEEIIIYQQQohKKG2lVTpjxOqwklmozb/0aahVDVjiyk6M2NLTyfzlFwACx4xxamweV1wBBgPW+HisJ044de2LeeSKR2js15jUglQm/j3xsuzMo9MpfDK6A32aBWPQKexPzOb9Pw/Qf0rNJUnqdGLE/YorcOTmcuKhh0l6b0qtnH1hz8oi8a23AQgaPx5j/Zq5UFhdAu66C79bbwFV5eQTT5K/Y4erQ6pzbOnp5K7/G9ASI0LUNMVgwLNbN8InTtSSJDO+xm/UKPT+/tjT08lYsIDYu+4uTZJs2HDRJIktPZ2TTz4JqorvTTfiM7RmW8QFjB2DITwc26lTpM2qWEVb4ltvg92OV79+l/wcC3PDhkTNnoUhNBTLocMcv3MM1sQkV4d1BlVVSZoyBQC/ESMwN4xxcURCCCGEEEIIISojpWj4evBprbTSC7S5l3pFj1/DZgBY4+LKTA5kLPgetaAAc8sWuHfq5NTYdJ6euLfWuhPkbtrs1LUvxs3gxpu93sSoM/JX3F/8ePDHGj1/bdEw2IuZ47qw9YUBvHNT2xpPktTpxEjkZ58SMHYsAKlffkncvffVuqGyyR9+hD01FVPDhgSOG+vqcKpMURTCnn8ez95XoRYWEjf+wfNmdUXZspf9ATYb5pYt5IKfcDnFYMDzyisJf2UiTdauIerr6fjdfDN6P7/SJMm4uzh4VW9OvTyxzCSJqqqcev4FbElJmGJiCHvuuRp/Hzo3N0IenQBA6hdfYEtJKddxOWvWaL1KjUZCiyriLnXmmBii58zGEB6O5ehRYu+8E2tioqvDKpG7di35W7aimM0E/d+Drg5HCCGEEEIIIUQlFNrsZBVo1w9OnzFSPHjd380fc4TWGsuRk4M9I+OM41WrlfRvvwW0apHq6LhS2k5ro9PXvphmAc14uIPWIeGtzW9xPOt4jcdQW/h6GBnZKbLGkyR1OjGiGI2EPvM09d57F8Xdndy//+bYjTeRv3u3q0MDIH/XbtLnzQMg7KUXUUymixxRNygGAxFTpmBu2QJ7Whpx991/zg8vcX7FMxB8a/iOeiEuRjEY8OzenfBXX6HJurVakmTkSC1JkpZGxvz5pUmSiRPJ/ecfVJuN9LlzyVm5EsVopP6U99B5eLgkfp9rrsGtdWscubkkf/zJRfdXrVYS39RmJwXcfjumBg2qOcLawxQVRfSc2Rjr1cNy/DjH77gT66lTrg4L1eEgacr7APjffhvGsDAXRySEEEIIIYQQojJSiwavG3QKvu6l80eL54sEugWic3PDEBoKgDU29ozjs5Yuw5aUhD44CJ8hQ6olRo+SAewbXdLO6s5Wd9I5rDP5tnzuX34/J3NO1ngMtU1NJknqdGKkmO+wYTT47juMUVFYT57k+OjbyPjpZ5fF47BYSJs1i7h77gGHA59hwy659iw6T08ip35ecsdx/P8ewmGxuDqsWs+amEjeli0ANd5qSIiKKEmSTHqVJmvXEDn9K/xG3lSaJPluPrFjx3Gwdx+SitoFhjz5JG4tWrguZp2O0GeeBiDj++8pPHjwgvunz1+A5cgR9P7+BI1/oCZCrFVMERFEzZ6NMSICa2yslhyp4b6qZ8v6fQmF+/ah8/Ym6N57XRqLEEIIIYQQQojKK54vEuhlQqcrrfYoHjYe4BYAUDJQ/fQB7KqqkjZrlrbf6NHVdrO5R4cOYDRiO3nKJf8f1ik63uz1JpHekZzIOcFdy+7iRI5r/19em1R3kqTCiZE1a9Zw7bXXUq9ePRRF4eeffz7jdVVVmThxIvXq1cPd3Z0+ffqw+6wKjsLCQh566CGCgoLw9PRk+PDhxMfHVzSUM7g1a0rMD9/j1bs3amEhp559loRXX0WtwYv1qt1Oxs8/c2TwEBInv4k9IwNzk8YlF+ouNcbQECKnfY7Oy4u8LVs49exzqA6Hq8Oq1bKWLAFVxf2KKzDWq+fqcIQoF8VoxKtHD8InTdKSJF8VJUl8fbGnpqJaLHj17o3/Hbe7OlQ8OnXCe0B/cDhIfOed8+5nz8gg5eOPAQh+5GH0Pj41FWKtYoqoT/TsWdqNBfHxHL/jTixV/H1cWarFQvKHHwIQePfd6P38XBKHEEIIIYQQQoiqKx28bj7j+eJWWoHugQAYo6IAsMaXJkbyt22jYNcuFJMJv1Gjqi1GnYcH7m3aAK5ppwUQ4hHC14O+Jso7SkuOLJXkSFnKmyS54dP15V6zwomR3Nxc2rVrxyeflN2m5O2332bKlCl88sknbN68mbCwMAYMGEB2dmnGZsKECfz000989913rFu3jpycHK655hrsVRyervfxIWLqZwT9738ApM+dVyODZVVVJXvVKo5efwOnnnkW68mTGEJDCZv0KjE//YQhOLhaz+9Kbk2bEvHRh2AwkLV4MckffuTqkGq1rMW/A+AzTKpFRN2kGI149SxKkqxbS+SXXxLy5BPUe/edaun3WRkhjz8ORiO5a9aSs67sX4jJn32GPTMTc5Mm+N10Uw1HWLsY69UjevYsTNHRWtXlHXdiOauEuSZkLFyINS4OfVAQAXfeUePnF0IIIYQQQgjhPCnZ2s3qZydGiitGAt20xIgpMgI4s2IkbdZsAHyGX4shIKBa4yxpp+WixAhAmGcYXw/6mmifaE7mnmTc0nHEZ7vmpsW64EJJkoNJOeVep8KJkSFDhvDaa68xYsSIc15TVZUPPviA559/nhEjRtC6dWtmzZpFXl4ec+fOBSAzM5Pp06fz3nvv0b9/fzp06MA333zDzp07+fPPPysazjkUnY7g//0fEVM/Q+ftTf727Ry98caS9kXOlrdtG8fvuIP4B8ZTePAgOh8fQp54nEbLluI/ciSKwVAt561NPLt3J/yVVwBInTaN9O+/d3FEtZPl+HEKdu4EvR6fwYNdHY4QVaYYjXj16qnd3e/t7epwSpgaNCBg9K0AJL39NupZSffCI0dIn6vNfwp55unL4uf0xRjDwoiaPRtTTAy2U6e05MixYzVy7oL9+zn5wgskTn4TgKAHx7tsTo0QQgghhBBCCOdIvkjFSIC7lvAwRmoVI5Y47QY9S/wJspcv1/a5885qj9Oza1cA8jZtdsmckWKhnqF8PehrGvg04FTuKcYtG0dcdtzFD7zMnZ0kmXRdq3If69QZI0ePHiUhIYGBAweWPGc2m+nduzd///03AFu3bsVqtZ6xT7169WjdunXJPmcrLCwkKyvrjMfFePftS8wP32Nu2hR7SgrHx44jbc43TvsGLzx0iLj/+x/Hbx1N/patKGYzgffcTePlfxB4zz3o3Nyccp66wu/GEQQ9OB6AhImvnPcu7ctZ1u9atYhnt24YAgNdHI0Ql7ag8ePR+fpSeOAAGT/+eMZrSW+9DTYbXn364NWjh4sirH2MoSFa5UjjRtgSEzl+x50UHjlaLedS7Xayli/n+J1jOHrd9WT+sBDVYsGze3f8L/MKHiGEEEIIIYS4FJS00vI+cz7I6cPXAUxR2owRa5xWIZH+7bfgcODZ/Urcmjat9jjd27dHMRqxJSScMwC+poV4hDB90HQa+DQgITeBcUvHEZclyZHy8vUwcsMVEeXe36mJkYSEBABCQ0PPeD40NLTktYSEBEwmE/7+/ufd52yTJ0/G19e35BFZNJTnYkzR0TT4bp425NpmI/H11zn51NM48vMr+tZKWE+d4uTzz3Nk+HXkrFgBOh1+I2+i0bKlhDzxBHpf30qvXdcFPfQQvtcNB7udE488QsG+fa4OqdZQVZXMxYsBGbouRE3Q+/mVDFRP/vAj7Dm5AOSsXUfO6tVgMBDy1FOuDLFWMgQHEz1rFuYmTbAlJ3P8zjspPHTIaevbMzNJ/XoGhwcO4sRDD5O3aRPo9XgPGUz03LlETv+q2obqCSGEEEIIIYSoOSk5Wiut4PO00ioevm4sus5rS0zElpZGxg8/aK+PGVMjcerc3HBv1w5wbTutYsUzR2J8Y0jMS2TssrHEZrk2YXOpcmpipNjZfeZVVb1o7/kL7fPss8+SmZlZ8oiLK3+mTOfhQb333iX02WdArydr0SKO3ToaSwXWAG1Qb+Lb73B40GAyF/4IDgfeA/rTcNGvhE+ahDEsrELrXYoURSF80iQ8unTBkZtL7Li7SJs1q0qJqEtF4YEDWA4dRjEatcHQQohqFzB6NMboKOwpKaRO/wrVZiPxLa1dU8BtozE3jHFxhLWTITCQqNmzMDdvrlVcjhlLwYEDVVqz8PBhTr3yCgf79CXp7bexnjiB3s+PwPvuo/Gfy4l4/308ruhQa+bUCCGEEEIIIYSompTs8g1f1/v5ofPyAiD5449xZGdjionBs1evGovV47R2WrVBsEcwXw/6moa+DUnKS2Lc0nEczzru6rAuOU5NjIQVJQfOrvxISkoqqSIJCwvDYrGQnp5+3n3OZjab8fHxOeNREYqiEDBmDFEzvkYfGEjhvn0cvWkkOWvWXPRYR34+KV98yaEBA0n7+mtUiwWPzp1p8N08Ij7+GHOjRhWK5VKnmExEfPwR5mbNsKenkzj5TQ71H0DqV1+V3LF9OSoeuu7Z+yr0Ffz+FUJUjmIyaYPYgbQZM0n+6GMshw6j9/Ul6MEHXRxd7Wbw9ydqxteYW7bAnppK7JixFa4CVB0OsletIvbuezgy7Boy5n2Hmp+PuWlTwl+bRONVfxHy2KMYw8Or6V0IIYQQQgghhHCVlDJmjDhUB+kF2jXh4lZaiqJgLGqnlTF/AQABd96BoquW+/nL5NFFG8Cet3GjS+eMnC7IPYjpg6bTyLcRSflacuRoZvW0u75cOfU7LCYmhrCwMJYXDcgBsFgsrF69mu7duwPQsWNHjEbjGfucOnWKXbt2lexTXTy7dCFm4Q+4tWuLIzOTuPsfIGXqVFSH45x9VZuN9PkLODxoMMlTpuDIzsbcrBmRX0wjavYs3Nu3r9ZY6zK9ry8Nvl9A2CuvYKxfH3tqKknvvsfhfv1I/uwz7OWYEXMpUVW1ZL6I77BhLo5GiMuL94ABuHfqiFpQQOoXXwAQ9PBDl3Xbw/Iy+PsTPWMGbq1bY09P15Ije/Zc9Dh7Ti5pc77hyJChxD8wntz160FR8Orfj6iZM4n55Wf8brrpspvFJYQQQgghhBCXk7JmjGQVZmFTbUBpKy0AU9EAdhwOdL6++F53Xc0FCri3b4diMmFLTsZy9FiNnvtCipMjjf0ak5yfzN3L7uZI5hFXh3XJqHBiJCcnh+3bt7N9+3ZAG7i+fft2YmNjURSFCRMm8MYbb/DTTz+xa9cuxo4di4eHB6NHjwbA19eXu+++m8cff5wVK1awbds2br/9dtq0aUP//tXfYsgYFkb0nDn4jRoFqkryhx8R/7+HsGdnA0UXsZf9wZFrh5Pw8svYkpIw1q9PvbffIuanH/G66ipp9VEOOpMJ/1E302jpEsInT8bUoAH2zExSPvqYQ1f3I+mDD7CdVTV0qSrYsQNrfDw6Dw+8+vRxdThCXFYURSH06adLPjc1boT/qFEujKhu0fv6EvX1dNzatsWemcnxsePI37mrzH0tx4+T8MYbHOrdm8TXX8dy/Dg6b28Cxo2j0fI/iPzkEzy7dZXfoUIIIYQQQghxibPaHaTnWYEzK0aKB6/7mHww6o0lz5siSwdm+988Ep2HRw1FqtGZzbh36ACgzcKsRQLdA5k+aDpN/JtIcsTJKpwY2bJlCx06dKBD0TfLY489RocOHXjppZcAeOqpp5gwYQIPPvggnTp14sSJE/zxxx94e3uXrPH+++9z/fXXc/PNN9OjRw88PDxYtGgRer3eSW/rwnQmE+GvTCT89ddQTCZyVq7k2E0jyfz1V46NuoUTjzyC5ehR9P7+hD73HA2X/I7v8OE1WsJ1qVCMRvxuuJ6Gi3+j3rvvYm7SGEdODqmfT+NQv/4kvvMOtpQUV4dZrTKL2mh59euHzt3dxdEIcflxb9MGv1tGoRiNhL3wAorB4OqQ6hS9jw9R07/CvX17HFlZxN51F/n//QdoNxPk/v03cQ+M5/DgIaTPnoMjNxdTTAyhL71Ik1V/Efr0U5giIi5yFiGEEEIIIYQQl4q0XG3wuk4Bf4/SipHiwevF80WKGYsrRvR6/Iturq9pHl06A5C3yfUD2M8W4BbAVwO/oql/U1LyU7hr6V0cyZDkSFUpam1pnFYBWVlZ+Pr6kpmZWeF5I2fL37mL+IcfxnbqVMlziocHgWPHEnDXOPRFw3+Ec6gOB9l//knK559TuGcvAIrZjN/NNxN4z90YzzNnpq5S7XYO9umDPTmFiKmf4d23r6tDEuKypDocqIWFkpysAntOLnH330/+1q3ovLwIvOduMn/7DcuhwyX7ePa+ioDb78CzR3e5mUAIIYQQQgghLlO7TmRyzcfrCPIys+WF0g5BS48u5ck1T9IxtCMzB88sed4SH8/RG2/C74YbCH3m6TJWrH55W7Zw/PY70AcF0WTtmlrZ7SC9IJ17/7iX/en7CXAL4OtBX9PIT+Zfn64ieYPL/qqFe5vWxCz8Ac8ePcBoxP+222j8xzKCH35IkiLVQNHp8Bk4kJiFC4n4fCpu7dqiFhaSPmcOh/sP4NTEiVjiT7g6TKfJ27QJe3IKOl9fvHr0cHU4Qly2FJ1OkiJVpPfyJOqLaXh07owjJ4fkDz7EcugwOg8P/G+7jYZLfidq2jS8evWUpIgQQgghhBBCXMZKB6+bzni+uJVW8eD1YqaICJr+s4GQp5+qmQDL4Na2LYqbG/aUFCxHamc1hr+bP18N/IrmAc1JK0jjrmV3cTD9oKvDqrPkygVgCAggavpXNNu6hbAXX8AQFOTqkC55iqLg3acPDb77jsjpX2nDka1WMr6bz+HBgzn53PNYjh93dZhVVjx03WfgQBST6SJ7CyFE7abz9CRy2ud4D+iPuUljQp99hsarVxH24guYY2JcHZ4QQgghhBBCiFogJUdrpRXsbT7j+dR8LTFy+uD1YoqiuLRKQ2cy4d6hPQC5G2tfO61ifm5+fDngS1oEtCCtII17/riHA+kHXB1WnSSJkdPo5MJ1jVMUBa8ePWjwzTdEz5mNZ/crwWYj88cfOTxkKCeefIrCQ4dcHWalqBYLWX8sB8Bn2DAXRyOEEM6h8/Ag4uOPabhoEQFjxqA/bYaYEEIIIYQQQghRWjFyZmLkfDNGagvPrl0ByNtYuwawn83PzY8vB56WHFl2D/vT9rs6rDpHEiOi1vDo3Jmor7+mwXfz8OrdGxwOshYt4si1w4l/ZAIFe/e6OsQKyVm3HkdmJobgYDw6d3J1OEIIIYQQQgghhBBCVLuU7Iu00qqliRGPLkWJkU2bqO1juX3Nvnw58EtaBrYkvTCde/6Q5EhFGVwdgBBnc2/fnshpn5O/ezepn39O9vI/yV62jOxly3Br0wZjWBj6oEAMQUEYgoIxlGwHoQ8KQmc2X/wkNSBr8WIAfIYOQdHrXRyNEEIIIYQQQgghhBDV77wVI/laxUhZrbRqA/fWrVDc3bGnp1N48CBuTZu6OqQLKk6O3P/H/exK3cXdf9xdMoNEXJwkRkSt5d6qFREff0zBgQOkfj6NrCVLKNi5k4KdOy94nM7b+7RESWBR8iSo6BGIvjihEuCPYjRWS+yOvDyyV64EwGfo0Go5hxBCCCGEEEIIIYQQtU3xjJGzEyPnG75eWygmEx5XXEHu+vXkbdxU6xMjAD4mH6YNnMYDyx9gZ8pO7l52d0klibgwSYyIWs+taVPqT3mP4EcnULBnL7aUZGwpKdhTUrGlpJQ87CkpqFYrjuxsLNnZWI4evejaen9/TFFRuLdvh3v79ri3b48xPLzKMWf/9Rdqfj7GyEjc2rat8npCCCGEEEIIIYQQQtQFJRUj3ueZMVJLEyMAHl27aomRTZsIuON2V4dTLj4mH6YN0JIj/6X8x71/3CvJkXKQxIioM0yRkZgiI8/7uqqqOLKyihIlqdhSkrGXbJ+ZQLGlpoLDgT09nfz0dPJ37IBZswEwhIaWJEnc27fDrVUrdCbTec9blqzflwBatYiiKJV/00IIIYQQQgghhBBC1CGlrbRKr6flWfPIt+UDtXfGCIBnl84kUzRnxOFA0dWNEd3eJm+mDZjG/X/ez3/J/3HPH/cwtf9U2gW3c3VotZYkRsQlQ1EU9L6+6H19MTdqdMF9Vbsde0YGtpQUCvfvJ3/7dvK2b6dw/wFsiYklM00AFKMRt5YttURJh6KqkrCw865tz8oid80aAHyGSRstIYQQQgghhBBCCHF5sDtU0nK1VlrBp7XSKm6j5W5wx8Po4ZLYysOtVSt0Hh7YMzMpPHAAt+Z1Z16Hl8mLaf2n8cCfD7AjeQd3Lb2L13q+xpCYIa4OrVaSxIi4LCl6PYbAQAyBgbg1a4bv8OGANhskf+cu8rdvL3nYiypKtKqSWQAYwsK0REm7dudUlWQvX45qtWJu0qRO9CIUQgghhBBCCCGEEMIZ0nItOFRQFAjwLK0YSc3XEiO1dfB6McVoxL1TR3LXrCVv06Y6lRgBLTnyxYAveHrN06yKX8VTa57iSOYRxrcbj06pG9UvNUUSI0KcRufhgWfXLnh27QJo7bmssbFaYuT0qpKEBLKXLiV76VLgzKqSvM2bAfAZNsxl70MIIYQQQgghhBBCiJpW3EbL38OEQV96Ib4uzBcp5tmlC7lr1pK7cRMBd97p6nAqzMPowQd9P+CDfz9g5u6ZfL7jc45mHmVSj0m4G9xdHV6tIYkRIS5AURRM0dGYoqNLq0pyc8nftfv8VSVFfIZKmZoQQgghhBBCCCGEuHwUJ0ZOb6MFpa20anvFCGgD2AHyNm9GtdtR9HoXR1Rxep2exzs9ToxvDJM2TGLZsWWcyD7BR1d/RLBHsKvDqxUkMSJEBek8PcuuKtm+XUuO7NyFR8eOmKKiXBypEEIIIYQQQgghhBA1p2TwurfpjOeLW2nV5sHrxdxatEDn5YUjK4vC/ftxa9nS1SFV2ogmI4j0juTRVY+yK3UXtyy+hU+u/oQWgS1cHZrLSWMxIaqouKrE97rrCHvpJWK+X0DoM0+7OiwhhBBCCCGEEEIIIWpUSrY2eD3orIqR4lZadaFiRDEY8OjYEYDcjZtcHE3VdQ7rzNyhc4nxjSEpL4kxS8ew4vgKV4flcpIYEUIIIYQQQgghhBBCCFFlJRUjZ7fSqkMVI3BaO62NG10ciXNE+UTxzdBv6F6vO/m2fCasmsBXO79CVVVXh+YykhgRQgghhBBCCCGEEEIIUWXJ2edJjBTNGKkLw9cBPIpa6Odt2YJqt7s4GufwMfnwab9PuaXZLQB8+O+HvLD+BSx2i4sjcw1JjAghhBBCCCGEEEIIIYSosuSSipEzZ4zUpVZaAG7Nm6Pz8cGRk0PBnr2uDsdpDDoDz3d7nue6Pode0fPr4V+55497Sr4+lxNJjAghhBBCCCGEEEIIIYSospScohkj3nW7lZai1+PRqRMAeZsujXZap7u1+a181u8zvI3ebEvaxujFozmYftDVYdUoSYwIIYQQQgghhBBCCCGEqLLiGSPBp7XSstqtZFmygLrTSgvAs6idVu6muj+AvSzd63fnm2HfEOkdyYmcE9yx5A7WxK9xdVg1RhIjQgghhBBCCCGEEEIIIarE4VBJyy2qGDktMVLcpkmv6PEx+7gktsrw6KIlRvK3bEW12VwcTfVo6NuQuUPn0im0E7nWXB5a+RBz9sy5LIayS2JECCGEEEIIIYQQQgghRJWk51mwO7QL6oGnzRgpHrwe4BaATqk7l6PNzZqh9/XFkZtLwe7drg6n2vi5+fHFgC8Y0WQEDtXB25vf5pUNr2B1WF0dWrWqO9+JQgghhBBCCCGEEEIIIWql4vkifh5GjPrSy87FFSN1Zb5IMUWnw6NLZ+DSbadVzKg3MvHKiTzR6QkUFBYeXMgDyx8gszDT1aFVG0mMCCGEEEIIIYQQQgghhKiS4vkip7fRgtLB6wFuATUeU1V5dNbaaeVtvLQTIwCKojCm1Rg+vvpjPAwebErYxG2/38axzGOuDq1aSGJECCGEEEIIIYQQQgghRJWUJkZMZzxfUjFShwavF/Po2hWAvH//RbVe2q2livWO7M3sIbMJ9wzneNZxRv8+mn9O/ePqsJxOEiNCCCGEEEIIIYQQQgghqiQ5+9KrGDE3aYze3x81L4/8XbtcHU6NaRbQjLnD5tIuuB3ZlmweWP4AC/YvcHVYTiWJESGEEEIIIYQQQgghhBBVUjxj5JzESNHw9bo2YwSK5ox01uaMXA7ttE4X5B7E9EHTGdZwGHbVzqR/JvHVzq9cHZbTSGJECCGEEEIIIYQQQgghRJUUt9IK9j4zMVJXh68X8+haNGdk00YXR1LzzHozk3tO5sH2DwLw4b8fsujwIhdH5RySGBFCCCGEEEIIIYQQQghRJeebMVKXW2kBeJbMGdmGarG4OJqapygK49uNZ2yrsQC89PdLbDxV95NEkhgRQgghhBBCCCGEEEIIUSWliZHzVIzUweHrAKZGjdAHBqIWFJC/c6erw3GZRzs+yuAGg7E5bEz4awIH0g+4OqQqkcSIEEIIIYQQQgghhBBCiCpJyT53xohDdZQkRupqxYiiKHh00eaM5G6s+5USlaVTdLzW8zU6hnYkx5rD+D/Hk5Cb4OqwKk0SI0IIIYQQQgghhBBCCCEqTVVVUnOLKkZOmzGSWZiJXbUDEOBeNxMjcFo7rU2bXRyJa5n1Zj7s+yExvjEk5SXx4IoHybZkuzqsSpHEiBBCCCGEEEIIIYQQQohKy8y3YrWrAAR6ls4YKa4W8TX7YtQZXRKbM3h00Qaw52/bhuMynDNyOl+zL1P7TyXIPYiD6Qd5dNWjWO1WV4dVYZIYEUIIIYQQQgghhBBCCFFpxfNFvN0MuBn1Jc/X9cHrxUwxMeiDg1ALC8nfvt3V4bhcfa/6fNrvU9wN7mw8tZGX/34ZVVVdHVaFSGJECCGEEEIIIYQQQgghRKUlF80XCb7EBq8XUxQFzy5aO62kt98h8e13SP/uO3LWr8cSF4dqs7k4wprXMrAlU/pMQa/oWXRkER9v+9jVIVWIwdUBCCGEEEIIIYQQQgghhKi7iitGgs5KjKQWXBoVIwBefXqTtXgxBbt2UbBr15kv6vUY69XDFBmJMTISU1TRx8hIjJFR6L08XRN0NetZvycvXfkSL//9Ml/u/JJwr3BGNh3p6rDKRRIjQgghhBBCCCGEEEIIISqtJDHibTrj+eJWWoHudbtiBMBn2DAMwcEUHjyEJS4Wa2wclvg4rHHxqIWFWOPisMbFlXmsPiAAY2QEpsgoLWkSUZw8icIQHISiq7uNnUY0GcGp3FN8vuNzXv/ndUI9Qrkq4ipXh3VRkhgRQgghhBBCCCGEEEIIUWnnqxi5VFppASg6HZ7duuHZrdsZz6sOB7bkZKxxcVhi47SkSVx8SfLEnp6OPS0Ne1oaBTv+O3ddDw/CX30V32uG1dRbcboH2z3IqZxT/HL4F55Y/QQzBs2gVVArV4d1QZIYEUIIIYQQQgghhBBCCFFpKUUzRs5ppVU8fN297rfSOh9Fp8MYGooxNBSPTp3Oed2ek6MlTYoqSiyxcaWfnzyJmpdH8pQp+AwehGKom5frFUXh5e4vk5SXxIZTG3hwxYN8O/RbIrwjXB3aedXNP2khhBBCCCGEEEIIIYQQtcLFZoxcChUjlaX38kLfogVuLVqc85ojL49D/QdgPXmS7D/+wGfoUBdE6BxGnZEpfaYwdulY9qfvZ/yf45kzZA5+bn6uDq1Mdbd5mRBCCCGEEEIIIYQQQgiXK02MnDljpLiV1qUwfL066Dw88B89GoDU6V+jqqqLI6oaL5MXn/X/jDDPMI5lHePhvx6mwFbg6rDKJIkRIYQQQgghhBBCCCGEEJWWklPUSsu7tGJEVVXXDl9PPw42S82ft4L8R9+KYjZTsHs3eZs3uzqcKgvxCGFqv6l4G73ZlrSN59Y9h0N1uDqsc0hiRAghhBBCCCGEEEIIIUSlqKpKclHFSPBprbTybfkU2LVqgRpvpbXtG/iwLSy8C2p5FYYhIADfG64HIG3GTJfG4iyN/Rvz4dUfYtQZWX58Oe9uedfVIZ1DEiNCCCGEEEIIIYQQQgghKiW70IbFplUEnD5jpLhaxN3gjofRo+YCStwDi5/Qtvcu0h61XMCYMaAo5Pz1F4VHjrg6HKfoHNaZ13q8BsCcPXOYs2eOiyM6kyRGhBBCCCGEEEIIIYQQQlRKSrZWLeJp0uNu0pc8Xzx4vUbni1hy4fuxYMuH4qHfS56Cgqyai6ESzDExeF19NXDpVI0ADG04lAlXTADgnc3vsPz4ctcGdBpJjAghhBBCCCGEEEIIIYSolOL5IsGnzReB0sRIjc4X+f1JSNkPXmHwwDoIaAjZp2DlazUXQyUF3jUOgMxffsGWmuriaJznrtZ3MarZKFRUnlnzDNuStrk6JEASI0IIIYQQQgghhBBCCCEqKaVovsjpbbSgtJVWjVWMbJ8H278FRQc3TQe/SBg2RXtt0xdwYmvNxFFJ7ldcgVu7tqgWC+nfznV1OE6jKArPdnmWPpF9sDgsPLTyIY5mHnV1WJIYEUIIIYQQQgghhBBCCFE550uMpBWkATU0eD35ACx+XNvu/Qw06KltN+oLbUcBKix6BOy26o+lkhRFIXCcVjWSPncujvx8F0fkPHqdnreveps2QW3ILMxk/J/jSclPcWlMkhgRQgghhBBCCCGEEEIIUSnFM0aCvE1nPF9jFSPWfG2uiDUXYq6Cq5448/WBr2vzRhJ2wsbPqzeWKvLu3x9jRAT2jAwyf/7Z1eE4lbvBnY+v/pgIrwhO5Jzgfyv+R541z2XxSGJECCGEEEIIIYQQQgghRKUkF80YOaeVVk3NGFn6DCTtBs9gGPEV6PRnvu4VDAMnadt/vQEZcdUbTxUoBgMBY8YAkDZzFqrd7uKInCvQPZDPB3yOn9mP3am7eXLNk9gcrqnikcSIEEIIIYQQQgghhBBCiEq5aCut6kyM7PwBts4EFBjxJXiHlr1f+9shqrtWVfL7k6Cq1RdTFfmNuAGdjw+W48fJ+esvV4fjdNE+0XzS7xPMejNr4tfw3NrnsDqsNR6HJEaEEEIIIYQQQgghhBBCVEpy9oWHr1fbjJHUw9rcEIBej2vzRM5Hp4Nr3gedEQ4sgX2/VU9MTqDz9MT/llsASP16houjqR7tgtvxzlXvYNAZWHJsCU+tfgqrvWaTI5IYEUIIIYQQQgghxOUnYSe82wz+qd395oUQorYrrhgJPmvGSLUOX7cWaHNFLDlaJUifZy9+TEhz6DlB2/79KSjIcn5cTuJ/+21gNJL/77/kb9/u6nCqRd+ovnzQ5wOMOiN/xv7JY6sew2K31Nj5JTEihBBCCCGEEEKIy8+mLyAnAda8AzV8l6oQQlwqVFUts5WW1W4ly6IlHqpl+PryFyHhP3APgBu/Ar2hfMf1ehz8YyD7JPz1uvPjchJjSAi+114LQOqMma4Nphr1juzNx1d/jFlvZlX8Kh5e+TAFtoIaObckRoQQQgghhBBCCHF5sdtgb1EblbwUOPSna+MRQog6Ktdip8DqAM5MjBQPXjcoBnzMPs496Z5ftOQ2wA3TwLd++Y81usM1U7TtjdPgxFbnxuZEAWO1IezZy5djiY11cTTVp0f9Hnza71PcDe6sP7me/634H3nWvGo/ryRGhBBCCCGEEEIIcXk5vg7y00o/3z7XdbEIIUQdllI0X8TdqMfTXFq1UdxGK8AtAJ3ixEvQ6cfgl4e07e4PQ9OBFV+j0dXQ5mZAhUUTtGR5LeTWtCmevXqBw0HarNmuDSZuM6x9D/LSLr5vJXQN78rU/lPxMHiwMWEj4/8cT641t1rOVUwSI0IIIYQQQgghhLi87PlV+xjRRft4YGm1XewRQohLWUkbrbPmixQPXg9wd2IbLZsFvh8HhZkQ0Rn6vVT5tQa9AW5+WjuuTdOcFqKzBd41DoCMH3/EnpFRsydXVTi6BmYNh+n9YcWr8PN47flq0DG0I9MGTMPL6MW/Sf9y//L7ybZkV8u5QBIjQgghhBBCCCGEuJw47LB3kbbd52kIbQN2C+xa6Nq4hBCiDiprvghU0+D1Fa/AyX+1hMZNX4PeWPm1vIJhwKva9srXISPOKSE6m0e3bpibN0fNzyf9u/k1c1JVhQN/wNeDYNa1cHQ16Aza48BSrZVZNWkf0p6vBn6Fj8mHHck7uPePe8kszKyWc0liRAghhBBCCCGEEJeP2H8gN0m7sBbTG9rfqj2/Y55LwxJCiLooOccCnJsYKZ4x4rTB6/uXwIZPtO3rPwO/qKqv2eEOiLoSrLnw+5PVVglRFYqilFSNpH37DQ6LpfpO5nBoSY9pV8HckRC3EfRm6HwvPLxNG1wPsOQpyM+otjBaBbVi+qDp+Jv92Z26m3v+uIf0gnSnn0cSI0IIIYQQQgghhLh8FN/p2myodrdxm5Gg6LUBvMkHXBubEELUMcUzRs5JjBS10gp0d0LFSEYc/PSAtt11PDQfVvU1AXQ6uOYD0BnhwBLY95tz1nUynyFDMISGYk9OIWtRNcRot8GO+TD1Slhwp9ZezOgJ3R+CCf/BsHe1RFTPxyCwCeQkwp8TnR/HaZoHNGf6oOkEugWyL20fdy27i5T8FKeeQxIjQgghhBBCCCGEuDw4HKVttFpep330CoEmA7RtqRoRQogKKW6lFex15owRp7XSslth4d1QkAH1OpS2v3KWkObQ4xFt+/enoCDLues7gWI0EnDnHQCkzvga1VmVLbZC2DoTPukIP90HyfvA7AtXPQWP7oKBr4F3WOn+Rje49gNte+sMOL7BOXGcRxP/Jnw9+GuC3YM5lHGIu5bdRVJektPWl8SIEEIIIYQQQgghLg8ntkD2STB5Q6O+pc+3K2qn9d98bQaJEEKIcikdvl52xUiVh6//9brW0snsAzfNAIPp4sdU1FVPgH+M9vvhr9edv74T+N18MzpPTyyHDpO7dm3VFrPkwT+fw4ftYdEjkH4MPAK1YfaP7oSrnweP83zdGvTUWpCBdqytsGqxXERD34bMHDyTMM8wjmYeZdzScSTkJjhlbUmMCCGEEEIIIYQQ4vJQ0kZrCBhOu4jXbIg2cyTrBBxd45LQhBCiLko5z4wRp1SMHPwT1r2vbQ//CAJiKr/WhRjd4Zop2vbGaVprxVpG7+2N38iRAKR+PaNyixRkaX+eH7SBpU9riSDvcBg0GSbs1GaIuPlefJ0Br4JnMKTsh3UfVC6WCojyiWLm4JnU96pPbHYsY5eO5UTOiSqvK4kRIYQQQgghhBBCXPpUFfb8qm23HH7mawYztL5R25Z2WkIIUW4lFSPOHr6edUpr7wTQ6W5odUOlYyyXRldDm5sBFRZN0OZu1DIBd94Bej15//xDwZ495T8wLw3+mgwftNZmg+SlgF+0Nl/lkR1w5YNg8iz/eh4BMPhNbXvtu5BysCJvo1Lqe9Vn5uCZRHlHcSLnBGOXjiU2K7ZKa1ZLYiQ7O5sJEyYQHR2Nu7s73bt3Z/PmzSWvjx07FkVRznh069atOkIRQgghhBBCCCGEgJPbIDNWGyjbuP+5r7cfrX3cuwgKs2s2NiGEqKNKh6+XtrhyqA7SC9KBSg5ft9tg4T2QlwqhbWDQG06J9aIGvaFVDyb8B5um1cw5K8BYrx4+gwcDkDpj5sUPyEmC5S9pFSKr34SCTAhqCjdMg4f+hU7jzqyerIjWN0LjAWC3aC21HI7KrVMBYZ5hzBg8gwY+DUjITWDc0nEcyTxS6fUMToytxD333MOuXbuYM2cO9erV45tvvqF///7s2bOH+vXrAzB48GBmzCgt+zGZqqE/nBBCCCGEEEIIIQSUttFqOlBrm3K2+h0hsAmkHtT27XB7zcYnhBB1TL7FTq5Fm8t0+oyRzMJM7Kr2vL+bf8UXXvM2HF8HJi8YOVMb+l0TvIK1NlGLHoaVr0OL4eAXWb3nLMyGQyvAmg+oWnWj6ijdPuu5gC5+ZC2GrMW/EdInGGOg12n7OUq304/B9rlgK9DOE9pGm6XS4lrQ6aset6LAsPfgs25wfD1s/wauuLPq615EiEcIMwbP4N4/7tUGsi+9iy8HfkkT/yYVXsvpiZH8/HwWLlzIL7/8wlVXXQXAxIkT+fnnn5k6dSqvvfYaAGazmbCwsAstJYQQQgghhBBCCFF1qlqaGGl5Xdn7KAq0vxVWvArb50liRAghLqK4jZbJoMPbXHqZuXjwuq/ZF6POWLFFj6yC1W9r29d8AEGNnRBpBXS4Q2upGLsBfn8Sbp2n/X5wtpwk2Pg5bP5Kq+QoJ3fAIySQvCQzaV9+RGj7rAsfENEZrnoSmgx0/vvwj4a+z8Mfz8MfL0DTweAV4txzlCHIPYjpg6Zz3x/3sT99P3cvu5svB35Js4BmFVrH6YkRm82G3W7Hze3MTJ67uzvr1q0r+XzVqlWEhITg5+dH7969ef311wkJKfsPrrCwkMLC0gn3WVkX+YILIYQQQgghhBBCFEvcBelHweCmtf44n7ajYMUk7U7l9GPg36CmIhRCiDonuSgxEuxlRjntonvxfJEKD17PToSF9wKqlqBoO9JZoZafTqclZD7vCQeWwL7ftCoLZ0k9DH9/rFVz2Iuud/vHQEDDosSFAorutO3TPhZtB+gzyfv2IBlHfQm6qS96N+O5xxrM0GoExFxVPYmdYl0fgJ0L4NQOWPoM3PR19Z3rNAFuAUwfNJ37l9/P7tTd3LXsLr4Y+AWRxvJX+Dg9MeLt7c2VV17JpEmTaNGiBaGhocybN4+NGzfSpIlW0jJkyBBGjhxJdHQ0R48e5cUXX+Tqq69m69atmM3n9jWbPHkyr7zyirNDFUIIIYQQQgghxOWguFqkcX8we51/P98I7SLS0dWwYz70ebpm4hNCiDqorPkiAGkFaUAF54s47PDjvZCbBMEtYMjbTouzwkKaQ49HtMHivz8FMb3Bzadqa8ZvhfUfaHOsULXn6neCnhOg2dAKtbfycjgw/TMcy+HDZFj6Enj7uKrFVhV6A1z7EXzZF3YthLa3aC0ra4Cv2ZcvB37JA38+wH/J/3Hvsnt5p9s75T6+Woavz5kzB1VVqV+/PmazmY8++ojRo0ej12tf4FGjRjFs2DBat27Ntddey5IlSzhw4ACLFy8uc71nn32WzMzMkkdcXFx1hC2EEEIIIYQQQohLjarC7p+17ZbXX3z/4iHsO+YV9WoXQghRlpQcCwBBXmfe6F7cSivALaD8i62doiWljR7aXBGTh7PCrJyrntAqObJPwl+vV24NVYWDy2HGMPjqatj7K6BCk0Ew9ne4589KzfxQdDoCx40FIG32bFSrtXLxOUu99tDtQW178eNgya2xU3ubvPliwBdcEXIF2dZsHlnxSLmPrZbESKNGjVi9ejU5OTnExcWxadMmrFYrMTExZe4fHh5OdHQ0Bw8eLPN1s9mMj4/PGQ+Aw8k51RG+EEIIIYQQQgghLhXJ+7SB6noTNB108f1bXKsN/E0/CrH/VH98QghRRxXPGDk7MVJSMXKhVloOB5zYqs0TmT6wNPkw9F2tYsPVjO5wzRRte+M0Ldbyslthx3cwtTt8e5PWnlFngHajYfwGuG0BNOhRpRZXPtdeiz4oCFtCAllLl1V6Hafp8yz4RkFmLPz1Ro2e2tPoydT+U+ka1pU8e165j6uWxEgxT09PwsPDSU9PZ9myZVx3XdkDzlJTU4mLiyM8PLxC6y/575QzwhRCCCGEEEIIIcSlas+v2sdGV5evFYrJs3RA+4651ReXEELUcSWJEe8zW2kVzxg5p2IkN0VrU7jwXni3MXx5tZYQidsIqNDlvtKqvdqg0dXQZiSgwqIJYLddeP/CHNjwGXzYHn66H5L2aIn2K/8Hj+yAG6ZCaEunhKYzmwm4TfuzSp3xNaqrKxzNXjDsPW37n8/g5PYaPb2H0YNP+n1Ct7Bu5T6mWhIjy5YtY+nSpRw9epTly5fTt29fmjVrxrhx48jJyeGJJ55gw4YNHDt2jFWrVnHttdcSFBTEDTfcUKHz/LbzlOu/6EIIIYQQQgghhKi9iueLtCz7Zs0ytbtV+7j7Z7DmOz0kIYS4FJyvYqS4lVag2R9iN8LK1+CLPvBOY/jpPm1Yd14qmLyh+TXasPMJu2DoO9U7KLwyBr0Bbr6Q8B9smlb2PjlJsGISvN8Klj0LWfHgGQL9XoJHd8Gg17UZVk7md8stKG5uFO7ZS97GjU5fv8KaDoTWN4LqgEUPXzyR5GRuBjfe6v1Wufd3+vB1gMzMTJ599lni4+MJCAjgxhtv5PXXX8doNGKz2di5cyezZ88mIyOD8PBw+vbty/z58/H29q7QeeLT89kWl8EVUf7V8TaEEEIIIYQQQghRl6UchKTdWguTZkPOeTk914KPuxG97qwLcdE9SluC7FsMbW6qoYCFEKLuSMkuY8ZI1inSUg8AELjkGchMPfOgsDbQuD80HgCRXUBvrKlwK8crBAa8CosegZWva0n24iRH6mH4+2PYPhfsWpKIgEbQ42FtCLnRrVpDM/j74zdiBOlz55I6Ywae3cpfLVFtBr8Jh/6EUztg4+fQ/X81enqz3nzxnYpUS2Lk5ptv5uabby7zNXd3d5Ytc17fs1+2nZDEiBBCCCGEEEIIIc5VXC3SsA+4n3ntYPWBZMbN2MTdPWN4fthZrU10Omh3C6x5W7vgJYkRIYQ4R0pOIUZsNMzZBss/h0MrIHEXqRH1wGggoCAb3Py0llSN+0PjfuAd5uqwK67DnbB9HsT9A78/BVc9Dus/LGrVWNTNqH5H6DEBmg+r8DD1qggYcyfp8+aRu3oNhQcPYm7SpMbOXSavEBj4Gvz6kNYmrcW14B/t2pjOo1pnjNSE3/47hdXucHUYQgghhBBCCCGEqG32Fs0XaTH8nJemrjqEQ4Vv/oklu8B67rHtbtE+HvkLsmTGqRCimqkqbPkadv6gbddmmfGw5WteyJnENvN9tFo+WksUJO5CRSHNoN2LH3jjLHjqCIycAR1uq5tJEdCS5dd+oFUf7l+szUbZ8wugQpNBMPZ3uGcFtBxeo0kRAFN0NN79+wOQOnNmjZ77vDrcAdE9wZoHix+rtd/PdToxEuBhJDXXwrpDKa4ORQghhBBCCCGEELVJ2lGtlYei13rYn+ZgYjb/HEkDIN9q57f/ykh8BDaCyG5ar/SdC2oiYiHE5WzvIvjtUVh4N8y/HfLSXB3Ruew2WPUmfNAWfnuUq9mCl1KAwyNYax014ivyJuykoKg7YUBMnxpPFFSbkBZaRQhoCZJ2t8L4DXDbAmjQw6WzUQLuGgdA1q+LsCUnuyyOEoqiJZL0Jq2t1q6Fro6oTHU6MTK4tZZl/GXbCRdHIoQQQgghhBBCiFqluFqkQU/wDDzjpW/+OQ6Au1G7YPfd5riy12hfNIR9+7xae8erEOIS4LDDX2+Ufr7vN5jaHY6sdl1MZ0s9DF8PhFWTQbVjCevIO9abud76OsoT+2HENGg7klSd9rPS3eCOh9HDxUE7Wd/nYfQCeGQH3PA5hLa8+DE1wKNDB9zbt0e1Wkn79ltXh6MJagJXPaltL30G8tNdG08Z6nRiZGjbcAD+2JNInqVmp9wLIYQQQgghhBCiFiueL9LyujOezi20sfBf7QbLN29sg0GnsCMug72nss5do9UNYHCD5L1wans1ByyEuGzt/kn7OePmC2MWQVBTyD4Fs6+DPyeCvYx2fzWluMXX5z3hxFYw+8KN09k77Ec+tV9PolcLlNOqQtIKtEqXQLfA861Yd+l00HRQ6fD1WqS4aiR93nc48vKctq49J4ectWtJem8KJx57DEvceW4kKEuPCRDUDHKTYflLTovJWep0YqRdhB/RgR7kWews35Po6nCEEEIIIYQQQghRG2TEaRfwUM5po/Xz9hPkFNpoGOzJ8Hb1GNAyFID5ZVWNuPlqg3RBqxoRQghns9tKq0W6PwQxV8F9q6DjWECFde/D9IFaxUZNy0mCebdoLb6seVpsD/4NbW4iJacQgCAv8xmHpOanAhDgHlDj4V7OvPv1wxgVhSMzk4wff6r0OvaMDLJXriTxzbc4etNIDnTpSty995H65Zdk/b6E5Pc/KP9iBhNc+6G2/e9sOLau0nFVhzqdGFEUheva1QPgZ2mnJYQQQgghhBBCCNB69QNEdwfv0JKnVVVlzgatjdbtXaNRFIVRnSMB+GnbCQqs9nPXajda+7jze7BZqjVsIcRl6L/vIO0weARC1we050ye2gXlm2eDmx+c/BemXQXb59ZcW799i+GzbnBgKejNMOgNuOOXkmqJ0sSI6YzDUgu0xMglWTFSiyl6PQFjxwCQNmsWqr2M32dlsKWkkLV0GQmTXuPIdddz4MruxD/4f6TNnEnBrl3gcGCMiMB70CAAspYvx5ZWgfk30VdCR62ahUUTwFpQkbdVrep0YgTgug71AVhzMIXUor+QQgghhBBCCCGEuIydp43W1uPp7EvIxs2o48aO2sW9Xk2CqefrRma+lT/K6kbRsA94hUJ+Ghz8o5oDF0JcVmwWWPWWtt3zUTB7n/l6y+tg/HqI7gmWHPh5vDacvSCz+mIqzIZf/gffjYa8VAhtrVWwXPl/WiupIik5WqL4nIqRosRIgJtUjNQ0vxtuQO/rizUujuw/V5S5jzUxkcxFv3Hq5YkcHjqMgz17cWLCBNK//ZbC/ftBVTHFxOB3883Ue+dtGv+1ksZ/Lifiww9wa9UKrFYyf/q5YoH1n6j9Hk09COumVPl9OkudT4w0CvaiTX1f7A6VxTtPuTocIYQQQgghhBBCuFLWKYj7R9tuce0ZL80uqha5vn19fN2NAOh1CiM7aVUj8zfHnrue3gBtb9a2d0g7LSGEE22bDZmx2kXjTneXvY9vBIz5Fa5+ERQ97FqozfuI3ej8eGI3amtvmwMo0P1huHdlmUPGk7OLKka8y26lFeguFSM1Tefujt/oWwFI/Xo6qqpiiY8n48efOPnc8xwaMJBDvftw8sknyZg/H8uRIwCYmzbF/7bbqP/B+zRZt5ZGS34n/NVX8L32Wozh4SXr+43SfhdmLFiAWpHKJXc/GPK2tr12CiTtc8r7rao6nxgBuK69tNMSQgghhBBCCCEEsO837WNEF/CpV/J0cnYhS3ZpN1Te3i36jENGdopAUWD9oVRiU8sYWlvcTuvAMshNrZawhRCXGWs+rHlX2+71BJg8zr+vTg9XPQF3/wH+DSAjFmYM0apN7Laqx2K3wopJMGMwpB8D30gY+xsMnAQGc5mHnG/GyCU9fL0OCLjtNhSjkYId/3Hoqt4c7j+AU889R+aPP2KNiwOdDrdWrQgYO5aITz+h6T8baPjrL4S9+AI+gwdjCAo679q+w4ah8/TEcvw4eRsrmJhreR00HQIOKyx6BByOKr7TqrskEiPD29VDp8C/sRll/wNGCCGEEEIIIYQQl4fztNFasCUOq12lQ5Qfrev7nvFahL8HPRsHlex3jtCWEN5Ou6Cz64dqCVsIcZnZMgOyT4FPBHQcU75jIjrB/Wuh7S2g2mHVGzDrGsgo4+dWeSUfgK/6w9p3QXVoa49fDw16XvCw884YkeHrLmUICsL3+usBsCUng8GAe/v2BN57D5FfTKPpxn+IWfgDoc88jXe/fuj9/Mq9ts7TE59rrwG0qpEKURQY9i6YvLSqzn9nVez4anBJJEZCfNzo3kj7B8wv26VqRAghhBBCCCGEuCzlJMHx9dp2y+ElT9sdKt/+o7XRuuOsapFit3SOAuD7rXHY7GXcyVpcNbJ9rvPiFUJcngpzSmct9H7qvFUZZXLzgRHTYMSXYPKG2A0wtQfs+rFiMagqbPwCpvWCU9u1Ie8jZ2pru/le5ODSGSPBUjFS64Q8/TRhE18masbXNNu0kQbfzSPk8cfxuuoq9N7eF1/gAvxv1tppZS3/E1tqBSsofSO0lnAAy1+G7IQqxVJVl0RiBOD6oiHsP20/UbEeZ0IIIYQQQgghhLg07PtNu+O53hXgF1Xy9Mp9SZzMLCDA08TQNuFlHtq/ZQgBniYSswpZfSD53B3a3AQ6g3YBMWlvNb0BIcRlYdMXkJsM/jHQfnTl1mh7MzywFup3gsJM+GEc/PJ/WtLlYrJOwTc3wpInwVYAja6GBzdAqxvKffrzzhgpGr4uiRHX0Xt54n/LLXheeSU6jwu0aKsEt5YtcWvTpmgI+08VX6DLvdrv6MJMWPK0U2OrqEsmMTKoVShmg44jybnsOpHl6nCEEEIIIYQQQghR0/b8qn08rVoEYE5RtcjNnSJxM+rLPNRs0DOi6KbL7zaX0ZbGMwiaDNK2pWpECFFZBZmw/kNtu8+zoDdWfq2AGLhrKVz1JKDAtm9g2lVwctv5j9n9M0y9Eg6vAIObNhT7toVnzGS6GIvNQWa+FThzxojFbiHbkg3I8PVLmX/REPb0Bd+jVnRWiE4P134Iih72/Az7lzg/wPKG4rIzO5m3m5H+LUMB+FnaaQkhhBBCCCGEEJeXvDQ4ukbbblGaGDmWksuaA8koCtzWNeo8B2tGdY4EtAqTpKyCc3dof6v28b8Fzhl4LOo2h0P7nvv5/2DWcNj0pXbRW4gL2fAZFGRAUDOtEq2q9Ea4+gVtWLpPfUg7DF8N0JIvp1+0LsiEnx6A78dAfjqEtYX710DX+0FXsUvEqblatYhep+DnXprYKW6jZVAM+Jh8qv7eRK3kM3QoOk9PrLGxFR/CDhDeFrr/T9te/AQUZjs3wHK6ZBIjANe31+7sWLTjJHaHtNMSQgghhBBCCCEuG/sWa8OIw9pAYKOSp7/dqFWL9G0WQmTAhVuKNAn1pmO0P3aHysJ/y7jpsskgcA+AnAQ4ssqZ0Yu6JPkArHgVPmwLs66F7d/A0dXw+xPwbjMtURK/RZvhIMTp8tJgw6fadt9ntbvnnaVBT3hgnZYYdlhh+UvwzQ3aHIdj62FqT9gxDxQd9Hoc7lkBwc0qdaqUbG2+SKCnCZ1OKXm+uI1WgFsAiqKUeayo+3QeHvgMvxaA9PkVHMJerPcz4BcNWfHwz1QnRld+l1RipHfTYPw8jCRlF7LhcAWHvwghhBBCCCGEEKLu2vOL9rHldSVP5VvsLNgSD5x/6PrZiqtG5m+OPXeGqcFUeof3jnlVi1dcnDUfTmytHVUYualaRciXV8OnnWHte5AZB2ZfuGIMDJgEwS3Alq8lSr7qB5/3lCoScaa/PwJLNoS2gRbXXXz/ivIIgJtnw7UfgdFDS+B+0gVmDoPMWO1C9Lgl0O8l7edZJaXkFM0XOWvwemp+0XwRaaN1yfMfNQqA7D//xJaSUvEFTB7a9yHA5q/AVujE6MrnkkqMmAy6kiFq0k5LCCGEEEIIIYS4TORnlFZwnHaxcdF/J8nMtxIZ4M5VTYPLtdSwNuF4mQ0cS81j49G0c3doV9ROa99vcsG7Op3cDlN7aImItxpocxOWPqdVBuWV8XWpDrZCbW7Nd7fBe820ipATW7Xe+E0Hw8iZ8MQBGP4R9HhYG1591zLte8TgBom7pIpElMpJgo3TtO2rn69w+6pyUxToOIb025eT7NlUG3KNSnyDG7Hfvw6iulX5FMk5ZQ9eL26lFeAeUOVziNrNrXlz3Nq1BZuNjMoMYQftRgbvcMhJhN2VXKMKLqnECJS201q6K4ECq93F0QghhBBCCCGEEKLaHViqtY4JbgHBTUue/qZo6PptXaPR68rX1sXTbODadtpNl/PLGsJerwMENwdbgTbEWDiXqsI/n8P0AdqsBIMbqA44tQP++RS+Gw1vx8Bn3eH3J7WvQU6yc88ftxl+ewzebQoL7tCSYA4rhLeDwW/C4/th9HxodQMY3UqPVRTtovMNn8Pj+2DwW0XfK1JFIoB174M1D+p31BJr1eS/+AweW7Cdrl/E0SP1eV62jmGM5Wl67ruRvh9vZeb6o+QWVm1GUmnFyJlVJyUVI25SMXI58L9ZG8KeUZkh7KDNx+lyr7a94dMaTxwbavRsNaBTtD/1/dw5kZHPir1JDGsb7uqQhBBCCCGEEEKI2sduhcTd2iOi8xkJhTqnjDZaO+Iy+C8+E5NBx82dIiu03KjOUczbFMfvO08x8dpW+HqUDhdGUbSKgD9f1tppdRzjjHcgQKsE+flBOLBE+7zZMLjuEy0JdWw9HC96pByApN3aY9MX2r5BzSC6uzZnIboH+FTwelD6cfhvgfY1TTtc+rx3OLS9GdreAqEty7+euz90e0AbbB23EbbO1O6ILq4iWf4StB4BHcdpF8plHsOlLfMEbJ6ubV/9gtO/3la7gyW7Epi5/ij/xmaUPN8+Mpi23Z7COyWXHRuPE5uWx8RFe5iy/AC3do1ibPcGhPu6V/h8xTNGgr3KrhiRxMjlwWfIEBInv4k1Lo7cDRvw6tGj4ot0HAer34aE/yB2g/ZzvIZccokRnU5hePt6TF11mJ+3n5DEiBBCCCGEEEII4bBDykE4+S+c3AYn/oWEnWAv6untGQL/2wzufi4Ns1IKs+HQCm37tMTInKJqkWvahhPgWbFe+u0ifGke5s2+hGx+2XGCO69scOYObUfBile0izhpRyCgYVXegQA4/jcsvAeyToDeBANf1+4kLr6A3Hak9gCtJdHx9aXJkqQ9kLJfe2ydoe0T0FC7wBbdExr0AL+oc89ZkKkl1XZ8p61TzOihDbBuNwpieldtQHZxFUlUNxj0hpZ82ToDkvfBtm+0R2hr6DhWS8C4+Vb+XKL2Wvuu9vM2ugc07Ou0ZZOzC5m3KZZvNx4nMUv7eW7UK1zTth5jujegfaRfyb4P9m3Ewn9P8PW6oxxNyWXa6iNMX3uUa9qGc0+vhrSuX/7vvfPOGDlt+Lq49Ok8PPAdPpz0uXPJmL+gcokRjwBod4uWPP7nM0mMVNX17eszddVhVu1PIiPPgp9H5YcJCSGEEEIIIYQQdYqqQsZxLflx8l84sQ1ObQdLzrn7uvmCooPcJFg5CYa9V+PhVtmBZdoFx8DGENICgPRcC4t2nATKP3T9dIqiMKpzJK8s2sO8TXHc0S0a5fQ7vH3CoWEfOLxSu6je9zlnvJPLk8OuDTJfNVlrmRXYGG6aAeFtz3+MV4jWxqrVDdrneWlaYuX4eji2Tkv6pR3RHtu+0fbxjdISJNHdwSMQdi3U5pXYCooWVSDmKq0aqMW1YPZy/nv1CDizimTLDKkiuRykH4N/Z2vbfZ93ytf1v/gMZv59jN92nMJi11oYBXubua1rFKO7RhHi7XbOMR4mA3d0i+a2LlGs2JfEl2uPsOloGj9vP8nP20/SrWEA9/ZqSN9mIegu0nqwJDHifZ5WWjJ8/bLhN2oU6XPnkr1yJbbkZAzB5ZvndYau47XEyL7F2t8X/wZOjrJsl2RipFmYd8mdHb/vTGB01zLuChBCCCGEEEIIIS4F2QmnJUGKKkLyyxhObfTQZiTUuwLqX6HNyghoCEfXwOzhWpuXdqMhomPNv4eqOL2NVtEFxx+2xlNoc9C6vs8Zd0xXxA0d6jN5yT72nspi14ks2kScdTd1u9FFiZF50PuZ6hukfCnLOgU/3gvH1mqft7sVhr5b8aSERwC0uEZ7AORnaImHY+u0ZMnJ7ZAZCztita/X6YKaaXcrt70ZfCOq+o7K5/QqksGT4b/52kXBs6tI2t0K9dpDSEvtPYq6afXb4LBplSINKnFHfZHzt8vyY1yPBgxpHY7JcPGfQzqdwoCWoQxoGcp/8RlMX3eU3/47xT9H0vjnSBoNgz25u2cMIzpE4G4qu1rqfBUj0krr8uPWrCnu7dqRv2MHGT/+RND991V8kZDm0Ohq7Xfqpi9h0OvOD7QMl2RiBOD6DvV5c8k+ft5+QhIjQgghhBBCCJfKzLdyKCmbZmE+eJkv2f+GiZqQn17aCqv4Y/bJc/fTGSGs9WlJkCsguFnZLYEa9tZaQ/03H36bAPf+Bfo68n1qyYWDy7XtojZaDofKNxu1NlrnVHpUgJ+HicGtwvh1x0nmb4mlTUSbM3doPgxM3pARC7F/a7MtRPkdXA4/3Q95qWD01KqV2t/qnLXd/aDpIO0BWru1uI1aVcmx9ZB9Sht+3e4WLUHoysoMjwDoNh66PnBuFckfz5fu5xmiVUSFtNQuIoa01Aa7u/m4LnZxcSmHSpNxV79QqSUq0i6rotpG+PHhLR14enBzZv59jHkbYzmSnMvzP+3i3WX7uaNbNLdfGX1OBUpKjjZj5JxWWkUVIwHuksi7nPiNGqUlRr7/nsB770GpzI0C3R7UEiP/zoY+z4DZ2/mBnqWO/Eun4oa3q8dbS/ex6WgaJzLyqe9X8UFCQgghhBBCCOEM98zazOZj6egUaBbmQ6dofzoWPSL83St94VZc4hwObch0/CbtgmncZm2GwtkUnXaBtN4V2t3l9a/Q7jY3mM/d93wGvgYHlmrDTzd/pbX7qQsOLgdbvtZ2I0xrvbTmYDLHU/PwdjMwvF39Ki1/S+dIft1xkl+2neT5oS3PvHva5AGtrodtc2D7PEmMlJfNos1n2fCJ9nlYG7hpJgQ1rr5zmr2hcX/tUVuVVUVyZBUk7dVa4+UmwdEkOLr6zON8IooSJkXJkpAWWhWMycMlb0OcpbhFXNMhENGpQoeW1S4ryMvM7d3O3y6rsur5ufPc0BY83K8JCzbH8fX6o8Sn5/PRykN8vvoI13eox909G9IszBub3UF63rmJEYfqIL0wHZCKkcuNz5DBJE6ejDU+nty/N+DVsxKVUY36QWATSD0I2+dqLQer2SWbGKnn506XBgFsPJrGr9tPMr5PI1eHJIQQQgghhLgMbY/LYPMx7UKBQ4W9p7LYeyqrZDB0sLeZjlFakuSKaH9a1/fBbKjCoF9RdxVmQ/wWiN+sJULiN2vDoc/mH1NaBVL/Ci0hUNV5CF4h0O9lWPwYrHxNq77wCa/amjVh76/axxbDS+76/6bo79bIjpHnbQNTXt0aBhIZ4E5cWj6/7zzFjR3ParXUfrSWGNnzMwx9G0yeVTrfJS/tCPxwl1btBNDlfhjwKhidd4H3klBcRdJtvPZ5YQ4k74fkvVqipPiRfRKy4rXHoeWnLaBoycKzq0uCmlQsYSqqJnG3NssGyj2HyFntsirLy2zgrp4x3HllNH/sSeTLtUfYFpvBgi3xLNgSz1VNg7mhQz1UFXQKBHiWzhjJKMzAoWoJHD83v2qLUdQ+Ond3fK+7jvRvviFj/vzKJUZ0Ou2mjMWPwz9TofO91d6i8pJNjIDWTmvj0TR+2X5CEiNCCCGEEEIIl5izQbtIe0OH+jw9uDn/xqaz9bj22H0yk+TsQpbuTmDp7gQATAYdbev7liRKrojyJ9hbLmRdclRVu0gct6moImQTJO3R7iw+ndFDS4BEdtEeEZ3BM6h6Yuo4TrtL88QWWPYsjJxZPedxFmu+NngdoOX1AMSl5bFiXxIAt3WrelttnU5hVKdI3v3jAPM3x52bGIm6UrsAnX4M9v4G7UZV+ZxOY7dpibWCDO2Rn1H6eX4G2Aq1xFp0j+oZNH62XQvh10fAkg1ufnD9Z1o7MnFxZi9t9s/Z83/yM7S5JEl7IKnoY/I+yE2G9KPaY//i0v0VPTTqCzd9DW5nzcwRzvfXG4Cq/XwKb3vR3TPzrYz4bD2Hk3MB57XLqgyDXsfQNuEMbRPO1uPpfLX2CMt2J7DmQDJrDiQDWlJEf9qQ9uI2Wn5mP4w6Y43GK1zP7+aRpH/zDdkrV2JNSsIYElLxRdrdCite1X52HVwGzYY4P9DTXNKJkaGtw3n5l93sS8hmX0IWzcOk76IQQgghhBCi5qTlWlj030keNfzA/Se24bZhKEPbjWJo67agKBRY7ew8kVmSKPn3eDqpuRa2HE9ny/H0knWiAz3oGKUlSjpG+9M01PuMixGiDrDkaXfJF1eCxG2CvJRz9/OLgsiuENEFIjtrLbH0NXSBSaeDa6bAF320GQcdbq/drYcOrwRLjtZKqP4VAMzbFIuqQs/GQTQKds7F/ps6RjJl+QE2HUvjcHLOmesqinYhZ9Vk2DG3ehIjqgqph7Xvl7OTGxfatmSXb32dUUu6NeyrXTSv16HsWTSVZcmDpU9rfeMBIrvBjV+BX6TzznG5cvcrbb91upzkouqS05IlSXu074tDf8K6D6D/y66I+PJxchvs+01rdVjOapHpa49wODkXfw8jY7o3cHq7rMrSWn92JDY1jxl/H2X+5jjyLHbq+5/Zrk0Gr1/e3Jo2xb1DB/K3bSPzxx8JeqASLTlNntBxLKz/EP75TBIjVeHrYaRPs2D+2JPIz9tO8swQSYwIIYQQQgghas6CLXE0tB/jIfNP6LJU+OdT7RHcHNqOwq3NSDo3iKRzA21IqaqqHEvNOyNRciApm+OpeRxPzePHbScArdVFhyg/BrQM5fau0egkSVI7Hf5Lm9sRtxESdoLDdubrerM2EySyS1EipAt4h7kk1BLh7bQh0P98BoufgAc3gLGWzuzc84v2seV1oCgU2uzM3xwHwB1XRjvtNGG+bvRtFsKKfUks2BzHs0NbnLlDu1u0xMiR1ZAZD74RZS9UEXabNtB972+wb7HWKqmyTF5ahYa7n1YlULytqnB8vTa/4vh67fHXa9o+MVeVJkoCGlb+3Il74Idx2oV5FLjqCej9DOgvnctR+RY7r/62m83H0nnrxjZ0jK4FQ6e9grVHzFWlz6mq9nfm+zFam5ou94JPPdfFeKlb+br2sc3NENzsortnCLh1fAABAABJREFU5FmYsf4YAK/f0IahbWpfK8OoQA9evrYVE/o3ZcnOU3SI8j/jdRm8LvxG3Uz+tm1kLPiewPvuq9wQ9s73wt+fwNE1kLALwlo7P9Ail85vovO4vkN9/tiTyK/bT/DUoGbyHwYhhBBCCCFEjbA7VL755zivGeahQ4UGvcAjEPYv0S4SrnhFaxfQoCe0vRlaXofi5ktMkCcxQZ7cVNSyJzPfyva4jJJEybbYdHIKbaw9mMLagylY7Sp394xx8bsVZ1BVWPserJx05vPe4UUtsYoqQsLb1s5+/32fg90/a60s1k6Bq593dUTnshXC/qXadsvhACzdlUBqroVwXzf6Na9EC48LGNU5khX7klj4bzyPD2x2Zo9//wZaO6rj67WB2b0er9xJrPlaMm3fb9rPify00tcM7lrS7Ozkxnm3ix++F09CpB3RznvkL+1CVEEm7F2kPQD8orUEScO+2oV2j3Jc9FRV2DoTlj4DtgLwCoURX0DDPhX8Q6ndjqfmcv+crexL0Kpz7pi+ia/u7ET3xtXU7q4qFEVLIkZdCbEbYNWbMPwjV0dVM6wFsORJsFuh7/PVX60Uu1Gb+aLooc/T5Tpk+rqjZBfaaB7mzeBWLk6QX4Svu5FbupzbqlAqRoTP4MEkvjEZ68mT5K5fj1evXhVfxC9S+72++yfYOBWu+9T5gRa55BMjVzcPwdts4GRmAZuPpdG1ofzlFEIIIYQQQlS/VfuTiMrcTB/TDlSdAeXaDyGwkdbmZu+vsGM+HF8Hx9Zqj8VPaC0D2t0CjfqBQRto6utupHfTYHo3DQbAZnewPzGbX7af5Is1R3hn2T6ubh5CTJAMfa4VVBWWvwh/f6x93u5WaDJAS4T4RpQMCK/VzN4weLJ2Z/n6D7TEXVATV0d1piOroTATvMK0P1tK5/mM7hKFQe/cga19m4cQ7G0mObuQlfsSGdz6rLu5292qJUa2z4Oej5X/65yfAQf/0JIQh1aANbf0NfcAaDYUWlyjJRSqq3InoKH26Hy3VqlyantpoiRuo1ZRsnWm9kDRqpyKq0kiu56b3MvPgEWPaAPpQWvHdv3nWgXDJWTF3kQmzN9OdoGNIC8TMUGebD6WztiZm5l62xX0axHq6hDPpSjQ/xX4eiBsmwNX/g+Cm7o6quplLYDvRsPhFdrne36B3k/Dlf9XfW0K/3pN+9jhtnJVXJ1eLTKhf5M6e1N3akFRxYibVIxcrnRubtoQ9jlzSJ8/v3KJEYBuD2qJkf++h34Tq+33xyWfGHEz6hncOozvt8bz8/aTkhipBqqqkplvJT49n/j0vKKP+dT3c2dsjwYYnfwPUiGEEEIIIeqCOX8f5VnDXACUTndrSRHQ7ua+4k7tkREHOxdoSZKU/dqFxD3/z95Zh0dx9VH43Y27kgBJkOAaSCAQ3KW4uxQp1lLq7VdXqrS0aIu7Fy/uDgkSHEIg7q5r8/1xQ4IE4sq8z7PPzu7O3Lmb7M7O3HN/52wXA6INBwmRxMnjqUFWfT0lDSpbUb+SJTdDEjh1P4oPNl9l4xQvOXekpNFpYfesrCyF7j+IwbeySP1+ULOrmPW8510Yu7N0iTqZNlp9QankZkgClx7Foq9UMMyz8GeDG+gpGezhzMJjfmy8GPi8MFK/H+z9AKLvQbDP8yHZT5IYLgKxb+0WFRo6ddZrls5CCKnbW8zsL27LKT19cG4mbu0/gPQkIfg8Fkoib4vshJDLcGoOGJhC1VZZQokqBbZOgLgAUOpD5y/F4Ht+7FRKKVqdxNzD9/jz8D0A3KtYs2CUBzZmBry17jIHboYzZbU3vw9rQh+30mVVdTMkgYjU6nSo21tUJh3+GoavLeluFR1PiiIGpuDYQGQ8HfpSVHf1mgNVvQp3nw+Oi++1niG0+zBXmyw56U9SRrVIt/qlu1rkZTy20rIzkcdeX2Vshg0ldvVqko4eQx0egYFjPio4nZuL899gb/BeDu1z913KK+VeGAFhp7XZO4i9vqF83bfB0yWvMjkiSRIJqRoCM0WPLPHj8XJSuibbbY/eiWDBKHesTQ2LudcyMjIyMmlqLXt9Q1FrdQxt5oKiNA1myMjIyJRzHkYlY+m3k0aGD9EZmKN80QWdtYuw3WnzLoRehWubwHczJEfAxX/EzbYGNB4GjYc8NfNUoVDw46BG9PjjJJcexbL8tD+T2hYgC0CmYGjSYdsbQthSKKHPn+A+pqR7lX8UCnjtF1jQUgzy+W4Rn8HSgFYtBnVBCBLA6nOiWqRHw4pFFlY8tJkLC4/5cfxuJCFxqVS2fqKCw9gS6vXJEDrXPS+MxDzIyAvZDYEXACnrtQp1hRBSrzdUalK6BCgjc6jdXdwAEkLgwbEMoeSYOFbdPyRuT2JdFQYvf7lAVAaJS1Hx9oYrHL8bCcA4r6p82qt+5jjT/FHufLD5KtuvhDBzw2VSVBqGNX/ecqi4kSSJJSf9+XHfbbQ6idV9p9H2zl7xeQw4D1ValHQXC59nRZFRm4Xl3ZV1oqov4iYs7wFNR0OXb8CsEAbzJQmOZmSLeIzPlWVXbLKK5af9AZjVpXaZrRYB2UpLRmBUsyYmHh6kensTv20r9tOm5b0RhUJUjWydCBeXQOu3i8R69JUQRlq62uFgYUREYjrH7kTQrZR79ZUEouLjecEjKDaVoJgUEl8gfDxJBQsjnG1McLYxpYK5ERsvBnDGL5oBC86wdFwzXCuYF8M7kZGRkZEJiUtlzblHbLgYSEyyCgBHS2M61Clcr20ZmQKhVcOlZWDuALW6g6FpSfdIRqZQWX/mHh8abARA2XYWmOXgN6/IsKep3AS6fgP+x4RIcmsXxPjBsR/EzaWFsDVqMBBMbXG2MeXTXvX4ZJsvv+y/Q8e6DtQobefd5/8W1jzOzcClpRgELkezxwFQJcPG0eB3RMwSHrQkc8C+TGNbXYRlH/kO9n8CtbqAiU3O2xU1D09CWhyYVYAqXiSkqdl+ORiAMS0LL3T9Warbm9Giui3n/WPY4h3EzM7P2Is1GSGEEd8toloo8o4YeL61GyJuPL2uk0eGGNKnRGzKopPS8X4Ui5GBHlYmBpk3S2P9l9uQWVaGJiPFTZIg/IaoJPE7Co/OgCYV6vcX2RXGVsX2foqD68HxTF3jTVBsKsYGSmYPbMSAps5PrWOgp2TO0CaYGOqz/kIAH231JTldy4QSzIFKStfw0ZZr7PENzXzu4xMqjruNQv/KalE98fp/pUuQKyjZiSLV2ojXmo4StpWHvhTVfZfXwO094re3yeiC/T7dPyTs5/SNc5019M/JBySrtNSvZEn3BqXQfi0PZIavy1Zarzw2Q4eQ6u1N7OaMEHY9vbw3Ur8fHPgMEkOFrZbb8ELv5yshjOgpFfR1q8ySU/7suBIiCyOIWQ6n70dz6n4kJ+5GERyXmuM29uaGONuYZoof4j5r2djg6Q/5kGbOTFp5Cf+oZAYsOMPC0e60qlEKA8hkZGRkygGSJHHxYSwrzzxk340wtDoxC9FAT4FaK7H5UpAsjMiULo7/DCd+FssGZlD3NWEb9ESugoxMWSVVpUXfZynOiijSTRwwaplHKyU9feHJX7OLsLG5vQeubRCzswPPi9t/H0OtbtBsAsObd2avbygn7wlLrc1TW5UeSy3/EyLwFuBKhl2LsZXIhKjSUtwqu5dtcTQ1DtYNFf8XA1NhS1OjU0n3qvBoNVOIdFF34fC30HtOSfcoy0arbm9Q6rHNO4BUtZbajuZ4Vi/aAbnhni6c949h48VA3uxY8+nZ3dXbg0VlSAyBOfUhJSrrNYWeGJit10fkhlg5FWk/syMxTc2BG+HsvBrCqftRmeeLz2JupC9EEhMDrEz0nxJOMgWUzNedsKr1OlaN38DKQIuBKlFMeihPg+zAFu8gPv3Xl3SNjiq2piwa7UH9ypbZrqtUKvhhQEPMjfT456Q/3+y+SYpKw4yONYu9gvt+RBJT13hzPyIJfaWCj3vWZfnphwTHpbJMfzhv6G8RQex39wmxoDzwrCgyclOWKPIYU1vo+xc0GQW73xXC5c634PJacYxzbJD3/UoSHPlWLHtOBoucxx5jklWsPPMQENkiZb3CP7NiRLbSeuWx6N4d5Q+z0YSEknzqFObt2+e9ET0D8V06/A2cnS+qpwv5O6KQJCn7X8JSTEJCAlZWVsTHx2Npmf0P0bNcD46n91+nMNJXcumzLlgYF1HAUilFpdFxOSCWk/eiOHk/imtBcTz7n7czM8wSOmyzBA8XGxOcrE0xMcy7uheZmM7kVZe4EhiHvlLBd/0bMtyz5MtIZWRkZMoLaWotO6+GsOL0Q26GJmQ+39LVlvGtquNkbUKfeacw0FNw/n9dsDWTB5xlSgERt2BRW+GpblFJzAJ6jLEV1OsrRJJqbYvfW11GphDYdsaXTvu7Y61IRtfnT5Qe4wqn4cQwuL4Vrm6AsGtZzw9bQ3ClLnT//QRJ6Ro+fa0ek9uVAkstTTosbC0yF6q1FRezQZdAnfL0ekp9qOQm8hRcWgixxLyMiPlJEbB6IIT7iuPXqC3g4lnSvSp8/E/Ayj6AAiYdLll7JK0GfqsjRIcx25FcO9BlznH8IpP5tl8DxnhVK9Ldp6m1NP/+EIlpGlZP9KRtrWcCYQ99LbI3QMwar9lFCDi1u4vB2GImTa3l6O0Idl4N4cjtCNI1uszXajmYo6dUkJCqJj5VTbJKW+D92Zsb8UWf+vQtZdka+SVdo+WbXTdZez4AgM51HZgztAlWpjmPKUmSyCL545DIIpnavgYf9ahTbIPf+66H8v7maySla3C0NGLBKHc8qtryn28o09b6YKiv5GKL01h5/yUq+aadAWU+ZnWXJtRpsHGUqNx4LIpUzyH8WauG84vg6GxQJwsR02uGCGg3ykMF5q1donLQ0BzevppzpSjw077bLDzmR4PKlux+q02ZFkYkSaL52uaka9P5b+B/OFs457yRTLkmfPZsYlauwrxzZ1zmz8tfIykxMKceaNJEZVvVVjlukhfd4JW50mxQ2ZIaFczwi0xm3/UwhjQr/DC20oQkSTyISubk3UhO3ovi3IPo505yajmY07ZWBdrWsqdZNZsiEYsqWBix4Y2WfLDlGruuhvDxNl/8IpP4uGe90jOLTUZGRqYMkp1dlrGBkgFNnRjrVY16lbJOABo6WXI9OIEdV4J5vXXJlfEXJykqDaOXnEdfqWTNpBZyvlhpQqeDnTOFKFKnl5hZHewtBnuvb4OkMLi8WtzMKgg7joaDxGBpebPekSmXSJKE7sTvWCuSiTF1xbbJqMJr3KKiGKzxmiEExhO/wvUtsOd9nGac57Ne9fh4my+/HBCWWjUdSthS6/SfQhQxc4Bha0TovFYjRISAc+IWeF6Io8He4nY248LZproQSqq0EPZb9rVL3zEgLgBW9RdWZ2YOMOZfqNiwpHtVNFRvB42Hi8ql3bNg8tGSE64DzghRxMQWqrXh7INo/CKTMTPUY4B70Q/EGRvoMaCpE6vOivOw54SRdu+DkQXY1YSancHQrMj79CwarY7TftHsvBLC/hthT2WCulYwo69bZfq6VX7O7lqt1ZGQqiYhTUN8hljy+PZYPIlPUWf72mP77aikdGauv0xMUjrjy/h5Z2h8KtPW+HAlMA6FAt7pUvv5KqGXoFAomNWlNuZG+ny35xaLjvuRnK7h674NijRHQqPV8cuBOyw+/gCAFtVt+Wtk08zsnR4NK9Kmpj2n7kfxWWQX/jJZA5G3RfZGWc5Fyo8oAmJWequ3oMEA+O8jYX935k9xXvraz1C3V85t6HRw9Aex3HJarkSR6KT0J6pFapdpUQQgWZ1MujYdkCtGZATWQ4cSs3IVSceOoQ4Px8AxH1ZxprbCQst7BZxbkCthJC+8MhUjAH8dvsdvB+/SpqY9ayaVv2Cp2GQVp/2iOHk3ipP3IgmJT3vqdVszQ9rUtKdtLXva1LKnkpXJC1oqfJ6dKdGlngNzhzfFzOiV0eZkZGRkCsxju6wVZ/zZfyM80/7AydqEsV5VGdbcBWvT5ytCVp99yOc7blC3ogX/vd22zJ9054avdt5gRcaFxld96pf5C/NyxYV/YO/7YGgBM84/bSWi0wo7h+tb4cZ2SI3Jes3SSVywNhwElZuWO4sOmfLDtRvXqbOpA0YKNYkD12LRuHfR7UydBotaQ/R9cB+H1Gcu45Zf5MTdSJpWsWZLSVpqRfvBAi/QpsOgpdBocPbrSRLEPRLhv4HnxH3ETZ4KpgaRa+HSIquipLI7GBRNwHauiLwLq/tDQjBYVYGx28GuRsn1pzhIioR5HpAWDz1+gpZTS6Yfe96Hi/+IwOR+85m+1pu9vmGMaVmVb/sXjzB1IySeXn+WropcnU7COyCWnVdC2OsbSnTGxBmAylbG9HGrTB+3yjSobFkk54IarY7ENA1zD9/LPAeb2akm73QtmwO+Z+5H8db6y0Qnq7AyMWDu8CYFsqVddz6AT7f7Ikkw0N2Jnwc1fnmWSz6JSkrnrXWXOftAZD1Mbludj3rUfW5f9yMS6fHHSTQ6iUMtfal5ZbawgZvpAwbFN1ZUaKjTRLXG/YOgbyIyRXIjimTHnX2w9wOIF1VC1O4pBBLrl7if+G4RIdFGVjDraq6ymGb/d4vFxx/QyMmKnW+2LpPfkycJSAig17+9MNU35fyo8yXdHZlSwsPRo0m95I39W29SYUYerWUfE3EbFrQAhRJmXgabai9dPS+6wSsljAREp9Dul6MoFXDuk844WJbgiXQhoNLo8H4Uy6n7oirENzj+KXssQz0lzarZZFaF1K9kWaSzEnLDzqshvL/5KiqNjnqVLFkyrhlO1mXwR1dGRkamGElTa9l5JYQVZ562y/JytWNcq2p0qefw0gur+BQ1zX84hEqjY9ebbWjkXL6CMJ/lrF80I/45l/nY1syQ4x90eOVsNEsl8cEwvwWoEuG1X4Vn7IvQqsH/OPhuFTP30rM++9i6CoGk4SBwqFf0/ZaRyQMXfh+GZ/w+7ps2oeYHx4pexHt4Gla8JpbH7SbUthnd5pwgMV3DJz3rMqV9CQzWSxKsGSiCyF07wJjtefs7pMZB0MWsipKgSyLQ+UmUBsIzvvXbYh/FOaAUchnWDIKUaLCvI0QRy/JhG5Qjl5bB7neEuP3mRbCsVLz71+lgTl1ICodRWwh3bEurH4+g1Unsn9WOOhUtiq0rff46hW9wPJ/1qsektiVjXSdJEjdCEth1NYRdV0Oemhxpa2bIa40q0tfNiWZVbYptLECSJOYfvc+vB+4CMLJFFb7t17DMOEZIksTfJx7w077b6CThPrJotAcutgXPQdpxJZh3N11Fq5Po2bAic4c3LdSq5ssBsUxf60NofBqmhnr8MtiNXo1f/B39fs9N/jnpT21bffbrv4siIQi6fA1tZhVan4qFwhRFHqNKgRO/iMoRnUa02+EjaDnj+Sw8rUYM2kbfh46fQfsPcmw+Kimdtj8dJVWtZem4ZnSuV7ZD1wEuR1xm7H9jcTZ35r9B/5V0d2RKCfG7dhHywYfoV6pEzUMH8xfCDrB6gDiv9HoTun//0lVlYeQlDFxwGp+AuBI9eSkIDyKTOP6EPVbKM/ZYtR2z7LFaVLfLVy5IUeMTEMsbq7yJSkrH3tyIf8Z60LRKzmq6jIyMzKvGY7us9RcCiE1RA1l2WeNaVaNuxdz/Bs5cf5mdV0OKdTZlSZCcrqHH3BMExqQytJkzlx7G8iAqmZmda/Fu19ol3b1XG0mCDaPgzh4Rujxhf+5tcdRpwhbh+la489/TA6QO9aHhQGgwsPzP1pYp9cQ+8MZqZWeUCom7fXdQ271D8ex41yzwXi5Ew2ln2HQlig+3XsNQX8nemW2o6VB8g8WAsB/Z8jroGcH0swX/bmrVEHoto6IkQyxJCs963ckD2r4nZvUWtd3Ww9OwbpgQeCs3hVFbwewVsgzR6WBZNyFcNRgAQ1YU7/4fnYXlPcSs7A/u8/vRh8w9fA/P6rZsmuJVrF1Zc+4Rn22/Tm1Hc/bPaless70fRCax82oIO6+G8CAyOfN5cyN9ujVwpK9bZVrXtMegCCoScsu68wF8tt0XnQQ9G1bkj+FNMNIvfeMTT5KYpuaDzdfYdyMMgMEeznzXvyHGBoXX7/03wnhr3WVUWh3ta1dg0WiPAo/bSJLE2vMBfL3rBmqthGsFMxaP9qCW48uP/Ylpajr9dpzIxHSWNrlH59tfiqykmVdKJA8nX6jTYNMYuHcgQxTZJKz/skGnk9BKUt6+FxG3Yc+78Oi0eFyhLvSaA9VaZ61zeS3smC7s/WZdE1Z6OTB77y0Wn3hAY2crdswo+9UiAIcfHWbWsVm4VXBjzWtrSro7MqUEXXo699u1Rxsfj/OihVh06JC/hu4dhLWDwcgS3r350u+ZLIy8hFVnH/LFjhs0crJi11ttiqiHhYdKo+PiwxgO34rgyO1wHkY/HVRob25I65r2tK1VgTY17aloVTaqYILjUpm44iK3wxIx0lfy6xA3+pSTcDYZGRmZgpBfu6ycOHUvitFLz2NprM+FT7sU6gVeaeLz7ddZfe4RTtYm7JvVllP3opi21gdTQz2OfdAh01tZpgS4uQM2jRWzvKeezH+lR3oS3N0nBl7vHwRtllUIlZuKKhL3seLCXkammHk0twdVY89yyrAtbf63u/h2nBYvqrESQ6H1LKQuX/H6ioscuxOJm4s1W6d6FYllywv7Ms9T5AV1+AQ6fFz4+5AkYdV18R/wXpklllaoB23fFUJpUeRf3N0vjmOaNBEmP3wdGOfterRcEHoN/m4Pkg5GbxXh4sXFfx/D+YXgNgJ13wW0/vEIEYnp/DWiabFfTyakqfH8/hBpah3bprfCvYgn+4XGp7L7aig7r4bgGxyf+byhvpLOdR3o61aZjnUdStU53n++oby94QoqrY5WNexYPMaj1Fbw3o9IZMpqb/wikzHQU/BV3waM9KxSJAPWJ+9F8sYqb1LVWjyr27J0XLN8/13S1Fo+/fc6W32CAOjRoCK/DGmc6/b+vRzEOxuvYmag4IrjtxhE3YRWM6Hbt/nqT7GSB1EkTa3ltT9PIkmwZaoXduZGud+PJMHVDXDgU1EpCNBkFHT9RgzSzvMQmVNdv4XWM3Ns7slqkWXjm9GpbtmvFgHYdGcT3577lk4unZjbaW5Jd0emFBE++0diVq7EvGNHXBYuyF8jOh3M9xTZdT1/hhZTXrhqXnSDUpZeV/T0alQJPaUC3+B4/CKTSro72RKZmM6mS4FMW+ON+7cHGbXkPMtO+/MwOgUDPQWtatjxcc+67JnZhgv/68Lc4U0Z7OFcZkQREAN8W6a1onNdB9I1Ot5af5m5h+5RBnU6GRkZmULjrF80vf48xdDFZ9nrG4ZWJ+HlKi4iT3zYkSnta+RLFAFoVcMOJ2sTEtI07M+YBVfeOHM/itXnHgHw0yBxQdijYUXcXKxJUWn58/C9Eu7hK0xqnPBqBmHPUBD7KyNzkVUwYh28fw/6zYcanUChJ+xtDnwGy3qKfcrIFCPa+0epGnsWlaRHYpv/Fe/Oja2g129i+cxfKMKuMXtgIyyM9bkaGMc/J/2Lry9HvheiiG0NaD2raPahUIB9Tej5E8zyhTbvisGpyFuwbbIYpLq0HDTphbdP3y2wYaQQRWr3FFYtr6IoAlCpMbSYJpb3vA/q1JevX1jodHBrp1iu15eDN8OJSBQuBN0bVCyePjyBpbEBrzUSNkUbLwQW2X5iklV8vPUarX48wvd7b+EbHI+eUkH72hX4bYgb3p91YeFoD3o2qlSqRBGAno0qseL15pgZ6nEmw+o0KqkQv5eFxJ5rofSbdxq/yGQqWRmzaYoXo1pULbJZ/G1rVWDVRE8sjPS54B/D6CXniUtR5bzhMwREpzBwwRm2+gShVMAnPeuycLR7nkSW/k2caF7NhmS1xD9GY8WT5xdDXNF9pgsFTfrTosjIjS8URUBU6jyITMY/Kpl3Nl1Fp8vD2JNCAU1GwJuXwGO8eO7KWvjLA7ZPFaKIuSM0n5Sr5hYf9yNVrcXNxZqOBcitKW1EpwrRyNakjFQbyRQb1sOGApB0/Djq0ND8NaJUZmWbnVsozgkKgVdOGLEzN6JdLXsAdlwOLuHeCCRJ4npwPHMP3aPf/NM0//4QH265xn/Xw0hK12BvbsgQD2cWjXbH5/OurJvckqnta9CgslWJZ4YUBHMjff4e24zJbUUg7u+H7vL2hiukqbU5bCkjIyNT/ohPVTNl9SVuhiZgbKBkhGcV9s1qy/o3WtK9QcUC+zIrlQqGNHMGYPOloMLocqkiKV3DB1uuATC6ZRXaZPzWKxQKPulZF4D1FwJ5UEonRZR7Dn0pbG/sakHb9wuvXRNrEb475l94744YGDZ3hIgbwmu6MAdFZWRehk5H8m4hhmxRdKOjV4vi70PdXlC/P0ha2PkWlcwN+KJ3fQB+P3iXe+GJRd+HYB9RxQHQe07xhKObV4AuXwqBpNPnYGoHsQ9h9yyY6wZn5olKs4JwcQlsnSR85hsNhWGry2Y4cWHS8RMR1BzrDyfnFP3+1Klw4mcRdm9oDjU6sfqsmAwxwtOlUHMa8sLw5iKMede1EJLSNYXatlYnsebcIzr+eowNFwORJGhezYZv+zfkwv86s3KCJ4M8nEttBcZjWtW0Z8MbXtiZGXI9OIHBC88QGJOS84bFgEar44e9t5ixzodklRYvVzt2vdWmWKy+m1ezZd3kltiYGnA1KJ7hf58jMjH35y1H70TQZ94pboYmYGdmyJqJLZjSvkaexRyFQlTHKBXws58L8Y4tQJsOx2bn9S0VH5p0cZ73pCji2v6lm2x4Qrw8cTeShcf98r5fU1voMxcmHgTHhpAWJ2xeQZzfGuacQxORmJY5kWtWl1rlwkLrMdFpQhixM36F7CVlcoWRqyumzZuDTkfc1m35b8hthJgMFOsP9/YXSt9eOWEEoH9TJwC2XwkpsQqF5HQNB26E8fHWa7ScfZjef53i90N3uRoYB0AjJytmdq7FjhmtufC/LvwyxI0eDSuV+pOevKKnVPBpr/rMHtgIfaWCnVdDGPFP3k4IZGRkZMoDS04+ICFNQy0Hc8590pnZAxvlKUMkNwz2cEahgFP3o0rNBWlhMXvvLYLjUnG2MeGTnk9XI7R0taNjnQpodRK/ZQSByhQjj86A9wqx3Gdu0Q2UmlcQM/VGbRGhwA9Pwr9TCm02kYzMS7m+Bcu4myRIJkS4zyy5Wduv/QLG1hB6Fc7NZ7CHM53qOqDS6nhv81U02iL8Pui0IpRb0gnxwLVD0e0rO0ysod37QiDp8aMYtE8MFdYnfzSC4z9Damze2pQkOPkb7HkPkKD5ZBiwGPTK1zVZvjCygJ4/iuXTf0BUEVVl6nTCwuavZlkDte5juR+r5uyDaJQKGOFZpWj2nQuaV7PB1d6MFJWW3VdDCq3dK4Fx9J9/ms+2Xyc+VU3dihZsnurF5qmtGNOyat5sgEoBjZyt2DKtFc42JjyMTmHQwjPcDkso0T5FJqYzeul5/j7xAIAp7V1ZPdET+2L82zZytmLjFC8cLIy4HZbI0MVnCY57eQWWTifxx6G7TFhxkfhUNW4u1ux6qw2tatrnux8NKlsxqkVVQMFnSUPEk1fWQfiNfLdZZDwnimzIURTxj0rOPF7M6lILgN8O3OHcg+j89cHFE944Dt1/EEKtQwPwGJerTf8+/oA0tY4mLtZ0qF0hf/svpcSkxQBgayxXjMg8j/WwYQDEbdmCpMnnRAJDs6yqrXP5tOR6hldSGOla3xFTQz0CYlK4nCFEFAeBMSmsPPOQscsu0PSbg7yx2psNFwMJT0jH1FCPbvUd+WlQI87/rzO73mrDu11r4+ZiXaarQnLLCM8qrJrgiaWxPpcDxElgSZ8oycjIyBQX0UnpLDslbE7e61Y733ZZOeFsY0rrGuKiaYt3+akaOXkvkrXnAwD4eXBjzIye95X/sEddFArY4xvKlWL87X/l0aTDrrfFsvu4p4Mqi4pKjWH4GpFlcuNf2P8/MbiZTwJjUvh46zUuB+RxQFXm1UGdhvrg1wAs1vZhUJsmJdcXcwfo/r1YPvoDipgH/DBAWGpdC4pnccYAYJFwcQmEXhGh2I/7UBIYmkHLafD2Vej7lwikT42Bo9/D7w3h4BeQGJ5zO5Ik1j38jXjc7gMhPBV1uHtZol5fqNVNZD3tebdAx9pseXBMZJn8OwUSgsDSWQhT3b5nzTnxu9+lniOVrUuuekehUDCsuQsAGy4W3HooJlnFJ9uuMWDBaXyD47Ew0ufLPvXZ/VYbmlcr24ON1e3N2DqtFXUcLYhITGfoorNcfBhT7P2QJIkjt8Pp89cpzj2IwcxQj4Wj3PmkZ73iy2J6gtqOFmya4oWTtQn+UckMXXSWh1HJ2a4bn6Jm4sqL/HHoHpIEo1pUYdOUloXyHXivW21sTA3YFV0Zf4cugJR1/CstaNJh45hnRJEOOW624aI4XrSvXYG3O9dioLsTOglmrr+c/0m5evrgNQM+9IfJR0A/Z0EtIjGNNedFtcg7XWuXq2oRyLLSsjORK0ZknseiW1f0rK3RhIWRdOJk/htqPllYKPufgLDrBe7XK3lWZ2qoT7f6ItyoKO20NFod5x9EM/u/W3Sdc5y2Px/ly503OHE3EpVWh4utCeNbVWPVBE8uf9GVv8c2Y1jzKjhalp2skMKkVU17ts9oTXV7M4LjUhm04AxHbufiokVGRkamjLPwmB/JKi2NnKyK3CP7sZ3WFu+gvHnrllIS09R8lGGhNdarKq1qZD9brl4lSwZkVIz++N8tOdOquDj5G0TdFfZWXYvx4tq1AwxYJJbPL4Qzf+armaikdMYsPc+Gi4HM/u924fWvrJAQAqf/hKSIku5J6ebiPxgkBhEm2fDAdSwutjlbaRQpTUZB9fYiC2PX21S0NOKrPg0AmHvoHnfCisBSKyEUDmcE9Xb5Ugg0JY2+IbiPFZ7wg5aKGb2qJDg9V1SQ7HlP+MJnh04rRN3Hx45u30Onz4TPvEwWCoUIQNU3FgMUvpsLp92IW7B2CKzqB2HXRH5M5y/hrUvgNpxktY6tGRM8xnpVK5x9FoCB7s7oKxVcCYzL9/dLq5NYe/4RnX47xvoLwjZroLsTh99vz+utq5fIgH1R4Ggp8juaVbUhIU3D6CXnOXyreK75NVodO64E89qfp5iw4hJhCWnUdDBnx5tt6JmRFVNSVLM3Y/NUL1wzxkKGLD773GfpRkg8veed5OidSIz0lfwyuDHfD2iEkX7hVChamxryYQ9hP/tmeB8khR7c3QcPTxdK+wUmUxTZL445uRRFVBodWzJshEd4VkGhUPBd/4bUcjAnIjGddzZeQVuQayJ9w1xXQy86JqpFmlaxzrT4L088rhiRrbRkskNpaIjVgAEAxG3cmP+GrF2gfl+xfH5hwftV4BbKKP0yBkd2XwtFXcgl5QlpapacfED7X44x7O9zLD7+gHsRSegpFbSobsv/XqvLoXfbceKDjnzVtwHtalcotB+zso5rBXP+nd4KL1c7klVaJq28xNJT/vIAloyMTLklLD6NVRk+s+91K/qZQ90bVMTSWJ/guFTO+OWzfLwU8cPeW4TEp1HF1pSPMi7mXsR73epgqK/k3IMYjt+NLKYevsJE3Mryne/5k7C5KU4aDYZu34nlg1/A1bydgCela3h9+UUeRgvbOe9HscSnqAu7l6WX9EQxKHnwc1jWA+JLRzZfqSM1FunErwD8phnCsNZ1SrhDiMHqPnPFbNqHJ+Hyaga6O9E5w1Lr/c1XC/36h/2fgCoRnJqBx+uF23ZBUeqJ48G00zBiIzg3F/75F5fAn03h32kQ+YTNokYFWyeCz0pQKKHvPGj1Zsn1v7RjW11U04Co0MurXdmTJIbBzpmwsJWYEa7UB88pMPMytH03M9dl+5VgEtM1uNqb0apGyQ/AVbAwoks9MfFyYz6qRq4ExjFgwWk+/fc6cSlZtllzhjbBwaL8TZq0MjVg9cQWdKrrQLpGxxurvTOFrqIgVaVl1dmHdPj1GG9vuMKt0ARMDfWY1KY622e0pqaDeZHtOy9UtjZh4xQv6la0IDIxnWF/n+VaUBwAW72DGLjgDIExqbjYmrB1WiuGNHMp9D4MbeZCY2crbqRX4Kx1H/HkwS8Kvxosr2jSYdPYJ0SRjbm2azx4M5zoZBUOFkZ0qitEe1NDfRaMcsfEQI9T96OYd+R+EXZeEJGQxtrH1SJdyl+1CMjh6zI5Yz1UWPUlnTyJOqQA9pMtp4v7a5shqWDX9a+sMNK2pj12ZoZEJ6s4dS+qUNoMjEnh2903aTX7CN/tEV7nViYGDGjqxF8jmuLzWVc2TvHijXY1qOlgUS4PhIWBtakhKyd4Mry5CzoJvt19k0+3Xy/8CzgZGRmZUsBfR+6h0uhoXs2G9sXgM2tsoJeZtbXpUsEtH0qS43cjWZ8RpPjLCyy0nsTJ2oRxXlUB+PG/2+WiYqbUotOJ2dY6NdTuKQKhS4JWb0HLGWJ5x3TwO5KrzdI1WqasvoRvcDx2ZoY4WZug1Ukcv/eKCGqSBDtmiGofgBg/WNEL4suPBV+hcXIOirQ47uic8bbqTrtapcQv3LY6dPpULB/4DEVSOD8MbISlsT6+wfEszk/o7Iu4d0jY1imU0Pv30ms1pVBAnR4iNHfcbnDtKMLUr66D+Z5iJnLAedgwQrwfpQEMXg7uY0q656WfVjPBvg4kR2ZVDuWF9CQ4Ohv+dBeClKSDen1g+nl47Wcwy5pZLUlSZuj6qJZVS43t9DBPMUi97XIQ6RptrrZ50jbrWlD5ss3KCRNDPRaP8WCguxNancR7m6/yTyFb/cWlqPjz8D1a/3SEL3bcICg2FVszQ97rWpszH3fis971Mc/h3LG4qWBhxIY3WtLExZq4FDUj/znPzPWXeW/zVdI1OjrUqcCuN9vQ0MmqSPavp1TwdV9RYfh2aDe0+iYQfAlu7SqS/eWKx6LI3X15FkUgy0ZraDOXpyqvajla8P2AhgD8cfgup+8Xzrjgi1h43I90jQ6Pqja0LYfVIiqtikS1qHKSK0ZkXoRR9eqYtmghQti3bM1/Q87NwclDTHTxXl6gPpXSs9aiR19PSR+3yoCYcVIQfAJimbHWh/a/HGXpKX+S0jXUdDDnx4EiL+T3YU3o41YZK1M5pC+3GOormT2wEZ/1qodCAevOBzB++YVXa6amjIxMuScgOiVzZuH73eoUm2A+NGOG2b4bYWX2uJqQpubjrcJCa3yrarRwzd0J+PQONbEw1ud2WCI7rsoz4IsM72UQeF4EUvb6tWTtZ7p9Bw0HiQHQjWMg5MpLV9fpJN7bdJXT96MxM9Rj+evNM88ZjxST3UeJc3Ye3NyRMTC8DGyqQaw/LH/txdZDryJxgUjnFwPwo2YEI71cS80gLQAtpkGlJpAWD3s/wNHSmK8yBrzmHr5XOHl+6lTY+94T+2tc8DaLGoUCqreFsdth0hGo2xuQ4NZOWNYN7h8CA1Nh09Kgfwl3toygbwi9fhPLl5ZBkHfuttNqwHsF/OUOx38EdbKoOpqwH4atAfuaz23i/SiW22GJGBsoGezuXHjvoYC0q1WBSlbGxKWoOXDj5b8Vr4ptVk4Y6Cn5dbAbk9tWB+D7vbeYXQh2pyFxqWLC6o9HmHPwLjHJKpxtTPimXwNOf9SJtzrXKrI8v8LA2tSQNZNa0NLVlqR0DTuvilnVb3euxbJxzYu8702r2DDEw5lIrNlk0E88efhr8X0tbp4VRUbkzj7rMQHRKZzMmAj9OAvoSQa6OzOsmQuSBG9vuExEQlph9fwpwhPSMvMQy2u1yGMbLX2lPpaGliXcG5nSzOOqkQKFsCsUWVUjF5eIY0U+eTV+cV9AvybiIvfAjXCS0/P2z9DqJPb6hjJwwWkGLjjDHt9QdBK0rWXPitebc2BWO4Z7VsHYQLbIyi8KhYJJbV35Z0wzTA31OH0/mjY/HWHIojN8ss2XZaf8OXUvivCENNlqS0ZGpkzyx+G7aHQSbWvZ53pgvzBoUNmSepUsUWl0ZVYc+G73TULj06hmZ8qHPXJvXWNjZsi0DjUA+HX/3VzP6pTJAwkhcPArsdz5S7Aq4YErpRL6L4RqbUW+wNohEOOf7aqSJPHN7pvsvhaKgZ6CRWM8aOxsTed6wnrh2N1INOW9gtX/JBz8Uiz3mC1EpfF7RIB13CNY3gtiH5ZoF0sNR79HoU3nrLY+Z/XcGeJR+LYmBUJPH/rNEwGVt3bCrV0MaOpEl3qOqLVS4VhqnfxNfB4snaDjJ4XS7WLF2QOGr4Xp56DxMPG3MraCMduhZpeS7l3ZonpbcBsBSLB71ssHUSUJ7h6ARW1EdWFSuBBgh6yASYegSssXbro6w360n5tTqZp4qKdUMMRD/N69zE7raja2WZumlF/brJxQKhV82qs+n/QUdqiLjz/gwy3X8vVbey88kfc2XaXdz2LCaopKS92KFswd3oRj73dgrFc1TAzLxviMuZE+K173pFfjSlSyMmbZ+Ga807V2sYnvH/aoi4WxPt/HdiHNwAai78Pl1cWy70w06bBp3NOiSI2OeWpi4yUhRrStZf/C/K+v+zWgbkULopJUzNxwuUjO8xYe80Ol0dGsqg2ta5bPaopMGy1j23Ip/MgUHhZdu6JnY4MmIoKkEyfy31D9fmBRSZxD3Pg338280sJIExdrqtqZkqrWcvBm7mYAJqVrWHbKnw6/HmX6Wh98AuIw1FMyxMOZfbPasnpiCzrUcShds8XKOF3qO7JlaiucbUxITNdw8WEs6y8E8M3um4xeep4WPxzG7esDDFp4ho+3XmPpKX9O3I0kLF4WTGRkZEov9yMS2X5ZiBLvdyteT3qFQsHQjBD2smindfROBJsuBaFQwC9D3DA1zJsNwuutquNoaURwXCprzsmz3wudvR9kZQ00n1jSvRHoG4nBT8eGkBwBawZB8vOWCQuO+bHizEMAfhvahLYZtkhNXayxNjUgLkXN5cC4Yux4MZMQAlteB0krBombTxLPWzkLccSuJsQHCHEkpnAtT8ocodfg6gYAZmtG0M/NuVQN0mZSsRG0flss73kfRVo8PwxoiJWJAdeDE1h0rACWWpF34NQfYrnnT2BkUeDulhgO9WDg3/DuLXjrMlRpUdI9Kpt0/RaMrUVg+sUl2a8TcgVW9YV1QyDylli/+2yYcQEaDHhpheGDyCT2+oYCMCbDGrM0MaSZCwoFnLofRWBMylOvxSar+GSbL/2zsc3yrF6+bbNyw5T2Nfh5cGOUCtjsHcTUNT6kqXM3ecX7UQyTVl6i6+8n2OoThEYn0dLVlhWvN+e/t9vSr4lTmazCMTbQY/5Id8583IlOdR2Ldd8VLIx4t2ttkjBlrqa/ePLYbFAlF08HkqNhw0i4+1+GKLI+z6KIWqtj0xOh6y/C2ECP+aPcMTPU49yDGOYevlegrj9LWHwa6y5kVIt0LZ/VIgDRaUIYkW20ZHJCaWiI1UARwh5bkBB2PQPwnCyWz87PdxZS2ft1KEQUCgX9mgif9ZzstILjUvlh7y28fjjMN7tvEhiTio2pATM71eTUxx35ZYgbdSvK5WJFRf3Klhx5rwN7Zrbhj2FNmNGxBt3qO1Ld3gylAhLSNHg/imXDxUC+3X2Tscsu0HL2YRp/dYABC07z0ZZrLDn5gON3IwmJS5UFExkZmRJnzsG76CToVt8RNxfrYt9//yZOGOopuR6cwI2Q+GLff36JT8my0JrQunq+PLhNDPV4p0ttAOYduUdCWtm0EyuV3NwJt3eLwNy+f4rQ49KCsRWM2gJWVURmxrqhT13gb7gQwC/77wDwZZ/69M2wzwJhwdohIwPo8K2I4u13caFRiZmZyZFCQOr9x9MDlJaVhThiXxsSgoQ4El2IORVljUNfAhK7dV5ck2qUykHaTNp/JEStpDA4+AUOlsaZHvJ/HrnHrdB8WGpJEux+NyNHqEeGHVU5wMIRzORBnXxjXgG6fCWWj3wHCaFZr8UFwrYp8Hd78D8BeoYiB+rtK+A1XQjYLyBdo+Wvw/foOfckaq2EexXrIstYKAgutqa0qSmyAx5PPNHqJNadD6Djb8dYfyFA2GY1ffVss3LD0GYuLB7TDCN9JYduhTN26QXiU7M/R5MkiSO3wxm66CyDFp7l0K1wFAro3sCRf6e3YsMbXnSo41AuBqFL6j2MaVmVOo4WLEntSIxhxqzscwuKfsf3D8FCL3GfKYp0ynMzR25HEJmYjr25IV3qvVxYqlHBnB8GNgJg3tH7nLhbeJlyC4/dR6XR4VnNllY1yu/vixy8LpMXbIYIO63kEydRBxfAwcLjdXGcCLsGAWfz1UTpSpoqAfo3qcyfh+9x8l4UUUnp2Js/fUJ2JTCOpaf82esbijYjpLVGBTMmtnFloLuTbJVVjBjqK2lQ2YoGlZ8+CU5Ta/GPSuZueCL3I5K4F57E3YhEHkWnkJiu4XJAHJcD4p7axtxIn5oO5tRyMKdno4rFPgNDRkbm1eZ6cDx7fcNQKOC9Yq4WeYyNmSFd6zuyxzeUzZeCaNC39A0wZMc3u28SnpCOq71ZgSptBns488/JB/hFJrP4uB8fdK9biL18RUmNE9UiAK1ngWODkuxN9lhWgtFbRY5AsDdsfh2Gr+PgnWj+968vADM61uD11tWf27RTPUe2XwnhyO1wPu5ZDj8vBz6FoAtgZAVDV4FhNpYTFhWFOLKyD0TeFpkj43eDfa3i729J4ncE/I6gVejzk3poqR2kzcTAGPr8CSteE8HWjYbQr0kb9vqGcuBmOO9vvsr2Ga0xyMsA7dUN8OgU6JtAz59fOMtfkiS8H8Wy40oIwXGpWBrrY2ligFXGzdLYIPOxpYl+5vPmRvrlYkDzlcR9HFxZC0EXYf8n0GcunPodzi4QIakAjYZAp8/BJmdB8dS9KD7fcR3/KCFkt6phx8+DS2+WzbDmLpy8F8XmS0F0rOvA1ztvcDVITECpW9GCb/o1lCtEXkLX+o6smuDJpFWXuPAwhmGLz7JqgicOlsJmTK3VsetqCIuPP+BOuAh6NtBTMLCpM2+0d6VGBfOS7H65Ql9Pydf9GjD873N8lTyIPw3mwam54DGhaARkdSoc+grOLxKP7evAoH+gklu+mlufUaUx2MMFQ/2cf9/6NXHivH8M684HMGvjFfbObEtFq4LZ24XGp7L+ghBJZ3WtVa5/1x5njMgVIzK5wbBaNUxbtiTl3Dlit2zB4e2389eQqS24DRd5ZecWQNVWeW7ilRdGXCuY09jZimtB8ey5Fsq4VtXQ6iQO3gxjyUl/Lj2KzVy3dU07JrVxpX3tCrJVVinC2ECPepWEX/6TpGuEYHIvPIl7EUncC0/kXkQSD6OSSUrXcCUwjiuBcWz2DuL3YW4MaFp6wvtkZGTKN78dELPS+7pVpk7FkrMeGdrchT2+oWy/Eswnr9XFSL90i/2Hb4Wz1eexhVbjAvlE6+sp+bBHXaas9mbpKX/GelXD0fLV8/YuVA5/LWak29WEdh+UdG9eTIXaMGKjsHK5t5+IDdN489YAdBIMbeb8QsGtfa0K6CkV3A1PIjAm5YVe1WWSa5vgwt9ieeBisKvx4nXNHWDcbljVDyJuCHFk3C5wKIdiUXbodHDwCwC2KLsTKDnybmmuFnlMtdZiVp33ctg1E8W0M3w3oCEXHsZwIySBBUf9eLtLLgWulBghpAF0+CjbwW1hFxnC9ivBBMWm5rm7SgVZgonxE0KKif5TzzerZiNX7Zc2lEro/Tssbi88v/2OQFpGZWrVNtDtW3Byz7GZ8IQ0vs3IfAJh7fNZr3r0datcqgcXu9Z3xMbUgLCENAYuOAOAhZE+73StzVivqnKFSC5o4WrHxje8GLf8ArfDEhm86CyLx3hw7kE0S076ExwnjilmhnqMalmVCa2rF3gAWyZ7Wrra0cetMruutmSWyX+4qvzg5K8ig6wwCb0G2yaLSRcAnm9A12/AwCRfzQXHpXI8o+pjeDah6y/ii971uRIQx83QBN5a78P6yS0L9J1dcNQPlVaHZ3VbvIoxT7IkkK20ZPKKzbChpJw7R/yWrVSYMQOFfj4lihbThDBye4/IvbOplqfNX3lhBIQyfC0onq0+QUiSxLLTDwnI8AQ10FPQ182JiW2qU7+yfNJdljDS16NuRcvnLpZUGh0Po4VgcuBmGDuuhPDB5mvYmhnRPsMmQ0ZGRqao8H4Uw9E7kegpFZl2TiVFm5r2VLIyJjQ+jYM3w+nduHLOG5UQ8SlqPtkmZvRPbuuKR9WCz7bsVt8R9yrW+ATE8cehe8zOKKGXyQePzsKlZWK5z1wxQ700U6UFDF6OtHEUDvc2MR0NvvWm88OARi8ccLMyNaBZVRvO+8dw5HYE41pVK94+FxVh12HnTLHc7gOo0zPnbcwrCDFkVT8I94WVvWHsTnCsX7R9zQ5Jgjt74eEpaDqm6PvguxnCfFHrm/NjUh/szAx5rVGlot1nYdH1axFiG/MAjv+EQ5ev+LpvA97ecIW/jtyjS32H5yqzs+XQV5ASDRXqgdebmU9HJKSx86oQQ64HZ9lzmRnq0aNhJZpVsyEpTUN8qpqENDXxqeKWkPp4WUNCqhqVVodOgrgUNXEpL7c61FMqWDTag6715ervUkXFRtByGpydJ0QR+9rQ5WtxfMlB1NBodaw6+4g5B++SlK5BqYCxXtV4t1ttLI1LYY7PMxjp6zHQ3Zmlp/wBYZv18Wt1X8lg9YJQv7IlW6e2Ysyy8zyKTqHn3JOZr9mbG/J66+qMblG1dGY7lTP+91pdDt8K54uUoawxnA0X/oEWU/I8+JgtOh2c/QsOfyusGc0coP8CqNW1QM1uvBiIJIkKs2r2ZrnezthAjwWj3On91ykuPozl1wN3810lHBKXysaLolrknS7lN1vkMY+ttOxMZGFEJndYdO6Mnq0tmshIko4dw6JLl/w15FBX2O35HRHHp+7f52lzWRgB+rhV4vs9N7kWFM+1jDJXa1MDRreoylivqpllmzLlA0N9JbUdLajtaEHPhhUB2HElhGlrvFk/uWWJeP3LyMi8GkiSlJlhMMTDOU8n6vkiORpu7QAU4DH+ucEIPaWCwR7O/HXkPpsuBZVqYeTrXTeISEzHtYIZ73YtHEFJoVDwyWv1GLLoLJsuBTKxTXVqOsgWDHlGkw67MgbWm46Bam1Ktj+5JMixA6uVk/lEu5i39behqtMGfb3mL92mcz0HzvvHcLi8CCOpcbBpDGhSxQVFh09yv62ZHYzbCav7Q+jVLHGkYsOi6u3zBPvAgc/g0Wnx+NxCERrf8ZPCGbB5FnUaHPkWgC2mQ4lNsmR6c5dSX22XibEV9PpNBNqe/hMaDKCvW2P2+oay/0Y472++xo4ZrV9uORJwXthxAfSeQ5JGwf4rQWy/Eszp+1FkOA+jr1TQvnYF+jd1oks9xzxV+KWptU+IJU+IKClqEh4LK6lq7kcmcTkgjhnrfFjxenNa1bAvwB9HptDp+D+RM2XrCk1Gg17OQw8+AbF89u91bmbk3jRxsea7/g1Lt1VdNszqUgsLY31a1bCXbbMKQBU7UzZP9WL8sovcDE2giq0pb7RzZbCHs2xpXoxUsjLhrU61+GmflvOKxrTQXYMj3wubq4IQHwT/ToWHGaJXnV4in86sYMdyjVbH5oyMn+EvCV1/EdXszfh5cGOmr/Vh0XE/PKvb5Mt6fcGx+6i0Olq62uJVjrNFHvPYSsvWWD7myeQOhaEh1gMHEL1kKbEbN+VfGAFoOV0IIz6roMPHeeuHVAZTqBMSErCysiI+Ph5Ly8Kp4piy+hL7b4Tjam/GhDbVGeTuXCCLDpmyg0qjY8KKi5y6H4WtmSFbp7WielEPVsrIyLySnLoXxeil5zHUU3L0gw44WeevPPylpCeJ2dO+m8XJgU4jnh+9FWo+f7LxKDqZ9r8cQ6GA0x91onJR9KmAHLgRxhurvVEqYMu0VrhXsSnU9ietvMShW+H0aFCRRWM8CrXtV4Kjs+H4j2KW35sXwKRw/z9FQUyyisGLzvAgMplvrXYyJn0DKJQwbA3U7fXC7e5HJNFlznEM9ZRc/qIrZkZleI6RTicGyO/+JwLppxwXPr15JTUWVg+AkMvifz92R779wHNNXCAc/gZ8N4nH+sbg3DxrcEVpIMTgdh+IMO3C4vSfcPBzNGYVaRD9I2qFISc/6lQ0x/KiZNM4uLld/J8mHSEyRUu3348Tm6Lm7c61eOdF4rNWLeyRIm4QUn0wsw3f5ODNMNLUusxV3KtYM6CpE70aV8bWzLBI34ZGq2P6Wh8O3AzHzFCPtZNb0kSe4FQmiU1W8fP+25le/FYmBnzUoy7Dm7vIFtYypKm13AhJwM3ZSrYiKyHSNVp6/HES0+jr7DHKsFKcciL/v/e+W2DPu6KizMAUevwI7mNzrCjLDYdvhTNx5SVsTA0497/O+Z688OWO66w8+whrUwP2zGybp9/64LhUOvxyFLVWYuMbLWlRzm20AAbuHMi92Hss7rKYVk55z3mQeTVRPXqEX/ceoFBQ4+BBDJ2d8teQTgfzPSH6HvT8mYR6I3KtG8i/KhnMGdqEPTPbcOjd9oxuWVUWRV4hDPWVLBrjQUMnS2KSVYxddp6IxLSS7paMjEw5Q5IkfsnIFhnZokrhDqRpVHBnH2yZCL/WEh699w4IUcTYWqxzZV22m1a1M6Olqy2SBFu9gwqvT4VEbLKK//17HYA32tUodFEE4MMedVAqYN+NMHwCYnPeQCaLiNtw8jex3POnMiGKJKdreH3FRR5EJuNkbULXaX+Ii3FJB1smiBnxL6BGBTOq2Jqi0uo4dT+q+DpdFJyaI0QRPSMYujJ/ogiI//mY7eDUTIgkK/sKkaQoSEuAQ1/DvGZZokjjYfCWtwiBn3wEXDsIO46L/8CfTYSAkhpX8H2nxAhfdWCX3QTSMaRzPceyJ4qACEs3thaVPufmU8HCiG/6iUqf+Ufvcz04/rlNJEkiaN8ciLhBLBb0utWFXVdDSFPrcLUXlXzHP+jAtumtGeNVrchFERBZUX+OaEqrGnYkq7SMX36BuxlhzDJlA51OYtOlQDrPOZ4pigz2cObIe+0Z2aKKLIrIAMLeyKOqjSyKlCBG+np82ac+N6Tq7NRmDHof+jrvDaXFw9bJsHWiWHbygKmnwGNcoYgiQOaxZJC7c4EqOv/Xqx6Nna2IS1Hz1jof1FpdzhtlMP/ofdRaiVY17F4JUQQgJjUjfF220pLJA4ZVq2LWygskifDZs8l37YZSCS2niuVzC4VQkttN87fH8oeZkT4NKlvJJ1+vKOZG+iwf70lVO1MCY1IZv+wiiWkv9zSWkZGRyQuHbkVwNTAOEwM9ZnSsWfAGdTp4eBp2zYLfasP6YXB9C6hThG1F+4/hzUti9jbArd0vHBwclhFKuMk7EJ2udBWSfrXrBlFJ6dRyMGdWboOBH5MalxX4+hJqO1ow2MMZgB/33s7/Cdmrhk4Hu94Wg9C1e0CDASXdoxxRa3VMW+vD1cA4bEwNWDnBk4rWJtDrd/EeNGniuxR5N9vtFQoFneo6AHDkVkRxdr1wuX8Yjnwnlnv9mqsg5JdiYg1j/gWXFpAWByv7QZB3QXuZhVYDF5fCX+5C0NGkQdXWMPkoDPwbrMT3FycPccwbu1Msq1OEcDfXDU79DqqU/Pfh1BxIi0dboR5fPmoMwNiyELqeHRaOWf7LR3+AaD96N65Ez4YV0egk3t98FZVGXFD6RyXz+8G7DPt5E7YXhAj6vXokeub2vN66GjvfbM3h99ozs3MtqtoVf8W1sYEef49thpuLNXEpakYvOU9AdAH+zzLFxq3QBIYuPsuHW64Rk6yijqMFm6Z48esQN+zMjUq6ezIyMs/QoY4DXes78otmCBr0we8wPDiW+wYenoaFrcXEBoUS2n8EE/aDXY1C62NYfBpHbocD+bPRehIjfT3mj3THwlgfn4A4ft53O1fbBcWmZFp5zSrhPMniQqvTEpsuJpfJVloyecXh/fdRGBiQdPgwsavX5L8htxHCNjbWXxyfcoksjMjIZFDBwohVEzyxNzfkZmgCU1Z7k67RlnS3ZGRkygE6ncRvGdUi41tXo4JFPi/4JQlCr8GBz+GPhrDiNfBeLmZpmzsKb83JR+EtH+Gxb19LlLg71AdtOtzYlm2zPRpUwsJIn8CYVM75R+f3bRY6+66HseNKCHpKBb8Occubn3TUPTGIOr9FrsSRWV1qY6Sv5MLDGI7eKcMD3sWJ93IIPAeG5vDar4U206+o0OkkPtxyjRN3IzEx0GPZ+OZZmTJ6+jB4WVbVw5qBkBCabTud62UII3ciSp2QmCviAmDrJEASlTLuYwunXWNLYdlXxQvS40X2SODFgrUpSXD3ACxqLSw3kiPBtgYMXwfj97xY0HFtD5MOw7C1UKGuEGsOfQV/NhUCizaPk1/iAuD8YgCOVXmThHRRJdG6LGdaNBkF1dsLkWnX2yiAb/s3xNbMkNthiby13od+80/T8ddjzD18j8lJizFVpHPf1I0+Y9/n3Ced+bJPAxo7W5d4oKy5kT4rX29OHUcLIhLTGb30PBEJcvV3aSUpXcN3u2/S+69TXHoUi6mhHp++Vo/dM9vIeRwyMqWcL3rXJ1yvEqs1ncUTB7/MeWa2RiV+g1f0gvhAkQE2Yb/IIdIzKNT+bb4UiE4Cz2q2hZIb6GJryq9DhF3YPyf9OXAjLMdt5h/1Q62VaF3T7pU5psWlx6GTdChQYGNc+qvHZUoXxvXr4/DRRwCE//ILqb7X89eQoZmw0gVROZ5LZGFERuYJqtqZseJ1T8wM9TjjF827m66WzUEPGRmZUsVu31BuhyViYaTPlHaueW8g5gEc/0UM8i9uC2f+hIRgMLKCpqPFDOl3b0GP2WKg8MlBKoUCmowUyy+w0zIx1KNPExG8vvlS6bDTiklW8dl2XwCmtHPFLS++8clRsHYwpERDYiicnZ/jJpWtTRjfuhoAP/13B6187H85CSHiIheg0+dg7VKi3ckJSZL4Ye8t/r0cjL5SwcLR7jR91pbN0AxGbgK7muLCfe3gbEU1z+q2mBnqEZmYzvWQnEW3UoU6DTaNhdQYqNQEev5SuO0bWcCoLVC1DaQniOyRgHP5ayvMV4gr64ZA5G0wsRUWUDPOixyYnAbjFQqo1xumnYH+C0WOSlKYEFjmNYdrm3NfZn/ke9CqkKq15ad7ojpldMuqZbvSXKGAPn+AvonIZrm8GntzI77NsNTafyOcq4Fx6CkVvONyj6563khKfWqO/5v2dRxKnaWNtakhqyd6UsXWlICYFMYsvUBciqqkuyXzBJIksdc3lC6/HWfJKX+0OonXGlXk8HvtmdzOFYNS9pmSkZF5HhdbU6a1r8E8TX+SMYbQK3Dz3xdvEHkXlnYRVZtI4rpl6ilw8Sz0vul0EhsuikqNES0K77y0e4OKTGxTHYD3N18lMObFVYmBMVnVIu+8ItUikBW8bm1kjb6yDOfvyZQYNqNGYtG1K6jVBL/7LtrEfFqjNp8MCj14dCbXm8hnHzIyz9DQyYrFY5phoKdgz7VQvtl9U7ZVkZGRyTcarY4/DgpbnsntXLE2zaXvemI4nFsE/3QWs5yPfgdRd0QeQP1+IiT6/bvQb77w1Fe+pJqi0VBxghB0UVRSZMPQZuICYq9vKAmlwErwix3XiUpSUdvRnLfzYqGlThOB0rEPhXAEQhhJzjkPYnr7mlga63MnPJFtPqVDICq17P1ADHw7NQPPySXdmxz5+8QDlpzyB+DnwY3pUMch+xXN7ETVg7kjhF+HDaNAk/7UKkb6erStVQGAw2XNTuu/D7NC0oetBgPjwt+HkTmM2gTV2oIqEVYPFPYZuSUhFHbMgEVthUWHniG0egtmXoYWU/I+u1SpJ8Thty4JYcXUXpTYb5sEi9vB3f2iMuVFhF6FaxsBuFH/Pe5GJGNioMegDPu9Mo2tq5ixC3DgM0gMo1fjSkxtX4OWrrZ81ac+599vwdvpYtadotVMcKhbgh1+OQ6Wxqyd1AIHCyPuhCcybvlFktI1Jd0tGeBhVDLjll9k+lofwhLSqGJryvLXm7NglAeVrMpgTo+MzCvMtA41MLauyGJ1b/HE4W9FVciTSBJc+Ef8zoZeFecdQ1eL6xYjiyLp18n7UQTHpWJprE/PhpUKte2PetSliYs1CWka3lznk2k3+Szzj95Ho5NoW8ueZtVejWoRgOg04Tgg22jJ5BeFQkGl77/DwMkJdWAgoZ9/kb9xWGsXqN83T5vIwoiMTDa0qWXPb0ObALDizEMWHvcr2Q7JyLxKqFLA72jerU5KKdt8gnkQlYytmSETMmYbvZD0JLi8Flb1hzl1Yd9HEHxJ+PDW6CRmPX9wD4augnp9cj+oaeEItbqK5RdUjbg5W1Hb0Zx0jY5dV0Ny/waLgL2+oey+FoqeUsFvQ5rkPjhRp4Pt0yDwvPAXnXRQWImpkjJmqr0cK1ODzPyXOQfvkqaW7RSz5dYuuL0blPrQ98+Xi3KlgC3eQcz+T/hCf/paPQa65zCgbVMNRm0GQwsxk/7fqc9VFnR6bKd1uwwJIz6rwGcloIBBS8G6YN7bL+Vx9Y1rB1Ani+ob/5Mv30aVDMd+FBZ4l9cAksitmXEBun0nckwKgr6REFbevgodPwMjSwj3hXVDYVmPF88sO/il6EvDwSy8L8TW/k2dsDIpXPuPEqPldFE9lBYvBE/g45512fCGF+NbV8f+0u+QECQ+L+0+KNm+5gIXW1PWTGqBtakBVwPjeGPVJflYXoKkqbX8cegu3f44wYm7kRjqKZnZuRYH3mlHxxcJ1DIyMqUaYwM9Pu9dnyXa14iUMvz8fVZmrZAUIX5b974PmlRw7QjTzuZ5sDKvrD8fAMBAd+e82e/mAkN9JfNGNsXKxICrQfH8sPfWc+sExqSwxVtMrMpzLmIZRw5elykM9CwtcZrzG+jrk7hvH3EbN+avoZbT87R6kQgjiYmJzJo1i6pVq2JiYkKrVq24eDHLY1iSJL766isqV66MiYkJHTp04MaNG0XRFRmZfNPXrTKf964PwM/77mSWRMrIyBQxWycK+5Q1A4XXfxkmXaNl7mFRoTGtfQ3MjV5QWvw4WPjPJrBjOjw4CpJOzMbv8RO8e1sEGzcZKQb884PbCHF/dQPonh8kUigUmVUjmy6W3PEuKimdz7YLX9HpHWrQyDkP7/fodyJHRWkgKmoq1BE2TwAXlwj7pxwY16oalayMCY1PY9XZh/l4B+WcJwZPaf02ODYo2f7kwJHb4Xy09RogLNkm59bKrpKbqKhQGojP1IHPnnr58YCeb3A84WUhyyDkMux5Xyx3+hRqdi76fRqawogNUKOzCEFfOyT7kFadVgghf3nAsdliXefmMPEgDFkBtjkIynnFyBzafyAEklYzQd9YZOUs7yn6GHota937h8XxWGlAVIsP2X9deIuX2dD17NDTh75/iarCWzuF8PmYsOtwdoFYfu038T8tA9R2tGDlE9a4M9dfRqPNpW2aTKHhF5lEz7kn+ePQPVQaHW1r2bP/nXa827V2oQ9aysjIFC/dGzjiUcuZuZqB4oljP0J6Itz5DxZ4wb0Dosq9x08wehtYFm4Fx7NEJKZx6JYIXR9RwND1F+FsY8qcoSJvZMWZh/zn+3QW3bwjWdUiHlVfrcqJxxUjdsayMCJTMEzc3HB47z0Awn+YTdrt23lvxLm5mPSTS4pEGJk0aRIHDx5k9erV+Pr60q1bN7p06UJwcDAAP//8M3PmzGHevHlcvHiRihUr0rVrVxLz6yEmI1NETGxTPTMP4ONtvhy5HV7CPZKRKeeEXYc7e8Wy/wlY0gWiy27F1oYLgQTHpeJoacSY7AbSJAnuHXw6WNimmpjNPPMyTD4MLaeKio+CUqcnGFtDYgj4H892lQFNndBXKrgaFM/tsISC7zMffLHjOjHJKupWtOCtTnmYbeWzGk7+Jpb7/gnV24nlml1EGLQmDU7knKdgbKDHO12FJ/D8o37Ep5SPyqVC49DXIrfF1rXUzx73fhTL9LU+aHUSA92d+KhHHi2AanQUVVoA5+YLW63be0CjooKFUWbuzdHSXjWSEgMbx4I2HWr3hDbvFd++DUxEUHqtbmLW6LphQmx4jN9RWNxeWGclhoJ1VRi8XIgiReA//hSmttDtW3Gs9RgvhIF7B0SO05YJwnbw4JdiXc/JrLmjQKOTaF7NhnqVLIu2b8VNpcZC6AQhoKXGiSqp3e+ApIV6faF2txLtYl5xc7Hmn3HNMNRXcuBmOB9uvSbnBhYj9yMSGf73OfyjknG0NGL+SHdWTfCkur1ZSXdNRkamEFAoFHzVtwFb6YS/zhFSomBpd1g/XCw7NoQ3jonrGGXRG9Vs8Q5Co5Nwr2JNnYpFY9UF0LmeY+b40IdbrvEoOhmAgOgUtmTY8D6+jniViE7NsNIyebUEIZmiwXb8OMw7dEBSqQie9Q7apOS8NaBQgNeMXK9e6Eeo1NRUtm7dys8//0y7du2oWbMmX331FdWrV2fhwoVIksQff/zBp59+ysCBA2nYsCErV64kJSWFdeuyt/eQkSkSUuOEH+a5hS9d7aMedRnY1AmtTmL6Wh98Asr2DHYZmVLN6T/EfdU2YOkM0fdhSee8+dOXElJVWuYdvQ/Am51qPT87MvyGCCZeOzgjWNhG+N+/eUnMZrbNR0j7y9A3gkZDxPIL7LTszI3oUk+IMCURwr77Wgh7fcPQVyr4dYgbhvq5PE3xOwq7Z4nldh9mhc2DODF6XDXiswpi/HNsbpC7M7UdzYlPVctWik8ScA4uLRXLfeaKQe9Syr3wRCasuEiaWkfHOhX4aVDj/AVlNx4C3b4Xy7d3i/yaX2vBrrcZWzEQBToOl2ZhRKeFrZMgPgBsqsOARXkaoLgTlsgn267x6/47bLwYwBm/KAJjUvI2+97AWFRw1e4pBMr1I+DSclg7VFQHhvuKPKCu38KbF6HhwJyD1QsTy8ri8/zmRWg4SDx3fSvMa5bZN3Xr91iXYdExxqta8fWtOGn/EdjVFAH1B78QtihBF8DQHHr8WNK9yxetatgzf6Q7ekoF23yC5dzAYuJOmBBFIhPTqVvRgr0z29KrcSUUxfm9lpGRKXJqVDBnbJta/KIZJp6IyHCBafUWTD4CjvWLpR86ncSGC6LafXgRVYs8yfvd69Csqg2J6Rqmr/UhTa1l3tF7aHUS7WtXwL2KTZH3obTxOHxdrhiRKQwUCgWVZv+AfsWKqB4+JOzrr/N+/lanZ65XLXRhRKPRoNVqMTZ+2vfcxMSEU6dO4e/vT1hYGN26Zc06MjIyon379pw5k/vUeBmZfCNJcONfmO8JJ3+FfR8/PXvxGZRKBT8Nbkz72hVIU+uYsOIi9yOSirHDMjKvCDH+YjAKoMcP4oTayUPYaa3qJ7I3yhArzz4kMjEdZxsThmVYVAEiVH3nW7CojbBo0TMErzfzHyycF5pk2Gnd2iUskbJhaHORv/Dv5eAXBgsWBZGJ6XyeYaE1o2NNGjrl0kIr4hZsGgs6jRB+HgcJP0m11iKjRacRpf45oKdU8GF3UV2w/LQ/ofGpuX4f5RZNOuycKZabjs6qyCmFhMSlMnbZBeJT1TStYs38Ue4Y6BXglLfVmzDlpPiemleEtDjwXsEg3ymcMnqbFvfnkh50LcdmSoRjP4LfYdA3EeJEHnI6AmNSGLXkPOsvBDLv6H0+2urLyH/O0/bno9T9fB/tfj7KqCXn+GTbNeYfvc+uqyFcCYwjJln1/MWLvpHIRqrbW1Su7J4F9/aLnJoWU8Xxr/VMsV5JYVcDBi+DKSegZtes59vM4oC/mojEdOzNjejRoGLJ9bEoMTCGPn+KZZ+VsP9TsdzpM7ByKrl+FZCu9R35dUhjQFif/H7oXgn3qHxzKzSBEf+cIypJRf1Klqyf3BI78xL8XsvIyBQpb3WqxSXTduzVehJt6gpjd4pcsGL8PT/7IJqAmBQsjPTp3bhoLbsADPSU/DWyKbZmhtwISWDWhits9RHuOK9atshj5PB1mcJG38YGp99+BT09EnbtIn7btqLbV2E3aGFhgZeXF99++y316tXD0dGR9evXc/78eWrVqkVYmPDmdXR82hbE0dGRR48eZdtmeno66enpmY8TEkrG3kOmHBAXKELA7u4Tjw1MhZf1vo9h6mnQN8x2MwM9JQtGuTPyn3NcDYpn3LILbJ3WiopWuQw+Lm0kR0PETXHCYl0VzB2Kd3amjEx2nJ0ncjVqdBb+/gDj94jg45vbRfZG9D3o9EWxlGQXhIQ0NYsyKg1mdaktKh9UKeI9nvpDhBED1O8PXb4qfA/9F1HZHSrUFRUqN7aDx7jnVmlXqwIOFkZEJKZz5HY4PRoW/QWGRqvjk23XiE1RU7+SZWYAeo4khotZ5+kJwi6r3/wXH8s6fQ5+R+DaRmjzDji83Fapcz0HPKvZcuFhDH8cvMdPgxvn8V2VM87Og6g7YFZBzOwvpVwJjOP9zVcJjU+jRgUzlo1rjqlhIZzuVmosbl2/EYHs1zYj3dqJU3o0kxQ7YclOcKgvxLlGg4s22Dy33NkHJ34Wy33mQsWGud40JlnF2GUXiEpKp7ajOZ7VbQmMSSUwJoWg2FRUWh0BMSkExKRwmujntjcz1MPF1hQXW1Oq2JriYmNCFTtTXNr9RXWFAfq3/hUiSZevwT6X3/fiopIbjN4iKqQi70CTUaxaIrISR3q65L6SrSxSrTV4vA7ey8XvVMXG0HxySfeqwAxo6kximoYvdtzgz8P3sDTWZ1LbQq7KlOF6cDyjl54nLkVNIycrVk/0xNo0+2srGRmZ8oG5kT6f9q7P9A2zME5UstPMneI2klp3QVR09mtauXDO+XJBJSsT5gx1Y/zyi+y7IcY4O9SpQNNXsFoE5PB1maLB1MODCjNnEvn774R9+x0mjRtjVKvwxcciOWqsXr2aCRMm4OTkhJ6eHu7u7owcORIfH5/MdZ4tpZUk6YXltbNnz+brr78uiq7KvCrotHB+MRz5TlzoKQ2g7XvQfKIIB4u6Cxf+FrNCX4CZkT7Lxjdn8KKz+EclM27ZBTZN9cLKpAhndxcUnVbkM4T7QpivyG8Ivy58vJ/EwFQM4thUE0KJTTWwqZr12Mi8BDov80qRFCHCd0EMWj/GwET4zR+rJfIhTv0uPtMDFpfqENilJ/2JS1FTo4IZA5pUgivr4fA3It8DRKh69++hSsvi7ZhCIWymDn4h7LSyEUb09ZQM8nBm4TE/Nl4MLHJhRKXRMWvjZQ7disBALw8WWqoU4WMcHwC2NUSOwctmpzm5i4HY27vh6PciWPslKBQKPupZl0ELz7DZO5BJbatTy7HoPItLNXGBcOJXsdztO5HNUIpQa3X8dz2M5af9uRwQB0BFS2NWTWyBjVkhD8op9cC1A7h2QNHrN9as+Qf7Bzvoon8F/YibcPhrcaviJUSSBgNK5u8V7Qfb3hDLnm+A27Bcb5qi0jBhxUX8o5JxsjZh9cQWOFpmTQTR6STCE9MIjEklICaFwMe3WCGUhCekk6zScjsskdth2eUHDqa6aV/S/a0wWB6IgV4wBnpKDPQUT90b6inRf2LZQE+Jgb4CfaUSQ/0n1xfL5kYGuFe1praDRf5s056lSkuo0pI7YYmc949BT6lgZItyFLr+Irp+LbKvksKg9x8inL0cMNarGgmpan49cJfv9tzC0tiAoc1dct5QJldcC4pj9JLzJKRpcHOxZtUEz9J9jSQjI1No9HWrzOZLQZy6H8XkVZfYMaN1sYmi0UnpHMgQJooqdP1FdKjjwIyONZh/NGsy3KuKHL4uU1TYTZ5EyoULJJ8+TdA771B982aUJoVr56yQitBoNTk5mYSEBCpVqsSwYcNISkrir7/+okaNGvj4+NC0adPMdfv164e1tTUrV658rp3sKkZcXFyIj4/H0rKchR+WBJIkZmkr9XJetywSehV2vQ0hl8XjKl5i5mSFOuKxz2rY+SYYWsBb3jmGHAfGpDBw4RkiE9PxrG7Lqgmez2cHlARpCSKzIPw6hF0TIkjELRF2mh021UCrgYRgIIfDgKn900LJk8KJpXPuL5olSfiLpyeJGd7piaBKEvfP3h4/r0oW/6sanYStUlHaDMmUHIe/EcHZTs1g0qHsZ/1f3SAsqLQqqNwURmwAi9JnaRKbrKLtz0dJStewvqsar/tzxHEIwKoKdPlS+NiXVJVWYhjMqSeO+2/5CPuYZ/CPSqbjr8dQKuDMx52LrDouVaVl6hpvjt+NxDCjLL17bmxqdFphn3V7N5jYis9MNu/jOSJuCTEcSQRCVm6a0xZMWX2J/TfC6VrfkX/GNst5H+WRTWPh5g7x+/n6f6WmwjAmWcX6CwGsOvuQ8ARxnmigp6BP48rM6lKbKnZFL54euhnOpFWXqGul5b9usSh8N8PDU2T+rir1hS1To8FQ57XiEXRVKbC0qzgfcPYUlXcvqIh9Fo1Wx5TV3hy+HYG1qQFbpraipkPeJkekqbUExaYSGJslmggBRVScJKZr8vOuco2tmSEtqtviVcMOL1c7ajqYFyjb4LPtvqw5F0DPhhVZONqjEHtaikmKFHaLpa2ap4BIksQPe2/xz0l/lAqYP9Kdno2KviqyvHM5IJaxyy6QmKbBvYo1KyZ4Ymksn6/LyLxKxCSr6PPXKYLjUmlby57l45ujXxAb01zy9wk/fth7m8bOVux8s02R7+9ZNFodP+27jZ25EVPb5+JapBwiSRLN1jRDpVOxb9A+nMzLrv2mTOlEEx3Ng/790UZGYTVoIJW//z7HbRISErCyssqVblCkwshjYmNjqV69Oj///DOTJ0+mcuXKvPPOO3z44YcAqFQqHBwc+Omnn5gyZUqO7eXlDb7SSJIYfE4Me+IWmv29Nl2EKxpbgZGluDe2fMlj6+dfNzApNYMlgBhQP/YjnJ0PklYEe3b7BpqOfdqGR6cT4c4hPtBkFPRfkGPTN0MSGLb4LInpGno0qMj8USLYsViQJIh7lFX9EZZRDRKXvRUdBqbC3qNiQ6jYCBwbiSA0o4yZz5p0iA+C2IfiFvcoYznjPi3u5f1R6AnvaZtqoupEoXxC4HhC9FBl3OsKMCBiaCF87Wt0FEKJrWvp+szJ5I+0BPi9IaTHw7C1UK/3i9d9dAY2jILUGLB0EuJIpdJlcTR77y0OnDzND+ab8VKfE08aWULbd6HFNOHjXtKsGQz3D0Lb96Hz59muMnTRWS48jOGD7nVyb22VBxLT1ExccYkLD2MwMdDj77EetK1VIXcb7/9UWDvpGQov46peud/xtjeEnVbNLjB6a46r349Iotvvx9FJsGWqF82qla5qiSLH76gIyFboieyFPNgxFRW3QhNYcfoh268Ek56Rg2NvbsioFlUZ1bIKDhbF9x1LVWlp8s0B0jU69s9qR52KFhAfLPKSfDeJ3+fHGJqLqqXGQ6B6h6KZiS9J8O8U8Rk3qyD+Z5aVc7mpxMdbfdl4KRAjfSXrJrfAo2rhft4lSSI+VU1ofBpqrQ61VodKI6HW6tDospazbtJTyyqNWO/x8uPXNFpRxeLzKI5UtfapfdqbG9LC1Y6WrkIoqVHBLNdCSWKampY/HCZZpWXdpBa0qmlfqH8PmeLnyc+5gZ6CpeOa0652Ln97ZJ7D+1EM45ZdJCldQ/NqNix/3RNzo/JRZSQjI5M3boYkMGjhGVLVWia3rc6nvYo2fF2SJDr/dpwHUcnMHtio2CtGZARJqiS81otrsQujLmCiX7iz+WVkAJLPnSdgwgTQ6aj8809Y9e370vVLXBjZv38/kiRRp04d7t+/zwcffICRkRGnTp3CwMCAn376idmzZ7N8+XJq1arFDz/8wLFjx7hz5w4WFjnbVMjCCGLAOSn8xULH43t1SvH1San/tIhi6yosJGp1E6JJcXL/EOx+B+KE3yQNBkCPH188uzzokhBHACYeApfmOe7ijF8U45ddRKXVMbplFb7t17BAMxJfyt0DYhDzsRiS/oKcHUsncGz4tAhiW71g1UCpcRliyaPnRZO4ACGq5QdDC2HRZWQhboaPly2znjc0FwOfwd4ipDo19uk2rKuAa4ZIUr1dqbN3kcklp+cKayf72jD9fM75ITEPYN0wYYFnYAaDl0KdnsXT1xyIDA/hv/nvMEJxEAOFVgwmN3sdOnwCZqVoQO36Ntjyuqj4muWb7d9886VAPthyjWp2phx9v0OhHt9ik1WMW36Ba0HxWBjps/z15rkXHC4ugT3vieVBS8VM/LwQ8wDmNRci7ev/QdVWOW7yybZrrL8QiEdVG7ZM9Sq6Y31pQ6OCha1Etk+LqdDzpxLrilYncehWOMtP+3PuQUzm8w2dLHm9VXV6u1XCSL9kqjdfX36Bo3ci+bBHHaZ3eEZEjLgtBBLfzVnnJCBEi/r9RfWlvrG4GZhk3BuLsPRn7/WNstZ50Wfwwj8iS02hB+N2QrXcz56cc/Aufx6+h1IBi8c0o2v9l1fQlkZUGh3XguI49yCasw+iufQwNlM8e0wFCyNautrR0tUWL1c7qtu/WChZeeYhX+68QU0Hcw6+0+7V+e6Xc7Q6iZnrL7PHNxQTAz3WTPIsdBFQp5O4H5mE96NYLgeIz6G9uVHGzTBr2cIQWzPDEjt+FYSLD2MYv+wCySotLV1tWTquOWayKCIj80qz51ooM9YJC/0/hjWhf9Oiqx449yCa4X+fw9RQjwufdpFF2RLiUcIjev/bG1N9U86POl/S3ZEpx0TOm0/UvHkoTE2pvmULRq4vzmktcWFk06ZNfPLJJwQFBWFra8ugQYP4/vvvsbKyAoSy+/XXX7N48WJiY2Np0aIF8+fPp2HD3M1CfKWFkaM/wLmFLx4Yzw5jKzCvKEQBi0rZ3xuYijbT4sUtcznhBY/jsx6nJwhLlhdhaCFmgDccLHy5i9KrOCkS9n8iBiBADPr1+g3q9Mh52+3T4cpaYa0y6Uiuwp33XAvlzfU+SBK827U2MzsXPAgoXaPFLyKZu+GJ3AlPxPr+DqZE/fD0SkoDERzs2EiIII4ZQkhxCwM6nfCgfiyaxAWIwRpDiyzBw8g8Q+x4QgAxNM97eLZOK+yIHhwVM5gDzoFOnfW6Qin+dzU6CbHEuXmurUNkShBNOvzRWHyO+i2ApqNyt11qnLD38T8OKETugdeMkqsg0qTDhb9JPfwTJlrhqS/V6o6i27dZtn2lCXUa/FZbHMfH7hDH5mdITtfg+f0hklVaNk3xwrN64RxfIhLSGL30PHfDk7A1M2TVBE8aOlnlbuN7B2HdUPGb0+kzaPdB/jqxa5YIF67SCl7fm+PnJiw+jQ6/HiVNrePvMR50y43dV3ng1B9w6EsxiP/mJTCxLvYuxKeq2XwpkJVnHxIYI6wh9ZQKejSoyOutq+FR1abEB6tXn3vE59uv06yqDVumvUBokyQIPC/OT65vE1VvBeE5MSVDOAm7Ln4bu33/0ty0Z1l7/hGf/nsdgO8HNGRUOcnSSNdouRoYL4QSv2i8A2JRPSOUOFoaZVaTtHS1o6qdKQqFAkmS6Pr7Ce5HJPF13waMa1WtZN6ETJGg0uiYtOoSJ+5GYmmsz8YpXtSrlP/rysQ0NVcC4/B5FId3gBBDEtNyXyVtaayPvUU2wom5EXYZjytkLJcG8eHcg2gmrLhIikpL65p2LBnbHBPDsifuyMjIFD6/7L/N/KN+GOkr2TzVi8bO1kWyn1kbLrP9SggjPF2YPbB0OQi8SviE+zBu3zhcLFzYO3BvSXdHphwjabUETJhIyvnzGNWpQ7WNG1AaZ+8UUOLCSFHzygojd/bB+ifCMw0tMsSNJ2/PCB7mFYvez1qSRB7Ek8JJWjwEnBEX//GBWeua2kOD/kIkcWmR98Hxl/Xhylphr5IWJwbJW0yDjv/LfXB4UgT85SGEnr5/gfvYXG32eDYhkKcSTq1OIiAmhTthidwJS8wUQvyjktHqxNfSWRHJXsOPsVSkslvbgsNad+4pquJUy43eTavRpZ7jq3sRkp4kbJX8johb1J2nXzc0h2pts2y37GrKtlulEe+VsGumqHaaeSVvYpZWLWZGe68Qjz3Gw2u/Fm8OjSSJ7IVDX4oqKuCmripS129p0LZf8fUjP+x+By4tg8bDYODf2a7y0ZZrbLwUyGAPZ34d4lbgXQbGpDB66XkeRafgaGnE2kktqOmQy0DzMF9Y1kP83jQZBf3m5/87HR8MfzYVFW+jtwpbrRz4ed9tFhzzo6aDOfveblssvsklSnywqKxRJ0P/hdBkJA+jktHodDjbmBZ5tpZfZBIrzzxki3cQKSphjWRlYsAIzyqM8aqKk3XpKdMPjkul9Y9HUCrg0mddsc0p8F2rFr9b9w6I8yZNmripUzPu00Q+2LP3L5uE8iT1+8OQFbn+fhy4EcbUNd7oJJjZqSbvdiuFYm4hkabWciUwjrN+0Zx7EM3lgDhU2qf/rpWsjGnpakdla2PmH/XDzFCPc//rjIWcmVDuSFFpGLv0ApcexWJvbsTmqV5UtzfLcTtJkngUnYL3o1i8A2LxeRTLnfBEnr2qNjXUo4mLNe5VbLA00Sc6SUVkUjpRSSqiEtOJTk4nOkmFRpe3y3ETAz3sLQzxrGbHm51q5qrPhcnp+1FMXHmRNLWOtrXs+Wdss9KRtygjI1Mq0OkkJq26xJHbEVSyMmbnm22oYGFUqPuIS1Hh+cNhVBodO2a0xs3FulDbl8k9hx4d4p1j79CkQhNWv7a6pLsjU85RR0Tg338A2pgYrEcMp9KXX2a7niyMlEfSEmB+C0gMEQP+nT7Nyogozeh0EHRBzJC8sR1SorJes3SGhgOFDUrFxvkf4Iq6D7tnwcOT4nHFRtDnT3Byz3tbZ+bBgU+FgPOWd65nxz6eFaFUwKLRT88mliSJ8IR0boclCPEjLIm74Ynci0gkTZ39IIeFsT71HU35KfETqqX4kmDflA0NFvPvtQhuhWZVC5kZ6tG9QUX6NXWidQ27cjVQl67RctYvmgv+MTRysqJ7g4ooX5bjEh+cUU1yBB4cg5Top1+3chGz4mt0Evey7VbJo9OKgdcYP+g+G7ym570NSYJzC4QoigTV28PQlWBiU+jdfYq0BPA/AWf+gkCRIxKvb8d3qYMIqdqftW+0Ltr9FwaPLQT1TeD9u8IC8Rm8H8UyaOEZTAz0uPBpwQYG/SKTGL3kPKHxabjYmrBuUktcbHMp3CeEwD+dxW9g9XYwamvBK8L2/Q/OzYdKTUQQew6/QfGpatr/cpS4FDU/DmzE8PLuY7x5PNz4V0xieH0fh+9EMnnVJR6P31WwMMLFxgQXW1NcbExxsTXJuDelkpVxvn6PdDqJE/ciWXHmIcfuRGY+X9vRnPGtqjOgqVOpnQzQ448T3A5L5Pdhbgxo6lw0O9GqnxBPnrl/LKggQY3Ouf5+eD+KZeQ/50jX6BjWzIUfBzUq8Qqc4iRNrcUnIJZzftGcexDD5cBY1NqnL41Gt6zCd/0blVAPZYqa+FQ1I/4+x83QBJysTdgyzYtKVk8Lr2lqLdeC4oUQkmGNFZ2seq4tF1sTPKrY4FHVhqZVbKhb0SLHY6FOJ3J3oh4LJknpRCUJweTxcmSSiuiM5WevHZQKGNDUmZmda1LVrugFkhN3xW9BukZHhzoVWDTaQxZFZGRkniMhTU3/+ad5EJlMs6o2rJvcEkP9whurWHbKn29236R+JUv2zGzzSp27lDY23t7Id+e/o5NLJ+Z2mlvS3ZF5BUg6dZrASZMAcPp9DpY9n7dVl4WR8sjjmb021WHamaKvAikKtBrwPwa+W+HWLhHG/Rj72qKKpNFgsKuRu/Y0KpFNcOIXMetX30RUiLScnn+7Lq0aFrYW1QctpkHPH3O1mSRJfLT1GpsuBWGkr2Rm51qExKVmCCGJJLyglN5IX0ktR3NqO1pQt6IFtR0tqFPRgoqWxihO/AJHvxeVQVNPiqwQ4G54IjuuBLPjSghBsamZbdmbG9K7cWX6NalMExfrMnlykJim5tidSPbfCOPYnUiS0rP+bnUrWjCrSy261c9BIAEhyIVdyxBJMmy3tE9ewCrELPnuP4CZXdG8GZmcubEdNo8DY2t450buq7uy485/sGWimN1uVwtGbRI5R4WFTgdhV+H+YfG5CjwvMioADEyJaTKVdqcakiQZs216K9yrFLEwUxhIEsz3FFktfeeB+5hsVpHoMuc4fpHJBRIDboTEM3bpBaKTVdR0MGfNxBZUtMplQHZ6EizvISpG7OvAxAOFY+mUHAVz3UQFytDVUP/lAW4AS04+4Ls9twBwrWBGs6o2NKtqi0c1G1xfklNQ5nhwDFb1E9WXbxwnxKQWr/15krgUNYb6yuesiJ5FT6mgoqXxU2LJk8sVzI2eOo4np2vY5hPEijMP8YtMBoRO1bmuA+NbVad1TbtS/7d9PEGid+NKzBuZj4kZJcD9iCQGLzpDXIqaTnUd+HuMR7maYJEfUlUZQkmG9VZimoYl45rlXsSVKZNEJqYzdPFZ/KOSqVHBjHkj3bkfkYRPRjXIjZCE56o6DPWUNHK2wqOqDe5VbHCvao2DRS5/1/KJJEkkq7REJaYTGJvC8tMPOXI7AhDH3YFNnXirUy2q2BXN5/XonQimrPZGpdHRpZ4D80e5l8lsFBkZmeLBLzKJ/vNOk5iuYYRnFWYPLJxJBpIk0e33E9yLSOLbfg0Y41WtUNqVyR8LryxkwdUFDKk9hC+8vijp7si8IkTM+Z3ov/9GaW5O9W1bMazy9DiFLIyUNx6eghW9xPK4XWK2bFlHnSosJHy3wN39Twd4V2oCjYaIahLLytlvH3Be2O9E3haPa3YRWSI21QreN78jsHqACC6degoc6+dqM41Wx5TV3hzOuEB5Ej2lgur2ZtRxfCx+mFOnoiVVbE3Ry26QP/CCsIyRtDBgMbgNf24VSZLwCYhlx5UQdl8LJeaJmWtV7Uzp51aZvk2cqOlQgMHmYiAiMY1DNyPYfyOMM35RT83UdLAwooWrHcduR5CYIZLUr2TJrC616FrfMfcDZarkDNutjIqSSDGwiYkt9JgtRJLSNugWek0IiJUaQ63u5S8vRZLg7w4QegXafyREzQzuRyRy4GY4o1pUxcokDxUKoddg/XBICBb/2+FrcxWs/UKSIsTn5bEY8mTFGwjhpVZ3aD2TN3eHsftaKJ3rOrB0fPP877O4OTkHDn8tsjYm/JftKouP+zH7v9u4V7Fm2/S8V8J4P4pl/PILJKZpaOhkyaoJLXK2GnqMTgvrR8C9/SLnYtKhwjnOP+bId0Jcr1BXTDpQvnyAJ02tZfpan8yBqCexNTPEvYoNzarZ0KyqDQ2drMrmLFqNCha1ERMEPN9A0/0nRvxzjosPY2nkZMWWaV6kpGsJjE0hMCY14z6FwNhUgmJSCIpNfc6a6FkM9ZU42wihxNbMkEO3wjO9+M2N9BnSzJlxXtWoVsz2MAXhcXWVhbE+Pp93xaCUCwzhCWkMXHCG4LhU3FysWT+5BaaGJZ9bICNTUgTHpTJk4RlC4tOyfd3BwgiPqqIaxL2qDQ0qW5YKUeBKYBx/HLqbWWWnr1QwyN2ZNzvVLFRB79DNcKav9UGl1dGtviPzRroX6uxvGRmZ8snR2xFMWHkRSYLv+jdkdMuCZ5h5P4ph0MKzGBsoufBpFyxlq8sS5btz37HxzkamNJ7Cm01zn28nI1MQJI2GR2PHkerjg3GDBlRdvw6lYdYYgyyMlCfUqbCwFcQ8EP75fcphaVpaAtzeA9e3iIFrSZvxggKqtoZGg4RftqmtyC459DVcWipWMbWHnj9Bw0GFO7C9YRTc3i1EqLE7c912qkrLp9t9iUtRU6eiRaYQ4lrBLPcDZGkJYlAq7pGoohm0JMf9q7U6Tt2PYsflYA7cDM/0Ywdo6GRJ/yZO9G5cOfcztIsY/6hkDtwI48DNcHwCYp/yZHatYEb3BhXpVt8RN2drlEoFcSkqlp7yZ9kpf5Iz3ltDJ0ve6VKbTnUd8j6TOOgS7JwJETcydtoRev+eWZVToiSGw9HvwGc1kPGHMbUT4k3T0eDYoES7V2j4HYXV/UWl1zs3Mit3AmNS6D//NNHJKrrUc+Cfsc3y9v9NDBPiSMhlUBqIvKAmI3K3rUYlKkH8DsP9Q6JC4UkMzcUxoUYnqNk5syLlZkgCr/0prPz2zGxDg8q5DBIvDSSEwO8NRHbBzMvZVtlEJKbhNfsIWp3EoXfb5T4TBOFDPnnVJVJUWppVtWHZ681zf/EiSfDfh3DhbxEuPX4PODfL9b5zRWoczG0sflsG/A1uw3LcBCA2WYVPQCyXHsXi/TCWq0FxpD9TRWGop6ShkyXNqtniUVWIJXbmheuvXCSc/hMOfp5pKfnbyXD+OnIfcyN99sxsk6NVi04nEZExmznosXgSk5IppITGp5KdnX41O1PGtarGYA/nMpnloNVJNP/+EDHJKtZPbolXjdJbjZiQpmbY4nPcCk2gur0ZW6Z6lY3PpoxMEeMXmcSIv88RnayifiVL3KtY454hhjhZm5TqyjWfgFj+OHSPE3ezBJIhzZyZ0bEmzjYFE0j23wjjzXU+qLUSrzWqyNzhTUu9+CsjI1N6WHDsPj/vu4O+UsG6yS3xrF4wS+v3Nl1lq08QQzyc+aUQMhBlCsY7R9/hUMAh/tfif4yom8vrbhmZQkAdGiryRuLjsRk7hor/y5psKwsj5YmDXwi7KItKMOM8GJehAbf8kBwlPM2vb4WAs1nPK/XF4HWYLySFieeajoGu3xRNVkTsQ5HpokmDIStFYHxx8e9UuLoerKoIC608WsakqDQcvBnOzishHL8bmVn6r1CAl6sd/ZpUpkfDSnmbiV9AJEnienAC+2+EceBmGHfDk5563c3Fmm71HeneoOJLK1xik1X8c/IBK848zBR/3JytmNW1Nh1qV8jbBatWDWf+hGM/ZVmxdfgYvN7MvxVbQVCniayMk78Jax8QA/DhNyApPGu9Sk2EQNJwUJ4/++EJaRy+FUGvRpWwMi3hgceVfcH/OLSYKsRNhJXa4IVnuROeZbP3bf+GjMnrzCJVCvw7BW7tFI/bvgcdPwNlNhfxMQ9ERcj9wyKnSPX0Z5OKjYUIUrMLOHtmW7kzaeVFDt2KoFfjSswvIxY6T7F6oBCDnqnceZJJKy9x6FY4U9q58slr9XLV7MGb4czImF3atpY9i8d45G1G+rmFsO9jsTx0FdQvojD7x1UzNtXgzUugl/fvhkqj43pIPN4PY7n0KAbvR7FEJT3vP1/d3ixTJGlWzQZXe/OcrQGLk4RQmNdMfA/6zee0RQ9GLz2PJMGfI5rS1+0FVZx5QK3VERqXlllpEhqfRmNnKzrWcShdf4t88O6mK2zzCWZy2+p82it31abFTbpGy+vLL3LGLxp7cyP+nd5KtomSkXmCNLUWSaLU5hnlhPejGP44dI+T90SVq4GegiHNXJjRsSZO1iY5bP08e31Dmbn+MhqdRB+3yvw+1O2Vt9yTkZHJG5Ik8db6y+y+FoqdmSE732qTr+MRiFyoFj8cIk2tY+u0VnhULQP2xeWccf+NwyfCh9/a/0a3at1KujsyrxiJx44RNHUaAM7z/sKiSxdAFkbKDyGXRdispIURG6DO84Ey5Zq4QLixTQS3Pzlz264m9P4Dqrct2v0f/QGO/yRCu2dcKJ5cF98tsHWi8HUfvxeqehWouZhkFXt9Q9lxJZiLD2MznzfUU9KxbgWaVrHB2sQAa1MDrEwMsTYVy9YmhgW+IFRrdVz0j+HAzXAO3Ah7yppAX6nAq4Yd3eo70rV+xTxXskQnpfP3yQesOvOIVLUQSJq4WPNO19q0q2WfN4Ek2g92zxJB2gAVG0GfP8GpmAa4JQlubhciaFyAeM7JQ4SRV2khsnn8DsPl1XBnH+jUYh09Q6jbS4gkrh1ztADadTWEz7ZfJz5VTSMnK9a/0RJzoxKyTQn2hn86CcFz5mWwroJWJzF51SWO3I7AwcKIQR7OLDzmh5G+kt1vtaGWY+6rFACRCXLkWzg1Rzyu3w/6LxKVEQ9PZoghhyDW/+ntTO0zKkK6QI2OYO7w0t34BMQycMEZlAo48E77Um9dly2PjztWVeDtq9kKSAdvhjN51SXszQ05+0nnHGeK7rgSzLubrqLVSXRv4MifI5rmzXLk9h5RuYckBPDWb+fxTeUBVTLMbQLJEaJyrNmEAjcpSRKPolNERUmGUPKsIAxgbWqARxVhy9KnceUi84XPNVsmiupN5+ZEDt3Fa3+dJjIxneHNXfhxUOOS7VsZYM+1UGas88G1ghlH3utQ0t15Dp1O4u2NV9h1NQQzQz02TvGioVM5n3AjI/OKcvFhDH8cusvp+9GAEEiGNRcCybPh8i9i19UQZm28glYn0b9JZX4dIosiMjIy+SNFpWHwwrPcDE2goZMlm6e0ytd4w6qzD/lixw3qOFqwb1bbUl3J96rQ+9/ePEp4xPLuy2lWsZCr+2VkckH4Tz8Ts3w5SktLXP/dhoGTkyyMlAu0avi7I4T7ipnhg5eVdI9Klsi7cGsHGFmC+zgwKAZLKFWKCCaOD3zpTOpCIy4AFraB9Hho9yF0+rRQmw+KTWHn1RB2XA55akb+izDSV2aKJFamBpkCirWpIVYmWQKKEFXEY1NDfS74x3DgZhiHb0UQn6rObM/UUI/2tSvQvUFFOtZxKJSKhaikdBYf92P1uUekqYWNjUdVG97pUjtvYb2SBFfWwf7/QVqcEKZaTBP/84IEgudEyGXY90lWdZRFZejylcjYya66ITkafDfB5bXi2PAYSyeRQ9NkFNjVeGqT+BQ1X+y8zo4rIU8936qGHcvGNy+ZDISNY0Q1h9sIGLAIgG9332TpKX+M9JVsmuJFIycrxq+4yIm7kdSrZMn2Ga3y5+V9eS3selsIShaVITkyS1wCIc64tISanaBGZ1Ehkt3f/gWMWnKO0/ejGezhzK9ltZRbnQq/1ob0BBi3O1vRWa3V4TX7CFFJ6fw9xoNuDSq+sLl15wP4dLsvkgQDmzrx8+DGeRtICbkMy18DdQp4vC7EiqK+6Dm3CPZ9JD4jM33AIH+z2F5GfIo6w34rhksZ9luPj1sAFkb6rH+jZckNVPufhJW9AQW6yUcZv1/NibuR1HY0Z8eMNmV29nRxkpCmxv2bg2h0Ekff70D1UpaR8t3umyw55Y++UsHy15vTtlaFku6SjIxMEXP+QTR/HLrH2QdCIDHUUzLc04XpHWq+dGLSjivBvLPxCjoJBrk78/PgxtnnIsrIyMjkkqDYFPrOO01Msop+TSrzx7AmeRI2JEmi59yT3A5L5Ms+9Xm9dSmwwZah1bpWJKoT2dl/J9Wt5P+JTPEjqVQ8HDOGtKvXMHFzo+qa1SSmpsrCSJnnxK9itrOJrahWMJcvXkuEG9th8zjQM4I3LxRu6O+T6LSwojcEnAHn5vD6viK1c7odlsBe3zCCY1OJT1URl6ImLlVNXIpY1mRnAJ8PbM0M6VLPge4NKtK6pn2RDcJHJKax+PgD1px7lOnz71nNlllda9Gqhn3uG0qKFNY917eIx1ZVoPccqNW1cDucEAqHv4Gr68RjfRNoMwtavQWGuRxIC70qBv19N0FqVjUQVbxEFUn9/pwOTOP9zVcJjU9DqYA3O9akQ10Hxiw5T7JKS48GFZk/yr14L3Sj7sG85oAE08+BQz3WXwjgk21C6Jk/0p1ejSsBEJGQRo+5J4lJVjGpTXU+651Pa5qHp2HjqKy/k3VVURFSszNUawvG+fsdOeMXxch/zmOgp+DIex3Kth3NrrfBewW4jYQBC7NdZfbeWyw+8YAu9RxZMi772UD/nHjA93tvATCmZVW+7tsgb/ZIcYGwpLOwj6vRGUZuKh5rO006/OkOCUHQ7XtoVfTBgSqNjpuhCVx6GMP2K8FcD07AzsyQTVO9qFGhmCuPtGqRbRV5G5pNZJHFDH787zbGBkp2vtmG2nmt2HqFGfnPOc74RfN57/pMbFN6Lg6XnHzAd3vEd/P3YW4MaOpcwj2SkZEpTs76RfP7obtc8I8BwFBfyUjPKkzrUANHy6cFkq3eQXyw5So6CYY1c2H2wEZl3upQRkamdHDuQTSjl5xHo5P4pGddprSvkfNGGVwJjKP//NMY6Ss5/7/OWJs+b3EsU7yka9NptkZcF54afgorI7kSWaZkUAUF4z9gALrERGwnTsBkyhRZGCnTRN6FRa1Bq4KB/0DjoSXdo1cXSYKVfYT1Tt3eMHxt0ezn+C8icNvQHKaeKtEQcEmSSFZpM0WS+FR1hnDy5OMsMSU+47XYFDUqjQ5nG5PM8PRm1WyLddA9IiGNBcf8WHchAFWGQNLS1ZZ3utSmhWsegnDvHYTd70J8hrVVw0HQ48ccbZVyRJ0KZ+bBqd9BnSyeazwcOn8BVk75a1OTDnf2CpHE77CwigJUShN2qJqzWdueCBt35gxvinsV4cF65n4U45dfRKXVMcLThR8GNCq+MuQdbwpbsDqvwYj1nLkfxdhlF9DoJN7tWpuZnWs9tfrhW+FMXHkJgFUTPGlXO58icVygsEur0lIEjBfw/canqhm88Az3IpIY07Iq3/ZvWKD2SpzAC7C0KxiYwft3s62Uuh+RSJc5J9BTKjj7SSccLLIGUiRJ4vdD9/jz8D0ApnWowYfd6+Ttc5UWD8t6QMRNcGgAE/blW7TKFz6rYOdbYGonLMWMik8MSExTM+Kfc1wPTqCylTGbp7XKt/dyvjgzDw58Cia2XB14hEHLb6HRSfw4sBHDPasUXz/KAY8FiNY17Vg7qWVJdweAnVdDmLn+MgAf96zL1DwMQsjIyJQfJEnKFEgeW+wa6SsZ2aIK09rXwMHSmE0XA/lo2zUkCUa2qMJ3/RrKooiMjEyh8tgOS6mAZeOb06FO7q6xP956jQ0XAxnQ1InfhzUp2k7K5IrQpFC6be2GgdIA79HesrWZTImScPAgwW/NBMBqzm849eolCyNlEp0OlveAwPNQq5uYLSsfXEqWiFuwsLXIehnzr8gfKEyCLsHSbqL9/ougyYjCbb8YSddoMdRTlvgPYlh8GguO3WfDhUBUWiEUtK5pxztdatOsWi4Dy9OT4NhsEYgu6cDYGrp9J6ox8vr+JAmub4WDX4oZ6SCCvHv8CM4eeWvrZSSEEH5yOWrvNTjrsqyzdDauKJuOFNZVVmKW8H++wgtfJ8GMjjX4oHvdwuvHS/rHH42FldXEgzwwrk//+adJSNO8tJz68+3XWX3uERUsjNj3dlvszI2Kvq8vQaXRMX75Bc74ReNoacSut9o8JRKUSSQJ/vKAGD/otwCajsp2tYELTuMTEPfUDC9Jkvh29y2WnRZ5LR90r8OMjjXztn+dFtYOEeKeeUWYfDjzs1psaDXCPjHGDzp+Cu0/LNbdRyelM2TxWR5EJuNqb8amqV7YF8dnPTEM/moGqkRSuv9O1+PVCI5LpY9bZf4cnjeLAxnwj0qm46/H0FcquPxFVyyMC24bWRDO3I9i3PILqLUS41tV48s+9eX/qYzMK44kSZy+LwQS70dZAknneg7s9Q0DYKyXqPqUjxcyMjKFjSRJfLLNlw0XA7Ew1mfnm21ytB9NStfg+f0hUlRaNk3xwrN6Lq/pZYqUG1E3GL5nOI6mjhwacqikuyMjQ9h33xO7Zg2p5uZ4eF/KlW4gp6eVNi4uEaKIoXnx+KrL5IxDPfB8Qyz/95GwHCks0hNF6LGkFVUJbsMLr+0SwEhfr1RcQFW0Muabfg059kEHRrWogoGeQuRALDrLmKXnMy8CX4qROXT/HiYdFoHsaXGw801RQRTtl/vOPBa+tk4UooiVCwxaChMPFKoootVJLPRJpc2ZprRJ+YWJet8T4joYDM1Rxj6AI9/B7w1h9UCIuk/PRpX4fkAjAOYf9WPpKf8c9lAInJ0vRJGqrYmza8LElZdISNPgXsWanwY1fuFn59Ne9ajpYE5kYjofbb1GSer5kiTx8bZrnPGLxsxQj2Xjm5d9UQTEb02TkWL56voXrja0mQsAGy8FIkkSWp3Ex1t9M0WRr/s2yLsoAnByjhBFDExh5IbiF0VAWHY9zpI68xekxBTr7u3MjVgzsQVO1iY8iEpm3LILJKQV4u/NizjwOagSkZw8eO9eI4LjUqlia8oPAxqWiuN5WaO6vRmu9mZodBIn70WVaF9uhiTwxmpv1FqJXo0q8UVvWRSRkZEBhUJBm1r2bJnqxaoJnjStYk26RpcpirzeuposisjIyBQZCoWCr/s1wL2KNYlpGiavukRiDue8O6+EkKLSUqOCGc2r2RRTT2VyIjpN5FfZGstClUzpwOHDDzCuXx9tfHyut5GFkdJEXAAc+kosd/26ZAaGZLKnw8dgag9Rd+H84sJrd++HEPtQDJb3miMLYYVMZWsTvh/QiKPvd2CEpwv6SgUn70UxaOEZOv12jE+2XWObTxBBsSkvbsTJHSYfg67fiCyQhydhgZfIAdKoXrxdfBBsnSzyEoIuCIuiTp/Bmxeh0eBC/V8HxqQw/O+z/LTvNmqtRLf6Ffn5nclUHrtU2CL1XwhV2wCSGHxe1RfigxjhWYUPutcBRPj5Np+gQuvTc6TEiAwLQNPqbaav9cE/KhknaxMWj2n20vwZYwM9/hzeFEM9JYduRbDmfEDR9TMH/jh0j20+wegpFcwf5U6DyuXIR9VtOKAQn/HYh9mu0tutMiYGejyITObcgxhmbrjMxkuBKBXw6xA3xrWqlvf9PjoDx34Qy71+g8pN8/sOCk6DgeDYUATRn/mz2Hdf2dqE1RM9sTMz5EZIApNWXCJNrS26HT48LXKKULDX5T3+uxmBgZ6CeSOblnilQ1mmU11hCXH4VkSJ9SEwJoXxyy+QlK6hRXVbfhvqJtvhyMjIPIVCoaBd7Qpsm9aKlRM86VinAh90ryOLqDIyMkWOkb4ei0Z74GhpxP2IJN7ZeBXdS3JO118Q138jPKvIx6dSRHSqEEbsTPJgWy4jU4QoDQ1x+n0OSrNcZvciCyOlB0mCXbNE7kCVVuAxoaR7JPMkJtbQ5UuxfOxHSAwveJvXt4rwbYUSBv4t9iFTJDjbmDJ7YGOOvt+BYc1c0FMqeBCZzPoLgby76SptfjpK6x+P8M7GK6y/EIBfZNLTVQl6+tD6bZh+Flw7gjYdjnwLf7cXFSFPokqGo7OFNU3GgCNNRsNb3tDuAzAovNwASZLYdCmQHn+c4OLDWMwM9fh5cGMWj/HIspsyNBOVAK/vgbd8wK4WJATD6gGQEsP0DjWY0Fpk2nyw5RpHbhfCZzs7Li4FVRKSYwM+v14ps+Ji6fhmVLDI2S6ofmVLPuwhRJzvdt/kfkRi0fTzJWy6FMjcjAyN7/o3zLUfbpnByhlc24vlqxuyXcXcSJ9ejSsBMHHlRfZcC8VAT8H8ke4M9siHmJ8cDVsmCru6xsOzqlZKCqVS2GgBnFtUOMf6POJawZyVEzyxMNLnwsMYpq/1QZ1hCVioaDWw9wMAYuqN5J1T4pTwox51aexsXfj7e4XoVE8cG47diXjpRX5REZusYtzyC0QkplO3ogV/j325+CwjI/Nqo1AoaF+7Astf92RGx5ryoKOMjEyx4GBpzOIxzTDUV3LoVjh/HLqb7XrXg+PxDY7HUE/JQHd58nBp4nHFiJ2xLIzIlB4Mq1bF8bNPc72+LIyUFq5uEDO59Yyg719icEamdNFktJjJrEqEw18XrK24QNj1jlhu+x5UbVXw/snkiIutKT8NbozPZ11ZMrYZb7RzpYmLNXpKBcFxqfx7OZhPtvnS+bfjNP/+ENPWeLP8tD83QuLR6iSwrS5yZgYsBhNbERK9pIuo/EmLF9/jv5rB8R9BkypEzjeOQv/5YFmpUN9LdFI6U1Z78+GWaySrtDSvZsO+We0Y2szlxRe0djVE/y0qi+qntUNQqFP4rFc9BjR1QquTmL7Wh/+3d9/hUZRdH8e/u+m9F1KAQCD03nsTAVEQu9gbotj1sQu2x97Q14Y8FlCxAhZE6b3X0EsCgZCekN42O+8fK6uRIiXJJuT3ua5cu8zcO3MW9k7InLnPWX+giksIlRXBmg8BWBxyHV+vO4TJBJOv6UiL8NPvE3VL7xj6Ngum1GLlnq83U2qpxjvp/2HZ3gye+DEesPVkueZ8bUjd4c/eIpu/svW8OoFj5bSKyipwdzEz5YYuDG97Fp9vw4DZd0H+EQiKta0WqQ3ihkNkF9scXuaYmNpE+jH1pq64OZtZuCudh7879V10Z2XdFEjfjuEewC1JwyizWBncIpRb+8RU7Xnqoa6NA/FxcyarsIwth4/W6LmLyyq49fN1JGQUEuHnzmc3d8PPQ6t/REREpPbpEO3PS3+Wd568cB9zt6UcN+bYapEL24QT6OVao/HJqR1bMRLooVJaUrv4Dh162mN19b02KEiHuY/Zng94DILPoj67VD+zGYa/Znu++cvjVwqcLmsF/HgHlObaLr71f7TqYpTT4ufpwpBWYTwxoiWz7u7N1olDmX5rd+4dFEv3mEDcnM1kFpTx27ZUnv15BxdNXk6HZ//g5k/X8sGSBDb4X0jZ+LW2O9wxYO1H8FozmDnOdpHXvyFc8TncPKdaygIt3JXGhW8v5Y8dabg4mXh0WAtm3NGT6EDPf3+xf7QtOeLuD8nr4dsbMBsWXr28HQPjQigpt3LLZ+vYlZpXdQFv/hKKMin2iuKODba7fJ4c0ZLBLcPO6DBms4k3rmhPoJcrO1PyeG3u7qqL8RR2puQxfvpGLFaDUR0ieHhoXI2c1yFajARXHzh6EJJWnXBI18YBtI/2x9fdmc9v7nb2K2dWvw975tpuCLjiM1tfn9rAZILBT9ueb/jUVubSAbrFBPLhdZ1xNpuYvfkIE3/aXnX9dfLTYJGtfNl3AbewOcuJcF93Xruive4UrgIuTmb6xYUAsHBXzZXTslRYuefrTWxMOoqvuzOf3dKNcL/zoAeSiIiInLcu6xxlvzHnwW+3VPo9tLDUwuzNRwC4pmu0Q+KTk8susd1QqRUjUpcpMVIbzHnE1tg5vB30usfR0cipRHeF9n+WepnzyEnvqD6l5W9B0kpw9YbLpoCT7uR0NC83Z/o0C+bBoXF8M64nWycN5fs7e/LIhXH0bx6Ct5sz+aUWFu3O4JW5u7jsg5W0e20912TezA+t36PEO9pWXsvVB4ZMgrvXQevRVd4zprDUwhMz47nls/VkFpTRPMybWXf3ZvyApjidSe340BYw9jtbz5R982HWXbiY4P2xnencKIC8Egs3TF3LoexT9F45XRXlsMLWq+H1gmGUG05c3TX6rO9KD/V159XL2gHwyfJElu7JOPcYTyE1t4SbP11nr9P/6uUnbxJ/XnD1tH12wbZq5ARMJhM/3NmTNU8MoXuTs/xPcPIGmPdnecILX4Twtmd3nOrSZADE9IOKMljyisPCGNgilDev6oDJBNNWH+SNP05cYuCMzXsGSvPI9mvNY4kdMf+5gkt34VWdwQ7oM/LinJ3M35mGq7OZqTd1pXmYT42dW0RERORsPT68BX1igykqq+D2L9aTU2jr5fnr1hQKSi00DvKkx9n+3iHVRs3X5XygxIij7fwZdswCkxOMek8XyeuCIZNsF8CPbLTdCX8mDm+AxS/Zno94DQKbVHl4cu7cnJ3o0jiQuwfG8vkt3dj8zAX8PKEPT49sxYWtwwjwdKGk3MqqhCwe2hBIh8znmFB+P5e5vMet+/rw/O8JTF99kBX7Mkk+WlwlJXA2JuVw0eRlfPVn4/Hb+sTw04Q+Z9/8O7obXPmF7XtP/Lfwx5N4uJj5341diQvzIT2/lOunriEjv/TcAt8+E3KTyMaP6aV96NEkkOdGtTmn5MKQVmFc18NWyuqh77aQVXCOMZ5Efkk5N3+2jtS8EmJDvfn4+i64OdeDOv3HymntmGXrmXMCzk5mPFzP8u+iJBe+uxms5dDyEuh629kdp7oNesb2uPlryNznsDAuaR/B86PaAPDeon1MWZpwbgc8uAq2zsDAxPica7Fi5v4hzekWo19oqtKAuFBMJtiRkkdKbnG1n+/7DYf5dMUBAN65qgNdG+vfU0REROoGZycz717TkYaBnhzKLmbC1xuxVFj56s8yWld1bYj5TG4ElBphXzGi5utShzk7OoB6rTgHfn3I9rz3fdCgvWPjkdPjEwYDHoU/noL5k6DlxafXOL00H364FawWaD0G2l9T3ZFKFXF2MtM2yo+2UX7c2icGq9Vgf0YBaxKzWfvn1y953SALyDr+7mA3ZzONg7xoHOxJTLA3McGeNA7yIibEixBvt1MmCcorrLy7YC/vLdqH1YAGfu68cUV7esUGn/sbaz4URr9vKwG2+n3wCsGv74N8cWs3LvtgJQeyirjp07V8fUcPfN3PImlrGFiXvYkZ+KT8QhoE+fPhdZ1xdT73nPyTI1qxOiGbfekFPPpDPFNu6FylKznKK6zc9eVGdqbkEeztxqc3dcXPs54krhv2gIAYyEm0Je/bX111xzYM+Pk+W6ku/4a2nlq1dQVOdFdoPsxW7mvxf+Hy/1X9OUrzYcds25dXiG3VaGjL44Zd16MRucXlvPb7bl6csxM/DxeuPJtyAhUWmPMwAL+5DmVNXgy9mgZx90CV8KxqgV6udGoYwIaDOSzclc7Y7o2q7VxbDh3liZm2Hkj3Dm52dj1/RERERBwowMuVKTd04dL3V7BiXxbjv9zI5kNHcTabuLyzmq7XRsd6jKiUltRlSow40h9PQ0Garems+kzULd3GwcYvbA2sF78Mw1/+99f89pjtQqNfNIx8q/ZeDJR/ZTabaBbmQ7MwH67r0QjDMEjJLSExs5CEzEIO/PmVmFlIUnYRpRYru9Py2Z2WD6RVOpa3mzONjyVKgm1fjYO9iAnyIquwjAe+2Ux8ci4AoztE8OyoNlXbSLf91VCYCX88CQueBa9gwjrdwLRbu3PFhyvZfiSP2z9fz+e3dMPd5cxWCBh7fsecsZN8w4PZLsP54qau+HtWTakeD1cnJl/dkdH/t4L5O9P4ck0S1/WomguPhmHw1MxtLNubiYeLE/+7qcvp9W85X5hMtlUji16wrYqrysTIhk9tq4jMznD5p6eXVHakQU/ZEiPbfoA+D1RNyS+rFQ4ut5Uq2zEbyv9Wsm7zl7ZVNP0egQbtKr3srgFNySsu56OlCTz241Z83J3P/AL4+qmQto0iJ1+ezLuUIC9X3r6qw5mV4pPTNqhFqC0xsrP6EiMZ+aXcOX0DZRYrQ1qGcv/gZtVyHhEREZHqFhfuw5tXtufO6RuZt8P2e/MFrcII8XFzcGTyTxXWCo6WHgW0YkTqNpNRZZ08a05eXh5+fn7k5ubi6+vr6HDOTsJi+GKU7fnNc6FRT4eGI2dh3wKYPsZWimj8ihPe5Wu3fSZ8dxOYzHDjL9C4d42FKY5lqbCSfLS4UsIkIbOQA1mFJOcUczpVtnzdnXnx0rZc3D6i+gKdNxFWvG37jF41HVpcxLbkXK7+eDUFpRaGtgrj/bGdcHY6/dUeR97sT0TeZj6uGEmrG96hT7MqWOXyD58sS+CFX3fi7mLml3v6EBt67jX131u4l9f/2IPZBFNu6HLGTeLPC0eT4O0/kwD3x9tWd5yr1G3wyWCwlMAFz0Pve8/9mDXhu5th+4/QfDhcO+Psj5OdAFtm2Epz5f6toXtQM2h3FaRusa3QOSZuhC1BEtnJvskwDB7/MZ4Z6w7h6mRm6k1d6Nss5PTOX5AO73aB0lyeLL+FLyuG8NnNXRkQF3r270lOaVdqHsPeXoabs5nNzww9+/JzJ1FmsXLdJ2tYeyCbJiFezL67Nz5ns7pPREREpBZ5c94eJi/YC8AXt3SjX/PT/P+u1Jis4iwGfDsAEyY2Xr8RZ7Puu5fa40zyBvrkOkJZIfz05wWhrrcrKVJXxQ6GFiNh1y/w23/ghp9OvArk6CFb6RiAPg8qKVLPODuZaRTkRaMgL4irvK/UUsGh7CISM4v+Spj8mTRJyS0BoE9sMK9f0Z5wP/fqDXTIJNvKkc3T4ftb4PqZtGnUiyk3dOHGT9fyx440npy5jZcva3taJatWL/qFHnmbKTWcCRp8f7UkRQBu6R3Dkj0ZLNubyT1fb2bW3b3OqQ/IzE2Hef3PBtfPXtK6fiZFwJYIiekHiUthyzfQ/5FzO15ZIXx/sy0pEnsB9JxQNXHWhIFP2Pqt7PkNDq2zldg6XcdKZW3+Cg6u+Gu7mx+0GWNbmRPV5a+fHWk7YNnrsO1H2D3H9hV7AfT/D0R3w2Qy8eKlbckvsfBrfAp3fLGB6bd1p3OjgH+PZf4kKM1lBzF8XTGIcf2bKClSzeLCfIj09yD5aDGrEjIZ1KJqv5+88OsO1h7IxsfNmSk3dFFSRERERM4L9w9uRnGZheLyCvpURQlpqXLHGq/7u/krKSJ1mlaMOMLcJ2D1/4FvFNy9GtzO/Q5ncZDsRPi/7lBRamtk3WpU5f3WCvj8ElvZlMjOcMvv4KQLF/LvissqOFpcRrive5X2zjilCgt8e73tYqybH9w8B8Lb8Pv2VMZP34DVgDv7N+Wx4S1OeZj4w7lkThnNQNNGNgRdQud7plVr2Ol5JQx7ZxnZhWXc1ieGp0a2OqvjrNyfyY3/W0t5hcG4fk14fMQpVoHVB1tm2PrPBMTAvZvOrfzfrLtsZaJ8GsCdy8Grjv2CM/tu2DTdliy68edTjz1pqSwTNB1oS4a0uAhcPE5+jIw9sOwNiP8OjArbtpj+tgRJ4z6UWiq47fP1LNubia+7M9/e2ZMW4af4/1DSGvjfUAAuLX0Worvy7bieuJzBCjA5O0/P2sa01QcZ270hL15aBaXY/vTNuiQe/SEekwk+qa8r20RERETEIabtmMar614lLiCO7y/53tHhiFRyJnkD/UZc0w6tszU5Brj4bSVF6rrAGOj952qQ35+EsqLK+1e8bbtA5uoNY6YoKSKnzcPViQZ+HjWXFAFwcrY1mG7YE0pzbaXicg5wYetwXhpju6D34ZL9TFmacNJDpOaW8NJn3zPQtBErJtpf9Uy1hx3q684rl9n6MXyyPJFlezPO+Bh70vIZN20D5RUGF7VrwKPDTp38qRdaXmz73pWTCEmrz/44W2bYkiImM1z2Sd1LioCtD5jZxbaCJmHxicdkJ8Ci/8I77eHzi2HL17akSFAsDH4GHtgO18+EtpefOikCENIcxnwE96yHjtfberIkLoHPLoJPR+B2cCkfXdeJTg39ySuxcP3UtRzMKjzxsawVMOchAL6xDGC/W0smX91RSZEaMqilbVXOwl3pVNW9SBuTcnh61nYAHhjSXEkREREREakxKQUpvLvpXQCujLvSwdGInBv9VlyTLGXw0z2AAe2uhmYXODoiqQp9HrCt/sk9BCve+Wt78gbbRTKA4a9CUFPHxCdyJlw84JqvIbQVFKTBtEuhIIOruja0JwtenLOT7zccPu6lxWUV3P7Fei4v/RGAihaX4BxaM42AL2gVxnU9bH0wHvp2C9mFZaf92vS8Em7+dB35JRa6NArgjSvaY1YzanD1glajbc+3fHV2x8jcC788aHve/1Fo3KdKQqtx/g2hy8225wueh2MXuEvzbStJPh0BkzvCklds/UPcfKHzTXDrPJiwHvo+BH6RZ37ewCYw6j3bip0ut4CTq60k17TReE4bzrS+ubQI8yYjv5Trpq4hLa/k+GOs/x+kxpNrePKK5Wpevbwd0YGeZ/1XIWemZ5MgPFycSMktYWdK/jkfLz2vhPHTN1BWYeXC1mFMGBhbBVGKiIiIiPw7wzB4fvXzFFuK6RTaicubX+7okETOiRIjNWn5m5CxEzyDYdhLjo5GqoqrJ1z4gu35irch5yCUFsAPt4HVAq0vhQ7XOjREkTPiEQDX/Qh+DW13wX95GZTkcWf/JtzeNwaAR3/YyvwdafaXWK0GD367mZwj+7jEaSUALv0eqNGwnxzRithQb9LzS/nP91tP6+7swlILt3y+juSjxcQEezHlhi64u1Rtg+Q67dj3rm0zj18R92/KS2yNy8sLoXFfWyPxuqzvw+DsAcnrbWWuZt4Jrze3ldk6uAJbqaxBcNlUeHgPXPwORHc7txJkx/g3hJFvwb2bofud4OwOh9fh9cM1/Oz+NNf6xXMou4jrPllDzt+TgoWZWBc8D8Brlqu4qEdbhrVpcO7xyGlzd3Gi95+1sRfuSvuX0adWaqngzukbSMsrpVmoN29c2UFJXBERERGpMXMPzGVZ8jJczC5M7DkRs0mXlaVu0ye4pqTtgKWv256PeA08Ax0bj1StVqNtF/4sJfDHkzD3UdsFZd8o28WsmiyHJFIVfBvYyv54BkHKFvhmLKaKMh4f3pLLOkVRYTW4+6uNrE3MBuDNeXv4bVsq45zn4IwVmgyEiI41GrKHqxPvXN0BVycz83em8eWapFOOt1RYmfDVRrYl5xHk5cpnN3clwMu1hqKtIxr2BP9GUJYPu345s9f+8SSkxdtuBhgzBcx1POHkEwbdx9meL3z+3EplnS2/SBj+Cty31dbA3sUTl7Qt/Lf0JeZ5PEGzzPnc/OkaCkotAFjnTcRcmss2a2M2hYzmyYvqed8cBxn8ZzmtBbvSz+k4k37awcako/i4O/PxDV3wdlOjSxERERGpGbmluby89mUAbm93O038mzg4IpFzp8RITbBWwE8TwFoOcRfZVhDI+cVksl2sMjnBzp9tpVUw2WrEewQ4OjqRsxMcC2O/t/WZSFwKP96OGSsvX9aWwS1CKbVYufXzdbw5bw/vLdpHIHlc47LE9to+Nbta5JjWEX78Z1gcAC/8uoN96ScuXWMYBhN/2s6i3Rm4OZuZcmMXGgV51WSodYPZ/Neqkc1nUE5rx2xY94nt+aUf2RJt54Pe94FfdNWVyjpbPmFw4Ytwfzz0eRBcfWhmHOR918m8mj6Ozz58ldKEFZg3TwfgRW5l8lithnKUgXG2xMjmQ0fJLCg9q2N8ueYgX69NwmSCydd0JCZY369ERKpCamEqr6x9hXWp6xwdiohIrfb6+tfJLskm1j+W29rc5uhwRKqEEiM1Yc2Htn4Tbn5w0RtaPXC+CmsNXf/2w6Hvg3W3nr7IMZGd4KrptsbTO2bDnEdwMZv4v7Gd6No4gPwSC5MX7AXg3aZrcbaWQEQniOnnsJBv6R1D32bBlJRbuffrzZRaKo4b89HSBL5cY7vI+M7VHenUUAnMk2p/te0xYTHkHt9b5jg5B2D2Pbbnve+DZkOqK7Ka5xkI92yE/yRUbamss+UVDEMmwv1bof+jVLj60tyczIScV3D5YiQA31n6cfmoMTQN8XZcnPVcuJ87bSJ9MQxYvDvjjF+//kA2k36yNVt/eGicPdEiIiLnZnf2bsb+OpbpO6dzxx938NP+nxwdkohIrbQ6ZTWz9s3ChImJPSfi4uTi6JBEqoQSI9UtO9HWqBVg6HPnz12zcmIDH4ewthA7BAY87uhoRKpG04Ew5mPABOunwpJXcHdx4pMbu9Ii3AeAS1r60CvL1nSdPg849GKx2WzijSvaE+Dpwo6UPF7/fXel/T9tOcLLv+0C4OmLWjGsTbgjwqw7AhrbSgViwJYZpx5bUQ7f3wqluRDVFQY9XRMR1ixnV6htvwh4BsLAJ3B6cBsHOzxIjuGNGSt5hifxrR7kss5Rjo6w3hvUIgw48z4jqbkljP9yI+UVBiPahnPXgKbVEZ6ISL2zMnklN869kfTidLxdvLEYFp5c/iRTtk45rT51IiL1RbGlmOdWPQfAVXFX0SG0g2MDEqlCSoxUJ8OAn+8FS7HtolKnGx0dkVQ3jwAYvxyu+6H2XTgTORdtxtj6IwEsfgnWfYKfhwvf3tmTKTd04c2mmzGVHIWgZtBipENDBQj1defVy9sDMGVZIsv22u7SXpuYzcPfbgFsK0tu6RPjsBjrlPbX2B63fG372XYyC56zNSd397M1Idf3wZrl7kej0RPZeOkSHrfcweM+L/LoZX0dHZUAg1vYVnks3ZNJmcV6Wq8pKa9g3PQNZOSX0iLch9cub49Jq45FRM7ZzL0zuWvBXRSWF9ItvBtzL5vLzW1uBmDypsm8uOZFKqzHrzgWEamPPtjyAYfyDxHmGcZ9ne5zdDgiVapuJ0bW/w9yDjo6ihM7mgQLnrXV5Xf2sJXc0C+zIlKXdbsd+j9me/7rw7B9Jr7uLlzQ3B/nNe/btve+z9aXoha4oFUYY7s3BOChb7ew/kA2t3+xnrIKKxe2DlMj6jPRahS4eEHWPjh8khrce+fBysm255e8BwGNai4+qWRwh1gefuwF3rz/RrzUoLtWaBvpR7C3GwWlFtYdyP7X8YZh8MzsbWw5dBQ/Dxc+ur6z/i1FRM6RYRi8t+k9nln5DBVGBSObjOTDIR/i5+bHg50f5LFuj2HCxDe7v+GBxQ9QbCl2dMgiIg61M2snX2z/AoCnejyFt6vK88r5pXZcvTpb856Bd9rBB71h4Qu2Ph7W07sLr8pZKyBpDcyfBO/3hLfbwvK3bPsGPQlBKn0gIueBAY9Bl1sAA368w9Z3Yuu3kJ8CPhHQ7kpHR1jJUxe1IjbUm/T8Ui7/cBW5xeV0iPbn7as64mRWsvq0uXnbkiMAm788fn/eEZg5zva86+3Q6pKai01OKMjbDTdnNVuvLcxmE4NahACwYGf6v46fvvog364/jNkE717TkUZBarYuInIuyivKeXL5k3y09SMA7mh3B//t899KdfLHthzLGwPewNXsyqJDi7jtj9vIKclxVMgiIg5lsVqYuHIiFUYFFza+kAHRAxwdkkiVq9uJkejuYDJD2jZY+hpMGQRvtoSf7oXdc6G8mu/wKMmFbT/Cj+PgtVj431BbMiR9hy2uRr1hxOvQ4+7qjUNEpKaYTLbva61GQUUZzBgLS16x7et5Nzi7OTa+f/BwdeKdqzvg6mT7cdcoyJOpN3bBw1UXjM9Yhz/LaW37sfLPV2sF/HA7FGVBeFsY+oJj4hOp5Y71GVmwK+2U9evXJGTx7M87AHh0WAv6NQ+pkfhERM5XeWV5jJ8/np8TfsbJ5MSzvZ7lno73nLA84QWNLmDK0Cn4uvqyNWMrN/x2A4fzDzsgahERx/py55fszN6Jj6sPj3V7zNHhiFQLk1EHO4vl5eXh5+dHbm4uvs4W2PsH7J4D+xZAWcFfA509oOkgiBsOzS8E79BzP3nWftgz1/Z1cCVYLX/tc/eD2Aug+TCIHWxrhioicj6ylMKXl9vKBYLt+98D28HNx7FxncSvW1OYvTmZx0e0JCZYd16fFasV3mkPuUm2/iFtL7dtX/QSLHnZVmpr3FIIjnVsnCK1VEGphU7PzaOswsqCh/rTNOT4UgRHjhZzyXvLySwo4+L2EUy+uoP6ioiInIOUghTuWnAX+47uw9PZkzcHvEnvyN7/+rqEowncOf9OUgpTCHIP4v0h79MqqFUNRCwi4niH8g8xZvYYSipKeLbXs4xpNsbRIYmctkp5A1/fU46t+4mRv79BSykcWAa7f7OtGMn7+50dJojqYkuSxI2AkBan1/OjohySVv+VDMnaV3l/cHNb0qX5MNsKFjWaFZH6oiQPPh8JKVug/6Mw8AlHRyTVbdF/bSuEmg6G63+ExGXwxSVgWOHSj6H9VY6OUKRWu37qGpbtzeTJES25vV+TSvtKyiu44sNVxCfn0qqBLz+M76XVbSIi52Bn1k7uXnA3GcUZhHqE8n9D/o8WgS1O+/XpRemMnz+ePTl7ziipUhfklOSw+NBiNmdsxmwy4+HsgbuTO54unrg7udv+7OyOu7Pt+bEvd6fK21zMLkrgi5xnDMNg3LxxrEpZRbfwbnwy9BPNc6lT6m9i5O8MA1Lj/0ySzIGUzZX3BzS2JUjihkPDnpUTGkXZtiaye+baVqGU5v61z+xsK5HVfJgtIaLeISJSn5Xk2fqMxA1XYrg+yE6AyR1t5SLvWAJfXgEFqdBhLIx+39HRidR6n61IZNLPO+jRJJAZd/S0bzcMg4e+28KPG5MJ8HThpwl9iA70dGCkIiJ127LDy3h4ycMUWYqI9Y/lgyEfEO4VfsbHyS/L54HFD7AmZQ3OJmcm9ZrEqNhR1RBx9UstTGVB0gIWJC1gQ9oGrMa592d1MjnZEih/S6Z4u3jT0LchMX4xxPjF0MSvCVE+UbiY9buCSF3w8/6feWL5E7iaXflx1I808m3k6JBEzogSIyeSm2xLdOz+DRKX2GrjH3OsBFZwc0hYBIfW2O5+PcYzCJoNtSVDmg60jRcREamP/jccklaCm5/txoHg5nDHYnBViTKRf5OUVUS/1xbhZDax8ekL8POwXST6dEUiz/68AyeziS9u6Ubv2GAHRyoiUnd9v+d7Xlj9AhVGBd0bdOetAW/h43r25V7LK8p5euXT/JrwKwD3dryX29reVifuoE44mmBPhmzP2l5pX1xAHH2j+uLq5EqJpYRiSzEllhL78+KK4uO2lVhKKK4oxvL3kuKnwdnsTEOfhvZEybHHxn6N8XLR/yFFaovskmxGzRrF0dKj3NfpPm5re5ujQxI5Y2eSN3CuoZgczy8Sut5q+yotsCVAdv9mS5YUZcG27yuPD2vzV4msyM5gVikDEREROlxrS4yU5oKzO1zxmZIiIqepYZAnzUK92ZtewNI9GVzcPoKV+zN54dedADw+vIWSIgLYLsTmluWSV5ZHflk+eaV5fz3/22NeaR5eLl5c3eJq2gS3cXTYIg5lGAbvbnqXKfFTALik6SVM6jkJl3Nc1ezi5MJ/+/yXUM9QPt32KZM3TSa1MJUnuj+BUy27TmAYBtuztrMgaQHzD87nQN4B+z4TJjqGdmRQw0EMajiIaJ/osz5PubW8crLE8mcSpaKE3NJcDuYdJCE3gcTcRBJzEym2FJOQm0BCbgILWFDpWGGeYZVWlxx7DPYIrhPJJ5HzyavrXuVo6VHiAuK4sfWNjg5HpNrVnxUjJ2OtgMPrbOW2cg5C4z62hIh/w6oJVkRE5HxSmg+vx0F5IYx8G7rc7OiIROqUl37byUdLEri0YyQPDW3OJe+tILuwjEs7RvLmle11Eeg8lluay5LDSzhacvSkSY5jz0sqSs74+D0b9OT2drfTJayLPkdS75RVlPHMymfsqzrGtx/P+Pbjq3wufLnzS15Z+woGBgOjB/JKv1fwcPao0nOcKYvVwoa0DSxIWsDCpIWkFaXZ9zmbnenRoAeDGw5mQPQAgj1qPvluNaykF6WTcDTBniw59phVknXS1/m4+BDjF0Njv8ZE+0Tj6uSKk8kJEyaczH8+mpwwm82YMWM2mU+43cnkhMn05zaT2f7l5eJFy6CWKvEl8qflycsZP388ZpOZL0d8qRsupM5SKS0RERGpPonLIC8Z2l0FuvgmckbWJmZz5Uer8Pd0IdLfg+1H8mgT6cv3d/bC3aV23XksVedoyVGu/vVqkguST/s1Jkx4u3rj6+qLr6svPq4+tuduvvi4+NgeXX2Iz4hnTuIcKowKANqFtOP2trfTP6p/rUiQ7M7eza8Jv2JgcE2La4jwjnB0SHKeyS3N5YHFD7AudR3OJmee6fkMlza7tNrON+/gPB5b+hhl1jLahbTjvUHvEeAeUG3nO5ESSwkrj6xkQdIClhxeQu7f+qJ6OHvQN7IvgxsOpm9U33MqI1bdcktz7atK/p4wOVxwuEp6oPwbLxcvejToQZ/IPvSJ7HNWfWhEqlKJpYQvdnxBiEcIo2JHYTaZa+S8ReVFXDr7Uo4UHuH6Vtfzn67/qZHzilQHJUZERERERGohS4WVzi/MJ7e4HIAgL1d+uqcPkf6OveNYqk+FtYK7FtzFyiMrCfUIpXN4Z3uyw57o+DPp8ffkh5ez12mX6Tmcf5jPtn/GzL0zKbPaeik2C2jGrW1u5cLGF+JsrtkKyrmlufya8Cuz9s1iZ/ZO+3YXswtXxl3JbW1vc8id63L+OVJwhPHzx5OQm4CXixdvDniTXhG9qv28G9M2cs/Ce8gry6Oxb2M+GPIBUT5R1XrOvLI8lh5eysKkhSxPXk6xpdi+L8AtgAHRAxjccDA9Inrg5uRWrbFUt9KKUpLykuzJkpTCFCxWC4ZhUGFUYDWs9q8Ko+Kk2+1/xorV+udYbGMzijI4Wnq00nlj/WPpG9mXPpF96Bja8ZzLsImcif1H9/PwkofZd3QfAF3CuvBcr+eI9j37snen69V1rzJtxzQivCKYOWomni6e1X5OkeqixIiIiIiISC1134xNzN58BCeziS9v606PJkGODkmq0eSNk5kSPwV3J3emj5hOXGBctZ0rsziTL3Z8wTe7vqHIUgRAlHcUt7S9hVFNR+Hq5Fpt566wVrAqZRWz9s1iYdJCyq225J+z2ZmB0QPJLc1lbepawHZH+3Utr+OmNjfh66rf5+TsbM/azoQFE8gsziTUM5T3B79frfPrnxKOJnDn/DtJKUwhyD2I94e8T6ugVlVy7NzSXHZn72Zn9k52Z+9mV84uEo4m2FeGAYR7hTO44WAGNxxMx9CONZ4AreushpUdWTtYlryM5cnLic+Ix+Cvy2Oezp50b9CdPpF96BvZlwbeDRwYrZzPDMNg1r5Z/HfNfympKCHQPdDet8fD2YP7Ot3HNS2uqbbVI9sytzF2zlishpUPhnxAn8g+1XIekZqixIiIiIiISC214WAOD3yzmQmDYrmyS/XfBSiOsyhpEfcuuheAl/u+zEVNLqqR8+aW5jJj1wym75xuvyM61COUG1rfwBXNr6jSO0EP5B5g9v7Z/LT/J9KL0u3bWwS2YHTsaEbEjLCXGVqdsprJGycTnxkPgI+rD7e0uYVrW1yru1PljCw9vJSHlzxMsaWY5gHN+b/B/+eQMkjpRencNf8udufsxtPZkzcHvEnvyN6n/XrDMDhSeIRd2bvsX7uzd5NSmHLC8U39mjKo4SAGNxpMq8BWtaJc3vniaMlRVqWsYnnycpYnLye7JLvS/qZ+TekT2Yfekb3pHNa5WhPNUn8UlBXw/OrnmZM4B7D1C/tv3/9SYilh4sqJ9hsKOod15rlez9HQt2r7IZdby7n6l6vZk7OHi5pcxMt9X67S44s4ghIjIiIiIiIiDnQw7yBX/3I1BeUFjG05lse6PVbjMRSVF/Hj3h/5dPun9qSFn5sfY1uM5dqW1+Ln5ndWxy0sL+T3A78za98sNqVvsm/3c/PjopiLGB07mpZBLU/4WsMwWHRoEe9uetdeLiTIPYg72t3B5c0v18VG+Vff7v6WF9e8iNWw0rNBT94c8Cbert4Oi6egrID7F9/PmpQ1OJucmdRrEqNiRx03rryinITchOOSIPnl+Sc8bqR3JC0DWxIXGEeLwBa0CGyhHhg1xGpY2Zm9k+WHbUmSrZlbK/U88XD2oHu4bTVJn6g+RHpHOjBaqau2Z27nkaWPcCj/EE4mJyZ0nMAtbW6xrwyxGla+2/0db2x4g2JLMe5O7tzf+f4qXT3ySfwnvLPxHfzd/Jk9ejaB7oFVclwRR1JiRERERERExEGKyosYO2cs+47uo2NoR6YOnerQWvVlFWX8kvALU+OnkpSfBNjKxFwZdyU3tLqBEM+Qfz2GYRisT1vPrH2zmHdwnr2/gdlkpndEb0bHjmZA9IDTTmxUWCv47cBv/N+m/+NwwWEAIrwiGN9hPCObjFRZIDmO1bAyeeNkpm6bCsDo2NE80/MZXMyO7wNRXlHO0yuf5teEXwGY0GECncM6sztntz0Bsu/oPnuJub9zNjsT6x9LXEAcLYNaEhcQR/PA5iozV4vklubaVpMcXs6KIyvILM6stD/GL4beEb3pEt4FX1df3JzccHd2x8PJA3dnd9yc3fBw8sDZ7KxVPoJhGEzfOZ03N7yJxWqhgVcDXu33Kh1CO5xw/OH8w5VWj3QK7cTzvZ8/59UjB/MOMmb2GMqsZfy3z3+5uOnF53Q8kdpCiREREREREREHMAyDR5c+ym8HfiPYI5hvR357WomHmlBhrWBe0jw+2foJu3N2A7aG6KNjR3Nzm5uJ9jm+tFtKQQqz989m9r7Z9gQGQGPfxoyOHc3FTS8m1DP0rGMqt5Yzc+9MPtzyIRnFGYDtIuOEDhMY0mhItdVUl7rFYrUwceVEftr/EwB3dbiLO9vdWasuMlsNK+9sfIf/bfvfScf4uPjYV4Ace2zq11RNvusQq2Fld/Zue8mtLRlbKvV+ORUnk9NfSRNnD/tzd6fKf/778yD3IHpF9KKpf9Na9XmXs5NTksPTK55myeElAAxuOJhnez37rys4rYaV7/d8zxvr36DIUoS7kzv3dbqPa1tee1Y/Jw3D4NY/bmVd6jp6NujJRxd8pM+XnDeUGBEREREREXGAaTum8eq6V3E2OTP1wql0Cuvk6JCOYxgGy5OXMyV+ir0UltlkZnjMcG5tcyvRPtEsSFrArH2zWJOyxt6Q2MvFi2GNhzE6djTtQ9pX6UWUEksJM3bN4JNtn5BbmgtAy8CW3NvpXnpH9NYFm3qsxFLCI0sfYfGhxTiZnJjUaxKjY0c7OqyT+nrX17y36T08XTxpEWBLgBwriRXpHanP8nkmryyP1UdWszx5ObtzdlNiKbF9Vfz1+PcyXGcrwiuCvlF96RfVj27h3XB3dq+C6KUmrU9dz6PLHiW9KB1XsyuPdH2Eq+KuOqPvCckFyUxcMZE1qWsA2+qR53o/RyPfRmcUy497f2Tiyom4O7nz46gfT3hjhEhdpcSIiIiIiIhIDVufup7b/riNCqOCx7o9xtiWYx0d0r/akLaBKfFTWJG8wr7N09mTIkuR/c/dwrsxOnY0gxsOrvYm6QVlBXyx4ws+3/65PYZOoZ24r9N9tTLJJNUrvyyfexfey/q09biaXXm9/+sMbDjQ0WH9K8MwlAARwPZZKLeW/5Uo+XvS5B8JlBNtS8xNZG3KWsqsZfZjuju5061BN/pF9qNfVD8aeDdw4DuUf1NhreDj+I/5cMuHWA0rjX0b81r/12gR2OKsjmcYBt/t+a7S6pF7O93L2JZjT2v1SGZxJpfMuoT8snwe7vIwN7a+8aziEKmtlBgRERERERGpQelF6Vz585VklWQxImYEL/d9uU5dGN2ZtZNP4j9h3sF5GBhEeEVwSewljGo6iiifqBqPJ6ckh6nxU/l619f2C4J9I/tyT8d7TtrYXc4vWcVZjJ8/np3ZO/F28WbyoMl0De/q6LBEalxReRFrU9ey9PBSlh5eSlpRWqX9sf6x9IvqR/+o/rQLaXde9Gg6dqmyLv0cPZH0onQeW/YY61LXATCq6Sie6P5EldxkkFyQzMSVE1mTcmarRx5a/BB/HPyDVkGt+HLEl+fF50Xk75QYERERERERqSHlFeXc/PvNbMnYQrOAZkwfPr3aV1ZUl8P5h8kpyaF1cOta0d8jtTCVj7d+zI97f7TX8b+w8YXc3eFuYvxiHBydVJfkgmTGzRvHwbyDBLoH8uGQD5UQE8GWMNiTs4dlyctYengpWzK2VCrV5evqS+/I3vSL6kefiD74u/s7LtizlFGUwb0L76XQUsg7A9+ps9/rlx5eylPLnyKnNAcPZw+e7vF0lTc4/+fqETcnN+7taFs94mR2Om78oqRF3LvoXpxMTnx90df6virnJSVGREREREREasiLq19kxu4Z+Lj4MGPkDBr6NnR0SOedpLwk3t/yPnMS5mBgYDaZ6RDSAbPJjNWwUmFUHP9oPcl2w3rSMV4uXoR4hhDqEUqoZyghniGEeYYR4hFCqKdtW6B74AkvOEnV2Jezj3HzxpFenE6EVwQfD/34jOvni9QXR0uOsuLICpYeXsqKIyvsPZrA1juqXXA7+kXZSm41D2he61dgpBWmcdsft3Eg7wAAge6BfHzBx8QFxjk2sDNQXlHOOxvf4fMdnwPQIrAFr/V7jcZ+javtnEcKjjBx5URWp6wGoGNoR57r9VylcxaUFTBq9ijSi9K5uc3NPNj5wWqLR8SRlBgRERERERGpAT/v/5knlj8BwHuD3qN/dH8HR3R+25Ozh/c2vceiQ4scFoOTyYkgjyBCPWyJk2MJk1DP0ErbfF19a/1FyNpma8ZW7lpwF7mlucT6x/LhkA8J8wpzdFgidYLFaiE+M95ecmtPzp5K+8M8w+gb1ZcLG19IjwY9HBTlyR0pOMKtv9/K4YLDNPBqgJ+bH7uyd+Hj6sMHQz6gfUh7R4f4rw7lH+I/S/7DtqxtAIxtOZYHOz+Iq5NrtZ/bMAy+3/s9r6973b565J6O93Bdy+twMjvZb+KI8o7ix1E/4uHsUe0xiTiCEiMiIiIiIiLVbFf2Lq6bcx2lFaXc2f5O7u5wt6NDqjd2Ze9i/9H9OJmcMJvMfz2abY+Vtv390XyS7X8+FpQXkFGUQVpRGhnFGaQXpZNelE5GUQbpxelkFmdWKltzKm5OboR4hNA8oDn9o/vTL6ofwR7B1fw3U3etTF7J/Yvvp9hSTLuQdrw/+H383PwcHZZInZVamGpPkqxJWUNJRYl9302tb+L+TvfXmtVvh/MPc+vvt3Kk8AiR3pH878L/4e3qzd3z72ZzxmY8nD14d9C7dG/Q3dGhntTcxLk8u+pZCsoL8HX15fnezzOo4aAaj+NIwREmrZzEqpRVAHQI6cCVcVfy5PInMTCYMnRKrUyMiVQVJUZERERERESqUW5pLlf9chXJBcn0iezD/w3+v1rRk0OqV4W1guyS7L8SJsV/JlH+TJwcS6IcLT163GtNmGgb3Jb+0f3pH9W/VpS1SStMY0PaBuIz42ni34RRTUfVyJ3N/zT3wFweX/Y4FquFXhG9eGvAW3W2T49IbVRiKWFd6jrmHZzHzH0zARgYPZCX+77s8Ll2MO8gt/5+K2lFaTTybcQnQz8h3CscsDWev2/RfaxOWY2r2ZU3B7xZ61ZmFluKeWXtK/yw9wfAVsbq1X6v2t+DIxiGwQ97f+D19a9TWF5o3z6q6She6POCw+ISqQlKjIiIiIiIiFQTq2FlwoIJLEteRqR3JN+M/EZ3tkslpRWlZBRlkFqYyrq0dSw5tITtWdsrjWng1YD+Uf0ZED2AruFdayQhkVyQzPrU9WxI28D6tPUcyj9UaX+4Vzh3tLuD0U1H4+LkUu3xAHy7+1teWP0CBgbDGg/jv33+W2PnFqmPfkv8jaeWP0WZtYyWgS15d9C7DitZl5CbwG2/30ZGcQYxfjFMHTqVEM+QSmNKK0p5ZMkjLDq0CGeTMy/1fYlhMcMcEu8/7cvZxyNLH2Hf0X2YMHF7u9sZ3348zmZnR4cGQEpBChNXTmRVyioC3QOZPWo2/u7+jg5LpFopMSIiIiIiIlJN3t/8Ph9s+QA3JzemDZ9Gy6CWjg5J6oD0onSWHF7CkkNLWJ2ymtKKUvs+T2dPekf2pn9Uf/pG9SXQPfCcz2cYBkn5SbYkSOp61qetJ6UwpdIYs8lMi8AWtAlqw+JDi0kvTgcgwiuCce3HcXHTi3ExV0+SwjAMpsRP4d1N7wJwZfMreaL7E7WmtI/I+Wxz+mbuW3Qf2SXZhHqE8u7gd2kV1KpGY9ibs5fb/riN7JJsYv1jmTJ0yknLDZZby3lq+VPMSZyDCRMTe07ksuaX1Wi8f1dhrWDajmm8u+ldyqxlBHsE81Lfl2pliSrDMFiTuoZon2givSMdHY5ItVNiREREREREpBosPbyUuxfYeom82OdFLml6iYMjkrqo2FLMmpQ1LD60mKWHl5JRnGHfZ8JE+5D29I/uz4CoATT1b3paJbcMwyAhN6FSIuTvxwVwNjnTKrgVXcK60CWsCx1CO+Dj6gPY7sr+fs/3fBL/CZnFmQBEeUcxrv04RjYZWaV3QFsNK6+vf51pO6YBcEe7O5jQYYLDS4uJ1CfJBclMWDCBfUf34eHswUt9X2Jww8E1cu7d2bu5/Y/bySnNoUVgCz6+4GMC3ANO+RqrYeWF1S/w3Z7vAPhP1/9wfavrayLcShJzE3l6xdNsydgCQJ/IPrzQ+wWCPIJqPBYROZ4SIyIiIiIiIlXsUN4hrvr1KvLL8rkq7iqe6vGUo0OS84DVsLIjaweLDy1myeEl7MreVWl/lHcUA6IH0D+6P51DO9vLTFkNK3tz9rI+zVYaa0PaBrJLsiu91sXsQtvgtnQJtyVC2oe0/9d+AiWWEr7d/S1Tt021H6+hT0PubH8nI2JGnPOKjnJrOZNWTuKn/T8Bjru4KSKQX5bPI0seYcWRFZgw8UDnB7ip9U3VmqTcnrWdO/64g7yyPFoHteajCz467XKUhmHw5oY3+Wz7ZwDc1eEu7mx3Z40kVSusFUzfOZ13N71LaUUp3i7ePNL1ES6NvVRJXZFaRIkRERERERGRKlRsKea6OdexJ2cP7UPa8+mFn6oPglSL1MJUlhxawuLDi1mTsoZya7l9n7eLN70ielFmLWNj2kbyyvIqvdbdyZ32Ie3pHN6ZLmFdaBvcFndn97OKo6i8iG92f8On2z4lpzQHgMa+jRnffjwXNr7wrBIkJZYSHlnyCIsPL8bJ5MTzvZ/n4qYXn1V8IlI1LFYLr6x9hRm7ZwAwptkYnur+VLX8jNuSsYXx88aTX55Pu5B2fDjkQ/uqtdNlGAYfb/2Y9za/B8CNrW7koS4PVWty4p+rRHpH9GZSr0kObbAuIiemxIiIiIiIiEgVMQyDx5c/zq8JvxLoHsi3I791WKNaqV+KyotYdWQViw/bSm79c0WIp7MnHUM72leEtA5qXeUXM4vKi/hq11d8tv0zcktzAWji14TxHcYztNFQzCbzaR0nvyyfCQsmsDF9I25Obrze/3UGRA+o0lhF5Ox9ufNLXl33KlbDSrfwbrw54M3TXslxOjambeSuBXdRWF5Ip9BOvD/kfbxcvM76eNN3TOeVda8AcHnzy3mq+1NV3qPon6tEvFy8eKTLI4xpNkarRERqKSVGREREREREqsiXO7/k5bUv42RyYsrQKXQN7+rokKQeshpW4jPjWZm8Endnd7qEdaFlUMsq7f1xKgVlBfYESX5ZPgCx/rHc3eFuBjUcdMoESWZxJuPnj2dX9i68Xbx5d9C7dAnvUiNxi8jpW3p4KY8seYQiSxGNfRvzf4P/j4a+Dc/5uOtS13H3grspthTTLbwb7w5691/L+p2OmXtnMnHlRAwMhscM58U+L+Jirprk8D9XifSK6MWknpNo4N2gSo4vItVDiRERERERETknm9M3M/fAXEY2GUmb4DaODsdhNqZt5Nbfb8ViWHikyyPc0PoGR4ck4lD5ZflM3zmdadunkV9uS5DEBcRxV4e7GBg98Li7qJMLkrnjjztIyk8i0D2Qjy74iBaBLRwRuoicht3Zu5mwcAKphan4ufnx9oC3zymRuerIKu5deC8lFSX0bNCTdwa9g4ezR5XFOzdxLo8vexyLYWFA9ABe7/86bk5uZ308rRIRqduUGBERERERkbNSVF7EOxvf4etdX2Ng+1VhZJOR3NfpvnpXSzujKIMrf7mSzOJMhjUexqv9XtVFEZE/5ZbmMm3HNKbvnE5heSEALQNbcneHu+kX1Q+TycTenL3cOe9O0ovTifSO5OMLPq6Su89FpHplFmdy78J7ic+Mx9nszKSekxgVO+qMj7Ps8DLuX3Q/ZdYy+kb25a2Bb51T0uJklh5eyoOLH6S0opTuDbozeeDks1qRkpibyDMrnmFzxmYAejboybO9ntUqEZE6xKGJEYvFwqRJk/jyyy9JTU2lQYMG3HTTTTz11FOYzbaltTfddBOff/55pdd1796d1atXn9Y5lBgREREREal6K5NX8uyqZzlSeASAdiHt2JqxFbA1db6pzU3c3PrmKil/UduVW8u57ffb2Ji+kVj/WL4c8WW9eN8iZyq3NJfPt3/O9J3TKbYUA9AmqA2jY0czedNk8sryiPWP5aMLPiLUM9TB0YrI6SqxlPDk8if54+AfANzW9jbu6XjPafcVWpS0iIeWPES5tZyB0QN5vf/ruDq5Vlu861LXMWHBBIosRbQPac/7Q97H1/X0rhmeaJXIw10e5rJml+mGCJE6xqGJkRdffJG33nqLzz//nNatW7N+/XpuvvlmXnjhBe677z7AlhhJS0vj008/tb/O1dWVwMDA0zqHEiMiIiIiIlUntzSX19a9xuz9swGI8IpgYs+J9IrsxfbM7by67lU2pm8EINQjlHs73cvFTS8+7YsjddEra19h+s7peLt4M2PkDBr5NnJ0SCK1Wk5JDp9t/4yvd31tT5CALcH6/uD3q7SJs4jUDKth5b1N7zElfgoAFzS6gBf7vPivpbDmHZzHf5b8B4thYWijobzc7+Uq6/1xKlsztjJ+/njyyvJoEdiCD4d8SJBH0ClfcyD3AE+veFqrRETOEw5NjIwcOZKwsDCmTp1q33bZZZfh6enJtGnTAFti5OjRo8yaNeuszqHEiIiIiIhI1Zh/cD4vrnmRzOJMTJi4tuW13Nvx3kqrIwzDYN7Beby54U2SC5IBaBXUiv90/Q+dwzo7KvQql1GUwdbMraxNWctXu74C4J2B7zCo4SAHRyZSd2QVZ/HZ9s/4Zvc3dA/vziv9XtFqK5E67qf9PzFx5UQsVgttgtowedBkQjxDTjj2t8TfeHzZ41QYFYyIGcGLfV7E2excY7Huzt7NuHnjyCrJorFvY6YMnXLCUqBaJSJyfnJoYuTll1/mww8/5I8//qB58+Zs2bKFoUOH8vbbb3PNNdcAtsTIrFmzcHV1xd/fn/79+/Piiy8SGnriZbWlpaWUlpba/5yXl0d0dLQSIyIiIiIiZymzOJP/rvkv8w7OAyDGL4Znez1Lx9COJ31NaUUpX+78ko+3fmzvKXBBowt4oPMDRPtE10jcVaXYUsyOrB3EZ8SzNXMr8ZnxpBamVhpze9vbubfTvQ6KUKRuq7BW4GR2cnQYIlJFNqRt4P5F93O09CjhXuG8N+g94gLjKo35af9PPL3iaayGlUuaXsJzvZ5zyPeBA7kHuH3e7aQWphLhFcEnQz8h2je60n6tEhE5Pzk0MWIYBk888QSvvPIKTk5OVFRU8OKLL/L444/bx3zzzTd4e3vTqFEjEhMTefrpp7FYLGzYsAE3t+ObME2aNIlnn332uO1KjIiIiIiInBnDMPhp/0+8uu5V8srycDI5cUubWxjXftxpN0TNKs7i/zb/Hz/s/QGrYcXF7MJ1La/j9na34+PqU83v4MxZDSuJuYlszbAlQOIz49mbs5cKo6LSOLPJTFP/prQNbkv38O4Mixl2XpcLExERORNJeUncveBuDuQdwNPZk1f7vUr/6P4A/Lj3RyatnISBwWXNLuOZns849GdoSkEKt/1xG0n5SYR4hPDxBR8T4xfDlzu/ZPKmyVolInKecmhiZMaMGTzyyCO89tprtG7dms2bN3P//ffz5ptvcuONN57wNSkpKTRq1IgZM2YwZsyY4/ZrxYiIiIiIyLk7UnCE51Y9x4ojKwBoGdiS53o/R4vAFmd1vD05e3h93eusSlkFQKB7IHd3uJsxzcbUaNmMf8osziQ+w5YA2Zq5le2Z2ykoLzhuXKhHKG1D2tI2uC3tQtrRKqgVXi5eDohYRESkbsgtzeWhxQ+xJnUNZpOZh7s8jJuTG8+vfh6Aq+Ku4onuT9SKGwsyizO5/Y/b2Xd0H/5u/jT0bcjWjK2AVomInK8cmhiJjo7mscce4+6777Zve+GFF5g+fTq7du066euaNWvGbbfdxqOPPvqv51CPERERERGR02c1rMzYNYO3N75NsaUYV7Mrd3W4ixtb33jOCQzDMFiWvIzX1r3GgbwDAMT6x/JIl0foFdmrCqI/tcLyQvbk7PlrNUhGPEcKjxw3zsPZg1ZBrWgX3M6eDDlRzXERERE5tXJrOS+ufpEf9v5Qaft1La/jP13/U6tWX+SW5nLnvDvZlrUNAE9nTx7u+jCXN7u8VsUpIlXjTPIGVX4bV1FREWZz5aywk5MTVqv1pK/Jysri0KFDNGigLK2IiIhIfXCk4AjxmfE0829GE/8mjg7nvJaYm8jElRPZlL4JgE6hnZjUaxIxfjFVcnyTyUS/qH70jOjJt7u/5YMtH7Dv6D7GzR9H38i+PNzl4Sr5Nz5acpT9uftJyE0g4WgC+4/anqcVpR0fEyZ7Say2IW1pF9yOpv5NHbqKRURE5HzhYnZhYs+JxPjF8Mb6NzAwuLnNzTzQ6YFal2zwc/Pjkws/4dmVz2IxLDzc5WEivCMcHZaI1AJVvmLkpptuYv78+Xz00Ue0bt2aTZs2cccdd3DLLbfwyiuvUFBQwKRJk7jsssto0KABBw4c4IknniApKYmdO3fi4/PvNYm1YkRERESkbskpyWFt6lrWpKxhTcoakvKT7Pt6R/Tm+lbX0yuiV637ZbouK7eW8/n2z/lg8weUWcvwdPbkgc4PcGXcldVa3iK3NJcPt3zIjF0zsBgWnExOXBl3JXe1vwt/d/9TvtYwDDKKM+xJj4SjCbbH3ASyS7JP+rpQj1BaB7emXUg72ga3pXVQa7xdvav4nYmIiMg/bU7fTFZxFoMaDtL/40TE4RxaSis/P5+nn36amTNnkp6eTkREBNdccw3PPPMMrq6uFBcXM3r0aDZt2sTRo0dp0KABAwcO5Pnnnyc6Ovq0zqHEiIiIiEjtVlRexMb0jaxJWcPqlNXszt6NwV//7XQyOdHEvwn7j+7HathWFjf1a8p1ra5jZJORuDu7Oyr0alViKeFIwRHSi9Pxc/UjzCuMALeAKr+QsDNrJxNXTmRn9k4Aekf25pkez9ToHZIHcg/wxoY3WHxoMQA+rj7c2e5OrmlxDU5mJ44UHKmU/Nifu5/Eo4nkl+ef9JiR3pHE+MXQ1K8pTfyb0MSvCU38m+Drqt8JRERERETqO4cmRmqCEiMiIiIitUu5tZz4jHh7ImRr5lYsVkulMbH+sfRo0IMeDXrQOawz3q7eHMo/xFc7v2LmvpkUlhcC4O/mzxXNr+CaFtcQ4hniiLdz1iqsFaQXpXO44DCH8w+TXJBMckGy/XlGccZxr3ExuxDqGUqYZ5jtyyvsrz972bYFewSfVhmo0opSPtzyIZ9u+5QKowI/Nz8e7fooI5uMdNhdnKtTVvPautfYk7MHsDVoLyovoqSi5ITjnUxORPtE25Mexx5jfGPwdPGsydBFRERERKQOUWJERERERKqV1bCyN2cvq1NWsyZlDRvSNlBkKao0JsIrgh4RPege3p1uDboR7BF80uPll+Uzc+9Mvtr1FckFyQA4m50Z3ng417e6npZBLav1/ZwuwzDILc21JT4KDpOcn2x/TC5I5kjhkeMSQv/k5eJFmGcYeWV5ZBVnVVpJczJmk5kg96DjEiehnqGEe4UT6hlKelE6z616zt4AfWijoTze/fFT/r3XlAprBbP2zeLdTe+SVZIF2BJCjf0a21Z//C0J0si3Ea5Org6OWERERERE6holRkRERESkyh3KP2RfEbIudd1xPR8C3ALo1qAb3Rt0p0d4D6J8os54lYLFamHRoUVM2zHN3iwcoEtYF65vdT39o/rjZHaqkvdzKoZhcCj/ENsyt7EjaweH8g/ZVn4UHLavbDkZZ7MzEV4RRHpHEuUTRaR3JJE+kUR7RxPpHYmfm5/976W8opyM4gzSi9JJLUolrTCN9KJ00orS7M/Ti9KxGKdOtvxdsEcwT3V/isGNBp/T30F1KCwvZHvmdsK8woj0jlQzdBERERERqTJKjIiIiIhIlTAMg/lJ85m8cbJ9JcIxHs4edA7rTI8GPejeoDvNA5pXaVPvbZnbmLZjGn8c+MOeGIj2iWZsy7GMjh2Nl4tXlZ0rsziTbZnbiM+MZ3vmdrZlbSO3NPek40M8Qv5KevwtARLlHUWoZ2iVJm+shpXskmx7siSt6M/kyd+fF6VRVlHGxU0v5uEuD+Pn5ldl5xcREREREakLlBgRERERkXO2J2cPr6x9hbWpawFwNjnTLqQd3Rt0p3uD7rQLboeLk0u1x5FamMqMXTP4bs935JXlAeDj4sOYZmO4tuW1Z9xQvKCsgB1ZO9iWtc2eDEktTD1unIvZhZaBLWkd3JoYvxh7AiTCK6LWNYc3DAOLYcHFXP3/HiIiIiIiIrWREiMiIiIictaOlhzlvc3v8d2e77AaVtyc3Li5zc3c2OpGvF29HRZXUXkRP+//mek7p9tXr5hNZoY0HML1ra6nQ2iH415TVlHGnpw99gTItsxtJOYmHtfXw4SJpv5NaRPchjZBbWgT0obm/s1rJPEjIiIiIiIi506JERERERE5Yxarhe/2fMd7m96zr8wY2mgoD3V56IxXZVQnq2FlefJypu2YxuqU1fbt7YLbcXWLqzEwiM+IZ3vWdnZl76LcWn7cMSK8ImxJkD+/WgW1qtLSXCIiIiIiIlKzlBgRERERkTOyJmUNL699mX1H9wHQPKA5j3V7jK7hXR0c2antydnD9B3T+TXhV8qsZScc4+/mT+vg1rQNbkvb4La0DmpNkEdQDUcqIiIiIiIi1UmJERERERE5LYfzD/PG+jeYnzQfAD83P+7pcA+XNb8MZ7Ozg6M7fVnFWXy751t+S/yNALcA2gS3sSVBglsT5R2FyWRydIgiIiIiIiJSjZQYEREREZFTKiovYuq2qXy27TPKrGU4mZy4Mu5K7u5wN35ufo4OT0REREREROSMnEneoO7cBigiIiIi58wwDOYkzuHNDW+SXpQOQPcG3Xm066M0C2jm4OhEREREREREqp8SI3VIaUUpyw8vJ6ski14RvYjyiXJ0SCIiIlKH7MjawctrX2ZT+iYAIr0jeaTLIwxqOEilpkRERERERKTeUGKklquwVrAubR1zEuYw/+B88svz7ftaBrZkSKMhDGk4hCb+TRwYpYiIiNRmWcVZvLvpXX7c+yMGBh7OHtzW9jZubH0jbk5ujg5PREREREREpEapx0gtZBgGO7J38GvCr8xNnEtGcYZ9X5hnGJHekWzO2IzVsNq3N/FrwpBGQ7ig0QXEBcTprk8RERGhvKKcr3Z9xYdbPqSgvACAi5pcxAOdHiDMK8zB0YmIiIiIiIhUHTVfr6MO5h1kTuIc5iTM4UDeAft2X1dfhjYeykUxF9EprBNmk5nskmwWH1rMvIPzWJ2yGovVYh8f5R1lW0nSaAhtg9tiNplr/s2IiIiIQy1PXs4ra1+x/5+iVVArHu/2OB1COzg0LhEREREREZHqoMRIHZJZnMncxLn8mvAr27K22be7O7kzIHoAI2JG0CeyDy5OLic9Rl5ZHksPL2X+wfmsSF5BSUWJfV+oZyiDGw7mgkYX0DG0I85mVU8TkdptQdICZu2bxdBGQ7mw8YW4Ork6OqQaYTWsHMo/RFphGk5mJ5zNzriYXXA2O9ufH/vzP7crAV6/FZUXkVyQzOH8w7bHgsPsyt7FhrQNAAS6B3J/p/sZFTtKnxURERERERE5bykxUssVlBUwP2k+cxLmsCZ1jb0klpPJiR4RPbgo5iIGNRyEl4vXGR+7qLyIFUdWMO/gPJYeXkpheaF9X4BbAIMaDmJIoyF0D+9+ymSLiIgjzNw7k4krJ2Jg+9EU7BHMVXFXcUXzKwjyCHJwdFXHMAwOFxxmR9YOtmdtZ0fmDnZk7ajUR+pMmE1mnE3OuDj9I3Hy57YY3xie7vk0wR7BVfxOpCZYrBZSC1NJLki2J0AOFxwmOd+WBMkuyT7h65xNzoxtOZZx7cfh4+pTw1GLiIiIiIiI1CwlRmqhsooyliUv49eEX1lyaAll1jL7vvYh7RkRM4KhjYdW6UWrsooyVqesZt7BeSw6tIjc0lz7Ph8XH/pH92dIwyH0iuyFh7NHlZ1XRORsfLnzS15e+zIAvSN7szd7L+nF6QC4ml25qMlFjG05lrjAOEeGecYMwyClMMWWAMnawfbM7WzP2k5eWd5xY92c3Ij0jsRqWCm3lmOxWrBYLfbnxx6PJY7ORGPfxkwZOoVwr/CqeFtShQzDIKc0x57o+Hvy43D+YVILU6kwKk55DF9XXyK9I4nyiSLKO4pI70h6RvSkoW/DGnoXIiIiIiIiIo6lxEgtYTWsrE9dz5zEOfxx8A/yy/66EzjGL4aLYi5iRJMRRPtEV3ss5dZyNqRtYP7B+SxIWkBmcaZ9n4ezB93Cu9HUvykxfjE08WtCjF+M7i6tRQ7mHSSjKINAj0CC3IPwcfVRORQ5r0zZOoXJmyYDcEOrG3i4y8NYrBb+OPgH03ZMY3vWdvvY7uHdua7VdfSL6lfr5oFhGKQVpf2VBPlzNUhOac5xY13MLsQFxNEqqBWtg1vTOqg1Tfyb4GL+99V8FdaKUyZO/v5YUF7Ac6ueI6UwhUjvSKZeOJVI78jqePtyhvYf3c/sfbP5JeEXMoozTjnWxexCpHckkT6RRHn/mfz483mkTyS+rrX3/0MiIiIiIiIiNUGJEQezWC38lvgbH2/9uFIT9VDPUEbEjOCiJhcRFxCHyWRySHxWw8qWjC3MOziPBQcXcKTwyAnHBXsE25Mkx76a+DUhzDPMYbHXN1bDykdbP+L9ze9X2u5scsbf3Z9A98CTf3kEEuhme/R09tS/mdRKhmHwzsZ3mLptKgDj249nfPvxlT6vhmGwJWML03ZMY0HSAvud8w19GnJty2sZHTv6rEoPVoWMogx7AmR71na2Z24nqyTruHHOJmeaBTSrlARp5t+sxkoaHik4wm1/3Mah/EOEe4XzydBPaOTbqEbOLZXlluYyN3Eus/bNqtRbDGz/T4jyjiLKJ8q++iPS25b8CPEMqXWJQBEREREREZHaRIkRB7FYLcxJnMPHWz/mYN5BwFayamjjoVzU5CI6h3WudRc1DMNgR/YOtqRvISE3gQO5B0jMTbSXrzkRT2dPGvs1tidNjj029GmoviVVqLC8kCeWPcHCQwsBiPSOJK8sr9LKo9Pl5uRmT5gEuAcQ6G5bedI2pC39o/rXm+bWUrtYDSsvr32Zr3d9DcBDnR/ipjY3nfI1KQUpfL37a77f8719Lni7eDOm2RiuaXENUT5R1RZvQVkBO7J2EJ8Zz7bMbWzN3Ep60fHfK51MTsT6x9qSIEGtaR3cmmYBzXBzcqu22E5HWmEat8+7ncTcRII9gvlk6Cc09W/q0JjqiwprBatSVjFr3ywWJS2yl9N0NjnTN6ovo2NH0yuiF+7O7g6OVERERERERKTuUmKkhlmsFn5J+IUpW6eQlJ8EgL+bPze2vpFrWlzjsDuZz0V+WT4Hcg+QkJtAYm4iibmJJOQmcCj/0EnrnDuZnIj2ibYnTTqFdqJfVD+tVDgLB/MOct/C+9ifux8XswtP93iaS5tdCkB5RTnZJdlkl2STU5JDVklWpT8fe37sq9hSfMpz+bn5MazxMEbHjqZ1UGv9e0mNqLBWMHHlRGbvn40JE0/1eIor46487dcXlRfx8/6fmb5zun1lntlkZlD0IK5rdR2dQjud02e5vKKcPUf3sC1jmz0RkpCbcFxvD7PJTBO/JpWSIHEBcbX2AndWcRa3z7udvTl7CXAL4OOhH9MisIWjwzpvJeYmMnvfbH7e/3OlGw6aBTRjdNPRXNTkIoI8ghwYoYiIiIiIiMj5Q4mRGlJuLeeX/b/w8daPOVxwGIAAtwBubH0jV7e4uk4mRP5NeUU5h/IP2ZIleYkkHE2wPy8sLzxufNfwrjzR7QliA2IdEG3dtOzwMh5d+ij55fmEeoTy1sC3aBfS7qyPV1ReRE5pDtnFlRMmqYWpLExaWOliXRO/JlzS9BJGNhlJmFdYVbwdkeOUV5Tz+PLH+f3A75hNZl7o/QIXN734rI5lNaysSF7B9J3TWXlkpX17y8CWXN/qei5sfOG/rogyDIND+YeIz4y3f+3K2mW/q//vIrwiaBPchnYh7WgT3IaWgS3xdPE8q9gd5WjJUcbNH8eOrB34uPrw8QUf0ya4jaPDqnIJuQlMjZ9KZnEmsf6xNAtoRrOAZjT1a1qtiav8snzmHpjL7H2z2ZKxxb7dz82Pi2IuYlTsKFoGtlQSWkRERERERKSKKTFSzcoryvlp/09MiZ9CckEyAIHugdzU+iauiruqzl0kqwqGYZBelG5Pluw9updf9v9CSUUJTiYnxrYcy/j24/F29XZ0qLWWYRhM3TaVyRsnY2DQIaQDbw18i2CP4Go7Z4W1gjUpa5i1fxYLkxZSWlEK2O6C79mgJ6NiRzEwemCtvftd6p4SSwkPLXmIpYeX4mx25rV+rzGk0ZAqOfa+nH18uetLft7/s/2zHOwRzFVxV3FF8yvsd+ZnFWexLfOvlSDxmfHkleUddzxfV1/aBrelTXAb2ga3pXVw62qdjzUpvyyf8fPHsyVjC14uXnww5AM6hnZ0dFhVIrUwlQ+2fMCsfbOwGtbj9ptNZhr6NLQnSpr7N6d5QHMifSLPutxlhbWCNalrmL1vNguSFtg/f04mJ/pE9mFU7CiVLRQRERERERGpZkqMVJPyinJm7Z/FJ1s/sTcsD3QP5JY2t3BF8yvqZULkVJILknl17av2HhkhHiE81OUhRsSM0J2y/1BUXsQzK5/h9wO/A3B588t5otsTNdqzJb8snz8O/MHs/bPZlL7Jvv1Yn5zRsaNpH9Je/3Zy1orKi7hn4T2sTV2Lm5Mbbw98mz6Rfar8PDklOfyw9we+3vm1fUWUq9mVLuFdOJB7wP79++9cza60DGpZKRES7RN9Xn/ei8qLmLBwAutS1+Hh7MG7g96le4Pujg7rrOWW5jI1fipf7frKnpgYGD2QPpF9SMhNYG/OXvbk7OFo6dETvt7D2eOvlSX+zWge0JxmAc0IcA846TmT8pKYtW8WPyf8TGphqn17U7+mjI61lcoK8Qyp0vcpIiIiIiIiIiemxEgVK6soY9a+WXwS/wkphSmA7S7km1vfzBVxV+Dh7FHtMdRly5OX89Kal+z9V7qEdeGJ7k/QLKCZgyOrHQ7nH+a+RfexJ2cPzmZnHu/2+Bn1WqgOB/MO8tP+n/h5/8/2zzxAI99GXNL0Ei5ucjENvBtUawyGYZBXlkd6UTrhXuH4uPpU6/mkeuWV5XHX/LvYkrEFT2dP3hv8Hl3Du1brOcut5cw7MI9pO6axLWubfbsJE038mtgTIG1C2tDcv3mNJiJri2JLMfcvup+VR1ZWa7KqOhVbivlq51dM3TaV/LJ8ADqFduKBzg/QIbRDpbGGYZBZnMnenL3sPWpLlOzN2cv+o/tPWDoNbD/vm/n/ubokoDmx/rHsydnDrH2z2Ji+0T7Ox9WHETEj1K9JRERERERExEGUGKkipRWl/Lj3R6bGTyWtKA2wrXq4pc0tXN78cpUXOgNlFWV8tv0zpmydYi+vdW3La7mr/V0OLa9VWF6I2WR2WHJrdcpqHl7yMLmluQS5B/HmgDfpFNbJIbGciNWwsj51PbP3z2bewXn2Ru4mTHQL78ao2FEMbjj4rFZLWawWMooyOFJ4hJTCFFIKUkgpTOFI4RFSC1JJKUyhyFJkP1+zgGZ0DO1Ih9AOdArtRAOvBrrwWEdkl2Qzbt44dmXvwtfVlw+HfEjbkLY1dn7DMNiSsYXtWdtp5t+MVkGtVNbvb8oqynhoyUMsPrQYZ7Mzr/d/ncENBzs6rH9lsVqYtW8WH2z+wL4yKNY/lgc6P0DfyL5n9P3BYrWQlJ9kX1WyN2cve3P22vuHnYzZZKZnRE9Gx45mYPRA3Jzczuk9iYiIiIiIiMjZU2LkHJVWlPL9nu/537b/kV5ku9gS6hHKLW1v4bJmlykhcg6OFBzhtXWvMT9pPmC7E/fBzg8yssnIGrvIXVBWwMJDC5mTOIfVR1bjYnZhRJMRXB13NS2DWtZIDIZh8MWOL3hzw5tYDSttgtrw1sC3CPcKr5Hzn43C8kLmHZzHT/t/Yl3qOvt2T2dPhjYeyiVNL6FzWGd7jf6i8iJboqPgz8THsa8/EyDpRelUGBX/el4fVx/7XeB/F+oZSsfQjvZkSVxAHM5m56p7w1Il0grTuGPeHSTkJhDoHsjHF3xMXGCco8OSfyi3lvPY0sf44+AfOJmceLnvywyLGebosE7IMAzmJ81n8sbJHMg7AECEVwR3d7ybi2IuwsnsVGXnKiovYt/RfX8lS47aVpcEuAUwsulILm5yMWFeYVV2PhERERERERE5e0qMnKUSS4k9IZJRnAHYLr7e1vY2xjQboztBq9CK5BW8tPYlDuYdBGxlT57s8STNA5pXy/lKLCUsS17Gb4m/sfTwUnv9+X9qF9KOq+Ou5sLGF1Zbk9wSSwmTVk3i14RfAbik6SU80/OZOvX5Si5I5qf9P/HTvp8q3VEd6R2Jj6sPKYUp5Jbm/utxnM3OhHuG08C7AQ28bF8R3hGEe4UT4WV7dHd2J6Mog80Zm9mUvonN6ZvZmbUTi2GpdCwPZw/ahbSzJUtCOtIupJ1WBTjY4fzD3PbHbSQXJBPmGcYnQz+hsV9jR4clJ2GxWnhmxTP8nPAzZpOZ53o9x6jYUY4Oq5K1KWt5e+PbxGfGA+Dv5s8d7e7gqrir1NhcREREREREpJ5TYuQMWA0r2zK3sfjQYmbum0lmcSYAYZ5h3N72di5tdqkutlSTsooyvtjxBR9t+cheXuuaFtdwV4e7qqSfRLm1nNVHVjP3wFwWJC2gsLzQvi/GL4bhMcMZ3ng4OaU5fL3ra+YdnIfFarvYHuAWwJhmY7gy7koivCPOOZZjUgpSuG/RfezM3omTyYlHuj7CtS2urbMloQzDYFP6Jmbvn83vB36v9HcMtsbtf096NPBuYE94RHhHEOQedFZ3dxdbitmWuY1N6ZvYlL6JLelbyC+vvKrEbDLTzL+ZfVVJx9CO1d4XRf6SkJvA7X/cTnpROtE+0UwZOoVI70hHhyX/wmpYeW7Vc/yw9wcAnu7xtMN7HgHsyt7F2xveZsWRFYAtEXpDqxu4qfVNSoCKiIiIiIiICKDEyL8qthSz+shqFh9ezJJDS8gqybLva+DVgNva3sbo2NFKiNSQlIIUXlv/GvMOzgMgyD2Ih7o8dFbltayGlY1pG/kt8TfmHZxHTmmOfV8DrwYMixnGiJgRxAXEHXfszOJMftjzA9/t+c7eU8ZsMtMvqh/XxF1Dj4ge9jJRZ2Nd6joeXvIw2SXZBLgF8MaAN6q9+XRNOjavzCazPRlSUw3TrYaVfUf3sTl9sz1ZklyQfNy4MM8we5Kkd2RvGvk2qpH46pvd2bu5Y94dZJdk09SvKR8P/ZhQz1BHhyWnyTAMXl77Ml/t+gqAR7s+ynWtrnNILIfyD/HepveYkzgHAGeTM5c3v5xx7ccR7BHskJhEREREREREpHZSYuQE0ovSWXJ4CUsOLWF1yupKpZS8XLzoHdGbQQ0HMbTRUFycXKordDmFlckreWntS/aa8Z1CO/FE9yf+tR+BYRjsyN7Bbwm/MffAXHtSAyDQPZChjYYyoskI2oe0P63EhsVqYcmhJXy9+2vWpKyxb2/k24grm1/JqNhR+Ln5nfb7MgyDr3d9zWvrXsNiWGgZ2JK3B75dpStR5HjpRen20lub0jexK3vXcT1NYv1jGdRwEIMaDqJVYKs6u3KnNtmSsYXx88eTX5ZPy8CWfHTBRwS4Bzg6LDlDhmHw1sa3+HTbpwDc1+k+bmt7W42dP7M4k4+3fsx3e76zr+Qb3ng4EzpOoKFvwxqLQ0RERERERETqDiVGsF3U2ZOzh0WHFrHk0BK2ZW2rtD/CK4IB0QMYED2ALmFdlAypJY6V1/p468cUW4oxm8z28lq+rpX/rRNyE/gt8TfmJs61J1MAvF28GdxwMCNiRtCtQbdzasidkJvAt7u/Zfa+2RSUFwDg7uR+2s3aSytKeXH1i8zcNxOA4THDebbXs3g4e5x1THJ2isqL7OW31qWtY0Pqhkp9SsK9whkUPYjBDQfTKayTwxq5W6wWdmfvZmP6RhJyE2gf0p7BDQfX2Oqbc7EudR13L7ibYksxHUI68P6Q9+tE3HJihmHw4ZYPeX/L+wDc2f5O7mp/V7UmEAvKCvh8x+d8vv1zii3FAPSK6MV9ne6jVVCrajuviIiIiIiIiNR99TYxUlZRxrrUdSw+tJjFhxeTWpha6XXtgtvRP7o/A6IH0My/me4Or8VSC1N5dd2r9vJage6BPNj5QbqGd2Xugbn8lvgbu7J32ce7ObnRP6o/I2JG0CeqT5U3Mi8qL+KXhF+YsXsGe3P22re3D2nP1S2uZmijoceVXksrTOPBxQ+yNXMrZpOZBzs/yA2tbtDnrpbILc1lWfIyFiYtZHnycvtFWAA/Nz/6R/VncMPB9IzoWa2JrMLyQrZkbLGVAEvbxNbMrZViAXA1u9Ivqh8jmoygb2Rf3J3dqy2es7X08FIeXPwgpRWldG/QnckDJ+Pp4unosKQKTI2fytsb3wbg5tY380DnB6rk+5hhGGSVZJGUl0RSfhIJuQnM2jvLXgKxdVBrHuj8AN0bdD/nc4mIiIiIiIjI+a9eJUYqXCtYlryMxYcWsyJ5BUWWIvs4dyd3ekT0YGD0QPpF9VM98jpo5ZGVvLTmpUorQo5xNjnTM6Inw2OGM6jhILxcvKo9nmPNxmfsmmFr1v7nioNA90Bbs/bmV9LAuwGb0zfzwOIHyCzOxNfVl9f6vUavyF7VHp+cnRJLCatTVrMgaQGLDy3maOlR+z4PZw96RfRicMPB9Ivqd0Zl1E4krTDN3gdlU/omdufsxmpYK43xcfWhY2hHGvs2ZnnychJyE+z7vFy87Cuiujfo7rCVLX837+A8/rP0P1isFgZEDeD1Aa9XeXJSHOvLnV/y8tqXAbimxTU81u2x0ypNaDWsZBRlkJSfxKH8Q/YkyLHHfyYBwVa28J6O9zC00VAlkkVERERERETktNWbxMjV31/NjsIdlS4qhniE0C+qHwOjB9KtQTeVLDoPlFeUM23nND7c8iEllhI6h3VmeMxwLmh0gUN7F2QWZ/L9nu/5bs93pBelA7Zm7d3Cu7E+bT0Wq4VY/1gmD5xMtG+0w+KUM2OxWtiUvomFSQtZmLSQI4VH7PucTE50Ce/CoGhbX5Jwr/BTHstqWNl/dD+b0jexMX0jm9M3n7ApfKR3pL0pfKfQTjTxb2K/6HysLOCvib8yN3EuKYUp9tcd66FzUZOLaB/SvsYuIhdbitmRtYP4jHi2Zm5lQdICrIaV4Y2H82LfF3ExqzTh+ei7Pd/x/KrnMTC4rNllPN3jaZzMTlgNK2mFabaER34Sh/IOkZSfxMG8gxzOP0xJRclJj2k2mWng1YBon2ga+jSkfWh7hscM12dIRERERERERM5YvUmMtPygJU4eTsQFxNE/uj8DowfSKqjVad3FKnVPUXkRpRWlta6Rs8VqYfGhxczYNYM1qX81a7+g0QW80PsFlROqwwzDYFf2LhYkLWDhoYWVyqgBtAlqw6CGtr4kTfybUFpRau9jsjFtI5szNpNfll/pNWaTmbiAOFsiJKwjHUM6EuYVdlrxWA0rm9M3MydxDn8c+MNecghsfZOGxwxnRJMRNA9ofu5v/m/nPJB7gK2ZW+2JkL05e49rZD+m2Rie6fEMTmanKju31D4/7/+Zp1Y8hdWw0jKwJWUVZRzKP0SZteykr3EyORHhHUFDn4ZE+0TTyLcRDX1tzyO9I48rQygiIiIiIiIicjbqTWLkk3WfMLzFcCK8IxwdkggACUcTmLVvFuFe4VzT4hqVgTnPJOUlsejQIhYkLWBz+mYM/vr2Ge4VTlZxFuXW8kqv8XD2oF1IOzqFdqJDaAfah7SvkrJv5dZyVh9ZzW+Jv7EgaUGlMoKx/rGMiBnBsJhhRPuc2Wql7JJsewIkPiOebZnbyC/PP25ciEcIbYPb2t5bWCc6hHTQ572e+P3A7zy29DF7KUGwlTaM8omyrfzwbUhDn4b2xwbeDbQCRERERERERESqXb1JjJzOGxQRqQ6ZxZksPrSYBUkLWJOyxp4QCfYItpfE6hjakeaBzav9onCxpZilh5cyJ2EOy5KXVUrOtAtpx4iYEVzY+MLj+iyVVZSxK3sXWzO22hMhhwsOH3d8dyd3WgW1sidC2oW0I8wzTImQemx39m62Zm4l0juShj4NCfcKrxX9bkRERERERESk/lJiRESkBhWUFRCfGU+UTxRR3lEOTRjkleWx4OACfk38lXWp6+w9mI71v+kX1Y/kgmS2ZmxlV/au41a4AMT4xdiSIMHtaBvSlmYBzXTHv4iIiIiIiIiI1GpKjIiICBlFGfx+4HfmJM4hPjP+hGP83fz/WgkS3I7Wwa3xc/Or4UhFRERERERERETOjRIjIiJSSVJeEr8l/samjE008mlkT4RE+Th2hYuIiIiIiIiIiEhVOJO8gQqCi4jUAw19GzKu/ThHhyEiIiIiIiIiIuJwZkcHICIiIiIiIiIiIiIiUlOUGBERERERERERERERkXpDiREREREREREREREREak3lBgREREREREREREREZF6Q4kRERERERERERERERGpN5QYERERERERERERERGRekOJERERERERERERERERqTeUGBERERERERERERERkXpDiREREREREREREREREak3lBgREREREREREREREZF6Q4kRERERERERERERERGpN5QYERERERERERERERGRekOJERERERERERERERERqTeUGBERERERERERERERkXpDiREREREREREREREREak3lBgREREREREREREREZF6Q4kRERERERERERERERGpN5QYERERERERERERERGResPZ0QGcDcMwAMjLy3NwJCIiIiIiIiIiIiIi4mjH8gXH8genUicTI/n5+QBER0c7OBIREREREREREREREakt8vPz8fPzO+UYk3E66ZNaxmq1cuTIEXx8fDCZTI4O56Ty8vKIjo7m0KFD+Pr6OjocOYmuXbuybt06R4chJ6F5VPtpDtVumkN1g+ZR7aZ5VPtpDtVumkN1g+ZR7aZ5VPtpDtVumkN1g+ZR7VVX5pBhGOTn5xMREYHZfOouInVyxYjZbCYqKsrRYZw2X1/fWv2Bqe+cnJz071MHaB7VXppDdYPmUO2meVQ3aB7VXppDdYPmUO2meVQ3aB7VXppDdYPmUO2meVT71YU59G8rRY5R83Wp9+6++25HhyBSp2kOiZw7zSORc6M5JHLuNI9Ezo3mkMi50zySmlQnS2nVFXl5efj5+ZGbm1vrM2kitZXmkci50RwSOXeaRyLnRnNI5NxpHomcG80hkXNzPs4hrRipRm5ubkycOBE3NzdHhyJSZ2keiZwbzSGRc6d5JHJuNIdEzp3mkci50RwSOTfn4xzSihEREREREREREREREak3tGJERERERERERERERETqDSVGRERERERERERERESk3lBiRERERERERERERERE6g0lRkREREREREREREREpN5QYuRfLF26lIsvvpiIiAhMJhOzZs2qtD8tLY2bbrqJiIgIPD09GTZsGHv37q00ZsCAAZhMpkpfV199daUxOTk5XH/99fj5+eHn58f111/P0aNHq/ndidSMqphHAKtWrWLQoEF4eXnh7+/PgAEDKC4utu/XPJLz1bnOoQMHDhz3c+jY13fffWcfpzkk56uq+DmUmprK9ddfT3h4OF5eXnTq1Invv/++0hjNITmfVcU82r9/P5deeikhISH4+vpy5ZVXkpaWVmmM5pGcr1566SW6du2Kj48PoaGhjB49mt27d1caYxgGkyZNIiIiAg8PDwYMGMD27dsrjSktLeWee+4hODgYLy8vLrnkEg4fPlxpjOaRnI+qag59/PHHDBgwAF9fX0wm0wnnhuaQnK+qYh5lZ2dzzz33EBcXh6enJw0bNuTee+8lNze30nHqwjxSYuRfFBYW0r59e957773j9hmGwejRo0lISGD27Nls2rSJRo0aMWTIEAoLCyuNvf3220lJSbF/ffTRR5X2X3vttWzevJm5c+cyd+5cNm/ezPXXX1+t702kplTFPFq1ahXDhg1j6NChrF27lnXr1jFhwgTM5r++jWkeyfnqXOdQdHR0pZ9BKSkpPPvss3h5eTF8+HD7sTSH5HxVFT+Hrr/+enbv3s1PP/1EfHw8Y8aM4aqrrmLTpk32MZpDcj4713lUWFjI0KFDMZlMLFy4kBUrVlBWVsbFF1+M1Wq1H0vzSM5XS5Ys4e6772b16tXMmzcPi8XC0KFDK/2sefXVV3nzzTd57733WLduHeHh4VxwwQXk5+fbx9x///3MnDmTGTNmsHz5cgoKChg5ciQVFRX2MZpHcj6qqjlUVFTEsGHDeOKJJ056Ls0hOV9VxTw6cuQIR44c4fXXXyc+Pp7PPvuMuXPncuutt1Y6V52YR4acNsCYOXOm/c+7d+82AGPbtm32bRaLxQgMDDSmTJli39a/f3/jvvvuO+lxd+zYYQDG6tWr7dtWrVplAMauXbuq9D2IONrZzqPu3bsbTz311EmPq3kk9cXZzqF/6tChg3HLLbfY/6w5JPXF2c4hLy8v44svvqh0rMDAQOOTTz4xDENzSOqXs5lHv//+u2E2m43c3Fz7mOzsbAMw5s2bZxiG5pHUL+np6QZgLFmyxDAMw7BarUZ4eLjx8ssv28eUlJQYfn5+xocffmgYhmEcPXrUcHFxMWbMmGEfk5ycbJjNZmPu3LmGYWgeSf1xNnPo7xYtWmQARk5OTqXtmkNSn5zrPDrm22+/NVxdXY3y8nLDMOrOPNKKkXNQWloKgLu7u32bk5MTrq6uLF++vNLYL7/8kuDgYFq3bs3DDz9cKVu9atUq/Pz86N69u31bjx498PPzY+XKldX8LkQc63TmUXp6OmvWrCE0NJRevXoRFhZG//79K80zzSOpr87kZ9ExGzZsYPPmzZXu6NAckvrqdOdQnz59+Oabb8jOzsZqtTJjxgxKS0sZMGAAoDkk9dvpzKPS0lJMJhNubm72Me7u7pjNZvsYzSOpT46VHAkMDAQgMTGR1NRUhg4dah/j5uZG//797Z//DRs2UF5eXmlMREQEbdq0sY/RPJL64mzm0OnQHJL6pKrmUW5uLr6+vjg7OwN1Zx4pMXIOWrRoQaNGjXj88cfJycmhrKyMl19+mdTUVFJSUuzjxo4dy9dff83ixYt5+umn+eGHHxgzZox9f2pqKqGhoccdPzQ0lNTU1Bp5LyKOcjrzKCEhAYBJkyZx++23M3fuXDp16sTgwYPttas1j6S+Ot2fRX83depUWrZsSa9evezbNIekvjrdOfTNN99gsVgICgrCzc2NcePGMXPmTJo2bQpoDkn9djrzqEePHnh5efHoo49SVFREYWEhjzzyCFar1T5G80jqC8MwePDBB+nTpw9t2rQBsH/Gw8LCKo0NCwuz70tNTcXV1ZWAgIBTjtE8kvPd2c6h06E5JPVFVc2jrKwsnn/+ecaNG2ffVlfmkRIj58DFxYUffviBPXv2EBgYiKenJ4sXL2b48OE4OTnZx91+++0MGTKENm3acPXVV/P9998zf/58Nm7caB9jMpmOO75hGCfcLnI+OZ15dKzu9Lhx47j55pvp2LEjb731FnFxcfzvf/+zH0vzSOqj0/1ZdExxcTFfffXVcfU/QXNI6qfTnUNPPfUUOTk5zJ8/n/Xr1/Pggw9yxRVXEB8fbx+jOST11enMo5CQEL777jt+/vlnvL298fPzIzc3l06dOlWaa5pHUh9MmDCBrVu38vXXXx+375+f9dP5/P9zjOaRnO+qeg792zHO9jgitVlVzKO8vDwuuugiWrVqxcSJE095jFMdx1GcHR1AXde5c2c2b95Mbm4uZWVlhISE0L17d7p06XLS13Tq1AkXFxf27t1Lp06dCA8PJy0t7bhxGRkZx2XoRM5H/zaPGjRoAECrVq0qva5ly5YkJSUBaB5JvXYmP4u+//57ioqKuOGGGypt1xyS+uzf5tD+/ft577332LZtG61btwagffv2LFu2jP/7v//jww8/1BySeu90fhYNHTqU/fv3k5mZibOzM/7+/oSHhxMTEwPoZ5HUD/fccw8//fQTS5cuJSoqyr49PDwcsN1le+z3H7CVFT72+Q8PD6esrIycnJxKq0bS09PtK4E1j+R8dy5z6HRoDkl9UBXzKD8/n2HDhuHt7c3MmTNxcXGpdJy6MI+0YqSK+Pn5ERISwt69e1m/fj2jRo066djt27dTXl5u/4D17NmT3Nxc1q5dax+zZs0acnNzK5U5ETnfnWweNW7cmIiICHbv3l1p/J49e2jUqBGgeSQCp/ezaOrUqVxyySWEhIRU2q45JHLyOVRUVASA2Vz5v85OTk72VY2aQyI2p/OzKDg4GH9/fxYuXEh6ejqXXHIJoHkk5zfDMJgwYQI//vgjCxcutCcEj4mJiSE8PJx58+bZt5WVlbFkyRL7579z5864uLhUGpOSksK2bdvsYzSP5HxVFXPodGgOyfmsquZRXl4eQ4cOxdXVlZ9++qlSnzmoQ/Oopru91zX5+fnGpk2bjE2bNhmA8eabbxqbNm0yDh48aBiGYXz77bfGokWLjP379xuzZs0yGjVqZIwZM8b++n379hnPPvussW7dOiMxMdH49ddfjRYtWhgdO3Y0LBaLfdywYcOMdu3aGatWrTJWrVpltG3b1hg5cmSNv1+R6nCu88gwDOOtt94yfH19je+++87Yu3ev8dRTTxnu7u7Gvn377GM0j+R8VRVzyDAMY+/evYbJZDJ+++23E55Hc0jOV+c6h8rKyozY2Fijb9++xpo1a4x9+/YZr7/+umEymYxff/3VPk5zSM5nVfGz6H//+5+xatUqY9++fca0adOMwMBA48EHH6w0RvNIzlfjx483/Pz8jMWLFxspKSn2r6KiIvuYl19+2fDz8zN+/PFHIz4+3rjmmmuMBg0aGHl5efYxd955pxEVFWXMnz/f2LhxozFo0CCjffv2ur4g572qmkMpKSnGpk2bjClTphiAsXTpUmPTpk1GVlaWfYzmkJyvqmIe5eXlGd27dzfatm1r7Nu3r9Jx6trPIiVG/sWiRYsM4LivG2+80TAMw3jnnXeMqKgow8XFxWjYsKHx1FNPGaWlpfbXJyUlGf369TMCAwMNV1dXo2nTpsa9995b6RuuYRhGVlaWMXbsWMPHx8fw8fExxo4da+Tk5NTgOxWpPuc6j4556aWXjKioKMPT09Po2bOnsWzZskr7NY/kfFVVc+jxxx83oqKijIqKihOeR3NIzldVMYf27NljjBkzxggNDTU8PT2Ndu3aGV988UWlMZpDcj6rinn06KOPGmFhYYaLi4vRrFkz44033jCsVmulMZpHcr460fwBjE8//dQ+xmq1GhMnTjTCw8MNNzc3o1+/fkZ8fHyl4xQXFxsTJkwwAgMDDQ8PD2PkyJFGUlJSpTGaR3I+qqo5NHHixH89juaQnK+qYh6d7P+EgJGYmGgfVxfmkckwDKNq1p6IiIiIiIiIiIiIiIjUbuoxIiIiIiIiIiIiIiIi9YYSIyIiIiIiIiIiIiIiUm8oMSIiIiIiIiIiIiIiIvWGEiMiIiIiIiIiIiIiIlJvKDEiIiIiIiIiIiIiIiL1hhIjIk+ZPxcAAAPDSURBVCIiIiIiIiIiIiJSbygxIiIiIiIiIiIiIiIi9YYSIyIiIiIiUistXrwYk8nE0aNHHR2KiIiIiIicR0yGYRiODkJERERERGTAgAF06NCBt99+G4CysjKys7MJCwvDZDI5NjgRERERETlvODs6ABERERERkRNxdXUlPDzc0WGIiIiIiMh5RqW0RERERETE4W666SaWLFnCO++8g8lkwmQy8dlnn1UqpfXZZ5/h7+/PL7/8QlxcHJ6enlx++eUUFhby+eef07hxYwICArjnnnuoqKiwH7usrIz//Oc/REZG4uXlRffu3Vm8eLFj3qiIiIiIiDicVoyIiIiIiIjDvfPOO+zZs4c2bdrw3HPPAbB9+/bjxhUVFTF58mRmzJhBfn4+Y8aMYcyYMfj7+zNnzhwSEhK47LLL6NOnD1dddRUAN998MwcOHGDGjBlEREQwc+ZMhg0bRnx8PM2aNavR9ykiIiIiIo6nxIiIiIiIiDicn58frq6ueHp62stn7dq167hx5eXlfPDBBzRt2hSAyy+/nGnTppGWloa3tzetWrVi4MCBLFq0iKuuuor9+/fz9ddfc/jwYSIiIgB4+OGHmTt3Lp9++in//e9/a+5NioiIiIhIraDEiIiIiIiI1Bmenp72pAhAWFgYjRs3xtvbu9K29PR0ADZu3IhhGDRv3rzScUpLSwkKCqqZoEVEREREpFZRYkREREREROoMFxeXSn82mUwn3Ga1WgGwWq04OTmxYcMGnJycKo37ezJFRERERETqDyVGRERERESkVnB1da3UNL0qdOzYkYqKCtLT0+nbt2+VHltEREREROoms6MDEBERERERAWjcuDFr1qzhwIEDZGZm2ld9nIvmzZszduxYbrjhBn788UcSExNZt24dr7zyCnPmzKmCqEVEREREpK5RYkRERERERGqFhx9+GCcnJ1q1akVISAhJSUlVctxPP/2UG264gYceeoi4uDguueQS1qxZQ3R0dJUcX0RERERE6haTYRiGo4MQERERERERERERERGpCVoxIiIiIiIiIiIiIiIi9YYSIyIiIiIiIiIiIiIiUm8oMSIiIiIiIiIiIiIiIvWGEiMiIiIiIiIiIiIiIlJvKDEiIiIiIiIiIiIiIiL1hhIjIiIiIiIiIiIiIiJSbygxIiIiIiIiIiIiIiIi9YYSIyIiIiIiIiIiIiIiUm8oMSIiIiIiIiIiIiIiIvWGEiMiIiIiIiIiIiIiIlJvKDEiIiIiIiIiIiIiIiL1hhIjIiIiIiIiIiIiIiJSb/w/rtNiHy6j8hoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "fig, ax = plt.subplots(figsize=(20,6))\n", + "\n", + "df1 = manila_hi.groupby([pd.Grouper(key='time', freq='Y')]).mean().reset_index()\n", + "df2 = cebu_hi.groupby([pd.Grouper(key='time', freq='Y')]).mean().reset_index()\n", + "#df = df.groupby(['time', 'lat', 'lon']).mean().reset_index()\n", + "\n", + "df1.plot(x='time', y='heat_index', label = 'Manila', ax=ax)\n", + "df2.plot(x='time', y='heat_index', label = 'Cebu', ax=ax)\n", + "zamboanga_hi.groupby([pd.Grouper(key='time', freq='Y')]).mean().reset_index().plot(x='time', y='heat_index', label = 'Zamboanga', ax=ax)\n", + "davao_hi.groupby([pd.Grouper(key='time', freq='Y')]).mean().reset_index().plot(x='time', y='heat_index', label = 'Davao', ax=ax)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "heatwaves", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/measuring-heatwaves/calculate-heatwaves-incidence-era5.ipynb b/notebooks/measuring-heatwaves/calculate-heatwaves-incidence-era5.ipynb new file mode 100644 index 0000000..a511aa0 --- /dev/null +++ b/notebooks/measuring-heatwaves/calculate-heatwaves-incidence-era5.ipynb @@ -0,0 +1,714 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "e924f2d4-51b6-4630-ac7c-fecd106785e4", + "metadata": {}, + "outputs": [], + "source": [ + "import geopandas\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import rioxarray\n", + "import xarray as xr\n", + "from netCDF4 import Dataset\n", + "from shapely.geometry import mapping" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "ab901900-5686-4ee4-be67-7a4ca40b0c0d", + "metadata": {}, + "source": [ + "# Historical Heatwaves Incidence\n", + "\n", + "In this notebook, we will explore heatwaves incidence, based on [pre-calculated data](ttps://worldbankgroup.sharepoint.com.mcas.ms/teams/DevelopmentDataPartnershipCommunity-WBGroup/Shared%20Documents/Forms/AllItems.aspx?csf=1&web=1&e=Yvwh8r&cid=fccdf23e%2D94d5%2D48bf%2Db75d%2D0af291138bde&FolderCTID=0x012000CFAB9FF0F938A64EBB297E7E16BDFCFD&id=%2Fteams%2FDevelopmentDataPartnershipCommunity%2DWBGroup%2FShared%20Documents%2FProjects%2FHeatwaves%20Data%20Collaborative%2FData%2Fremotesensing%2Fhwdi%5F5degC&viewid=80cdadb3%2D8bb3%2D47ae%2D8b18%2Dc1dd89c373c5) obtained from NASA's [GLDAS](https://ldas.gsfc.nasa.gov/gldas) and NASA's [ERA5](https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "14c70209", + "metadata": {}, + "source": [ + "## Getting multiple datasets that calculate heatwaves based on different definitions" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b3f8a4f8-57b8-4398-9570-6aeddc328e58", + "metadata": {}, + "outputs": [], + "source": [ + "# parallel ensures that it being parallel processing\n", + "#ds_mean3 = xr.open_mfßdataset(\"../../data/gldas/ymean3/wld_cli_*.nc4\", parallel=True)\n", + "# ds_percentile390 = xr.open_mfdataset(\"../../data/gldas/ypercentile90/wld_cli_*.nc4\", parallel = True)\n", + "# ds_mean4= xr.open_mfdataset(\"../../data/gldas/ymean4/wld_cli_*.nc4\", parallel = True)\n", + "# ds_percentile490= xr.open_mfdataset(\"../../data/gldas/ypercentile490/wld_cli_*.nc4\", parallel = True)\n", + "#ds_mean2_gldas=xr.open_mfdataset(\"../../data/gldas/ymean2/wld_cli_*.nc4\", parallel = True)\n", + "ds_mean2_era5 = xr.open_mfdataset('../../data/era5/wld*.nc', parallel=True)\n", + "# ds_percentile290=xr.open_mfdataset(\"../../data/gldas/ypercentile290/wld_cli_*.nc4\", parallel = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "b1f1182b", + "metadata": {}, + "outputs": [], + "source": [ + "ds_1948 = xr.open_mfdataset('../../data/era5/wld_cli_era5land_tmax_ydrunmean2_hwdi_1981.nc')\n", + "ds_2021 = xr.open_mfdataset('../../data/era5/wld_cli_era5land_tmax_ydrunmean2_hwdi_2021.nc')\n", + "ds_2016 = xr.open_mfdataset('../../data/era5/wld_cli_era5land_tmax_ydrunmean2_hwdi_2016.nc')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "c3612b41", + "metadata": {}, + "source": [ + "## Change in number of heatwaves from 1948 to 2021" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "27eb77d4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, '# of heatwaves')" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABfIAAAGxCAYAAAAphEeQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e5Rk110dju/7qurq6tfM9LRGGmFLliWQsKwIofGoE8UGYaIQIxwErIjkqwBKFgiIwIafTbCDpcT2igk4jiE4QJyAs4xZAWMWi4Ax2A6LRFZsy8YIy2Bb1sN6jHt6ZvpVVV33+fvj3H3O55y63dMz0zNTM3P2WrOmq+rWfVXVOZ+zP/uzP0FVVRU8PDw8PDw8PDw8PDw8PDw8PDw8PDw8PMYS4fk+AQ8PDw8PDw8PDw8PDw8PDw8PDw8PDw+PreGJfA8PDw8PDw8PDw8PDw8PDw8PDw8PD48xhifyPTw8PDw8PDw8PDw8PDw8PDw8PDw8PMYYnsj38PDw8PDw8PDw8PDw8PDw8PDw8PDwGGN4It/Dw8PDw8PDw8PDw8PDw8PDw8PDw8NjjOGJfA8PDw8PDw8PDw8PDw8PDw8PDw8PD48xhifyPTw8PDw8PDw8PDw8PDw8PDw8PDw8PMYYnsj38PDw8PDw8PDw8PDw8PDw8PDw8PDwGGN4It/Dw8PDw8PDw8PDw8PDw8PDw8PDw8NjjOGJfA8Pj4sS6+vreMMb3oBv//Zvx/79+xEEAR588MGR7aqqwrvf/W58wzd8A9rtNi6//HLcf//9OHHixLb7f/zxx9FutxEEAT796U+PvP7xj38cr371q7GwsICpqSm8/OUvx7vf/W4URbFbl+jh4eHh4eHh4eHhUeNjH/sYfuiHfgjf8A3fgG63i4MHD+K7vuu78Oijj45s+5nPfAbf9m3fhqmpKczNzeG7v/u78ZWvfMXa5otf/CJ++qd/Grfccgvm5uawd+9e/N2/+3fxu7/7uyP7e/bZZ/GTP/mTeOUrX4m5uTkEQYDf+I3fOFuX6uHh4eFxicIT+R4eHhcljh07hl/7tV/DcDjEa1/72i23++mf/mm87nWvw3d913fhD//wD/EzP/Mz+K3f+i28+tWvRpZlje8pigI/9EM/hPn5+cbX/+zP/gzf9m3fhjzP8eu//uv4/d//fbzqVa/CT/zET+D1r3/9blyeh4eHh4eHh4eHh4fAe97zHjz11FP4iZ/4CfzRH/0R/tN/+k9YWlrC4cOH8bGPfUxv9zd/8zd41atehTRN8T//5//Ef/tv/w1f/OIXcfvtt+Po0aN6u4985CP4X//rf+Huu+/G7/zO7+D9738/rr32Wnzv934v/u2//bfWsb/85S/j/e9/P1qtFr7jO77jnF2zh4eHh8elhaCqqup8n4SHh4fHboNDWxAEWF5exv79+/GWt7zFUuU/99xzePGLX4wf/dEfxbvf/W79/Ac+8AF8//d/P37t134N//Jf/suRff/CL/wC3vWud+ENb3gDfuInfgKf+tSn8M3f/M369X/2z/4Zfvd3fxfHjh1Dt9vVz/+Df/AP8Mgjj2B1dfUsXLGHh4eHh4eHh4fHpYulpSUsLCxYz21sbOClL30pXvayl+HP/uzPAADf933fh49//ON44oknMDMzAwB4+umnce211+J1r3sd3vGOdwAAlpeXsW/fPgRBYO3zNa95DT7+8Y/j+PHjaLfbAICyLBGGSif56U9/Grfeeiv++3//7/iBH/iBs3nJHh4eHh6XGLwi38PD46JEEAQjQbeLRx55BEVRjKhmXvOa1wAAPvjBD46850tf+hJ+7ud+Dr/yK7+iA38XSZKg1Wqh0+lYz8/NzWFiYuJULsPDw8PDw8PDw8PDYwdwSXwAmJqawg033ICvfvWrAIA8z/GHf/iHuPvuu61Y/sUvfjG+5Vu+BR/60If0c/Pz843riUOHDqHf7+P48eP6OZL4Hh4eHh4eZxN+tvHw8LhkkaYpAGglDZEkCYIgwF/91V9Zz1dVhX/xL/4FXvOa1+Cuu+7acr8/8iM/gjRN8cADD+D555/HysoK/sf/+B/40Ic+hDe84Q27fyEeHh4eHh4eHh4eHiNYXV3FZz7zGXzjN34jAOCJJ57AYDDAy1/+8pFtX/7yl+PLX/4yNjc3t93nxz/+cezfv78xceDh4eHh4XE24Yl8Dw+PSxY33HADAOD//t//az3/8MMPo6oqHDt2zHr+P//n/4zHHnsMv/RLv7Ttfl/xilfgYx/7GD70oQ/h4MGD2LNnD37wB38Qb3vb2/BTP/VTu3sRHh4eHh4eHh4eHh6N+LEf+zH0ej286U1vAgAd3+/du3dk271796KqKpw4cWLL/f3X//pf8b//9//Gm9/8ZkRRdHZO2sPDw8PDYwvE5/sEPDw8PM4XbrrpJvz9v//38R/+w3/A13/91+PVr341Hn/8cfzIj/wIoiiySmSffvpp/Ot//a/xrne9C5dddtm2+3300Ufxj//xP8YrXvEK/Oqv/iq63S4+9rGP4c1vfjM2Nzfxb/7Nvznbl+bh4eHh4eHh4eFxSePf/Jt/g/e///34pV/6Jdxyyy3Wa9tZcG712h//8R/jx37sx/A93/M9+Ff/6l/t6rl6eHh4eHjsBJ7I9/DwuKTxO7/zO/iBH/gBfN/3fR8AoNVq4XWvex3+7M/+DCsrK3q7H/uxH8PLXvYy3H333fr5fr8PQDXRWl1dxezsrN72sssuw4c+9CGt1PmWb/kWhGGIBx98EP/0n/5TvOQlLzl3F+nh4eHh4eHh4eFxCeGhhx7CW9/6VrztbW/Dj//4j+vn9+3bBwAjlbcAcPz4cQRBgLm5uZHX/uRP/gTf/d3fjVe/+tV4//vff9JeXB4eHh4eHmcDnsj38PC4pLGwsIA/+qM/wtLSEo4cOYIXv/jF6HQ6+JVf+RV8z/d8j97ur//6r/H0009jz549I/v4lm/5FszOzmqC/y//8i9xzz33jJTb3nrrrSjLEl/4whc8ke/h4eHh4eHh4eFxFvDQQw/hwQcfxIMPPoif/dmftV675ppr0Ol08Nhjj42877HHHsNLX/pSTExMWM//yZ/8CV772tfila98JT74wQ+i1Wqd1fP38PDw8PDYCp7I9/Dw8IAi9Nmw6t3vfjd6vZ6l3vnt3/7tkcZXH/7wh/GOd7wD/+W//BfdQAsArrjiCnz6059GURQWmf+JT3wCAHDllVeezUvx8PDw8PDw8PDwuCTx7/7dv8ODDz6IN7/5zXjLW94y8nocx/jO7/xO/N7v/R5+/ud/HtPT0wCAZ555Bh//+Mfxute9ztr+Ix/5CF772tfi7/29v4ff//3fR7vdPifX4eHh4eHh0QRP5Ht4eFy0+OM//mP0ej2sr68DAB5//HH87u/+LgDgO77jOzA5OYlf//VfB6DUOSsrK/jjP/5jvPe978Xb3/52fNM3fZPe1+HDh0f2/9RTTwEAbrnlFnzzN3+zfv51r3sdHnjgAXznd34nfviHfxiTk5P46Ec/il/8xV/Et33bt+Gmm246W5fs4eHh4eHh4eHhcUniF3/xF/FzP/dzuPPOO/GP/tE/wiOPPGK9znj+oYcewq233orXvOY1+Jmf+Rlsbm7i537u5zA/P4+f+qmf0tv/n//zf/Da174WBw4cwM/+7M/iL//yL6393XDDDZiZmdGPuc74yle+AgD49Kc/jampKQCwKn09PDw8PDxOF0FVVdX5PgkPDw+Ps4GrrroKTz/9dONrTz75JK666ir82q/9Gt71rnfh6aefRhiGuPnmm/FTP/VT+K7v+q6T7v83fuM38IM/+IP41Kc+ZRH5APB7v/d7+I//8T/ib/7mbzAYDHDVVVfhn/yTf4LXve516Ha7u3J9Hh4eHh4eHh4eHh4Kr3rVq/Dnf/7nW74uqY9HH30Ub3zjG/GJT3wCcRzjW7/1W/ELv/ALuOaaa/Q2Dz74IB566KEt9/fxj38cr3rVq/Tj7XzzPe3i4eHh4bEb8ES+h4eHh4eHh4eHh4eHh4eHh4eHh4eHxxgjPN8n4OHh4eHh4eHh4eHh4eHh4eHh4eHh4eGxNTyR7+Hh4eHh4eHh4eHh4eHh4eHh4eHh4THG8ES+h4eHh4eHh4eHh4eHh4eHh4eHh4eHxxjDE/keHh4eHh4eHh4eHh4eHh4eHh4eHh4XPR588EEEQWD9O3DggH69qio8+OCDuOKKK9DpdPCqV70Kn//858/jGRt4It/Dw8PDw8PDw8PDw8PDw8PDw8PDw+OSwDd+4zfihRde0P8ee+wx/drP//zP453vfCd++Zd/GZ/61Kdw4MABvPrVr8b6+vp5PGMFT+R7eHh4eHh4eHh4eHh4eHh4eHh4eHhcEojjGAcOHND/9u/fD0Cp8d/1rnfhTW96E777u78bL3vZy/Cbv/mb6Pf7+K3f+q3zfNZAfL5PwMPDw8PDw8PDw8PDw8PDw8PDw8PD49LB5uYm0jTdlX1VVYUgCKzn2u022u124/Zf+tKXcMUVV6DdbuMVr3gF3v72t+MlL3kJnnzySRw5cgTf/u3fbu3nla98JR5++GH88A//8K6c7+lix0T+q8PvPZvn4eHh4eHh4eHhMWb40/J3zvcpeFxg8GsGDw8PDw8PD4/xwbjG85ubm7j6xVM4slTsyv6mpqawsbFhPfeWt7wFDz744Mi2r3jFK/C+970P1113Hb72ta/hrW99KxYXF/H5z38eR44cAQBcdtll1nsuu+wyPP3007tyrmcCr8j38PDw8PDw8PDw8PDw8PDw8PDw8PA4J0jTFEeWCjz56IsxM31mzu9r6yWuvuVpfPWrX8XMzIx+fis1/j/8h/9Q/33jjTfitttuwzXXXIPf/M3fxOHDhwFgRN3fpPg/H/BEvoeHh4eHh4eHh4eHh4eHh4eHh4eHxznFzHR4xkS+3tfMjEXk7xTdbhc33ngjvvSlL+G1r30tAODIkSO4/PLL9TZLS0sjKv3zAd/s1sPDw8PDw8PDw8PDw8PDw8PDw8PD45yiqMpd+XcmGA6H+MIXvoDLL78cV199NQ4cOIA//dM/1a+naYo///M/x+Li4ple7hnDK/I9PDw8PDw8PDw8PDw8PDw8PDw8PDzOKUpUKFGd8T5OBT/90z+N7/zO78SLXvQiLC0t4a1vfSvW1tbwz//5P0cQBPjJn/xJvP3tb8e1116La6+9Fm9/+9sxOTmJ7//+7z+j89wNeCLfw8PDw8PDw8PDw8PDw8PDw8PDw8Pjosezzz6Le+65B8vLy9i/fz8OHz6MRx55BC9+8YsBAG94wxswGAzwoz/6ozhx4gRe8YpX4CMf+Qimp6fP85l7It/Dw8PDw8PDw8PDw8PDw8PDw8PDw+Mco0SJMzPGwSnv4bd/+7e3fT0IAjz44IN48MEHz+Cszg48ke/h4eHh4eHh4eHh4eHh4eHh4eHh4XFOUVQViurMrHXO9P0XEnyzWw8PDw8PDw8PDw8PDw8PDw8PDw8PD48xhlfke3h4eHh4eHh4eHh4eHh4eHh4eHh4nFOcj2a3FzI8ke/h4eHh4eHh4eHh4eHh4eHh4eHh4XFOUaJC4Yn8HcNb63h4eHh4eHh4eHh4eHh4eHh4eHh4eHiMMbwi38PDw8PDw8PDw8PDw8PDw8PDw8PD45zCW+ucGjyR7+HhsS3SO28FACS9HAAQDnPk0y2EaYmyNVrUE6+nAICyHSP4i8+euxP18PDw8PDw8PDw8NhVrN57GwAg6VUIsxIAEKYVovrvZHlgbV/MtPUaIfroo+fwTD08PDw8LkQUVYWiOjMi/kzffyHBE/kelzSCQzeq/4cFgjTXz1etGOXnHkdw6EaU7RjhMEfZjlG2QiTLA70ttxs3VLffDADIujGirESYlsi6MfJupLcpWkCUAnGvQNkKUCYq4I57BQBYz4VZiY09bZRJgCIJEGUVwqxClKrXkl6BZHmAqm32H60Nkd1xC8K0HDk/T/B7eHh4eHh4eHiMEzbvOgRAkdQAkHcjFC1g+gOPAACWHlhE3gHySSDMgDJR//PvyReAve99+Lydv4vj9y0CANJZIMyBMga6L5TIJkOULXP+ZQLEPSDvqv+jTF1/mFUok0D/X7SAohWq+D8tMJxLAAD9hQRRatYWRQvIJkNEWYXivkVMrKi1QNYNdDJg4g8+eX5uioeHh4eHxwUOT+R7XNSobr8Z4TBH7+u6KFpAmQQAgM6SIe3LVqBVJVk3QvtEpl64/WYUrRBZN0LSM8pzpTLpmIPccYt1zCIJNXkOGAX7uVakhMMcCQxpHt1xC6I6kB7OJSiTAEmvQJSVaH34URR33IIiCfX9KJNQq24AIOmVCNMKSS9H1lVDR9lS97NIQhSXd/V1h8McVTvSfwdDlRzQCZCbbkAx00Y4VI/LttqfJ/g9PDw8PDw8PDzOBjbvOoQwrdD68KewfP8iwhRI+orYBqCFKtn+EHnXvG/gEPgTxxThTTK8rFfU/cuBY796CEhKhGsxyk6JcBAi6oXIZgskqxFaa8AV7zg3ZP/mvPo/zICFdz+M59+4iOFcqK67VyHrBprMZwJi+f5F5N0AeQeIBwHCDAAChClQJAEmVkqEWWnWAC1Y/wOKzJ9cGurHXF+0V4DhXAQgQv++RURZhaSnkgZxr0Drw586uzfEw8PDw2MsUdb/znQflwo8ke9xQaG44xZEH30U1e03a9I3vfNWrTQPM0U2S+V51p1A1lXBZtIzAWPSyxEv9wAA5XRbvT+NEa0NEaQ5yuk2wiEQr6v90E5GbWdIeir2+bp8jYjXU5TinF1QQU+UrVAnBPh/9NFHtc2NDHT5HACdjMi6IcpkArPv+4S+b+peqPsS94pacaP2X9x5qw7IyyREmBZor2QoklDvdziXYONgCECpbzb3AXFfHTfMzYJm/j0Pa3eyAEBV/3MRiOeDxruirs0H9R4eHh4eHh4eHk1I6xi2TEJMflAp52kFAyjyGXBI9xuUUj0GkEGp08PUCH2SXonwuap+X4DhXIT2CnRV6nAuQN41avwwA1IVHiNZjhEPVIwc5iHCDMg7wNSzEcpE/X3k9Ys48M5RMv/I6xfVOdb7ivvq78Hlam1Rdkpc+8NKyf6Vn78NL3nDJ/R7n3loEa1VFZ8DQNEtEfWAq95kjpPOqH9hDgAB4j7QWgOmnsuxedchlEmI9kqJKK330QKGcyHyDoAOEA+AlZeGtdgHmFg26n3e5+kPjF5XJP6eaPwUm+HXAR4eHh6XBgpUKM7Q4/5M338hIaiqnRkJvTr83rN9Lh4eFkhuB3/xWazfcxiACiZdBUnSq9BZyrVPo7RyIZkeDAtU7cjydpce70USag94QpLptKYheKx4PUX1ycfUPuokw8nABUeYVihbAbJuTZanxtZGHV+9lk2GmFgpdUUBy1L1NWaVpSTia2FWon0iQ9aNkfRyDPckWmXPCoSme6WP36bqXt2H4Z5InyeV+kl9vm7yggr8qh0hGBbov3hKH5PJAQCYeKGHYqaNaG2Iqh3peyk/e4IVA+7nFC/3ULVqRX+ao/jCF0/6GXhcWggO3ai/Wx4eHqeGPy1/53yfgscFBr9m8Dhb6N+t1gOTH3wE6/cc1rYv2WSobWEAaCsXxqu0iqT1S5iVGM5FVgxdCkV5XpPWrvUM43EerxSSOJLvV7zj4S2JehdHXr+oVf75pNofLXDKpELVqhCkAapWhbJTAlmAZNXQ4tymjCsEMxmqtQRhHpj3zOSIlhOEWYAyqRAPArRW1XvD3Fyrulej17LVc90XSkwuZRjOJVosFWZbUwpJT93v9RcphX88UPcz6ZukgbTb6d992LI0AqArKPgZqHNSlp9Tz2V6beY9+S9dVNuI5jw8LnWMazy/traG2dlZfP4LC5ieHu2/eCpYXy/xjdcvYXV1FTMzM7t0huMJT+R7jAVkqWuT+mLzrkO1Gqawns+6IaY/8AjSO2/VARxJZ0k4AyqIZ+AXpWoRUNQe7uEwR7g+RHrFtKWEB0abvPIYbuKgrG14tvJ8lNfFKgLZMKpsBZoYV9dmAnV6darjBGKbsPE6ifZKps8XwLbJjiawL4A8H9rrmPMRtkN16WzSK2pLIts7nwQ/AIQbAxT7pkaO6W5TtRIEqVlJyMdVS60q+Dh/4sktr8Xj4gDtsqznLgGSnv08trvW8KYbxrJnh8eFjXEN/D3GF37N4LEbkKTc5l2HRuLr4/ctapV93jFkeGtN2cgsPbCI9orxeif5ns7YFaUE3wMYcrv7QmX84WvFubbfoQd8YteV8py4zyY8/8ZFba/zzEOLmjBvrdX7iM21lLFS2WezBaJ+qEl5EvXIQiALgKS+1trKB1CEufTwzyfr63YIej6WzxN8L7dllQBfkwkBvt5aVSR9mQRorxTo74+xOW9eD3MjxqIAiUkWCWmLmtV2PzwezzXpVXp96H33Lz6wqjxMSz0eXIyEfXT9dQCwpSAtvOkGAPBxvsdpY1zjeRL5f/X47hD5L7/BE/kWfFDucbZAaxhp7cJgLuuqwNltHLV67236eapzAGj1xuq9t+lmrNJzkWS69IMnGc5jAcDkUZbWFlqNL/3ft/N0N6WphkSXiQGW/4ZZaTWTJUjqy3sBjAa3evts1A1MEv8SMgnQuC/xvsjZr1TSn2x/7vF57+LlHsrptk6IsHFwOd3WDYerVowgzRGsK1lVNd1FsN5DNd1F8YUvIr7magCetI+vufqCvAcMRAETjIY33YCqHe2oVwIJbQmS21u9xv1fTIQ/q1bcKhgJH+x77AbGNfD3GF/4NYPHmYDrgrWrE/1cmMIizaOs0vaRxJHXLyLMDVFPsrhMjD88oMjsF73lYcuaZvn+RU1Ok/wvksBS6bdXlJd+0jfxMZMDYaaO63rf85hEaS7JOke+xgRCmQDpzGgsH2a1+n1rDU7De3b2Ou+VTow45waYioEwM4Q+yXxJrNOCCABOfH2Aya+p+0rSntXFVPPzfQCwOWcqJLgvec+5HqKN0qWE1XtvG/nejyvcmJz94qSIDmgWqFC0w3UB0FylDRjBXfAXn0V40w0XTXV2ccctGM4lVlVR0QKmnlW9Jy62RIbH2ce4xvMk8v9yl4j8v+OJfBs+KPc4G+jffVgT2nGvsFTqBMn04Z4EE3/wSfTvPqyDt827DgFg4yRYigyS+Qy6k16pG9nSZqb71Z4+TjAssHl5VxPt8nxoC7NduWZ6561IerlW5suEhDo3Wx1Pqxra5Uh1S3vFDlilcn87uOS7PB5wciKfaCLi3X02JSSYdJD3nPtqH9/UCv/W8+tIr5jW+xvOJYh7BZJernsUAEppnz/xpBUMXkxk7E5BlQaTHAQD1bBuHqy3XzMNxnZC5sbXXI1yyjRwPpsEsOxzUbZC/ZtyrakYxDd93gzg3TJqqnYu9rJqjnuAGh/j9RRlO/ZBvcdZwbgG/h7jC79m8DgTsEpXrglknNk+UWCwEGuiff49D2P5/kXMv0eR6MfrJqrDuUD70x94p1Lbk4juHC21LY9U27PxLT3zy5Yi6Df3VQizADNfgfUaj+li9d7brNi+f5mxzCm6JqZuL4daMb+5T1nlUHFPkLwHmgl8Euh5x3l+B2S/JPlpeUPQNsi12eF+S6fTXjxQxDuFVNLGqL8/1sQ+CfysG6B/wNyTqBfq+6vtfnKVhJH3c6sqh4sN6Z236gpzCYrW+ncf1pasFIzRunUnfQU27zqkK8HPVtxMa0t3HedWkG5VdRocutGyer3YVfmEjPNZCX+xXqvHucO4xvOeyD89eCLf46xjq0ZF9L1nyaT0ViwTW6FBEhyAVsi3PvwprX4n4l6BKCuxcbCl98cgksGKtKwxxwstf3qp4GcDWeDUSjbZaEueB5Unw7mgPl8g79bXJYNpEbTJwNdV7rtoIvIlTkVV7x6D2/E5EvlFq/Gt1mfYXil0MoQqfADa216f30xbB2qS0Od2F6PCmBUGgKkyiK+52rIQyp940tqOpDsti/TzdaIkXldfIKq0L8b7dqlCVjDJxRqJjygrrc8/3DCr8guxgsPj/GNcA3+P8YVfM3jsBFKYQ8g+UgB0jyfAkPlZV9m10Maxv9/Eknvfq/zp1famsatSzFeYOBagtWZbugDGwkWqv2mdE2aV9mpfesDY4Oz54nDHBOjx+xaxOa/+DjMgnTV/a1V7bQ2Ud4w3voQk9AHbS78J8aCu7o3N9jwm/8l9SfW92i/3A2s/9rHl8er91kmO9krZ2NsLUE2FuY7oL4TY3Cd6EfTt6whztV5yq7MvdHAdzO/W8fvU91Z+51bvvQ1Jr7KqywGzPnXXdXJN522GLkwwqVG2YwwW2rofiBT2cf1dJoHFk1zsQiaPM8O4xvMk8j/z+GWYOkMif2O9xDfd8DVP5Ev4oNyjCQw6ziS4YiADmGCGSv2kV6BIQksZD5hGsJIsnn3fJ6x9Se9KNoGlOoSEPwmv3Vazbt51SDexBYDB/rpM1GmKxaA5HoyS91s1jUp625P129njbIemBIc6z7BREaUeb9/gimon+XfSK3WVBWAUFvGyqY6g1c7FSEBLQp4e/1UrHiFcSeabbeNt70d0/XUXdcLDY2vIEuPISvbVFQtrw5HvRHX7zY3Pe3i4GNfA32N84dcMHi5JebqQTWPZ7BSAbmxLH3YAWl0/nAu0UGbh3YbYBxRRHveN/zxgCGk2YN2cV3/vlvJ7+f5F9A8Y8jweqASDhLKzoZ//qMDGbYCr3xfXf5PMzwKEuXq/TARwnyTb1XO2ap/VCoC6D7QVkur4pua3chu5f4l0xjTzzWYLhHmAZDVEGZtEwcQx01SYVQ8XE3nfv/sw+guhSdw4677Z931CV5O769utwMQX4In7ixls/kxuA4BeU3Od3vT5u9XOHpc2xjWeJ5H/6c/vDpH/zd/oiXwLPij3cMHGUyz/otc8YBrJulYZ0kpju/1KkJjOu5G2u5He+dKex0WYlci6oSa/ZTPZIgmR9HLdxJYJA1f10AT61hUt6El0cy7UJbmA3exKB80iaJsQ9jlbqdqJ0mmk5arztwITIXo/O/C0l02D5XvkNrQFArb37nerJeT+SOaHwxzBsNDWMDKhcjE274yvPIj82ec0oS/JfPo6xtdcrRsBR8c2kF0x19iU+FK0GfI4M7iepeG6smHySSCPrTCugb/H+MKvGTwAQz4xhpWqbKnE53bbkf4UyEg7HMBUfA4WYsy+7xNaYJR3TfNVKvEnlqFtH11Iq0iKfjbnFGnWXim2JUnX7zls2WS6VjfxwPa/53M8PyrgablTxhWQVAgHoSHqAUXWi6a2ANRjiXqbMA80kS9JfPua6/8Fge964sd9Uykgm+bq63LU/twHLUJZ5RBlFQbz6v5s7qsQD4ztERMEeUclV2SfgfV7Dp9xMmhcwGthQ+XY6Jew970P6+RXlAL9hVD/XkjYAmYtthPrHI9LE1Tvk/hP+iUml7xi32N843lP5J8e4pNv4nGxw202C+wsUEh6hba2iXsFojqwK1qGjC+ErU7WVV+3YU28Aypw3qpZkSTds1qRz0AdUNY16/cc1sGNVImbJktRHQAZQpsq/Biq8U7ZUm+MshKtD45eLxMQgPFyN81oA2wcND+jQVepS1qrirR3S0klaLNTCJKe6pfQIcebFPquHdBWkArdqA7Qmyx23G3V+QSCjDef2VbkvXt+skcAwc81TEulxh8qSx3d9Ojku76gkT/7nPpjmAJpimB6Sr9Gz/v8iSeBJwzpGi/3RhT54U03AFt4Snp4NCE4dKO2W6raEYJhMWJv5eHh4eHhQbgNF+ldv12jURLzw7lQ+6Hz/yIJkHeBSbE9/dIhLDddFbISf1Q6/qbnetYNga5SLR95/aJW2ocZ0KpVz5MvqGP2LwemnwkwnIu0j3vcK7Q4pWip+FaLf/rNyQWXKHOhCfLENMG1rXNsRT5J8KhXN+/MgWy2tEj8MA/ACD0cmGMGaWAp+GmzE2bBiNrebWBrqetj5/96P3kHmnTXSYf6unLYDXK5T7UPdY602dmsSfy4D0weMecb95XNUDpTobUWYHOfvQo4WRXyhYTpDzyC4/ctYuHdql9D3jW9Gvg6sXnfol73yedptZM32FJ5XNpgTwXAcCIycRmm5UXdV8DjwkeBAAV21s9xu31cKvCK/EsULMWjwmQrVf3pgJ6XDHSb9sXkwekqClyFxuq9twnyHnrRYNQMpfZh5HPblSq64OToKm7CVKl+XH97WvoAKoBtIvTZiLcJ9OdsgiTGpd3Qltufgr2OdX7C+kY2UGpCUxJIPk/vbu6XpH3ZjvXf+XRLN0EFcEkFGrTRIakapLm22ymnOlqp3wTeL+JSum8eHh5nH+Oq4PEYX/g1w4UNGYdxvXCm6wPZjHb5fqVIbq+UjbH8btmpPPPQIiaPKNK8+4JsHltpv2kmJk5WEeBi9d7bMJwLFEE+Ccw+YcfavFf9BRPn0wc+n8QIqIrPO0atHvdtgpzvc6t9+ZxU1jeBr0s7G7kfaZUj1fqAeZ9rryMV+nzseuo3nVN7xazXNveZaoWr3vQwnn/j4q5aG40zjrx+Ud9TXelQW0a1T2xdIU5CHzj99bqHh8elhXGN56nIf/jzl++KIn/xG1+4JBT5nsi/yCEJ762azvI1ACdV2UiwueLZLO/jMWTSAVDJApa8uiiSQNvatFcq7Z0vGy7JxlUnQ3T9dQjWe8iffe6kVi/H71tEOjvqeQ8Yv0epuqfSnlUEABqvyQUXIervnRP1p+Kf3+S5LZ+X+6G6Xh3DbE//+yZbGCIYFqjaEcp2rH3ygzRD1Uq2JK8vRoQ33WA192WVwk7U9sUdtyBMS0/ie5wy+nebviLsHeK/Sx4S4xr4e4wv/JrhwoBcIzQ1niVopblT7Eb/rO3Aecsl35ceWLTIanrr87UwU8Ka4VyAqedqcUlWYjinVKw7Ffis3nvbttvT8pNWQMO5QJPf6YxNfBP0yK9aFaJeOEJ+Z7MlgjTQDWybCPStQPGRJPvdxrVNZL6bKJCNeeXz3FaeE6si6HkPwBJbSS/8MgH6l6n3sFKhtba7fQrGGUxsJb3KEqWd7PvIqnTvje+xFdbvOTxi+Rtm0ElVj0sL4xrPeyL/9OCJ/IsMtLqRNjP0Uz/bpPup4nQaYfH6pI+lBMntjYOhVnsAitxPZ9XfsmnWqU5ktNlhmbFsBMvmtr3LQ7RWlVIfsANfkvtSsQ+MWurshMxX+x7dbie2NxKudz2RbGPbI4n7pudl/wEXZTtG2QqRLCvJjkviA4bIJy4lQh8w37N4PfW2OR47xk6rWdw+JIDd1HriDz7pG2R5aIxr4O8xvvBrhvEFSXDX3nFipRwLZa9MLu/0fOQ1TT2XjvR4klaPGwdDxD0VZ9PuJ+sGmH/Pw6fsxy4TCmxCybic3tSykjfv2IS5tOAhSOYHaaBJfUCR7dls3cDeIfrjvn1errK+dBz0pALcVddT9c/nWRXQ9JoLeua71kJU6VPAlHUD5B21v4lj9T7rtUvZUmQ+98VzvRSIRybAAHUfLoVr9jg1BIdu3NG68Pk3qu+S+7sNM8WDnA4H4nHhY1zjeRL5/+evr9gVIv/vvex5T+RL+KB8vEFF/XBPNFL62qSk2UmwShX7doqA7baRipUmmx2S8kQTOc99H79v0WoENJwLUSbA1HOlVtlPfvAR9O8+bC1OSp3QgFbfcP9n2jyJJcDprAo0uTBgEM/rlY2+eG5NxL48Zwa76r4IFf0pkPSuUr+pGfBW21O5X7YCq78A1bp6n4LMl1Y8rn0OtyuSEFFWokhCTLygiPtwQxH6+RNPjpxTdP11lxyJ73FuQLsAftejrLxkiGtJ5Mvfukvmu9vL1/mYDb+9IuzixbgG/h7jC79mGC9wjUDIKldXib8T9f36PYcxnAu3JYK2a2BLkumKdzzcqG5fvfc2q6GtjIPZ7Hb6A49g+f5FTC6VVj8mzkkUL7mJC9rhxAOlgG6vFBjORXodcSZYemBRi4h4HEARadImB7DtZySx3r/M3meZVCgmS928Vvrhu81r1fZbnx+JPG4nHzMxIIl4+T6573zStufZSrnPx61Vcwy3MoDJDW7jVnFsV03u4bETyOr+pFdcEiKpZ9+8uGUSL+7bDaWfetuibsht/XZjYPJrl0ZVzKWCcY3nSeT/+V8f3BUi/5Uve84T+RI+KB8/FHfcgqwbYeIPPqkDHSp5SUiRsF8XDaToze6qvpvIeEmMz77vE1sG+DIQZ4kgYDzkAWNzsxNwf7vplXk2ERy6UXu870TJunnXIQznIstv3/j5V/pzAk5dYe/iVKx3AFjNxAA2GKtVQGtDVO2o8X0k7LltOMy1Bz7tcwDoZpvhxgDFPtXoNXr+OIor9qrn14eevPc4bcjm1K49lExC8ft5IVvIkCgBbHIDgJU8lWBisUgC3YuD2+2keTag7mfWjawkH5MiF9KCO73z1hE7ORJIZ5rovZgwroG/x/jCrxnGAxRDFHfcooUU0jqNJD7XE/SLp0AGUAR405h4/L5FLTxhnL56720jcb5cHyw9oNYHbPYpK2d3sj7gWgY4czHO2capqPuX71+01kuAUqXTN56NZ12FvlTNS9/9Rusex9++qeEt9yvf4z7PngD6edHsln+3Vh3Lnfq9eQeYWFZ/SwETrzvumXuQd2yy0cPDBdfbtBeV4jJZGc5153bWuOOK1XtvQ9YNtOWUq6innRgw+tuViTJgtAqoKRmnG1rHatyJBwHi/oVlc+VaP6d33oqklyPrxhfUGuVsYFzjeU/knx48kX+RwiUo+ncfRtxTTXPSO2/VqmiSL+xy3hR0stSPavPtml0Vd9yC4ZyaJRj8S0VNlKr3UY1PFX3TvpgQCFMgnVUTF5X5TefIMlkA2JwLdaOgvBsh7hUY7onGOvBfvn/R8pIE7Ka3W5FyW73mItRk5uhP3rXV2aqpravI19s7pD1RtSNN4svn+Vp0bAPlVEer8mmnExw7gXzp6MkvyuOSR3jTDVZyaXCgo7+/SU9FtTvtNTDOIBkiIcdXPqYXpqwOAtQY4Y4X8jH98QE09rUY7p0AYFsVqGOWOtk3zkkRVhVM/MEnLQs62h4Adl8TzjPSzu1CS1TsFsY18PcYX/g1w3hDik84t7gNYAlWawGjcT+rcgFob+8m0l/OXzKJLOcvEvkkwLdaG9B/nmP49Ace2VZkNPVciv5CgmwyxMSKUe/vVnXu2QATHmUMbQsK2LY79MonJCHPBABgyL0mT/3W2uixZcNcEoRSiS+P5Srv5fPxwD4nmRjKO4rsT/olkp76LGU1dZSpPgYXCnHoce5Q3HGL+l9UmUulPYALOt5nUo+/eybfUsFHNlXiSKssqcTn+9mjr8kJIO+a7bnvjSuBbLZA+1ikG2/LniPjAlm5L2N7aXU2uaQGIopfyWtNPZch6eVjvXbZbYxrPE8i/2N//XW7QuR/68u+6ol8CR+UX/igfzIz1tFHH8XmXYeQdUMdyEolPL0dAVPWyoCLwTXtKbYqw5X+kYAdMLMBi2wCyzJd2tZIdYo6D/W/23SpvaKCweFcpP0+k35pKU3H3TqD18xmNIAi9eWCRyZSAGzZIwBottY5mTp/u22o1Jf/AxhR7wPQwVQTgmGhm7oCQDnd1h75wbrKYuTPPqdfj688CLRbjdY7Hpceouuv098ZJpAA6N4MAC5ospWKRpf4kBVU0oILsHtqmMoe2wKHkAm9vBtpIl7tN7SSvNyOv3cqWgDVGJ1or2RjPba64LwHAIP9oV7kcM7jHLL3vQ9vqdDnfCq/g9HaEEGaI0izi2q8GtfA32N84dcMFx6Y7My6oSa6Kb6R2/B1AFZDV0IS8sDWRDmrxlzFP2NhOa/JfSY9xsTGilOSNlxXEHlHkVntFfX6cC7UTUUBYPJoPpbWcEdev6gJdTbILWOg6BqffAm3Ya1LtrtEPl/TKvq1Zj997pvbM0mQTxr/bdcuZ+KYXQFAu1D5uRZJoBMrADC5lGHjYEu/JkVbMhHvcWmhqcqWuFBJWCYpWdWUzpjKlab+E9Lqxm2CLcV/kk+RcPvz5V3zvrJlJ/6sZICoqrkQqmMoYt2cC7Xt8b7PDxGvp1pMuHl5V4uW3HVLcOhG7S7A9RAr1drHNy/oBBExrvE8ifyPPvYidM+QyO+tl7jjxmc8kS/hg/KLDyy1lUTsOAZJDOoBRawcv28ReXfUx42TW9yD9tOnuijpFToTeyFAXmN7ZVS5RLIOsFW12/niSwJPKqy2gkwSuIr/uFdY3xv3OFToSqU+ya6mBrjBsEAx00a0NlTq/GF9wDT1ynwPCxy3CH4PJ/7gk6huv/mCDOoB2zJAWmvJ3z1RNDxHsDKJv/etxgAXblNAwB5TSHxLxf9OrdI8LmyMa+DvMb7wa4YLG8GhG/XfgwMdLfI4VzH0Tmxplu9fRHul1MkGioOaCH02tZ15MhuZ68ZRkS9x5PWLFqmWztjzdzwIRnz2pfc90EzMuY1ut0KZQFtr8LG012GiBFDbWccV6zJXfMB1TNFSCXVAJVuozAdMgn3cPyOPswNJ4gOGyE96OaK14QVnlcPKe/5em/zrJaT1jYRbcaOTdqn5bbFXiBQ4prOjVTm03wHsMeFCstLx2DnGNZ73RP7pwRP5FyBI+Eg7hKwboUxCbM6pL//e9z5sNXe5UAhsD6N4kspQV40rG+G61kUsOXbRpLTfjsyXzcO22w/3QVVVk00HvfOpWAWAIM20lU7VihEeW9X7lIp8Dw8Jt1FrlJUXTeOqJiUiIVX4JCfcRTGtYmSfje0suYDtq3gISe67zc0vFE/5nfYu8XPlKMY18PcYX/g1w/kF50lZJSlFFcFffBabdx1C0isuqGqqSxHH71tEOmsT5/TMB4AwC3SjytaqUcir1+x9uUT+dmgi+12iUfp2W0kEoeBnnEKrkHigrqH7QqnXC8M9kY4tLpSYwuPcgFY6AC4K6xxAJedcuH0n+H9rdVRpT+K96Xfmgop7/jZ5HHe84O/WJe+X719E3hlPWx3g5LG9b5ZtY1zjeRL5H3nsxbtC5H/7jU97Il/CB+Xjg+P3LWrbGKk2J6SfL60TtvK3PB2czE6HkD6WgPKtd/0zGaAyCJUlYlPPqZmsaQCWKn3C9c6ndydJp6389ccVbHDj2me4Sl1J2rmkPrGdXU4TpGLJ9Uvl6yT3aLdE8p4lbFU7Qrg+VIT98nHgiss0YU+iPpqdRTA9ZXacpkCr5Yl8D43g0I3ofV13hHxmz48LGdLKTILlr/zb9cKXHsM7gfQD3up1NwEoVXFJr9Jzx/o9hzGcC82CXSwuaI22GziVRoG7iaUHFsHm477iQGFcA3+P8YVfM5xfME4HoG3RylaIrBthOKfWC9KGbbfWCLKnyHZrBKrM1fHV/3Nfti1uVu+9De0Vu7fScC5Ce6WwLD4l2FuLKBObmCJJDCglPuez3Zy7zhaef6NR5lPJW3RL7Ze/lSWHq8xv8srfCi5xD7AJpv1eub94oNZyEyslNudUX4L+Qqh98fOuUt7TPqd/92Edb7BqYtytUD3OHmTjbcD0uipb4QX7naAAs0wC3ftBWmflHUWoU4HP/hUuOd8k8gEML8Bj8DEraAFYPvhuQk/a5kh7z+FcYG23Wwp9Nuo9V6CFEeBj+3GN50nk//FfXb0rRP4/fPmTnsiX8EH5+IDkj7RXAYyqgSDBKktH+3cf1k1ApCf9ybBVA5HtiBbp8UxC2iXS2aTW9U1kosIN1BmkS9Kf+2TWmIHuxDEzWXHykUG+sp+oGo9zvsEM8uZdh7BxsLakSUcbWAKjJF2ZBJa1hnqv8x6H2KcXnHys99catfHgQhAw38O4V6B9fFOrvkjiY30D1TBFsaoU99Gs6dxVbQ5RDje3vxkelzTcRnxFS3mpnu2AnmPlmY4PcsyRi11ZMmv52da/86wbNPrZApKA2dH0PeIZzH3IBIFs+OrODRxbAaWqa63a+5KLfS4U8snRhltlDFz1ppPPOc+/cXFEBUhvXt6rc6UO2omS/2LHuAb+HuMLv2Y4f2AjW8Z1YWpiu8FCW8eLSc/0R+EYJ2P9U0mkcp6bf48iqOLB9usLNhukj3HnqG2fsnrvbdYaR1Z8AqNzMtcShGyUyuaRZctY7EhLnuffuKjnYvrou5Vn5xvH71vExouM93w+qSx2pK1O3qkQZsGoh3bffiyJfB13OA1x3fjEhbQEka/TZ5/bUE0MmLhl9n2fsKxPZZ82Dw+6CQDQPZvOtmhnN3owMDkp+0bw99VaVWNdZ9nYfjHOJ9xmtk3VNO2V7WN+VuYChsSX/Q7l8dwYn0kDqf7nc+xXyHFB9+xImNhTY89O4vsjr1/U6wPuk+sDte8KL3nD2R17g0M3XvBVHaeLcY3nPZF/evBE/gUGErv0TQdGiVypxJ784CO64SygBnGS5rKhonyOkBlT6ae/lXKH2+TdSL8m90/Pd0noy2a42WSove2B0UXE0gOGEIt7tkdz/+7D6C+EeiKkp2M6qwLfMFOTFo83bsR9ExjM5N1IE4qyqgGA1fTL9cCn7QgXcdJncCeQVR7mudD6vvG7xvNrr2RWU5nw2CqQpqiG5ksZtFvIl44iXtivzmt1HeHstPfC9xiBHLtY/QGc3V4eUh3GcbEpaclmVVvtQxIhHLskWQ9Aj4l8jo2u806zLyaV4vZzthLHBZX9DMTdxndyQS4JcwmW4sqFCRf+TY3x+B5JFqQzoyQDfXddVZ+7T5d0AM4ekX++KgHGGeMa+HuML/ya4fyBsSObk1OMMZyL9HwxuZQhTEttsVMmIdorGYZzhpWd/OAjuvqVKmrZdFaOkySC2ESxqUKWxBJfa2roLudaaTM5+75PbBm/ywpduY/l+xc1cQ+YuZM2dUwMX/EOlXwYV+sI4vk3LiKdMbGBtMnIZkskqyGyWaXQJ0j0x4MGQn8LtT1JNem9zXsF2ASe3I/cv04CxMDexzNsHEwwsVLqSg1+f/iZhlmpv59+/r10Ib8PSa/QycizJaZgrC5jZ/c7uF2sz7GHY5oUJzLmZn8IKUCUwho3DpfxNv+PB83WOTJ56faWAOy4X4p35HirzsGu+OU5ckznPmRTXsAQ+vrcO/UYO1kCSQVk9bjcV2N/PDAKf3n9fF+YBSiT3Sfy0ztvxXBP5McWjG88TyL/f/3VS9CdHuWfTgW99QL/6OVf8US+hA/Kzz8kqcWgR/1tVCpuOStJKSq0pdcxEaVmAhjOBdaAL9WotKphxncrpSrV5P27DyOu1T60+Mm6oc5Ec0HA5i8k25vAsiirfLMu3eQ5LD2wiDKuFT5Z3XQpNxONVJFKEoqKkaRXWRPyOEAGNWFaYbAQ64WJ+7kDxg9VKuwlkV80eOJzO/ke2QRZ2m24yn/pyw8AnSMqeg+GBYI014p8jVZL2ecAWqUfzc5qct/DQ0Lac9G66Wyqo5lElOWoUpXijg1y8c/xkZB2NARViNLnUi6OSa5zQRwPRtX3PDd5XltBLhZkosANoq33OMR+03NNiYYmJb7bHI+qHUlEyEXByPnHtp9nmAFXvvVhLD2wiLi3e03waPFGcNEkF0lNBAMJsAshMXwmGNfA32N84dcM5x4cj5TivLDsD0mIzzy5aTWEl8poACP9mZJ+aalHSUaxara9oqrjSGjJOacpnqddg7Rlc+cxzrOyH9hWYyzHbtlUtUmUJBtMcv7KO4rEl9W8TCy7pNc4rAuefbO5joljhnCnOr9qVQjSQP9fTJZoH4sspT7XQdJHPx40K+xdwo6vhRkwnDcJA5JzMm6RgoGkV2mLDlrqTB7NkXVDq7pyO8LU49JAdfvNAKATkGdTtMOYnaT2dsId15qXYwrhWs7QwkuOpbS2kdUvEnI9wN+e3F5aDxM8b47HFGtuFfu7aFL9S8GQuy+ZdMgnTaPrMgayWdsGLcxtYZEcL9xm3EwOvugtD+Opty2itWbb/ZwOSN6zItm1byaanCKanr9YMK7xPIn8P/ira3aFyL/r5U94Il/CB+XjgfTOW7VCW1rnEK6ShQNYmEJ7KpMIchskAoYs4r4BWMpS1+ZiJ0EXvTqlNY8cIOnHth3oYykbvEgfY06qm/tUMMnyTno5yvI2LkjkpKnv3zPl2JTU8rOmMiH66KNaPQAoRdVwLtEkP4l3qhgk2BB5K8j3A7byXqr+CanI5/HbxzcNgb/e00r8oK02Lq46gHy6hTAtES/3FMkPoFo+rm13PDwA2yOTpbVlK0DnyOCslkPyN8dgmIG3tAmg8nBz3gSaclyUJayynF+OKc++2VQXMRCWga0k97k45pi2lZ/tdqQ+FTXA9kR9k/JdKoHcgN6tJuD1yPNv2t49htxGvt7UkI/3ZLfVk9KzGVDXTdJBzqHTH3hkxG/zYlcRjmvg7zG+8GuG8wfOnzKOowin+9Ueqk8+hviaq9G/dh4AMNwToX2iQNLLMdyTYDgXWRYN3IeMCRkzDuciS5RD7NRPWSYASLRIxf7JYnFJqMkqMzZtZFNJa75yFOd8f3ulwmA+GFGid5bVmuF8++izsi+dUQntZx5aFHN3halnA6xeVwBJhWQ51tep10MN86tbYQeMqoO5TTpjPPlba4ElPgBq8VTdnJP++IBac839zQYGBzookxCbc8bqj5/57FPDS97C7lIGK/qjrESyPEA239Hr2LNlq0Oy3RXHcPxhvyT5HH3t5fhAhPloNZIr3tG/lQZCuWzZzaPd/crtJGRC1G2Ky3Pc6pyB0RifY15Tte9wLtDJQ9cqVDbgrloVytipHs4Dq1oorNX6HKfKpNIk/5Vv3Z2xlmszrse4ppOWX4BZ37minnGv0jodjGs874n808OOifxDP/BOdJZy5DUZOI5Z80utMzXLZ3dyzdL/bKK25Sn0xBKMNE/cqjmibKJyKoR302fDoH/quRz9/fHIJOpClsBxMgHkJMAMsZoMWqs2McXJqomMYhMmkm4AdEDPCXS31J9nAvmZU31FpTLJzq0a2PK3ywUZIZvZ5g7Zz23dZEHTMZgsCNMKEy/0EL6gFPbVMEV11UFU7QjRU0eUrc6VB1FNG3YxWFc32Te59SDCm25A+bnHUd1+M4Z7El36D2DXF3ybdx2yGgBKIh+wg3OqwYGtG2y7hD7tcspEBajPv9GQC66djFTrxH01LtHjkqo2Hp9qHFfVKEtim6xvmNBsaoi1lfqmSTVPopvv43UCtkeoboy7TSWA69vLcZ37aq2NJglaq6OB9vL9i1a5b1NyBFDKH5L38rxdr2BZ3QUYAkgurGR/FwDaIu58zxe7gfV7DuOR9//U+T4NjwsMt7/2PwBQwoJkeYDyc4+f5zOysXnXobOq9hwHsKJtJ9dZ3X6zboYLKOEGq+Go1pcKf/k4mwy1TRznjHxy52TMVmMl1y0cX7dab0jFvSSe3WovqciXcxKV+OlMTXo79jJNdjMnqyI+F6Ag4Mq3Pqz/HhxQqthkta7YrlX4JN5cdT7XRYx1XFWwNSdnSixFxAP7ProWIFFWobOUY7AQj1h6zL7vE4iuvw5VK8bqDTOIUtNn61L1rr7UEV1/HYovfBHV7TdjsNAGYNaeu8XtyGbXgOE/JGTfPalml4lJWcXD770EuQxpCewKZmTlioQrMpTxJ2CPP+0V438PwFojkJRvGsO4Hx5PPsfxgH8D5h6Qa3HttdR12bwAyfz2sWhk7KSVjkQ8CPT4FA9G5w9WJDX1+JCx+oF3GotmQiZrAHuMkj0a5Tjlrmniwe41+z1fSO+8FX/+R28436fRCBL5H/rctbtC5P/jm77kiXyJcVfXuA2apJKjuv1mq5T0UgIbuAAY8UzPurFWn8rmK+q1YGSgbK+U1jZNvvo7xeq9t+mGU27p2VYDpVSjZ5Mh0lkRROY2gcTs7sQxlnLZiwzATGoyM6v3JzLbMsGR9Ha2KDoXkB76kswHYP0NwKqIkMkYoFlx70KS/XJ/tE6KshLxuvDBpzL/2Amzk5a6ySTr42uuRjnVQZDmqFoxwo0B8ieePN3b4SEQticAwGokzCbDF2L1Q3DoRgBAPl1Xd+xi8yvZp0OC41I6q8aU6WfMWEcVoUvgArCUhTIQlAveA+80SkEJLrZ1yXvfTkDK/6W/vnyPTAxoC5t0+wCWVgeEmxSQz8ukgUwk8Lj00NTKonz7ZnvuPOOW+XMfvCZ9XmIxxEQL1VJNhIv7PrlIkdfJRY1snM7PrbVm7gOTK7L0WN6fphJtGaewDJpjcZRCq2XHBfxt/N/f8US+x6lhnNcMrgiGRPJOFOAXG2hlEa0NUbVrEr+tBlr2VWqyZBzuiSwCyfVn3pxX4+XpEN2ypwwtL4GtxTRcT3AN4Krvua/NfaNJZc43LuEvCSO5L87rcg4839+Zp96m7hfnezbBBey5t0mVP/mCXaUst5MJET4X9+2/XYsewDTk5NzWPlGg9eFP6YpHwJ7rijtuwcbB1ilVens0Izh0I4JhYSVOT0X0Nw4Ib7oBm5d3R+xdd+N7IftyABipBiIkmS/7UrgE+eY+OzYkJI/BWF+KDptsZbYSvchYlu/Xr2XmdVpYSR9+d1tZsSThrh9kta0UBLlWl9Y1xKpiBzA2OlTdq20q/bjolijjStvvlHGFqB+itWY89MtE3deFdyvxE7kdwE4iAmbMs6qMGhK53CdgLNZYVavO0e4VQJ7JvWZWY8tEDdcUkcWvjFqsni+wwe+4K/I/+LnrdoXIv/umL3oiX2JcgnJ66Env8Kxrgky5OHYJS9dPHIBWYZ7vQKwJ57qrNsvIAJvgIJEtVfoc7KSn3KkGYOv3HEbSK9HfH2tShAkE2VSr6X202eHkKkvF3IlG+jBTQUM/fdf/ceLYqCf1cC60BnpmdqU//9lGeuetI0kYqcIHjKWOtMhxlfaSyJeqfCLuFSPvb/LKl411eR4TL6joQRP4tR++tNfxPvhnD2wezPueLx3V/QfYbDiYnjJvaLeA9Y2L5jM5k/FSWpZRXQjYQbdUfrOJHmDGQJmMlElFwO7PAah9cQwC7AW2XHi7pf9Uw8mgm2Q/z1US4W4AyrJ3N3HpBvuyKsk9l6ay3RFF0aSdSJD75licNsRWrt1OmKmeJyzZ5zm31lRieTgXokxMHxTXukeO+8BoQoONGWUCm8eQCyZJVJBYYvUWYw2W7krQt9SdN9U+K2seBYzdHX2nxwXjGvh7jC/GYc1A1T0brfL3Li3TAFvAISGJEIo+xsk391xWIVMURLse9bepEgPUPXTJYCrcgZ3bFNC6jGRZe8WMs8O5YEuxDyvdZAN11x9ae+H3DTEP2OpZyy5DVIdx7nTnhZ0kG3Ybz755EelMhdaaScJzLufcSrJLxhRu43rZr0ZWNcjnCO7HtemQyfP2ikoKTD2X67V50ivRPpGhbIXoLyS6ye24EFwXOigQkDasUujVWRoi6zI5F6B9IkO0Nhy7KqlTwZkINKU1omsz0xTvu2Stq0Tn++Q2gNmHK9pxE2V8buKYPRdRrCOrRfOOHV/L2DTuQfcLcQl/QI3FrgjIPX/pUMC1jJvEM+OMIuYleS/tclzwfdlsaT1PQj/qhXo8kpXLTBbyHFurZgxy10Tyb3kfmhIanAM4vxAUrLqVG3J90HRdcu0k1wNJvxwrEei4xvOeyD89XBBEviyFcsl41yO+iZyU27uWIFKprPZnSE6SmnwPG4Hu5gJb+sczqJHNXyeXbLL4dIIfklT0K+QERjW8bGAlffNpqcJgTBISskGuTJrQhxM4Oakv/ajZkLe9UuyackBmwRn4897y8eq9t2EwH2hPNOnx2NQNXhI3gCJg9j22jrIdn7WqD3oHuh7h/O6o8yoskl9C+uPv5Pfiqu8BjPwOeCzAKLkGBzpIegXi9RTBsEC4YVi8cqqDqh0hn26hSEIkvRzhMEd0bAMYpt5SZ4eIrzw4cq/ihf3A9BSqVmIqINhUuK6CYINhAGrbi7AvgWyMeypjJPuJSA9ISUYAakygAsNtcgWMqlX4Xi5uSeTzfVe8QwWpUjGig/U6CCVp4FYF9S4P9bGoBEp6ytvXTRjIhUCZ2OcnyXHAkNRSnS8XEE3XOHHMDvStY4ty3e0afPE5mXSQCwY3KJeqSHlMTV4I0oJEhjwOYCdrOQayughQalM5x9FmiXOkJN7Nvs280CQkkNVs0n9a2hrtfa9qvHgmdg3V7TcjHOZWUqu445b6Ok6vkmVcA3+P8cX5WjOQcJY9nqTNmXrNJvLdShoAI3aTro+y+7/7mmvFcCYg8ST3Se/lJuL4VNcJsuKNsSbvH+3s+guJXgMwgQo0J0k5vnIukYT8ThvHMjZ355DduKfPPLSIF73F3g/n4wPvNHMzYCx3SJrxOtMZYGIZI412Jc5G0ocWOhQy0X7iyOsX0T9QYfKIWs9t7lMKVdlk3vXKdyv/qC4GbLLRVdxbQoL6mjkv8n7EPSV2kr8/NwHO71HnaKlV+x7NKO64BdFHH9XJu/TOWzFYiNFeKbQYDlDVD4xfpDUWRVcuf3EhOxZQXX8qQsym+B0YJeZJwrt9P9z3yNjYVdYDtu2Vqs411laAIaWBmkAXyv4wheYmpPsAq151Ilqcu0xOy7ibiUhg1ApSosliS59PPRbQ6pLbNdlo6v1NmvPIOxWKydLyyq9aFZLVUF+DvP4r3qH6gLDyRyYvpNUmE8bSAodzjSTk2fRdNm9vcl9oit3l/WlK+rvgvqY/8Ij+7Z4uXJFaeNMNuodE02/6ZBjXeJ5E/u987hsweYZEfn+9wPfe9DeeyJc4X0H58fsW9cAiy1aamnAQZpG+va+3DFYlaR9lpQ5aJfm91bF3oqCjImirJk79uw9j42A4ohJiieLs+z6hm3Bwgll6YNFqxneyhUN6560AoBuoshpBNnuRxARJ9SgrMZxLEPcKrVqVIBEy+cHtBywqBADTvIZBiWx45S6mdhIMy4VO3Dt1VYxsdOiSW66NBGBsFcKsQvtEgc7Tqyi+8MUdH+9UQZ9wEvYMvOQ9TXpqxnaJfACWqr7p85O++VR1ELKsun18U5dd2/sPEa+nyKdbSJYHqNoRhnsn0D6+aW0Xrg+9H/5pwiLs13tKUS8xTJvJ++kp8xpgKiRa5v3sV3A2v8NbIb7m6l23VKJarWpVCNJA/x8PgpEFvByLqbxxvXbLxCyYWREkVdsygM87piEcjyvLSwFbqU7iWapeJMEkK55YMUA0lc7K8XM4F1jKdx4rnW0OvGWFk1T2u4sV9zqkdRCvw12wyHPU55qN7lsuguRY3FmudJmqJLtZ2eDaErkJAV4Px3SplndtbgBgsD/U8y9gFDaTR1VPFxkLSAGAtKrjZ9REFMr9SpU/AO2vunrvbTqeAeyKKlqitU+YmzTckzQmwknkZ90Iw7lIX4tcuEgFkVttNq6Bv8f44nysGdjk1bUJZM8TSbpTle8Sxe74w5hSegRLtaKbjJWVVSSBCTmPbIXn37hole3LmF5WcbF3CmDmhL3vfRjH71vUMTPXHRzrgO0FNrS0AFTMKKs82aQUsC3VADO+tVeU8pBrC0mUzL/n4S0TDKywVnabhSYfqWCU1y3nk52Q+lJlr+Yl4Ko37Yxgl2IgwE7+sApMztn8nnA8P5vVG0der6wmZOP3I69fRDxQ10ilKtWyAJCsqs/P/Y5Lgs59HbCvUSZuZCUbP2eKAYj2SqX7Dkn/bn6HfJPbrcGkfNmOLc/4zpGBXofRIpccBi1P826kk3AUXpWtUP+e5RrvXN//3XYbkG4CbvNZd4zg+CibYAN23CgV+U3cgDtPuPEvIau5ALMuYFxcxkoM01lWIsasG2KwP0SYqbEUsPuPyGSpnIsAQzDL43N+0nPSwPAjsl+FrCbm9q61pFawO/eJFbNS4V7G6nmZROS4JH305fpA7vvAO1XygwR+3Af6B6r6Goz1zsQxO6khxakAsHElMPk1dR4zT5cjgl3ptiDXVdIvn2uEwf5Q31NWNjRBOlgAsObM2fd9Av27D1sVMvp9vXzk90nerSmeJ4kPGI6Gv3/pOtI+kY0Ie8Y1nieR/9t/ecOuEPn/5O887ol8iXMdlB+/b7FxwSsHlbwDdF+orAWoJD3cJp5STb45F+qgg17tXBgnvcJSMAMYIbFdexJJjLueWGyACJjMMRulyEGYC4nO0dGBwPUpJtxBGDCljbxX26n76C0pB8PJJTMISJVik1qCDUU42MnyIZIHLPPj/aRKADCLCp6HJC2oapx93yc00Q9srXKRQTcJtXgwev1NPqjMum9VRgbYzbAAoyo5XyVTVCBLcOFFz3rpdSptd+Rgn3VDJL3RpJf8O9IVLSXi5R6CNEPVSlC1Yu2rGgzVd6WYaWtvVQaQ0dpQWe6s9zyBf4qIZmeBKy4DAIvAZ38BAAhSR+ZcW+mg3UK1fFzb69DiaKuEQDllouCqHeleB8DZIfnZ7KxqR7tuI/bEu0yzo6hXqzNrX8aorx6/5A2j4wAVJoBQnzQ0VXXhejgCJohl8NpE6Luqc6n2oH89g28AlkUE1Tp8rz5noUyRZfaW8t0h6fsHVJm+tELY3IcRIp7HUNdnP8f7xYQB7yNJffeam/YtVY2c0wBg5qlcj2+AClo3DsZ6QSPvhdvonOci73U+afyB3R4BskKNAb91/eLzAYy9kusTrc7TxCvymrl/eWz5Hte3Uz1WcyfnSlbMyT4zPOfJJSMukNVb7ROZtmZT524WBFJ1m02GmFgp0V7J8LE//ZnRD8rDYxuc6zUDF7e0EQQMgS9/p9KyBTDJWMBOHALNRLzukyG2Zf8oAJZNpCyz55jcP1ChmC2ApMS1P/RpvY8v/eohJMuxpbKmkhOwE75UVssxyrXtUtua5CTXN+r50KoI2o5wlhVrUlHNa5P9mdw1Qv/uwyZR6awPpIhHnjPVkjJGX733NvQuN9UUnKMOvPNhq9HtVnM0SSG30S0TJtzGTbI8/8ZFTCybx5x3AZuwB+yk6Nkm8ZtAYr+1VvcCEHFI0S01iU+w2STnZX6vm1S48m/Xqk4mtuW9oG1q2QKmnsuxdlWMztFSzytNBJWH3YSb4jtZEQ0YdwBAJeddkWLSy5F1Y7SPb+oYPr1iGmFaomyFFrEP2EQgYNZ8u9mLSp/79dehnG7vehV7/+7DWHuxELk0VGK64wPjffke/nMFPxLS+osCkq3Q1AxW2mFRSd5ZrkbEFBRuSOW828eQIpbWmon9WX3rilqaRIpNFkNNyW0mLmUzcMLlTdS2tpCH4w0V+FwT8LyZHJd2pryGdAZa0U8iX59rpvqXAaZylkhnbDswaavH++LG5IC5JzIed+HG552lHGUrGLH6djka2VtQEu9uD0L5G+TvUvJM6/cctpxD1Dmp9VH7+CaGeyd0ckDdG+OE8JFHfm70gsYAnsg/PeyYyL/9tf9BK7/OVhkWLXQkOe4GnG6HaZbyAepHP3HMXmTLbdU+TcDbWcox3BNZ+5WltAD0tiT8GZDKMnlp+yNfM0mC+kcrSn2nP/CIJvhlkA+YAUeev5sxVfuzJwm+VxI5riVC3DfJAwaaJyvD7d99GJtzqrksPUL5nlMty+P7mrw9GdDLRrtsYsjEjiT3JTghm6yvSvK0V4pGkn2rpmZbKT1JANFyRzaJnHkqP2dEPgkZEu3Sg5ITBK1vOIC7oHKeE4Qk7YmmSUUdJ0fy/AoAGCKYKvB2C1VLfXBU3QNeeX+qiBf2W6r5cp8a4MKNgSLo2y37fyhFvfVZSGV+E0jeU6lfE/tsOmxhmGrFfpBmp2SFxCoCAKfkx89xgr9B169SBo5UyXER/tTbFpHN1k2Y+6FugARIBY0JCDk+XvUmRQqsXW1K0rU37poaB/b8jan0ef6Ni/ociBe95WE89bZFrYKj5+NWCvUwG/XE7xy1fdXVeRvrMqmmlpYRMjGc9MuRKituUyajNgFudYFLaI2UFEvVkaOUlM2ojEWRIfJJGMiyYJ4TYBP5Us0OADNPZlYykur3wf5QB+2MB6Sdkdy3S76zD4Ccd/lcZ9kOj+R83BRfaLs5x3IDqJVLjie3W/5skSapTdLpngwt2+aOxAjvhawy4EJQEmnDuUirv7gQUPfaTvJS0BCmFf78j94AD49Twbe++t/rWONsKD6lKo3fU5L48rfQXwhHlIzAqHqxSYkY922CUzY6nVgpR9YogPmNyTFCKirzrm0DtrlvtEEgAF09RpsXjhnSco2Qll1SKCPPi8p8AFuOEW7vI35uUkHbVHUrBT2TH3xEk5GSlDwVyKoCwAhtdC+rZWiVv/uaJOeltzWrl9m8UG4nj9MkfJJrJDZU7xwdTdjIKoWkd/ab4NJ2QoqNNvep7yzFWQCsZp0kyCRJR8jXAJMw4muAIL9qAmzqOXvuoeiNa1+uL4Zz0Vj2ohs3FHfcgjAtkXVjtD78KV1l5Fr8AtCJy7hXaNKO723aVj7Xen4d+XwX4VAFH1LhL7eTCuGdjOPxlQdRXLFXP96pQEeOGVk31HE2+Qe3+hRQantajAEmlnXHdsCOs6jSp9peijuk0IWVO25lDnkJuQZwY2agQUxScxQuuQyYJKGbEOR1EYwLKcBkLM/4n7Zf8hyk7YxbfeveJ2lJUyQBNufta9NrqEl7/eLeBymG4uuuoEe+7gp7pGVP3lHcHquMAJG4EIIcGSv3F0Krdxbn83zS7TlgKgZo2cNqCH4Gcv4mtweYalop9GXCnOOejEvk3Kw/T8f2mz0smvgb/hYZu/O95GZl70Tui5U3YVrq6p4/+/OfHdn3OIBE/m/95ct2hcj//r/z157Il3jld/y8/ptfjqwb7TqByaYtW9m38Isr1e8kzyWxIT1q+cOSmTBXXS8X4FQTyIUsAP0DkY1DXa94nqvMsA0W4hG7Hz4vs6pyEHS9jtXxbVsfQJX7yPeStOBzkoSm4v5M/HeXHlAd3NMZ5cXI/W1FjEvIhpKu7c2zb17ExDH1t8yCcuKTixYG+JzAWSbnJi0mju3sWlkNQNDWgMfgpNleKa2FD2C+Z7vp7b8VpKoyTCsMFmIr8QWgMdMLmCQSAz4AllUPA0Aq95vQPr6prXPCY+ILWje0xRWXnRdrlosNYXtC/T87jWrfHgBGcV9OdRBuDFQSJc2A9Q2dRLEwFF8KSfyLfUhFP0Gi3kK7hWKfIuOlQr9qxTtqlhXedAOKGVUWHC/3tvyOrN9zGL3Lw0YbF1n2bStojKoszFUTJarvGaTp8xDKeJL7bBbHkk9XMa+2NYSrLMl/6m32mMNjqnOsLDsfPuc2gpKBMBfVDCLNNY6WwG5nqcMxyVUKsmRXNgl3CXkZSDc1y2IymP83KZGkgsZ8jtXIfWDJq7wfrgc95wAA2Pu4IfEBFQPI5IYk4az7IlSE2jJIqFmZaOc+Wf4v/fjd6kB5XGCUVJMVcU0WBLw2+V5pDUeijkmJzrIRGkgVDu8BrZ5knxvAFha4IgmZnJVlvrKnCrfxRL7HqeJbX/3vkSwPkM13dHVg2Qp3ldSvbr8ZWTfGxsEEk0dzvWgmsSjHTsCunOHvq7NsSutdqylgdPEuLSwYCw7nAm0hIqtzXQ9et2oWMNUB6Yw9PgG2itJNAMtzM8+bamSen1z/uOsqnjvHHFbjnm4TUkmc8zxJtm8Xi1O5L8d9bu/aq8pxFbC92ZnwZyJg/Z7D2hLBTRCfbG0g45HOUbtZoezbJv3fmyyH8u7u9UpwwUoDSdZxbub8y7hJEvBNCSxJ+ss4SSr3ZTUdfzcyKSTVoePS2PFCgyS0OY4wRpEV1wAg+6JxXQdgRHXvkvgk9fLp1khPs2LfFPLpVqN6n8+dbAxnzE9icavtV++9TYsKJFwVumuDJsGxS71PnIPzPXdt1FzyXRP44n+q8pfvX9SJsSZRi/sbanpdPmbML60paZUmK59cQYgrIpTxsxRwMiHBylRyQlKVLoU82/m9y/mSf8tKBK5haNcpK3pd0l+us2Rlm3Q70JY9M/ZnIX32J4+Y74YUbQKw7Ik299nOCqzIGlxeouyUCAehXi9ybKP9ECsigK37W7m8pPv75N9SNClJfX7vySFJgp7cDMl3dW3qf8lftk+YijhaH5etUNvyEGx6fSEo8v/HZ2/cFSL//7v5MU/kS7zyO37eUmxtzpnyOKDZduVMwdIR90cjg1OC6jxmyORCdnIps8hJuVAFYHnFAerHN1iI0VmyZ40mJfRWihaek6vY4TVIz07ZWJEDiTvATtAvrTuqzJSBLPcjB27pk2ZNbCKwA0YHW8C2nnjmIROky4lIBouuulSSEnKylZY/soO8LFVV9xzWNeZdFVQzEbD0wKLOYktPYtmU9mQJBvqIkuxwkwzu60Cz2lHaLU19eQ3ZfGfXF63DPYke7LkQHM4FmHrOfO/kBEGlPmBIfmm7Iy1wpDJjsNBGeyWzlP3xeqo87uuGqtUwvegapo4DouuvM01rAaOsr4l4TeIL+xwAmqxnVYQLWtiE60P9tyTmaXsUX3lQvUGq+hv2W7VUUFHMtLck6GmdA2CE9GezLrdslAEqxyM3mMtmC0T9EMVkCUwWQBYCkoBPKiALEObmOSodZcM39dgeE6W/PUn3prEQgNXAivuSpfnPvtmU/AM2QSMhk6xu4zj+DZiyUblokMQvMBrwA+Y1Xt9WZLx7L1zFvNxGNryVc4g+zqT9mPOKXIixyZdUDk4/U1qeoLy/0kKCDatod0OyRJ6/61lK9Q73xyqO9opqsrdxMLEaA/P8CM4p6lpGG9nq7RJTgScTDeY+VNZ5c9/Sso0+nwAwmA+sfgp8TSqCuF8eXxL2TQsOzh98zPhEChDcRPBf/P7/b+RaPTy2w7e98u0YLLT1d4qLW4pjdnvNQGGHVMq7VSqEJO0BtRgG7D5DsocWfx/tFbWWcJtJck1Cm0K1D9NAXVbUcozn8TkeSOICUGMz7RYIjhluxZWbtJA2NYAZv1zFuL4fogmwG7PLWFo2MyXZIpvAcyznWkSuB7YiuvT1iioxkvIyMeA2OJeVa7IyjesKVjw33QtiOzJf+vJvZdEp12IU+vA8ZBJHWi/tluXOMw+ZSg2Z8Fn/+hztI7GyqnDmeCa7G5vWis9qc5+Ke6pWhfZyHf8LwQGTVptz4Sn3I/PYHtKOims22WtM2qUCsARYHL9c8n44l2i/fAmS+ICKz6PrrwOgYnvZTJPHAUYV+01r3Or2mxsJf4rR3KRi0/jsWhUC4nssYlLZt0Fu51aQ0CHB3Q9jUKksB0Yre9y+WfJ1Kvbl+2UC1iW2W2v2eMy/pZMDxw8Sylzzu/YxJOYBu5qMJH5TXM/eT3KNIDkaAHBV526i0hWg9C+rOR+OE0JYynWHa6fDe8IKK3kP8476XIpuiXImR7gWW/0FrKRuva+JZZsr4j2R955++2EWIJstkKxG+r5IRb4USLqCGLf/FT832WtTvW7iaNlvRrogyDhFPTZcohRa6nMRPWukrZ2Mr7hffm9I4ANKjPcnn30I4whP5J8edkzk/93v/UX9peHgTy9sfrHORgaeAz+DYvfLDmBkQpAqZJ4zYCYiYLQhqMxmA7Cuyy2FkZBBpNpPZSn9ZZaNJb6SZFHHMiSHHHTpgdxaVT6EvAf01HUDY9kcRaoC3YYnVG64DbokoS+VrFWrwjU/+QieeWhR20wANekxaQ+kbuJANhhUn4E5X7dzOhc5bgbaut+Jaewrm46QDOGkITuqn8zb+mSgbQ8nZJnVdtWarh9p+0SGaG24I+XyyUAiXwZBw7lwRMHrLigB81tQr+c6yysVF9rHXvitS890WruUR1XpRDm0G9l6nBniKw8qi5xjJ5S1zvSURaCTEAdgfU6a2AdGbXAEqMAvp5U63iLx623zJ55UdjgupE2PtFCqeyUAQPWVZxq/ExzD3fmBCTxXDUL1jfRaJ3lMxT3J9WKyVMQ9IQh8aVMAGBU+g1x9XxLzT4573Hf7SGz5ZbIqiftKZ+wmTC55oe/DzGhZKWCP4TK4ZbDv2rXwbxeuEhywg3G5eNHHE3MAjy/VK1L5KUkUl9yX4z7PX1ZRyH3z/ssAn4kMlvUCduKX73d9KYdzti2d7APgnot1nbmZX9lE102uS/sEPj+5VFoqFwbRJPZ4rwFYpJqs4AIMqUTCy7U40PdMqHhlYzMq890GvZHzvZBJXbmNm3iWzc7l33z8yPt/avTkPDy2wT+4+S26fw4A5NNmDjlbawY2TQVsMlUq7QHzO+T3XK4T3HOUNoNuQzrpY6uvs1bLMSEJmBjYbUTuNkfl9jI5y+ahJLllk24KNWhjQksfYJRkIOnK+FCOA66dZRNkclXORf0Dqvp14d0PW1YVUjhExSYt7aSdgvpczGOpUnVf52skotyqCfrocy6RIhu55uL9OZPqZArNgNEm9E3WF7xneUfdi+08uHcCrkvkOkuKH9zEtlvR4c6PjDkAs86RiQzA3GdWoADA1HOpb1a7C5DrOzkekaAvWyGS5YGubgUMT0FeBlBEv9sDR21rW+eFaYWkl2sRTnzN1Xq9V8y0tWK/qakmxZDb2e24FjmAsc91Vc1SYCD5E3XM0d+tTDISMklJuK8D0NZagB2Hc03vVs9IEh8wvx23evVUILke15ed473kFhifMpZk1agcVwATT1MVLytv3R5NgE3oM76XMTjPS85bTRVH7FHFMUX69QO2JU6ZKEW9Xgusmdie+2cjeXJRrbUA6YxteUohEO9/axXYnLcTFYDdS4BjJQDdr0PO0emsmsvinuLc1PuNaEh+n+TfTJLxtyLJdyka1p9/rcxvEiXzdRlrNJH10rqHPGV/oe49uVRaohxa7/CcxrXnFYn83/jsTbtC5P/AzZ+7JIj8HQ8/sfBZKtsx0I7rDI/ahfwy9u8+bGWwzsQXj6qdCRgfRsIl0cOMk4OaqIoWEGYBokz9wGSwzXJy/ljc5pyG9A8RpqPd4HlPNucSi8iVSYUwq9DfHyv1TJ3VzLrqfAjt6SZtYRwvs815oGzZH5WbZb7sf6uOTOkV08i6EbJuiMkldV66WS6JE6fRl0vEq6Aw0F3Hw0GAJ951GO3lZj80GajmXRMMYmCIFw6EclKgt7HxhTNKRU3WY7SxSVNWmyoTLiYAldiYf8+ZKUWO37eoSLOOPcFzwaImFRXUqsVWUKsm62qMVgjMtJHdeSuirESyPDhtUp9BHiAbEZYjZH6ZmOa1BL/D9F4Lh0A4zNX/60Nb4Z3WAeHl+zVhXOybQokOwvUNBBNtr8TfZVjkeaulSHzAIsxlY1pD7ieaTCcZr/sTOHY7/CzDdWgyv2rFlr1OfOVB7X8fzc6a98odpSkCQewHALC+gWKbxE5/f4yV+jcjPR3D3F4ccixqqiIKM2h1WJkHFukeDkJN3NPSRiLMAh2gpbO1X7lQsSl1YaWTlk+9bREv+fH/hyfeddgiWKnCtxKug8AK5JuqntT/wcjzgK3y4b4B1BZmgSbEJ19oDrSlpRwXAdy/7L8iyWLLXsfts5KZ6gGZeGbyoMlGxk0W83hSDRgPgNApnWVZLon1MDPzha5KE/stavKZAbgOzh3Vofs58N6UiSHPoqzCzNPqO9RZGgILbSRgGbFaTLCJFVVtYVZiuCfS46vxjy3FceqgH6LPSAKLNDefWaCTIDFGE9llSzyXmecyhAAMOSn3balQdRmvtIGwe/uocy6tCgJ5vk0LDQ+PnaJsx4jWhmitr+smh2FaAoIwDg7daL3ndBufS0uY5fsXdQUL1yIkSGhTxXi9aEVIeqMLXvW3IfMl0cbXypaxoSpbAcKsxOZcPELKa9Ijs/uZhKndhBcw8TTXFpLsyRAiSktMLmX1+zOEe5L6fXY1siTG9j+8rCvxyq/rqoV+RmLPKO5J0qQz0I1eo6xCmRnSXP4/cUyNw2y2CjhJXjmfZIaAakrySjB5b1UNa3LH2LzwvqSzgSa0AaNeTfqlGA/V2HamVjer996GIgmQTSqF/eq9t1lq1byr5m0KjfjdA0wSm5ZB7ZXTWyPPv0etdSQZSVHBxDFDlOl7FJvPoSnZwu1kcsntx8O5lxXARatZke1xaggO3YiiFdYEXmaJDiUnIUl8rt+KvRMokhAx6rXc0AgNypZpfOmqgNsnhurYaYbq9puR173uouuvQ7QGZPNqMKLwCwBQJ2OLRJ2rPE8XFBDIhJdrSahQYXPO8CSEVqjX1UeSPI6yClFmx1SA+t0RHOelwAUw3Af95JnMW75/EZ2j9vWwH5c6d4zsQ99nR1TJ51j9K90R3N+c3K8au4ywMVpR15At2H045LFkgjUemHOT56hi69Extnd5YPE3TQIhcgu8z2E9F3ANouc3cX2yXxXH/8GBurrkWBOxbebkwXyAfNKMZWwMPHEs0Jadcv6YfsYkwXkt0sKS59+7XH0f5don6ZeYek5xehsHQzU29xTnlndjzbG1V0orRp56dqhjBMktqt+XqY4pW6G26FbfCbWdWusy1rbjCZL85Gskb8m/teI/Cc3aqGUIfL6WddXnJhMCybLTA28MUVYhymprAfXO9rEjjfpFgR0T+Ukv101Nw5tuAAA9qWgvtbqcCqjLgCbVj55Z2CbbEgn64wNo7GgvS044SbjKGvuczWIbMD+SqCZYc5EpY6bLzaLJ8nJFzAaWIk82j1KThW2xQyU+YJoQyUGG/7veviyzjft2VjXMoIlvBt4cqIL1HlrPA22hxM2umEPRamPQDS2VKwdaEiib8/V5CHWk9BaL+6GllJGE/uhEhPozNJ+Pa5lT1Oe+VamtnBi38hDmfmc/aAfBZ6rAB2y7H342tPEBlIqTDRHLGDoQX3pgsVbmqEVSfyFBmQSYeXITwV98FmdKifB7NXnUNC2Uysym34Frk5AsD0aU9xokf9MUwVOK0K0AhMvHUayunvH5b4V4YX9jI9SwPTGi8o6vPKh93y+GRrrxNVdrJXxwLFXNYbVNTqz97FGrZZqqJkYa1DqEf5BmOlkTDFNEaWZVW2jbnPp/nlMT6OHflNCJrr8O5XQbw70TevzWtiVbNENVTUBrn/oZt1pIqdilf72ujMkChKtmDJcNA6UfPgPB/mVmXCOJL5X+QRogSAN85edvA1DhiXepxHE6U+kydn3PExMQysa5fA2wj8HzlnCrogzZAUs5o4n9ulmq68s+2hfGPg+3gZTcp1v+6/YjISlBuOM157LYOZ6cB1gBxrGTC7H2SqUXaGVikwW67FgmBrQ63Xgely1zzk0e85IUz7qB5Q8qPa+zbozuV3tqwZsp73kuospWgOGeRHtRqn2FQNduGikbWckYhUlswFjh8Rq5wNTJb3F/LJ97CJ/7FbXdJlVCfWO7p45tezdLNCnh1LaGzOM+3F4/Hh6ngs3Lu+g8vYrqk48hu+MWrRiVKO64Rf0vFr7xeqrXGCcTPVA0BIz2XQpTo5JWSj01NrIvhlSAUqUO2EQ9QcVrPt3CcE5V4LjEtyRsAGiVoCLjFaGUxoEhVB0lfnulQpja1UiuMpMioKIFbBxs6bWGKd8vtVUo7/fgQAdJr9AkPgB0v6oG47IdY7gnwcbBWB9HxYvQ90pbjC6oQZ1krqzQ4lzONYObTOUUJOcdua219knMPEWwypZrIt5fuW6ylOV1WHImivsmLN+/2GjlJvuqSAKPCYPj9y1qsY9UDZ9JQoG2QxQ+tFaB1mqAtZfYzW1JiFWtCvGgXt/OlggzQwIx5qCSNembuYDWOWktRhrOJafdQ+Fk2MqSJbr+Osu6USbpLvQGusGhG7XyHTB8Cv8mZPW0fq4da19sSeBTTQ8Aw70TWiWcIUbSU+RgOMwx3DsBXDGH4Z4EE4DVnFrSrRXUZ5AMC1TtCJGTaOU4LC1f+X97pdRJNem3bn4HtUWsvmZHzCBEKuQQZN+TzCHvZdJUjTeiL1Fiquh5HmyWDag+UgNhqaXvs4jpAXucB0xFjEuUW5W7syYu1j2h+rYbg2WTmZkqAhLdYVbpJAbvgxw/pepeVnCVdRzLe6R7DmRG3CTqve24uU6CU9zBsd/uVTY6DvMaeF7JaoSiW2rLH121K9YG7GcSZsDUs6aHTNkwJ3DM4ucoK7jkOoUxAPtM8dxPfEOIySNGFMmm3VmdhCXPRgK/TEK0VwokvWLk90mFvKzQG+5JdOxs/q8F0ULUJW14CAqGaXHcX0gsm2RAVQHkiPRaQzbZVeN0KCr21Pn1FxK0t3EY8bgwsWNrnW8//G+1SobqGXq1cUKQNjRhphoD9e8+jMkPPqL/dyFJfvpWun5pslkT0VT+7T4mXHJTZr/U/o0P1XDOjMSuR5VbIqPV0UJtz2txvRsH84HlGQ/YBLW0bgEMqSPBYJYDGgmM+U+v6AaYALDyd/ZaxELWDazGKNYgOmmC3iZlqCR4ALsb+lYkfOxwinIAlhMMr12qPrk4kOcaZuoc9773YaR33qoXUUmvwuQHH7EaT01/4BGs33N4Vzwbl+83qvvWKrQ3qCw73ap5MAN+EjLdr/ZUsFUnw04XXPhm3Uh/tpLAb7J9YAKLyopw3SgxAIwo8el9H83OotocnlULnWh2FgFJZ+G5TzU47WUARTaT2NZ/H1u9oMn86PrrNMEuLXF4fUGaW9dMSI/7cGMwQrrTpseFtOORanyZGJCv7bR5MRdgbqNkNh4ERksypdcuf2dUcGgVX518LBO1+CzjCmEeWJ73JBHCHJg8YhPRm/NmzFINlUxpv1SxMHEqA22p+AdUQsCFJN4b1W0OWeEG8ta+HPJblshbTcsFwa+Pn5rFCe8vYMh/eb4SktiW10PoRLMgv117mCgzSU3383Qfx6JKq6mM2p07JUEiy/tpcyObURFufwAuAKUnNgPc7ld7umcEy8kJxjRMmNLajmS4VKozkKb6httKqyOpbAJEpZy4Jkn0c7uNgyZxwfhIQt5DucDVn+EW1jtcLEgy342jWOI/rqW4HuOLb331v9eEHKtp3UpBtzQcUAvU7ewa2ACS2K4nhFuhspUlJ8cDLdpxFtfyt7E5Z481UphDqy6g2RKiSYjCa5BVSCQp3ea18po41rMnmLRblPueei7V4g3GDcO9E5oAHCy0G4k21/qSj6eeSy07MTkGu1Z5uuKYhE1DojidsW308kk7xtZrhmz0dUDF5gfe+TCeffOipba88q0P6xiehPnSA4tnrMYn8acJJrGGknAFRXKdApjv6JmQ4kdev6irC8sEGM6XaC8bgt6qWqy9pWlPCJh7PPk1M7/T7182UVRVZ1vbqJwp2By1bIVoPb9uxZ3FHbdYa+/+fhUosRfGcC5CZyk/K336zjaKO27RMfNgIUZ7pbCqgtxml5JAjNbUOs5NdrprxJFj1rGL7A04nEssvmKnyRGKL2XcIMcSPgZMtajESBWniGk5fkluRW1jqoeIk9m/cBs+lrGyHJ/ol894VTZ9tvr/Najb5RjGx02Qv8mJY4HujeVaLstKWzk/yB4ofF32FZO9LADoBCIbrDfxMbzPRFOz3SaOpql5cNN9kRXPnRdCs2aTlQRaqDO6n7wDbO4zgimXs+J60a0+ltckq0FY2dy7PLD8+fd8Uf2mNg6y8iSwehS4CX5JvpMrVM+Pqujl9ttZH3O79olMJwPYS44iBL4HsIVE0pKHfTH425bNyMe15xWtdX79M7fsirXOv/ymRy8Ja53TIvJdpHfeaj3m4vBUG1q5gQ5gK91kc1HALESBUUIAMAG+S7DLpp9627TExpWmbM09vtq33bSW+xksxPq8GeiT3DCejqXONqpzUUTExsFQE8VuEEy/L8IdOMMc2P/ZAcJhjpVvmLKqFXifmGF0s5kklmRigOelyy9FMC07lLtklSSY5LZWt3CRJeZiRjZsUZ+neo7EG8+FXpfqOfNdIFm/eu9tWrl0Oo2kpBWU23DFJcvkJCZJr85yc3ns6r237bpiRKofgNGBHLAnGE4aHOTphQ/UNixpiqom88+nZY5lLzM9pe1iyqkOipk2orXhSLPW6NgGAGypHh9nxNdcbTWsJYFetSOU7Rjxcg/ldNvysifyefXjSf722cZKBu5fKvIJ13Pf+i6IpMlOSfzwphuweXnXIj3cJt+yGZ1UxQCwGnVzDNEL0Uk7oJa2OZJYLxNV4t85ajyAh3Mh+gfq150qgCZPctdH1j1u1Au39DJ3x0T+7RL4RbdEsmovriSJzgoEekDyHnA7Gay6SQS+DtgEPN8rFzqWWsoZ9wBDtkuC3LV8kc265Fgoe7UwSV0mQPeFqpFEU9diKtlkgJpNhticNxYFvB7aC02slJYyneohc29NY9oyCTD1XIr+gvqwolQpU6NjG/q3J7HxUjURycQ/G1aRxHIbiA8OqA+HJbiD/Wp+7yybRr38XbjNKnkf5HlL737ed/n76Szl1u9OkoyywkGS87L5qCRIXCJTenT++R+9AR4ep4K/+72/uC1JKS0XAJM02ilZSEVy3AOmnsuspBQA7RfvJr8k8SzHjM5SbsXyJLtkRa9sFC33RYLAVZNS0Sd/8yTqCamk42+ZFoj8fcoYTpIBMtlJz19JUk0ulegsKRsAVocmvQqdpSEGC+16P/aaifembAEzT5JUDKx5nfdZ9t+QY6+bkHUbJBLSn1ja8rjJ4K36znDOjAeB8kiuvZivepNaBzz/RlNJd6qVusfvWxzx3ZdzNeMUOQ+TVGfzctkQEzA9HHZT0f7U29TvIJstEPVDhFmAomuT9bKysZgtEK1GmpxMZwyRTwuJMgnPmur+ZKBQUKrUuc5nnwfJA3SWhluS2uOM6vabIRvHSv/5JssaSQ6Gaam97ZuQ3nmr9uCWkE3u3Uo7VlsAO/t+sveVPj/B0cjqvqaeR4xHKRCRiVAJWW3JBqSMcZoavroNsdW1jj5u6jcle++5cftWDXW5P/mcjMcBQza76w762DcJPJsqSgGbTJcxumzwKsdSOjowZuR9k37x7nXJSlH3+mQFmRQlybHQrfKxKor7o5wWYCrXZEzPtYMUWvEeTxwzx5DbNH1WbvIDMP1reE/cCliuITnO9BdCPTY2JflJkKt7pNYE7CEhUSTGCYTvcfsX6vOuRUW9r+uivZJpVb3kPOU4qO6HiRE4N0vxEefkce15RSL/Vz9zCzpTp9h4wsFgI8cPeyLfxqvD793RDknqn2ojK2llIlUqUvFBtbXMLLHBAwc1Bo0TK1ItZyYWkgVNC1n+QHPtKytLVtUPjeoE+Z6yFWgv/OFcaE0AVOfIALlJOSkbjbjkQ5hV2t/L8tKvB2tZlu82mnUHbwmZFJCNBzlIAmLwjE1pGMktaV/Bv5kxdVUfLKUlOcVBmgkMt3RK2g1w4pWfKSs+AKOQcbOvJ1Pl9+8+jP5COBJY8JhyUpbJBFY4yNeKJED/cqUCOhcgmS+JGsu3taF6RZI0k19aViRyTeKfb8/7eGH/SENVrG+g2rcHADShH6Q50iumddl49PxxVOsb5/38TwfxlQfNg5pAL/ZN6adYOeGCZH+4PtwykI+uv24k2aHea8slXH99biOb3+p9zs4imN/bSPIXd9yiPcTl4l6qdJqU3G7zJgbRDHLTWWN7I5vVykCN2848XerjyNJ/BnhuclJalhFSAajOxYxvRbfUSQT3XOQ+3CZMbqVT2hBTcPtstkT3mXBkv27prnU8sSBQ52oH7oBtASeVVy5xA9hNpwhXnWnZKtTHcZU7Vu8Y57FLLru2MPq8e2qcX75/0VLWMxAn+SATmYOFGEmv0jFC1g0x9az6LQ1rL2kS7VIo0F7JLP9IKgTV+at5v3NkoD2/V2+YGVmsSjW9VM7KEmcqavg7kUQeyUipcnNVxe5YzvFelra78QU/ExKLslEWoHoRFXfcoknU4NCNWgUY/MVn8afl78DD41Sw0zUD1fqTS8obeidVi6zklUQ9F+BhWmG4J8L0B1S1pvy9MU4iybUdsSUTd9KGUwqIXHW+hFw8Nyn9Zc8tJjHi9VQn7oM0Q3bFnCYp5Xg0YrFRK/A2RS8qtZ35W56Xa8kjF/1uApf3V24vK6/l3xxXXTQ1rnSVnVy7UAgk0Vq1Fa4uWSQtQwFD5MueNpJA2k6VTxW/K94BzBpKklZN4iY+5npnN+w+t8OR1y9ic58SCrSXQ22nQ1EAoGILAEhWw5H7Bqh+CKrv1tYVMWcLtHKkMp8qdPaxA6BJ70Ft8VQkAaaeUzdcWv9eCKhuvxmA3fcs7hVaaCW98AFY1a6srN5KWCljcQCa66A9ByFjAFldE6U2kc+kQNYdtTGSdsgyqSmFCS6RT3AckmMoYBPNAIQY0pDI0mpLJgJkk2lAkOZieShJb/nbdRs8y+pgWRkrsZ1KX4slV+3HtDTmMYHR2N1NNgAmtpaQbhCS8E9npRJe3SveLx6XHFHTOchrkPdajn+ysTbfp8fveruJY2gUPzWtm1wFPSHdJPhebt9aNZwNLYJ4XdyG1W1SWOteS2vN+MuXSWhVwcr9A6YSyE2qb2VFyfld+t9b9txOU1siXk8Rrg9RTrcxONDRx6Cwh+fhVgG3VwrLDQUwlT/kZcc1nvdE/ulh14n8s43+3YdHAlCXGJITkqsIlWXxMpPmLpzlj5KEP1UyDOyZJSOJbzWZE0SSaeZqJjaZIZQZVV4HAE0WU83v+toDowM9JzmgHliFlU3eVYoVmSXV7xWKeneSAezg2gyApot40VW2F6iJL2QBoj4D/EB7U8vz4XUO5oUiVwTCJP8lqc+BXgYU0ivSLa+bWClPqi7YTjUvq0Qk2SU9rTmBcGKbWD69yoBTAc+ZXpEyuUW4ZD5gVGbJ8kD5qq9voFxdP6v2OacCktvV+gaC6SmUR48hmGgDV1xmkc7V8nEA57eC4HThKuWlQp52Oeo1Y3tDP3vtj18r+ZtshUjiSxV/sN4bsdoZsVYi2i3tu8/77VY8cMGVdWOr/Ho4F1ll/oAZ82RfD8AeE2k95io7muxm0tnRUnZXSS+tsPgcYKv+5PN2iagpp7UDSFUaCkCr84HRsVQmIN1juUS8vEYmUKUCn//r4N6pWJhYHlXdS7jqUMAkUmTpLmCT9HJhJF9zFxLuIq2JON4OriWG+5oct1wlaNIr0d8fjyR4s26I9gkTKNNComyF2leawfDk0VyXxLLih0pABtWt502TzuGeBJ0jajWQT7eQdSNsHIxHyre5eCCo6qHggOeuXxeJFrfElgE63+c2rZPXLe+b/K1RcSQVy0xe9BcSfVxec/TRRy1if1wDf4/xxTisGTbvOqTHCo4fUrHGOF/+DRjCfSuxDyGrADgOsBSfY5BcqLePbyKofaaDYWH6CIjkPADdZ4bq3Hi5Z1XrZd0YEy+oRQAJ/hPXtXWFFT33Absnl6xOoOqR8aObOARGE5S8Js75HFuzbmwJoIZzUYMX9mgSHrDVltKKLu4D/QOmNw4wukYB6vl+zbzvRW8xsfezb15sXO8AJyfXpV+4CyYI3OsaUf5mRlB1NtcEx+9bxN73qua3PJ/B5aUVpzC2kUp8wMQdrVVg9qnhWDSvZY+MIM2Rz3cty7vo+eNAmqK8fP8FZ63pVhvw993kfw9APy+rc8K0Qvv4ZiORT2Jd90OrY5usG1vJQyn2cnkPPtc+MdqnsH/3YcS9AsM96lyabL8Yo7gVAa4dmBQbSLW+m9BzyfImAY4UrQDNyn5yBySGXXtLWQUEwBH0NMfl5trMuck1g0wMMFkpSXEZ17v7lMJBPpaCmK1ENW4St0moKElsWsvwnKTwSFYVuLbO6Yyyy5HJQjnGcFyW1wfYPv6u/SbJfJlMltyau16RnB8FLPxu5R3jiw+YBFFrFSOiW5L/naOm2qe/oCq647659u4L/F3Z4ht1r0ZtA9U9Nr9HPub23Ifx1Te/q/aKuvkULebTLV1NLIVYtEAbziXW2kH+/qY/8Aiq22/Wyc5xjedJ5L/nM7fuCpF//zd9yhP5EuMQlANKvSNLRWTAycWq9GhrKteX6h36jEu7Hpk5k2gi/aVHuSzZjTLjS+b6IrZXMp0MoA2PO0gBJukwnAstMl8q5l0LBbfhisxM0ovStX+Qz1HdKYNpvW0+qprn/1R7lJ0SYd1QiUEkB+vWqiG/ea6AnSR40Vse1qWiPCafd0FVFm11ZLkZ1fjH71vUmctTqRBpOo6cEJqa6vC7p0qXz75n4+Zdh7B2VYz2yqjFAgd0WYYlv/eTT28gPKbY0HFQtNMTn978gPLHr9aVmjxot8bC/udMEd50gybjXc97AHqB71rpEMF6HbGm6YilzlZWOmr/jsRN7gswTY4JYfkDAOVUR5ctR9dfB0DZ+1Al5ZbyuVYh0n8XGFWXMGnp2sZYhDcD0sz+201WAvZ7XcsuafmVT9q+innHkPWATdi7nvmA8riUFVCEVMXLhMJWzfkkmMCUcAN+/XxsxlRpbSMt5Vxsp46XjcqafJIltlLcN5H+TSpNYGsv663sK1yLNddKToLzbNLLMdyTjHw/2YScqj9JFrBBZJO3tEsCUtEm5303qUzfYbe5ppzzO0u5pchh0M774Ta1UtcSYiuLwaYqAbnYYK8ZJgikNy/Vf5zDxjXw9xhfjMOagUKMyaWs0TNa2mbK5+SCnItk14MWgH5e/g7dRTutP4qZNuJlNefKxrOySSXnfyYUk+WBJu+pUmZDYPrbA9AJOXPc0X4Zsg8ZQdJ/5ql85D64Nhm05HFJRZIQVO3KtQwJFXdNwjUBxUmukpX/u4l1uT4gYdS0Njjy+kUrZuBxqcTn6/lk89pip5D7kZXNPOeJYyRczDx9ph79W4E9AsqkwsQxpUqWalhFklZorSkin8TkxDH1OUw/UzaSt+cS8cJ+VPv2oPjCF3WcKRNY4TDfsi/UuCO+5mpkV8yN+Gdzzuff/G3TH1vGBIxn3OoD2TuuvVLo2Mh1EmiKHwAz5snYhsSo7AG3edehke2k2ELu11UtA7CEl9I+hr95Gf/LvoEytqYgUNrSAHastblvVFAjuZKmZrYj4kbH/10nEBrIbhnLyzUJx76mfbvnION4+Z6R5r8tI+6U+3D7Ksq1gbQckq4N7prC5Y/ctQl7jHF9wqbakuDnGOT2ItP/N1QjyB4B0p3CFb3KitamSjDOe5vz9ufAc3XFUBPL6jUKYCeWgcmjOajKJ68znAt0EgYwQh3JM7KiRn1GoY43ZMUvyXq3KpYJvcFCW/9u3CpA/uZkgqN9okD7uBJhyj4asjqecb/scTKu8TyJ/F9+9BW7QuT/+C3/zxP5EmcSlFPZxXKyUy2B27zrEJJeMbKw1fuvScr+gul6LpUn7kQTphU2DiaYqLup80fI8jK5Xzlw8IfHc3EVPFK9I8lUSXK5GWyZ3Vbvsz1tpf8voLp6u0pPSWK5HvUTy4ZISmdGfaDpL0m4JL+bLeZEIL2rq1ZlNaFkAxf6VboTFhMRbnmqm+Gmn1pTM1kXx+9bRNIvT6nJbXDoxi3LE5vAkluZ/ZcqG1mSm/SaPfN3E+mdt2LjYIJ0Ftj/uaFuagI0V6Mwe5v0csTLPQTHToyFrc7FDpYN68a2QKMKPzy2inLf7AiJr5vhbpNw4aJHb+/Atc9xiXoA2rooOHZC2RzVzY8xPaX7FEhQ5SOJTKoRAZsEAEYJXtc3l3ZbBD0VZTmrHpOcyh3A2HTxeZLobpNUvs5gTpaIkqynysS1EuO+GKxyUewqatzGUYCdbJXBpEomjDZyknDLjKV6SAbCkjB3E8MMOpssc9xzdeGS9rK6Qvoi2+c8Wlbt+n02Nap09+ES9IoULyzSSVYjSVLN7WnjqmRIzAHQvUOovtfnWT8v+3XI7z7L1qnw4fxAGxtpNQVA/05kRSEtDdT9DTUhKNX4+nzE/WpalMt76XqQ622FOs/t8SO390S+x+liN4j89XsOn1JMB4z2EGpSw0lYikfnffyNUHlOMOknCfZ4uYd8vgvZpDKfbmm7HJLzsoFlOMwtFT4AvY0cY9T51XFbPQ5J0n+4d0KPd6z24RqIhJxU5Q/nTHXQdn1FmsZmtw9Z0it1A2J3vJdkHOe62ScqXYUrPagBtTbY3GfmNnU8tcZIVkMtGArSAK21YEdWls88pFT5O7W9pLp9J3j+jYsjZBdgjvX8Gxe1fQ3J/J2sZ04Xz79xUYu93N46rHxgrCEFA/HA9FO4kCxqxh3R7Cyqqw6i/NzjugktAO13DcBKDEqffNkkczvrINpmSGWweo/x6jb7Ge35AdgOBE1CRil8bIotAFsE2VQZzphM9vyRNoxM+vF7S7U3IDzRHTEheydJEt8lw8vEJAwBQzY3EcpNanoeUyYTmiC3ka4I3BfjQlYLyLVHE6cDGKJZ2scBsGJNCgl5TbL/mGySC2w9LlvJPkfsSfJeipyiXqiTBFwzudXKco1SJhVcZwZ5793eXoAtyiJkE3jGvvx+SRESPwv62nN+GsybNRbXnpNHcwznIgzmA3SWjdhMkvWuDROtll1ukYS9TPA3/R7lukO6fACm5wdthNl4V64BJpcynfhjXwvAcKFyLcH4njalwPjG857IPz2MpSJ/+f5F/QNzVXdNSk8AI8SCLCNnEzj5PBfg7Owsm+rICYnZMwDai0q+l5C+tgyMZdMsvh+A9rOSP34ZbEuvYgbaJOOprOcALwkSt3EUyXA3I9xk68CBtbVqSo/KJEDv8sAQ7k7jKZfMp3/05BHzHg7aMokgy6/UvRtNIHRfKEe8+k4V7New2woTWvlI33xJepxrMNEF2CSQDMr4P8u4wxeOehL/LEN74NdWNUBtjSOaygKCQKd1UP26JN/LZ19otD+SvvWNRH2aAtNTI+/D+oYm6HleLoI009tVrUQ32JVqRFn9JFXcbpWShBy7XSIfsCuHON6p95nAXvo9yoZOTUoboA50naCZY6Trv0voQDSxg1KpnKFCgwsFNm1ywWvV+05HExdbWZu55bl8TZbzAs3+kvL4+p44n4lrh7MV3MoxSf5KJWaTFVnT8YBR7359jg5ZxG2AUaUot+Hr0iLGXL+tfFP3IVCVSbWFVD7ftch8qZQlqAwcLLR1wC+bf8nGZUmvsvy5KQqg9Y9cSJPw5/PqPhk/bT7mNbDclhUCTV75UgTgxjCyOkH+bqX3JlVO0x94ZGwDf4/xxblaM9BuE4DVZwIwCTvZdI4xvPSF5mJf9hua/JIKsqtWopN79Kunmh6AJtPdx8GwQDbfGVHaUp0vCX8AVqIAgEX2D/dOaMKPFhxUJwPA5uVdTZIBss+Y7VtPNR/XE5L0MffH9luWaww5t8vGo4wBXNsKaZvDOXTyiBH56GMkwg5PVObJ9QLXGCSETqcf1TMPLWoi+0yU+BLL9y+if8Co3QETG5xN0n4rLD2waJFOsiJCqmUBEzvt+7z6Xo+Drc7FgviaqzG8au9I9Yr6W/bwUwk7t8E137MViS/7EUrvbap7mUjksWS/AT4GTNJAxhlJL9d2WTK5qa+tZ1tsAYY74TgkXROaHAcAkzSUzVUBOy5W242S4ZI0Z1NcdT/q/8lzxHYviCZLF3fdILdz38N9ujaXUvQoCWqXf7Ga6TKG7xv7Glqi8f4AGBF2unZl7RXjBuBaztDVATDrDnlO8l5L61GOkzKhyvVXNluLW3PzmbaXw23f56r0ZVNat+pAVm/L3lhqfybmlz1d3IrvsmV87znfA2ZdIpsPS6unkWpwEdeTk5Q93+S6Q517ue1vXsYQgwMdK2ZX12W4m/7+eERElXeVBZC6NyZJAdiJLDaqJ5HPezXO8TyJ/Hc/enhXiPwHbnnkkiDyz+xOnWXwC5qwaarzheZgNrnESdFkIRUpYLLHk0fzel8F4vUUw70TKqAX3lJRViJasSemKFXn0V4xFQHZ/hCTR3O9QOAkqLtIiwFHZUTNj5r/t1Pb+kQ9b5P4KqCu1Y+tugFiqgZ72dSDWVnXqoaTQxkDoRiUOIC21kb9Kfc+rn78a1cnljJGDuKcFI1aNgDq18Lc+Fq21uzsetWqMPmVUO9XBr4k2VprZ156SkXWTspET6dKhOd3/L5FZAtsoBxYnsIARh6fLSiSyHgfSgUav58kcPL5LpLnV1ANU1Sbzc1UPc4c8TVXKzK9JuzDF46aF1vGgx6A/l+jfo9U4m/VwyBot4BhCoZTmtCvn0er1eiBfzISX3ns11HW+gaqy/cDMMG/pbhpAems8ElsBQBsUr/JNgxdIMpsW50wHw18tdo9N4tkmSgsEyAViwCrtBVGZQLnb45hcp9uWatb9q/3L/7xPFwlvVSrR1mFKLNfC1Og5QSwvJ9lIhYK9bguGzuF+aiiRs6JTUTMydBE4EgVZ5kEmrSx7BlEUOsSRu7iSiISpbBlUjmJiIZkiLOglIp/9b9K/ubdCGVmyO2kntul2k39D2y8dAbdryrSLVobItwYqN9m3WQqXB9ajbardqS225Mg6YWazIq4wBELiTCrdMKeBH2YVkhQKrufVqLJffaWUO+ttB1QmFaWqideT1F98jF9d5Lbb0aGWJfV834M59T3onO01Eo6dX51HNI1CxqpaJNK1PDOW63fuYfHuIIl5ECpe1ep31FmkeVq2w6irET7hHocZnZvF9rHbHzjft0Pg4Q6AN1AnlV1VNK7ib+qHVmEHdX5VTtqJPElcZ9Pt1C2DAmnyAE2+WRSMkYpiLq4V+gYXSYwzL1hHF/pZHxT8ra9YhMmKkGoXpuoSabNOWXJk3dDPXeTHHbn2zIGJr8G9C9Tz61dbXyVJUnfWg3RWq37eAmSDYBW5ANnZoUTZkArO7mS//h9i0hnd9akVpL1z755EcN55U2fzgD56xetfZyK2v90MffFDEduSzD7RE1OdUyco+IKYwc4sQxMPaeavNM60ePMQHugjWvnABgBX5GEmisIhbDAJOJDPW7pWOEkTXyZvFfq7EKTiGESAnX/KoJjiKwuyrsRhq3IchdQ+637X7Q6CDNYY4gUOhKaJO3GaK8USHpG1ChjxdEKTVsEsa09jV5f2IlCrSavY5kwNap32nhRcCPjaUCQ8A5BT7gxOGCsaaz3NVTlcFspIJLrFilGAkTVgbBAM03HOQ/UpHbPjNs6Rhfxs1pTNay5UH/fMvO+MBm9J3G/HtP75Ihq5wWgHrtFVW8vRNEtkc4oPieMbRKf/4eZep7VSWVsRFqA8aEPcyCHOUdeJ++J7B3Ae5V3gTQOrDWS2SZEAkN8s2KtVV+/UttXmFxSjZflvZU2pUUS6D44k0dzLYZxK2MlXOENY4SqHaH3dV3NGUr3hs27DlkinzCrMNgfIu5BN/d2wXWH5POSXozZ930CXHqt33O48b3jiKIKUVSj1ZOnuo9LBWOlyF++f9H4GItsHZXpgK3yc4lvmYmU5evS15Kek/l0C8O5RAftYVqOeNLJBo60JVm7OtEke3ul1CUuhNye4ADkNtCVTeakilr63XKQaiqh0qS8uA9UushmrPI9gHo8+4QiF2TGPeuONp3U3d8blDGy0S0fZ7Pqb6me4ftJ3Kcz5t6wZGvimFosnI7K5lQg7XSq22/GcE8Ct1xQ9jDIusEpWeScTin4bqC6/WZsXNnWzchkIAjAUm+FGwNUy8e9Gn+XEc3OIpieGlHTA0D57AsI9+8b8fwPqJav3wPYBH61Ody2EXF85UGjuh+mVkNbS/nvkvn1MQFYqnuJYL2nmg63Wygv36/VhbJaCbAbewM2uSwbU8nxvKmxqvSxd8s9Cbdyh1ZfMjnpvkeq/6RVTtWqEPVCK6DWVURuoC6SpPI8tLKkwTIGGFWay/ulzymxPSzlPZTHkFVRruema7MmS43dBrjbocn3Xu5DluzKANfFyZIHJlEtntuiMa5UdLnHYpWd7Jcjq/FcRUwmFreSSCNhb0HYT1WtBFUrRjbfQbI8QP/FpsrF9YqlWlUG+zIBEqWKLBzuSUbez2bkrkKOf7M0lk08uW8qcdymb/J49NNm9aBOOmTVSeescVXweIwvzsWaYf2ew1alDv9mDEclPIARxbvsBcGEH393JPD5vrIV6qbXBMcMjg0uwS998Ak2uZRxGc9LJhtko9vhnkSrdZPlAYqZthXPZfMdTeZzDSPVsW51ApOLshoIsP2rJ4/m6BwZWAmMsh3j2Ms6mjwzfsij85GscHMVr24FLwCt2JRWGumsWjMUk2ZeuPbH/x/OBp5/4yKueIdaezz1tkVr/SmtP9NZ1Q8s6oW46k07W6ss3794zpX5JG24fpRWH9KeRCmAS8t2weP0EM3OAldchvSK6ZHKfbcXB9W75CXopy1jACbttwL96l1rPNnjg+MAYCvv3abd7vjXPpHpyiHGKW6TTj7HMQWwld8ylpRqcXW8rclv8hrkfWTFD6+T/QIptGEML+1tZAwtn3P7TKlrUv/LSiApkHRFPu66gO+RFcR6fTJpbyu9++X5MXZvEvZISxnXMo6NxZmAlZD9CCRIhruVwoA5f9diR65N1GOjtFfnY7gebieTMeSAZN8Q2ZSYlQmy8sJ1p2iCXB9k3QCTS6UlLgJsS2vX2tq1kOL3jdbbrl2p7EEhuSP24WGDafayIThfs+KXYiH+xllhIyF7b7G6F4COBzYOtvRvanPefLdONt+MazxPRf5//PTirijyX/fND18SivyxI/LZJZqDpSwzIrgg5hdckwKC7KdXM5VwnSMD3TyKZa2AKiVM77zVZLJF4wku+hl4UxHjlpu5lgCuKtG12ZEevrLZretBRx9LwGTc3AlF+qKVLTsj11QyFg+AvV9QqqWNgy0M5wLL9kYOpnkHGFxeWg0fy1iVVSWrEbL5HKizs2VcBxJ9TvY24SIHe74v6odWCdZOA+PdxOZdh6zH0kOVwcfmXHjKKhrZIfxcQVYi8DtMqwg2Uy1m2kieXBqLBrcXI0jmV9NdRaSnIiKj77z0nweM9Y30ra8J/53YH8XXXG1tr5MJy8cRzO81+66PLc+tkgT/FZfpP5Uiv7b7WT6OYHoKw68/YPUAAeyyTfX8aOALmEBaNol2A0i+1yXLqWIBTJAvyXtJJFDV4e5XBtNu4EmSvLU6mjTQJeninKzr6hsrMuk1LBudS593t2+FbO7kNvWSDaT4WJaCssk3F+oM4gCzkGJSeyeQfWWazrXpWiQJ1PRe91qlJ6rcp3ydzzeBxATvgWziKpvechwETFKTczwVciTyo2Pqt5NdMYfkb59Vv09WtPD3KuyxsvmO1UxKlvdKX3wmOqSXJu8RifwwrbasGktrRXyYVph4oWcpJjfvOqRjBbcXgbHVqLYs1508mp8ScTOugb/H+OJcEflNTRalChaAttEiCS6bxg4OdNA+ken4HgA6T68in+/qbaO1oeVz3f7bI0Ca6gQ3x5Lh3glM/vXzAIDs6gVV/VjbdsXLPaRXTFsq/Xi5p2175MJfNq7jvsP14ZbJAanklfeBpD7HateCiz23OJ8mPbWemn78uE5S5PNdbFzZtkghORcBzfO521yQnvi0ZQCAZDVC0VVrDPackfsezpco4+qsEfhb4dk3L1rxR9w35y/P7ZqfPDXRzrkU+rCqgHZ/RRJoa4jj14eYfMHM+WdiYephUN1+s8UbRJpsVQGjFPIRkneQhP5OKsq55gNsaw4m62QzalmVOPFCD0GaI5/vajGbdBgAgMkvLSO7Ys56ndjKl9ztFQXYwh1CqqYBm2Bnk1MJCkqkYJPHdEHugo1YdfVsA8FsnYNDVLtxtyGwm9/nWgTL12QzbG6r3yPuWZM9kCS13Wop9T5bNNQksHGFQ+55upDJCPfaXas014LUFVvRLk1XOYukBcVbsn/BVkKvCZGokGsTd20lbYikPbfafvRvuXZxeT23DxgJfsB899srhZ5Xh3MRpp5Lt3RiCG+6weqJlz/7nPWaFMsB0L1uCPfaZI+LUxnDxzWeJ5H/C5/+e7tC5P/0N/+fS4LIHytrHWaRnnloES96y8NYvn8RQPNiP0pVNns4p4JU6Z2f9EtNkA/3RGifKLTHZDbfUc2n/kJlwYJDN+quz2Gqgunoo49i/Z7DVkMo6UMrS1iHc5H1Q+ePergnsho/AraXFi1Q9nxRLei58Ng4GGlSXzaqyjvGuiGdMYSVTVDZQSdgSCpAqVw4KZy4rq19HQGlTi3TANVshSGgVfVlXKGczxGtRoaET0pkSaXtdADoRrfFZIlkVWQ4a7U+Udbvi/ohWGql3r/z78luQ/YrAMyEEGaV/h6t3nvbjpSLxPloGDX5wUd0VpeVJwCQXjGN1vPrAID4r54D5veieNaT+GcDxeoqUBPv2iO/VX+hBCmoHwONjWcxPaXJ+e0QticAQBPyQdskCSwSn/sEjPWOSCYE7RZw7ASqfXt00qecbiOfnkZx7Xw91prFiKsyH7HDcdRs2lu+ZQI4/d4GVYu7Pxk8swmWG1DTY5I9OWQvD7l/IBgp25UWO3yPDFL5unt9YV4Ho7N186cWm6dDl8ACo0RulFbansC9X/Ke0DZIq45ijvViTI1N0y/AThw3+ZJyG3Xc0SanVJpwYSDV94AJdqPUTnzKIFgmpV3bHfeYtH9oIu/dBUuUVUBPJT+UCslW3ZSJaMzWYAujG8wtG1sr2uZEa0P9/Q83Bqimu6haaiKlrY5Wz4p7xM8SUMQYFxdceIY6gVDpJlSDhTbaK9lJrdc6RwaoPvkYpNYqvfNWhGmFMC2wOZeoJFJ39Fq5kAdgxAmIz7q1g4fHuQStL62xSBD4gFKwsVm7UZnHyKfVwLxxZVvHgO0TmdUvg7+/4NCNunFt/uxzprqzJvfLtvKgVuOGan4LAMGxE0jq6rj23x5BNd2t59YWBi82ksT28U3Lbz9aGyIUpD1JfCYWtEBj2lgoGvtO2ROA41GIbL/xEtbVzzDxd9Kr0P1qD1UrRjndxto1XVNRLGx43Epg19Jtc75+vp7PuB4Jc0PeSzC5PjhQoH0sQt6pEMZqTYGZc784YNVwa03FGfL8lepWVfN96b99M4K4xEvv/cyO9nsuq3X3vvdh9O82dgozS5s4cV0HSb9UzXC7wORRZTMxuc1+PHaO4C8+q60sNu69zaoOBGD5z0tlvKpulRY3YWP8IkFbWMC29qB9n3lsHAYYB7BXV7LeQ7Q2i/6Lp+oqPfWe9okM/WvnMfFCD/3rOrVg0ha5yYa1gBlD8k49pmSjJP5WSny3qtUFrSi1oLFlx/+yYpViICls0cd3SHw5hlFkpLcVFbBMdDaJhPR2ib3mkGsK2avQWjuICoAmuxwA2pGBYJzrgmJWchaSfJbe+GVsV+RIYp7H5vPSVoi2p5ZNl7Pma0pkWNcs/qY99MQxaH6LFp7AaGJYrqG4voicyhKpvJ9YUf+r+xGIdYwhv90qk6JlRLZJr8TKS2N1jsvmu877TJeOshVgsBBrgbFM1LvgOiJ84SjypaPm3tUkvhIQK7HRcC7R9qMGxqqV3OPFGM+XVYCyOjNbzzN9/4WEs0bkx9dcjfyJJ0/rvVPPKEXElW99GMfvU2Q+ldFlq1bYZRXCDOgs5VZzlaTHgL60ytS1L+5HHwUO3YjwphvUwepyl/JzjyMAwLB5+gOPYObQjcLHKrSCY07ISa/AxsGWUM6rYBkA6EcJUJ2vJuisa0iMwUJbdL4ujI+ZKH0HbIsK+T9giC1moDk4UmlPr/qNK03XcWB0sKlaFcpOifa+AdJ+gjApEWQhqjxEMRmgAJQCfxAjWQ11F/OyUypSP64Q9UOluEkqhIMQQRqgtRZgcKAAJgsgC4EsQDFbAILwv+pNO7ev2W0YS4YCgCmLKhLTfJCk1Po9h+F6mo0TqOCQXSPC229W5NSxVW3B4rH7iGZr0q8m5GlLQ3VvtW+Pbd/R1IRWQKvrt1Hkh/uVb0wwv9f+XNPUJAaEbU/xhS9qVUAEIJgGquXj1j6pCgCMmnm4J7FUvRKWgiJxbGAcNUzeASCC4a3UIU1e9fRqjAeB8VkU4yETnQxSufiWJa1uICr7eEgvSwbeVnWTcz6E9PAkge/a6xAku4tW7RGfqSStLAN2EwjSs1I/R6K/1ezNb+6jqQrYquGYPC8XMjB2G8hLSGWMXLjK/UgwmQ2ouTTSiwmTAHAXLK6tHp8DSvWZ9QoAEWQJrT6/VqB7FBRJCNQJ/SpNRnpEBGmu1feA8rMkgUYCEHXJOq9h8qhqOpUcNeog9uopWmHtG1voIH3qy2sn9SRuffhTVqcANjWX1n+TR3PRS8hU9lFtT1V/2Yow8dFH0XIP4uExJti869Ap23tMf+ARTVZOfvARXanCWF3aCxJU2et+L0moiQHlr68UtcHnHkd8zdUqId9uYVgr39snMgSALomPPvoowptuQDHT1o3swmOryuZufQPl5ftVH5z1DaDVQnDsBKJ0CmV7TsWYtWe1JPHDoUkcUpVf1hXFMZX5NbFPxX5RN75OegVWr2pj8miuSvBXAi1W4TicdQNMLCuSqL1S6fVVfyEEYLLs9BQm+vtjnYh3q4G1kKinvNcB8zyr3Zg84PqB1b1a5d4KtLiISfeX/NCnT+k7sRugZUQ6o6x9wjxAezlE3lHWOmVcoUgqtZ6JS3zpv30zwrX4lBX6ZxuuSjO5Uq1fpp5Tas7hXKT7x3mcOdI7b8VwT4TJpUxbYbBh5dRzqa64yRfaKk4RfXMIGbukd966pSq/rElHVZVpLLSkTS+3y7oRJv7gkyjuuKVOIkwjXlf2HoBa+/YXQhQtJU4Y1Oe38dIZrWomwqxEkcSadFVxbjASs9PfXBKyWnFerw8Yu7oVrZLwlxaaOi5mNW69j7JlCHzZr0rG8ICdsMy6gVVdNGoBZu8jh91fS1rPuAp/SVyjfh+bwLLBtCvAIRFsx+iGQI4yFWdHqeknJd0beL+ZcJVCUr0+IymfqXOwqqac5IDbe5HrOXmN8j3bWaBKMRXvGzktzVu1gEHdcyXpVci7gZ5bkp4UE1UATEU4vzeaaxPVsO2VAhMrdqUCYPcTIKG/KSrLyR3OfVm9xlhfEv/8fUkR0skStcUXvqjuQf04OHQjwCuqbfQAVcFDEa8Evxudo+V5sXD2GE+cNSL/VEj89M5bLT/yve99GLhvEcfvW8Tk0RxrV8V6gCpbgW5uK/3k3cy3tgNITTkZVdL5dAthu9S+l/l8F030RvXJxzBZryvC9oT2qg4O3aiVecnyAOGCIrnUZJjoSZtlcuo1Q1CopoFG6UgLAHrmM+PHkvykp55LZ+vAuR6A2UC2jCtsIqxJ+hDowOo1kM7AsrMh6D0Z5gGiHgn4EsO1NqJOjjILESYlSgBVogh4JBWQKy98QCn3k575GhVdW5EPwJD4gD6HYrZAMVmqvye3zmCebYSpnACimmxRCzljq1SgEP6dw7novHnhnw6Cv/gswoX9hsRPGxg7jzNGsbqKeGG/sq8hiV+j3DerEilClT/iSe94dAfze1G1EsRXHtzSL1+W5kWzs7YNj8j4S5BArK6/Tj1xxWUoaxV+1Y6s0j4AdgCTFrpZJmDGWcvfnQF43qDcc4K9pvJMviYb5hH0V2QgzP8ZjNJaTAbl9ORNEeoyfr0PhzRnkOmWivJvqnJkYKpJ/9gkDzrLZpy3m7iakk1em07S5rD8h8ES1LqBk2oCZS+W9P2q77H0JpXEfZMaXipcmnxP+bd6n/3YrTQz+y9HtmlqBEXCST/Ogjp5HVqKG6Nor4PlOoFiLfoS0/CN3tgqkW/sNahE4+MiCRHW5BlBhasm02rCDFD+liGgiTVacZCcD9MKnaVcH2ew0LZ86QFTXh999JMNafTtQfXdcC6xyopn3/cJTGBry4bO06t68eDhMc7YKYnP/hAsJ2clYnrnrSrR9dFPWn6ztKwZ9ciXlaIhul/tqWRdWuq1QtVKgHqebj2/jvZ6D+XRYyO/XwqB3Oej2VmELxxFubqOcHZazfvrG8C+BMmTS8DVCwBg9ergmAMAqM9HjTW5riCiRRA998vaRz9DjNWr2rr8/8R1HUysmH5YJCQml4xP93CPWnvxPTLZDNgJUZJDUab6aRG6cWJqbFw4H23uq1WXUP9v7uOcHWDiq5Gew/KOIvhpvxNm0Xmr1JWVxEw0WGrcpELQyVENYoRJicmZTazvQNe+9MAiFt59/hSUnCOCQzci3DuBwULsvfF3Ea0Pfwob9y3qeTrpler3t5IhXk8RHdtAdsWcFSclvQxRBi0gC+t1AO20gmuuRjnVGUn8Rx99FBFMbGDEiqOfZ+S8p7jjFtWHo65I0rFJasYFhXIkHhzORSNKYakg1+R1FyOq/Iikv1M9Wjr2JRLpjLGm0YS5cBqwbGj6tg3mSGVvvWZgTyHAERnBXnso8Yw6r3gQWMS8hBuPu2itMjlo2/3IewDUZPOkJO8VgS9tEmXszdhavsbYmFUTcm0mHRr0PRH3gWr91pqdHNkOI4r+BmGWJXziui4b9eF3bZX4fQEML8a/7SRRoK1GlWNHbSsqbHMo9u0vKJHszJOZtsOx9tVXybepmqjvfrWHfLqFvOv2urDv/fQHTk3cGd50A4p6PUGuEDDJ1/7dhxsFo+fDtvlco0SIAmfWrLY8w/dfSBgrj/ztsHrvbZrMl6Q9GzTJZrKA+qFNflCpdeKe8ZqT5WjRJ7+wbSPJnYDkWXDoRqxd0xUZ6vr1VJELskEeF/8s8WGQvfbiUA+0LKWSDW4BRRRRnQqogLOcyRGuxShZglqr3knaGxU+UMaVLm0t40oR87TImSyAfmQ9R1KepbAk/KN+ONLQVt13o/p3ffOJYrI06nwA4SA8r0oW2TDNDmIUpO9o1lUTxsmC8aUHVCXJ+QzaPc4fwvYEwtlppapnY1sS+7USv5zqKAsP2eTWgW6au76BcnX9jMcrAIhI4NegR6/09pTkvet3TvWe9GB3S1KB0YCOY5gVVAoLGQa4cjtJnEsffOmx6IJEQTZbaMsvKuziQaCrlRiwTz1j9iMXC+4igIp4ee6a7HeaX3WW7WlVVmaR6NiqeTmvXSqbGJg3vSYhPdpHbGlEsO8uCrggkMqr2FF/AyapI98nGz/J/2W1mpsokOOs9IY151tqizrZxFaS2G6FgesJL/1eee7SHx+AbhpJ2w0+R/sKEmYArMaPgGpIKffbfuo48iee1L8vNsfl8bJujOGe6JQTwFplXCc0zkcCeVw9NT3GF+dzzSD9ZglaaAIY8aSnuj686YaRsnf2oMm3SIzv+JxqMVB40w2akGfz7HBjgGLflCbymVQsZtqaxAeUpz5fd+dt2VQTUIITmUQuWsDUs0Nk3Rh5N6qrD0zPG7l24vwuLYuYgJb9QABlJwbYjSalSl9XBdfzumw+H+amJ5pSrRoPfa49zkfvLMA0vQXU+aUz9XqrI9I1SW3HNDPEcK2Na7epHnjqbYtaSHC+rsnj7INcgCTFZc8ybfHlJBhZzUMPbdrfAADS9IzHn+KOW6xeHhRBuvGgjKHcpp5SkCgFGiNkqIArZOFzsoehjCllT6fNeVsg5JLF0k54pPIXowIh2u24vQMBNS41NWetWhWSVY5xpr+WZdGTyf1UmvTnP1eFLuN3jqOSO5JxbXulsHoeyOoLtY9qJIaWazb2lZL3w7U+5bmw0kr2B3B7lsn3jSQF4mZLI/dzkJ74PDZg7gXXlOTCZONkYOtKD0L62LvbtldKizNkcns4F+n7T04uzEpMff4o8ieeRHDoRgz3TmC4R1lgdZbU73Xt6olTdmigEr9sxxgstM95j5Jxjefpkf/2T34LJs7QI39zI8fPHvq498gfN5A4olKEgWU6C+TdsPbLNcHr5l2HRn4g8V99RatWd0MHzn1Vn3wM7b2maS67SlPds1n72k68oCbmMG0DSDTZ0F7JMAMViHNSlCQVJ6jWaj0p1MRP1AsRpGp0TF5QoxUzyPq+1Y2kACBK1QSEXgh0SwSSZK+V8slyjMmvmckunwSyy3MEcYmsEytrnPkM4VqsKgKgstWc5OiVTx98CZ5HEJeo6qSB9NA/l2CjW9mckMTR1HNqZuBCUJVRlQizEECAI69fxIF3bh2Mh5maME62ncfFA71Qr0l8TE8haKVKnV83oMX6hi6xD+lrP0xRHj2GYHbaNNZ89gWEV16um9LuNIiPZmeNzU6t+pfEgGx8TDIgGBZA25D4ALQHNwDrN6w9xoVqzw3etyLwZRm+LpON7feFKdBy1DpsyGep5GsFOss/ZWBKhTwQicBeVdTknQrpjLoelv/Tg3JipdTljAwMSfhLW4Cyrs4hCSFV9Tw3GZBbiV1ROizLcgFbLSOv0dx7NKqWpHexOmbYSOYDJsDngk02RAOgPVLVfYmQ11ouSbzLHjFS8SJ7vxCdpVwv1Pi8LAEHlBpfX6Njy0N7HTPvK3AhKMl7XhevaTiXWMkIINSqN21X0Y4BYV8BQJP44cYA5ece1/Y2LOol3DUrKX6pgKf6LevGaH34U+hcfx2CKw9alTRbgRZYnSMDnTSY/oMLowrMw+N8ompHiNdTbTcTppXlLR+uD7VPPa1xys89rv45+zpdi1AXTMKXn3scwfXXIdwYoP1CPa9PKxI/SDME6z2U+2brvh2wmvP2rp2zKo1MVUGo10Wbc4qk4Jg580QPgwMdAKGuEAoF8e+SdVEqGqULP2FC9QUp0VkaIlobYqYd4WuHp+2kd9ckvidfqM+wrlqbOFbfDzGf0+ZOPa+qdEtRBXuusfTAonWe6hzr0T8LdIVxEJcIkxJTnSGmOsNt9znxjStYPz6JMo60dazHxYdgWNi/l6xUybpjqyj3zWrCPqmTeclTRwAAxVUH1HuPbRhrv3rNsJP4P7r+Oh3b0+armGnrXh1VHfsM99TiAtHoU3qEU/lMmx2Sw9JfvEwM8Vk6antz3c0aUfYRbK/YFe9ZN1b7axlSmZWplk97bI8d6nzssUTb8Uya91IU1CQ0IqciEWZAjEBVi9YimzAORvgVHh9gQkHdA9qIclzLJ41Yie8JU0Nay4SHsWo29znrhminhSViBQB0gTKJG5Tsoqfkim27A5i1BddnXIrp84tH75Uk4Fn9LAn9eOBYDjnrNtoKyeomq2I7k81la9vRFuo5XCV25GfMZMrESomNg6Em/U1/KvP3cK5es0yGjb7yE7AtwRnf82tRffIxtMTz6Z23on18E3s+t4ri9puR/O2zJ/2dUuRTAjqB5xuNe5wpLhgiv6kT9PH7FrH3vQ9j1nncv/tw/eMNR3w3i238ps8UVP0nN92Azcu7qhR2mAOHbtQEPhV6ACCtBfoLCcokQHvFkEA5jEcYAMsDDlCD2eY+QyoBJoOsm9V2SlS1Vz29HjEIatKINhXGP60aKNJ/40pzXcVkCfQjZa+TlAg6KngtAKAfIQSQtVTzJ51wWFMls9lsqX3y846qDgjzABWAYCZDeEQtLL70y6/QPpTnI8BlMMMJSC6SFDGWYbgnQTYZagLy2TcvIsyAK95hznf5/kUoiweW46nn2MjZ4+JFOdzUPvnVMAX2JSqsnb4MuWNvES/sBwA98fNxefQYwtlppeZfPr7j8UpXBskeCMMUwTAFprta7S/L9quW8eVl8y2pYpaqfFdB3T6hXle2Inze7Qlixi6OC7JpnPaeFGOafE+UGbWfBJtpWfsX3pvxQAVfrcwEnK2M3pRB3XS00OqWrA4epX8ibVySnnotnQUmv1YfIw6swJXnJFU/GcIRpY1U48tzJkyiwAT/uuqgZ4L0pFchbNn++2FLNISvCR02YpUqK45zyqrGEOok06mCl+cdpYZ0p6+ret14S8tSU1f1XrYi/f3hflRStIS00+E+eRwqYtor0J+VTETI66elDhdRZSvQVhlUvsWAts4ADEEmz5VoIvROFyxnB7Bjm5vg0I2oUNsApupe+IDfw2NnoFJd+ktH11+ne8SUn3scwaEbEX30UaVUXR40qvHPFjgOhO0JBC95EYovfFEr//U11En2YFggXh9i8OJZtE8I2412jPB4riuFkp665inh59teyawG3U09bjgfJL2yJklCrcQ3NnBMmJpmf8de1kGZdHQ8LCvZpJ8ySaoyM9YUyhqUxxcq2KxuMDtQIybFQV/65VcgWY3OiZL9yOuNEh+AtuwLswDIApTzStREzM30kWYxZicHGHzkahxdm8KLvucx/fqX3/dN2LtvA7PJAOvPTgOTBQZft6NCeI8LEEGaY/rx48jnu0Z1z3iiTuAr0j3RtlvVTddqv3pdoXvsxI7GIo5n8niESlxmKPZNaf9tWflobEdMDw1lS2Ksf5gYpA3wcI9R34dpYKmo9X4bSHyKL0ysGGqxSNwrhPJcVJ/GJh6W8bHbv0paYBJunytXPc+eW/o+ZuaYtNIKc1jKe8DmS0bGPUdxLtc3E8fEOqUWIbE3AFB75DsVVOx5VIo1GV0opIUmCWtDitu2M+YaR4VAupo4MdY2Umjk+uBzrLbGSOfeus1+zb2zP7fUSQSoNYc5f34OvI9Ea9W+7/2F0GoILJv+AsYbf+apfFsrsVNJ2rOHFdNXJ3OBq26/GYNujIkX1LpkuCfxtmZboECAotHw/NT2canggrHWORn6dx+2FHsArKZvQIOH9DkGS9ss9V/dVFX9rb54/f3xiMqV5UD0ySepPzhQl+7VVjcsAeMEM9ynGs8CQDgIjf1OP0KYB5bVjvSOBoDhvPGJpBc//e2RBSopUKPzQmg127WbxjhlUfTEr1Ut4Vrdb6D2xzyXZafFHbdoZZJUptJXmf7HADBYUOc5nAssVQAAXPnWh7H0wKK1kGETHmafvTJ/PEHyfbfGhmh2VtnotFpbqunppa9BtX6Nqibjd3JOsn+H3v+VB9V+ahKfiwPXA7ycVom0vG7kJxf6JPXdUs72iQzhMNeNwJswnAtHgj5phSN/P3lHBbluQ2+q7QlLxSGCQ46HsixWWvXw9xgP1DgqG7gSTXYz6lxqctzxmnTVKgyG6QnKxYgMrqVlGh+75arpjJ3UAOzyU+mDz2Zq6r3qWtxmTk2EN/1b3Qa00rZGoqmJLcdEdS2B1a8m7hVoH99UHqxaPTRq4eCi6fOgRQ7gKlDV95NjNyvg5FzaOTIwJFZtiUNP/Gy+Y83B5rrK8+4/ycaZvJ6kl5/3cxrXUlyP8cU4rxnia64GIEiz9R6q9Q09356vtULYnkB45eUo9in7vejYhjV3y4o6adEhffSHexIdy8qxXs55tBzYnAf2fiG3kqmA2nbjYGzFstJKj01y3XkRMLG/7Csz9ZzqdeZWt7nVe5LUSWegq964v3Ml8qE1pjwvWgKlMxWK+QxRJ0ecFJjqDJFmMQ7MrOH4YBJpFiPNI7TiQpH7WaKfS/sJqrUEmCwQLSd4yRtOzZLBY/cg42Y2tG7yoj9VxFceRDXdtSpf3QR+fOVBXXXDhB3j8rxuah0eWz1p5V5xxy1IlgfWOVe336wtA7P5DlrPryO9Ylr34JPx1+TTG9h46Yxe/1Is4VY50oKkfXxTWwgDpkErYIQf8jVaIbuWiIAi/tlIV8aprre7tLBU+zCPt/Kkl8S+S/Sz8azZ1q6u5fvTGdsmRtr4AKP+7ludg/VcPhrzc1tJ4ssq3lKIjBj78z7L3gNSaT+ilO/ZvUvc6gVCrxu2GNd5/rpiol7PyH3zPLdSz3N95t4bt7JZ3h+u/XjPpU1Re0Wp7XkPee/YAJgV2+dTTFndfrO2wCPO51pjXON5Wus89P++bVesdd7yij+7JKx1Lhoin4QsG19RicOAnFnrcw153PCmG1TDS0ARdwCyK+YAjBL6LJuSHbnlwE2Ca+NKpchvrRlvNjXxqefLpEIxW6B9JFa+0fO5IvRrAp8T1eBym7Qnqc5kAL2mmyxz6GkZ9UPdlZ2BOn2qy7jS++AxAOjKAf5dTJa49sf/367d/52AgywJS0lSSXUq0TQZAmaSIoGv3meOQ69Qr84fH0Szswimp1QDu13wnz/VYwNQpP/0lCLyhaJ+J/YbTdBJgobGuvTdBZRah36cJA5dyDFJ+jPqsk5eS2oC/s25UBPOZcssgK2S+tj+bbiqDQlXUcNAUL6f+5Zkt36/IL+TXqXtVphU5XVKpblLajNQ5PnIBAFgfvPtldJ6n30vTaDLxKz0vpcBrvTMd+2E5HW2V0pLOS9VKHyuichRr5ugkiofaVNE/073vVTXJ70cWTeu77Gxz6FqlAQTle/DPYneZjgXobOU64Uj7XDc3gztE+azkkQV1aZhWurSccBUnPB7nc13kHUjTepLv3t+/5lwOF+BNRf17JeRz3e1jy1gEvxhWlkK43OJcQ38PcYX47xmiK88qJPssbC6CtsTCCbU/HguiXzO2fmzz+nqPAAoV9cRvORFRp2f1uNX/Vh66A8W2noslePr5pypjnOb0QKjCWJJCLmN6kncbM7b1nSAIXr4P2DIMM4p7ZUSg/3hCDkne8w0WV+wN5isfj3bOPL6RavJrUkwqKrncibX1jqTnRStpFmTubKmpKRlFqLKa5uS5cRaS3nP/POHsD0BfMNLEG4Mds1Ga0fHrSv3ZSxKAZkbi7Ca6GSQTb4BEztQlCPjNMZbcr0r18AyHnaxlWAEEJabIi7V1+z47WfdEMM502PDHT8kaQyo8YdVvercRgn+JjR5uVNgSAcDwKjtm9b1E8dGm+CSb5G2PFLEyLGP4xfBHlu8XsD01XIJeWkrxHsgkfRLvd6QfbQIS/QkxnNdcZCNrpe4rTwPOYbzeG4Ftpw/KDp1CXuuB2WCRYu46jUPhVBlAnSO2nOGuy33Je+LO2c1WemcC4Q33QBArUdK0dg2TCs9Z5+PSttxjec9kX96uGCsdbYDG0eQYOBiN17Yj+KqA4ifP47qqdMjxc4ULOFlM6382efUwn2qYzXSGyx0Ib3PJGlv+R/XwTUzxoDxJQOMtQ5tbrLZEtFqpP7vhUiWY5RJhe4L9LpT/9rLIdIZNTGhnpwA9X4kFZCrhpHhamRlTZW3nGkoOXFMDdRsjgtAk/g8BoARX/wyrhBCNbj60i+/4pyS+cFffBa481YdZCS9TAc9bOgjicswq4wVhdtwMa1VCH2TeMm70KXGnsQfH4TtCWVFk6bKzgbK1/5ULG1O55hMGBSrq4rMb7UUed9qaf98YFQV2Ki8X9g/ot7Pl45aZADBxT89OgkqgWTjLcIiuGv/8zCtkMAmgUkWM5BU2xsFi1abUyUfi/HDCZqt+5U2B5nxAIiXzWMqMcokQNJXqkE2PJKNWbmgKZJQq8SpRoy1JUwBIIKxfgnQOVpqZUxTqSgVirIJIM9L28EkgWlcO2mUkVo1Isp4ZXUTUAfdzmKEAXVB656urY5SxzD3gJ6n6j7bnsjsNUPLI32/M2WrULSMN6pKEKsFZ5SV+nvjKkPV5xUC4GsVkp4i35NeUf+f1/chrvdnfPrjXmXtv/O0+n6Hw9rneX2IfN4o38INNTEFaQYcS4F2C3E7Qpiq19kokoks/n++Fe+qaibXybZobYhsvoOJF3rWAiBeT7Ej1YWHh8eWiK+52tjPAeedxAecObsm9AGVcCgcxW6QGrUt5+dhK0Fnaag98IskwGAhtkghqVYMswoZwpHmhgAsFS0r6wBFqABqDpj7cqWVs52jpTXvrb8otNSq/cuULR23CzNTbcdj66q93CbzZKI8nQWef+PiOSPzD7xTVdm6it4wC1C0KiALUQEo8hB9AP1BC5OdFGleK6uzCHFSV5OtCaYzq8VLSYXywBAvufcz5+R6PEahf/NpjuFVe5GIdTnX7LuF+MqDlmCo/NzjaLdvHLH3I6kfbbknBVb4Swux1oc/hfTOW63qSFpgukIMWmkSYVpiuCdScXk3smJENv9kLCsJesaQkpwnaMtlrGAi7Vm+dlU8Ur0D2OQyRSnRioqVGSdLstxtxuqqyJt6bUiXAMlFNDXBJeGdzppjKPvOk1t3WMmA+jxbq+Y1EvxlAgzmAy0IIgEdpmqbMjHXLcU2Sa/SHvvyeJL857g/nDPbyW1ZWSVJ+PZKqRXt8n7yeACsdQ7PKZ0N9PWNNg4242g+qe4Dt+X7OcZyHRn3amV9Zoh7zhVlApS5eJ9IQPCYC+8+f3xLccctSOuKWgBa9MRqucFC21ovexgUOHNrnOLkm1w0uOCJ/Oj664D1IZJhgchR3OdLRxGuriM/x0pbFwwISOpn7Rjxcg/xcq6tLqRKFEi0VzGJGpawhamdcW2tmQxyjLopy1qgM7lRn1Y7FcrZAsmqCQ9k2ZPKdNrZ5TBXP4ZkOUY2W4CCE11um9WTUByi6JYoWhXyTp2Z7annaL8TpIEm8dWxxY80C9CuB+iiW6JzJMIT7zqMIA109/e4f3ataZJejmErQXtFzZDSE1q9bqtZ6RkqGy5uzinysGiZSgoqCbiw8c1vxwflcBNhWkejtRK+Wj6OanP7pmWnCtrcAEB59NjoBjwHWu2kKcrV9RHSvrFioNVSTTiHqSb1g2lVls+qHyYNASAabj29cUEhLT2s13Uj3EI/5u+jTNSYYzddNf9rNZsI2OmjKBfKYW4rBKk2MZ6catIqE1sxaB830CR+3Cts78TUqJ/ybk2cUnHOpohOw1ZZDcUAm7/rMDXqEa3a7xuliqVMqiurohRAl3u3FUA8V6v8Noa1DUtIpWdxtKJeMwuqCgnMOfB5Pg4z+zEwauHDgDrpmTEu6RVWI3cA1kI0WhvqgDVeTzHcO4EwLfX3KV7u1XZOdoNZ+V0LHQsdqucBRdKH6+r5qlU3pT22qr/rtJEKhikwTBGuDxGuD60y92gNVhm723vnXKPJ+ipZHuiGdWjHiNdTda7n9Uw9PC5sSBLftbwrh5vAeVwrkMy3VPntFqLnjyurDo5Z82ry4Liqe710Y3SWhti4so3Jo2o8Hc5FOllciHmUSlr24HL7tZjktyF3qJwNU6CYU/uZXCrV2iWFngPjAVDW8xd9qNOZAGUc6jmGSWNCVtvxsew7o8mgSeCpty1qK9BstgAmC1z7Q58+09vfCFn9F/eV3SgAlJ06PuhHQFKhQAxkIdYHMdCPEMyoC2p1UrTiAhtZiGotQbIaIZstlMVprdA/18IlD4NyuIlooo0gzdD+2yMo9ym5d/TUkZN6Xu8Ulm3PNlW20doQEZTAoPX8OgLReLNJjU9BCqBIwyIJMViIjaClp8aFuFfo9awiDhVJn/QKSx0MmMpIQIpRFMFPwYd6zvjoy/5LrgiRxywT6D5PXCeovhNqG66PZfWObNjKY3J/JIWl1QofZ7Pm3KOeqnihM4B0BKD4kKS+5WaQS4/+CkVXbT/RN/2x+DphKd+d6l2JdFYR2CSz3cp+jrlatCmU+Fqln5h7K4lr95zKmPffJkV5/+T9dUll3u8ys737OX/InggUZsUDaDthJhG4xmnxnuQYmQek5airrJcVGbQe5fmXsRmjW2vG9eB8k/ibdx1CmYSIe4XuP9c+ofosUky2OaessmdPvrtLDmUVoqxGK4FOdR+XCi5IIp92GABGmki6ONd2GVshXtiPfOkoqk8+hgCKIA9vukF79Sa9vC67MR8JiRpmUzNIVTgQxsZHEhAqlgRagQ/QKkf54NMGZxOhVUamuq0b5Syfj3qq+W3nSGSpa+UELEGLHtlwl5MnvehksqCM6wF4Ejo4LxNor/+8U2GiHyCfVM1lAXX8F73l9AfppjLFcJhr5WZR2zYM55LGskLAJsao2p96TgVMzJBLMooWRudzcvEYBdXsAZQ/fbU53P0xgxY3DShWV/WivRIe+TtFNd0Fnq/f12oh4HFqO52qFVsNtiGqgLaC6Q9hFAQKJvinUodKbV1iKYJB6UnJMaa1qoIyGcTrpki1uiLKqlqZHWDYUuOBah5t71sGeLS0AWzlfZSV+n+ACnHUjVGdBqdJqNXggO0TmvQqZAt1oC9VLfXvXFYOSB9Q2TyMyn8m/+S+OZYYZWNoyokdqyHeb1nezL+pkozSUiukAHsM44JLjmGAUUAxIUFfTXl+vIdZN0JY31eSzmUrRDnfsUj5ztOrqFqxJvDL6bZWmBdJiOGcSp6yQVvZjtE+vmlVhmRdY4kjCXn1Lxvxo61asbKrqn/b0ls6SHPLTup8kviyT4ZOQKQioTFU15h1u0CtupPVfR4eHidHvLAf1b49wPNfO6fWGaeDyk0y1NY/wXoPQT1+la0OkuWBtuUoasKgbAVAD5hcMn1QWAUmVZ4k0qStm2wwD9iNK3XSWlSKUS2q5rK6Ui8L0V6pe0iR/HaUq5v7TCzMdUYOQ9zzOKETooSC7KLAqExUz64qD/ClX34FgpkMUzObOPBaW9B1JsgngeHXpUA/Qt4JdXUxKESaLBB1cmWbk4Wm91jtg98fqBvbmswwXEv0+guZur9BXOKlP352khAep4D1DZSXqzg8eXJpdxtep6o6sJhpI3IsfsP1oW7MPdyToPulFURrzcR9E7jGzLuJFnAAQPtEXj9vUv9FC1ZfpTAtkcBUADApGGUlylZkrX0ZCzMWVPGg3dNo9NzM352jRuHdXqnQu9yubNWq6tgmtWVCgOS27JU1ccxuhkrOQjoCANACRq3OZ2Nb9g/MjAsBeZG8U1vnCD6iyb5HNot1CXwS9lKZz3MFjMp/4pgh8KXtWdmy+ZKkp+JzfY8TM6ZKFT7fowlyp+K5JZXyXTOek6SncLFoAWEa6CqKMKsw9ZxqSszPZvJojomVUK89kn6JpGcEqLKyQjb0tSyEROKYr6n3GGW+dc+z0c8i7wDdF9T9YfXY+UBxxy31+tNYV6mEuvoODecihFmFiZUSe9/7CFbvvQ2z7/O9UjxOHxcUkU+riaDdOi+e1mcCGRjQk7OYaVs+zab5npl8SQrRU1l2OWegLBuwkNhPVsOadFeZ72y2QNQP0X1BEWPa9zFWE1ZrLRgh5YGaXBNNbaWFD9XyeUc1wmVTXXCi7QDhgERfgKJboqyz4HL/m/vU5MrEA+2B6JnfmwTaxyI92cd9pWwHTk+l3xQkle3Y8nwG7EaRTQ0wXbD0cO97H8bqvbepfdTWOuoeAMv3q/P2FjvjgWJ1FWF7AtXmEOHstCqzPUvjSrW+0diUtlrfOO0EQpBmqFD77IvqApL4AKwxxnpvXa4vbVEAWA15GIgkvRzhceV1ngAokgpFK9LjE21nRoLcOphlILo5bwKwMlYTkGyEBBgFT3tltDeIhCwxlb1EpOcnr8f1w1f3xQRaxkvUBLCAUbNn3QDtFRWg8hzVPtR29JIHYCmgipYiVookRJQo5X8hPgutMqr96eOeuZZoxR4/4p7twc9zoA+x9NI35x1aDcRI8EcptHpTfU7mntECwXyGpb7P9L9vswx8mOtEERMmVJ2EQ2jiHmhrMj8c5oiXVaPl9nHzOZG8D4YF4roRc9lWljv5dAthu7SSUCS9gzTTRDjJejaODtKWstqBSQKE60MUX/jiGRZu7iKGaqEfpBmKfVMIhoWuMmAPHZbOexLfw2NnoHgGrdaOibHzDWnpo631aiEArcNaz6+jaimrsfSKaU3mqypeNQGr+arQcycJINk8XjZiZ1Jc9oLRr1EdTxuMWPji13NZlBrynyIjTWZlxhKByQDG8oBNbGmhkEOOMe7ntu3lmhSZL5U6PlHz0cbaBOYf3oPlxROndN/7dx9u9CpOr95EACDcl6NI6grHyUIT8ehHqNZiVDNmXio7JaKZFMUgRjGoqxyzEEgqBJ06IT2I9Tl/+X3fhPBI2ze+PU9gBa5OordbZuzYrWPUFXck8aPrr1M2f597HOUdtwAAJv7gk6dlB0HCXdrbAIbEl32IABP38rcr+/MB0GMJoGJhVt7SZlJWm8q1sfRp1/H9/5+9f4uV5DrTQ8EvVsSKyMzI3Pe9WbuqeBdLIltsNo9abKpmOPZAtqFBY/Rg4QAjG+iBRw8N2UC74Qf3gw1YB+jThv3QMAwDxrHhA9sPRwbO8WCmDwZotI9wbGtGblOWZDZbYpMSL0VW1S7unXtX3jPjtmIe/vX/a0XuXawiqyhWUfkDG7kzMzJiZWTEunz/93+fJaGwxnkEoEwD6Q8Ad38vtgnQbpBilipz9ayGyhUZqXrJvmhGoLgv3ctsex9vaB1bkF6wDsfIB7BUJeR084t1IijGRdAgM7o+zbL64TH5o2b/5fZL28v+mWGen/Yt8WVkypTY8aeSBSOPxBk1/9czg+m+OnW+6XstJR/suSbQ3l1TYW4cSD91BCWu2hBvrAGtN3x5JQb2+dpgxQLjSfn4km8+0SnbUDapUMt1l68317G+xn7ZpuN9kmTJ8OlLJAujFdpXhih3UmSbmiToDm2V3GaI6b5CPAQ6wArEPyOqWqG6S0b93X7+QYoH4ptGe7vEqllkCNfXUR4ePVAgvh8qaQE5yWAE3/0Rov60wQpk/WA9LaEKg/ZhKSVtDBaFRS0DHbNcJdNq2S5N06gAqgwQW8kdVRD7nQG0eBQII58TAr4+s1+qVawblO1aMthGQ/QeOcsdDkMC8Asyua06RjLk8YgGcV8fjV9zfwTqR/MAvbdCpO+FjbI71tIESDPz+u9cvqvfpPryF6QawumZhQ0NQIAHNRpkKg9I42wrbzf++osyMJ0qFbPnlBMRq/jkw2QLBK0EZkiaHeH6uhjR3ssIel1h34fr61BJixJ6w+HH0p8x+9gPEysEVl7Hf49BfP9/PS2hWfLLGpb67/O9wI9kJOuud3mcuwkma+Qvg/fu2O7/SgfINpRMBsl7wrUzGdQibcPbyz1r5VmKNLT/OwZ4thmSbJk1/ipthQEz9PmRJ5xF6u51oFl1oGemAeIng6LBgkpuUgXDfO/WOXNVGKdtH9OCJNsgmYJ83Z43ey6LDpnSdq/lNAHO3TlMBnWjBLZIgwaTqnNUwvmwBFTy6Z0zakstk+zWwNjjuOVlOMoQjkiLOdvUck2IdM44R/vG3Onm2/fDEQHzakyLZgfwU/hGtHUSEiCfVQT6j3NE45wY6lnlzJl7CaptTlq5DBID92Z/F6bbRh1rmC6tYuo4uv9AvYQHjgnU6+8SYJfnqLa7CEfZKYmrVaxiFbeO6OIFktyMY1ovfETT+E8yGMSPLl4QQJH7OdNLpI8EINVMHAzszXadRr4knlmOIKUxgQ3TKQnuksX8HmBlNDz/Fh8wWmyTJv5sz+rtpzgVywQhBsLOYrcuS1H42/jrESYjhVNF4PgsRD2PoLTBD69fxLv/y7PY+d4m5n/0+B2d77NA/J/+j79K50wbmIKOE7TJ4Bba0HpHk+ktAIRrOdCpBKwPIiOPdakQruWoS4XP/MYPAW3kfYDWUG/9wy/dUVtXcW/DZAsiCI7tJMv6VbH33t1GneXIz/fo/5eep2Pae5iD/X8+TOhpCWWrPfmPwXrxs1p63X3WejdYrygC9umvTN3cmINB/OVgGdlsQyHbCDDfCRr3cNl2SUCu9ufnvBYAXB+x2AZGT7g5MK8HGjIuDHYXLN0FmSdTdVAgrHpqe23lctznfD3+xraW2Fi268ZreqjQuXE2TkKPAVrHQWO/3F9yH8bngkH/KiVchN+f7btzZmL33bgN9F1Os+v9tRQfl7ed7yox0RV/Mk/Ch4k/TLACgLW3C/ltXfWFY9UnNwtJDLEsKUkqqYYEMcuJLhvjht6azff0om1MYxtV1A38Ze2KOeXjpUo6V+d+/3ufmKktR7mTSlIsP98Tb7DOERnPz/ciTPcVFtufnAHvgxA1Api7/Kvvgqr19//+30cQBPjt3/5t16a6xre+9S2cP38e7XYbf/7P/3n8+Mc/vgff9u7jgWDkNzLjDyiAz2GyBYIsEeZN9dobtnQ2F4CCgbLOlQkW+zQz5pK42W5ErPw0IGDbK1vKNgLRb2aWJpevMkMfgJSK+eYiPJAaTVlxGRjtwMBlWMuZblXQvso8QLVeQc0V6rgmlgxnwq1ZbjhViEc0WHNJGU/qgWbJHOCAfskY8wQe3kBpB63D33LAuF+K9kHZWTYFYvMfKilUVm/UlYlxSSAxFBw7mCcZPmt4eWCSDPbAKyWzlRT9b16Gylcd+s8zzjKMBXBKF/9e6uSXtjzeBxTumZneeEJsfA5PwqeOowZYqnLHaBYw1JpoLoeyX994++PPcvUKAIjxqZUB09Masz1/AUDgQNuyKvx7nJNygNN/BJrAvOg0esx/3qeU2lozWp5Eijmvp+nvywG5fZ3OYzObXy+xTYBQmPIEdBgpQ6a2Kqno4f6kTEMB9Z38zVJiRUNe4744HkJkD9hkVxVNI12SpKmQbYTY+Fkl5ZoMwhvNjEzlVRM15YTKNJR28fjiVycAEENgPa2QbWio4yHM9joim2xmk9rkhO4pThKxvjvLP8A+Z4C+TkKEo0wkb5T9rLLXFyywn221oKclwlFGPg+ejwMQ2X3YASLLgV5KoH233ZCpCfLyFIB/lsTazz24isaybgMAdZ/KFFjbX2XlyuR2Fau4TTD4/SAC98shxvX2u4hufhxDwVUXxdfHmD+6Ln0xj2nc9zvwLRAwiUk6/N58V8nYk6+x7CZ9yjeo9cdu1iTO14kVn68ptKz9D8/ThSlauOPma65q2IFTNVrHTo5HjB1tpTGzLRvs0cirRn6vhSo1CGYKlY5QHSeArvHHMwLx1beJlBHpCmURojpOkByHt5TnZAAfLJejcyht0GnnmIxaUNpAvddqyuRoI8etAUSdArll7SttUJUKplDobc3w1rd/BSFKMcItixCw8qPv/neXUbbrFTv/Ywwm6fC8uTw8EoJdkMfWfL5AeDyBWZLC+ShRDYfQfbqheF/1y68S6x9A+J0fCBNfqnDuIFh7m7W4G9/Rk5T0H/k9MdS1FZQcMtdMw0aVJgBv/u3WuiIjuwTe5w+5z0VzRzAUTfuyCVT7awH/HverUaUduetLWBcfaLLpXZuDRl/jg9/86GvUqwLA3K3TWRqHsRP/OJ0DAsB97KTR/iU5HQH2WX+/CE6B6/kaycPQeQycWS17I8bNaoWGXr+tYvZ18+nPYUVc9esb2zIWw+dIT0u5XrJNt36R48QKyc3Kyq/Sa2yGzEx8v1KDyV5FGqDoBOgclShSJdcTj1W8NklukkxcMnAJJCKJVdYDwgGXjHexATrP6cdffxG9b59Ozn7cobISGhDimG8aTQk1XnPeN/XAq1iK73//+/hn/+yf4Zd/+Zcbr//Df/gP8fu///v4l//yX+LSpUv43d/9XfzFv/gX8frrr6PX631CraW4L4H8e13Wdr/F8kBtjo4RJjGyx7YAOMBtsZ9agKTlyuPs4MmlV4ArX0oGFtyKCIzngak1c6Yiy4Nnvg7JPnOpl284w9uJlE7kStGMrlHCA/WtKa4qA6i5cmC+3S8fn/fJ5XAAT/5pPywT4Tu6+8Habwx28SKB2nT2gN44/1/+AoFSBRl1ZZsh9NSIzqAvneOfa/YoIA04ZrYqB9p7bGFh5HsgnLSPs/QRkA4Mxl9/EdmGui+c1j/tcSvmO78etkhqJGglBCreq8Rhnn+oSTpH+PQllDspov60ATpGTz5OLOTx9MzPmV6CIKtOSeoss/FVboQN7bOiy17cYOnz83CUQQGYn3Orei6x9dnfXMbvNOUZlA+ghq7vSgYuOZYMHLN9saFEnx1wrA+/9B9wk9dQkmqufBhwJcbMTAIUwrxpRMttNlpB5ZUF511CDyDAW8V0HH/RpHLnJTC5mMj9DrjJ7FmMd/7fJQmbZl56VluGvUG2EUp/w6baAFVUda/lVMZ5WNoKBNVgX0XTCsnAyKSSjuMmliq3sm32PR/E5/No4gCVVuj+bCSvtw6mUJM5jB2zAALgGYhnc9rWAV2fQV6i3EklcVT2YuhsLoAUQOC/ykq5FoOskoRRo3okKxGOKtHI56h7tKpQB0ekiQ1YY1267oMXnqV7wi6mP2kQv87yZhIOIDDf+v+YOIJ55Sey4F/FKlZxOjg5f8+S4/dp1Flul//Uz9VJiGotEX8toDk20VyTxpvOUQkcucT0ydMRym3HTuVemNcEANDqozE+CWBWkBdW2SG5DNGkPlayHWk311g2k4xmgLIAfdmh+UEd15jv10jfVZg+YizwFCBfI8nPfJmB+gGdoRpFMFGNcBgSOFoEqKykDX9MlcGZIP6Nv3UZi21AjQyChxYwkbLa9jSGTKw5bVUqVPveoF4ooFBkZLtTImyXiKMKpQ7RWVtgNo8RWpb++KQDWHZ/ZmV3MAuBnYKqCmIy5HzzH72IICdm8d34ga3idARJDPS6ImkHW+FvDhfkSbG3C/S6MN023V9LJJyPEmoyl6pADsY4fEKB34cFLzyLbKuFsDCNqv3FV1+gfeZsWO2IaAzaR+OcZGx6sZBNfDCfNPlpXskgLEB+TsseThxcncrkwfmu56PRBpSHJvmVt2XH4Q78GjPz2R8PaGIOgMMLOEEINJn5cqyZ+3zZcaRDn/HPuAPvV5UALGbAHh1MWJTtitPYg7DrOwC23XaNRIANTmRyImA52aHKZqKSkxx6WmOxQUx6rsyNpoQvZLGTECWZHbeGaA0MJhecIXk8gkgyA74cGqBn/PsG0vcbDXSvFTCxws1LCTbfyBDmoaw3ulczkWDldY+TaXLSpCTx5ubr/rowKarGa2HuCFU8NoUFYTGArfhgWVArr6OnwPiRQJJDqgBOvkFETiZFfhIgPmClL196niqIk2aije+39X/9MjZeeHZFzvmA+KSkdSaTCf7qX/2r+Of//J/jd3/3d+X1uq7xj/7RP8Lf+Tt/B3/5L/9lAMC/+lf/Cg899BD+p//pf8Jv/uZv3lVb7zbuS2mdTzOIz6GSlvxvsgXKN9+WrH04ylD2rB6j1QjmwZpBIN8MpUxpgGOGqjBYIp5QExA/uVhjfq6SslgG8ZUHtPuZ7qYjO02sGWyvY0/jbR40JtcmqhFOFdK3Iqy/QeZP5B7fHPS4XWWb9hvNHYjPgyAP+GWbFgbM6OHSOx4QVe4GXXEyv0WaiidFPnu3SKk8eHmiwOC8L/lhdNDQ4VaF0/JmqYrkZtUoIWNZEC5lUwXQ7jtQb+effg/xcAXifxzh32sct5LOWQYDzvrsR4peF0Gvi/DpS4ieJKZYdPGC/PntCZ++RBqatgw36k8R5EVjewANEBMALUqSGNU2AYFc3SN/Z5jcik6mZTqXvZgAWbu9yll/1yaudtr2fdKi53JKB5Rbg70lXUiuGhJgPmfwnAB+MUNiVv7MNMoqsw2aGEZTyPbMLql0sASucxJNYbk8mCeGxA5RzTYVxoL3oTcxrZEMKkTTSlglLMvDFTx0HgN7HmpJavjSPLT/psEt4Gnee+yVBvtFKySDSrTu+dwYHWC2G5EhdxzIxDm5WclvQ+fdyST5bPxkUCC5WQg7yz9ny+fOaIXkZEG67fYa4IUpSxeVvRgmVsi2WihSMliu1lz5OAPqfB2p3KBaS+TP18fnhBKz9qP+FEFWURIpK0Wex2nfO2mdOo5g9ndRxxHKnVS2BYBsq0Ws/qWoX3r+lmX0fK9+HFEvMpLz8s2w7f1bbXcl4fCLMB9axSo+bPDY/KDKbN5J+POCajhEeXgk/R5Lj/ljkC+NsWzmDjjQr9UHOjcckORLXDAwttihufZsH5idg8hKTJ8oYdZKZNuVlYaokfRJLmCx7Ug6dVxj2Uxyvk/SnIvtGtGMQLpwqtA+UCg7VPFbx7ROoc81mfnLYB+HiTxt7JIAcDVXCGd0bmqrV1/NI9l2Oc79/vdQrFcIHlqgGsWoRxr4cQ9hX0ONInpuQXuRxZmF4gNW7JD0TqQr5GWIjbUZYk3PN9ZmpJM/C0l69EbidPZBCQj2IuN1VR2voJ57FdHeLsL1dWcwn+Woe6lUv/lRHh7R+3b+YbbXRRLzo0a13UW1ljTmGeq5Z1C/9LzMjTgWX30B+Ve+KNWIKjeovvwF1C89j8rq6QNcUUlkh+RkQUQbC+KHxxPqH+zcv9LqFEPfl+EBqG8g9jDNjfmR//cZ3NlGIOtsHyQHmoA9g9UAyfIShtAE35f9Mnz5rnhEx+D1gBwjciz+RiVPQZ/hvsrXUI9mt2LtQ6qVltn0Z3l+qcLJGfvSOctSYZy8YGIk799n94tOvQfqz/ao8pZJmYAlLXbYLNWtJ4wO0Dk0aA1o/SVVTjG3hwhVemZEonPZbBag9Vj3Gl0P0TiHyqnqF6AEgZ4aIeGc5bfG6zM6diBrIK70jaaVreJ1z+Uc2Pf4tdmelnWan0jmpEWlA6y/aZAM3PUw23cJaD/637x8pozx+Osvnt74YwheV/H6rPUHLwNYeV3dLkwd3JM/ABiNRo2/LLu12sLf+Bt/A7/+67+Ov/AX/kLj9bfffhs3btzAX/pLf0leS5IEf+7P/Tl873ufPGZ3XzDyP+0M/LNCrfcaEjvh+jrMLTSrAeocJXOeAlyaQ1IPlZQ0YQbRLcs2QmGwLmz2WA9DVKlB0lei1cbgfNmugTYsG8Y7th2cojkNLFVq7IQZnqmLBY5mCsorGYumQPtAIT2gdk4uRALiqxKoUgL9eYDlrHS+1jRjocHOTR6imUtUqNIBYWcNxmeFb0jZOSwwfCxBMiAZndLTAjSxapixcMJkckFLZtwxbh0YWcWO/brYYB3pQJzp9bQWk5Px11/E+OsvomVBvRt/6/JHMvFdxdmh1nvEtuHnHxKcv5Ucz+1CJv8WpGPGsOm2ScN3PCXwPctJP7/XlW0AAvD9qHupM+y0xnesr81sH5YTKXvxqVLaU98rKwFEpyZmvvHt8usARE6lSP3+ykmyhIVlaVgJKQbtidkB2YYnlNG0kvuF+y5KeNXCaBCWO9+HaSDltq2BEdNawJl8+dqKvvSMq2CqxNvCN2jy89vRtBKg3K+uKToK4UaIZEDAeXKzII8NOI1Ilhvyg1/jtnFpsp7WYoZUpsSCYf1iVwZsJHHCpakcrtQ1hMprqULwQ0+rhqnZ8u/Kx6AEjZtsp+9NEV4/AfIc9fYmojHpt5e9WMxvOUlUWQYZyzVxBQj9ZpH1W3DXdh1HqJOwsV3Un8p1zqxTZviH10+cpnzGx2CDglhMb00vgX77EGZ7HeH1E8w+fx6tgynqJET55S+gSEOZVJtYIdtsQ33li2IqK+dmiUV3L8NkCzLaFqatfT2JqALnYzvyKlbx4AZXtn2aAXyOIIkblXzh+jqQ5VCWTWzQRgTq/1QeiUxGZscmIpNUXlKWkrjdpbFyckHRnNvTr/cZqQIyWbAkbJeoCgWUAaqOQRYHqLdy1CONYqeG7kfC1DdrJapZiGCtQD2PEGyVZPZ6HGGxTftND2rMdwIAtPYIrYQny/D4rFaW3OQ1jdE19DCUdUzrBvemCsW6J/FZhAKW//R/eAFP/ebLp0+4rlGNYoTDEJ0bAcafLaH7EVAE0CWBkaZtqP0FG1vWYlyrtEE+0+iuLZAXNIZ12xnauqDXOjRe5jMNzCNi44MSEABEUufd/+6ygJJX/+5llG3gsb+zWhPcbdRZTvPtnS0EeYHyFlU8dS8VabsgL6nC70NiFEwCqGONMuF5dgS89LzI5YlkoCXtqKwUsJPJNCaJZD5l4hh6SlKRkX3U9nXyEaJjF+c3xM8I9jhMqohAc4wkd7I6qjANXXyWrHSJM5JszNebFZvLLHSuovflcXi7cKpEKaDsONUArs7xAW6usmcAnAHdsKgx3XdtWPbf4P0tA/HLCUBffrdBQvSSEP7nzvLz4Hb631O2tc/jwuEUTFJk+WKuAFiWFGIcwpcZm+4H8t1IdswRjdL3psi2Wsg2Q9mXGAcXVAUNAOmB3W8cQOWBKBp0r5XoXJnIPHzymTWEBUmkJgMjawsADZIXS8gAysnjCMHRyDoEgKzPeH1C37MQLzOnq288Bn+FZEBy0iYGTEFJC1flzDr7NZIBScQd/tZlIUPe+FuXhZza/+Zl7PxT13+eVdlxr4LXQkUaNfzS/MrsVfz84uGHH248/3t/7+/hW9/61qnt/s2/+Tf44Q9/iO9///un3rtx4wYA4KGHHmq8/tBDD+HKlSv3rrEfMe4LIP8XDcQHADMcI2i5THw1HAIvv4rIZuwZZOPQ0wqzPS0M1spmZf2sqp4aAWtMHFjZhcTqSZLzejQKAKiGa7rPmqlSKm1lhjzL7lTrFcJhCDw8h9YVshsdVB0AHTvpGEVSCuqX1Pn6eCqv0Tmk8i8evJmJc1YZm78fP4EQjwL5DD8Cpxn4vL93/vvLpybBJg6w2FAoU4XuNSXSOczs9wdwKiekgY+15RjEd201iKZ1o+Omzztda04C8O928o3LAuJRssCg/03KHp984/JKO/8ehd+/MIh/Vhk+s9/uRh+f2fKifW1lMpajjiPU2+sEvHtGnb7UCIPyxNhpsnYM2g25ESPa4U3gkSdgRRohjBXJmSShsJ5ZFoa3Za13f5+so8ma8AwY04Ki+b2cHjsFl3ySoSs8GZ2q0VcxgM/BAHEWnzF7tvvle5A/x/Jjy34Vy6XCvjktPzoQ38n60P9amB7xEA1pn9IaxgKAnkYkb2PLQ319YrrnucTVad6H7LvB/XBMLHtuYwHSomQ2B1cU8PF9o6kkJ/YVn63QyumwjA23MzlZIMgqLPZTqNwgvj5Gfr4nDC3eLrImx/H1MXD9fSCJUW9vIj/fg/IXgN714u8fWJLDGWdyBcv7dpGsJvOGWS0Ap50/zhoLarO9DjWZn65GWQo1ziQpVp3fkn0WO3R/qLxG/pUvyv2h8hp6WhI7/7s/oteee4ZYdB94pHsYvS7q/gmC715bgfirWMUt4tMuofNBUQ2HwHBIJIE8RxBrAWAUYDV4CQApbDKXk9hhDrQPMxnLAZccTgY12kc1xo+oU+Bc2QaUlcqpOmT0Ws0jBO0SdRsESJcB6pFGOFPCJC+s/EwQGXQvzjAZtYAiQF1oqDIQ6Z1sx0AVSoBrowMB4KvUQA2bnjvcPgb65vs1KmavF4GM19EMKNaJXMTrn6SvkO0YPPWbL+On/+OvQo0iPPnbToYhuREJMSlfB9rvRQ1fgfYBAVfCwLVa/YtLBepSIdIV4naO8ftdBO0SW9sTDEYd5G06F3FUYTJqoR7ROfA9x6J5gHf++8sNk0yuSK5Sg+u/c1m0oFfx4aJkyRxAGPkyR7fBkjpMBDBJBP32Ic19bjEPXQ4G7023jWpJDpDX835lrD9HAhwBh6s92aPKxE7qUvfnUHnSkMMse7H4Xp0VJEPorydsu+ycvvISfUw24+f8WCI4BbgDzbVyPPQAck/WpnXsfC6iOWDs2t330eDPiHwNALSbjHmjg4YUDeMIyxXAy+2T+9Wy/Zfb6HuA+P59TFb02feAwyQYO2EpsIYJaxGcmVDgpCiD9KIqwKz9XIk8aatPlVF8ztg/i/ZFj4PPdZFtBFh7pxSAPxkQaWn8iBLNfcaO/IrfZFChc2VCHlJrCbJzbSER0bbGmyMb0X5HGkm1iP1m0FM6mT6ZiEF3o0kWlTy5rLxnzPKuJIPKVcC+pxdA37dltf95f26//pqSzhkD+HztMf40+9qL6PzbP8bsay8K8fPjCCbitOw6y8QB0vfmKxb+h4gKCtVdCsbw59977z2srTlmcpKc7iPfe+89/M2/+TfxR3/0R2i1bk30DILmarCu61OvfRJxXwD5v4hhssWZxr3q9XdhPvtIQ6O60gqtgym69nm2qbH+TjObybrH1ElWCO0A1RoQgJYeAONHLGhecgfImvReiVVpJXBGQUPjMhyGqNYrJLpCPtOWHV8Ds1C0IRUUGbjMHMiupzVufjZA92oA7BHYFVmZnVbfZfABx8RnQD4CvceTAxM5DU4OZueU/oDvvX/1754G8QE6R+VjZJwyuaDE1KtMmxMTNo8xMRpyGwCxBPS0RtEJoGdAqB0AxkAnQKViNOg48J9lOlqDWsA4QKFzaDDbU6Jnt4q7D2bU345ZXy8yBK1EEmw+oL8shbUcwppbWhzUsRaW8DJIX8eRaNkDnm69lQPh99gclLfjz/rPg6wSHXIAYmQVjXMB5FnOhBn3LNvl9NHJEJbZEwzQslEs0Jx8VZaBweX8gJtcqdwy8cX8WdlyyxqaK1fsgqVMNZJB0XjtVsGMeNbd901rVWFQxcpbhASSdOPPchuZac+VOUYHaB+WUmkj5acbgUyy2WcEcJNvnqATS4h/37BxXD4Hy+3wjXcBV57K0jmdo7KR5GAmFgCrbVpAZSUSzxiWfsfm7xeNc8COJ6xj3zqYolpLyH/Bsr1YT5UXdbpPgHn12UfkWovGuS35dlCzsMpwuoqEg69Llszh67l5T7iVGC+c+R7gCpSz5KT8e8x/3/+/89M+TLft2ET2nuJ7g8vRTbcNA1qQG/vdbn013uMYT36hQcpVrGIVzbgdySnIC6gxJOkp/Xzs2JEsb1CkqpGQ5/EbIBO+Ig2QHjjGK4NfxXoFWJ35AEBdKoRWQiaOKuSdEGURIigUKmgEawXKLQClQrKWodvOcHLcJb15qwtvdE3rBRCjfbFNhrcARHefSEDKamzXKNtOAlRYr8KI9Vj5XLnbof0AJOEZ5IGV3Kzx03/ya3jq//GfT53PR/7e9/DWP/wSWAoomtGozgBcPLRa03MnKZKv1cLQzyONUocI13JUoxgnx0TkGI+6SLbnyGca9TyStgIkyYMiQB0H0EOFzg33/YwmVm8OdYp9vIqPGHmOOstPEXbKwyOE25tyL4XHEzG+BSixDwD4s7c+eB1hk2t+cKKN5xsfFL78DeDmxNmmpjngDpN1IgH7VW5Q7LRlLidtse1YXlsANBdLbDIAcIk/JrWwYao/5wXcmp306N196WvZA6cTbq0p3TsMuAKQ+9TXmF+W2hEQfAmAj4enKwKYkc6fjebNRIHvocdqAgzWs7dHsW5slQ1VFlWpkX6EQWEG8eu4holq5FDw/UDoWOQh2BkRCO+3z2ft82ti3psCmAZi9tvqOzJUkVI1MK8pGHSPprBeWrVU1XIV8XyH+nVe0zBRqX1YSpXq7NEujFaYXFBWsiYQ3zAmaykrsclVt1JhmxuRhSaCkEsSR1NXqa0KB9L7UqHwqpj9NZFPqOLwpXYYTyk6SgiWfG0tm6MDJFnUAeEuRgPD3/iSqCLcywi++yOUtuomLAziP/zBSg//Q4YvjXM3+wCAtbW1BpB/VvzgBz/A4eEhvvAFJ11WVRX+43/8j/gn/+Sf4PXXXwdAzPz9/X3Z5vDw8BRL/5OIFZB/nwUz85OLF2C211EnobAsWR+4SIlywiDYYkOhc+QZrdqJPJffAVafqw+MnrAlbVFAE/SZgikdy7SRXbcAfwmrXT+KYG700PKY8sW6QbFeIbkRCXufEwDxiNioLhsfQBWhlOgplt4YOn0zHtQ4G35Wlt0vr/Uz5vy5s7TSliP8zg9Q/uplxFb+hzPZLNfRZNzbgUjYuwF8nbnWwAgwyOCpypkh7QYsLj8DYOU8apGvSHJ6LNMQnUMjbN5V3F3cDoBfDp7c+9UydxIsjdMA8uOYmPcWrGRGzKlj2kk2g/EABKj3FwQMfvrgP28LEOjJjAkGcYOsQphV8JcVygMw5TVPGoeYEbByXoUtiQTgZcj1tBDA12dUULkvM/mbJrS+Xj2zyMmoNZN2+8kHEzcZGjzBaw3o/lg25OL9C3CeA9rK2LB3hQ9A82SXvSxMHIi8la/V3xq4qpwytf1A27HxuF/gKgDjVQP4US1VCpwlvcPfE6CS0rCo0b2WS1I38SSPuFSbGV48qS5gfVX6U5he0kgK82vMFGnfoA6XS2apnQrtK0MC8a2EjkrcxN1n6KisbID4DKhz1EvXmm+ozMELZdNtS5LKjzoJUedNsL6OdYMp74P4y21gxn+dhKTz2c9om1zLfSRSVSCPCuQFVQD0Plw/8GHDZIv706hoFatYxX0bDPBHAOr9XZEg47GTzAib0ncaFqRLAT113lDJTaqsY9Z+PAoEtJufq4BORVI68whhu0RnbYFYUx+eFxG67QwTJMjmEXoXx8Q4t2B/HFUYjDpQ2iAbJQis6WtwEosePrP4y06AUxIVrHtduDZxMDM3nCoE2vl38TrEZ8fWMQH5ArR1Kpz8fy5h69ffOHVu67hGNApkjeOvNQBaIzBrFwBUFKC2Ovk4iVGDkgWqDBpznuy4TRI8xem5fThTqDpGWLkMfprSgaG38vxaxQeHVNpaCb56kd2SjBOMpwgsOeAs8k2QFyjP+Cwz8avtrsxx/Dk64ObixY4jFMixRfomsnKupcy3AMi9zHN7Wt9HDdKLyk3jmDwv86UyeS5YpBESS/4Q6U1L2AlzoOig6bfnMcr9KvloHsjrDJxzsCa77y/nV88zM13eW1oe+eQ8DvHvW5LA8Y8JLIH4nolt4/7ypIHzdfdZ7k/quEaxXokcMQDMU0APFWEnnQpqZElS7DPoqRywFPFi25EV+Ss22mfPT6vflBwtUyI8sgSOKui36RxmqLSitYuVzml6jCmovIKeGuz8CVVkzXcVoiklBHhNoftUnV32SK4p21DYeKOAiQMr3ekIhmxCy+Sv5evwLN385GZhCWV0beqpwmxPiyGuyO54ZrDsKcZroNY1+u6csFD5qcMIybJsA+2+xXMid43w750MDBZffQHdazmA+GMB8Tn09QFV5WwphLfffBWfcHz5y1/Gq682Kyb+2l/7a/jc5z6H3/md38ETTzyBc+fO4d/9u3+H558nGbQ8z/Ef/sN/wD/4B//gk2hyI1ZTg/s0yqvXEJzfghpnMjiH109Qnd9C62C6lH3XIulQpAp6ap3F7SSSNdTCNMD2n1L5LA+adVyjiGvJOPPgxuYwXP4GNAdPHsgB0t2Ph0Dr2E5+2wFYE26xYz9j9zt+RKHVt/uzA32Z0vsMogNNExs2iOXo3PAYsZHblvfpM1rKDrHyjSa2Dcf137ks5XrE6gnQ7ntMXE+iA4AtCQugcohOW/eakwchgMv+dkvVFAzykwklM4HrU5MwEyvAnoPOvz2t07WKDx/MxP8oEbSSU6ydWy0AJHpdASQBNJj0/qLAB+jLXiz3sq8Nfuq7JBHAcjc+kO9tq/tzRGwwmkQNfXF/P1IiCZpwsVQK0ATdaZLGi/7Amr8WDQ19LqVUNhmlpzWQOiZgM3nlSjFp21IWGrxPnyEkbfaY68ROd9r2/mLZ396B9grJTVtWzMkKW8kkviNeOwFXvsmTzioOxcTXxLS4Z9CemSD8OWLOq4YmIvsD+MmNxYaSpAQz+Bnk5+MCaJxrMZzygHf53eziMPEWkUFWQWdzYXGVOynCUUZlsSeukoMXn2qcQV8vUJzfkNLtZaM0ThKJ/qpUhviMemdeizNYaP6Ck++XZeCcq1F4Ab0M1p8KqxuNJc35OtYIxlMokIZ/fr5H5ekWvKdkG+1bHQ9RXr0GgBbn4XGBs9Nv9y44abhi469iFav4UBHHUMdDVOe3xFsk9CQ2WCvflzkAHCMyzJ0RH0u/JQMaU8sOiIlvjV2TtQxlEZJEDoCt7Qnykj67uzbBQUH/x50CcVRhNreyIIVCbLXhq3kEFAp1VJMU0NDq2MNjwoKAbaMdAO8bv1awmvIWnCO5n5qkeACRrAEIWGPGOyzLFkUAFArHVzcw+Pav4Imv/1fZ91vf/hWYeYkMkXh3iV8AA36eXAavc8rSSpOw3EZE7Q77WmRJ67hGMLSArAUGgzwQs9zkOHT63nZNkwxOe2qt4sNFNRw2fCbOCpW0qCLX+u8EYHJAKbJ+QV6gfPPtU5+NnnxcQH9m3p8VXDHL8zQm6nCVIn+Wde7b/Snmj9Lagtf3AM3JfTlDAKfIEc3XnPwOH7u1vCaI3RwdcD5XPgC+bOi6jBXEQziTVU+DntnSAKyJquevt8SQB1xF/bJPRzx05rfL8j6N7126BIGfhOB9+tI8fmKB78lwSux6qkQyKLjPAABdI1sryah6Fkp/xcA9HZOqi5YZ4fxdWC7HREC7T8x4J58ZNKoijKbz1faImrM9+kLZhsLa24WQkfz+XU9LFIiQbYZy7ssUwADYfIXug2KnjdmeRufQNZLbATi5UfL8U5hciNA5NEgGxamq6WJpDcUV1rw2zDa0Nbt1IL4vkwM4EJ+xnWh6Wqq1NTBYbFBFAvkIWANmK6Ez3SfppQYmpAE1Ii/E8Ds/QP3S8x87UZK9tdpXhiuZzI8QBgrmLilOH+bzvV4Pn//85xuvpWmK7e1tef23f/u38Xu/93t46qmn8NRTT+H3fu/30Ol08Ff+yl+5q3bei1gB+fdxhMcTVNvdhrRAeDxBHWvE18dk6NefWwkEAkE6WSUT+9ACZCy5oArSPGv1SbrFRKHoznP4WW5mtjcYIro5MIrprZeN90vg/JBBNHUlqmXqAPx83TFcecLc6tPkQM8M9JHBbDeSz7POmQ/yR1NYk8ga40ccq0YVDtBnLc4SzQEfcIOhD8iZgkBEZc8Tg/wcZRoKAA9Ays74f4A14RjMQ1PyJCtRv/wqQlDtRP3S86Lntoq7jzs1xePt7hT45+2CHdLgZhYwT/pNt32KlcPvL8t6+Gx81ucEmhN0/p8Y0uGZkjscUkprP+MznVVWWtMsZ8rDjPxl5nzj+3p69ACQbejGcwbJudqEkopGZGGcEZJj9DOIH44yFDttVLZ8M9tqielqU1Oe2+LKNv02+yZQDOQXKSSRxgx/MQS3k+DZHk9ATeM4XFpqvIUIA/gcfvUOM2L8BMNsj8pBO0clso1QEiKtgUH3Z6NGRQb/diRfY5Mc/Bvaygpe/PFrvi6qSSKEowzqeEjmr+Mpisf3kLx+Q0DuupdCXyeWermTwsRtZBsayUABvdh+T/e7MoB/FojPQdfXaR3Z5etw+fXl1xp9YhI6mSk7MZZF9dh2uLzwZmB/PGn4UgR5IQB/fr6H5MT1BTy2ArBVLhHM0kK9OL+B4M1TTb2nsQLwV7GKVXyUKK9eQ3TxAtQ4g+kl4icSjjJ0Rhn0lPrNIuX5OyfQjYyF3auZZ2QfItsIhdWY3IiQbQeoOhXp4kcGdakQRAaTeYI4ov5zOGuj084R61LY+uudOeaFFgNYpQ2StYzkZbSCmYUo1km2gmUqmOVaxzVM20DNCVRT8wDZduUkPddKYGbNa32gzYYqAsvEJUmgGhHUXDWkL/gzN/5fz0jSoRrZ5MNaCRORbCgAMeUFXNXvsimmAFDzABi58S2HM7StOgbhjEH/WqCGeBQ0QL/OoWnM/4e/8aWVb9ZdxO3GWJ77B1mC6vAI0cULQgbwSQPRxQuS6Aeoeq9Gk6TD9yB9tjnv4XkTywty+HN5Jt/UcSTMfK7czjZD8jJCk40vVQDePJ/3WaQRYAk5Gi5RwPNGluj1vTR80J4rQhZ2Hc0EP8A9VyWEMb1cOVPp4ExNcgbz+X+geUx+zsfxgffGform55YrV/xkAGvv+zgAJxSMTRiylBiKAGruVZO27fkuFPUdtq9iGTCOztBp40ufMPMY4imw8wp9kTINbeUzJVuLToCTpyOUHUdY9HXgAee3p3JgckGjNTAN0pGJA5hYoUzpWglzQNlEwOixCLO9DZRtYONnJZKbFaJxjunDqUjZ6ClVMSc3K0wuaAHNlV0nVTGB/yzTJmsruxYD3PqB5UApGRAiuUlExmRQINuw8pk6QNFx66s4d5hP0SGyU3aBkhm8lio6zkeAKzfY/BwA0CYD9fEjgSR9wu/8AABJ36hLl08Z4N7LCN65tprX30VUdYDqLqV17vbzy/G3//bfxnw+x1//638dN2/exK/92q/hj/7oj9Dr9e7pcT5KrID8+zRU0qLs/5uAeel5Ai/gsxdJGxNosh/VMXUeapyJDnBoZXYkWzszABTiEWkvLsvZ8MDmdKBrZGndMGZaLiU7y6zWN7fJ15pa+PzYAOEZVE/t/3PLYLXbF6lC56iEuubKsoRBMHCsV5XT5KFz4JIRMtjbkr6GwY4dPHwwjg1afD1uNgFiYLFInfRHFYcCDpapFp06Dr/0jLWqAQfi+zG5mKwczn/OwaC8yRa39K/gYAZ+kMRUrmtLdtm0to4jxwC2YKFvMOv/zyFgrseONknkDGe9BYDo21vGMn/u1HfymNl1HDVMRVVCiSXWNuQSSNLNdSz1xvcWNh/JfTGAHnlyNY7JHzQY+ZWuBZgG3OIhLOjYyn5/XpwwmO8zJ5aTDMyqd0wlB+JHtlKGgyUF+DuwaSwZvFqTa9uXcAVNFdO+VeHYKaTJ35T14df4f943tysZoCHrw4wUVThdUz/hE2SVAM4qgyRyJalrwW1OFgFOp97EVMpZSTVXTtcZSz4lsSxMGfCJ8hLROBEwiNtQrSWnTNepTcvSOJws4v3qM7c/q+S8kYg6g812lq8EANKuHU/lWMtSOwAI1AcI2B9PkLw6ETO7xjHOSCoAALIcUX+K0jPAXcUqVrGK+yUYWOTqIR4j/OQuJWArAU5EfsGObdmmlvEtuVmh0mQYu9im+X84o/EbICG4IDLortH4dG5thHlJ+50X9NjWBYYzh+aZQqGeRzAoEbdzxGvU3y8ONoQFy1rTANw6Y60kI/jUoIgI5DezEOFMQQ1DAtyWQpVO2gIg4BwjLfsN81CYs8W6gSkUJgVJAaHwRp9CCeBO2tk1MG8Sg5YjHjnd/NYxMLPSuSyxwfr9AJD0FWnrxzWSPq3FOBnQ6qMB4udf+SKKNPjYQKdVUER7u0Ack0QmAIwnqLP8TEAufPoSVfLdYl+8RgfgzVGiM+X6eC7PCQCurAHs3MmC8K5Cs1mp6ZM9zjoGJwOoatbeb1Zm0PdEApiwQsSUZGATYnZu7Es8dQ7Q8JMDnCk27Yf6DvZ6+yAJHH708YNsx6B9oEhKp3RkQqmC8X4SPwkgBrhtt61UufA2bbpXl+WquOpHlQEMXGUP900sC6a0QWS9As1aiSDXMCUBxmKs6kkFG03Me16fqBw4/FWNnT+x82K75mL5GO4Ltv90joPLbbT6bm2DGTHxeT8AvP3Wsr/ZnpVIEk19+m2jKcv30HsaBqMnU1uN5fZX6UDkePjRN51dlm0zcdBQJ+BKbr/yS+RKLbjP6zk9rVHsBUKS4iSFsVXKRRqge82IIoJcIxvUr8YjYHLRXQucMJnuBw73WVoe+5VVH0esQPwHP/79v//3jedBEOBb3/oWvvWtb30i7fmgWAH592mYbIHo4gUUj+8BAPLzPdIZuz5AHetTesJ1TDIa1doe9PUBAMf8rawbuOi450CYG8z2aQK57KwupWyjpnFsHdeobKmraNN7RjFAk6Xiv9Y5sPuOnZxNu1/LoqHdt5lkr5y0c1Q2BgeWnyEZEgJemc1fpqGUXbHjOgDEw8BNAIqmWQ2z+llfzuhAdOx9uYuwgB283EDCmWWfCRzmNVReI/3pCQCgeu0NmfBxMNgWjXOocYbqtaZG5+KrL6DoKPS+vZq0/zzjTln7HFKCm8SoxxMEva6wfwOAXstjqFjLpPoUAOpp4PuMfLl/u20B/ZfBfxMrFPspkpMFwuOJ7FOqAjyw1Afw65j2FY4yYC0RsFZlkKRB5YHjYUEGt35JvpPHQcOkFiDwuor5nqA+R+VVQ1fdhZLXfB31shcL0O8b1Ppa/Hwsngy6KoDATmxdoo/b7ifHeJLLwX1GcpO0GpObFZLcSWIluZMn8MH8RrLCVuqwSdSyma0zF3QgP4P4zMLiRwbvuWS7jrWYsdZxJIz7xX5qfxdib/H5VeNMWOtBVonkE+CAdzWZA1kOs23Lt8/Qg/erRnz5HT+cmbO7xs7aB4P4t/KBaCSwbJLJvz/8sQ4A0EtPtZerDpip77Pz6yxHEFvZnSxHbT1o5BwtR57TPZyVK7OqVaxiFfddMCMfcPrcwcuvQr3wLACgSFsC1iWDQjSKiX2rhPHIc1+eRwMkK7PYBqqdgkBuTWNL3CmQlyHiqMK81JgXGm3tkLqjketz8zIkBn+7RF0qzOYxIl2hLEKYhxcE8DPT1e6/2imAdgmMuNoqQJg72Zw6JrYsA+3KziPaB0RKGv5SiTAPSVLHC2bDs5QPAETvtVClBvWald/RNdRcod7KUc8VqriGsYkFAAIsNshIXMG8BpHY4P8Bx7Zv9wEgsPMH2ybt5PWYgBD/YVNWc3BJi3TfKj6eiPZ2UR4eQSWt264F1HPPAEtVtWdp4rsKXZofcVV9kDXJCf6j79Xjz8eY/NE5LESuxL1nTh2bkwIM2Ms+Y4Vss93Yp6tQdYQUALaCn0hxKneJpnhkweCjpkwkf6uGuSxjBJ70LVf30z3itmUi4WKbJLfKjgPpfcZ7PPTA+8gRD+U7arf/aO5MeWsrIVysV6hSMpbuvgvM9vm3cKC9Kun9sm1B/LUCyvZP9fstZLZaqG4b+kzBsjpN9QJuL8tjFWmAxQ7w8B+NbdWxxRGW/LnyNYWj59vY/94cKitx8H/sIR6SNHE8gkjczPY02NC20vqUtBH/ZmWqpA9hZYYiVcg2SHqHTYhVYaWXGcNJaV8kkeykhnkdyFXYAPVlrE4w34saxMhsQ4kPGaCE1MQJ4s6hS0hwf+gHVwswsK+nZCTM2M7m6zXmO84MnROqci6WEkmqvDMvxVV8MnEvzW5/EWIF5N/HUV69hmg8gfnsIwCIPckafeq5Z8TIMBrnon9HJXkOPGRzknBA5ledKxPMHu2iSJWY0HJmuqFJXzqzmdaMWOi+Rv5imyasyyVwnAH3tfS5U/WZ+TTI1PZ1uuHY5FXZ8i6WtVB5jUpTVUFys4BJIpTWyHeZlds5IiY8l5z5Zpd+ZBtu8NJT55CebbhMMz0PpHKAJTTCHJKBzjYo49y9uhDWpj+l4nJnBuwZYqyXtgNIUsdoha1/8T2Mv/4iet9eSevcT8GMHQEL89wZaFngniPw5T2WGPkCmDNo6wGbHPx/eDwBrOEog74KEGkcAji1XGfLwZInnGQgFVxKAoYjx3J2ci2RGKYCkCQg4CSl+L500jUh9LSCid29kwwqK6fjkm++F4DKAJWcNknipJ2v28sTXGaxM3jfNEzi/qlu6EX6EjdOo795TGMXKnpK++MkncprtG/MRZosGRQe44QWU8tapQ3vAdvn+lU7rEfZOpjLNWA8Tw2u2Ch7MTROs905EVhZs1q/IiLb1EhunqYKBnnZkJFh1hZAzPbFftqQWQoLA5WYBqiustOLVV6gNjwhPI+HIKsa1+2tQmQhfB3X3Mg9c6t7hK/5U3r5DOLH7j4FSAKrfPNtqOeekSuA701fxoejznIEPXsPPvn4mfq4q1jFKlbxSQaD+Tw38CHf5GQhPieTC7GMywAsG9KSB6YE6ugpy+cRmFOsG2AWioyEiWpksw7QqYC1DMNZG3kZIi8i/Nr5KzhadPFn8z2UrJcf0Xb5TCNZc/2rKRS6awvMdEyM/VLJcYLIWC39AKoMEM2DBvgOkJ61aTvjWFXSPH1y0Wrldwx0P4LRtdPQhwPzWbqHqwDYtFIfh7QWyhO0jgPM9w2cgSWtW5gNnK8D+RrpYZcd26aoRg4rB1QEeOzvnCbkVF/+AmZ7+o7m98Pf+BK610hS4vC3LmPvH68IPh9HsHn0nYD4PGc+q6o2yKpTc3FHumtSgAW8P2Nbfr2OI5lvAm6u3WhTVkoFjlTuWmKfk3N1HlTcisojoelpBVUAs91IAH0msvkmo1TF6ohvYU7ra/J3qlF0CNAXbX0PR/DlcH2Neh9k9UHXUxI+vjGulygAHLbAjHtWDcjXbCWRZdsXOyUlDEcRinWDySNuLcB+HNpKfZnI+W/U8wgVHz+iZJ8eKhRw8sJ0ToiNrwog267QvhEiPTDeea7RvUbzYsYweJ2UbWrMdiN0rxXINhTKNnD8+TYlT6wUMVf9GK1w8nSCaAakB4aqfuzvpHIrW9wmgI/blm0QI5/Z9/Nd1ZAEI4Z7IGRH/p2iOaC8346/C69rkpt2PIkDRFNLeLLXj8+wJwCeVqBsgMvXYDStaO1h127tw1KSTMzMByBgPRCIx6LRtO9zv/899L95Wa43SbqWwLnfb/abrMywkjC+P6OuFUx9dxr59V1+/kGKX5xv+oBGNRyK9Eqx0xb2jXnlJ5g+nJKm5VZLBoI6CWnwv34CNc4Q9aeeKS4BQVpMRxyjng1CfAkaHmRVQaWinRvueTxyGWgTUcYbWBqUtXOm59e5AoCO40rNWH+bFhoG0bRC+zBDcrPwFhuVOKSThE0oQJaWAZFMZDtHJaJphWRQoHNY2P3W9jg1TQwsm58nIsr7AyAmlnpKJpQywYldcqF9mKH7s5GwqJejfvlVAkpfeh71S89/4G/NhqMn37gMgAYZAOh/8zKGv/GlD75QVvGxBEvuNHTzxxPUtuwWIFY+M/QbkecNkNEH8ZcB7FPHncyhjofE5BlnDgCfzBvPg7xEcHwT4fUTC6yyMVfZYPfUsQaSuMkM8uR4WLJFXx9AZSXCwlgpHLrefYYETa6U6KYnNwsB/FVOrHaenKqsFMZ9Q3f9eIKoP0V8fXxKb90v2wylX2iCtXz/+xr9/ns8IfRZ9yyXxd+BKwtUUWPzjTm6PxshfW8KPS0d2JE4LdIiDUnHcpkRlZXWd+B0UoKP1TksbBUAfbc6CWXxpftz6T98OaVip41yJyVAu9smVv4oo8os20bq+/j3qmQMkOvOSukQ4F3KH8f80XXSR93UUmrNvxuH7s8bkj5UIRChOL9xCljn78ZVBv7Yw+Hrx0qiImPZIZfQCLKqcW0EeQE1mbvr29OiPUufv8HKj+naD5++5CW3aD9c0SK6+3740lmrWMUqVnEfRnn1Ghl192IELzxL886XX6V+247n7cOSpBY8MJDHMX98HXyG+tTFNhk/hjOFsO/1r50KmIXIZxqTUUtA+6NFF7NSY3dtgice6qPbzhDrErtrE8SdAmVBn8lGNE6sd+botHPRzmcQn2VufFZskBMDP5wqmMjJ8KiSXg/yANNHbBXhTIm2vbLJgGUN/SAPoPuRsPqTPgFzLI8RjwicD6cMdlrw0lYfs4RH69gZXCZ9heQ4RLVeIR4B2396em4CkFZz79t/jPHXX5Q5/llRffkLSAaVrWqkNdPhb9HagB9X8fGGeu6Zxv8+8QWg6lF/zsav8xwpyItTlfPLUn7L8oH0GTeXp/le1ah+5bllkUbItlqn5HV4bhmN88YczJ+jhgWts7vX3PtUBc/VuLWw8dmXrt136+Oz5CVZYz0e0vqadegZiJZ2aCe1ywRCkrByf4ttLwkwov1JBX7bAdBAk5Xv+/Mpm9TjfgNFAMxCuv+HBGQzqz+c2gSf9kF/Nse2/Ufh+huA+g0+/mK7xnzfOAnhMsD6mwRkM4jPkrwAxDSW1wSdKxOsv5M5Wc0SmJ2jR6ca0ExazM7VmO+qRkVCWNSnzlO+5jAYPTOY7iuH9WiXeGGGOxOb2LNQjh/TX5EGjtgVB7L+oPVRAF/loHPE+E1tH6vGWpBZ/cmgkrUb6+2Tx5rDY9aucFKE2srHWWwTTqJydx3514aPvSy++gIA4Pw/+F5DFnYVq3hQY8XIf0Ai+O6PSPv4hWdRffYcwu/8AJ1/+8eoX3oeo8dbKKchGYhstdA6IIPDqD+1ZoYkU6DyRBijelqhm9cYXNIwGsi9EjfOZMZDx9b3NaSX3eQBymaXANCmwZMz4q2ZG2S5lKl1TGxVch3nrKqTqeEJS7apHaAWByhTOmDrZ1PE152hqK8HynGKtZDXUHkFILTAGoN4TRd19/kaKq6FncsSPwAxg8PCIL4+RvXaG2Q/89wzUM89g2KnTYxma3Yb/+H3YV75yWn95qUgHUxi95OHAcXwN750yvhqFT/fiPZ23ZPcgfcABMxHr+skPUQzPxaAUZjNuZNU4WgwpHmBsJNCXx8IIMt+GMzYCY8nJB4znhDz2LZLjScw+7u0PyvzQ8c4DXTyooJB1HInFeCUZ3azSwABAABJREFUr2GV1wg13U9GKyQ3S8eCtxMwdVIijFXD8FmkdiyTu2QT1QxSRcBtoNddNQCmgMojOQbfy5HXF/jP9bQA0DTeZVah/z+/bzTdZ8nNAslNIOpbCZq8ACYAtrtSMcARWu+LaFo1wG5fEsg3sGZpIIAYK2QmW0iFgjDP7eKLZRHo+6lTYHqQl43fh0MMce3v1bkyEcmcupfK9ROMp04nHwDiGGZ7Ha2DKYK8RH6+536z3Ej7Gucmy0lKiitAPCaYyug6Es3/vITKfEPnTK5zXuDy9+bge+QsBr//GUlSeO05K+pYA1aaCB7TLRhP6T7lZNzOVkOeyg/f2G4Vq1jFKu7XKK9eQ3j1GtTTl4CnLyE/3wO+8wOET18CenHDVJElDbjyzWglspLRnKQUWAc7X6NqtyKuLbClEG5niDT10d12hq32DLNSY6dF48WsjIH2TKR3dtcmeLg7wJ8e7ou8zsHxOjptGpOyUYKwXRIT35rYMlgfj4hZy1rz/numbaCnxLwPpwqd9+lc+MaHJg+gANHcBhy715QB4lHoMV0dWYnZvACtaZislKUE2vsa263jQPb91G++LJ8b/saXMN8JGma5F3+X2KG3Y+TzeDzfi6BnRuQ7Dn/rsgB1q/j4I3jh2VO+PhxNqUic2qZKuk1PozPkCzmcP5G3Hogjkb4Msgq6D6nYLNIIyclCSBPZVktIb1ydabyq12WiSTTOUZxrC4EMaMpP+qQ2PWu+H3pEFpbqyjYCkWepPJIeg78NfKFwyTCg6TvBr/H9JCC0p3vvg9A+Kx9gkDeQ1zmpp62vBifv5Dx4n4OV3oGuReoLNlEp1T9LScHOjQCzc9Q/lQCmD1dIjkP03lLINni/AaoNks+JphVmexrJTV5LWKB6LcHNSwnKdiLtYmY5QKau6QFJy8Qj6uPike1bZkBcMEbjzIWdKgLhMdGcZHa4qshoh/ewwa4qnJQOg+W+NBD95pS4IQniCOse3uIneACq8gi9a4nvGcZItD0ffiU1tU2dUlOY7VG/y23h66xzQN+dZZIAJy8Uj3DK46rdt2PLkozZKu6PqBCgui1qdvt9/KLECsh/wKJ++VWEIMPNajhE1J+i+DylU5MBldIu9lMC2/aahlfMLPUNbpJBjXwtELkb1sAD6Hk0dQMxD6BsgsUTWy5J4/9RBKKnn5e2dMoOzvzIZV2qIE0053Zei4QOTy+YAavyCp2f9htyCSrLUSdbDQDNB7dom1JkPMKBaZwLPg/tw0wSBz5jiRnHLDkBAKYIBMRn8L62skbOrb38UAaJLOnhs39pPwRALr76AvS0Euf1VdzbUEkLQctOpNnEFmgw7ZdfI+mNroD3Apx6n1mevC/r5C+zc4SZnJUNTXMBMY9v0oZW4qfe3nSv5TkQx6Sfnucw+7tifh3YJIPTM3cG2SwrEo5cexrmzGLaSpqMncMC2YYWZoWAvp7EFycMq63WmSxvn5XNycYGY59Lgaduwrf8Gj8v0gjtw4x8A+x94+vpU5VAJvtReSV9RHx9fEqaxddtB5yOPT8us7KWkzT8GHq7ZWkzeNUGxZ4GkEBPDTpXJoCUakf0/eKmnBiARrk0ae67SbH0T902ApZTGjcBarmG7XPySAjl9xPNV9ufNQzb7HVT7LTl+KEkTyLAfrbsxcCSXFC5ky79/k3wXfT3MyzJ93j3CyfI/OoXL1kl2yxVxzQWxZN5I9kW2ARcPZ6sDKpWsYpVPPDBMo4xLqECzUF43K60QvrelProKeB7yUTTGrNdRfP7gkCReGQlCM7ZOX4bSLbnwsIvixB5FOFGsYb1DiFiaUR9625rgiuTTbQjGkNmZYz1zhzrnTmGszbKIsT4pIOwXSLsa1TrVodf10AZAJ0KmWXEEghnZJ2BTkW6/UWAKjXQQ4XODV+eMxAwP0KA+AYlI9j3y5cAZfYv4PS3SV+bwHufmFSsV5RIsMNXNHdsVgAipXP1714WaRCWBeG1z52GnpaW1FALKaBIFdpHJGFSffkLq/XAPYzo4oVTHjuVR3ThWDaTviX5IAkRHk+k+q+OtRBa0LPHtJ/z50fFTluAXh+o5/mhSSIi5lnwPjlZIOpPobIEJokawPxy+NKQlW413lt7cyr+VJwo8qVrudo929BU7dphPzo3A2sflhg9rkWKx5flAZq65GxC6/8xJuDfq4C7j5YfOUTCpySiIED3MCcARTHAmk0z0M+v83MG+qv1ShKK3Oew1wUD7Hw8BtSzHYN6K4d+ryUV//m6ZdbvU7uKNMBiQwuTnOfdADB6MkUyMEgGpIVfwskLcVJjvhOI9r0v8RWP6Dwvdgjsn+0HrjKg4GSoPe9z9zuUHXoumA9z0Lzn7A2YbQSyPwbQkwEx6G9eSkhKtMNSTq5qo7KAfzKohXylshKJJ93ZvZrJ6yah9Q8lhli+VVHVRxEg26D9+dUEvjcB4Bj7y5JMAND6g5fRvPJXcb+FqXEPNPLvUWMegFgB+Q9gBC88CwMgun4C5AW610phs08fTj13cMdAne/RT929lstAzJnP1nFTx943SuGBmF2+eQLLA2C1XkHNlcuAe5NdLlWlNtAjD3CSMfayr8x2FckLCwQlFhhMXr9x+mTkOcJ3biCMY9S9FEW67kC+JdCUEwK+cS4Hg/hcrcDv62npAYAWNLwxFyPb3IJaRRphbhMnH5Y9X7/0vLB13bG4DK2Q5ETUn57S1V/FvQmTLZxudq/rwMHYXqgem7m2TGBfB59BcgCyEFgGK5fZO7fS2KyTUNg1Ym5rdTfr/V0B3oXJ7zHy5bHXhTo4IjDfMrT9BcoyGL0MTIvZrDVw5nsmuUn3RvvQTbzCUSXtl3v2nROMfuUhVx6ZOQkVNtgVPVELXvP+gqwClqpsiJnvWPDL97CvTQ8Q6E9AeiXG0tnmhv0damSbGu0bc5hegvDYrQi4woflckRX3vttlgF8/7f1QXZOFnCw3j4vyjuHhYDnzpSM9inltXnUSGT4xxID2twlJav9lPrQ/pyY571uw3QtwKRhAMtVW/734f35/gpcru0nUPiYJg5gNqhagTWZAVgZtADJTTdBV/Y47M/AwefaT6D4Jem+TFQjliWtzpC4OsXk54jdtmeB+GfKZa1iFatYxX0e4dOXqILruWdQvvITbMQa+fkemdkeVJh8zlbIseeTDjC4ZCtej1lnmvYVzYG1twPc/JUS4VouID6HGN8WGrMyxqyMsduiBPIz6zdwmPXQX6R462RbwH5+RDvHbB4LAQhQUHMrXTELRdueNKtrIKpJOucghtFkYKmHCjt/4shAespjcoDRExbkskONzwJeNqRkmVEfpKvjGkXHQA9DYv3PlHiDsSQHmWnSeTv8rcsYP2EQ5DUAB/gzC/9OQz33DBZecp69b9o3SgFrVyD+vY16PEGQbMkcgmUtOUwvaRjcSqX70pzl1H69SkSORvUmz6vsXDHbsFW8dp7IcyKVlcgsMQZ2jsqf4USAykrrd6GRbepGEsiXgwQoUVQgggaB9NwenyDDhBgOnmOT91QAPXP7bB/VGD2u3Vo/Pw3ii+wJm6naJFiVUpIuggOLWe6X5XUYmF1sU38g23qkwnhEzPVWn7ZrHdM9yNtG1s9Cqm48E16+vwEgHIayL9/c2miI8gA/54REkAcw84gkefqRZbXTdluvGYweJcNZ1o/vP6cRzTXaRwSGr705ld8320iEae8nOKStkUte7PwJeWgwpjLfCeRz3EYGthnfWU5m8jlmvIeZ+vEI6F6j5Gg4sN6CbcCsMUCunBRRxyd/EWNfCJu5k+FRJ56c5lIV8vThFKowAtyzSsGyx6F4O+qmXLNa9nossPIVWcWnPoK6ru8ob/EX1X/7cbdlFXcY+Ve+iGwzFCBo8LkuVOFkYDjYkVzPjJRBcQbVl5Fh13M/y82Gt4AbNPh/zuZyBptL17hDB1z2moMz677jPHfwALHy24eZADrM+mTGbB1rp2HsyyLAA1ziGNX5LWEVcPgTk+Rk4WQ+LEuYwTWV1wKg+aDS/FxbwP1wlMG88pOGduJi34n/ZZuh6OHdrRxOdPFCgymqnnsGajJfmS7+HCJcX28w85cjSOIGEHgWgFjHWibYvgQLm3fKdX1GAsD0kobUCDPdizSSpA6AM1nXEmzM64etHGDgXpjQ40yY8ZVWaB242m2ffRSOMvmcD/oyaMvJML6fAKB1MG2A97xPPq58jyxHdX5LkhQ+YL58DgFgmcW/DKr72/iMdX8blqpxki8lTC+RdvLr3F6/Db70l5wrNhCLnVRYNK1EwibIC5HRYYDe73MAVzoNOAmm+bk2OlcmYpDMzHy/0iHzqh/4+vC/i/8bnGUey8fmc877j/rTBhPf/64mDtC5MpHP8b7LnbRxfhrVUdagVmSnvIoVv0LEb1+Ql04eyN53dS9FMJ6i7rn+t1FBsPQanaRcPsdxK/mc6OKFlbSOjX9n/udPugmreMBitWb4ZEM99wz5lNixYPrUBrKNEO3DEpMLWqpsTURSA9lG4Ek5APN9YrrHQ5q/z8+R5MT2xQEGow6qeYTe1kxA+XlBfe6lzSNpw6ykvvp40UE7KnAy76CtCwxnbczmntEtAH0QN2Qt1CgiQ1ttBNQPh0w8IAB/7welgJWTCxFpO8/cGodNO8sU4gXmyEj2PBUeo7ewpKXIrWdYSmMZ0GNGrK//zcx+lvUwuhbgPx7dG1CJx6XghWdhkuhDVf6u4s4jfPpS47k/T1mek/pzWT+WQXxeK3JVPM8T2TQ026TK7NHjGptvnN6fA9JdwqBII7SvDGWut9hPG/sNl5Ywy+x6Xyd8eb/+6zy/Lqw3XbW0tAhzYLGhsNjx5GoiB8YzuMo4wzIDn9/zzVY5mN3uy/nSd3GJNK6a8atkmJ0v25fNJCVA/3O1TzR3+AkbbAd5IP2Nf9yzKgNY2WD2kDOmVSWw+WcOg/GTG2VK361MIYD+YkOhe63AyTPaJSA9DXsmQgoLPSf8hH4bOoYvLcZ9OgPe/Dk/iaKHCsU6eQnwOSs7JFkDOEUGOWeenJHIJ3Hid+rkeBY7rlpAzww6h0WD9MTXEl+TdE5cYmy5D/fPhfwOpTsuScHZao426eAvx/jrL96R0finOe7X+fxoNML6+jr+7//7/w1x9+6IVPkkx7/6P/8bDIdDrK2t3aMW3p+xYuQ/gBH/4fdhvvoC4utjmVx0DouGSSTgdN55AGGzkWhaoYpDa74YiBM4d35Ak33vNCPdgGu0NYMp3GeBAIttB+b7piz+BBiw7Bf7P5WTFQhHGYFFtuxQZC/GEwQWvJl9/jxaB1OoZUkFgMxFswoRcmjL/PXBPj0tG9IR/kSsfcMagGanOe9sbBuNcwHxfWDPl/LhyREzlm8VbEj2gZHnAuJHTz4OrED8n1tUwyGivV3Uiwxqvdd8kwF8BsmznMB0y3RmSRzAgfZcYsshLGh73ejrA5jt9QZorq8PBPRN3jnB7KkdeU8ATt+gs9dtgvpLZcKm2wZs25Z9JRh4Zb8I1jrnBQsDtMF4ino8Qdjrojq/JeAxs3sqrUgmyvpcROOcgFmPke2fl+VERHj9hO5jW2Vg9ncR8rGXSprZ9IsXHz5Y7APufkVN1J82FmQ+aMznwcQKKmHQPxEjW5U55j8nKnzg/lZRpiEW+6kF8wuExxOoWENfL+RaqZMQajIXzXhOPhTn2khuFtI/MWjP4Dqfj7IXC4gfjrIGQM9sdnU8hNlep2MdD60UlGfE5peR2/JtwFWDcBm4MMSSCOqkdM/teeRru31jLtvzbxdkFYLjm1LVUm9vShKJjyvVG8sMeqDhRbEsYyW/qVeB0AhJlEWot9dFguqWkeciYbeKVaxiFQ9SULI2geklmD5M/aue1kQ2sUAQA2fznaDBfi07npGjZW5C11Bzhcl/2UG9bhBsUd95NOqi287Q1gXaUYH3JhtoRwVujEhupx0VmBekld/WhQD+plBQ2pAuPpysBRlOGpi1UsxvVRnAgCqAUQRI3wvJ7HE3wmyfNaBpzbH+piMqKWu+OVp33wUgIMoHDP11jZPcCeR13tZfz+TrBBROHnGsVgYTuVogyEnWI4LT7L5V3E4qJ3rycSDLUV69hujJx0k2aQXif2xRvfaG6OOz95nI36QRzKaTl+S5DxNw9PWBzO3y8z0hZHCFd/LOCUy3jWKnjUrXaB/SHDO5SWSw7jWvWtGr1GaQ059jmzhoJAq4GnVygQl2sMe2zOlUIclJQjaaOg84n9xSrSUyr2ayS2QJGkorAAaqgDCmK2uACjjWN+CR9kqHKfiJtO4xsPZ2gTINMbmgsP6mwXxXCRDO9yNL1HD4oLIqAMW6+B77nEFevy2cpPQZ7r6ptX8fJ32F+bkKyVAhOg4kOTF7yO3Dl8vyk3vn/nOJwWcirL3lzGVZlz1fd4kOVRDoTWx3hWRg0L1WQE9LbPwsQP+Xo6Yf4RwYPWGrpjr2vBRAvq7keyeDGnoKTPeDhvFrvuaOy9+Rgysa+HzwNpw8YbNh9u/zkxIMsPO5K1MA00BkfphMStdeiCR3/7uEkDPsZUZ+mHPlh0Jl/ReKNICxffDmn9G1Ek1JUogJp5H1ZTwLxAcIKxv+xpew/q//05nvr+KTD4MA5i417u/28w9SrID8BzSKVCE/38PkgtXyY0DJY6JH0wqqCJBthM4xvaOgpySRMd+LUKQBDSwzx7T3TWd4YGQzXO7kTQTofoQqpU6ZS1Y5o+27ynMpGA8+3OGzaYmeEgBVJ6GAh0UaYf4oNSgsthoM+8V+ivIza1j7z+8BeY7s2UcIDH37ULbxtaSZxczhJDnYbIXYFFw6yYxgkoDIKHFgwTDz3DOkfWiZycv7VDmZ2WSbGi3cGrDPtlq4Xb6xPHTMphWA/wlEHAuIf6r6w5fOiTWC41y8GwKPaWySCFG/RN0/Qf3YBWF884IgHFUEKCakbc9+DyojWRO+F4qndjwWj4Ky+pvcTgBOQ5yDjXCzXABcoKnDD5DvRgCgBar24RJ10oW37On+iXz3oNfF7PPnGwsAlZXiacHt9Bnw/vGAJakU235mP7NfQWDPSfH4XsM4FSBAvXE+vEUWA+X5eZeAYdY7ALm//Xb4SRbel+j9W/ka//h6WkH358JSZz18vx+Y7yVIBlQ1Fb5zA9mzjyCy/Qsbdct5mFCihauJwsJIcoCMy4DCyi2F9vfzky2AY+/7gLwA8/ZaUJM5DNri58CJgyCr6Fq1bRNjWGsAzGXmfN78cyGVBPY9XgguR9SfIji+CTMk5+ag1xXjWV4s8uccE3+JYe8lzOT4S4C9Y8HpJiPOS7AFeQkk8Qcy7s1wDJMtbvn+KlaxilXcr2F6NAeeXEyFlRtNKww+o2UeLwaUVvaidQzMzjWlZtjIUfcj+UzSV5hHGuNSYfshQrmHszZg93tjtIa8pPkGs/DnhcZw1kasS8TamrxbED9ol6gRoeoYoFMhbHvvz2g/ol2ta0yfIBLR/By9zqz5fK3G0fMBdn9UY7qvSD/aM3bk71i2aU3DDFdeq/iM/XgIYRcz65TJTsIgbjsda/q8AxN9hq8vdXGrKNIQ4Qe8768ByjffBt784P2t4u6D5zY8twIg5K0CTtaQ/XeCLEKYVTDdtlSu6v68IbnTefsQ1fkteS+285NiP6X5nSddCKChea8KIzK07J/Utm3jdnElpJ7WmO0pYUMDsOz7ECYO0PoDZ8o8+9qLiKbkHcVzWpaklO9t+xOf7c9tIrBZASlgisBWtLjzyGB62XH/d68Cm29k0P056iREMogtMccgX4sa0jDLevj8yOzv9mGJk2d0g+3Px/U/v/zo66c3PCzsfcxSO1uvlTj8QoR4CHTep893DknSJhkYHH+eJGZax6R6cPJ0hGgOdI5KzHbpc9lGgPaRQb6moPu1EChVHoikzXxXEUYzI8WFzkFE1UT2O+VrwObrNcaPBKfabTRtN98JkB4YtPoEpudrxLo3US34UB07s3BoA30QIz4OPDCdzHOXzxEHa+RzgiUZ0PeRJE0Km+hxFQi+PI7KShidNK4drh5hEJ+TTIsNZX0aA0k0S6I1gsinccICcGa2Z0W2oVcg/io+VbEC8h/Q0FMCsdgp3klZUIkSZ/6NVkgGFWa7ESodILS6Y0iJraLywALwLpPuT36lPGxpcORgI5iyXcNEQaMc1eja09mk7fzOljt6PVUCrLPOX7KkTx0BAmoywDX5by6gfWNO2vls9DmZAwcTYuyz/IllXdbbm9TWnVTAOl/Cwf+/TkJhvdZJSODXGcakkccm9Zn/8zTByTcuY/ON+am84OxrL2Ltv74PrKQb7utg5hMABD04drvVm1/+XUlj07LfbZlraI2swvgCbRNHCLKKrlMrD2UWGdTuNjHdrwOBZebz9c5a+QS0ksyOY07HDfNnATm5reMJqsfO0TF9ADujKoHlBFH8h98HQOwvlrPyv1dtv3f7yhD5+R75TmiF0JOw0dNS2NwAJHkB+KCvY03X4wlVPiQtAU7rhZW8QTMBwMHscOUBxrzv4vxGQ2aH2yLyLMzm9n7PAFTdoCYuQaPs+ffLoH35LS5hLlKF5dBTIyXLJokQ7O8i/i8/A84/JL+PAhpgPnsMSGWB9TZpHzqfjvlegmhJJoi/py8ZBq+Swk/w1LFuJFHC44mA+czkZ/DbB8j5umGg3a96KHbaco6F/e8dw6AtySoAkqSRa5avLZsgdTJHRaO6JUjiZpWJn7jydG2XZYO4Dw+ySioR6jgSU8hbxQrEX8UqVvGgRpBVQI8Aj+RmCRMHOPxVjXgELLYtc9wSbFgbPl9zQHe7TwzIzg2a6bBcgxB67Fx/MOpgY22GWJc4GtFYEkcV4qgSCZ2LFw5wbFH+vKB+Oe4UyI7bQBGgRgQ1VzBrJZnYtoFqZMez0ptpFYGw9hko5/WI6GzPAwyfDBCPgM4Nx0SmthNxqBgoMes0MTNZjcg4MMNTNKXTJTCxcPIUQoRin7GZk+NhqQ0GoPrfvIzOoTkluzn72otQhbmzSt1V/NzCvPIT1C89f0pSEiBg0RRUoamyEgZursIV2/rtw8acJbw+hdleR5BV0GKEW2D+6Lo1oXVzOxOT1j0zlPXUPZZpaF+nygCWJfErQ1lKl+5/J7vLErY+1MnXY/3S8yKtqQ6OzqwyZpxhsWGJG8zI7yiEtgJG5YHcM8vV/fEQWLti0PvJiZDnuJI+AlWXlm0iCbYPlLC6y7Qp2aMKkpSZXFAYP6IJx5h5uvrlaRNUFTXxB+obHADNuMdimyqE1t8Isf3jDEfPJYKNMPN7cpGug8lFJZU4+RpQthV67xoc/hqgishq+gPdd0k+ifuYeAjRtS/bBMaVbYjR8PCxBHpmoGfUh2cbAdSIEgKdA8eWJ7PdJkbDTHVVUOKhbCuR+TERqLpph05K2KcPUbURJW2jmUtkqpLOU6UDaTtdB1QJwea3vsqCyN9YY92wCNA+LIVQaZII0bSiauUN5eSfO4RRhbYyfLGhRC6H+1KWMss26JgM4vPxojk+EKjnSpYPG9GTj68IlT+nqOoA1V2a3d7t5x+kWAH5D3DoaYn2UWgH6qJhhlOkEco0tBl55U1EnRO4DP4jJSWj8QiiidmYnM6JwWIiN2FWRSBmUFz6yhNsVdIEvGxTiSnmgZSBLbbdJJn12Ljk6ixpG35NmKiIoPIKnR++4zayeuDF+Q3ot8+Q3QEBdcXje/Td2THdsu6Bpl60r9Ntkgiw2/HziFn7vm5i3KyG6BQGk4sJQjtJByjz3P3ZaDUgPCBRvvk2wqcvEeBsAcDA07VveDcAQK8rUiQc4ctvNfYZtBLUaBpsmqvXEO3tAkks5ld+MGha9mICsX1TrTwnU9P+CZCduARWlqPOcpH1CY5vAtub0t5bJZFmX3sRADFt0p9CpG+4KmH23zwmiwJjy2yBptks67yT1Etz/ywjY64eoPLAUpW0BMwP19cbnwmPJygf2xIGetmLESFvaNwz8BuOMjHLXfYjMNu0XzWZCyudqysCQJhU0nZZVHneI55h7TKIbzT1r3xewsIlIoKdLWBsF3KeJEzDJwEQiSOSLGqacxvW62WdSa9fOms4Z+a52V6/pWGs3+fWXsWA76fgA/h8XE4U6Gx+Cvj3/R7qJJTzHizfL9558NvBjHo//HvNdNtS+cK/Lbcz6k/FoHd53/L7HxyhmQpZxSpWsYpPT9RJiEorkryw1bfRDBheIlZ75UnUdK86bWGV0/ycpTKcJEaNeOTkZtRcQW/PURahA+ejCrEuMZknyGcaSlMvy0a3bU1jxGSeIBslIs0pjyB2fjWKSRu/UDBtg3AYElsfliQE8uHiiGZA9L6S77D2Do1TelphtqeRbSh0DtksvkZn2tRqPnougcoJiGTAkAE1E1sgCVaf2q6JTOlJOWhPCmQOKHseiTgVIC4oUdD79h9j/PUXcfKNyw1d67W3Fwi++yPcmke6ik8qeI55VvjECyYgsA5+uz918xuPeKAmc6rQtfsoh0O0Y43pUxu8VzG85XWjbyTKYL7RCiqvUKQKxa7Czn8ZEBnieILj/8M56GltwfyqIcVzq+ts8dUXANA9U+y0EeebREKy33/Ze07PDIoO9S+VDiwoHQg4zcauDJYDwPZ/yRBfH8s+fLIezylne5RsjN4niR3Wvfe13uMhRIIGSDCKlAOpdTN55pvDNn87C0DnEBmefN0pE4Qzhe41g5uXEmGe+yTGaA5kO1aOyGrLt/s1pvsEeO/95xqFrRDoHBA7v0xJHYGJlFmsRJqG+9nJI8Dmn1HfMd8lg1xV1Ggf1Q0fAm4DJ2VZRkekhApXtcA4Duvgk7k4GYvTsS2A74H4JibTYG4fg+38u/PvLOOD54cg53ON9tE+tOsGr3o6yUqUaUp9ZKe5jmIWPo9FrWOIF0AVA2WqJFngmxeb6PY+JB/VJHyF2fz8wtQKpj5NkPuw+/hFiRWQ/wBH1J9Cb2oBk7KtFrLNEEAoWfLOoYEqDJI3CpKr2YukNA9w5U7RHIj6NNjI/jYUStjB5aKdoJaAyb1Jdx4g9JgxRcdAAcg6Bu0bIVQUNAATX4OutJnwKradcKwAa+Z4VjAjXtiozLaPYxSP70kJoonPIXn13cb7yHMBcYo0EgYxADGQbBzrDAkJ3+yRTUzpeEqYv+aVn1Ab4SZGrAEXTSt0f/z+akB4gEI990xj0uvY5QnC44mYbQZjmqpW212SKenR+3X/5NQ+mW1+6vUsRxATOO1XnkAWlO6apf17wOl4QkAx4JjKSYwg2RJAtPjsRQJfbRnwrSJ9b4rpwylUXmP+6DraAIxlaefne43SWl5Q6KnTxM+2WnJ/+VqhUvGShDBXD04xnvl5+PSlRoIMIBA3vj5uVL/4CbXAAuRqMifAPm43ypMBX6YlEiY8nxtmogO0uFAJS/Ww6Wtt9UkdGFCmpwvhk0FFQMEVl71Qk3nDq4BBal/ChqVrTBJJUjbIKqlyULmxZceVVGX45d7h8QTY7orckum2paqD99WQ8vFC2PLedeOz3ZdlcoKsApLTuvqm23YJJt9s1jPX9Ss86u1NkfdZTuDWcQR1cIR6f/dUe2W/ZxjbhqPMJQr4urO/s/Tpr/zktiD+Sht/FatYxYMcQUYAXufQYLGhMDtnQZ5OBRQKybHV0I6crrIqyFMrHjpAjtnn0YwkG4wF51RhcOPXeqjWKyyGHaz9Sh/H769h+6ERuu0MEwD5TKMuFSYFrSnyMkQ2SqBGEdA2YmBbxzVMRDMtNr8FQGA+gMqCa7ofWaCc1g6tYyIGMVPX6dvTfJuqlpUwZdMDg2TgEuMsYxfNCbjSMwLMio5yRpSenEO+7vTyG+AV3BqqTCFyEqqosfZ2KZWOfiw2FDpHJdbeLlZa9w9AcIWtYskcNOfkHHpaCpngzMhyBL0u6vFE5hhBXqD1By9j8dUXyMNCB1BFjSpWDUkS/n+2G0HPDKo4xMZ/JWa7msxRrG3AnN8Q4BRwZqJFGkJPTxPlOPj4ol2u11GmIVIrMznb0zLf57aUKaCPmK3dZN6zPwVAgHnnqETy+o2GrCNXHd/4kkbZJkCaE2Jrr5WYXKRzkWsH2OZrwM4rBeZ7EXBIFQazPW9t3nYSwExKbB03KwOiOU5VDPhtt784+r8cNLTwlw17wyklEFrHlDzsXJlg+/83x/Vf30f7qIaJSSdeFW4VWcW0TihSJf0EG9iyFj0D2+2j5USOIUB95BKTySAAQGbl+ZpLZvimvqoAzFotCgqE21C/q4pAmO6c7AgLW6kQ+xI5tipiGtiEp6uGMpoAexO7ygLAJjetLE77xpzWlYUB4KpIGufGXt+N45euYgEApvtufGAPBfZ6uRMz8dnXXjxVEXVWqOeeETxnFau4n2MF5D+goacV6jjC6LHIDgLUubGBLQ04lJFXhYLRCaJpJQN8WBg7MNfCICWHcM+Z3ZZORXPqpAHSI+OyUV9GhzvT5DikARnA/FwFVQYN0yyA5XoC6aA5ONuvliRsGIxi9qmxxkMMCJnt9YaOYJGGSAAgJ0Zy0OsSC9aaf7UOCOg5i30qQKGv5501TXKX28YaiEFeCEC0+OoLUHmN7s0M+voAAGV0T4uErOJ+Dt/gNeh1LRib2IoNjbrbbphmhtdPiImca5qw72wB/RMB2ev+yS2B/Go4BIZDREmM1gGE2cMLTta/VLk1WD6/QQuGXvcUqxt5LkmsAE5uRmW3BzLrl19F0nPGa/7UP3yNklTD3/gStc32G7xIaJg/Z6Uzb7UgfjCeQl1/v8HEB4iND1jZlfEUZuk+ZL8BXjjxoyTUrJ4+ACDWwtyvk9De57DAeeExuHWDtQ043XkAcjxe2HApKIVl4uSOuVjpAGEOtG9Q/yLtARoSSMGYnvvlynJ+lxKK4ShD1Lf7yxygnrxDCSJhqdskga95r68PpF8LxlOX1PQNYhmwX5LfCewj+zmwaS1XJ/n9I59jPxjg9z1H+D4JdrYk0eAbKftSOEFeihQan8u6l8p5q9aSRiJmOepe6trgsfU/iF3nRzUcrkppV7GKVTzQUaSBGNnGQ8s2nYXQw1BkJKK5lSkogLJNYL2yBoyLDYXYDg16ZqCnhkBES2+gqtqQgLP/5w7CvzDDyXEXShuYQqGeW8mcqMZ4HhEwPwuhhwpmqlDs5wBCAvHZfLFQgDYIIoPu2gLjE4vKaUPM0WMr42CnO50DAuWYARwWlGRIThZ4/0XyyWFwsOjYuVR/DpWEuPmFHrrXSpHi4GBJi+m+cnIblgWrhXXrgMCy4wA7lsLQ07oBGPW/eVn+714r0b4xX8noPADB8xQOV20bNSo+uZqT/K2aHj8cUgUKIEi2AAvk8zwjuVmgSBNU1kzUB2KzWIlXg9FkcLrxs1KY/GqL5tA+0YYJfSQjU90xG5mv2xhADZrz90Dzfse+pzDaAb4ApI0EPlOfsf5OQXNWT9YyfOcG1PYmjp7fEbNVo2sstoGqY3B9LYQqAiy264bXBABLWIT1knL4wuSiA6ZZCodVABiAZ1B/OXyza97ffN/JdS1La5UdqmRiDEVPK8we7WJyYUPOSzIw6BwWjfUboGA06cAnNykhwZULRUqyXsxoB+i7scdB57DAbE+jc2isLHGNzVeGUkXMnonZhq3ctRgLyal5VUxz9hThJK39zrZywde7FwNwj+2vp07jPx66yiMf4+FkAnmM1GK4TtfIaSJUtcT211NKFgDOT7GywP7sIZIMyr3f8U5AfICkdRZffaHhEXFWrED8Ty4MApi7lMZZmd2u4r6PSitgpy36jdmGtqC9y3Ia3dQlm+8lYmijshKJ1X2e7VrT15mRwR8AwtxgkirptNMDg83XAzFaUaNASt2MJj1KMmSh0jLOsOdrVJLL2XFmtIjenb71DccsCJkgJSFNwidzmEWGIIlR7LTRvkE7K3ux6DWb4RhBi8Cv2aNd0bfm8kNMILIhABCMgdCT02G9fp+V7webhPqgaHTxAmafP4/2jTlpY3/3Ryvw/gGOOo5Qb6/TdCrPScde3rN63Jww2tmi6ymJhSEevHNNAHoAiPZ2US8yBK0EYSs5k/Vrrh5ArffQOThCvU3lrQIu60TY77xgaMj88MLBArZSIWCTAdUdmCwDty8/ZA3C6stfwGxPw2iFIgU0KNnFQLovW8XnypeVke+cLcjkNolR99JTEi6+X4BvXi0SWTapARDov8xYJ8+CZiVCQzrLxnKizi8lLtNQKpnsXjHbjSxwUAsbH7C68d6WajInAN1eQwG6UHBscrfwK9258tquxpkkHd1nnNRMHWtncOt5AQAgSaW46RcijwAQxw7st9cuLziDjM6RX43kG/8u+xf47H0+c/J97G8LUJJKT0uvzW6V5CcdxHPCJmK5quBMM1s4KSGAFtz8XRb7KVoH0zuenKukBYwniC5eAPK8YTy+ilWsYhUPQhSp0y5mGZjOjVAMbQFaP4yfIDPEzR/T7IY1tVsDl6imJPUcRluCgVboHBC5J5oT0L3xv3Vw/EKJqiRZnPStyMo/wGNv1iLxwPrM0DXJ6xQhknPOdXI2jxFEBnWhoEaRkIgYIGLtZtZpDu36J7lZYH6uLdsxUN8akFxenYSYn6MxbfRYJOeCvztAIOHamzkGn+tKosNoYPwI/R+PHPs1mhF41r1Wn8n2HH/9RdEr57nTSkbnwQgyeI3Fl4nJXjzfFL8lS8zwiQl1HMmcI7p4QfZZbXcb8pscwXd/hM6XvwAADQZ8FZPuucrdtQ+QzE62YcHeKc1Dfa16vndnuxE6wAeaKQO4Lbi5/q//E/rfvNww0OX1O3vppQODAtQGfk/lhtZGcYzaW3PXb72LjTfWMXtIo1gn4l84VcBMkZTWTDV8MDiGTyr03qU76Oi5RADklmfYCpB3X71eI+krAeLLNsnRdG44cF5A/Lknz1MA7QPVALQ5GcpyWvkasNgOMH4kgtHUyO67NmmYBgACzHcTkrdZ1zAa6L1LyQ0OXjeYOEC2EUl1ALfNRHQNdg6pKnf9JyPMHu1CT+l3Hz6zhu7VTIiZiw3Sx+8clZhciJAOatt/BdIPsjICnw+gacjN3zGaA5h75yiiJM3oUeWqE1IgHFACR09dZQDg+mgG7f31k8hGpSH5NRY1sg1l5UTRSJaS/QSdT66CmlysRcr5ib995+a1lVYYPRYh+40vrUxv79OoEdw1EF+vgPxV3M+hnnsGYWGQbWgxpKpiq/dWuDKuZFBhckGje40mpcmgQLahkZwsBEAhLWbanrP37BZOLFQ6ZjRvGqjwYBOPmp094AaEaGbL7cpAWCuAK1WlwQ2i2c/BTNhonJ9iQ7AHgP4zpzvOgB0b5qjJHGZ/F4FlmVbbXVfGNc4QHN88BcywPvkHnnfLBI7G+S2ZNOXVa2hZs9JVueynI4j9a0FR1p63gGQwnop2vCSFMgJrzRka9OXhEV1rICkd3+CVw2QLYAio3W0ExzehLdsnyEuk71Gyitn1ALHteVEBwGm+54VjQ+du0nQvo9IK3atZwz8iHGXCfhZJFV7sAGRK/UHfu9dFkFnDVTH1jYR94xu9+kB/fr4n9yi/x8F9CC+gGMTn9zhRQP4iLSQnC8zPtaUsmfVF+fzpadWYjKu8RvuKZVfZxIvfd1WJlY9heZvxhJIaDKJbySZuU0Pz/9hb+Ah4TZUFLCcUjKcAezhY3X86b16fxqbfVgrKD/aA4M9K1QInNb0qCP98+uZv0Th3fgBneJ3UsUZ+vidyBiZWMNYot8Gst6a2/ms+WM/JKTEJ9sxs+TiclGCN/+Rk8aEYNiZbwBwuKPGW5fK4kttZxSpW8SBEnYQCNm29ZgQMnFy0VbFWrmb8hO2rLSO+6Ch0DgsQc5SAmNmesnrbNklqx+DutQqzfY1sx2DzVdJuTt9yYJQveSPSGJokKQDnqcUa+Qzil4WV/fFY/c57y4FRLMXA7M94GGD71TGNBZu6oZ1sImC2pzB6NMFD3zciIZoM6Hu3D0up1q3WEphYWV1wAo+4/UxE4uO2+gRq9r79wXINYQ70vr0Cjh6kCF54VuYr2RbNCwHyMYpslTrGEysTaGUSrQdUMJ42fKhK9sHqkQSi6bbPrPrT/98fQ633gGcfQWHJI9GUpG4bTPgIGD+iEI+snEybJLH0zAgZj6N7rWjMm+8mdv7p9zD72ouYXFBoHxlJcvF9MXyS9OJNTIz0IiVFAOAimf+C5EXZC6vzw3fQufQU8nno6eAHMPPTaxXus+i7B5jvJA1cIfJAZwBQUQBl2fTtfo12n9jmnRukKc9GsewJCLj+heVuVE7HZdNaNtrtvgthjrPSQbYZYr6rMPrVBeK3W7jwHzMMH0vQOSoRFgRYz3cVbn5OiT+gKoC1twuMHrM+I/Y8to+MSCwZHViJ3pDWFXntJQuA0eNUjRHmtcgjc/9W6cD2cdSPcXUCSQIFYprrn7d4uCTL40n1+Cx4Pm8kvUOPvB33jSwjFOZ0TXDSQuU1ss1Q+nD2K+DvxH03AMzOUft9WaN4FCDbqRteKbeLxVdfwORChN0fzXH8+bZUSZVt4NzvE6N/VYm7igctVkD+Axh1EqJIQ1QxsUAoW61Ejw4gVsnkgkaZApMLGq2BQTStqNTWA6iyjVA+x8Y4DOKrwiAsnEt5NHXGJ9yhMtseaA6EolE3cpl6P1OuStpXPISA7PIea1MnTZ16lZVi/MhhhmME2S4xYDPLxGfJivMPIRhPEWQV2leGBJS99S5qUGcNoGHkWe8TWLosE6GsRiCXx92uHNa88pNfoFzggxEqaQGfe6IBrvra3QAa8h/l4RFptdtKENNto7Ya5AwU1uMJyiVgL1xfRz0cnwKp/agzYqUHvS49ZqeZ+SZbSCIgzHIEfSDodRHmBcJjb1+xRtQnBnZ1fgtBFnnvERjOLOlKq9sybj5ssPZr/cKzJKtjZaR8XfIgLwVAD/Km/vqZMZ5AZc7TgqtxwlEl9ybfj7ywUlkJEzcTcb6xEu9n2eDaD2b5Fymb3dZQedVYALVvzMUIN+pPYeKe9EdsDBaOMswe7aJzZdKoABANeS+hwUGM9KYWPbIcytOt9ysupIzbSjxx0nJZboYZ6bj+PrHbrRlzYH8X33i2kWyxYH6QRQizikxkx83fjZMffO4aiRNvOx/Uj8Y5KlsCzgtkv79dNrnlZAbgPFI4mRvZ768mc5Kyst93OdTx8JbGzh8U4fq63KvArb0tVrGKVazifguTWNnNCHatoISR6fSma+hhCKOJ3Tj8rEHvLSUSDQzClG1g42clKq3QPiQPn2wzhLESDklfiYyFL3sjzMyZOx4AOZ5pGyAKpA35TKO7RmN6PtMITmKZS1cdg3jkdP1NRAtY3+AxX4ckvpObCdr9UKoSWGIDoOpkJiaxtGhyssDkM2tQhUHnygTZo13y/5kZlKkSE0iWfwAcI3XrX3wwiH87kH8VP58I19dhPvuIAOkAZA3g+54BNG8pejHNNcY50IuR2blL98dHNO9iUpglhqmkhXB3+5bzjfLwCJGVwqyTENnOFnS33SAZMIkg/M4R9HPPoNhpY3IhlooOlRNYnwzonk4GBvmarxseILRral7b62l5T4llnX/7x+gAOPyty1h7p/QY5SEW246RXbZJmqroAMlANXwBVNJCvchQLzKsvVNi9FhEWIFnIE3fh+47v6qHAXvGGYBmgg2wYG/hCIey3ZDuWU40LrYJw2CzWK60EYNbTf933kez/7RmrpOLAcaPaPTerW1VBHD+/x1j9Chw7f+UoHUMvPd8gM0fB9h8I0fnkEiBo8dbSAYVuj8+QvbYFh7643Gj8phJg9lWS4DvwSWNaBoJw52rLrgSg0x0nYeB71GQDGoMnyQPAsFv1t05kfNmZYnSA1Ji4OQKn1NJ0rrCKXnf9w8B7Hke2ISClWBtH5ZSwQ1AKporHWC27/ZLkjzAbJ8SDluvlcg2QpHwifrA1mtA59/emaQOwEbRNY4/3xbvGD0zWHvbrVFWIP4nH6a+B9I6d/n5BylWQP4DGKMnU8puWqYIazsyc4a1IAGI4/lsT0FPObvLHb0D/2d7SrLnzMwHlDD8uVQOU8q4tvqwWm7BqY7XxG4gFud4L7sbeex9Ls8LCyMyFsbTYC57DuxioC7b1EitZE69yET2obDa+QoOPKp7qYCz4ThGaQHWgMGi7U0BcANr+qjGOKXbrBJq54pl/2CGuriPwoL4DMQqQLQFGfCtzm8ROLi/i2AyF2Cctyt7W2TiOp6eyc69E8YuT17Veo/A3O1Nkd45K6rhkJg8rHvfIx10ZDlquxgx57caLGW/aoAZ562D6W1NPj9qsMxU9uUvEDObTWjzUkqRTRJhvpcgGRRIgDMrFpiVDxAYXJ3farzP5cg6q6BsgsL3r2BgGXD6mUXaarwGQAzLAAijnPfBhmD+ZJqPw/1RkUYo0nWpbuI+hqszugex/E6sNR9et8bHSdww/CId9+i0NA4Ac3RM1wkgYH3A4LIl6lOSyRn9NkxgWZO016VrZzxBaEucT/2GsRaTWtFxtYtcff1sPXqN0/I6dI683yGrGuZmfl8vDP+JS8JyNYeazFGc3xAdfd63SMWda0Pbe5e3/yiAvR9+pQhLYK2Y+KtYxSoepFBJC7NNIvK0+7YaNbfSEV43Ho8CAdeTPq0dZg+RPCYADJ+M0LlBID6DdZPNBHpqrMZzifEjWsAhBpZ8o0Wuxi3bBMYDADoV2m/FMFo1ZDOCkxjjkZfIBaCHCmW7hp4qqTDgNQcfb/YQPe9edfsKRxkq3W60KZrRemlygUD81oDaw5IP5CkQYba7gdCCSyZ265iwqBHmJDtaxYDxiE6ruP+DvapmT+005ncsP2liby3gEWAiAPH1MaZPbcBoheyxLcTXx6cqu30Czq2itp5ZagyoJEKx07615M2fvYVkvYdofA5lL5aKUF9jXE8NVKHQ7jOQ7AxpuXLm41q37v3j7+HkG5eRr0O8NbZeIy3zokPJPWZ8l2mCve+4eZRPdkr/w+vo/rCL0a89jP4vq0bFvymcNBhLcjFbm8F0n73NLHHu65SV/q2sOS9X1zDrvHOjqalvIuozG1JdA+obWlayJrlZIBxluPncOqb7DI7XiKYV1t6u0DqYIn2P1hhHz7fRvhEiXwOGjyVoDQxUYRyL/7EtkQNWADrXB0R8ymi90/L8qR7644Ukk5h4SR6I1AdlGwHaR44YqWx/pWJ6bedPCAvi89S54SoZ/IRoNLcMeXt+fZNfwXZsEsU3Cz61TRsYfEYhPXCSz6UloRqPic/9M+8PAGbr1L54BGy8USD+w++DV3L5V754poH4reLG37qMtSs0ZulphUpHiKYVtu7A9HYVP/8wtYKp1e03vM0+flFiBeQ/gJHcrDDfi9C9lgOI0b2W4/iXEiws4wZwjuxUjkSdaLYRIBlQR8ZlV2EOq5sfSDkeZ3gXVnsvLJz8DjurL3YIzOeBkcF5dhuPLaDvDxIAlwBCOnYOZrurrES21YJGE2ATkN9mpjlYA58BId98iCdM5uhYtlVJC+riPoxncumzsgGnVy2PlgkajfOVruWDGuMJgA0AdC1VWqFt5Wi0BQmZrW96FiAmYT5h/MZjp/duttehjo4/kHnvR7S3K5N+/ozq7QPjCYI8RnTxwgeCkPxZluXBeELSPGxgChCQbBNTNYOmlnmuspIkp+6otR89VG5Q9mLE4wzqwLb5+vsAgCCJoa93UW13JclwVnDJbT2eIDyOUZzfoNe9hAtgv9M4ayT7SBrHsvbi0EqH0bfm3x2gBRRt0wSU+f8iJRPrKHfVDg3zWGavWxNbc3RMoK8FfwE4c9s4Rsga8Hb7IMslaST78n9Lbsvu9mld+163wZz3WfhBXkiVUcMEeVk2bOn5cgJgGbTn9/nRdNtQ40zYj1wh4CdHGGDn/pV1/uePrjf6ca4qaBgaJyGqpCvHl4RCNpekmp5WkmT5qKz75fDvZ5MtbuljsYpVrGIV92uYbCFSDQT4WPmYI4NoqoSJOTtXC5jfOgZGj9cNYEuVZMzKID6bNBapQtFR0DGZzXKQV0wNlSuRo/AjnCnSuR866JKPVe0UpJkf1QhniuQ1LDgUoVn1CziwCXDyGH5V8mKf5hg+0G40sPtKhmxDI33PVW+VvRijJ1NkG2QMbGKgTImNmgwc+1kVtYBQvK5iMtIq7v+otruYPpxCFQbqpETUzxpVf5VW1kxUideTtgSZOtbCxK/j6Mzqv1uFL9dRDYcE3J9/COEog9lp3xKYZHY+Do8QP30JON9DkYYwMYGf3Wsko9Luk7xLmYZCxoumVWM+/HHF1r/4Hq7/zmVM92kuzVUrrYFBa2CTZnMChMOnL6F67Y2zd5Tn6P5shMmFDZF/EdDdJgqjmdsXV9iwRA0rBvBzktpy92fRUbINJ/RYQsf3FGATWY0a3Z8RxbxOQkwfTlHFVI3B66+tvET3fA+6P0ex0ya997xGkNN6a/5Lu9h4o7ASx0XD40v8vWLVnDuf3xBCUgIiFTK50SeyRFOS8jE6EHNbwHopFBDGObxV32KDtPZneyTto3JX1QS4Si04SyyJZfNb3pYTKGwiHM0glRXsncgVA6zhz3iSTxRVni8AM/zzNcKKlu+NDwPiAySbM/Q08bX1oVjFKj4NsQLyH8BoXxlicmEHsz2N9mFJj0cG033lstBslBID89QZvVQ6wOAzkZiQaKuHz5MAwJm0CAgf21KmKXX8gGOn6KMa031rwpPS/hc7zmDK16xTuRt8eXLNUj4qr0mjOlYyUFXWjBeAsGQBhTINUT92AergCMVnLzYkH0Rj+vgmGWf2T6DWewJwBnmJygJGAAH/dRw5KZwsh0JTukJN5ghY2/o2gOsq7s8oD4+Az14EAHR+2kcda5FC4Yj6U9RxJPqoEaymeN4EMRnwLO8QxL9lm958G+H6OoKYAOHw6UvA9fc/EDgsD4+o047jpnwTm4Me3ySw+bOPCKuIv2NxfgPBm7dvV/j0JTFYNb3ktlJSy6FyQ/eUBZI5McLM9fCdG6i3N2+rRcj3b9Q/Qf6rn3EgvP3J2My0SDcEFA4Lg+RmIea+/kJmWcLLTxT6Ou9lL0b7ylAWeAEA9fq7BH7bc1xvbyKABbhBFR/IcgRcLcGgu28wCzRkhXyG/qltLaBfe74LDZNgmxDgZELD8DiOGx4Osq13LAHuORkBNJMBaIL3/vt1rBuSQYBl1E8A5f3evpmbL7OUnCwk+ZJt6oY8Ef8GImG1JH8F0HWUHJ+gOL+B8HiC8s23PzZD8RWIv4pVrOJBjMSaHBoNAdnKlHStTUykn+5VmudvvE5s1e0/ZYavweRChM4h9cuTCxomJnCIiT6tgXFGuJa9HuYQoEaVBIr7oI8pXRUxr1OMBoqdEmFfE8jPBpfa99vydJeP3TokLGpZI6iC9K858T/fc8tblsSgqmGD9L0psq0W5nuRrFmY4bvYdoxePa0FtE8GJKmjZ6ZhKrqsR76K+zsYnD0rTBygc1ggGueyRqwtqYAJB4Al93imrbeLZWJENRwCwyHCpy8hGucozrVRv/Q89OtXT7H85TOvvYEYl5A9s0W+eJqkbNgslSV0qRrfiL+dymvULz1/W1Z+9eUvyBwb+HBgaTyihFe2oYjcFysx32VQWeUK1/4vO7iYF6fm/Vx1XK0lOPc//BDq4j6u//q+Y2lbA9qH/6CPky9uw0SBML8ZWzBxs/rfl4sh02AC6bn/4W0XO8DWaxXaN2xVqCVAqeMhjPW7K9II7cMM870EN194CNnGPowmpvh8L8Jmf474+hjaznFNL0G2tY7kZoFsU2P71XGDcOSTkLINajDjHSxrbLSCiduWQa6ANCKsRCubsAlEmx5oVibQeVPSfy/s76IKMqqNh3S+TNzshzlhwpVPvhkw4CVAPE8EPvdG05hjoqCB+7AkFFc/yTlgcqitejKRJYl6yZm1K+ZM8/APGyffuIytf+EkeMLv/OCu97mKjy9W0jofLoK6ru+IZPwX1X/7cbdlFR8ixl9/EQDQOSwwuRCjfVha/TSa3PodPOA6WtI+owG3c0gmjn7JoD84+Hr4Kqf9+oA/l+0ZrWTyzvplPkufkwA8kPiTcDZyYSaN72ruszZ9OYZs0zEM9NQ0mJkcy9I4QNNAkgdbBgMBNACtOo6cKSUg8gpnmXSu4sGI4IVnRRvTN2b1DVkdWOkMNJeBxNuB7R8lVNJyUjvAByaLwnWi0wU7W1R1sgweA7Kf7LPnEF9vOpuexYiJLl4Q8Je1QrmUV+U1yfLcgVmoeu4Zus+ObxJzXIzAHDhseokAtbdqj0pawmxnGaJ6e5P03b0KCgANOR05R56uPQP6/nMTBzJB9hn7zJQJr59YU9ipGKZyf1Bvb8q+pO/w2PINkPysyG/x+hlyNyzXE9gkwilmvVcV0ADsWYLJbwO/78sz2VheaDbkeZZea4RlJgW9rrSN+1f/fnLHoYWOb3rLpe3cXzcMkm34fTYnhFj7fwW2f/zx78z//Ek3YRUPWKzWDJ9szL72Ik6eVgJ+Ty7WiOYB1t+sBYBnxnw0o3UBG7gz497ExMhnQIo1igG3JuDg15kJuthhSR3Sww+nClVqkPRZ2tMBRACTfKx2fuS0+1XhEgJsoOgHr204fJPKsKjFR8wnF/H6xpcmTQbuvEibckjCQkwnreSGntZI35t+aKLDKj65CJ++dGpuw3MOJvEAEPLLsqcWQCD+vdTRjvZ2ZW7LGum3AtHDpy9h+tQGACDboHXw5itDIexUnnwoe0jx/7fa5/jrL0JPKXEHuPsyGRh0Dovbgp4n3yDDUBM70FYVtfj0tQZGjHGHT5I570N/PEbwyk9PraXD9XWpap3+uc/ixq9FDXCZY1mrXZWn3wOoL2BPC9a8523877r5RiaVuNlmSMbUPzkRjKCOSQIp29CIppUw4Ys0wOYbmZxrqSjNb1+lM99LoAonZ0zt8iuDXTWxX1XB1VGzXa5+df24JCxnBIqzES9jJtN95RIgpZfstUuo9IAxnUD6Qk6mLJ9jlbtzq2cG3asZVFZi+nCK0aOWGDW3SRz7PVnymfvPhTVw1lPS4+fgpMLOP71z/fvbRf+bl+/p/h7kuF/n86PRCOvr6/i//tE3oNMz1sMfIoppjv/1L/0LDIdDrK2t3aMW3p+xYuQ/oJHcZE3HEN1rOZmIHLlOmNkjvsu9Kuwk1ys1zTY0Kr2O9o05Rk+maB+W0FbDrDWAlJktNpSA+CTFUyLbtOyEwqB7rbLlfs1LSsxhPCUNvxSVWS1VTDI/vP/lYECR2TcARO9M5aZhqAigAfoAaIDyyspjiKyFB4D5BkhnTdZWIP6DGyaJoJh1nFViyMkgrc8e930aOBkU5OWty0Lvtm1WG15d3AfgJHTOYueIfAsnmXopAee8L2u2G+3tInnnxDGtrTFXuL4OnH/ImftKAitq6JOXvS3oaYXZnoaJu9A7X0B8fYzAMmqqL9Pz6rU3qJoAADx997p/0mSR22P4TG2AwH/82Vun7i3+nqxTjuvvA599RBIs4cj5Y8h3t8k/H6BfBvE5dH+OZDKXxE6j5+J2s+kry8nAY7n72y19R8Bq2iex/E53FGckYwLWt+c/H/C/Bdsfcdxg2/vsfXnuJQA48bAsedRg9POxvaoB9gSoxxMECenPnkp8+fuzC2bdnwO2FDm+nrnr1yZJlisJlNX1V7Dn17bZfAwGtOH6+io5sIpVrOKBjmRQIB7RfIZYjoGAOwyaMJC12AbWrhApJ5pWgB0GyjaB+kYT6JRtBIisTrTKawG9WIZz840MkwtxgzgUjwLMzxkEmkD/+bkKehg2DCjzNaDaMQhyN7+vUjtuF4FoL7PxJAM9ycAAMwjADjh5TwDCwHUVyKeldvxgeQ0OXpv44TM7V1KbD1YwucAHaAm8bwL4PMfMNjUSOzUJswrmlZ98JHnK4IVnb5nwYbNcnkOHsUL+lS/CxAFaf/ByY9s6jqCnFSYX4oaGO8sR8twd6JJkiq0qaB1MUb/wrBinArR2zja0lWYJUbadn0Ylmusa0Ve+2DDLrb78BQH3+9+8jMW2Y2dzIlDlNeZ7kbRv7R0yOC3bwM6flLjy6z08/npC1e/evL+287l6kaH7w2uIn35U+ijuAzgYyC87TtbFDwbrWalg7Yol7MROfoZNs49/KUH3mq3U2STppff//A52fzB2Pnm5Qe8nJ6jjCK0DYPZoF6ogKaYwBxJbYCvSnFZZwJfSKXuxkA7T98j7yV/DFGl4imDE59OvZAUUWgPy6cAMULlj3HNlEUCKB2UaYr7rdPG52qhs0/vZRiS/O51XVksw8jm/goHfM7YCK8wN2oduHq4Kg/TAYTvJgCpckiTCzUtte52Ql0PnyAiB1Nfp773rksr3Iqovf2EF4q/iUxsrIP8BjOjiBcxshpbLBCudIsmtIaAF4sOihp7V0jEXqRv4lTW0NTrAYkOjTEM3CBcGAJV36amSDjcsDDB1JpBcAsZhtJLyOhM5bUmABk56zZqv2AytnplGNtrYsrFoWlnDHiPHCQtjGfjKfp9QdK9NrMQwhoMBQ2HHxh44J0xbrsPTDfb+xwXYruKTC319gNlTOzSptbJJ5U6KqD9FtU0MZWZUACDjK2tyHPWnH/maYJb67T5vsgXMm28TiB/H4u2wHEErcQzt7U0E46kD6OEmxmY4hjkjERD0uqhBbKMgT0ViKMhL6Ot0D/H5KNIQnUOaEbNkDkB9UPT6DdS9FNGTjwNLOu91loupb5CRtwQbjQkobuVZgvEU2N0Glr5v0EpEUoeZ2xy+EZlfjupX8CzHss/G5DNraB+6BVyx0xZpnfA66dj7QDknAANOoIwnp5jynBQALJSQeeC352VwJvt+OZa18Zdf95/fCtzn8Nn6XnDVAZJY+sVT21j5oMZrNjHAiZo6y502v9fPAl7/m8QNhr7KDbqvvttIVrFsFECJIMBeNzaJUcfrrhHjySqxuopVrGIVZ8RsTwvjnE0N9bTG6FElzHYGaPS0SabRU0sE0sDNzykrdUDgF0skjB7X6F4rMXoschI5aShguCoAs1Yjt11+tVMAM+tfo2uUHSeJYzSx8DnNrsoAZq1E2C5h3muDpT45OCER2nUMyzT45o5FR4kGtMohSQiWAVIF0GLNbDvsVToQk0bW4GdQs9JBA8RfxQMY4wnNmZeIXyojUJXXBQCB+Sy3wpXbHwVaVM89g6IX39rQ1kb12htQzz0DlRjS5/9PbwFW5pKTANVaIlIsnSPSxzev/ATqpedRv/wqalhFdCuhmX31BbT+4GVpd/jlLwgBL9sIbXKrJsZ831XIAxDt9XxNwWgNdfmyAOnxc5dFhoqrfbpXAxSpQnKTSH0bfzbB4HNdjB5VSK2PRud9YPRYBBMB8y9dkioBlZCNqVrv4d2/9pQ7ztAB9n7ir3F+l9j6+ZqrugGcXNZim6oB8jUn4RKPCDje/ZGT1eH1TvcakG21CHfozxH1p8jP95BtaHR/NiJwPa8EsPelcxgjaf4fQeWm4V0GkIkyr6u0rTZKWLpyPJEq33Inpc978sOqCARH0V5Ck4mTvC5KBgHmO4FI1rD2/Gw3QmSTmyYmk3OXlAG614wkaU3sKhzY6FxPS1k75ud7UBnQvjGHttXc7RtzuS4DAOHjX5KxJprWUinAigzk+0AJiuUk1t3GyTcuo3ut+ND6+qv4+cdKWufDxQrIfwCjvHoN6fktlL3YYw6EKDpKHNEBRWzaXZcVT+wEnCe63OmLGUyqkOTOCBdQlo2ikAwKKRdTWQkTx1hsKOgZLBBPMj3ZhobKQWa3mlzVi1RJuSsHm2Zx+CVmXLoW5h5DyAsezFReyyCpctMog5RteUD05SeAhlxGHWsCsDw2qm9OuooHP6K9XRTnN6CnpdwzdRxBv30I5DnCvCsgo4njxrUeZNVdJXaCd645+Zs7CDMcQ+1u3xKkrIZDRBcvuO2314Gr106xiPnzrHnP7JxZGpFUTqwwf3QdyYkF/nsJgozZ5BV0NkelUwHSVWbPnce4DsZTJ//S68IMScaHmfRBEossVQhAYYukq5IQBlaCBYC56jnmeZG8+i7M/i6KnbZMgBnENzG1y8Snq3iWJXP4fwbx9bRslMIW+ylMHKDSLbQOPDb4Mig9nlKiopcKiL0s+xIeT5oSN0ATaPclb7xzJ4mBD4g6y2+9jV8lsAza26REI/mQ5ai7bXp+KxkgoAH0y2ved6jHEyet40v3WFPfupc6PwHPY8K88pOGtj3LOwXHNxvXEZuW1/0TMVD+uPpmToatYhWrWMWDHMnNCtN9hXzNaQ4XaYB4CIyeILArGRCozdW2yaBAkYbINkKEBUnxtPoE3rN8ZhUDldXYn1yIJBGgp7VNpJMeNplUBpg/kSNsl6jmltlaWqDQ08oHyAiXZXWosQr1qIX0RuC08VnD3oLs2uPEMwgZ5k6/vmF+CyVynhREbAoH9ExPaxR7zjyXNb6lalj/4gADn9rw5mEsqRP1nQwgzy1lHufF3Xij3YnUCkBzogBWr97q6PsRfPdHUF99AapQjTV08N0fnWkkq6cVxl9/UeRumKw331UCmNI6vXkfAS6pFc2BEvaxQ/dtvk4ge+vYVfvwPoSIl0RYe3uBZKAx+Ewksi2qANbeAlr/+6uSYDDZgsD8Xhc7rxS48SWN1rFNqFlJLa7uB5yeupw3rv6xp8uXGDaRlZoZUrvZMJsZ+WtXTIM1H47I3Fid3xBD2joJ5dpI3yMimIDpgjlE8rzs0RqS31OZq44wsQLWEvFk4ypwDvGHyguRwKzjSNoSjXMxbAYgyUw5F7FLzhIZs7LXgsLkgjUkHjnwXkxsPfkxSp6QvA5r5Udzp6ZQxUD7kM4XrweZaMVtDL/zaqNiafHVF0SOLLAG0nhqxyNi1dj+08VtvRw+bCy++gKKlLCx0eMaO/d076v4OGIF5H+4WAH5D2iocYZqqwVtWQTdq5lk2jkYkOeB2We+V7ESx3AeCPTUWLNIYrTO9jT01JlHAjQh4cyzlHaBAPfZHm2z2KGBojXwu3FKJPCxmJVP+6xFd5/YNcGpsioG4ngw44lRkUYCMgJusIxs2aSA9Msmj8uR5wjG7v8ViP/pinp7U64VIKKSziRCtbbnJlue5Eu2qaGnFU3qDo7OZOLcqQRHkMQfyhjLZAuYq9c+cP/m6FhkeIK8PHMSz1G/9S7UE48I40jbz0TjHOjFdD/BMkp6QPLOiTDyAcgEl81vGbwXDXzLvm+01U7MGXQW7UsL+pokRWiTKWfej3Bltup4iMgmXzg4mQgAyc1CJL18Lw1m66u8Jgkxr48DXPVFpRVaB1PSXV8C081wTN4F/Jqw3dMGuzw4vonwGE0d+2UWPidzvGtBgPk8l6QHP/rBbTozIeQb3y7HkhyOJAwAoNclaaXbhWXSi+Hz0v7l+h7b9nEbvc8BTUmiZdkylbTovevvozzrOhpP5Hr4OGVv5JpbeaGsYhWreIAj/sPvI3r8sugnpwcG40cUeu8aRHOuag3EEDGykg5FqpAMKtFgDotaQPzxIwH2/1OObENj7YrBbM8ZKhZpgCom7ejOUYkyjTB7CAj7GoAGOgbJcYiy7dYF/v9VxwC6BooAyXGIYt1J7URzJ5URzQhsSgcOiAQg6xlVEDuV1xCz3UgAqGWde37NtYcTHPY7dZbB/1U8qBHt7dJ8JW8SIUhmB5g/ug4TB0hu0voRcDr6Z82tOel/J/MRfX2A8rZbedv352euOVTSQufKBLNHu8KoZ9me5TZGe7uIXr+BSp8XT6giDS2oD8z2lOicA3Qf+dX7DI4DDvTu3PBMVUsCzDvWXLV9WGK+F1lgOMR8L0IyqOy+SeJGlc53Ynl+xXKhnZ8Cm5sPYfikaoLuuqnT7gP7gAWh06bvBuC2WVgENx5B+iwmKApha43kfqqki6hPZTrs35RttYg46K0b9NSB9kwoZBIU4CSauEqXPweQFxm/BqBRcUzYRdTYhzPGTaT6ONuk6qnRoySP43sjzncCqEIJkD96lCSGuIpi2VuEzylv45vfqrJpdM5YUnidqmar81uyPgRwSkYqeOFZtG/MEVh5Kq4cid982wLttk8eZR+p6uWDovUHLwNffQGdKxNU8adbK30Vv5ixAvIf0Kjfehd49FkAlj2QVeC8brapqaMvIDpmgAPQAYiupZ41wfiMy6iKAMlNVzbGwLk/EEXTisxhNtzgwax70tYMRAbHdyz3QXqWz6liiBGKr7MHEDjHx2eNOQbz/SywykoB+n0NxMBnqsKZ2fL/LE0SPfn4PTUxWsX9E75sUpFG0IBMvNgMqsV+CrlBx8o0kfzMJnBGYudOAUXWrP+wEfS6pxg5ss9sAVw9QP3cU47dgLMBSJMtEB3fpP1NgNBWpqgxoLMKi/0UGnAMkiyXeyc5WTQA9PD6iSQl6uHZLHr/uOZw4cx5Wwmqx86dKi29FRufzW4BSLIBcMk8ltLi5AT3Tb5BlNHKMf5y6lOKNJTvKyD+wREQxw0QPUhiMtnNcgSYCEscAGm1W9A9iOMm496X5LGPJEVzcub39M1sg9iB+gCE/V/ZCbL4enCMJ44tb39X9vkAvIokPhaz5/32+VUHy6a5XrBskBo7k185B0ksiR2/DaSJz74U+S37V5aVumXE7rf4uILLu7k9q1jFKlbxIIfKHcty7W0G1QJ0DtxcPZpWCAuDIg0b0hhhUUMf1cg2lJBwdv6E9LmZ3bv3vRH6v7qB7jVKpic3qZpW5TVUQVIai+0A2cM51ChCsU5jMwP0dVwjyANU6xVp4c8VgjwQEL97NRBjRTawTQ8cO57bajzvGw4G8EOPVQ9YA8hpKRKk/N74EScrweuk3re/h/wrX1zJMXwKgisfOXxzWWzR2G+0soS4lNjZlh191trwTuf/wTvXmuSEO/lMXja06KXN2QJ45SdI1p4necgLGqpoo3XWTnpdavPnz4vuOt8njfX6DGJYqqcGs92ooUvvm5rm6yTJxSbSvK+1Q2I77/5gjNGTqfhMcJU9y91kOwa9txR6/8trqJfWKtVwSMa/sUZys0LrWGGx3QTmy7YD9aM5GmbV/H7Ej3MPl7Dbt4/oO7ZvzDE/1xaCz9qbpZXazOQ354p9ALIWAiDAPSU93evKLmkYtAcssdAD/qmCOADgDHGTd04w+aVdALTfwKvwZXIZy36yhj7jHnpKuEfnSiVmvO3DDKPHW1i7QsA+9+vxkH5vv5LBN/3l51zxFI8oUVOmdN6SQYHFRkI+itOSKgp6qauwtRJQZ/GgGdg/Kx1KnmYfL3taTylJ07167z21VnHvY8XI/3BxevazigciTLZA+wq51bPcRdSfiuQM4Bj5gCu98nWk9cw09PCoZNYdo0xDkp1IaSBixj8PRtlm2GSzpM58hgcG3p9vIFWkSv7o2EraQ+VwqtH2aJyTiU9WNrLWAAFbvjEp4AyLyp30lPGib1xKj0VDMmIlrfDpDpUbJCcLV8HhTbDqJBS2BU/GuPzxbuKjgoK3K+U12QLq9Xfp/24b0cULwtJfDtY0x3iCejwhuZIxAdidH74jSTA1zixrqUCQ03N1PCSg+/r7jcoCtbvdOIYPhN7qtfB4Av36VajjISafWZNy1TPbbDX2GXQ2SQSTRJifa6NIo4ZJlMpKAu7jQHwzOGgyS/0bMYbovWxTE2N/Mqfzk+eoHjvngGlQEoYXf2q9J3/odYW9jcQzgPUA+Fvp4PP+/T/5zlzhkOWotzdhttdRxxHC4wkxg8ZTAsvtb1hvb6La7hJwbgH4IC/pN7OyYYCVEuulbiHLj1xB4JvyciIi96TI2PDLNwjPc9Kv73Up4RBroNdF9tiW3D/8OdNLPnJpulrvAXlOv0USI1xf/1j66aCVUEJhBeKvYhWr+BTE3v/6U3QOgNk5Ym8mNysUaYDNN+boXiuh8mYVm0+iSQaVY+h2SGZT1hYdhdFjERb7KdbfoXEwGVS2opfAfKOB2UMWDBzZcaBtEDy0QLVeodgpYaKamPhFgHCmEE4VVBEgnDJZiNjxrYGxbXXrDW6rD+KL99aUPhPmTkJCJENiJ/8R2n3qaY30oEbZJhBwtuf8v0wcYPHVFz6eH2gVP9eoPfnUsheL3jgbwCYDAiWzTU3GsN02GeJun1EJeYfxUSoITS85BeL7EXz3R6TdPqP1fPXlL5y6Rkvrt8XEljINrdQKE+RqdK/ROsgH8f2El57WwthvDQy2fuJQ9faRI+TN9hR2fzDG/Fxb+gyAJHwWG0q8ONoHJPV1K3nIOssRjKcIC4PckqcX2zXKDj0KM98D97lqgCVhco90zck/TgBwZFstwRjCHJifa6N9SBiDT/Qrzm8gyAuoyRzh8cQmfkKp7maiI+DUAPh/ThJlmxqZ9SH0fbqKNELUn6I4v2HBbPL6K3baVOH7zg1ZoyWvvosgq9C5Yn2osqqBe/B8u0gDTC4m4ntQpAEmFyLyLYydFr3RdF5U7l5TJWE3qrCGuFYOuXvNGc+uv5MhLAzCUSZVA3xv+BXtdxr1S8+jTEnGLSxqXP/yBmZfe/FD7+eDovryF6h9WUlSuqu474OB/Lv9+0WJFZD/AEf12huI+lMBVzgzqqclGY5MjSs1nbrOmJkorJsHnJbfodeIpXOWcaSeVmKIBThdNhNR2VbLmrZkGwpGBzJYVEvjNycPuKzPb4dMQKwXgD9QcpheQmYrWdVgDvO2fE7qWAtL1C9bK85vOKbFePKxyjas4pML88pPZPLkJlmhgPhFGhLTwk6M+FoKxlOYV37yc2/vWaD4WVENh8TeeOUnBLyewVjmfS3L+8jzXhfhOzfotTiC2d91LOrjm277RXb2571ggFUlLXdcK7tTDYcwVw9QZznM0TF6/9triPrTBvP+rKizXMpco/4UnSsT6GmJSivMHu3SgiyJpISUZboAm7gsmiZeqjDOMOwK6dkLIA3A7FuzYSurU/dSeo31KrPcsd57FkRn+RrPh8OPIIkR9LoEpN8C5OfzGfS6wPmHqK2TObGCspxkcKymvuw3L0TLtY71kgeIFmNhgK7l4vE9ZzrLgD0nefw2xTHq7U27qNHErE/CUzJIvryQ6SUw3XYjicKvf9RQSUsSGwAlVpavw7sJvkZZ+mkVq1jFKj4tUR4eYfONOXZ/ROMfSc3Zqt28tgC5kTGTWb5sQshMydAy8Jm8wxIWZRrKGkEIQtMSemoQTWHNJWuYttVzXsthiub4oMoAqgxQdQxUaZmgc6B71WrY5wRQMcBYpIEAmABVFNA4bxq64SQhSgAkS2nwOoPBfNF6tmuNyCtga/3By8i/8kX5fxUPdlTDocitApCKbhMrJDcLmVNyMEgb5OUpqZCPM9Rzz9wRKBp+5wfQUyPVImdVpaDXRTTOUWklSQoyFC2w+cqQ5ENzSsxlGyHKlCRZWO++ey2Xdf5sT0k/QSA/3TN0LwLTh1PvM8Sy7l4zZDA6pEqaVp9A9Xp78/T35jWPN39WBflsRDN6BKzMVnm2hI6A0POmbEw8ouc+BsL/R9MK2UYoa7/8fA/VWnLacy8jQqG2FUy6PxfSYJBVRHbcalECSAiQga1OMtLHJDcLtG/MkZwsaL1lk0nJyQLx9TFVGp+xPlDHtNaLr1NlsI97sELB2tsLkkMeFOheM2IUTP4ljlBpIku8jCHG5PzXOXD9IBmYU8VTwfLHmohu7BtgkghlL8b4ma1Tbb5dqKxEMiisl6L1b3n03sKSvNarX371rnwuVrGK+zVW0joPeFSvvYHghWcRXif94eSdE8oiZxWSmwUA0vqOr49pgLJSE2EOAb4AKkPtHJXicq7y2g1CuZGJf6VVQ8+eMqluwh9bhksl5jpeWz09S2A5edBk2vi6/MDpbDeHAK552dCUA9CQ75Dt7Xa8jcpKwGoM+tIZq/j0hcprz/RUyfNKK6Q/HdDrvQTJO1YCZTz5uXglqKQlLG+AmDR3ygrmye8HyUKZbAFkCypbXTZLjWPUffq+6vV3gfMPkQ5+TgZgiGOYo2MB228FdnJ7FZx3wK2SEfxevcigjm8SsLzInOHVrb5rxqZkxGQJR5Ew+rNNDaOV6OD7YL5LTjIbxfVxAITJbrbXiXXTbcNsryMYT2RCzSarZjimc/FnbyFoJcge20KRhmgnISVDzmIaLUvXLL/u69f3UmA8bSQgG1VDSSwSPWw467PMlj1A2Ig3yAsgz6GvD075hpxqmwX6/eqlYDxtZv1Zfuj4Jl0j25TAqRMCdcpeDJU47VE1maN++pIkFtTBEcmZ7e0CuLV5LV+7wOnk1r3QsV++5lba+KtYxSo+TRF890fQ1vAPcDKXyckCJ8/0oAotIFOZhsLO5W1JIrP2KmgDbLzhxhg9LRGOMkSJT4bQZJC7oxDNAwB2zXCcIFijzyqr02+imtj4OQE58ZBApu41p2MNaNFR1lMC93l94ut/+75belpC5VFDesdVBgdIBgbzXYX5rhKmb77mzDAPf+syNt4o7DpqFZ+mCPIC+vqA/s9IMpDY5EokaKM+zcM+TrnV6OIFmO11kU5hDfE7ifql52G0EumntScfP6XDb64eANtPISwoaZFtkOzN5oElxozJ78LEgJ7ViKaBVKgo65NnNCXOOu+QEXZrQOA34CR3WKYr2wilIqZ7rULnp31MfmkX7b41jk4DRHPyI2hfT2RuB7i5XgggyXKYLz0q7PuyQ/r8Rju5F9bqB05L7IiBqwWyOTGh8hqDS9pWE5D5a/uIkhdb4+yUbn04qmS+TDIyJXR/jtmjXQDthkKAb2gsSSI2uC0ICC/tX/qe09xXOTHc1fEQdS9FsdMm6U9L3BGSUJ4jOHZeWyJp021WJqc/naLcITPc9hH119N9a1w8swmP0skm8W/Hmvg+c791rZYEKUBypSqv5XuxNxlAidP8K1+kRO7bhyitz1uQxLec39cvv4oQQPTCsyjSFNmG1fH/6gv3JHk6+9qL4oOwigcnyEPh7hj1v0iuNisg/1MQapyJ2UiQF9BvHyL77Dkkr99AkZ6H7s9J780OLnoaiT64mD0O2AzKAVysI2cKB3oWaYhkUKDSVAILWCaAxZIqHdiSXIZ9amHALIfRAdqHJULLkK1i0rxMThZnsu85O85yJ2oyb7Ds+VzUcYTQ0w0HfGa+Bad89r6dOK0AnE93dH5KZSKif7iWSIKKkzt0/ViDq3sM4t/KvNZkC2AIgI1VP0SYbIHITjJvF8tGqoEnCVMvMgStxDK87b3SPyEm+ROP0PmyE0sBs3m/i6zBaObn/nf1AVJm7deLDIhjFI/vIepP6Xt4pqZ+ciCAldHqtgkU7p9A7WyJfIzKEhw/20NrYMQETAyUlozq9LQSg+3FfgogFUPfYm2DjpmVCM4/hPr6+zSdiMnQ1WQLMkq2j/F/+RmSHWKiFJ+9SIu/45uotzelmmHZQFeCwXPPIFcAdv6NGFy3Zrl1rKl6ABD2v6/lKa8DsvCQvi/LUQ8PnO4/m77FZ2viA2jI8zBoz201+7tQkzmq7S5VBUwsQ996TqjcOGZZlqPutkVH04AMsIw1GAv3CdD/oEWsD7rz9Yq77LNV0rptRcgqVrGKVTzI0b4xR/FkismFyII0IYA2Hvr+HEfPt7HxRmFJDlWDrKMKg/YhyfIwM15P64a+fGsQIrJSEwxeJTcLzPcSbPzMYPAZhbJtzWw7FepSkZTOVMHoGsnQAemqdHIOqiAt67IXW0arEoCR1xfUZnWqCozkUpx052xPCSuVpUKyDdVg9RL710l17P3j732Mv8gqPolQB0cEhHqkhWotQdSfIh1nGPzKFlWy2zXwvQTxz9K8L69eA65eg37uGQBO8vVOIvjuj6C++oKrXD+jrSZbAC+/CvXS8+QvN62QDJo67oCVnsnpfuley4W8x0kulQeY7dE8kIkyTJphSZ6F9ddTRY1sI0T3Wi6yMaqoMd9VMBHp5N/4kkbn8V/C5hsZktdvNJjS1XCIaGcLpcWnVQF03wXydWDtigVkB0QMvPk5MsQ1mpjkJmoy8QHqU/S0RhUD2WYoSUgTB0gGAYoO6ccLhmBBX5VRFaqazIEkFl+oIInRvhEi22qh2mqJTBeD8tzvZFuOIKKnJTQA3Z+g2GnDJBHaV6hCxJ+jB+Mp4utUFRAloZjJNmI8IS8tAMhzKECwEDWZw1w9QHQ9AX75CVACVKHVD8TcNl+jc8U+B9wHch+cDIiIyUlcgNZTnORK8solOqx/YZG6imiVlSivXkP+lS9ickFbguiTiKbVLb1G6pdfBZ58EcnAyT1/FG+SaG9XkgaLr75g5eCofWeLOa3ifoyVRv6HixWQ/ykIZuWTOQqBXtGYQJ7WwVRAniAvMX90vdH5ApbZ4jNUbVDG2AHe5NLuAeANbUpniuXr2+upEQYsQPr4LKHD8jm6P0elFZW4WrCeHiMZVIs0QmuUkfmodZFHRoMYs1AFcPIGRvdlCEhajiAvqZRxMl8Z3X7K49Tv+xIZRrWvDB3omuUfWl6JGfXl4RHC9XWYzz4iACZfl/n5HsLr4w82rwVgDj88MHmn5YL8vXwwVK33UA2HTnOc5XK80s76rXdhsgUCT5dcgFSQtvgp2Z1F1mA6B60EocfqD1oJfW48wXzvYbQBhHEElcQAVwjYzwW9Loyd8ALEMiIQl1gq9f4uTBJh8w0CJZRXIQS4STxLfBmtoKcFkvcWri8B/Vbm/AZ5jfQSYuGgKSEUXbwAc3Qs360aDqEWGYInHhG2e729SZN+ew45EQBYcN0H6/mRZW5i73XALTitBn2QF8LC96cpnJwK8lJed5VHicjvUAKi57TyWQufn9u2BHDXLi9g/AVw3UsF5A+vn1gpn+ZCqEgjqIz6a/RSKVVWzz2DYqdNQD+A6E/euqN7blkX/1Y6q7cLTipFe7tShbWS1VnFKlbxaY365VexMb6Ewa9sCTiXDICbl9rY/RGtD3xwJou56lahe9N6TqUE6Mz2moaZiw2FFgBTBKh0C62DKTGMpxXKNLSyFgFyKKhhiCo1CKfKyu6Qsa0eEpgGuPE6mrr1iMprdKaF1ZEOhExE25cCJDlDSed9pA9LAAmBUIPKq8wkoLJ7jQCrbCNAZIe6MgX637yM7rVyJavzKYry8AjwCDr/f/b+PcqxrDzvx59zl0pSqbpu3V3dM3TT0NBjYGbAMwbigbEJYPsXEwfbZIFXbBKvFfPFTmKzHGOHZCCxzcUx2DgkDl6JvfguGztOMDYr2PMzdmAygLmPh2EYZsxMz6W7ursuXaWW1KVz//6x97vPPkdHVVJdum7vZy2tqlJJR0fS0dHez37e57XPnFaxjUYQ4sj9zwhTzPyVoecB5q23iKiRLz2E9K7b0TnpYWxBHJ/e1Z6IW5ELYWMQY8jimD158JswvQriEY0Jwx6bxv0PwAKEoF8TMbXG/Q+IvlrHqhh/SgjjYwshnCUR52gvOah84jG0fvxlQtC9LioVRMyKIeNQxHyeROHEFueRsQVh+nMg5/jdrNfG9UA0vwZcXDvtYurEzZj8ck1VPxh3vhALLxSGprErQlj2J4ST//qsqcReM0zRfDzF2rQQo3vTmXu/spw5zomsiXeitIzEMRFPGCIqrLOGVFYVAYDpZ4a/pF6FSRW6fgBruYOqNE6GcxPonPRylT/VBT+3mGj6EaxrwrRC0ThAtnCTug7gOqoBs90OxBxSzg9SP1DzNQBZTy45r4inZDyq64o5k+fCXurCmQ/hn5pE7Ji4eosDtyUqGpzriVrI1F35NHeyQnEOjmU1Rm9CNAQ3w1S+hlDnX1r49V3Zg+VYFZD9GuoXQ1Sfam34eTLufCG6x01Ul0Rvls1y/cWnENXOqBgpp5uo12H4JTKG2V+wkH8AsE+eQOjZakACX3wJhHMTsK75Kl6BhBZnaU24IKUT3taypasLfq5cCqAVTUtF66jHlQN11UhXfrfoTaioaz391HPwadsAci583VVvBBGi6RoqVAooyx2VmNXuCteq5+byvHMZc56LeG5SiXYkcOmufObwYdz/AMa0FfxhsM6dRTRdg73UVWWYqR8h9GzgeSexJp1ppmyaSxNPcv0PcuXfSHRnMz132icSN42Kl9tP+8zpzKHvuSqrfJCYn2hxKKpktqRBqeG5GP/bK/BPTcL61hNAsyG2f3wml1FpzV9VET/GzJRqxEqRLiS+VxcTtG82VSZmdTFRziHRRNuQjaBcVBekKCBjvNz5Npz5VST1KqwnL6sKhmhhMXNuB4EaKKdyIRGAaAQMqGx7vULCaENl2xvUWJYgAZ+gCglt8UBVUbQ7SHq+amhM4j3lVdL5TBf143EPzvkFIbSfOgErOAqQMA8oh70e4ZMuXQXaMtdfc+DTZIMoxvgQ9P1BTjGK5nG0UmB3vi3yQR/8JoY9C9OCk3o9BjQT3ghaVKLKlN3+PDIMw+w03edOwOmK70fTFnGazvXM0EPNcPX8aKcbo3PSg7eSnaWPPOYjrFmq8o36XIlq3RjhdFXNF2wpllHWdTCewmllc4jKMmBeyRrbkls+16sryBuPyHBEFQAkvJFwT7cVDUxNFbkjRCsRueMfcWAF0NyoKeoXU1VlUF1Mcs5s5oDSFj2Shh0DBN93B9ZmbXSPG/nGoGvA9f/fy+G2gN4U0F32kDhANCbF0zWxQGXc+UJEA/L2d7IinMbhxv0PoE7GNQgTUOXCRaR33a70g/iRx0BBJCIqJc3N2Qky7HmrImPe7goxPYnE4l5UM+GtWsq0508Igf/YF4FLd4nP8txnY1w7ZWP1tkn4EyZ6U8dFdUAEHHlUCPhhTSywZQ5xwJ8w4K0KodmMska3AJRYDWQxYgCU0B47KbyrPaw+vw5vNcbYYoKxr3RE9YAfwXvyan5sHTjoHa9hbFkeI1JcNyAFfj9C85s+Us9C96YaYhdYm/VQe6aLxHVzsS7WtSy+h2InAajxeyLnjYDInXeW1hDPTSBxj4lkBTIdFSp3zbaPlVedwcTfXgVkPCeQxe6snnUQjWk9QK6LJuKqx6FWxZA4ALqGFO2B5leuYek7J3LmKDq/0+tKC6trs7aMVE7gdGN4Dz091Pw6/dJDqJ15qYhpksbPst6MRNlimHXuLACg/u1rch/rqH+NM/H3I+zIHw0W8g8A0YWLcKiBIaDELUKVhwHKLQNAuuB9dE56qF/wxReda6oVa7oNgCyDUssVT1wD12fFlzOJ+aKZlCkb5Rqq2a4Zivy8WHPjVxd8FZNj+LES7vVyMz3/Lee099wsO7rdUW5WFWOhr1j7QZbT7DoiDsKr5x4L4Hzkw8gwfRFMrwJzZko0PW14SjQGxGBMj4HSXRhAluPqdGWz0LmjA135N5JBx7kadBX+ryJdShrcEnqOflmeOeXgUy46ION+0IH7laswpNsk9QMYT4pzGsW3IAjybpRGHfFUHYaMZgE89brXLqU5d104li0iVhciUYEhG786f7eKcG4CztJaFkEjy46pSa/aV/m36VVyPQBoocL0KiLzXz8PNepZbE6jrhZD+pD3odvl3PaaG4dy8Slyx/BcpIGTxd7QewFtMUE+Hp3/ROROXoCnxdE+6DwaBMDUkcylH4TiWNBjgeT52QrFOZsyX9Vj0aSDIoGeeLr/8TYg7fmqcTAw+jm72NTWqHgqKolhGOagUvu7VUTTNUw+Alw7ZSNoQjb6FGKStyKaOKKbmXrWZj3V5BaAFOTEPIPc7bFrifhMh0Q2iuAI0TmR/66jxpVAlmlN+dUUmwNkgnvUcJWD1fQ9RDK2TdwmUSI+CfgE5ebrOdX+kUytokWIsYVERYIAWV8AAKpyL73rdhj3P7Cp15zZ25BJYxh60mVshinsNSNrCCqH/83HZVRJBHRvTmAEBszQQPfmBNVLJpwusPr8Opq7UOChj2+SB7+JokRq3P/AQEMFOfUBqIan3qoQ8kkIJhe3inBxhYlmbcaEt0qRLYky/1Uvmagsic/YxGOh/LwmMANbLeYBgBkaGFsQMVv+hHjscEwsDIomrHS77KcZQfX5cLqxigQSzVyFQNy9qaZifZ0l8UaSsJ7Uq8pEZPix6Jt2tSf6Zj15EfGFFuyTJ8TrFkQq1mbtWFVGFyVq7Ov4a0qkz/Xlk6SelRkYAXROZjGPwgBpwVsRIvn1W8ZRv+DDP+LA6TZyC5drsx4Sx0D7lkkhZMsK2XC6qs7HjadTWUmRLVJagVh00SuR6GdlFahfjNB5zjic64k6x6teKRNG7pwdyYVc0oqGFfFzz3cM8jiT1WEDbltWhR5N14T7H7IHRrdaOtdh9j4s5I8GC/kHhOjx87DPnEY8JRuhaCu9iWfDkK58QIjzY3+3hKQumvyMLYgO69XLWs6y5nIBxKCZhsHZgLnYQEqWYiHF9RkbldVEZpTJzP2FSK2KVxd80XVdO8kKUV1mxWlROeTCz4n6yyvKUQnkoz5yeK66n8qQq1dF1ARlzQXBDWlqyuwt7JMnEM9Nwnr06YGOHPvMadH8FFBZmknDUxPIRIqnNHBLPUs0SPIshLVKrsEuiZo7uWCkRHIpsG4mLqps//TPJoCBueIk1tN2ikKpyseX4rRR8XJNT/v2ZbmFZHFZ/E7Z7lLMNts+jOUVGE+K69J2B86pE6oBbuIKN54Y+CeY+NaaaOgL0QjHeVScP5zzgRDRZaWBueQhKWm+S5ns+muj57RTbA2AzMkvqxvouaY9vy/GxWw2hGNfXk+Oc/2nisKhhUsiCDLRnyJyaEEgcEVDNz+7jZ5zT9n2uYa68r5qX6YnxXlzuaVcQIbu6AfUeRqQ51jZvCv1LBWBVsaonwHdjZ/K13XQNvpieOTrR30OAKgFGYZhmINO/MhjsM+dReI2YIYyVtOBynimyASnKwQu049QXRDuUgAqI7+6EKkMfeF6lyK8m8qxPlW/WVibFoKnG2auT71Jpb0G5faleM+iE5MqiQEtv1r7qff7AsRYzNOKcxPXhLO0hqo0XfhHHCXiUfNOAKrJKeGthn2Z5szBwmo2RRXlI48NvM31H34pAHF8qMx4Eo6DrDmoiASxEIyL/g/UUHTsiugRQdWg5q23DN3QdhTiV71EZdt7K+HIi0/WubMqRpMQ83UD/oSjelPQ8wCyChqa68eOATMQefZO11B563S7SFbHTD4ihPnrsybGz8dq0c1bsVXfMjq3CJOgmRkA5fmpdcoTFUFyAZFE6MSGWmCg6B9vNYa3EmbRvVL89p7pqT5PZApy5ldVFalqPru0Jq6bnoQt5xqGN6kZWyLUv3BeRVTqcb9kokyDzOWvowv7YwuhWnioLgjRXj//XjtdEeZI2eOLItDCMRNRjbSYcdSeEWP0zglX9CqouaguRPCkscy7KmJFe8drSGZN1TskqolqJG8lhn/EwvVZG2MLIoaHGg3TviQOpFmTeiOI9zh2TIw91RlZUwlrYhGItCEAfQtOgGjybPqRqljQF0NojhLOTcCdbyN+5DFY584iXufzzTD7HRbyDxDR4+dh1m8RX0YyE5nKXMVXgRAiK5e6Kl8eHSBqTKJyqQsjiGT5bZx1Y2+4WVd1ubIcj3tqZZ7QG9ySO58iLQiRXWmp0icdIwjVSbhPNNREfYJEfF0U05ttGhUPmDuqGkHS/dUXK4lhLOIfWpKppihlfNGzxWJRu5tFm/gBjOlJxFN10WS1IRwaqWtnGYpyMikWpKJM4JQu6YoU9qkJdVKvAn6wo+7frR7Lem64jmrCJYViitcB8qJ+sQFpUbQm4bQvZocEaNcVbnKtyatJUTq0zXYna/jqZiK34U0CgcjDJRE/0Rt5t/2coK6c8dq2KVLI9CrKva3er8L7Rg1vaREiabXFQoCsHKAYJfL76S5+/fH019vQIl/0nyriRo+U0SN55OJG6jpiUUNm26eNmnDvtzuiWe7UkZww4p+ahN0ORIPjMsGdvieKVQTysan6ywgiVaVCg3BaLFVoFQOb7UeS62GxgYifE+kHHXcMwzCHhPiRx+C4t2BswlF9Y8wwUaKZjnKKhgliV5hvemerSsQPa6bsgWUASFWTQuqjFdZE5jEJbWYgxDbV2DYUAqgVQBl+SMSn+QeZIgw/FlW14r+5/STXvRkkWVwFCTt+DBuBEntMP4LTzYR/vc8XiVdWIGJD7XYAqyTCgTk4GNOTuHbLJMzn3qnEY28lhH/EQeKYWrVGBomeFBObhKK/QuwIN/nYJSFcW4HIdE8c0UTZ6aaiR9MOiPgA1KLTcPUFeYw7X4jIs2E80j+myuKzTNVnChBROYBw2gO0CCaz1yNgbdpAdSmL5KFFMn/CQnUhyt1Xr5whF70VZJGYAFTs19qsDW81zoyCsj8fkC0S6q5+4UKXj601oK1/+xpMGZdjzV9FMtWEc35BmGMadWGucZvwHr2sxGHrmg/Uq4hPz4rc+/mrwiTjCxNNUafQ54RGEKoMfDpP6aI+PX86j67NejL2WCygeKshrs96cLpA54Sjcu7HFhKszWSVIbEL1ZdBxB458vh0UL8omppHDRc2ArlQQ4usQsS3AqgKLOqJYgaQfQ9oYYfc+OL8TZ8dMxCN0d17Rz/GqwsRjlzqin4RA867xp0vRFCzgZqNsb9bUvMaQ5pSAaHxOI9eyGJjWcTfd7AjfzRYyD9gJA9+E/a5swjnJmQDqAimIxz3lDNPXdjpJOjOtxFN1+DMr6m8aACqNExt27NhQgg1HsQXTf1ivoWI3Y1hdylix1Dd64mxpzqZKAioCgJq0gs/gOE66gvR7KyJL8mlqzAbdZWLn2Jwg0Ll3F1eUd3dKc/OCKLMdbqJxqbMwaF3vJblrE7XRLPV5ZaK0PEnK6Lks5DBCmQOfCCLFKEyvtyxu5wJ0sbSVez1xNVBCwF6M2B1ncyK10la7VzkDLnyLS1DP/F7WeNdiMoItDtKZDaXWznBOm13sga5Mq5G9f2Q8THBXEMK0h3YS10Ecw043RhmECpXetru5BYdVGa9tnhgeC7s2ZnMCe+5fQ2I9T4HugvfbDbEPgcB0qkj4joZiTPode07/xSqGdS+tjsqt141pgVyArvecJYc9sppL2+XNETz2XC6CrsdyAVZF2bbgUFO/nWayKauI87TMsqNFqooHo1c+H1RPYU8e/vkiZEWUYd1z693O9Or5J4bx+kwDHPYSB78JsYeFE7jxAFWn2PDjIDxJ6NcBS5Rf3gRSb2KcLqK+sUQUc1Cb8JUYhmZeKwg1Vz9sRLgnOsii5kaKkZjIlfcbWVufB0zSHL9rMgIEU/VVYZ0cfylQ4JO4poI5RgPkOM36d6nDH3qDwYAa7O2mqtYf/1VpAA3SDzgpK7oEecfsbB2SjQ+Xpv1VCxsRYuDAYAwNDTTWqr1fBOiUSLd52L+CyV6U6Ts2Me+sEvPdH3SLz2EMtmLFutC2eg6HDMQzgoRlxzaFNMSqdidRIm9YU1E4wgRmsT5VInxxNqxqhyvZ4sC9W9fQ+uWcbl4kPXjM8NU9dwTfS7EffwJE5Vlud9jpnrvqEcfZKaAGaTonHAQ1cbhyXGwtdxRuoiKY3Fd4FtPIIHsqyQjd8ioYvgxkqmmcPTPTSqB3pImyj5jjIz4hRbFqseyAsD1WUe9LpRkQFVO12cd1C9G8Ccs9KaBHsQiUVQVCyf2mnjt12ZMdVyaQaoWTen86863lbFs7KkOrp2aQHUxQf2Cr5zuFMfjTxgIxsX9opqI4IlqIg5NifhhklVoObKh8Q+/FONffGakRVD33i8rB37Z/YLvuwNWmGDs75aQLl1FROP8hUWYt94iXtsgQPwIL7zud9LUQLpFIX6r999PsJB/AIkfeQwGABci189bKcTX0Cqx6yrnpiPd8NTsUW+OS2KN6YuTtRFEsK4BnmzmmXWBD5XTpX4xUDn6+mq7LvIkU001YM858JUz3xFfhp4LI3Cz/wWFL0iNxO8hWegJoaggSOlOfBbxDzfxq14iFrn8CP5kBU5XTNmSqSbC6WquNwQgJoHUkFkN5ORnRIijtvyciO2nri0moVozU4pb2ZdoTnyFngUPKYRLwZ5EUj03HygXT2kbRrsLNGpicCwjsYwgAho1IbS7NhI5SafBMlVMeE9ehX9qEmbbEYswE47qwYEBAjVVFZDQbnqVXB+AtMyhjqzpKp0/KBooPnVMiA7tLHPeOHl8Xfd5sflxbhFE31d6Hf0Ahiv3S29S2+7AAFRUmMquJ0e8Kyco8nxLYgm5zxzXzuJnlq7mYn4AqMmN3mTLaHdgBXVVWgwURJUBCwJp8TgagmFFdz02BxCLK3rlyL79/DEMw2wjJCqab3wprABYepGN6a9HAPLjekgnqrO0BtuzYIUuzFBUu1HDXBLzqEeQGQgxT0TriLgNorIs3KNWQcSn5rTkxtdjKMjJStvWo0MpSq8INcklYxJVHauKtC5y/YzGz/dEz64nni6NdGAOFsadL0TQcJX7GMjib0iAp8gpgq43wwS9CXHsr81kC1bF25EjX7il+939ex2qqI8dA/FEVlljhqlqNhvWTHhBDLsbY/z+J3H9xafQOeGoypvehInaMwHGANUkW49k8YJM0A9rNqwwQe2ZLjrPGYcVAN5KpOK/zFA83thCiNYpD2OLkcrqp+at2QKjyJann9dOO9JVDjSfFONbZ2lN5OFrUTipa4vo3qkjMINAjB/njsK8tAhzWYyj7aUoOz8tZyc3JeIDWQUtjdP9AOZyC+Yy1Ng49Szhjm8HWDtWxdhCKLUUcR4lDUX060iw+hxx7hKifYrx8z0kronWKQ9WmGJtxkRvCqguioaziSsWUygCygqTrFJXjtUnHhPay8rZquhv4BSio6Rjv7IktkH9CZwuYAWp6l0AZAuzsQt0XnwClW2qZrJnZ4B7vyzG9c0GjOlJBC87i+rfPAajUUfsWUi/9BCft5lDCQv5B5zKJ74E69xZ4VgNIuGslTEM8Fxg/gpSIGsQK8Uccm4CYuWZnDEkUBLUbEWVqmoDY+9qJr7kGry4DiDFH31btIJNzlIqewOQOTq9gnhYcOVTHEba7sBAPdfZXY9NYRH/cGKdO4touobYMVWztOpTrVwEkxlkzZyjmnDsKCe+7Negl1Ca7bywr0rBSdTUGoLaUhDfT4IiNXYquqpVCSoJu8jE77IIk2LsjrpO/3t5BYZ03ANiMq+7YFS5v+sA81fUABwQTpPV2yZVabzpR8D8FZV3D+Sd7rTwkLTaKn+dKgEMyKicAQKyHhEUt1piIeD4TK7pbNqoAfNX1H2KvQfK3OOJ34PVbMKEVvGgNcKl150WYcVr5MCgRRU3c+wn9SriuQk4j14AggDB3DGYQQJ7SRyX+oJVPO6pLM/ce0OPrTXOzc7fruozkkw1MzFfE/vV60DXS1T1wwjRBaP0lqCIpFw1BTvwGYZhcjT+8Au4/sMvVU1oqUox8ezc9wOJ6GaQwJTGHbtrajn5EcKaDe9qD2vHxPe3GWU54iTmJ464nlzKwlFrqngGin0gdIc9OXapGWUZxetNX+sZJsdnKoJHa2ppBBHHMBwC7NkZJMdncP1YFddnbBX3FFWBmQd6ag7rTzhKRCVBXwiqseytkKBzwlQRUSR6J46pYqsAEfdiXwd608CFf/tyNB9P0PjDvenM1wm+7w4AMmdeCrx2Nx8rRK5sovPS0+p3WhAJa4aKvvKCRL6GqVo0ochdMt8krgl/sgIzFM1qY/n6W2GCqCZc/bFjYmwxwvUZMR+wwhThmAkrlAK2I6I1zSBVwnj9oiErh+T+yXx1ikzNLRwenxH9ztrSQCgrkqMLF2GdO4uk4QnRfjlAeHpWbG9+NTPWIKte1XtQ6dn5gJg72hDnp7GnOojHPTn3zPZfXETViBkB9YtJrk+BGSSwwhTtmw2414Cxy9kCjFhcFf1LrFXxnKmKQJk4uzU5v6rh2mlH9TUgB3/z8UT1HCDMQJ6/XXEM0AKKqLiIVGTZKP0gBt02vet2xH4E23URXbiI6y99Eepfuwj33i+LBs2tFsDxZweKBAaS0hqh0bZxWNh/S8TMyOQGp1ozxHTpanY9iXR+kGWNeZkDnzA7a6LxoXR1OktrSmQj7HYgyrco17Lti4a7stnnRhhBmBfx2x0lBgEA5o4iabX7GtyazUauSaNyhOrxEyziH1riV70EwVxDDdTXZr2saZqMc0kaoo+Ed7UnmgKthqhc6sKdb4s8RDkISxqeygQ3glBd9M9ONF0TJZdTTdFY2nUQT9URPu8k0rtu350XYROkjVq+TLTopqb/UYyVHglDn0cpSpPAX8yKT6lywXWRLl2FeUksdJid7PyiC81qAXD+CqLHzyO5cAlGEKJ+wYe3GorBpGerx9cd2kajrmJz9AVBtbiiVfyYXqVvX8swvQqMJy+KCUCjJqoJ2t0+5zltT+1PYdsk7udii4JA/a6avbY7YpFg/ooSyNWiisQIRMVJfOoYwuedVNev3jaJsGaLHgIy11K9rtp3glrcnTsqHkO+z0ZbW8xq1FVOvkI/78p4Hz3ix2jUxb7qEUFDsJGIbzWb6vUcFLvGMAzD5Bn/4jOoXRICmD/hqD5A3lXhUgfEuF4Xye12AKcbwenGUjgTUZ5Rw0X18hrMMEUk9Hw43VQ1o7S7mSDorWS9tSLZ04agOYNOWMvHUujRFKYf5fZPv2/qWeqi/8/0IxndwyL+YcA6dxbh805i6TsnsPQiG71pcf3YQoLjn18TPRSW1oTovBrCWwnhrYo4KfrdDBJV5U4LALFj5HrE6cJnZVnESNUupbCvA60zJi7825ff8Oe+VbxVMU5MHEM48ceyJqdRzYIlhXczSDG2GKlsfTNMce10BWuznmhkG4rIG4qx8iccVC+vqeauANS2dMKaJd6T1VAZq8YWI1hyQcG5noifXVEdQE1dE9dQDXRt+T9nScwlSJ+4/qy66POknU/UOUL2vEKjLsb5yyvS3OhkkZWuiWu3HdVc/Y6Kr9GvA6D9tHOGSUCcj6gJtz9hwT8ixuhONxK9B0JR4eCtxuhNmPCPOAhrtoiBWhbHY28KuHbKFtVS3QjVBR/eSiwa4H7rCREfKysP4jkxF0g9C5VLXRx5zEfsGKisJhhbSFBZFeJ8ZVX8rvohhCmsMFURyiTihzVRMWHTd8J0dejja5CIb9z/gFoYBoD61y5y35IDDmXkb/VyWGBH/iHBWVrL8pOBnDiEoqPSj3OuYnIr62Je6toqhsfsiJVt65pohEvlZfrKM4lx+pcYQTEU5DqlGB09bzq3or28Ajz7ZlH+Jl21QOawNfSKA9lAk5vaHm6MO18osvAbrnLbxy5UfjogBGs6ds02UCnGPpHoq1eneBZirw5ruSMGbVpuK10HIDeJpBzC+PvuEA2JVsR9vKs9pF96aOjnZN56i/rMpq69I0207JMnRK4/OayDIB9tpV+PTGhW+yijTXRxX7n19ax8KcAaEIJ0srgMtNpAs4Hw1CScpTVcf+40qk+J26vzgR8ol326dBUOgHBuQjzONT8XrUKPmywuq30xKp4SiK1mM1e1o6MeQ29+C+Sy8uH3YC/XVcPutFFD+sRyX88AetzitvTbDBKiy+J+Uj06iGJ15GtJUU+GH8OCOA7rF4DOSQ9ON8k1NicRX8UgyfctV8VF51V6/jLaKJquKac/OX3KonWUm19z5xfjhTYDVVTk3g+GYRhmQ6ILF+F0T2hNC0XjWF3Y8icrqspWjxlMpqsqvsI/4sDpxujeVMPYQgh/QkQ+CPe9ED0nLkZq8Zjc/JRzTU7a2BFxh3ozSKoGEPfL3PkAMoe9RG++DkDFV+hQZCjADREPA/bJE/DnGrg+66A3nTVdHn8kysfPelbmiHaooav4fyyPz8QxRZNo+f/EFQKrFZJTWrrWg6xHRFgTx7p9XUSjLP0/L4cZIBOiuwkqn/jSUM/l+g+/VOX4eysx3Hu/vI2vlHDjUwUCkEUFWWHmpCc3Pr0W9LpQNULsGOqzT/czQxERQ/0oqEcFnWe8lTC3WEeCPQDlrtevI3c/IBZQALEwQOcjyt6nyiK6b+94DU43gnVNzOOql4Wwb13zs3napUUx7qX5jha5qc8LnflV+KcmUf/2tSwOFOTEj3LXievt3N+ksVCVEVUu+BOWPIZSdE56GD8fikWJCSHyJy5yUTvBeBaDE4wL5z4gzo1jj15AcnwG5syU0H6kxmJ21kBnyaXvnEBlNRHHay17/yizP3GyZsexFO+p+kG9R3RMyPN654SLiTtfONK8Vse4/wGkd90uejfKeRuL+AyThx35hwQS2wEpBhViMszOmvpiMgLRjd3srMFod7Pmk5CxN5Sv5gdK4Df8GGZnTXR9J7HJDzS3sv7FFSp3LW2HFhZ0ITCVzXgBKEFU5GjXMxdqmVhEMRSykzz2czY5sy3QhI0mf043xsTfXs0tThWrRUTlSf46fSFKd4ir4zOI+j5LQObuSDwba8eqwvVWs+B0hZtFlZSfOY1hsM6dFfvX7orPaGcN1rmzIktwG0nbHVVWChnzAiBXwaP+LkbvAEpET3t+FjkjhWLdnZ/4PXU9NaU1mw3VjNsIIjjdSOQ7uraonmi1lXCb9nwhjNersJe6cOZXVVWP2WyohQTaHx3Tq+SigKjah+5rzkzBnJkSTvKK1xcbpLvqowsXc1VN5sxU5uih7el/r+P2X89VbpCz3XOz595q54V+P8gdH0Yg3IfWNR9jC8Jt5iytwXz0abEwJbejHkOPPSIBn5rcyqoUgiKnlPue7kM/dTe/Hr2zTr+TURnU04BhGIZZHxKzvJUQ9lJXfVcYfqyyqymnnho7xuOecjADYlzlTzgIawaWv8PLCYCJIxvcBql03ApB39SEOb35LAl65LynSkoSu9TvJRE7RacrAFUhnBf8QxbxDwnh6VmENQvhmKkywKe/HqF6eQ3O/Ko65g0/lnEsIs6FFq9EdKyREy6ri7QAJZqArk0b6JwwlXBPkS+AEMPdlhBdKWYqqgk3vxVIofpVL9nweQTfdwfMMIG3Gqv5w/Uffimsc2e37bXS+wYAWQwWkGXkU3QQAPWa0GIFACXiA1AxPOL+QhymilByzIsG1CIGhx7/+qwjI06z/bHbgYxGzSpJzTBRkTm0qECPpfZRLlCq+/iRmp8lnnDHx+Oe6Ad4abBekPZ8UQ3b7qgqa+/RyzCCCOE0OfBtRNM1cR4KIjXuVX0HpZhvtv3scbWF08QVrntvVUQ6jS2IKoSxpzqY/PIyjjzYwthCAlf6X6KqyLA3Q9GPwQzFwgZVU1HjXgDKlGMsrwgNRyYm1C+GwuU/YYomt03xflJ8UexCifjiPTfUwo1Ob8JEWDNVNcbyCxvYCtY10euMzTmHB2p2u9XLYYEd+YeE6PHzMOu3ZH9fuJgT/chFaQByBTlQWfSUZwwARhv9TkuvIOqROKNH2uir0PJ21AiUtk+NJ0lQIpctiVY5YYiQedZF0nYnu882ikXM/sM+cxpxw1MDlrFvzPc3ItLER2rsqfLAkeV+0yANQM6BT+gNk0QOYdbkmcRdbyXMDdrod+uaj3iqDhun122QCsiKFtlLgtwhRhACbrYYED1+fqQM8iIkWKd+gPR4NVu4kPFcqczFV5QI+YRR8dRiXdrzVfa7Gp7TIM2VefvkhPEDYOkqjEYdZsNDPDcpROdGDYn2vEh0Ni4tiv3VH3t6EgY6pSJ+mViutuUVFic8F4YnmuHqznp9/02vgmRxGcZUM8vLb9QBmcNPuftWs6lc+WWO/dy29X3TKx6kA1+P4VGNXenc26jnzu3wA3RffALVy2tZY65GPfd60WPnFknp+6BRhyE/N6b2cq4bmUaVLPJ9VOdjquJo1GEBHHnGMAyzS6RfegjWq14iBa4Q0ePnEb/qJcIhKh34QJYtDWR59BSrk7gmqgs+4pMe6hdT9CZMlY9vhllDUN3ZrLudASG+UXNLvSLAbgdqvGVplY9AvsIXyPctAgC37ffdzvDjDcdZzMHAvPUWhHIhKJA+jMlHItT+blVUs9bzESBKvKcxepCICBOZV67HQNUuJSqfXc8Lh+w5EWuCd9AUoj8gPg9uSwjevQkTlhTB+7tL5bFkTwm9CS8AdJ87AfNZd8AKE1h//dVRXp7+xwjEPKVz0lMVw0Ioz+J1ACHuWgG54U31P3JzA6JawXdFM1pya2cufjPrLaA1u6aqUbG9LHqLFvq8qz34kxXY3ViJ/GaYIHazc0j2Wsnc9jBbgLFC0TA7kfNC65q43pm/ivD0LKwnnhZXUFWqnAuYM1PKGZ5KMdxwMx3FWVqDf2oSdjsQFcGdNcRTdRgk4MukAzp/UqNue6mLtWc14V3tiYXT4zVVHSWeT9YbxHl0EQaAOoDrL5+AGWXNwytLBmqXNLG94SFquLA8V7nxqRdiPDcpti0XbE0/QuVSV8XhLH+Hh2BcLhAEqWpK3KRqh1kb155lonZJ7FvtmS66N9UQjoloqfrFUMYCJbDPbDynHYSqjGAODdsRjcPROsyBxHjyItJTJwApXpFL3Wo2hSjYqMFYXoEpRTrlkCXhjdCFJF2UJ7TmnqqpS2dNxfDobkz9cYDMVUlRFVkMh/aYMi4n1Zyeac9XTleKhCDhid34h5vUdYTTpt2FQ+5yDYp2ApA7bo12V4iW2vXi9pkDTOXka81tM9eFk7vO8GPYaoIZIpmbEC6UIw68FZGvn3g2krkJYO524U5ZWivPDvTyjpnc4pasSLGaTaTtjmoADeQjR3ILefL+cavV5zgXkS2iRNSk51W4nx7TZVAklhZ7pd9WfU4Xl1VTUtq35MLF/OMHgeh3IZ0jap+CENa5s4gfeaxPdNbd9ADUfhvauWIY1EKFdj6jcw9tWz0nWVWgXt8HvwlzdkacgwJXifZGxYPdbOTPvRJqcLvePqpqJT+AgY5a+FCvS1GA9wMkciJB514zSMXCkfw/AKRy4pJbxChgeFrT3cbRgeK9Oj4KUTzGtJg45BqQA7nm5ZuFFwEYhmG2hhLLaQwhBUHj1lsAaTYIp6tw58UqbtLwEE5X4V3toXtTDfVvX8P1Z9VVXrIVpn2CoxWKiJwkNBE7qci+XsnE/MQ1VBZ5rj+OZrKgeQWhj8my6/qrKZWwpo3XmIOPEUTwJxzUnuli7CmZfS6NKfriDgmrOXe0Vg1C+eVZFYlwHpOInzgGxhYjGRGVHfeUIU4CKzXY1aNq/Anxv/m3vxy29MzM/tbn+56L7jYnEZuawdJiGDWqpfiY4hyi97o7c2I3fc7Tu27H2qwHuxsrIX1t1lZu+qJIT59zU0Xn5J36+udfXJ8CECJ+9fIazMmKfD0s2dw2UtU+YwuiX4cZJkrUdroiQoveJwDq/wBgydMCif7XZx21EAFAvY+xY8KmhAIZa+M8egFJqw1Li94EkDMWGl4m5tNPww8QvujZcM4vIDo9C3e+jWi6BhNAgqraX6puSj2rr6F3NF1Tzz2crIhsfIcijMR5kAxb8aljMNs+4nEPdRlT5nQjdE56KmrJChPVB8Btt7OIYRmjTIisf7lYJeNiqdH51MM+Wqc81C9mPQlix1TNg71v9WCeqSFxDFhBitXn19UxbwbiPfBWQ9E0urBQNgrRwiLAGg7DDISF/ENE3GqJDOeZqZybNe35IptaDnyjhcVc00Cj4mXOVHJT0gqpnkOvo6IUOsoVqq73MqEvtw9S7AKQe3z9SxTQspup8aPW9JbEQxIklfDEHGooiikltzexXhNXQLkXdKFfd90DYqBvyQGRPinQ3fj6T3pcUfZYyzlFAK2k3DXgT4wDz3kpqgs+jPsfACDcRZADQtGoLVTiaNqoiaqZwnMj4dlEVuZIlTC6GG/PzuQqcFJf9KhQ++8H4jON/jx8dW6QLnTD1ZzX2vmjuEiou9ATmZtvN+rZfknBml73LLYoVNno+nMwZ6YQXbgonmujLisjHPW+DxLJi8+nb/GS8vP1THoNEvOJaGGxb1FE7wlAz5Vuoy96lLnx10MJ/Nr5EgAM14W1LEqA6TxdudRVC6ug/E65qFL2vKjHiGLuaPa4ejUL7bu+MFbcz+LtXVFtxc5IhmGY3SX90kPwv+8OjHXWcuKJiKkTfbQoa94IQpht4XYP5howwwSpJ0R50dTSFJEhMje5c0JkLIc1C57MuzeDBOjKfjaeBRuZcEqOVl20pwaS4vcNhHg9DlRWLqauI4TCYe7PHBiCuYZoWttw4bbbqlqSXMkAlICceLbqqZB4toqVAjIRnTClO94KssauFDfidIW4Xb8o59U1KxP0rwvXcixz9KmHBEXuJHIasfAvX46ph/2cw56iqQAgCYVwqv52DVihEPABsSCRehaMO1+onqOIr8ly42PHRPi6O+FPkLM9hRlmzWwp49/pRjLjPi048TOHvhUAVpACtXz8DlUhqPibIEX3phq81VCeTyqIahb8I6LxbeLZiGW1TuuUJ5vnxrh2uoKJb0V9MUfeii/jeQwAFswwRewKMTyqWYBMmKHXiRz5lE8PlMduliLHwuTMNzxX9FqTP1PXgf31JxB853Pg+EJMVxE3ECYsEtn1mR8da97VHqzQVe+N042yTH4/gPno08DcUVjXfHgA/CMO7Ke6qANYm/VQfaqlKsL9U5MwgwROECK5cAl4/rPVPhQhUxodI9dnHbVgQ9AiLD0fb0X0TVk7VkVYsxFVoeJ+xMKOhdoz3S33b9uOPlrM/mE7onE4Woc50CRTTUAT8hO/B1N2ULekgzdutZTYZDcLGWeuFO8bdRV9oyPExG4m4PkBDBIHi80yJbqIX/w9brWy6A2i8LcJ5AQsciGPKogxB49ouoZkrgHvyasARUMNWnySQn3m/srfVhfwCcqK1V0TZY4xao5r+DHSqSbMzhrspS6CuYZsriUEbacbCae+YyqnTViz4b/xpRhbCBEjc87pomjaqIlfggFitIbu7Navoz4VAFRsVaJighx1vf44+u1p0gwUGrBoLmyK1ylmHppeJcvLb3fUwM1qNsV92/KxtIWY9NQJGJcWhUgv39e0UROLA426asZqBCGSqSbM5VauAS6QudiL16lFnwHRXCrGpnCO0QX9YjPf4v9p4URfrBw2612PNqLXU18ANZsNdb7VhzTGkxelL2pSHM9PPF0u4rv583U6dURMgOUkWG+QDiDfCHfAcac3uaUFouLniWEYhtk9iuOX6MJFWPK7PfFs6d7MbuM9eRVOvZoTiJyucMrGrpU5NaXQqUNZ1fG4J3qtyMbsRO47o7BfG+Xb00I/jZOSelUuEsTr3o85WNjtAMsvbKD5pDRxyDEkRTXR+B0QsU2mrI4FMhc+jceFMzzOnPGaOx+gLHGKdMmOdbsbI3YtJf77E1DRJeK2qfqckPCdOMDirR5qsy/NObQpWsfRekroufGJa+aiqPJRWLYSwomwRqI+OarFdsYWI/gTluxxkT0XcmGL5y/ihCqriWoATL0xnG4Mp2vi+mz+dXDv/bKI8QoSJehbq+I1o0UUTy6qTD3Uhj9ZQeyYqF8M0L2phuqCLxsRi8frnPQKmf1Zpr94Peh/phKjU8/KRZ7S+FkfRxfjLmmOZDYbatyetNpqrpO02jCefTMAwP3KtxF853NEpv+4h7Bmo/pUS1WHp42aMtSknqXibQw/Vm59PRJMGZg8V4zBp44A8NT7YvoR7K6tRPykXoWztJb1IXz+s1UVSoLsXG0EEaLpmoh2paifdoDkRH4MrzcaprksIIT/6zO2ODYDA5GchqIrXvO1Y1UM7gQ2HCziHy7SbYjWOUxCPje7PWREFy4i9ay+pprUeCWdOgKjUYc9O5OLj0gWl5HKyB0lbGnOXSX2SDExbdSE2CPvhyBAunRVfPn5QZ9YFbdaKpqCfgeGj8HQ7xu3WjnH73Y3AGX2F6YfCREfUkSWx2GfQKv3evDcLCKHbhsEuV4P+qSVnC9FUTKVC2TU0EjP1I+n6jCCEO58G2YgmlZFNQudkx6sMFGTBkAMRL2VWA7Wk9xjKIGccvIbdSHCrxNXkhPs9f2lRtgklruuGPy1O5nzn3Dzoj+0CbN4LeRshLLuN+hVkYumQSZ+02daVQksXVWl/2ZnDenUEcRzk4in5PNud2GePK4eP5quydc6yp4jvQ7rNMEFkJ3z1kE/R9E+F5vY6s/NqHgwvUruvESLl8OI+LkYIT2KTPup/udmVUxJq51zEdF7as5M9cenEfJYoteVjg2ahAC0uOXkekrkBBeK2NEa5gLZ8Wout4Zu8swwDMPsHJVPPyQc9rfe0ve/cLqqBE8AuSpEc1mIVKYv3LOJdJMC5M7MHLmJa+Ya1aauiO3Jev7Q9Y4ae0UXLoroz86a+u6xzp1dd3wft1qIHj+vLuZySwlrwdzWmjAy+4eo4aJ+UYy1lVFHRl+SeBmPizF6OF3NNR0lqJcDACXshzUT/oSVE7lpActbCVFd8EW8TZgIt3wAFbtjBqLxLQmfYc1QAr69Ji6uzG5PHAPeaqwWDUTj1lS4o9sB7HagHid28iI+QU2jgUz0p/1u/OEX4K3GWUSQawhhXmsWG7tiP67PikoCvckp9b6g7Hsgi7wxwwRjCwmqCxHMMIF775cBiNgu4/4H4K2GuD6bjRfNIIG13BEZ9lqkkWiOLbbdOekhqlmoXl6D3Y3VwoneVDf7W/5PPpfrsw6c+VVY81eF6N324Tx6oa8yGMiP46naldDHy2p87ffEOHnuKIxGXTnvrWu+OAYanjhfkl6ijZMpcqfolqeGuQByCQPG8oo6F689qwmz7WPsG/Pi/n4gNB15noznJrMeZwWShmi0G05X5QKPie5NNZhhqhZkSMSP5aLJyq1NrB0TlVFrs6JioroQIXEBuysuiQv12Qi+7w7WYRhmh2Ah/xCSfukhwA9gnTurYh2Kzhb6YgIykV2J5JoQr8Qi6d5UYiIg8phnpsoFw56vtjeoG3lR2BsFXTQb1uHKHDysc2fF4NUXC0lJq51rtgogE+mXropLuyNKGJdb+cUq182VYhp+DMOPc9ntOrprARCDudSzlBNEv591zUf929dgd2OV6aiaQgWJdLZEKvNyUMarGhgO4cQv+1yovHrKNNTFdz2mSq+skSK+EnQB5YLPDVRLBPQyBg349HNSrj+G9n7knqu83l7qiokBVQkBMGem1EJl2f4UhW1dFF+PsoWIIsVKIdVIvOQ1UZVJJeI9McitkvZ8pO2OmmDoi6P0/odzE6LypOz9IGE+ENUpyVQTyVRTxeNQdQotVOmo7wC5iKvwg+w40t7DQVE8DMMwzI0j8XsqysM6dzb7Hpu/Au+hp1XVoRGEanxD3xOix5av3Mr+EQdjCyGcriYKuUIYihquugBCSNXHV2ZnDcbyCqKFRdVTJlpYVKK80e4ifuSx0gi7QUQXLsJ68jKsa74S2ZiDjXHnC9E54YoMchqnSKNONF1TtyMRU/RpEBcSjvU8eRLAhfBuyBgXKVxrzVWBrBk0EdYM9CYy2cUM6bHzsTp2F/BWxWemdkmK4EGaE9bF4oAJf7KSawpNOfJEnzDsZgtstL/xq16i9o8W20RlQQSnm8JbFWI5OfYrq5mZSMTp5F9zfcGBtpW4BqqX+z9z3qOXczn2pi8isFLPUvFG+mfVWw1VrE/i2eo98VZjJE72nngrsczwz8tc4493lbHIvNSfvW41m6KSp+KpC7GRnmA1myI3X1YRGUGEqOGKaiN9cYUqQoJQnE9pLhkkMNu+eF5yzqLmUkvCjKZ6/rmuWDwNExWnAwDW/FV1fOsV5PmIskjl7NM+OUtralEIEAtS1FyYRHzR5NnINXCuPdNV/Rq81UQ03V2lTH0DYc2Ad7XHvQqZoUkBpOkWL7v9JG4gXNN+SIkuXIQ9O4NEX2FeXgEadRG9s7gsIigWspXpokueIjKItOeLiBsVmSCbHlKshpaNvVmBflQ4XufwYtz5QiQAnPMLwlmtxTUByPVpoCgp+r/KQSdHMsXIaPnsegOffLNbJ3d9bp/k30nDU+XptM21ZzXFgKfhao4fA3bNFm4UP8qVyqqSST22ZqPXpCS6pS8aq92Bqb02hqv9jkLPCSniJ5S1DuSdH/NXxKBVF3NlQ1zbc0sHd/rEvOiSMb2Keq+o+arp14XjZDkvaJudNaADcd7RFiFoEdE+eUJEB1HPDb0xryyZVa+RfkwUXkPaL6Pi9Ud+FXLz1e2RP+YAsbhQ7B2i9/6gx6bXEEFQ+voVy4HLHh96+XDDg1V4j9KpI1Kst2UJL7TjO3NhqgbNronEmxBZoVR90aj39ZdQ25dNC4vHL8MwDLP7JA9+E8adL1RjirjVgj07o2Ih9Fg/1YNo6ogQn4ImEgcqL9/pprC7Ma6ddpA4EBGB0g0c1SwtC1ozAvnl329EpMWDjhK9EC0sih48rgP7zGnuz3KASe+6Ha3TFekWFpFKNG6Pxz0l1utNUAHhuCfRnHo56O5w37VyWfHiPqInBDn3abyeyIWqsGbm3OJWmMK5Lv72J0zlZk5ccbHkx8DpJsqBTw1Eab9onyjbn0RYALlFMV3op8UJsRAg5hmxk2LsqQ7C2riIrfEj4JhwaJOYqzL+V7MGt043US586g1gd/MSWlSz4K2I6mJ/soKiHSa6cBF4wZx6PlHDhSOFbYqcoecIAInrqsfvnPQy45Njqn2iHgBicSV7LKcrkwd0U9L8FTGH8XsqiksdP1pPNYrfVLGbntsXA0yVzsnisoglPnkC7jy9H7Kh91QdCaq5ZssUb0N/i+okB6C5ZLsDQ86XTK8i4nykEcnpxmjfMon6t6/ltBbDddTClT9ZgePZ+ax+11avadRwER6z1Pbo9Qxr4vhOQkO9v/4E9XNI1baJcMyEFaboTZhqYSp2DCSeveHclGGIBAaMLR4xySE64tiRf5hp1GGePK7+jBYWs5IsLUdaiVQSPY4i8Xt5Md8PCg0/NVFTfvHdKBF/1HgeZu9T5nIuuy696/bc37nBmeZI1mOYAPQ7pXXnuXTtG23h6NBLvHXxOhP7MzcOOfEBOYHwhBiaOTdC0YS07csyWZnd6RhYm7WxNps5J4wgEm6NYtQNobueddwN8tcbddUfg14boKS5K1XgyIgVPbZGufBlVYN6DVG+iDDISUeZ77qTvC+2Rkb7pO2OaABFlRXtjqquIBFfL4s1Kp543KC8KmHQ/tAlWljMLUjmculLhHur2SyN2qGf9Ht04eLGMT5aJYUucgyK8ikKHPq+GRUPzvwqVp9fzzV90/tB0HEdzDWQNDxE0zX0jteQehbicU+4wbTJZK4pMMXsNGpqsQcQPVp0ZxzanZwowzAMw+w+hh/3zxG08zsZGJIp2bBd9qLxrvZQXRDfkRR/EdUs6e5NEdYsWKGIEyS3rsIPhOuevxOYAQyqdszd5tZb0DnpYW1ausIdU43BKUYkdkyEtSxuBoDKnqc8cBI7SdC32wHqF3x4q6GI0ZFOfNHYOVFCue509icc0ehZNrglp3I4ZsKfMDG2kMBbTTC2GGH8fIioKgRTncQ1YMtsfnGxs8UwuVhAPwFh0CCjhelHqspAjwtKtOecPPhNjC2ESFwTa8eqcLqx5s6OlKBvd2Pl0He6WdwPVRMnrqEu+r7Tz+D77uh7r8a+9qR6PpRfT1BEjNn24U9WYAYJ6hfFftEiimjEm6iInbBmqcUPUc2sVSi4tkoDoAuZh/RKbRLrgfzcZVC8jj6vNJsNMRdYXEb6xNOIH3lMRYJaT15W1d6kt5B478yv5vZT11JIj6GxfbSwiOsvPgXrr7+KsY99AeF0ZixLFpeB+SvK6b82K48BrXI2HvcQNVxcf1ZdVKFozY9VRYUjKkg6J2z0JkxZ7SCqR/wjlnpPo5ro/TC2GInm5mGKoCkWq8YWIxj3P9D3njMMsz2wI/8wIwU6e3YmK12Vg2fr3FkYfgDILw1LCpymVyl11atmi8gLmMp1CajGtzcao+LBxI2rAmB2Dl3ULeaC22dOq1LCVLphUs8SYmFJPrvuiFZu/KIbQw7gciI0CcCy+apybEinWrEhGzW4Beiz4WUlt/rjFUpggayE1e6K50KNkpTzYp0cfAB98UHrIp+n7kqJW61MbKdtaU1ljSCEqcXLJ3XpNGnU8w2F9ca48vUblNMP9LvKgZKG2NKlQtvQB7qA9p426uo9Uq9b0fnuZYP3jRb+imK9cs3L+xUbZhWvH/R8CXrN9Z99+1DYx01HkF24hIlvidcmPnUMhh8jHhfHp9n2kdSrqiyYSn51Kpe6mSvfs4G5SXWMFqOVzOWWiFvrrCENHHGsLLe45JZhGGaPolceApmjnarwVOUWje/rVSUeApljM3aBtWkD1SUREUKCUeyKvO6wZsO4Ae74YURgZm+jxvza3JWwz5xGPFXH9WNVJI4Bt5UJyf5kRcXKkAhe/J2cxiJix4Atx7cUjWn4MUwApg+Yga1c/WuznugNIRvNEqlnSZHZhBeK3hHXZ00kjhBEHc3B7k9YMMMUtvQFiQa4plokoLhNQDTCpYqAJDSgzzoo91+9Xp6tHO85J7900oc1E3jdnah84kviuQLove5OAK6qBqbtk2irXO+ByNSnamIrzF47QFQoUNTWIKKFRVQuzeTEaHqt9cof72pPjUHHFkI4S2tqvFq9LN5Xym4H5AKFa6loUmqsXcSenRFGp3YHBgrxlXKuMGheQPOSXEVvQecg3YTmnFR9S72nDIqxbHdguA7SJ54WjvtGHcmFS4C2bevcWRU5Vvn0Q4A8n1nzbYRzEyLvXzbjNS8tIj51DN5qDH+ygsqlrojC9Gy1gEWvk7caygUnvYEztNtQ3Ks4bhPHyMR8x4DTNXOxUdUlEXdExxTDDEuaGltuVnuYmt2ykH+YoZXnRg2W5sAljEYdFvJlq2WCUZmoBWid1qXwN0zG9E5RFnvB7F/KjsN4qq4mkJQ/H497MF0HRuHY6zvWK54Qe+lY1SgO4Ppc01p0iD7oTOpVbTCaxZIAcmAN5EoszbaPaLoG65oPt92GOy9uT4PbXEyPyod35P+yhrzQRWv9tiMsoumTIxKUydmuSkiXV1QEC+2L2VlTE3/DdXK59BTDI8o+s0UBu1EvLW8vCvL6YLmYHa/H4JQ1qFJ5+JqAr56LLJUdpbH2sLcrigbrRd4A2XFZ/LnZfVgPel/DhovWKU80NwsTeCshDD9GMNeQzi8TTtcBjlVhBqlyqgHZ4pOeBZu6NiCbnicNUUmSurYq/0vpuGjU2HXJMAyzB7HPnEYq3aLFCJrkwiXl1M9VXs1fAaaaWQyGahpqYGwhROuMcEg7XemMrokmniQOlgmz203i92AsXUV66gQwf2XgYjmz9ykeK9a5s7j+rKZwIMsYm7HFSMXSON1QOfEB5IRxuxsrFzcJ0WaQZg1ipTieNFyV2Z40XMSOCX/Cgd2N+9z4RiCbiKrIHiHKO90U/oQhGt12DcTSfW+FKawAGD8v4za151EGOdL17HzdbEHCPS1CJK7bJ+b3JkzVrFan8okvof3Gl6J+QfTksts+rGt2bpFAz32Px738IkFhrEj7GNUs4PvuUE1v1b4++E1YENXUlAsPAP6pSSXYW9dEfG/iullE0DUfRhAhmGsIw4l8r/V8d7pd6lki+ksz1aieXEH5PEmfW9CYftBcQZ+j6Maj3Pb8HpLCuNeenUHaaotcb5l0gFb2uwnZ1ysIgOUVkY8vnwOdv4yGJ2Jk9f13XVhPXkYVx7B2rIql75yAFQqBvYg/4WQLQzJGxwzTXBNmQMQ/UVPkcMxEVAOqiwnCWiacWmGK2DFQf3gR/csmDLM+SWrA2KIQn7CQzxwGKCffCNw+Z2/8yGOwT54AAPVFMchR2udQVRma2ilcyxm/kdCXIH0Bsyv/YGLeegtiL9/01Gh3YcufyeKyum1RIAYywVcNwqTTuyj66ii3fq7Zq93n+NCzKsPpqppEeDTZlc42PbNQvy+5oRWaG5+ieQAIR4kUUEHZ+8OK94WFjoGfdRm5pUTwIFSLdLSYYNBjtztZNcPUEZHFvtzJmqhq2CdPDBR1cxn00Kp/tKzIosAP9A+k9QFurs/HFquEioN1/XUrE/OJsutv9PkpbrXgPXoZs48C118wJ3JMjzjwAHhPXoUjHflEWLMR1izETgXeVdlQ3I8RTlezxnDIBP7Es2HJhax4qg5r/iqMdkcsNs1fuaHPlWEYhhkOEu7tkyfEgrv2HU3javgBDEBVCaaAcoFGUuRMXAPeSoi1WQ+JA1w/JpqFNp4W3xedEza81aRUXNop4lYLeHBwxRuzP+k+d0Jl0QvBXOZ9u4aKekpcUxOYsxxwQPR0AMQ4hxznJPxbMjYndkyY4x78I44Sq63VRInN9lLmejZ9S0TySIMEidxhzYXdze06LCnY21qsj7ca4/qMraoIaEFAd0wnyv2eNbElzCDJzSn0ygN1fxfwLorFNOvcWcSPPKb+N/54F9fO1ND8pnjtUs9S29MNSgBg+paK9tEFfHpMK0wQagK7cecLkX7pob79Me5/ADh3FqnrIJquwXtSRNIkDy4ivfOF6nZhLZsvUdUoIFz7TtfORQg5S2tZxXOxJ9g6Jh69anvQ2FxVBZcYFYtzkEHzKoop1m9H9ycRnyJO9fOVde4sMH9FuPyfvJx/bDJ0AejeVEPtmS6crgt/Qsy9cos/WgxS7EI1DA7H6HiT+0ULR2GKxDEwthih49rqs0afh84JF871hPuPMMwNgIX8Q060sAgsLMI+eaLPDRNduJgb6A4bC2H2fBgkKIIcmJ2RXK/byXpiGnMwoPLKxLOVKJ7MTcKavyrEZTmgGlRRogvFg+JedIpROwhEU6RiriGguZLlQNIKk1zprXCaZM8BQG5BgBzNRhBlE2ZqNqc1ChWxPnZu4cAYRaReZ6FNufL9IHsN/R4gG+CpuB0/AOavlHaMp+a+RG7RY4PXnBq0Fq8zvYo6r/TFLul/k7OlOChvIeegAdbvqTGM0L6VBcONHPujbmvQNvpehyAQk8CucNdby2LSYF5aROodU8evAwBdyOa2YiKlcmdrtip9ps8iNSoD5HHcqMFoi+8EFlAYhmH2NtGFi0Iwcp3cd0r0+Hk1blJZ0o060nZH9PDxq4iP12T0hhCEmo8Lh2dvClib0YS2bn5MdCNhg8/BwLz1FhERo+FPWKrRst4sFcga2norcd457keAjB2xwiQn4ieuEMsTGQcFQDnezUuLMIIjwpDT9uV4V1QiOl1T3EbGENYvBmidEuPNscUIiSNiSaxQxNRQPI0ZpKqiIHENmcFfLsAmroEkzNz2uohP8Yf0fCjqxgxSHHnMzyoJ2vnVhfRLDyF5/svU3MNwbTXeK4uoKYOa6uqLCFaYrNsAlRYTDCDn6DYffVpU0sgC26iROfPpd9OP1GsdyeoJFYl0aTGrWAb63PVlYjrNG6xmM2ciAqTBi2I5tYplnUHOfJ0ycxltH4AyotHtrGYTxvQk0vkrap8MP5u/GBVPGaaMNjB+/+NIjs/A8ddUY3Ega5K8VvNyjYGpqsGfEOJ9VBNiPjnxrQCwAhGRVr+YLTI53awivfGHX1j3OTPMINJUXLa6jcMCC/kMgMydX8Tw3JEHuonfg63FbRT/d6PhgfrBJr3rdpF96MewtDJPe6mrcgihC9CSonPaKmQc6nnsxez8nLtb3tYEYCxdzTkhUn1By7Nyk9Wo4QINqOZO9BzU7bVBMyAHzpqbPSXnOzIRn5rqChFVLkqUNb4tUhDxy6Kocnn5RXwZ6TPliMgdahQlJ01qAULus/ipLTgUJhCjQO+NPoUb1BS5bFBNgjI9t62cK2j7ZeecURYUd/p8pe9LdOEi7JMnck6rcG5CHI/1am4Ryl7qiqgF7b1LPUs1grOWO4CMuKLbqmoTGSGVNmq5plsMwzDM3iV+5DHYZ07DaDaQLOTHTfbMFJLFZRFfR67UdkcKmNl5vrrgo37NR+uWcQTjJrxVES9SvyjESbPtb7k6blR2w1jEbD/2mdO49pxxAFB58gBghiZsmY+ui76l29DG5iTsk/hMP0koTlyRHU9xLTS2MZZXgKkjubGR4cewEaiqxcQVUTzkwE9kr4jKKrmhRZWAeLxUuvCT7LZBFhnjdBOVyZ94thZrI29f6GmkKgqkczp2sjz/5IiDeG4SKFTGNv/fv0H3dXei/nAoe2JEuThN8TN7HFr40P/W8/T1JsLDam1Fk6GztAZb9gwDoM0pwqx32KUOzKkj4g7fekLk0rsu0qWran5Tau5Bv2ZQnB8CYt5AfdmMdrev+nlQrM4oDDKgpT0fRruTzTX9Xm4RIW61YHuuqBanOTAAs7MGKxTRp2q+6dnwVqkSxcp6HqyGCGuuarpMvRy8lWyOSo2hY8dE9XIXa8eq8CfW74fAMBvBGfmjwUI+o9Cz4Aj68hxVDKeSKuvcWRGp0XYR71JTQxbxDy72mdNIZEYikbo2nPML2Y2CTJTf6DjWBXuVq07bLZlklka36FmLUkQ3pidhLYcqP15li2sTC4ohUduTkwC6bdHpT4PpZKoJs7MGIwhF5v5yC5bnIp6qIw0cMdiTjWFpH41GPZ9drwn5dLtBr1WxHD1ptcUAsi2367raADPI9R0wKBIoCFWkUNLwkDZqqnR/o/eoWCWkCwtFF01xEYaeH7lXAMCqeIhbrU05xMscNLqYX7xtceKwk/E6622n+BpHFy7C9lzV3JacOibEgpOa7DU85TTT43NUg7d2B8nchLotNSvTF3cMAMYT7aEncQzDMMzukly4BOPZNwPFcXwQqOaKBrQxVLsDZz7rXWRd83H9WXVYAdB4OoG3EsPpWohdoP5tsZB/o6u0eG5wMLh221EAorKD3MSAaIhK6GNtM0jgIGvK6nQz4ZvEcH/CUQInCfhRw0VYE7GChh8LAX85EE1SKWpTjncA5OMuG1AxPZQ/TlBkjhVARc8AUM+DxH4zTDIhXO6TKacg9Lu+YCEigrK5UVizc+IrPWdi7VgV9ZI+FU43zkWAUu8rUYXsKPMQAFVRAIjFERsy7lSLX1QVnTJeZ70xv24eokgsul6da1w3i2zU5jVGu6siaZLFZZgnj8MIXBHJKR9zo75/+mPrznzTq4j5jeuI91g+zqDK72HJ3XdAlLF+vs3NQbXHTlpt0cdEVm2byy3AE8eGf8TB2FO+FpVky2oT0efB+btVXH/uNJxuqmJ0ABH1RBFJYc1E4ogeE41vXkX7lklUF3x4KyGc8wucjc8wNwgW8hkF5bFt5+DWCEKYbWwYncEwm6HoCDGXWzDkQI7y01NfROtY65Q4UollsURclU0O4bZYdz+XrorqFoiJrbXcQdSYVHEkgNaMSRPvATEIjsfFZ5NEVoqpUc4f+XvqWUimmkIg92x1O6NRzzeZ1Qny1QUq8xHoG0gOet40iVGvGd2fon+KPTI8N3Mx+SKOKJ1qwpxqwry0mBPndahvB4ZoAlsWx1OG1WyqwXlxG2Vs5KrXxfxB+2h6lT5hfxi2K3qntGeIL/obWNfkbeSktXKpKwb8JODLY04X+FUfh0ZdlXUDwgFE779RePzi82JRhWEYZn8RLSzmvpf0ikT4gWqUCQD1hxeVIAgAV++YEveh2ECG2QTkwHe6sXAVywgacoeTOE9/h7VMdFY5+pqIT9EzQH4BQHeCp64NyDEvAFX5q6Iu6fd2B+b0JFzZkBUQgn0sh8h2N2v2TOhNeM0wyX6Xz8npRn39tAhqvqu2J6MQs+eTNfMFAN91UL28BsARgv3xmb7FOu+hp4VI3u5k1bfy+RoAzLaYp5ieBTPI9/oq9lCifaSxo3nrLTCevDhwrG5MT5ZWFZcu+m1gFkwePw/7zOmsoWyBjcahqjeIJG13xLjWcxHJ/dlqjC8ZkOJWq7R3GJmXykxLuoFImKs62dxLvl/U/6F3vIaoZqH+7Wuw6L1r+4ima4in6nC6EfwjluwfQTFS4ue1Uza8VXldmCB1bengFwtFxv35fS72XmCY9WBH/miwkM8o9MYuRTYrskTyi5ObnjA7gYpm0R35MurGqHh9DU4HZRHq9zU8N3NxkNu8QJlQm/b8nIu/2CwXAAx0YNSrSF0HYc0SA2fpZDGBXLSODrmBACCsVWBJEZXuay9FMDtrwoEv3e6JayKarknhX+RNlja/lQO9VJ+AoFy0T/yecMjoza0Lr0/SasOkBQPd9U+vU6OWm7RT0zxIR3jRDUTYJ0/sSMNsigwaJsuyONAfeBwNEPPLXPo6G51nt1Ps7nsenpsrCSc3FTW7pQUllb8aJLDmr8KU72eyuAzj5HGVSWq2ffG+BoH6HA1yK5mFyAaGYRhm75D4PVgoF7tUvxoyQ0jjACDMFYoggOkHKl6tuhBhbdaWVbss5DOjk951O4AskiZxTOWkJ8GYRHrKus/IZNmi2O10QxWFEzsmLNeE46/BbPuqGlZUm8r90E0sngvDDbLxarsDw3Vhtz2Ex6owwwSxa6omu7qYTy782BUxJiS4hzUTyYQBbzVGCBteQcgnA5AVJoiQZeDT/gNZ5j+9XoAQYqOGC6cbw24HMIKov2JzYVGIRVRtS8K6XLQz2l0YnisqgpF3+dOrasnK6aThobqUfdZT1x7Yl8w6dxYIQvE421TRv54WMcz4upiRX8zF3w6DTdrzhbmo3clVIOfEe2lSU3+XbdDNjGiG6yKZaqJzwoFzPcH4412MfeMq0kYNwVxDLBB5tljkoh4RgYhE8484qhF04pqoX0xw7VkmapcSUd0x7qFzwkXz//2bvl0wb70FxqXdSWNg9idJasDYohCfHCIhv/SzzxxedsQV2e5ws1lmW7GaTTHIA5SzW6dMfAegnNCl/5MiPC0EkDA/TPNbQg2sWu0sJ17bn1SWOBrtripjVPvsxyqDsm/f2j7c+TbMIIF3tQdnaQ1RwxWiqh/lMyKRnzxb81eziQehC+IjiuNFJ0zay2fbGhVPLAxQ81v9MVw3y9dsd8SCCU0K2h2YlxaV694+c1q9x/bJE2p7VBa7nQzrxh/l/LieI39P4gd9x5/hZ03iwmmxOOTOt2EvdbNMfVlGbjz7ZlUhY/ixiNPRjoH1So4HLd4wDMMwe4P4kcdgnjxe2iuHYipUpKCXVeGl7U42BggCWakrvh+rC6J6UO8nxDDDYJ07C/+Io0RpAPBWQyVWUza+nh2vC/ZON8o1hVXbDRM4S2vqeqcbwVlay/Lh/UCMb5au5u6njn1pYNANLAgC0UMIgLcSqhgdS8bleKuhcjzHrhBRo5qFREbxiOcWq9tEDVcJ5iTiJ54NM0hEc98gzcXqAP359bQvdjvIBP6G1xcrCogxWjLVzCJk6Llqn22zIxY6rGvZRVTkBGpcSa8BkMWD0hjROncW5q23ABDjfxpbJvUqjDtf2LdPm2VQD61hoXPdTo7l056/buRntLCYjzjVjTkzUzlDmuoj1lnDzOeXRG8Fz4b/vGMAREVt9alW7nivXOqi/u1rMP0I1ctr6v2024Gq9libMdE54cK65qN+sX8eaTVFhTWP7xmmn2eeeQYveMELAABJkuCZZ57Z1HZYyGdK2W6hzKh4LOYz24YSyINI5c5TbqPOZpuZGRVPOfpHbcBGvSbSnp/rO6H2Re6js5RfgKBJAk1yaaKr7i+z/63ljnDNSFe03vAJgHLCeY9eFg1/h1iIKHuOgxZDiiSy0VJZv4DcIgi5Q5auZuXIAx7bPnNaPI/5K8qZUnzM7TyfJH5v/Wa+69xvVIbZ7xt9rkz8nnDUa8df4tnKWW/6kRjAB4m6jeHHQnzRc0khjmPz0mLW6LhR3/FJD8MwDLPzRI+fX9fcELdamYDZqKvxR3EsZQQhqk+1kLgG1ma5+TkzOhRVAwgBn2JySKDX3eh2O4B1zVe/64YEPVfeDBIlPCeere6nRHwtSsdo1Ps+CxQxmZKYr9PuwFsJhQEnTJTbnprQJq4hcvClyO+thupvajJKwj89L72KV+TkR2LhQcbvkHjvdCOVb27JvH27G6t+SE5X/DT8OL8AoWFKZ3XfmN0VfbBoYcNcbsG8tCiE/UuLcs4SqqawuYrczhowdxTpXbcjmhaLeTT+V/FEEAsA5q23wJ6dKd23URg2F3/YbQ07z6Rx/TDj+0HV44P2Mxepoy0ipTJeJ1lcFsfu/BWM/f+/DnupC7sdiIoIP1bVuFaYwJlfRepZIhJJzkVFHzbRIHfsqQ7Gn0pgyiln6lmw/vqr5U9Ej1pjmCFI0+257FX+x//4H7h8+TLCMMRTTz0FALhw4QJe9KIXbWp7HK3DlLKdoosedTJMZjXDbEQ6dURrpildJzLCo9hQFOuIvnoz1Nxxutn9KhnQ0Tb1qBUq+iJ3kDvfVgsRyfEZMbiV+Ysqt951ZfyJIxz95GaRLmgAWSaifD0M6k+xzmJEbnItewMQ62VG6v9b9zWjjEY9i59eB3r9ZbQP/a5H/RRRzZzKct63CMWLDbvN7V5MKPt9p9EnANTLwXBddXwl9aqaLFp+jHiqrv5W0Vaum2toSw4c++QJMYHY4PFZ5GcYhtkfbOSwjC5chH3mNJJ6VQhA05M593LqOlh7llg0Txwz1+CTYYbBPnkC7VkHVgCZiS+c9eROp8x2l3r7yL5T3pPZcUhjGxuBcrMDWTRMTsAHcuPonBlFG/cXx8J6ZS4adVjXfJieBUC6pOVjiix/S+b8y+fYDmC3s/0xr0YqJoiEer2fFu17FsWZNbvVKxFix1TOfmpE3TteE9vsrA00/0QLomI2F68D5DLYc9Bt9AoFMmG18yYjW8bt0DhS3zbN8czlFtCow5bRXcX8+FHZrrHnsNsYdu5iVDzYzUbuPKtH7Ky3bZsid7SxuO25MCpezliG+SuwpifFfWXfEiOIgIab+1wAmUmMTDzh3ITMxHcx+eXldfPvOVaZGRUhxG81I3+bdmYH+C//5b/gzW9+M44ePYowDPHHf/zHOHfu3Ka3x0I+s6PYZ06LlfqCY5dhNot98gTihsztpiZpUvgtDpDWE/AB9DWzHVbE38yxbHhu7nNgPHkRXmcyG+RKVFQQ5cxKZ4oBqEa2Io9zUjWbAsTk2NAbG5Ggr29/gNNGPa+SycmgASfl5cet1voLINpz0weSSsSX+zxMhJGeFblTLm/92Flv+9vtmt8tQZsWmFRPB5qkBQHSqSP5/hOunTW9lW59/fNXnGgMM9FiEZ9hGOaAIZunk7lAfb/IeD0rTOBPOAhrBuwugPkru7arvJi8/+i8+IRyqesRMuZyC8lUE2ZnDQmq6nrDj9XYmmIojSBSjmRLmhPUdTS3oDmC68CQxzLl4RfNJqUifqFikXpZOXLBARBiurO0BjMQ9x+TfYZov+22r4xLJgDTz+fQE3RdJHto6ddRhYKK5qGmwFcj9I6LlQPrmi+e5/IK7NmZwQt2Jf20VAxpMcaTcF0Vn5WL+qQ5DFUy6K+nfI2p7xctRST1KsySBrijshc/85R3T/Mh2seN5mPq/oW+bhRVGi8siurm4tzVD2Ai+0y489kcrfh5gexvYtz/ACwATQDrLcFS8929+DozzG5x3333IQxD/Nmf/Rl+7Md+DP/pP/0nfPnLX0aapvilX/olvPzlL8fLXvYyTE9PD7U9jtZhdgzTq4gYjRGjSRhmIww/FlmL81eU45cGDcSwIv52sJGoTDE75Myn6yhmJvcZoUa79aoYNE1PCqe8HwinURCKfS8MZHPRQuvl3pf8r/haFAeRgyJnhl3QWDeiqJglOmgb2mOVNZzdbmF9o8WgnRicrtfDYScwvUomvlOZuBRbVCMzitKRE1/Cmr8KzF9Rx+96biGGYRjm8BBduCjEedfNGwTk77F04jvdFP4Ra9Bmbggbfdczew+nG6u4GIqUyWImI1WpmjQ8EfHSWVPGGJXNThWF0o2cxVvKcY42Llbisx4jKM05QF7ENzw3G1OXzDOMIFQiqdn2YS91M9e5HyEel9XGWsUxVUEafqxy6HVyDWaDJPe37sYXfxvqNezeVEPiGkhcI3P3u0JAL4uxIXOGLuJTDCmALDNfj9cqex30v6WIn3uNCgsl+tjT7KwBrrtvP6+mV4HZbPTtv15JXraIMuzzVT2/Wm11vNqzMzA8Vzwu9UCgnm71avl2qOeVXEhJ25113fdFOFKT2QxpamzLZa/y2c9+Fmma4sUvfjFc18X999+Pr3zlK7BtG77v41d+5VcwNzc39PbYkc/sGInfgyVdt+zGZ7YDe3YGaaMmSiwLTm89usaencmXEaJcwN9okUlvgrreIGqjAZaaKOr7QU5orRGuwr8K1E8IZ5AsNU17MjffD/LluoQu0BeF8ZJ4G/0xi68D/U3Paz2RlgalZffPPcagcwDt24D7r3tfbH9e/jDs1wlEEX2QTbE6Cr3aQ8YiGJ6LdOqIcL0tLu9IvBHDMAyz/6FKL6A4vglEHniQqsae6akTwIO7uxjM32P7g+s//FJ4q0JYp15TKgJHOeizRrDxVF1UDwKZ0Nyoq/sox3EBXchUsTEyQkYfg5sUZwLNRd6ow3BlFCZV17Y7StimbZP7H8jiZazljoqlIsiRT/fRI3VEjI6AonqAvBtfxwxShDXg+qzYB281RljTFtM8F0Ygn1thfGd6FVGB2fMzo0+xqhMyPlQ+f+jxn0UGxGjm+my1OypaVI/p2Y3P67bF8cgY2Nx1Jdvd7OPR+2OikS2etlpqbmxUPPV6msstpI1a7nhXn4l2p3RfGWanSOVlq9vYq/zkT/4kLly4gFtuuQVRFOFzn/scjh8/Dtd18YEPfAAA0OsN/3ljIZ/ZUdKeLxzFUohkmK2QykZJqYxrAgrRILoTQTLIgT9I6C8T79cTbkcRkvXMfv3xSgdw3/LVBEHl7Aeheu4qT157Pnrmfx8lgjlBA/DiZ3SYwVvi95As9JRr35ieBPxMFC773OdidTQ2WlgpDmrVY2q57NvNeo2x9PddX0ja7sfbCdSxLRdh0qkjSJEve06XrvYt4lh+AHjZJIoH+AzDMEwZuUV9OY5JFpdR/xqw/L03wwxT2F0RM7IVkYwXlA8P3moIM0hE3jw57bVeUAY08V2K9nocjBKHARH1RPeXGMsrKs9d9aCi/weawIy8iK/uT2NzGSMVT9VFBTE0U0SjnotEUA1g5fbNQh6/WSKGp56Vy/YfBlpAA6Ca6ppBAtSyqMRB0UGAHO+1xPNOFsTnjXpL9REEAGr5qCIg916tN+bPzWUC4do3GnXRR+zSzoz3y9DPLTcyUx8Q84qtRGeQCG81m6LCwnVzx2zaqPW57O0zp5E+8TRiPp8yzLbz6KOP4vLly/j4xz+Of/Wv/hX+6T/9p7hy5Qp838f73/9+3HXXXXjJS14y9PY4WofZURK/h+jx8wPFSoYZBRIVaYCnl7OSML9hzI0f9In4OrTN7XBd61E6Oonf27CxLpVX6uIwfZYAzene7mzYULSPkiibYnRNWXxN2T4SuuBryCZKQ7FeDFAJ+r7s9uJgztG+i/sy6rGq354WQMjBpiauA+JydnLRhGEYhjkY0DhH7w2kojjaHUz9n6cBAJVL3dLM71Efa7s5KJV3BxUjiPINVb3Mta2aK7uZAE8CdfH6XMwLbS8IcmOh3ONKE0pZZGSZMG34sdhWkBfnjeWV7EaF/aBxfbK4LKJ62t1czKEOReeoiKGSC5Bvcut0hfjvXe3B9CN4K6F63NzzLCHxe6VzKFokSXt+rh+G2VnLTEjtThYpqvXPK54nio+tG42MILqhY1Aya+mXG0WxkfKwfdyKCw9xq4Xk+AySqSwmNV26WhqVky5dZb2G2TUOerQOABw7dgyvfe1r4XkeHnvsMfz5n/85TNPEV7/6Vfzoj/4omgPijMtgRz7DMPsKGmiSq5scB+s1udXdJWWCq+6UL2OQ614f7BQHPnT79QbDGNLxDgC2Fl9TdH/Ta0ETC3IalSKd+frroVchDNqHYRxvac9XDcEIs9nIRR/lqgb0ic0AZ85GAvluZbOv14Nhs6L+jRo8Fz8n0cIibK0ZGYCBi0PRwuL6jdAYhmGYQ816Ypcu6h/56wDXX3wKY3+3BJw8juTx8yM/zk59bw7b+J65sVh//VXEr3qJELQpcgVQDvxc9KQm4BsFoTxXFUrufQ3Vd8rNIl1ULEmZYF+SAx9P1bO/C5GYqR8A81dE9I7r5rZZjKSN5yaVqx8QYnY87kmhvrz5rU7imqrBLVF7pquaABv1qhDb6Z9ynrCZ455idek503syyLxUNmYu3j73WoyQ075d7NbnX597DqqSIDZcYPjWEzBPHhfbmp7MFrsKGJ7L5zxm9zjo2ToSx3Fw6tQpAMBNN92ESqWCj370owCACxcuDL0dFvKZGwJ/ITDbBQ3oSCAuOseLx5ouVJex0bE5TEnloPgVE9snNOvCqT4R1q/TY4bUpMQtiOYFEX+950CMFB0kn66+uEDxLXpebml27gFhM2L+bpwjcxUF7Q5AQn67M3B/7NmZA/meMQzDMNtDcbG4zHwAiErK6t88BsgqvvSu22Hc/8DIj7OT8Pxl79E54cJ7NFDxNyS65/o+UdROo15uGinmrsvrlFmIboPBxgadvnGRfxVGvary7I1GXcXDqMdYJwqTxs1Jqw1ruZ77dzRdyzW8tWR+vtoXLUM/8WzVXJoa3ZpBmm+mG0R5YTcI1jVrlOW7m0DeUa8J+GWUzWOKfxf/R812DxNqDrqwfozrMHNZPYajbG5qehU1Z6PoJIZhtp+bbroJDz30EACgXq/jTW96k/rfyZMnh94OR+swDLOvIEdBtLCYcyvoE8dhyw+LUKSMftkqVrN5w0oxi7E7AIaKrhnmeY5a0jlw8L5NIrDVbPY12d2PbMdxth3HKcUhGUE4cAJHIv5uRxoxDMMwex/6ftNFI/q+Ut85nqtERF2c3IgbHXPB7B3Gz/dUBaGxvFI6zlUufHLVa5WipQJ6WeSkjIBRvbZGnFuknqWa1MJzy0X8IMguJftRrABIXQf2UleJ9bpor+7jx9njQsRXWWECM0hhBimcbpQ1CEaW0U+vWeoHI3+29LFs0mojLcQzFl+7UaJiAByI8f5W2ezcFgDskydE7NTUEUQbVD5xxS2za2xHrM6I0Tq//du/jRe96EUYHx/H+Pg4Xvayl+Ev/uIvsl1KU7zrXe/C3NwcqtUq7r77bjz88MPb9pQnJyfxoQ99aFP3ZSGfYZh9RXLhUi6zMPe/Peac0iew2zXhHGWhIfWFq0bPvRwUMbSdE2Il5mvuKD1PVJ9E6SXPxfJnw3P7Bq65xZt1eh3sNINe+1zO5xYG3TccP0Dq2lkubAk0uN9rnzOGYRhmb6OPWeJWC9Hj51UvoLjVQrp0FeZyC/aZ00Ntz2w2RDNIFvMPHdY10ZgVfibSp34AY3oy16NJjTtlxI6qBtUjdYCceK6qWgvXbQbz0af7rjOkoD8w/jLQ4mj8QNwWEPn9fqBy8q35qzCCCNZ8eUQKIAT9nHM/TGCFhea4WkUCCfBbgT6PNPdZt2fZkK+rUfGARv3Qf9bp9bJGyNAmogsXkUw1870ZChQXXRnmRpOm23MZhZMnT+K9730vvvKVr+ArX/kKvvd7vxf/8B/+QyXW/9qv/Ro+8IEP4EMf+hC+/OUv49ixY3j1q1+Ndnv3NAiChXxm12A3DbMZinn1uhNfH0CWCd074bgfhp0WdMu2X3TDlDXmInbiczjsa6uL+8V9LO6v/t7Te7ybbHQs6YK+ihJYp6/CbqBy8i9chHlpEalrC+fOAHiQzzAMw2w3hucinptE6jqwzp2FPTsz8LY8dzjcJA9+s+86o9DoNmm1cw5zdRuCHPDadcnicub8DoINoznXQ8WAdtbEFXqEj+7Ap9uXjH1LYzLlc0zbHWD+ivo/xeTktulZSD1L5OkHQsB3ltZUA1wA4vmXLCoYFQ9Ws6kuo1AWeTqose160Ng57flq4e8wQ3Og4ms3bOW3eWkRyfGZTS0EMMxB5Qd/8AfxAz/wAzh79izOnj2LX/3VX0W9XscXvvAFpGmK3/zN38Q73vEOvP71r8cLXvACfOQjH8H169dVpv1uwkI+c8Oxzp0FsD2REszhRBdFdQF/kHhP7NbkbyeiSOh5Dyr5zTWHarXUwJl+11+XjUpcaRC+mdev6LJX+1eysEC3Ld5e37e9fN4YJOorhxey6Ke98hz0/YgWFmEutwDPXVdEYRiGYZjtJGm1Yfgx0ieehrG8gqTVLjX8qL8b9ZKtMIcSis8JMge7UfHKDSyumxfR5f+TxeXS+JetQIsL5nIr28d1bjvQzKLH78jnSBe4rjJhlKE3wiUxX2+cS9vXK2B1oT3t+TCmJ0ca/xc/t8X7FsfAg/qMAXvDtLPXiVstmM1G6blSvy5aWIR5aXHk93Mr8KIrMwpbjdVR8ToArl27lrv4/sZaTBzH+KM/+iN0u1287GUvw/nz53H58mW85jWvUbfxPA+vfOUr8fnPf37HXodhYSGfueHsRsd55uBTHOiVufZ3i50Sn/VB97CUNQQGhnNaF6shNotyG2kTcT1+R2+GS/u2r2JqkBf1jYonRAq5YLKXXe2qmdg6E06GYRiG2U4Svwezsyb6ILmZqGg2G7BnZ/rHdO2OEKQ4O/twomXMp36AZHFZjC1ldI0+vtSd+XrUJAn6lIOvjzs3GzGTE8H9IO++L8nyL0ZPlv0/R3EhQt5GOf8B5cInET9xM7nHCKIsQtEPxO+um3scGruquYUfwJyZ2vjJl6DPf/Q5C7nCVa5+YcwM7N8K0J0Sr9fbbrSw2HcuLJt7RguL4tx5g+ZU+23uxuwylHG/1QtEQ9lms6ku73nPewY+7EMPPYR6vQ7P8/CWt7wFH//4x3HLLbfg8uXLAICjR4/mbn/06FH1v92kfPmWYW4A5EyNW62+hqUMMwi9JHDQcVN0gpSVeZb9bz+R+D1Aex7ksje9ivpM6c+vLIKIGHYhYNTXK261YDWbfeXNac8Xbik5oaIGqmXVE7orZ79Rdo7bD88jXboKQ+aR7tfPB8MwDLO/iB4/L8YozUZOVE1abTW+MSoe7GZDOPYBkZ0t/88cDqxzZ4F2V+Te93xxvDTqQuDWXOx6c1kaZ5JTH8iia9R9ASGUey7gi4geinYh9N/Xq4QdJGCWCfa0X2XkKlRdN1uI8LP9Jue/4TpIXRuGH8NE5sYnJ77pR+L/WgyPsbySrwLQqm9VrM2Fi0NXaSZ+T83TTOSFekt7jsWxMI03aQ6z22xl/LtT56KyuW6xqnYYimapnWQvvJfM4eSZZ57B+Pi4+tvzBi8qPe95z8Pf/u3fYnV1FR/72MfwEz/xE7jvvvvU/w0j30A3TdO+60aFMvYbjc2bEdiRz+waelOVvRyXwewtDM9Vg2X9uClG7Axqgka5j/S/g9Sroex5DPPchvnsbfYzGrdawi3VaveV6+pxP/r7uJXH20sUG0ftlwGtatB88vgu7wnDMAxzmKAGuEmrLZriLizmxMC05wshSla6USY6c3hIXTvLhtcFcDdz6es/i0I1gPWFTM21P0jE79unIQwx+n7oj7+eazm37+3+SBz9ORvtrhLpE89WWfimHyFxTZhtH0YQiUbBGrQvxedACwymVxGO7w3mExs1uh3Uv8w6d1a5yffKuH+v7Md6bLZKmuZlNyIrn2M6mVHYzma34+Pjuct6Qr7runjOc56D7/zO78R73vMe3HrrrfjgBz+IY8eOAUCf+35hYaHPpT/c80vxwQ9+ECdPnlSVAidPnsRv/MZvIB21Sy/Ykc8wzD4jaQ3XJbwomiqhGHl3+k4M1m6kk1nPyVfXAapMmHJmgd0bmBYnB+v1LdgPg+fNsN+eV3ThIqxmE/bJE1ncDsMwDMPcAAZ9Z1KVGwlE+2WBnNk+zOWWctgDmeCsBOkBMTV0Gz3Kpk/QJ3F8yGidYStai/u0leiePuFfi9sxglAK9U3E4x6saz7icQ/O0lrOja+L+cV9IYE48Xu5OdOwjOyqn7+CiD/HNxR6f6xmc0fPocNWCTAMACCVl61uY6ubSFP4vo/Tp0/j2LFj+NSnPoXbb78dABAEAe677z68733vG3m7v/qrv4r3v//9ePvb347v/u7vRpqm+PznP4//8B/+A9rtNu65556RtsdCPsMw+5JhBpZlAvZGDZa2gxsp2qpmt3IyorLYPXeonPON9nUnooiKWbcc4bI3iVst2I067NkZHowzDMMwu45y+8qxThm7bV5gdpggKHWPb4QS8cmVL2N2VJ6+1jRX3Uc7xjbzmGWCvR41OSxq4aGsAkH/vd1RDXCBGcTjco5AAn4QbvhYg8bo5swUknWMHZv5vFE0KLM5tnqOMzyX52DMoebf/Jt/g+///u/HTTfdhHa7jT/6oz/CZz7zGdx7770wDAM/+7M/i3e/+9147nOfi+c+97l497vfjbGxMbzpTW8a+bF+53d+Bx/+8Ifxhje8QV1311134dnPfjbe9ra3sZDPMMzBZb3BRtn1NADdjUHKjZ5IUuah2WyoKBt6fD2vUic3QB/QHHgnFj6K2+EB5N6FnPkMwzAMsxegSkQ9z9uUufkEjysOJmQsKIsU2Si/flB0DGRT2tQP1nXiF/PyBz0WMLpYPyjqh6oHKA9fryRI2x31OOqn1hfAXG4h9Sb7N1rWdFfrU0V9KiCN2iraanEZ6V23w7j/gXWfyyifPf6c7i5k0tlpZz7DDEOaGkjTrWXPj3r/K1eu4J/8k3+CS5cuodls4kUvehHuvfdevPrVrwYA/MIv/ALW1tbw1re+FSsrK/iu7/ou/OVf/uWmsu0XFhZw22239V1/2223YXFxdMMcC/kMwxxodmuQqC8ilF1PvxNbEf6LGZ5GxVt3O8XJyE73CBj0nJndZdgFLmrWy+8dwzAMs9tQ5IcelaKbF5iDS/F9Hmb8Omy2/XpNZ9fbTtn9dHG973aui5zUpDvrNZFdifZ6M17ajp6xX6g0iFstZcCwljtI6lUYQYjUdfr3Xd5Pfz2pUoEWx/Txn3N+AThzGtHj5we9TMw+hEV8Zs+wDdE4o/Df//t/X/f/hmHgXe96F971rndt+bFuueUW/O7v/i7e+9739u3DuXPnRt4eC/kMw+wb9tsErayB66BJR1H4H/a55gZfWh8AgspWzWYjN8hfr8nvKM6MYQXe/fbeHQZGeU+Ea43fQ4ZhGGb3SfwefycdQsoqOsuiYNS4dwhXvB61U7xuIwa59IH+WB21/UAsPKn9K+T19zXFDfoz7JOF7HnmXhPt+dP2TD9A2qjJ/wdqkUHfHgAl/qc9H+bMlGigW3h+VKXJ5o6Mg/BaHITnwDB7nfe97334wR/8QXz605/Gy1/+chiGgc997nP427/9W3ziE58YeXss5DMMw+ww+iC5KJDrwv12R9fQtlWOvvxpyWZxgxrNFiN4hnks5mDDbh2GYRiGYfYaxepWFRsp3fs09t1InN9qVnvx/oPc/UWhnvZTd/bT78Xb6o+x0fg79QMYlPk/34ExPam2o+8zvWa0+AFAxfYYjXrWl0I+Hi0esPgr4NeAYbaH3YjWuZG8+tWvxsMPP4wPfvCD+MY3voE0TXHnnXfiox/9KM6cOTPy9ljIZxiGuUGUiaE3MkO/uB+j9BtgGIZhGIbZi3B8H0MUBWaKYVqvKnazkLBetghQFOaBvLhPrny6nnL8jYrXtwhgeK6K4Ol7fusc+5SXDwDp0tW8E7/V7o8BbdSRti6px4xKmtuqzHz+rO0Lhjk38nvJ7AlSbD1a5wZH84zKmTNn8Fu/9Vvbsq1RjJcMwzDMDrMdk4ziNmhykPZ8dlbfAHa65wDDMAzDMBlU1cjN2Q8vJHCXxe9sZGDRWS8nf1SKTXb7/pYmm0ELAQoS8ZsNJf6vV9FL/SMALbKn56t+EkmrrZ6nqsadmULqOuIxZqZUpcAoY1oe/+499HMjvz8Ms/dYWFiAaY4uy7MjnzkQcHkfw2SwW2Z34dedYRiGYW48W41HYfYvZWOvYn7+oNvpt72Rx9B6DXTppzkzpZz15My3Z2dUI1og3ytAVQGUxPJQfE60sNjfYyIIYARi+2m7o3ojjTKm5fHv3kVViPB7xOxZDHnZ6jb2Ji9+8YuRpv0lA1EUwTAM3HHHHThz5gz+/b//93je85634fZYyGcOBDxwYA4KfCwzDMMwDMOMDo+hmEH9nzaiLK6Grr+RTmY9hift+X0ivvpba0Sr75+6rtlQTn5qmEuLAlazmVtEMCoe0qkj4ncARuAKsZ85MCR+DybY/MjsYQ54tM4P/dAPlV7f6XTw8MMP4x/8g3+Az372s3jzm9+Mv/mbv9lweyzkMwzDMAzDMAzDMAyz79lqM9aieL+eyF9ku0T/Urd+EGRROX4Ao+IhbrX69smenVG3R6MOeC7MRh2QTWzRqANLVwHIhrvHZ2B21pDUqzCWV1jEP6CsV43C4j7D7Cz33HNP6fULCwt4//vfj3e+8524cOECnvvc5w61PRbyGYZhGIZhGIZhGGaTsBi2N9iueMlB919vu2VRN9uBanYbBMplTwES9skTynGPRl00QPQDpI0ajHYX0CJ26L4pifiNOtJGDWZnTfz95EVgehIYUcjnY39/w+8dsyc44I78QdTrdbzzne8EANRqNZw7d26o+7GQzzAMwzAMwzAMwzCbhMWw3WEUEflGCs7DiPmDnP/6goCtReSQc17huUjqVXGdHyCpV8X92x0Y7cGPa3huLkOfxP641QJkY+BR4GOfYZgtkxristVt7DPGxsaUW//IkSP42te+NtT9WMhnGIZhGIZhGIZhGGZfsRvNWHWhnf5OtMawwzjz9coBun+ZqB8tLMJqNsV2ZVRO6jqA6yB1bRhBhKReRTpVh+HH4s4yRkfhuoDn5tz5hucK134QAkGApLWO8s8wDMPsKVjIZxiGYRiGYRiGYRiG2QS6238YN/4o0TuUl5/2fJgQkTjwA6BRU2K+uq1nAZ2SjZCIHwQiX99zRfQOxfYMyUY9AhiGYTZDmorLVrdxWGAhn2EYhmEYhmEYhmEYZgMGCfVFMX8jjIqX/aE5+ovbzD12qy1y8AHEj1yEffKEyrmPp+rqdhSdQ81xS5Eu/WRxecN9ze0DC/gMw2w3hzQjf7OwkM8wDMMwDMMwDMMwDDMEw4rZuuhfFqNDefWmV4FR8UROPdZ37Cetdha9c+Giur2F40guXAJOHocxPZlvdAuoprg5cV/+PsrzYRiGYXYXFvIZhmEYhmEYhmEYhmFGZCNxW/9/zrHv92DPziDt+erv9QR8cvCnPb+vcW/i95A8fl78ceGSaJR78kR25yAT9SlaB4DI20d/7v9GqIWIipftP8MwzGY54M1uv/d7vxfpkNk/n/70pze8DQv5DMMwDMMwDMMwDMMwG1AU0bdCtLDYd92gxreWFPLNZkPdr2xf1GLB4jLMZiO/cbfQ9LbdhdFsIPUDVQ0wDLTd1A/6Hn87Xx+GYQ4HRiouW93GXuW2227L/R2GIb7+9a/j61//On7iJ34CpmmW33EALOQzDMMwDMMwDMMwDMNswCCRejsE7EEZ+6ZXUU1vDc+F1WxmsTwod8Ynfg+GL643pViPghvf8AMkrfbI+5+02uoxy6oDGIZhmIwPfOADpdf/8i//MjqdDt73vveNtL3RZH+GYRiGYRiGYRiGOSTYszO7vQvMPmC7BewyVz4AJbwTFLljVDyYXkVdACButZD4PdX8FoBw5dO2pppq+8Psvz07oz4PtHDAwj3DMFsm3abLPuNNb3oT/tt/+28j34+FfIZhGIZhGIZhGIZhmG1ivbz7YRgUmQNIEb3VVi59isUhUX9dcT0IgEYdScND6lkj7ystCrCAzzDMtkEZ+Vu97DM+//nPw9UWV4eFo3UYhmEYhmEYhmEYpoSyHHOG2YidELoTvwer2VR/pz1fifj0s0yUj1stmF4FRsVDfOoYDD9G4tmwrvkwZ6YQXbi44WNbzaYS8Y2KB6vijZSrzzAMc1j5R//oH+X+TtMUly5dwle+8hXcc889I2+PhXyGYRiGYRiGYRiGYZg9Bgn3lIlPGfd0nQmRf68y9CseTAxw9Ps9mH6M1LNgL3VhBCGSxeV1H58WAGj79BgMwzDbxnZE4+zhaJ0jR47k/jZNE7fccgve/e5341WvetXI22Mhn2EYhmEYhmEYhmEY5gaiN4odlImf9nwhpEs3PIn5qR/AaNQBz4Xhit/Tdie37eK2AMBcbiGZaiJ94mkYM1ND7Sftw6C/GYZhtsQBF/J/93d/d1u3x0I+wzAMwxwy9IkjwzAMwzAMc+PZaCxWjMkxpifFL34Aw3UBz0XqOjAo8kYK/EDmmi+685OpJpIHvyl+HyJSJ/F7ML2Kam5LY0gTPJ5kGIYZhb/6q7/C1772NZimiRe/+MX43u/93k1th4V8hmEYhjlk8KSLYRiGYRhm76CL5ICI1KFse+WAb3dEo9qpJowgghGE4s6eK/4H9EXvpD0/t10S8YdFd/bntsNjSYZhtosD7sjvdrv4gR/4AfzN3/wNjh07hvn5eTQaDXzHd3wH/vzP/xzj4+Mjbc/cof1kGIZhGGYPY8/O7PYuMAzDMMyepaxpKMPsJHrMDon4hOG5QsSvV2EEEQAIN34QInUdcSPX7dum2WxsaZ/0CB0W7xmG2RFSY3sue5R3vOMdaLfb+Pa3v4377rsP1WoVCwsLmJmZwc///M+PvD0W8hmGYRjmEBItLO72LjAMwzDMnsUcMj+cYbYb3fWeE8/9AGZnDUa7q9z4SsQHgCCL2AFEnj5F7WyWtOdveTGAYRjmMPOxj30M733ve3HzzTcjTUXpgOM4uOeee/Bnf/ZnI2+Po3UYpoRBzYYYhmEYhmEYhjn4REPkhzPMDcN1lVCvsvHbXfU3GnVAE+0NICfibzbP3mw2kLTanIfPMMyOYaTistVt7FUWFxfxvOc9r+/68fFx9HqbOC9vx04xzH6Gy2YZhjnI8DmOYRiGYbaG1Wzu9i4whwSr2YTpVfKXZgNpuyOEec8VzW6XV4SwT+L+Os57o+LlsvdHIfWD/soAhmGY7STdpsse5dixY7h4sd8c8OEPfxh33HHHyNtjRz5z6OFBCcMwB5liczKGYRiGYUYjbrV2exeYQwA1ts1dJ2NtDM8VrnxfivcFB34R3Y2vH7+jHsvF/WH2HjzOZ5i9zSte8Qr8xV/8BV7+8pcDAHq9Hp773Oei1Wrhr/7qr0beHgv5DFOA3KskfjEMwzAMwzAMwzDMTqI3u1XXtdowKh6MRl1cEQRIp46IjHyv0NxWuvPXy8W3ms2RxHwWiPc+/B4xzN7mPe95D65cuQIAmJiYwM///M/jzJkz+JEf+RFMTEyMvD0W8hmmgC7g85ciwzAHAT6XMQzDMAzD7A/65qN+DxYgxHzXhRGEIiM/CPtc+akfIO35A01pozry2e3NMMxOY2AbMvK3ZU92hhMnTuDEiRMAgMnJSbznPe/Z0vY4I59hSuDBCsMwDMMwDMMwDHMj2bAiPAhURn7qOrl/6SI+sR3zWq5SZxiG2TxPPfUUXv/61+NFL3oR3vrWt+L69esAgK9//et44oknRt4eC/kMwzAMwzAMwzAMwzC7CAnm9NOoeOpvPas+bXeARh2payNt1MSVMlZno+ryUUR5FvAZhrkhpMb2XPYoP/mTP4mnnnoK//gf/2N86lOfwrve9S4AwBe/+EW87W1vG3l7LOQzDMMwDMMwDMMwDMPsEYyKJxrcQorzM1PiH406jEZdufGNIOy773ou/GEd+iziMwzDbA9f+MIX8Lu/+7t4xzvegfe///345Cc/CQD4e3/v7+ELX/jCyNtjIZ9hGIZhGIZhGIZhGGYPQE78XNPaYMDvQH/T223cB4ZhmB0n3abLHmV6elr9fubMGczPzwMAPM9Dt9sdeXss5DOHBnYVMAzDMAzDMAzDMHuZtOerKB2r2YTVbApRn+Jzjs8AAMzOWnYfTfTneS/DMPuKAy7kv/3tb8c999yDTqeDarWKKIoAAB/5yEdw7ty5kbdnb/cOMsxehRvYMgzDMAzDMAzDMPsFw3NVE9u41YLlBzDco1mkjh8AnqtuZ3qVkee9xfsUM/l5Hs0wDLN5/uf//J/42te+hptuugmnTp1Cr9fDC17wApw/fx6f+MQnRt4eC/kMwzAMwzAMwzAMwzA7yGZEdgAwpidhtDswfBl3M39FxOk06gAg8vL9AHGrtSk3fnGf9Ia5DMMwO42RistWt7FXue2223Dbbbepv1/72tfi5ptvxute9zqcPHly5O2xkM8wDMMwDMMwDMMwDLODkEC+nphvVDzlhk97vmp4C9dFvLCYu63lBzCmJ8X9GnXYnouk1R56f8r2ha4bZl8ZhmG2he2IxtnDQv4HPvCBbd0eZ+QzzCGFXRYMwzAMwzAMwzA3BhLGB83DEr8HzB3NX+m6SF0H8dwkrHNn1X2tZlNk6S9dhdHuIllczj3ORvuhHq9sH7Tfec7IMAyzM6ysrOB7vud7Rr4fO/IZ5pBiVDxYFQ9xq7Xbu8IwDMMwDMMwBwp2MzODGOR2N70KMH8FZrMhrnClG3/+Cixy3s9MwfRcIeBXPHVfo+IpN/5Gx90oxyUfwwzD7DgH3JH/xS9+Effccw+efPJJBEHWmDyOY1y4cAGnT58GAJw/f36o7bGQzzCHHNOrwGBBn2EYhmEYhjlE7JTQrjuYBzmf94LIvxf2gclDczL75Amk7Q4MKeSnPR9Gu4Ok1YY5M4V06SowdxTG8ooS7w3PRdrzN3xP+X1nGGavcdAz8t/ylrfg1KlTeMtb3gLLstT1nU4H/+7f/Tv83M/93EjbYyGfYQ4pKm9Rsl6JJcMwDMMwDMMcJAaNeYcVOvWx80aRKWXbpGiU3Rp785j/xjPoGKHjg4xVyeIyjIqH6MLFLLN+Qd5XujmNdlfct9lAJLPzTa/St/2y45PFfIZhmBvHt771LXzyk5/E3Nxc7vqFhQX823/7b/Ev/+W/HGl7nJHPMIcQ06sg9QOkfpC73qh4nIN4A+HXmmEYhmEYZm+xnsCpC6HrXQcgi0cpuZ0eibJb40Gr2dyVx2UyBhmpEr+nGt7q/6NjKu35QCDmcnpzW2pSSxf9er2Jrf7YDMMwu05qbM9ljxIEATzPK/2fYYy+3+zIZ5hDSOL3YAJqEkEDRdB17NC4IejOGHbFMAzDMAzD7G1Gaf6pC6wE3Tdutfoc/fT7jYL2gcegNxZdSM+J9IW/y+KYUj9QVRzKoV9g0Hu60QIVHwcMw+waBzwjP47j0utnZ2cH/m892JHPMIxojiSdH7qoz+w8uiOLYRiGYRiG2bsUXexF5zMw3NiuKOLTWPxGw+Lt7lHmwl9vkYiid4pif9l2gPUd92WO/Y3uwzAHGT72mRvJN77xDXzoQx/Cj/zIj2B2dnbk+7Mjn2EOMYbnKmcHszukPV9EGmF3JlPswGEYhmEYhtmY9fLvgUyI1SNRivcxKl5fZEri97galtkWipUdZZXWgzL09WNTvy3PE5jDAB/nu8tBb3b78MMP49Of/jQ+85nP4P7778fy8jK+4zu+A3fffTc+/OEPj7w9FvIZ5hBCAzgW8XefxO/Bqngwmw0kC+zEYhiGYRiG2U+sF4eiZ5MD2DXjBrN/sJpN1fRWZxhRnY43Ndcrmefp7nsyE+lVJPrjF49fhmGYHeGAR+u86EUvgmmaeNOb3oTf/u3fxt13343JyclNb4+FfIY54JTlLxJFxxAP0nYHw3ORTh2B5QelA3eGYRiGYRhmd8g57jH6uHk9oZ9hhmWUY4fc9evm4jcbSP0gJ+IbFa9vLsLHLMMwzNb41//6X+PTn/40/viP/xgPP/wwPve5z+GVr3wlXvGKV2BiYmLk7XFGPsMcYIqlk/rfg/IUmd3BCMKca4Zz+hiGYRiGYXYfEjp18Z7HzcxOkfb8DWOcNkIX4wc2xG211dyD+qTR/Yq9IBiGYXaUNIvX2exlLzvy3/ve9+KLX/wiFhcX8cu//MuwbRu/+qu/iqNHj+K2224beXss5DPMAaboxKfGRvokhCciu0/qB0DBEcPvC8MwDMMwzO6T9nyYzcam769HnTDMVthoflBWiV28Dx2LNO/QK7StZhNWs8nRqwzD3FjSbbrscer1Ok6ePImbb74ZN998M+r1Oi5fvjzydljIZ5gDCE0YaKDGk4d9QBCs68BhGIZhGIZhbjyJ30PSao9sslivEnY34DHm3kWPb9qK0aoY4zRMpj5d9Fx9o+KxK59hGGab+OAHP4jXv/71mJ6exmte8xp89rOfxate9Sp87nOf25SQzxn5DLNHGcZRsR56IyP9b2bvQa4Xs9lAtLC4y3vDMAzDMAzDlDHqeHw/9qDaj/u839H7LuR6MozwXgxy35f1SjMqHgzP3XCeyPNIhmFuCAe82e3b3vY2mKaJH/uxH8Nb3vIW3HHHHbAsa9PbYyGfYfYoWxkwleXf86B875L4PVgVT4n4VNLK7xfDMAzDMMzus9ls/L0ylmM3/t6mWEW9meNGv4/VbKq8++ICgYrUkbGeeoyOnplftl2GYZidQOXcb3Ebe5X//b//N+677z585jOfwSte8QpUKhW8/OUvx913341XvvKVeNnLXjbS9ljIZ5h9wlZKLFnE3/voA2a9QRXDMAzDMAyzu+jCKLGfxtf7ZT8PK0bFQ9xq9eXTb+Z9M70K0p6fi8axmw3RkwuA4blCxJc/14PnkQzDMFvn+7//+/H93//9AIBut4vPfvazuO+++/CJT3wC99xzD4Jg/XNxERbyGWYPs10DJx58McPAA3WGYRiGYZh+VAyiNlY6qGOmg/q89iokvAP54wzY+ntBYn3Saued+JqIb1Q8QD5O0aGvVwrwccEwDLN1arUaXvva1+K1r30tAOD69esjb4Ob3TLMHoYHTIcHfq8ZhmEYhmH2Jrp4b3qVvguh/73XxnYcr7M3MZsNGBUvJ5YbFQ9mszH6tgqCO4n2JOIbnquuV7eRwr3+2DpGxeu7jmEYZltJt+myh3nwwQfxJ3/yJ3j66adz14+NjY28LRbyGYZhDjmmV4HVbMKoeLkyXIZhGIZhGKYfJbQ+/9kwmw3YszOwms1Nia83kvXE/GJOO7PzmF5FiO2NuhLzARGzSb2z9PdllPcm7flKuFfXSWFfhwR82rbuyC/7m2EYhhmND37wg3jxi1+MN77xjXj+85+PT3/60wCA3/qt38Jv/MZvjLw9FvIZhmEYBQ/WGYZhGIZhBqPc+cdnsuuOz8CYnkQ6dWTPupcTv7dhlYDVbO65SoKDjFHxYExPAp6rnPODjDUbvS/kxrdnZ5TLf9R9WQ82+zAMs1NQs9utXvYq//E//kf8xm/8Bnzfx1vf+la85z3vAQDceuut+L3f+72Rt8dCPsMwzC4zqsNmJ2ABn2EYhmEYZjjiVgvmcgtmZw3p1BGYyy2kriP+OXe0dFxXNt4riqMbOea3e7you72p4Sqz89B7aXguUtcRx06jDkDm2g9oeFsm5tO2KPap2NRWxeuUxOrQ/fXH3akond2e6zAHC6ooZw4QBzhWZ3V1FT/4gz8IAHjDG96Ab37zmwCAU6dO4Yknnhh5eyzkMwzD7CI0cdqNx7VnZ3KDahbzGSaDJ5wMwzDMekQXLiJ6/Lz62whCGO0uAMCcmeqLqilzxBeF80FC7aD7byeG5/J33w2AxEeVWy+PGWhNaPWYnWGhOYUenUPifNJqI2m1171/UeDfbkGfFhoYZjOUHTu88MjsF17xilfgs5/9LABgcnIS165dAwCcP38ek5OTI2/P3ta9YxjmhlNsasTsL8xmA2jUEWsTwR1/TDnQLxvQ87HEMAzDMAwzPPEjjwEArHNnAdfJxPxmA8mCEN+tZnPTohMJoNs9RrNnZ4R46/eEYOu6PA68ASjXe6OOtFFD6towgij3/2HfBxrT0zbVNmTuPoKg9H60YKBvBxDHbNHRv1ejopjDRfEzYVQ8gM9XB4ftcNXvYVf+j/3Yj+EXf/EX8dRTT+HEiROIogj/63/9L9xzzz3KqT8KLOQzzD6FHQ0Hg2hhEZDNrIroDqztxGw2lIjfNzgf4rF2ar8YZi/BxzfDMAwzCvEjj8G89RYYQYD41DFY81dhNZuq4nGj8VNxbK8L+Pp99NuN8l2lLyaQK5z+psaobBDaeYxn3wzMX0HaqCFpSFd+EAnRfYjFFP090h34epRO2vMHVtrqtweyitxic1zaDj0OV+4yO8Gwi5z6cW/Pzqhm0MzBYDsy7vdyRv6P//iPAwDe+c53quve+ta34g1veAPe9773jbw9FvIZhmF2GT3XkqBJm9VswkT/RK14n2EmXeq2BRFfz8wcZgLHEzxmN9iKm5FhGIZhbgSUmW/4sbhi7ijM5RX1f10MtZpNGJ6LaGGxdCyoR/OMOvYqil5Jq42056tt6kKv6VWA5z8bWG6pKgJm5zCWVwDPRThdg3XNRzzuIWq48IIQ8AP1fq33nhdjdAzPRdJqZ2N7+bPo1AegMvMBAK6rRHqz2cjfTq8M2IaxPy8SMYQ6t81MIW13Bt6GjpfiuXCjmCiG2WusrKzk/nYcB9VqddPb44x8htlGdsMlzwOi/Y0+cdOzKKlx1Xrul1FFfLpd4vf6BuuAzEbVMl0ZZq/BxybDMAyzp/ED5bJOppowghBwXaBRF1EnKHyXua4QbuVY0Gw2BkaZDGqgux72mdPidtp2aRxIOezmzJS4seeqhqvMDuIK53zimojHPZh+BGdpTfxPi7wZ9N5uNO5f141Px6HrqsczPFdF6uTidpqNbW8oyuM4BtCO4SCAMS3ywYvHxnp9Ilj/OIBstdHtHm94Oz4+nrvoIj7l5Y8CO/IZZpu5UW4D/gLb31CpdU5cB5TATg6aQQPxokNhPYpOf6vZzA3UqXTWqHgwaB9afIwxewc6ho2KB0tzmdExqkcEsOOLYRiGuRGUfd+k7Q7MRztIT51A6llIUEU6VYfZ9gHXgRkESFptZdbQHdMkqBuNOgzpUiWXtak95rD7AgCQ20n9QFW1qe/URl3EsTRqMDtSSPbLM9WZ7cG89RakT16EMT2pxPvUs0S0jh+IxZQhMQq3Lc4bcpE5lKOvLRQYnisek0R9/fpGHWh31DFpS8f/VsZXPDZjCP08li5dVf067GYjOx6RPxcCyFURbfV44vnC3uKgR+sUCcMQn/zkJ/EHf/AH+OQnP4nr16+PdH925DPMNjKKuLoVyK3N7F+Kg2/VrEqWu+qlsWWOhM3k1JteBfbszMD/64P/Msc+w+w2hu5obDZgnzyhjmk9MmAn4HMuwzAMo1M2BotbLSGYf+sJ8fe4h8SzkbrCP5ccn8mNsUhgtc+cRtqoCSHXD5BOHUE6dSQT97WqzSKDxoimV1ERFDTGs5pN1dg2bdSUaJa6jrjzCEIyMzrxeBaHY3bWhIjvx6JyIwiQXLiUmwcMC0UnEfr9zWYj26YrHPhqHuK52WXuKIzpSXHsuY742aghPD2LdOoIi57MltHPVUbFEwuVskIkbrXEIhMdj3S7QpUQmXd4XM7sR+677z7883/+z3H06FH8xE/8BMbGxvCnf/qnI2+HhXyG2YcUm14x+5M+Fxc5Z/TsSmDo5lK0wKNP4Ipu/GhhEWnPVxPNuNXK3PjaoJ/y8neCsvxXhtEpOy6Ki19wXZWrqWKhmg2YzUZfGfh2HGejTqoZhmGYw4E+7iISvwdrWXxH2UtdIdpKMT+dOpKPU5RifdLw4J+aRDw3iWi6hrVnNVX0CTDceLAolCnxtsQUYgShiHJxbRhBmIn5zI5hL3VzjmM6RlLXUU55vVJ2vfGLfntl/CmJZspF5gRB/m8/QOo6SOpVGO2uOgZSVyw+UUzUKAwynLERjQGyc5TqyxAEQBConiHqPCSvp9vqFSaE1Wxu+phSkWLM3mAXonXe85734I477kCj0cDs7Cx+6Id+CI8++mh+t9IU73rXuzA3N4dqtYq7774bDz/88MhP7+1vfztuvvlmvPa1r8XCwgL+63/9r7hy5Qo+8pGP4DWvec3I22Mhn2G2GRbZmWEoa9Kjl8Tq0Tdlx1SxIVrpY2j3U9mrJWWEid/LuXNy+ZhbHHCX3V+vXOHPCjOIohiRy3OV7pzcgpcWHwCIwb0+wKefm8165Ua7DMMwTBk0xiqOaaLHz8P60iNKJDeCCIAQ0I3pSeF+PnUCCAKEcxNYO1ZFWLPgT1aQuCacboSkXkU6dUTcbxMLykajLsRbLcJHjfeWriJ1HbnI4MAIQiQXLm3lpWA2gBZP4AcqysZcbsFod/tuO2jhRhdC++6jx+Mgf8ykPT+r/KVjoN2B0e6qaCXaj3jcQ+pZAADn0QuIH3ls9CdbAo/7Dy96Pzij4olGt3q0EyAWHdvdLPJJnr90ig2daduj9HMwvQqSxeVt7f/AbJFdEPLvu+8+/PRP/zS+8IUv4FOf+hSiKMJrXvMadLvZ+fjXfu3X8IEPfAAf+tCH8OUvfxnHjh3Dq1/9arTbozVc/vVf/3VMTU3ha1/7Gv70T/8Ub3jDG1CpbF5n4Yx8hmGYXWDQQHZQLv4gAZ7+V7y/3kS3eJvSyebCYu52xftuduC93v14MM/oFBd9ivn3ypXT7qjGWAiyCYABiAkA0NesjTB8L7fNUcR506vAePbN2zaZZRiGYQ4OxTENjZ0Sv4fk8fMAAPvkCSRzk0hQhbncQnh6FtY1H8nxGdhLXazNTqL2TBeJZyOs2YgdUwj6S2swNVf+emNFlYVekREunisaStL4UDY1NUAiv1xkaHc5VudGQNEhQeaQLzP36KwXp0nufQD5hRo3/16SeK+Pj+C6MGR1oxHI42vqCFLXhulHsJ68jGhhEdEIT48d90wR/bykLyjq43rdna8WLmlxq1EHjs+IxSY/EH1IZqbU+cpod3LHu6n10KLHL/vsmM2GeCw26hxa7r333tzfv/d7v4fZ2Vl89atfxSte8QqkaYrf/M3fxDve8Q68/vWvBwB85CMfwdGjR/HRj34UP/VTPzX0Y73zne/E7//+7+PWW2/F93zP9+CNb3wjfuRHfgSNxubijNmRzzC7CA92Di/2yROl19NgfLMid/H+xRxWo+INJa6rhYBmY8cEdz7+mUGULVLlJp9FqDGbnLxSlj5NWpNWW+Rw6rmwGP0YLHPMMQzDMEwRo+L1xT4ki8ui6S2A8PQsAJGTHk5XceXuadSeEd8xzvkFRDULiWvADJK+beuRiBSnokeq0Ngv9QPV7FbPmVZCLwlh5BIHmyx2musvmEO6dFWNS3QRn177YSM19dvq71sqxU5d2KexkPq/HyBZXEY8JypDkuOi35ARhDCCTMQflY3mGczhQz8vqQVGZH0d1OKkdOEbQajum7qOqhqiRbBiZr4S8QPxf4rYXC/iCYCYNzB7Bmp2u9ULAFy7di138f3hzqktuagzOSkMY+fPn8fly5dz0Tee5+GVr3wlPv/5z4/0/O655x489thj+PznP49z587hl37pl3D06FH86I/+KP7kT/5kpG0BLOQzzI6znlCU+D0u6TqkRBcu9meVDnBCbeUYoUE7DaKGmRzoA/Ck1WbBndlx6BjTmzuTg0cnJ+Zrv9NAH1oGrI5axGq1+3pQjELaqG3qfgzDMMzhIm61sqamVOE4M4VouoZwugrTj5C4psjEd0x4qwmunakhari4/oI5mGGCzgkb/hFHRJy4/VEpOTRHqv5dqXLUpaCftNo5EV/R7uS+V5mdoXKpqxrP5sbbWhSmzrCRraZX6Rvjk6EBQK5KQ7/ebPsiHz+IkByfURFLmxHx9X0p22cW+A8vtJiU9vzc4pV+PqMKIjGmt4VoXzTQFMb+OVxXnMfk8a2b2frm3BWPe4LsNbYxWuemm25Cs9lUl/e85z0bP3ya4m1vexu++7u/Gy94wQsAAJcvXwYAHD16NHfbo0ePqv+Nyh133IEPfvCDmJ+fx8c//nF4nocf//EfH3k7HK3DMDuIPTsjBtAl5baEHoPCHC7Mk8dVuTXQ7zhWx8Q6+faDRHZdGCXiVmtdZ8KgsvCdgo95BhALVXoDq77GyyW5vvCDLFbH09w79H/Kn3Xd3KC/WNprVDyYGO5YTPwerPkrW3/CDMMwzKGABCuz2UD8vHNYPl1BdSFC4hqInQq8qz34kxVENQtON0HimPAnHPQmTDjXE3irCaqX1xA1XFhymyr7vBiTAiA9dQLmciu3mJ0WvgP7kO5tAEg3iHhhtk7y4DcR33U7nPMLMDcw14wyTqZIzFx0CdC3AJT6gXI0m80G0O5mx5TskRBvYXyuHl/bhtVscp+hQ4g9OwM06kguXOpbZOob98tjUhfXU9cREWAU+yVF/qznSDb2V3/Tua9RV9VIBM1rjYoHzAlh1ghC1mEOIM888wzGx8fV3563cX+Zn/mZn8HXv/51fPazn+37n2EYub/TNO27blRM08RrX/tavPa1r8X169dHvj8L+QyzQ5heJRvAa18QustUH2wNKyYxB4fo8fNqcJv4PSXY6+gZq3qJYLGJ7SD0gVNZXn7R6aMPcnjQzdwINqoSKZuQ9gn2RfQBP/3d7ogJbEHMN5sNmGgM5T6jxTA+VzMMwzDEet8LFBmRuCbCmoH4hIOxRSHmrx2rInFEgTz9jOXXWzhmYmwxwtqxKmp/tyqubNQBKcSqXHtAiFdBAOPJi8D0pPrOAwYL/6nrwFheyWWs83fbjcG4/wFARmyWjeOL4/IiZfGDRZOYUfGyMZLnwkA932TXE9n4mDoiBFBpkNjqMZD4PRX5QPvE84nDSTp1BMbySu66Yq8ORaDF6vgBICtgaRxPAn/qZvJlUq+KbQaRut4oNM4lV76uyRQpLjwxu8QmmtWWbgPA+Ph4TsjfiH/xL/4FPvGJT+D//t//i5MnT6rrjx07BkA4848fP66uX1hY6HPpD8Pa2hr+4A/+AF/72tdgmiZe/OIX441vfCPGxsZG3hZH6zDMDaKY02Y06oPLY5nDw1z+S2DY5rCDcv90NnN86Y4ehtlJitnBRYrxN2nPFw2x2h0hUGhCRR9ycqDn/lKprdGow5yZgnnyuHAAuf1N4YDBnzEWOhiGYRidQd8Lid/rG09ZYYrEMZVwT5ihyMJPHOHyq6wm8CeEDz+ariFt1ETkhBbxljZqqjeMEsUoIqfke42+AxEEYhGgUVdmEp6T3FhW7rpJRQnu2LiCjgmqYgSEgF+MCZS320qcDjFoUYJjOg8P9uwM7JMnYLS7ykADIPeztO9VEKjxvejVIBz35LbPZ+fbMIJ8G2aK40nqVSH8a02fjYonxv7NRm5+kboOjOlJPj73ANuZkT8saZriZ37mZ/Anf/In+D//5//g9OnTuf+fPn0ax44dw6c+9Sl1XRAEuO+++/Dyl798pMdaWFjA7bffjl/8xV/EAw88gA9/+MP49V//ddx2222Yn58fbcfBQj7D7Bjk9KTfVYzDzBQM6ZYxGvVtFUz5S2j/ET/yGAAhaupZ+IOidOhvVcmxgRu/GFNC9y1mkduzM6WPwzDbhT07o47zYapIBjW3zQn8ZTm/BOUCy/z81HXE7QNtYkv3DYK+z5/++3oLZ3zeZRiGYdZdmJ6exPVZB2YA4Ym7yiIAAOxUSURBVMqXXz2JY8IME5hhooR9pyuUCG81VLdJXBOpayOYayB1bYRzE0hdG9F0DUm9ivD0bC73HED2XUeCvt4Q0hVibnLhkhgDnjzBrukbTP2CL4wFWo73emw0Ls9V6s5MqQUbhetq4yFbjInmjipxNLpwcXNPRIOqzml+Mcr+M/sX++SJ7FKYTxqeq/Lqh+1PpcfrkIBP15mdNSQND6ln9Yn5RhCpfg+57en9s6R5x2h3s4WBdkdU5/J4/tDx0z/90/j93/99fPSjH0Wj0cDly5dx+fJlrK2tARCROj/7sz+Ld7/73fj4xz+Ob3zjG3jzm9+MsbExvOlNbxrpsd7+9rfjxIkTePLJJ/HRj34UlUoF3/zmN/HKV74SP/dzPzfyvnO0DsPsAORo1kvHDFoVlivFAGC2O6rEbLOPA/DgaL9jnzmN6PHz+YqNkmibXMzOBtukY8KWx59ewkiDe3JJULm1vn2G2Q7s2RkkrXbOfaOf7+j8V4we0yMA+uIA6HxKbvyg3HkIQEQQ6H9rwn0Rw3OHGsQXo9LMZgPJAn9mGIZhDjPrRevEU3V0j5uoXUqQhAYSx0CitCpL3dYMU1gBMLYYIXZM1C8G6JxwUXsmQDgt5g7xuDBnhNNVxFLkN4MEyVQT5qXFnHCfSnd+cQGcbmucPC5i57iR+w3HuP8B+K96CbyHnt4wQ37YZrd9t5PHgqjmEKJn5nKWIqh0629njj2N6/RIT55bHCzskydElSxVy8qxPS1MUd8Nyr6ncXdZbw9Dc86raqGC6K+L+YYfCyHfs1SsTupl59FougZ7qZsZdtr9Vb657U4dEcK+7JsFsLayK2xjtM6w/PZv/zYA4O67785d/3u/93t485vfDAD4hV/4BaytreGtb30rVlZW8F3f9V34y7/8SzQawy3CEn/+53+Oj33sY6jX61hYWFDX/+zP/iy++7u/e7QdBwv5DLMj0OCFxCvlitC+RIqrxcD6Ax1dtC/LUR9mG8P8n7nxkIhPGX2J34NVcNEXB8MbZePr77M+eDFkSa3RzucIGuDGy8z2Yt56C9BZgyHzd8syX+nY1I/3oohf9rP4fwD5vPwSoV7dBsic+UEgMoe12w+KFyhmCKvPn+vy54ZhGOaQs+4Yvu2jdqmGtZnMhmF3Aed6gsQxYIYpwjETsWMgHAMqqwCQwAohmuN6NvwJR8Tv1CyYgVArEteAf8SBtxLLrc7kxFojcPNuVNkA0ry0CMicfZTkWDM3Brs9YKyisVHkpj4XsJpNMVbRqi4AKKGTHMuEHlUyrFt6EHT8W1QJrO03j48OFqZXEYYwqvyWrvvUD1TPDTWWHjQeL6IbdAYci3Qcm20fqWch8Wwkng3rWt4QafoyM79RE45+faFgncc3vEkY7Y5Y7NyGChVmNDYTjVO2jVFI043vYBgG3vWud+Fd73rX5nZK0m63c/n7hGVZMM3Rg3I4WodhtsjAuAVZQkYr1YAoFUvqVcTjnviC0XLb9KgU2qY9OwN7dmZgeeIgwYkjIPYfxrNvVkI60N8YisT7jQR8HdOrZIMqmshJZ0TaqCGZaorBknTnm80GjIrXF/PDMKNgnTsL89ZbYHbWhNOv4MzS0QV5uhDFSSX9nbTamajeaottBEF501sdvUFucVAvS21VOXoJeqm4+tlsAEEwdGk8wzAMc3BZL4bNW4lRv5jAlNppVIMS761AiPqV1QRWmCJ2gbBmIqxZcLqZ8ccMUphBCitMENUs+BMWwjET/hELiWsiHveQNLy8WKt/l8qm76lseGq0uzDaXdUIkrmxpF96CP4LbwYw2hxNP85obqDmkc0G0KiLMT7dvrMGw4+RNAb0QdhI5ByBtOdveVGA2bvYszMwKh6ihUXVAyRptdXYXMVjar8Xj6+Bx8eAnlU6ZtsX5zjPRlgTnuR43Mu79P04b5ikz0PxcWkO0u6q35PjM4jnJmGdOzvMy8EwQ3PixAk89dRTueuCIMCv/MqvsCOfYXaLgS6cRh0oDI7jcQ+JawLjHoCmWE0LAiStNkwqcfUDWOTm99xc/IQ+0BslkseenVGr5OvuM7MrxI88ljlp1oGc+8OswvZl40vHMkWNGEGYEz8HZZIzzCikrp2J+PKYovMN/Rzoei9GABDSOUilr/rnhH43CoN/tS3dDaS59tN2Ryy2uo74TEgXDjB4kqE/riofHrTPDMMwzKFA/44zKh4sLR4x7fkwAEQ1C7ErMvD9iVzom8jNdwwACcwwReIYKis/cU3Ejgm7GwvBXv5PZOub8FZj5dA3fSFepZ6FNHDEwrT2nac7ZZXJqFAxx9xY7HaQGQg2UVGtG4BMryL6r7mOGIdplFWCA8iJm1uZGxar0bczqofZfaxmE4bnqkW/XOW3HJeXxQVTvOaG4+R2R0Xc5HpYAbm/o+kaEpcWOUUlkulHiMc9mH4Es+2r29H/zLYvI3gcQM4lAOTTEnQj0XqLXszOsQvROjeSV73qVfj4xz+OV77ylQCAtbU1HDlyBDfffDPuvffekbfHQj7D7ACmVxGCkJZBDgDBXAOxbGYV1iw4rgkHgHlpEebMlPiict28s9R1YUBmzC0u9wlgw4j55MwGoCYY29lkl9ke1CCnGN2Bjaswhuq1QELnRvEjDLNJjDtfCHO5k7lcZFUSkC1C2VrfkLTkXJej2Mw2CHLO/b7GfnT7QBPXtUUA/dyqtkEDen07ZRQWClT2v/b8AC4hZxiGOayURiPOTOH6s4Q7OnHEt1xUBRIHMEOoBrhKuJdRO7ELxK6YM5BQD4gcfcLpJuI+rgErBBLPVmJ+MNeAs7QG0w/UwjUg5xNyUTtZXObvrF0m/dJDSM+dzWJFSlivcWzZ+6eMOlrDY0Ner1drqH2Qhoat9PwhoZeIFhbZNHaAMBp1JIvL4neq/pD/0134ffejhUPd9OK6wnyjj9t9LRufxurkkp9qqoUo049g+gDgwm4HKl4HEOc/w4+VadIM5Pmx4Yk4HlfcTs019ApceZ5Mp25G1HBhBkn/nITZWQ64kP/rv/7ruHbtGgBgZmYG//k//2ecOXMGd999N2x7dFmehXyG2SKJ3xMNHRfygypDH5BpjhhAuHLCmiFKZMc9mMsyt1wOvIzpSXHDAYM6o1FXg3KVSVf48lSZ6xJ23OwP9HidXEPNdUpuB4n7fdtud0pjQ8qOH3pcPmaYkdmgykM1vdUG9enUEQAiz1dVjcjBfeo6WXM2cusQ1LSZttPuwIB2jLvi/mvPasK7KgbyRrtbLtZrQn1K52F9IiwjdEw0lCMpFwVEn0P+zDAMwxwqcg3bNdcqACGWuyfEuF+67e01wLym3d8BYingi7+FhCRub8IMYkQ1C1YAkZMPwOnGCGsWvJUQYc1G7Jhw59tIGiJmwoYmgjVqQiN54mmeD+wx0rtuhzG/ihT94+5BPdE2ev+SehWmPv4KAiRTTZUrbvqRiCKR4yuj3RXz0EYdWFjc1POIWy3YszOqDwP9njx+flPbY/YYciysL1bSuFePvtQhM2PRtFP8PXUdpHocmOsI0b1elT0/hIhvBJFqaksivXXNV3E6qWdlznxfCPtRw4U730Y0XVOLnLQwkFvwcl0YjTqs+aswGzUkDQ/WmdOAHyDivHxmG7h+/ToC+TlqNBr4qZ/6KaysrMAwNrdkxBn5DLMdFJya9uxMvzCqly6GonTWP2KJLxXPzbqxey6SelV8qRVEMD2/WV/VBrKcfaPiifJGmdEPiMEVD9r3FxuJ8/r7DSBrOLTB/aiUmgRQjtNhtgv7zGlV0gpg6MxVEvEBMfmE5woXvWzSBiAn5uegSYDe/JaEd7mNpOHB6dKkNfMvqHx9fV9kvM7ABS+KCmo2hHOtJFeYe5EwDMMcbih6zfQqwPOfLfPuDSSOgbBmwO4CYwsJvNUEifyqTFyRmQ8IAZ9E/Vj+3wwT2F0Ro+N0Y5hBoqIlqk+14HRFg0fKhzbbPszOmshHb3cRP/KYylNn9g7G/Q9kVYzFag7Zuyp3e61fj7qdNPwYFU+YDpZlpA1ljruuOiYS1xTO5SDK4kM8t69qcdP4AeJTx7a+HWZv0airYzFutUp7IehzU7qt3tcqNy/QTDIAcoJ9kdS1kbq2Ol79Sbmg5dlK2Kefal/8GNY1X7j2G8KhHzVcRA0X4XRVbtPJmoBDCPxpowaj3YW13CmtXmF2DmObLnuVt7zlLfid3/kd9fc/+2f/DNPT05iensZnPvOZkbfHQj7DbAHTq8A+c7rv+vWaRiWugUTG61gBEDWEYxRAJuZLSJRKWu2cAKu7Sel6o1EXl+lJ4YJwXUQLi5xPuI9QruSSuI5RKRP0qfFQsrjMjc2YbUedu3SXekEQ71vgdN2cuE7boW3p50MApWJ+32NMHUE6dSQ3ADd9MUEwO2tqEUuhnVONQpkt7WNu+3o8z4BIKxbzGYZhDg8kpKpGo612zl1NDnunmyJxgMpqIhraKuFeROxYmiPfnzCROEL8j2qWanLrdCOENSFa2e0AzvwqjCCEvdRVjlX9uzJ6/Dw7Svcwxp0vzBkXCBpHUK+03H2kmF+s2O2LG9TvI48JingFIONG+sduW8XwYyTHZ7Zte8zeoLQKlXDdfmFf/m02G2KsTJn00rADjxaZZNWtK4T5aLqGeNxDPO7lfiesMBHROdJhHzXcLF5HLlQBQtzPGYyQOfnjcS+bf7Q7YgGssyb2Rcb7UJ8Jq9kEcwNIt+myR/nSl76E173udQCABx98EH/4h3+Iz3zmM/ipn/opvP3tbx95exytwzBbwJyZQuo6iLWyQTrZF0vJUteBGSQwHRNAAsAUzvwgQTRdg3XNz8q8IAdcjTrSpavi/lr+nCkzponcF6cfINpkWSSzuxjtLkBliOvkDJbed0DvhEFCY9mkoHif7XZtceOrgw0tRBabxxaPLUMO3NNGDZDnO3LZ0IBbFyGKYj6AbMK5joNeNLbKsjMNXzgXDa1/CaC5+fW8zg0YFEeVa4bL0VQMwzAHHhrbmF5FxL8tr6jGn/bsDEJNgOpNmOpnZTVB4qQADOXK1zEDEbfjXE+kK9+CtSpEKH/CwthTncx5DcDwA6SNGqx5MW/A0lVEPOba86RfegjprbcIN+kAoVTvC0RxgipSUO85VDJ+KS4SeFd78CcrsK7ZeQe07JmwJRp1xFN1RA2RX45lrvo9KIRzE3AeFebBvsUjGj8jr3+kcqyd+oGqUoIf5KNt6NgmMV866xPZH8RuB+p4ihouYseE082O28Szsyx8T0SMmUGS5eR7tmoYboWJit0pVhCn7Q4MN8jn9mvPkeewzFZZXl7G3NwcAODee+/Fq1/9atx111246aab8KEPfWjk7bEjn2E2iT0rnAbG8krOFWE06kLMKRGWEld+iQSpyrgEsm7r0XQN/qlJJWqlrqOEocTvqYgcEupzZW3yC5RdN/uX6MLFPnFQL4NOe35WeVFyfNFtyv4uE/qLt6VSyJ2IYmKH8sEnevy8crekrpObUJozU1ncF8WDSeHfCCLlpommRRROODeRc+briwRpo5b9jz4H0uFDE9akIZw2RhDJQXuktgNATYL1S86prw3gVdXTgBJiIP85Myqeer583DMMwxxsSMRXQhXEHCHxe0iOz2DlbFXF5EQ14b5PXCHm+xMGrh8XzW8BIdwDwrlvhSmiglHbn3DgH3FQvxig85xx8Z2nffcpgoBFp32EviCTc9k36lmEqm4Q0yNzNJEf+kUTI1PXhtHuwghCRA1XxDB5lhorUdXGVsf+0ePnYS13lOuf56QHB+ua0DZMryKifr3sGEy1nn5qoalRzy04KTw3M9rUq4inxDg+lbn4JLDHjomwZinxnhrQWpp+ojf3Nv0IYc2WfQhthLVM4PeevAorTBA7pmqIS8e++nzJ/oO0KJEuXc31KjQ8l8f0O4yRbs9lr3L8+HF861vfAgB84hOfwN//+38fAOD7PhynxLS2AezIZ5jNUiKkms0G4rlJmI0asLyS+5/R7sJue1rplyiTLUId2A3Z4IW2ixaUyAqIiYMq9ZL7EnFDoX2PPhEE8hUepdmCKIkrKWEjVz5NEHZq4pf4PW4CegjQMyoNQAzYPdk0VjZAo8gaEumThgczSDLHjCvcNMFcQ2QAz6/mG96q2B05hClz7NP+yLzg7G9ZLUCOm2LpOZ3XaTCPgkPOy09a9IbjdN9UluhSNYKJjRvTMQzDMPsTcmoavlzYnTqC9ImnhUPfszD1UBtrx6pZjE4ghPyoJgR8MwTsNXGdGQgR3wwTVBdSON3sOzWsGdKhD5hBCm81xNqzmhj72pNIj88IR7d0uLKAus/wXEAmXlLVtdGo90f80fip3RH/L4xhoJsRSqJyUteB3Q6UWJq6NpIHv7mtTyV6/DyqS1d5IekAkroOzJmpvGtdc9/nkAuMRrsrKl4BcT8/yI3bDT9GODehNWC2lfExcS0h4tcsoJvF4hCJayKsVZC4BszAVk598Xeaa+rsLK3BQTZPUXMD7/9j7+9iLMmu81Dwix1/efJkVmZVZiW7qppkt9psibQJut1mu9mYhiX0lUFdwHwwcR+oB9oYztig74XgIebag7FhaC4GMuwZ6AqGZoT50cD2g/VwQcDgE2GZF7CJoTlN87bbtJoWbapJqru6lZVVlX8nT8bfjnnYsXasvWPHyazfzKpcH5DI8xMnYkecOBFrf+tb3+p/WxHZ/YB5rbPfGPExEtM/IjwMa5xzTOT/tb/21/Crv/qrePHFF/EHf/AH+PrXvw7AWO78mT/zZ+55fULkCwT3i4NDQ0yxC3y9fQvtzz+L+LZ5L8o8kqhoACoB6/wtqds6gM7vzfxPiMS/umFJIyJj47U1J3PcZqmxZRE88Wg3LiM6mNlgwUGnGI42rwAwQcaDeN1Tg1yCBN2CB0HywvPA7UM0GytG7cJKZ9vVqfm/cdkQ9wcF6k2jIIz3C8RFA1zKXe/WLmA/+sQmlj6YQa/mtokfqe25vz63JotvV1bd4y+HgpH4LDnWdkmGgXqIJtOsMVe0eaW/BwCIVtE3q/N6BER5Br0tQb9AIBA87YgOZmgPDm3sTpxCNVWGvJ8AYP0Tk3n/WKeGxDePjVqfoKoWs2sRkjkQVxGKyzHyuzD3xmtXrZczAGvJKXhy0GYp2uduIPrgVm8XyOMOijWw0s8JDw5dWxOPWLUxCdD5jG8ZVTXHf/qjR7I/Mp94+qDffgfxJ1/sqzy6uB55hggrQYEMj/8JVD3ECXVLuOextcopLqdIZw2aVCGZNb0vfqmtCl9nWafQN2Q/qfWpCbjOE8Sd+l4dFIjKCtWldWtJQiQ/t/gBYESZBwUiT5QJGDJfYnrB/eDv//2/j2eeeQbvvPMOfuu3fgvPPGOagv/SL/0SfvEXf/Ge1ydEvkBwH1D5EpBl0CsTqKK0XphAV9p1fd2oSLtMNFiWmm4+6UxZosqUeGWopjGq6QSTD+fWN7/dWIPiiovOYicGDJlUlIjK6sF9DQXnAm2WGIVvNxEEYIMivXdgiPdTNNv0LT9CoGUGan+B4D5Q//hdNG+8jHRn7rxOQXKbpdY2jK5v1LyqzWOookZIW5/fObbBPfIEqojtZwik4qFGWaaBm3nc5rFNADiTCmq6BVgCvy1KWxbsEP3scXtwCGykADWnpiQqTaC935L0LBEIBIKnG8mzN2ys1h4Xtmo2vn2Io09solpWqCeGrAcMga8q81wnQL7bokkjqKq33sx3jRf+fDPCpZ+2yPbN8pPt2hJWTqK6uwedpkpTcL7Q/PBHiF75tBs/eP3P9MYaVEAw4Kjyiy6uOTg0wqCygl6ZWL/xGEBxZQlLrFJRIDgJ6jOfgjqco1nNEd+uBudmEN252FtjJsDKxCYd1UFfWUvxPZ2nqtTQqUI1NUlNAIh3NRP7GEuddGeOatNkRpNZY0j+0iX8q80JVKkRFQ3qzanlYQB0c5C8axReWZsfst/pU6mCx4ZzrKh/GPjrf/2vD1579tln72td4pEvENwv8sx0PD84tCR+vLYGdVAYAp7KxrhfYQdqxqIz1d+ADpiyf7Xr8n44hzqco924DFz/iG22Qop8vTKxgbuUeT1dsEE6Jxc5aZ+73pg+xrzxg9voIN5/ggcFBdlkC2aD9JWJtbnhnpZUkRQVDaKiQbxfMKWNsiodUuxYr/vutahonIZVzSVjX1ZeNxZVZGXmkP4HM9dfv1O9Oc3JvUblVmVUdt6ft+9Cr+YmMZF7KjjAueZTPxWBQCAQPH2wcVmniNbFsYnTc1Mxm985xvKtGpOdFjrtSXzyxU/mxhs/rlroNLLElbHPaXDppxrVNIIqgZX3NeqpsZtIDkqbsG42Ouu6bvuCJw/FlSXojTX7vM3Sfu6YZ07VhV2mcGMXq5buSHxCujM3ZGZpkkBRWTtxkUCwCPrtd1BdXw+/WfYxdHtw2J+TlNgkEp/WtWIufFFZGZ6j6w+hM3NNU6XGfCuHqjSK9Riq0ja5afoMdg2/ryyh2pwYH/1pDJ1Fxhe/qI1NcaZsk1ydKXu+F1eWzG+tmx9UUzNnKJ67Ygl8VXQ9JK5d7fsAjCUsBA8NT7tH/sOGKPIFgvuAWjMXfAC2oYveWDNJxP/0R1DPXnNuXDYbTapSwOm4DhhiavLhHOoPf4b2uRtm2ZWJVaymf/ieWW51xTR7hCGt1O09oCyRPHtDPDGfAqgPbqH6+WeR7KSDkj7b5LZT2/jWTmOgBMCA1M8yx7dQJn+CBwU1UFOHc9b41vyna5nOFHSWIUHZE/Jlba12VFFbVU5xZQnprLbl4JGnIiPFfXz70Hi/7nQNtDYnNkmqs4xVPxlFkFExdo10R4LztiiN5zC5V2X9hFqvTKAOCujVHM3GiinB9ch/Uv1L8C8QCARPJ1S+ZGKrjrRvswTRK5+GBrr7UoL5MxPj11y1yPYjqI5fVTXs43oK1Iiw8r4hrab/eRf15hTJv/0jzD/3IpostrY7yaxBfufY3g/pHorMxIbk2S94spDOjHqYVyZSxV91fd2ohslOh97nDXC7KsPW6xvkJwDSnbltKnqBOC/BAyL69lsoPv9ZpJ0YhyphFSPted8GE0Mf2upVwMwDkp2ZPUfrzSmSnZkR8eR9Y9t8t8LRVgpVtaimCtWywjJgewsmByUwJT6lscp9VTZ2HTqLjMNBJ46k/wCchrlAL0LiTglAJ0oqS+i9A8fqWCA4DxAiXyC4R6h8Cc1zz6Caxph8aNTyPWFfI7q6YUoar/UqTJt97jzyKetMpD4RXKqoUf75P2VvKHGlkRyULnmVZ0ZRumqsKVCWvYez4IlHvX0L+PlncfCpK5j+sfEEx8Ya1Ae3etUvBRKsIWcIXJUfLeWuAj/LHA9zgeBhgOxyopWJ8zrvA9KkpolVvZoBq301EvduVXkfZFddsG4VMkzRT4+5UijZmUGVGtU0cRKmOk9M49nOnocr+ZFl49dQ5lFLkw+TqEitp2e9OQU2p0hv7gLoJ99C4gsEAsHTjai7N7RZAnU4R3VpHQCgshTV5gT53aq/j3VKfFUDyQxIj8y9TqdR975RoepPXcH0j2fQP/8xk8yutNNDprea66rWKI7LMrGDeEKhihrF5Qmq6QpU2WLpgxmq57cAmNipzRLz3Xr++Y49ZidAGKAogZUJyuurSHfmtmpSBDyCe4HOIuhKATDe820ed3aVmekLyCpUI8Bcjw5mAPPJp95VgIn7qf8VeeOTIj+daaiyNd73pbku5rsN4u5SR2R8kypMPpxD5wmqadI3xwV6RX7HvTSpsvMCVdSoVzO7ngHf0oHieOpJIXaZjxBPebPbhw2x1hEI7gOkno9v3kFUVvaGBHRNXBi5Sp7QhjA1yzWpKfeqpuamQ+pTmzWe9uWOxZUlQ/SvrjiEfXQwg7q9h3bjsiGxTqHMFjwZiL79li0jVLf3rL1Ss7HSn19Zds++9pZU7Mq/j69NMf/42kC9IxDcL/Tb70BnCsfXpsZ6rFPMA7DXOU6uEzHRXMrtZ0hJX1xOUU3dz1IwrvPEBu2UEAUM6T//+JolTUJI390GYCYTejU3v6k8Q7R5xSa7opzZVrHfGvnwA12lVd43LQfIQqj7PXVNcSOy8BEIBALBUwOrxi9L1JtTcz84OOwryA5mKNbN/aC4HCMuAdWFYaoyJH5cAulMI9/tCaR01vvkk81DclB2zR6j7q+3ngO6e8/qFNXzW9B7BxA8eWjf/EGX9DFih+ZSDp0p0/RzZ27mgiQ64OR9V6mrN9ZsI1Gn4W1RmkruPEY1jXF8rVvm5p88/p0UPNGg5rPcqgZAeB6ZZfZ81Ks52iy1wsV6c2pj6XrVzEdNzG9em2wXqKaGkCdrncl2jfyuYfF1nli7qLjSiG8fIvr2Wz0pP2uQzBocbaWoVzN7DSWQ7Q5gVPjpztxcaw/7JFdU1ogOZnYu0B4XIs55xBBrnXuDKPIFgnuAypeMrU7XOCXuyhgpm0xKeb2xZm9WAEzWmpowsoaOfikXKVWTWR/QU5f24rkryG4eAJ7XXHMpR/qH70mG+CnD0jfehH79JcRdmWxUVohvztwGQ+gUAiMNb53luvfb48I20a2nMZKZUXKJLZPgYYGuY4Z8TxzfS6An5QFzfbP2OZW2QXy6M0f1bG7KaW/V0FmMJl2CziKosrXbKC7HToksBf0WXR9aanwFdL+ZwvjQqoPCWvrE+4W13cFB/1uzNjlFiXZjxdr4RGWF+PahtUCL9wtTwl64qiS9sYakLOUaLRAIBE8ZojwDVldss0S9dwBcu2rUn9evQFUah8+a+UCTAboL4XQKQ+xXpMhXDplPqDYnxgolj5EclEgODInFK9io4a1ezZHe3EUtKusnFtG338LK6y8h3i9sk87lTkGf7NTWQ1/d3nN68bRZCnU4ZxXgpSXzSUkcFQlU2XYe+RVqsV8S3CPib30feONl06MDfVPYNo8R8+pubvGUZ1Z8M9/KkXRxfnE5RX63sir5ComdO6hSI7/bdMvFXcKzchwNKNGlSg393gcAjKpesaa5y9sa1TSGKs1rfL7AiX0OI9DsYn7PSqc9LmwCV+zLBGcNUeQLBPeIoz/3nPFtK2roa1etpUP0k/dt5jkqa6Q3d5He3DWKmbK3hCD1qM7MjSu/c2yf89JZstVRZf9aeX0Vs0+so9qc4Pja1AT4724LQfSUopomhjDsbDpQ9oG530CZ7HNC4CQ/qcf0ygST7QLL/3kH9Y/ffWT7ILh4yL75PTSpsvY2AFPSd6WtBFLcV9PEKmsA4PjaFPndBku7ppy2WI9RXI6tP6bOIqt0PNpKUawb9b6tZOmWo4qnahrbwJ5bTOnVHOm721BFbSsIbAPbDhTQI88sid9miaO+T3Y6Kx2auBQl2iw1Crk8lmu0QCAQPKW4+8pH7D0h+rmPmfh8GmP20Sl0qlCsK+g0chT5ALoGtuZexRPQ+W5lPndlCclB6QiDSKEfle49i5rGSzz35CP69ls4vjY1iZudmf2O6XsGAL2xZmMQPk+gxqEADJl6cGgIx6I0c9NZjXRnLueJ4L6RHJS2sjbeL/pzsksi8di4zRI0GytG6FLUSGYNdBbZWL+4nFrynhrZUnPauNKmUfh2xWJ77dhrEqKf+5h5/6BAvF8gOSiR/+GHRm0/a1BcTu28RBW1afzMeowA6N0VWAKsPS6ChL2Q+I8I7UP6uyAQIl8guEcQ8R7f7rO0UdGYhkOd7UKbJUaJuTKBznsrBlXU9mZGz30/trjS9gZZXFlCNU1QT2MU66klrgBjT6FKLUrqpxj5nWNz7pTl0A+fLJY2rzifUWurznOf3G+PC1OGi660UIJ5wSNAfucYqugTlb7VTTWNnaQlBfLUoKq4HBv1PQXvlYnM6mmMehqjmjJVfwkcryscXU2gU4VqqizpbxT8xmezmhqio9243E888gTV81uWHCE0G8bzmCYmKEs7YSZQ0E+N5Gwz304xFx2YCXh8885DOKICgUAgOHdYXTH3oGtTe1/J7xyjWI9RTSNUU/K+b5HMGtRTIJkD+W6LdGb8n3WqnL8mVfbeV69m1k4OMPcZnScor6+a+cRBYfu9RD+R+cDTgnRWQ+eJrRisVzN7DpBlYXOpI/ezxMQdnXo4Kqu+pxZMNTnyDFFZGRLzAxEWCO4fOk+Q/Ic/AgArUgRMTKypqrVDVNZ9LynmR2/X1ZHryUGJJjU2UsWVJWdbRrHf9CQ841BUaeYO9eYUzRsvG4eEbpvN9StO5RJ9hv5HZe32yiKQxaZni0n9JMZEc4IHh1jr3BuEyBcITgkqpYpv3kE609ZOQRW1IXJWV6y3WlTWRgmRx7b5ofrDnwGAVc1QVpnsdgB05V/9TY78MI03XGEU1D89NMrV/cKuW/B0on3zBzj6+ErfH8FT4ZP3pR9sqLXVUYW+urrR2YLUo2WFAsGDglcfkbdv1SUkffikPgBbUgsYAqRaNorG43WFahrZx/Q/rlroDDja6rz008gSJDyJQH0hZh8lv9jEsfohREVj+5volQnajcsAXI98ep/UcKqobRMv8t3XeTIozRUIBALBk49oKTdzgQyY/HQPs4+a+0u9mhk/590G6azF8rbG8nbVWb8ZD/yN//lnUJ2VJtlpNpn5A2AT0eaxIaso4awKo6r2ISrRpwdU5aczNSA2CaqoHRKV4hRCuzpFtHnFCHyKEkef2AQAqRAUPBCSnRnmn3sRQK9m56JFio3pMSU4Ob9hnredQt8kKo0i3yQ3j7ZSp5K2SVVQ/EjvUZPb+TMT971LuRXz6CyyVkDUIDw6mFnexla/M1sq3gxa5UvSHFpwriBEvkBwSqhnr5kguSyNR3PnieyoLYvS3BRu33U+q99+Z+BhzrPKAGz5F9lPGC/MEpMP58jvVnbZ5lKOZGcG/fY7Vn0heLqx/2c/gmZjxaiD/UY7nmc+IfJej5ZyqKsbaK5fsV6q0dv/+VENWXDBQdcxwAT6phS3cf3rAccqh2x27GtWoWjIjIb9p8fms+Y1VRqCxC7f/QTqaYz5VoJi3aj801mNS//+T2yjq3RnbrxlaULMym1pAmIIeub/yZfr1G/qoLBexfXmFNX1dSQ7MyFXBAKB4ClEtHkFbR4jv9tg98+a6si6S0yns9qoTSuNfLeCKjWO15Uh8b/5X0w/LZbAVpVpfAuY+yElos1zo9InNT75Q0dlDb2ao/nhjxD/5MMzOQaCR4Pmhz+CKmpU0xjprLYNRoGezCeLESMiM/EJWbw2Gys9MZllKH7+GSx9MLOiMoHgfqFXc6SzGvVqZrkQoK8UISEMVZNwGO/7akDqExFPfQLjErY6iVwKaHvO+oraCoCWPphh5X95H+X1VVMh9eYPzHitbU9rrqXdtROArVSJyqqvfi97ax2gJ/B1cWyqWwSPDmKtc08QIl8gOCX0ex8g2boKrK7Ym0pUmsZDTrd2ugFkqbHfKUokz94AfuHnnPX5WWUqESMCn5bxl0t2ZsDNP0G8tiaqiguApW+8ieN1hf0XpsYPdZUFRkTW55kl7ltG9NNrZLdDlh9HH19BfPOOKAsEjwxUJksgMj+/25Phvdqwj7p4cK86coNsdcxn4Dw26nyg7n4WZGNQrEco1hWOtpQl9AnVNAEODq0nf5vHqK6vo7hsruPNpdz+cfWbtdlhsP755KnJGpH7dkICgUAgeLqg8wTF5Rgr7xVGmb9dGBK+I13zu5Xpd9WJcdJZi+rnn8XsE+vOekidms5YM8ZZYwh8RujTf54oB0Rl/bRi90+ZBqG8hxq3BwH62MQSkjBe4Xpjzfb3SQ5KY8cjwgLBA6J98we2rxUHj5ejolfaE5cR7xfOtYsIeKO8j6CzyJ7jSSf80VnknP+0TlqvOihsLH98bQp967ZdR/TKpwHAuYZSVTCP1c0bXQzvieXita65dEfgi63OI4YQ+fcEmWUKBPeKorTljNHBzJKlemUCBUOWqtt70Ks54tuVJfap4S2BSrn4zSTuFKAhkp+UF9Htu6glELtQuPyjOe6+ODFNhbIEUcka3hJWVxBlpVEQZMyCZyNFs5ojKhocX5sindVY+YNb0ltB8EjRvvkDpK+/hHo1Q4LSBPG3DxF1E84iSx01PpW92ua43Wv1NDZWZmmEYt2Q9PUEUDWQzIArv/sdJFtXUW/fwvEXXsH+cwmaNEK+26JJI5RrgCoVVt6vTF+Rosbso1M0zz1jx0qNeFXZ2rJcVbZ2kqHy2Ppo0vWaruVNvmL7pURlZRrS5f0+CAQCgeApxcEhdHYF6cw0dk9nGvOt3Crwk1mDapogL2oUV5aQHvUNHtNZg6pLQPOkd9qR94DunpP1Jt1XOjK31Ma2olOdCp4+tG/+AJNf+JytZNRZ1MVOiT0vAABdzFFtTpDdPDAWgNa7fM1Wcjc//NEZ7IXgaQT1vyJQ01uK+XWeWNJ8AsNjFFeWbENbE3NTIkAN1qvzBNE33wIAtK+/ZK+Zlug/6MUz8X4BdEr99jOfMOOptFHwd323qqmyFU90LaX+VgB6EeZxgfa4sIR9e1xY0Vu8toZodQX61u0HOnYCwcOCEPkCwSlhs7Bln61tDw4R5VdYd/bU3BjyzJDxXmaXd0aPysp6lZvPJgOin0ijqGhsoKb3Dh7NDgrOLaJvv4X02Vd7m4+NywP7pjZL0a5MEK1OTUK68+oGzPlTbU6Q3zlGfPOOkPiCxw5zPTPXSVXU0GkOVTZdo1taSnUewrqzFDCK/GqqkO82yHeBle++O1Ae0vOlb7wJKno9+uKrwBTI9jryfxp3Pv1mifkzE2dSAJhJsrbPNezkYjVDWjRQh3Mn8WoJ++vrNtnKJyfprOlL2wUCgUDw1KFJlU06T7ZNwpcnpNOZUY3qZybI7zZdcroX6/RKU5O8JnsJoLeUIGuIJlXI7xyjXs2sX/QFEh9eSPCKRF69WFxOcXSVxSPZBOmsBW5sQFUt4tJUKE62E+R3joXEFzxUqIMC5fXVQa+1JlVIYK5Z+a4J7nWmUFymitZeHU/XvXTWIN2ZGxvibikug4m+/ZaN7ZvPfxZHWykuHZSWJ+l7DSZdHB4BMNfMurPsNJabLdKZtiKdZmPFWGJ2cTpX43M7ZOqRGG1eAYpSqtkfIR5Gs9qL1OxWiHyB4JTgWdr49iH09XXzepZa0jQ6mLkq6TwDyhJt552P1anjtWxtGfLMvF40Trd3DlXUaN/8gQTtFxRUbk3KYA6TEPL8u7tkEYeQ+ILHCVXUKC5PoMqk848352NzKTcemEyZYz/TEffmMTD9z7vOBDR8dRxi+evfBQDsfflzqKYR9j+uMM1SzK8qqMp4b159qxtPahII3IJHVX1VAI2ZYBt38UZzRQMFQBUmSaDK1hAu8nsTCASCpxZLH8yw96lLpnKs62+VF7VNFqc7c+sVHVca6ba5ixWXTVVaNY0H1WlE5hNZrzp1dXJgqtuwatTa8QvPQ4+OTPA0IC6NPRMlc4r1FMfrJkaqp6ZCMZkDxxuAqjq7wiqCqoBsDygux1j+Xz48dewkEJwWTaqQeg4C5J0PoOvv0L9fTRVSaHu9y775Pfveaa9j2Te/hwxA/cbLSFkfKwDOXCKd1d7cosXydh/zWwtjb54MDBvcqrVVIMvMXNvvUyd4uHgY1jgXiCgTIl8gOCXU2iraojRZ2ixFsmNsdTT3RH5+C/F+geZSjvTmrnkxywxZX5aIyqxvSNSpUyPANMntyFjut8+zzVI+e3HRvPGysR7JE9t3od24bBNB7coEejU3qq/uP9AnmQAg/4mQ+ILHi3o1czzx6doW7xe2zDY5KKGznkEnRfzq7xki3p0i3DuaNLIT3flVs+7yEnD9H36n88805b/VNIKqTKPcdGaiQEvid2Oqrk0H5cREtAAmyTb/uPHTXPqga0guEAgEgqcSzXPPdBYSCvldU+FVPdP3UqmmMarpCvK7lb0X2jmCJbiUY8PGE8j1aoa0mBtruq6yMkGJ+FvfR/LC86h//O5j21fB40e8toYmM0mf/G6F+VaO43WFuGqN6r6KkMwi1FMjPjAiBRPvqApY+0mB+FvfFxJf8EgQV9qKXELWOQSqWlqeVVZ5/6CopjGMaY+xGYv3CzRXTLKLzzvy3QrVNEa+29hx8TjekvNZhghdb7mQe3GeITqYyTxacK4gRL5AcEo4DVBu/gmizSsdmWrIdr2ao5qapkSq0oj3J2jzGPHNO+bG0BH6emNtoLpvV6eM4O89mK0VT9EglqD9wiL+1veBN142CuCVCSJK9nR++Op2F3XkmenLgK5nQ+f/1/zwR6LaEjx2pDu9/2R5fdU+blJjGUDlrenO3DSXTRWSWYPVd/YemMAnXPnd7+DgS6+iWFfQiZnkXv+H3wEAFFdMse7xurLexQDQZEAy6z3yCeS5SZMGa3WVx4hvH6LZWAFg1HP4T3/0kPZAIBAIBOcRUdEgvX2I9HlzL+FezNR4vUkjFOsxVt43c4ikrAHk3XvmXlgh6XuylDrYKL3NY9M096BAA8h84AKg2dvD8naFo60UR1cn0JlR4JNlYJMaEh8Alj8w/5d2jSXh8k8PRUwgeKRQpakaMgr83tKmmsbQqeoqbGPbcyo5KB/aObn0jTfRvPEyAGNlVlxOsfSNN9G+/pLTRwQAMO1V+02qgNXMVje1WWIElcw2mfvjR0u54W8AIfEfA6K2RdQ+mKT+QT//JEGIfIHgHqHWDCFFamd1OIdeNRd9nUVoMqOE4Gg3LlvbHSLx6TNRkRgitrPkocSA3/BWgvaLDSJF2zzukzzsvLIVHp1KXxWlBB2CM0P8yRcB1uejb2rVB//pzUPUP34XLYD02RuI3nsf8SdffOherqu/913oL38Oqoxw5XcNiX/wpVe7JroKOgPmU2O5k86MKl9nEeIKjrKISnF13nlydpUv9jd3UCDNE9NUTjw0BQKB4KlFvLbW9SPqq2jzu5Xp/1L1ZLypCItQrKfIdyszbyhqpxKNfO+raYy81Fj6YGYbRzaXcsT7hbXejMrKKLX3QrJRwdOKpd0u0VNpa9kUlTX0am6V0OnOHOqDW6i3b4l4R/DIoD7zKZSbk4E/PlUZ5Xe6xrGdk0D7+kuIvv3WQ3c8ib/1fex9+XPIdxssfeNNAOiajteO9aW1MOs8+eMKnVXZ0KqWw/ZGBAY9DwWPCGKtc08QIl8gOCWavT0kW1eNvc5zN1BtTpDdPECzsYKoaGyprO5KyABjtaA3jNUCusa40cEM7aqRUNCNpH7vfSQvPO9MCDjGfPMFFwf67XeQvPA8cGgmjtK4SnCe0fzwR1Cf+RQAc/1SRa+IUQcFmh/+yCn3pqTTozqvL717jOjbb9nn1HSwmkZYeb9Gsd753lemGRZvKkeJBw6eaKVG0+pwDp2poOemQCAQCJ4eRJtXEH1wC1g1lVjzrQTYhm3Wnu/qrsFiBM1C+2rT2EEkB6Wx4en6oScHJZq0U/a//Q6iVz5tq7/sNssKODgUEv8CIf7W93F566oRhN2+i3r7FgDXU5xSQhqn9xoXCO4X+u13oF5/CXWnbKcqoqUPZvZ9Dh57P2ysvG+sxgjZN7+H4y+8gsmHtbUxiyuNuOotfihhSkKjKLDeiPc7LEuryhcIzhOEyBcI7hHR5hWgrNGkCuX1VRNoF02v2uyaOALGJofUNLj+EZMkpOa4RYOk65aePHsDwKMjsQRPB6QqQ/AkQb/9DpKtq8DqCuKbvbfkw7LNuRf4E4nsm99D+vpLqJ5fgk4V0llrCRjANMoaA5H61OQcMMmK4rkrKNZTxPI7FQgEgqca7Y6xzdz/sx8BYJLFh8/mSGfa2uoU66bp6Mr7GvluhSZVmG8lmGzXaK4sGfFPpqw6n5Sk6pMvonnzB4jgErNC0l5M1Nu3gI7AFwjOA6Jvv4X0M5+yHvnL//HmmVSB5z+5E+wBwatUcCkftSsbvOYr77MMKKXC/XEhas3fg67jokCIfIHgHtA89wyiosHxtalt6KKKGtXmxLGOyG4e9JYSRW1vFlxZ3+axeZ5nxus8z6RcViAQPFU4zxNQnSmoykR8SVcSrFNThqsz5Sjxo6Lpr+PdY/LXVIdz6BWjspxsLy7VFQgEAsGTDZUvGcXm6gqOthQu/6hANU0QMw6oSSNrs5nMGts0Pd/t7jWdxYMPnRuhz6OwmRMIBIKHBf32O1bNfla+ASRwU/kSdGdpqcrW9B6ZJmiuTZHOatTT2NpS0XVX54kRWpZim3NuINY69wQh8gWCUyJ59gaqPDGNrWY5VFFj/swEkw87z/uO+EkOSkep6SMqq76cq6xMU1IAKEoh8QUCgeARIv7ki6g3p0jf3Qa+9X2sArY5VrGeQlUa9TSGriIYN4TEScYS1EFhr+PNxkrX7OvRlhALBAKB4Oyhrm6gPTiEfm4FOgX2nssRV21n1abRpBHiqrWEUXE5RjqjZrZt1xTSWD3QY1W2Nnnc5jHU4Ty4bYFAIBB4+IWfQ7M5Qf6TO8A3vwcA0F94peuDFUFVxjKTGozrTA08/gcgNf45FSMJBELkCwQngFTyemMN6c1dNBsrnY1OgmqqoLryLVLk84ZUemVim9cSbFPSojHeynkMjQmwMoG6ddtmlAUCgUDwcNH88EeI4KqHom+/BfX6SwBgepx0FjtN2jqVVkB/fQf6xuT1amYnBwKBQCB4utEeHBpbnRemVnVfrEeoJ0C1qxBXra32AmCV+vndylo88D4sKVPs67xLHo/0zBIIBAKBC/32O4jhxvb53QrzLWP9Q9fbempEOXGlUa9myA4OrP99e3DYfzjLjGOCqPUfK8Ra596gznoAAsF5R7O3h/iTL6LanKDZWEF8+xDZzQMcPmtuDnFlVPjG51IZYn7VvMcJHyJ92ixBm8fmL0uMsrNTe6qrG2ezkwKBQHDBQfY6quz88rPIXNfzxP7xSiu9mqPNY1TT2Ch+CiHyBQKB4GmGypeA6x9B8emPQacRyktAPQVUBaz+TKNaNlPralmhWlbQaYSm65OoihpLH8w6eweTJE67+87kp3tQRW2b2+rV3PSYEQgEAsE9I/r2W1DdddZYmenOXqe2TXqJrwFMg1v6Q55JMvUs0D6kvwsCUeQLBAug8iVESzmi0khu1EGBZmMFxZUl5Hcb6CxCclCaxrUw/6nxCzdiiA5m3U2hs9RhfstAp8ABoDfWAGmoIhAIBI8VqqgRZwo1Ymt1QKp8jnpzagn7/RemVml5vK6w/NPmIsWPAoFAcOFQ/a/+NNKdOappjNm1CNm+eV2VgE4jpEeGzI+rFsV6hPRWi7g09xOK/fOf3EF1fR0AbDVXmyV2DiFJYYFAIHgwJM/eQH63gs4UmtTYH+ddlW29mvXWOnkGUJNbUuIDlvsRCM4rhMgXCBbhF34O0W3jW9+kCno1R1Q0yO8co7iyZLwu8wRx0UAdFDazG+8XxvuePC7zDHpl0ivvD/qGiG2WINmZod6cInrzB493/wQCgUCA9s0fQL3+EvLdylocVFNAVRHqaYomg/E4nsZQZYJ6GmPlvcLaJKztVtBvv3OWuyAQCASCRwiVL6FMFfLbeyg+swadApferVBcjlEtq67BrUnnqqpFMotQrCuoElh5v7JzAL0y6dT3DZI8hs4TVJumYXqxniLfNaRTK97MAoFAcF+o33sfaVmi+vlnARjBDiVTdZbZ3lbACqKiq8g9nKPNUtPPcOfOE9m70Gn8yx4/CRBrnXuDEPkCwQKowzmQZyieu9L5qi3ZJikArCcyeeJHhVHWN5dyxPtGvQ/0vsptHnfe+MZeR+fmJxjvA8nODM1Z7KRAIBAIEH37LVNJ9cbLqKaxVVECwKUfzwzZMjUk/mS7QPTtt5AtXKNAIBAIniYsfTADAMw3I+gUmG8lKNYjJDOYhrfLCumRhu4a3qZHPatAJNLepy4hv9sgndVQhfkrLk/s/QaQxukCgUDwoKi3byHavoV86yqQZdAba4iKBmkxhzqco/7xu9CvvwTknajyx++e9ZAfGNFSjmRtFQDQFiXwBBH5D8UaR4h8gUDAQQ0PdRZBVwr5T+5Arxj1TLU5MSWxZWUyuWXvqUYZXmO30zVcAWwWWJUa6bvbqMVORyAQCM4F4m99HzGA6JVPY/7MBEvfeBMtgAhA/MbLiHf1U0uyxGtrAPBEqpAEAoHgUUPd3kO7OgUAVGsa800FnQLJDNj4/36I7V+81lmutdBpZHzyMyC/2+D42tSuZ//5FPlujPyuOxVf/vp3H+PeCAQCwdOPmqqb3nsf8SdfRHT7rn0tvbmLZmMF0e27ZzjCR4DVFaC4c9ajEDxCCJEvECzCwSHajctQRY1kZn4uTaqcBijpzrxrZJsiOpghOjhEXK5Yor/NY1vOpd9+By1c/3xxwhQIBILzh/bNH2DJey3+1vfPZCyPGirv91RIfIFAIBhCF8fAxhqqzQl0CsQzBVUDOjUNb+++8hEApmdKeqSRzlpUWxFUCRzeSLG0Sw1uNVbeK57ahLBAIBCcVzQ//JHzvP7xu8CPnw4+RuVLplnv6soTW11wkaxxHhTq5EUEgouNqKyMD36lUVyOEXcd0NXhHOqDW4hKc+lvswTt6hT62lW0WWr98UmVLxAIBALBeYRaW4W6uiEkvkAgECxAcymHKjV0p+fRCTD9wDAP86tmWq0zIC6BJutJfp0Zgr/JgGqqUFxOxzYhEAgEAsH9IcuAg8OzHsX9oW0fzt8FgRD5AsEIkq2r9nFxOUWTKqQz3Xc5B9BuXDbe+AezrkGKUe3TfwB9cytphCgQCASCc4Z4bQ1tUaJ9UgN/gUAgeAxQn/kUkp0ZDp/NkRyZ146eadGkkV2GVPeq0khnGpNbnTVnasj8almhWFdY+sabj338AoFAIFgMsph8EvEkNbYVPDjEWkcgGIHeO0C0lAMbKfK7FappguWfHiIqa+jVHDqfopoapX528wBRWQFgxD0mXRPc2qj1z3JnBAKBQCBYAFHjCwQCwThMTF9BpxHqZfPa0u0Ihx8zj7M94GhLYXlbo5oqLG+beUFcAvsfV9CJmXirMrx+gUAgEJwtnvRY+Enuuxi1D26tc5GseUSRLxCcEjqLLCkPAKqokd85RnJQos0S6JWJJfHbN38A/fY7Rq1/+y7U7Sf7piAQCAQXHbxKi/CkKXe4Fz5//qRPXAQCgeBRI7p9F+3OHVx69xhXfqih0xb1MpAcGYudo2cMg3C8rkyj22kMnSqoSuOZ3/wOph9oLG9rq9oXCAQCwdkh2bo6iIuflLjeH/dTgfYh/V0QiCJfIFiAKM+AsoIqakw+NEp8wPjekze+Xs3R5jGKK0vQWQSdKix3FbNPaqMRgUAgEHhYXUGyuoJ25w4Ac39oiydfWtkeF2c9BIFAIHgiQNfL3T+lsHQbmF/TqCfGWkdVEcpLgKoAIEI1TbDyfo3Jh3O0AFZ/77tnNm6BQCAQuGiLEurZa1CdvWSUZ2c9pFMjWsqtIpssdVS+JPY6FwhC5AsEI9DFMfT2MZLMXNR1bn4u8b4J4vVqjqhoUK+a9+NKQ2cxqmmE6JVPo33zB2czcIFAIBA8dOiVCarNCdKViWlm/gQF/Spfgnr2mnnceeHX27ck4BcIBIJTot6+BQA4fDbH9IMWO3+uRVRGaDaNhU5TKag6QbbXNbkFsPunEuR3E0QL1isQCASCx49mbw/quRtoN1YQ386AogTyDOiu9ecZzd4ekmdvmP5WXSz/pMf0kTZ/D7qOiwKx1hEIAnDKqvIM6qCAzvqfS1TWiIoGAKBKDVX2V4101lrSP3nh+cczYIFAIBA8Uui330E1jXH08RUUz12BvnbVEjvnHerZa0BRot2580SNWyAQCM4Dkmdv2Me6a267+kcKK+9FSD/IoPYTINUoPlri4OcazD7aYPYxjXoZ2H/eWCDEn3zxTMYuEAgEgjDaPIbOE7RZCr2x9kS4KSRbV5G88Dza1SnKP/+nzno4Dw9irXNPECJfIDgB1fV1RGWFdGcOVdS22RVZ6wDGL1+VGumsQTJretK/Uz4KBAKB4MmHKluo0kSJ/B5wnmET02X5xFQQCAQCwXlEsnUVk21z7VcVkMyAbN+Q+qgUcGR6Za3+UWxeY4hu333s4xUIBALBOIorJtFab06fiLhe5UtAlgEHh6g3p4i/9f2zHpLgjCBEvkAQADX+U/mStdJRh3OrtNcrEwA9kVOvZtCZQnJQIp3VSA6Mb7KoHgUCgeDpQfbN75n/Nw/Q/PBHZzyak0HNsNqdO0CWGTudt98541EJBALBk4X6vfftY51FaFLjhx9XLZK5eT3dSTD5MEZ+O4bq+KBsH8h3TQWvzAkEAoHgfIHiegDnPq5Ptq4Cv/BzQNejK/r2W2c9pIeKqH04fxcF4pEvECxAtJRD5zFwu0Rz/Qri/QJtlqDNY7tMenMXemXivCb++AKBQPB0Ivvm99Cc9SBOgWTrKvTeQa/CzzMkLzz/RJQNCwQCwblElqGaKqy8X6GepqimEY43jDp/5T2gngDZHnC8CSRzo9hf+sabZz1qgUAgEIzgPBPiJMgBAGQZ1Ae3gNUVKzp9qtC25u9B13FBIES+QBBAvLaGZm8P0eYVxLcPjWfaagaVa+hMQZUayUHX9JbU+UWDNo+R7MyeCJJHIBAIBE8fkq2rAAC9d2BeWF0x5L2oQQUCgeC+kGyZ3iJ6w1iV6SzC5JbG7JpCcmSW0akh7+tp9zzpHwsEAoFAcC9Q+ZLpcQUAB4doV6eIDiCCHAEAIfIFglNBHc6R5LH1UQNglfnqoEBUVmizFM2lHKoj+AUCgUAgeFzgAX+7cweAqSqTXi0CgUDwgMhMRVOxOUF+t0E9jVGsK2R7QLkG1MuArowiX1XmI/UysPkfzr/nskAgEAjOF5Jnb0BvrKEl3/6Ny8DNP0H9NCrxOzwMaxyx1hEIBAZFCZSlaSrCkByUlsRvM/Mzan74I0SAqPEFAoFA8Fih8iWotVXzpCPuo6UcUZ6JL7NAIBA8KPIMbZYiOSih8gRxpbH/8RwJAFUDyZEh7pduG2V+tgdc+d3vnPWoBQKBQPCEIXnheVTX15HszDD/+BqW//MOmo0VRMdPuVi07f4edB0XBNLsViAIoNnbQ/LsDYB5C6uDAvmdY8SVhs4Tq7xv8xjRwewMRysQCASCiwyHxM8yRJtXEG1e6e11BAKBQHDfaDZWUG9OUa9m1mLz0k810lmLyS2NZA5c+aFGecksLyS+QCAQCO4VyQvPm6Txf/gjRGWFpQ9mQFFCHRTQxfFZD09wjiCKfIHAQ7y2hmjzinnSkSI4OAQ2LiO+fQhgBVHRADf/xCwvikeBQCAQnCHaojRNbal67OAQbVFK0C8QCAQPiOSF56GLBsgTNKlCXGlUUzOFVlULnUZQJXC0pbC0IyS+QCAQCO4P3P9ePXcDUVkDZYmozBZ86umAWOvcG4TIFwg8tMcF2vc+gLq6YV4oS7RFieaHP0Ly7A3EN+8YpX6eoS1KtBuXkWQZ6vfeP9uBCwQCgeBCovE8M1W+JCS+QCAQPCBUvgT93gfmevr6S8jvHCMqGqhLOZY+mOHo4yuopgqqalFkCnHV4s5XXhMyXyAQCAQPBP32O1D5EpriGLgIotG2NX8Puo4LArHWEQg86OLYBOwdgU/WBMmzN4xfflmi3bljX49u3+0teAQCgUAgOGMIiS8QCAQPDpoTJC88j3i/t9TUmcLOn1+HTs1UulpWSGctmjTC0q42cwaBQCAQCO4DKl8CIPG8YBxC5AsEASRbVwEYdT4p8/Wt25a8b48L00hwdQVYXQEAxJ98EcmzN+yFVyAQCAQCgUAgEDzZaDZWsPepS4iKBjo3Be3Lt2oc3jBT6aVd45efHmmoSuPwz93A0RdftfMJgUAgEAhOi4tI4JO1zoP+XRSItY5A4CF59gbq995HvLYGtbaK9uAQ0eqK8R8GgCwz5H5Z2s+0WYqorIA8u5AXXoFAIBAIBAKB4GkC2ZS1b/4Al/BpHH18BemsAQAU6zEu/aS2qnyCThWqaYRqGmH5ItghCAQCgUDwoGi7vwddxwWBKPIFAoZ4bc3+j/LMKvABoN24bB/rjTXzPM/QZql5P0udBiUCgUAgEAgEAoHgyYRaWwUAtK+/hHo1Q363QrGeoprGUFWLamqm0sfr5n9cAtU0Qjprsfk74pMvEAgEAoHg4UMU+QKBD6a0j5Zy8yDPgJt/Yr3wo7IGYMj7NjM/I/32O493nAKBQCAQCAQCgeDRYHUF0XPPoMkU8p/cgV6ZYFqYOUCeJzh8NoeqNFbebzDfMvOBYj3C2j/7t2c5aoFAIBAInig8DGuci2StI4p8gcBDW5Ro9vYAAFGeIcoztDt30B4XdpmorNBmCdosgTqcC4kvEDwlkAZ1AoFAIBAIAKDduQOdJ8humgpddThHcWUJ9WqG4nKKdKYBAHGloSrDIGz9Y1HiCwTnHckLz5/1EAQCAYduH87fBYEQ+QIBQ7O3hyjPTHOqLAMy116H0GYp2jw2T4py8L5AIHgyUb/3/lkPQSAQCAQCwTlAe1xAFTX0ag4UJfTKBJOf7qHpfPHTWYN01qBJlbXVEQgE5x9ihysQCJ5kCJEvEHioqTFVnlmbnfa4GDSxjW/egX77HSH+BAKBQCAQCASCpwzU6FbnCZBniMoa9eYUcaWRzhpU0xhNqlBcNuIe8cUXCAQCgeA+0D6kvwsCIfIFAg/J1lVgdQUoSrSd2l6trULlS2aBzidfCHyBQCAQCAQCgeDpRbJ1FQBQXV9HVFaI9wsU6ymK9RQAUE9j6DTC8te/e5bDFAgEAoHgiUWE3if/vv/OeiceI4TIFwgCoHK7KM9sw1u1tmrfjw5mZzIugUAgEAgEAoFA8Hig9w4QffstAMZaMyprJLMG1TTC0dUEx+sKTXqR6AOBQCAQCARnCSHyBQIP9fYto77PjUd+1CnwAaDduGwfx2trD22bD3NdAoFAIBAIBAKB4MFB1prJzgzRwQxtliC/c4xL7x5jaVdj+VaNpV39QNugeUCyddVWAAgEAoFAcGHQtg/n74IgOesBCATnEbo4RrRzxyHxASC6fRfIMrQHh2j29h54Oypfgi6OH8q6BAKBQCAQCAQCwSPAzT8BVlegDudoS2OrM/3jGjpPkOzMgE++iOaHP7qvVTd7e0ievSG2nQKBQCC4kCB7nAddx0WBKPIFghG0xwXaokS9fcs2wG2LEvV77z804t1voCsQCAQCgUAgEAjOH9qDQ9Q/fhfND3+E+PYhACD69luIDmb3TeIThMQXCAQCgeDx4d/8m3+Dv/yX/zKuX7+OKIrwL/7Fv3Deb9sWv/7rv47r169jMpngF3/xF/EHf/AHZzNYD0LkCwQjIKU8lbi2RWmfJ8/eEDscgUAgEAgEAoHgAqDZ23OFPAeHiH/yIZIXnofeWEP8yRfPbnACgUAgEDzJaB/S3z1gNpvhM5/5DH77t387+P4/+kf/CL/5m7+J3/7t38b3vvc9PPPMM/jlX/5lHBwc3Pv+PWSItY5AsAAqXwJgvCvJZofU+fEnX0QMiC2OQCAQCAQCgUDwlIOLePTegams3b6F5IXn0WYp4rU1mRcIBAKBQHCPiNoW0QN63N/r53/lV34Fv/IrvxJ8r21b/NZv/Rb+7t/9u/grf+WvAAD+6T/9p/jIRz6Cf/7P/zn+xt/4Gw801geFKPIFggXQxbEl7vVen3lLtq6i/aOfATBBPRH+AoFAIBAIBAKB4OlDe1ygPS4AANFSjnhtzZL7UVkh2ryC5NkbZzlEgUAgEAguNPb3952/oijueR3vvvsuPvzwQ/ylv/SX7Gt5nuMv/sW/iO985zsPc7j3BSHyBYJToNnbgy6OHcJera06wfzTSuY/rfslEAgEAoFAIBCcFro4ttabNAcAAP3eB8DBIdoshd5Yg/rMp6w159MCSVAIBAKB4JFBP6Q/AB/96EextrZm//7BP/gH9zycDz/8EADwkY98xHn9Ix/5iH3vLCHWOgLBPcBpTptliJZyRHnWl9c+hXha90sgEAgEAoFAILgf6OIYKI4Rr60ZsQ9WEd2+C/3cM2jf/AHxCU8NpBmvQCAQCB4VHqa1zh//8R/j0qVL9vU8z+9/nVHkPG/bdvDaWUCIfIHgPkB2OwKBQCAQCAQCgeBigjzx6+1bUPkS2jdljiAQCAQCwVnh0qVLDpF/P3jmmWcAGGX+tWvX7Ovb29sDlf5ZQKx1BAKBQCAQCAQCgUAgeABIFatAIBAIBPeB9iH9PSQ8//zzeOaZZ/D7v//79rWyLPGv//W/xmuvvfbwNnSfEEW+QCAQCAQCgUAgEAgEAoFAIBAIHi/a1vw96DruAYeHh/gv/+W/2Ofvvvsu/v2///e4cuUKPvaxj+Fv/a2/hd/4jd/AJz7xCXziE5/Ab/zGb2B5eRm/+qu/+mDjfAgQIl8gEAgEAoFAIBAIBAKBQCAQCARPPf7dv/t3+KVf+iX7/Gtf+xoA4K/+1b+Kf/JP/gn+9t/+25jP5/ibf/Nv4u7du/gLf+Ev4F/+y3+J1dXVsxqyhRD5AoFAIBAIBAKBQCAQCAQCgUAgeKyIWvP3oOu4F/ziL/4i2gUq/iiK8Ou//uv49V//9Qcb2COAEPkCgUAgEAgEAoFAIBAIBAKBQCB4vDgDa50nGdLsViAQCAQCgUAgEAgEAoFAIBAIBIJzDFHkCwQCgUAgEAgEAoFAIBAIBAKB4LEi0ubvQddxUSBEvkAgEAgEAoFAIBAIBAKBQCAQCB4vxFrnniDWOgKBQCAQCAQCgUAgEAgEAoFAIBCcY4giXyAQCAQCgUAgEAgEAoFAIBAIBI8Xbff3oOu4IBAiXyB4yhGvraHZ2zvrYQgEAoFAIBAIBAKBQCAQCAQWUdsiekBrnAf9/JMEsdYRCM4xVL70wOsQEl8gEAgEAoFAIHgyEa+tnfUQBAKBQCAQnBOIIl8gOMfQxfFZD0EgEAgEAoFAIBCcEUSUIxAIBIKnGtLs9p4ginyB4BxA5UuithEIBAKBQCAQCC4wkq2rZz0EgUAgEAgeL1oA+gH/Lg6PL4p8geA8QBfHgKjvBQKBQCAQCASCC4t6+9ZZD0EgEAgEAsE5hhD5AoFAIBAIBAKBQCAQCAQCgUAgeKyQZrf3BiHyBYJzAvWZT6HNY7Rv/gDRK59G++YPznpIAoFAIBAIBAKB4DHi6Iuv4mhLIZ21WPtn//ashyMQCAQCwaNFi4fgkf9QRvJEQIh8geAMcfTFVwEAy1//Lo4+voLJh3MAEBJfIBAIBAKBQCC4IIhe+TT2X5hi9fe+i+WvfxfLZz0ggUAgEAgE5xJC5AsEjxgqX4Iuju1/wBD4x+um1/TyrRp7X/4civUIS98QAl8gEAgEAoFAIHhakTx7A/V77wMwBH69mmHvuRzLt2ocf+EVFOuxKPEFAoFAcHHQtg9BkX9xJPlC5AsEjxCcvG9e+STuvjhBeqRRLSss7Wosf/27AIClsxykQCAQCAQCgUAgeGSI19bQ7O0BAJrrV3D8525AlS3qaYwmA6787nfssjIvEAgEAsGFggYQPYR1XBAIkS8QPEJESzmiz3wCu7+wAlWZDOH8qsLklsZkuzjj0QkEgqcJ5ec/i+JyjLg0zylRuAgHX3oVq7938nICgUAgEAjuH83eHqJXPg0AmD8zweGNBKoE6imgE2D1jMcnEAjON3a++hrSWYt8t8HSN948cfnmjZcRf+v7j2FkAoHgcUOIfIHgESLavILiyhLy3QaHNxLUE2Cy0yKdaehMIT7rAQoEgqcGOoug0wg6Nc+Pvvgqlr/+Xdz5ymuIqxbVtH9v6x9/B3e+8hoA4M5XXnOUgAKBQCAQCB4u1Gc+heMrS9BZZEn8cg3QKVBeOuvRCQSC8450ZmL5Jk1QdUKc4y+8gqVvvInjL7yCampse0mg06QKzec/i+yb3zvLYQsEp0LUtoge0BrnQT//JEGIfIHgISPZugpkGfb/wkdxvK6gMyDf1UhnLZa3WzQZTpVFFwguKtrXX0J6cxcoSiDP+jeKEu3qFM0Pf3RmY3vUaN54GarUiL791j1/tliP0aSmJjGuWhxtKRx91ZD15Zp5PTH9tC25DwBNGmGnW27zd05H6B986VXoNEI6cwOm01QBPGzsfPU11BPgmd/8jt2PdNZi7Z/9W2z/2mvId1vxGhYIBALBmSB54XlU19fRANh/PoUqzbygWlZI5sDmb0oiXXAxEX/yRejVHFHRQB3O0WYp2ixBm8dQB8VTGe/f+cprSI808rvNPRPsqmqhShPPaxa7H3ZxsBELtjj+witIZw3SWQ3g3ucW7esvoZomSGc1dGaSA02qHntCgCoKmjdetmPQmdl/VbaSoHjaIB7594SobU+3t7+s/ptHPRaB4IkEb1iVPHsD1fNbKC6nqKYK1bJCXLU2g64qo8bP71b3RdQJBE8zmjdeRrozR5ubWpWoaMz/skZUVqiuryPeL9BcyqGKGu2bT35zaApOOVRpDP74PjZvvIzkwHjm1KuZDWZ12gXYmQnqARPo02Mi9nWXDyHiXVUt4tL9HL3ug1vvEIHP18G3X6xHSGbGKkBVsAT7Iux9+XN2fb7Nz85XX4NOzbp0aioJOD782mtQtdmOToHkCFC1sSlQtfmcKmGTFv6xoeNy2gTGRcTv6//prIcgeMIgcwaBwCjw9dvvIP7kiyivr2LvuRz1FJjc0khnGtVUQacR5pvRifdJgeBpw9EXX8Vku0D67rZ9rT04RLS6gnZ1ijZLcPTxFVRT9URbQH74tdec58m8j8XTWesIYI6++CpUpaHK1hLWAKBThWraP+e8AgAbz/O4nsfoAKCq3jxclX2sz8nwgy+9ateXzBrE3Weabq4BwJl7nCTeOf7CKwBgeQ9u9UPvpTMz1+MWQPQef5/GELP94OMyy5rEhSpq1KuZ2Ap5OK/x/P7+PtbW1vDGn/7vkcT5A62rbgp86w/+L9jb28OlS093qZsQ+QLBA0B95lOIyi7b/cMfWY9qwNwEj9cV0iMTsNNNWacKyezes/ACwdOG9vWX7GNKbLWvvwSdKWQ3DxCVlXktM34wejWHzvtCsmRnhqisUP/43cc46vtH88bLqKYx8rtmv3Sm0KQKcaWRHJTQeQJV1Hb5ejWz5D1/r7hi2uAVl2MbrHNUy6pbPywJDmCgnh+MjxH66ZFeSPDrNHKIcE62A4ZY7z/bv64qoF7uCXf+Po1TlWbsRM7766BlaT39mPplk7kh8wF3O4pNaniSlfaf7w/tA9+eqoBn/88Xi3A5r4G/4PxC5gyCi4ry85+19/TiyhLyO8fQeYLbf8bcUPJdbck2ulcDEHs7wYVA88bLjrKb/16iorFzar2ao17NUKynaDIgv2tI5SeBmH3v771m41CgF5YAQDIz/+spkO+2lmwnkl17xDQAh8DncTqhnpr/tD4OTuT7BD8R/6rSdrv88fG6ckQw/jppzNSwm79G4O9x0PVvaVejyYB01q/L7FM8OCb8eWg7caWtEIpA1QQhqFLbedhF4WTOazxvifxP/e8fDpH/zv/1QhD5Yq0jENwn1Gc+BQBO2V89je1NsZoaEh+A8ayb9pny5a9fjBuGQODj6IuvosmMynu+lfdqnBeeN1Y6f/hev/DqCvTKBG0eQ+cJ4v0CcafSB4A2S0xJ7sanBxMAwCj69dvv2OZyAM5MxV9+/rMAjCpFFTWiokEMQF0yY6UERb1qmGSrMlnNUE1jkwi83CU0UoUmwwBErgO9Ar+eAJgA2b47GQBcpTqR2Do1kw4e/KrSJbndbfbbUSyioAmMj2Q+fM8S5vT5SU+a22WWvc8sm+VpOSLbkyOXhFdVP4miYwEA2V4/Mcl3G1RTZdT6VWSPU7bfHQ+efKggEAgEAsEAJfOibgHUX3wV9XSK43WF443uPrysUC2be29ctcFKNIHgaUH5+c9CZxGWvvEm9r78OUy2a+R3jhF95lNQh3PEP92zy7ZZYm11qPIUMHNnUmHT+qqpsnNqwurvfRd7X/4cmjRCXJ2NpeLNv/OajRMnt0zSrppGTvytMxNLVtMIqoxQLQNpJ0rhcTxxCD6IuPfRBIQ9frUuABTr5rimsxbVcgRA2WtRkylL1C/thrdPoO+A5gFm/H2VMABg6lb9clDvLlW11tsfbN8aj4SvbLKgHydVL3CVvs6UQ9Kb13o7HrNtjWqaQGeRU50gOGOItc49QYh8geA+od9+x3lefv6zXQOaCEu7fXYZ6L2ri/WTVbECwZMOSnKRRQ5gSPU2jzH9YyNHqd94GUdbCk2WY33HRG4RYDzxmTc+X0e1OXHUFkSIt3ls/zjaPEb0ikvyo/PjVAcF2iwZLA88PLI/euXTdjv5nWPnveZSrzjgwSZgAsy40qZJlReEcrUOBcdcHU9qdkKIUOeqdP91X1GvajdIpwmKT5arqlccBdfdvTfW0I+r6el5ealFMo+QdfM8Iu/9dfLPjan06X8y78j9DNBVBKBFMmsRp2bioaoW+W6Latn0N9EJMPuYRrqnbLLgZ/+n15z9vv4PRUkpEAgEFx1c1Xn8hVegKo2jqwniqsXqz8z9hSw3iVQbI7kEgicJ7esvIdmZ2biaBDiAIU/Lz38Wqmox30oQVxmw2gtZVFFD54mNhbmlTDU1vZh4LKxTl8Snx9YWpup94rl6m8himp/rVD2Uvk7kUw/0AhBVAfOryhF/2Di3i9Od/4zAJ4ENxaF+XO8LSmh7MSPxQ8IeutaQ/WWx3h/nGhFU5V6L0ll/nYq9eQMde67yX7TtEEhMRMvzSmBeeRBXrXNsKBFh5jLKvm7Gq/ukQGDcOjWVBku7Gvluhbg7liS2onNPehkKngQIkS8QPCSksxpzJIMMuk6VVQfE1VAVKxA8LSDlu5+qIjKb/lebhgHe+I+GZaZGV22WGMK9a3YVlYaoP77myk9UqR0LmpNAJD957quDIrgM0FnYvPLp+ybzj7/wCvK7FXSmkO7MB3ZAHFz1HvJ85JMZDipJ9dX0zro98n2MvOfBtipNgF+usfV4xHnIOoeT5a4yh22/Ck8+fJSXmMd9FQ2W0ymfLADJnNv/uAmFejK05NGdQt+WPKeRLfvlAb9OW9TTCDoF8h2F8lILVUWmWiE1CQZa93t/z/j4Z3v92H2/4+1fMxM93+NfIBAIBE8fqqnC8naFtOuXVa4Bk52elOpFPSLuETyZIHtMssPk4pioaKC7ClOKZdNZb9tCn1OldipRdRZZ8ZtZpmvwWkUOKa8q3anae9U+V+c3neqdfN6bVCG2saDqPq9x8KVX76siZvvXXrOEuN2fxH3sC2HMtk1smsx7+0sTm0Y2TufCHHqNx/B+vD+MrU0FgG9ZSesIKfpD1abzzQiqjgbL5Ls6QNb38boeYRd9sQ/tN2COyfGmm/igPle9mp7NWfgcp+yrDahKgJT+oerluGpxtKVQTTP7ObJAJnV++fnPOnZBfmNdPtd7Euyenhho0Kn0YOu4IBAiXyA4BWJPxeur8QGjKFh5v0Q1jTubBirh0rZkLi5FkS84vzj40qsOQXyaslQK5DmxTsoaUs+Tvzup0MkXvpqaW1CcKaPOKTWA3Kpzkh2zThuEd/6HhgDvlD4LxuYT6LrznPeV+1HRICoaNJdyu271yqeh8wTF5dROPE7b26KaGgU+V90Di70aq2kc9H10l1GOes+U5ZrHvmLH2a4X8IagymFwP1DJe57zoQnKYNsJUK1pRCWV9kZ2HfWktUS8nWxQg1pG/Fs1/RGQHEWjCQMfydz1uQeMYp8UU1bpxdRKiiVHVGXsguplL2FQDycSgEmA6MSsn4h72jfaF2p6Jo0NBQKB4MnFwZdeRTrTtomjD7pX53cbLG9XaFJlfZ+5YpRX7woEjxsRi3V9sjKE9vWXbIwOmNg/3m96QQ5T4hMxT3aQRDAfbeVQpbGO8ZuxVlNl4rJ1Iv/b7nP0m/Gbm/bqeq7m5gpxsqfkHuu0vmpZ4eBLr1ryl3DS/EdVwNG1MAFuKz9TI07RqVsp6sem2X73mKvuvX5OY/aWtCyJCOkY0xhDFpo0Nu7dT2NRlSfUSfr3YMUxzHqz8uYYgdh9DGR3yZfnyQedAvpSb5m5qPLXfPet/b+oDwBgKm91GqFYV1BlL47yexCYYxcjnbUouooPwJx3dn7YNW0O3QcE94aobRE9oDXOg37+SYIQ+QLBCSDPy6MvvorJtvnJpC88j/rH76J9/SVU08QSjYC5wVFgQdnc5e0KR1upNLkVnAvsfflztsSbAkNSWCzfqm1j5qMvvmqDn7Hy0+JyalQJXeDOyWr3cR+B5neObcNWnUXQWUesd7+XyYc1dKZQXl/t/eEz4+PI161K7WyX2+6ESHNaPt7vFfltHlvCnRILNN5i3fxmKb1fT2McfuW1QVO64y+80q2/tWPl+5fOGoyBT+4BN0DmBDNV9aiurNQ2l82Gih3ewNV8vn9/UZkrgE5x7r3m2dNk+8PgHQi/BsCS+ADQTDV00kLVEXTSos0ixDP3uzop+PdB260ngGKkP73HUS93qv8KyJhHqWlK3k12MtgKKp1GzgSMPPmpkdnxRjfmpK8WqJfdiYAO2Al9+LXX7Lrof3Jk1rn5O0LyCwQCwXnF8Rdewervfdda91VvvGxVmeXnP4visollDm9kyHcbAOY+n8wa6CzCynsF9p9fwmS7ljmB4LHh6Iuv4nhdOXFgvqux8l5h1cVHX3zVxo8hMvvui5MuXtKYfGhKG4m8JwU+CVNCamiKQ3UGFJmJZakBbB/ju8ktIldd+xa3AarZl8bMwbsql37u0H/GH1PczYWq5V7MksyMXY4fi+189TWH5OaxIQDbi6meGIJNJ2aZernv86SqrjKUCWV85bwdrx1rn9TwiWZ+LOnzIcEO74PFx+ur53m8T/EpjZOLeuiz9DiU0AgR+ny5rOpFRL4Sn7ZD1bNOwoG93h+DCEBkEz8GfUxP5xa3AlJVi3QGO7/ywRMgjnd/GtnkAFV86EwBb7zcvU92Pxr5T+6g/vG7w4MjEDwECJEvEHSgJpxAn71NZw3mWwn0F15BvltZ1XF1fR3Rj4Ho22+h+NKriMvYll6pyih0Dp/N7c2i6fz84gVqW8H5w96XPwfgdMr0B9kGL6Mk+EEFNUQj5cj9+DrStmh96ZFGvMuXaI0qvGw68pkI6MbxD1z6xpvWezKZNQ4BHoJvG6PyBOnMkPX11GVtTTnotC+f7QJxamZkVf4jCQP/OSf3AbdygOx2dNdUixJvNWIboNl1dmr5uIrseWGCQO00SrJe9o7HZ2z3hR8Lqt4xQWdfJRAK1KmklCttQmQ+BbT8+RjB3u9b95+awi6Pf4aax9ptj5D5jiVPFTmWOETiI22B2rynU6DNzDJWvZ906qqpUfSrKnImDP7EgVRN/XaGj/nEgic2dBohtoothbgkpX40mIxYdT/6iZxOjccoYCoNqrUW8UxBp6YknBRYNI7jDViLHpt06N778GuviWJfIBAIzhgkZqCYp5oqFOsK+a4GugS+ThWmfzyzBjlE4k+2axvn9HFLf2+fbNej9nmCswd93wBs0uZh9U8iUONWAieeKb6OK434W99H+/pL92XjQZW2ZJno900yCm5TRaqzDKrSmGybs7l9/SUUl03As/SNN1F+/rNYvlX3Y+2qbQHYxqH+ulXVE6t2/sFV+N1j6ws/jVCB7CX730x61JHzC+bRPrlPcwcjGIqQzBo0WTwYVz01MSvFvoTtX+sb13ICHxgqwy2p7cWnpMjn6ncuCOHL0j47yYK5e3z8/hrk8W6J+mwYl2tmUxkS69CYgD7x4Mf4PPGQHPXWlXzfQz25+P7xeQk972Pw7jVG4vNEg63WLd3PO/uZuaQ8idUMuc/H0wYfc/AKB8Cdl+kMONpSSGcmcVCDrvmFFXdS9Xh1fR24/pKo9U8LaXZ7T4ja9nR7+8vqv3nUYxEIzg2Ov/AKjq4mzg1RVcDK++YOM/lwbj39ivW0e187QRg9JlIfMKVY6awRP7VzCl+p7isjqETRv/FT+Z4OqEYAE0zwdQD9evxGPKSAp/9cPeI3FPI/e7zeN1Hj26Rz+NJPartOIqD95FJvXdNb4JwGfoMqM17llDX62/O94LlynTd/BfpkAPfHJwsfet2sSzmf59ujz/LJB1/H0ZY5UPldM47isgn401mLZNagnsYmoRdIJtBxCx2HfpkW6axGcTlF1fnmOsfLu970x5E9ZpMBHmRzYt9X3o+pYca8LCmIryct2qwdKOYBOBY49BlnX5hCHehJevPeMOxQdeQo99ustcv575E/vb8fVClgfTVJnT8LT2745II3yjLrVDheV47dUD0ZUScxq596Ql6uhqQPNef1J29UWk2VAnwfaBK4/AEGlSCPC7+v/6cz2a7gyYXMGQRPG3a++ppzvyWfa7K1IP/vahp1KnyD/G4VJDmPriZYeb9COquF5DknOPqisc7w43mfzPObb/JlANjvn4hlHgcT0lnjxNscfvxL9jQAHIGJ2b52PnN4I3XinWQG20R0sl07nwFw4hhCinY+9+DHChjOf/h7RLL6jVBJlc3JYbu+2uxDaM5EPugABjYqJLAJzUuO1xXSI23nemSBQ9vmDWs5+T1Ignh2k/x1q1j3rCBD8Z9VnfOYkq27r1gwCM1DqVKXE/U8PucxcSgp4c8nuPDEWTYwfnrOLTL5MsBwPk1jpX2vJ/0x5+OifT/NnCZkR8SvzRz+eew3RO63FTk2pj4oUWDW0VpHBn7+uVZE5v3Jh/OHnhg8Dc5rPL+/v4+1tTX8Vy/8LSRxfvIHFqBuCvyrH/8W9vb2cOlSoCT6KYIo8gWCDqSMqKYKq7/3XVRfehW6iqyPsvlrUE1jzD46xWS7wHwrt4RrsR5bws/4f8c4uppAlS3yu4YENEE+194KHjXKz38W863Ekts8AIpLQ34D/U2fAkx+YwYAHLkBIp0r9jUb1LjkuwkUzI073u0/z5vo5HcrxPsF2jzuEkRdU9bSrFRnypaqclDVCCHf7UtaY6ZE5yQ6rZOv11knI8D9CYL5jBsUU7BST2PbhNUs1wdV1TKQHgF52Tjr6icTarCtdDaMILmaPioaxEUDXMpRTZPhflgVTq+Gb1IFdGoJoPfxTw5K6DzBpR+biLFezez68t0Gqmwx30rsJKjfBjvGRY1quuQcE/9YFZdjHN5Iu33nKv4hqe4T7BQYE3EQVN1wL0sPp/WspGXqST++Zuomc+KZ6tVHaa/Qoe0Q2c23FZWRJfN586wQ2qxFVEaIPV9989nARM+brCRH7qQCwGi5MdArb8yksPdN1RkGzcwIocmZmYQaEr/NWlTd/lIixFY8eBMkqnLwJ3aqBFZ/1jcVO/jSq/axzoDlbVM1QgknqtoRCAQCwYODxB3FusLm73wHd77ymr33ZnudJQT5K5PFXdU6Md7hszmWtysAfdVfkwFrPylMVR4SnOB4J3gA0H0TGFpohEh6wFUJ15O+CnKy05P2ZEPJwUk73vMombW2OqOaxnYuqUbiXS5YqVczp3J1zK6RYui1nxTO674gJ0Tc+7aUXJDCkxF2nR15H7Ik4YIj85to7bIABqQo2SICQ0IbcPvK6TQaxLCcjKXHxi/fHW9fPauxtGter0iFPjNEPmBIfIrROLFMY/OtaXwMYncWn+rE2MnQeihOdStY2euBqtvQfgPGIskmJpgQhNZJx5kENrwCtpkOxTVGPNP3tHLi6ZHHvi0PFx6FqngpHvY/y98H3P2nKuOTrEL7uXzfHLkfp3ISa/x3vDyrUKynzvluRD7ueWib6zLLV5r/0ryfkkacdzBjb439alfpDsCq+LnY7CyIfsGTBSHyBYIO5FO51D1f/b3vYu/Ln7MX8GoaoclSxCU6n0vV2Vy4BGI9jW2Z1dKu7hX6HZlaXI6hOt99wcNH88bLlgyuGblrG491ShkKhJNZP7lSWd+9njdCAgzZN9kuHFKdZ96phFOVTacAjlCsx9ApbENNIgrzskG+W6Gaxji8kaCaKixvKyQHJZKDElHRB+ltHkMVAJChYQpnnhhyt98inVUDhTgF8vSaedxXj/hwSGoe5Ff9Oqupgl4PK5UGJY9pZEvOSR1BFjZcmZTOasfDnoN8OKlxLu2L8SfsEx2q0vZ4mDGZHhY0kfLVTj7I8oYfa1W51j52v7pkQHFlKZjk4JMhCu6qZeUokhaVu/LSVfqv+ASAPssUQMHJhWef4yQNAkp1lRhCOiojNMvsXKgjS+xHpZlUqSSyY+LqnKwiq5lum1U0SApwpT1/jU8yBmontv/+cTJjHJk0jClq2ESerIu4comT9lR2TKCEBx2vZlk7iQqdtNBrDVQdId1Tg0keJUDqZfP4eANYea/3WJ2tKUsYpUcdSVS1qNBNELpEM3mBkqLwfqy3BAKBQNCDbBVXu+dLuxrHXXPEuGqR3uoVmEBPenKhRjJr+zilMnETVf0BhsR9FLYtFxXk8c7tRwCgWI+MOn3WWgsMis+Orro3Zk4u+k02l7crS7hRZXZPjhtrSop1m8zEfTp15yPFuhH8FDcULv/IjXd5/Ntcyg3h7ynMF1Wz+qQ8F8lYL29vOVqWo58XaLsvIXX9GHQaoVp241yfgA0JWByRw0jMBrhJGB9cbU0kPif3KRFB46onwNJtQ3xTvOoLRkIq8EXCmKDnux8nMxsZfzt+jLuoKtx8jldFMEEIswYyQhtTKaphyHxeLTtcZ+sKaUZENIvg++n7sPOWgMIfcIU0viDH/05Cljs0l+OqfBJg9km3ntSvp+mgyiTUo8GS9kz5T0lfs32FpV2Npd1eKNSkkU1qUaWAGVtj3R2SmbkuLf+0gO4aS1+oe4NY69wThMgXPBYcf+EVLH3jzbMexonY/rXXAMApaQOMypIaqOgUOF5PHT8/oLvBZG7gCABNmmBpV0NV2ionBY8G5AW58n5lA2mTdW9Z2bMh4ImMpr4GgAlU6cbaqx3M8+XtCvOtHEdb5uad7+pBYAv0PoX20ykw34xYABdhdq1vVjr9QHdqLaO88dUzXKGeHJR2OV1FNhChYKaamnHXiG1lSDqroauwTU06C5fU+uAerzQeVbbIy6582CsdTNE6gRAlMvpjMtwm99mvrk3tPtNkK79b2eX05XSQfKAkCu0fJ+v9CQy9prOoa7DbN+w1iRqmsOg87EmN7zfVraaxbdJL4/B98rmiSS9IeCRzrpqhYzUM6OsJAL80lpW0LgqWgXHFEEcCAPMI9QRoRxT0NAFosha6jOyYfOsbrrJSdZcgW9O9Fz7z0Cc1fhRQ45NtDZ8U+ROjbA9ugyzP45OX6S5va1tF4lRIsMlBMgeOl93JRXLEtsfGh3kEPY+daoZ0ppwyY7+HgO9FunTbkPk0saRmugAwu6Zw6afaXq96Bai2FSTVcoR6Chx99TVrBfck3HsFAsHFxMGXXj3XlUTUE4diO7I7y/ZN35ZqWVmyhuIcIhKpUhcwcRlZehSXY+R3e7K0Xs2kUvchgFdMJLMIaz8pUKynJvlSGUFOMmugiho5I+LXOoV8sW6+hWyvJ6CJ2E1mJhkw3zS2D9MPegV0vtuTcsV67KjOdWpivXLNtWICgI3/OLfVuACgcxMYRGWNNjOiFVWa1+ppbOebgDkfqUmoThMkM5NoyncrtoxL+Pd+6mqwDG2D4CQPLAHaW9sobpcYqGrgcyEeg3ELlWTuxqMDwjvrxxwCV+vzHnektiYBDcX0NPZiXQ3sZQa2LizhQJWZjqAmYKfj74eq3BjOvh8QoXBBzhh0ZnoF8OShGbsyx2JqjlexHgVV66rqKomWAcwjq9hfROZTMoALWrL98DxjDAMrn+oEcp8dE9tXYGJETDyG5/G0H+urCpa3MWJMds5n/flA503lnPt9k9u4aq31pnmvt98kpGitKC2/q+wclObGyawX+NFnq2lk7w/Gb7+vzq82J1asBiTA6y8h3i+gbu8BefaUN899CEQ+Lg6RLx75goeGkpUILWrgRHYkFOied+Ugb3ZDPn75ruuPGCrXBFwiky7yvKnmed/38wrqYRBXLYr13oeagmTAfC9cfe+Xk/p2Mfwmz0vufJ/3Yj12mtOS92S/3uG57ygK2LmUHmlHNcK375aC0j71inDyWScPdyrfy3cbQ0oHGr6G9j+UNBjzxVelxnwrd8brl3fSe/x139OTwMuJOZFPynnzeuyUqQN9gB4qiyRbK/KjD+2331yMf65Yj53fL1nr0DK80sGse/h98x4H/f71pcV0PpB3u/nMMKCtGYEMuMoW36N+rMkU/yxtx4evpCeUa52CpwvCSU2vkxaqjhAzktpfX0i5wwlrmkDY90fWs0gd5XhysvX7tjUEbpfFLWrGQBPOerlX3mf74XsbHw81tuXjCo3H+W6Z4p+Ou7NP3X5NbmkcfEzZ7eS7RB4YFdDyrdpey3QaPZRG3efVU1NwfiFzBgHHwZdMpRDFUXweAPRWZhybv3M+G37vfPU1HD3TJ3XrZZN0pdiTYsJ8t3HiSl7pSY/zuw3yO8cAjF2gfvudx74/Tyr2vvw5S2aXl/rqNsDcG8l6DnDFHZxk4zE0iXS4jQbZogJwSHQitP3eaABsDMlj+zH/dj/+rq2lY2XjWF8oQ2MpumpY8o8HwAQnESYfzm2lqB8v8+PBx07Kfk5C8t8r359QHy9Dmvexrh/fUj+gsX5FtKz/WqjBKSVD7DFhSZV+Xe53plNz3MpL5jdLiQWK2Yi05vaVfgwXQjAZ0b1GTYYHCvt0nBAPxfO+/zvgJjIApvoO9HjzLWxoLOWaa6XpVMN2wplFFbCngS+OAYaCybFjODY38OdMJ/nyh7gawK0m79dvzhUu1KTzjf+W/coPs6+R8/vPdyvn90TL6jTCyvultXYlKy2qyCerXbouUNP1B8V5jeetR/7P/RoS9YAe+brAv/qjfywe+QLBadG88XKwoQwwzF7y4L3Jhv6FwLCRkFlPX0b3oOTEna+8Zh/T+sfWufWPe1/MuGod33xffRB7BD6N+WhLYXnbKKYBc7N9GATL047y858deK9z0E3W9y603uyshLmy3ugwFjaAVWDrLEY60zY5EJctyNvObmsZAHr/d8CcD9wTnsCDVq6UpgCRPgu4XpPutmAnGPY3lBn1N00CeKkgVX1QIK5KbffZJ5458c299/l2Qo16mgWkJyUeur21r1v1sGdLQyokUiDFVe9V70NnkXMdCSn6++uPQjprbPWCzhNLvlcB5TztX7xLyYHWXqNW3i+dY2m2YxT5vJTa3b4BKbv8wJGfJ/XUJfN58OoT1dxCxy7DbHZKfq4FSnppHc4xG/kMVQZke91/Wua2ssQ2/0xokuOrm/xtLd1m+5Uy4rs2k4pk3lWx1O4EvbxkxpftuftGKp1Q0owmdq76xrdBcr8bGgtgtp/tRVYpT79l2xdgZKJBx9F/3x6XuasmAvprGZ9Y8qQAVfMAQLrTJyTyXd1NUmPkuw2OriYDr1yBQCB43CDCFejjKL/viKOs7K6XvELW70nCQddhnQLX/+GDkf8ffs1sk6zOnvnN4foowfDe33sN5ZoZX3mJE5RqQBYBfUxQTaPesnFmbPnSWY3oItkn3AN4nwJqOO+TislRf7+l5q7GXiey/ZGIDIsrWJ95VbY4vJGi2uoV9LxRMfU04iBCz9hlGtKeK6Tz3cbaaprx9UKbajlCegTEZN3H6jCIhI2r1tq4VtNO0OOJVpIZMNl243meFIgrOLF0kwFHW0k3Po101n+OJyL8+QCR+GZO6zaVBZSNo2jclFzg8RyPE7N993uj1307GV5tCbhxHX3HxTq3RYG1XeEVlpxHoN9cMuu3YcntxB0bJ/H5WGl7HFwkoyrznJ+ji+JgXpnJj0vZ2eLwJI31fO8ShapyK58JcdUiPeqV6Ob9yMx5u3iUk+jZHpAccUvJyHrpm0rZ/j0/5k+OvDnGAlbROQ4jVcP0PZZrngCGbaOeAIo1Hx40zPV8+fttRd1y0eD7BYB6yiuJI+ecpO+AyHmyWM53tZOAI1TLCsaWqMXhDTOxoLm8mcOaRO/RVoq8qxivpktY+mBm7HQPCkRlDaxm0FlkK+wvBMRa554gRL7gvtG88TLib33fPE6VVZv3cJUKbkDQk9yKEfX5bjPI8NN7HET+0+unLculz135XUPOX/nd79iyWT7Z4IkEymxbFcCsb4q6tGuCxVDQwMeuSvJoNCTLZLt+YuyGzgLkc09WRPy7IMKKzhVSyQO9hYuvpO5V2N35ySxsmo4YNskWtzyatumUb7KgiYLWEFQdVghYhUrGGgl55D7fVrMeIa48fz4W1HJ7DdvQFW6DK/679BuxUolft7Z+uYCiiBOhtG0eSHI1u6/Ub1JDgJP/Z7XZ11pSw1kAfaOfjvRP0Zc88mtDXMJJSPiqeaCfyHC1P4EmQPvPp1jeNmr8ZNagyUz5Mp/Mkc8o+ezTayHw4+kn+sz7bNmEqXW4inyMGD7qVfohm5wQse5Pev110oQm24f13/TH7hDc855c9skVv/yWB8oh0tshsGm8E2PNw5cxVga9rY4/eaAx+h6svoommTVQVWSvF0C/bLChre/XyialfF/HCH2/nNjZp7X+ManAiIigY5ftmcf5bl/WyxWs5PmrM0BzH9OyxZXfPZ9qVoFA8PSD4mtgeC9Rpbmm0Xt+ApXf005z/+LPiYgnhIh4H9u/9hrqiUkCUDLgvb/3Gupl4Obfec1RkHJLEEpGU/xG9jo01+FqfO7Triow32SFFBpFliJ//SVE337rxPFeFOx9+XM2liovRfZcUJWJV9JZa6tR66n5bvJd3lSytX2cehIUtpcU0MfBNK+LmQVHtayC1ZNFppwYbLLjxr60bW1jvsjGIb6CGnBFBVxlTq/z+U1PLg5JPT6nIfhVB00aWQIc03BMD5jXyH6EBEPWVz7tfrepK2ZzKhbY3MeSvnMWo42ou0NiE+c5xb3eNYN6CtnPzNyKgHoaOYR7tm++0+MNEmq46zxJgT8Yj1ddyWPrwWd4gmLZfU6wsXxnLeRaNUWWg+BCR8Cdd/FEksF4NSlPJFiSf4E3Pr02lmDlcxFfkASE5zgkTtKs6bBdH9uvfLd15t5cyBdS8ofORbtNRtZzyx6+D/Sb1WmE2CbSSCBoEl80tyDOi35zlDwioR23qFJlixTaitiygwJtlpjKrNVeka7K9mL1VNR9z68HW8fFgFjrnHMcf+EVAC6BdV69JGmsPHglkFphQMR1AS8vMyUFdgg8CcCf8xsaBRacyNj5qgnufcKUbo5E1vLgS3UZfGosE6oa4KAST8qgV9OoIwj7Gy7dEMRSZxzl5z+L/edTGwBwOwwClW9ycourEniwzJte+eAWNryklM7BMfsNHsSP+RmGSv44uDp/MC5vvFwl3u+ja90SspnxS2ad5AUj8mlfR0n4wf6Hf3e8CROtjyoiSAFllu1V7OR9b567TbjoOf9OaN+pPNjuf6eQ5xZKvDTZn7i5+9NXHPDECD+e3AYoZFEUKpv0bZaIvO23O1JCyyxV/PJRnyi3rwfOR38yMVCxdYQ8EcahSqh+P8dtaDip709KuJ884Hqi8nHxz/N9IuI+pNpy9rPuA3ECnY/cKgvo71HFusLYJCRUtsufcwWQr6byS4edfQ98F9xmSFXmPFn+0Cy78r625xMpeqqpsurEZP7oLSjOaymu4PxC5gyPD+3rLzn3vPMoENn56mtOohgYCiG4lRqPo+lzfkIgSICxJC6Bxyh8XvDh117D8UafoA0RPaT09sdF6wN68pUrYHl8SqB9SY+0nesks8ao8YXAd8C97imBwisBs/2etOe2TGPNQPsGlHCWpefL23pwbyVw5S+Bk9JAnwjw7V54Y0sCJ8vp/VDlOSdvgaFAjNbFrXpIGUxEox+X+pXNi5rVAsO4nn++9+fv9jUJx7PmOIQJe//3G7Ky4ar1EEFsKydn/Zj490exGz9/6HOLqkp5PMmvKU5VbcBnP7TvHPxaw2NHoK+CDY2PHyueePJFke62h3wGwZ+f0O/N3y9eVQ6Ekxf+vpLYhs9LFtnx0P7xilfaR//3SveCUBV8CPyc9O8PoTlNSFjnc078NaDnuLgLAJ9rcmsq3sOCBGxR0aC5lKPo+r89SuL+vMbz1lrn4//dw7HW+elvXwhrHSHyzzEOvvSqQypxr24AA0KcwMk9P9PuZ/EdxXwXCDyMCwhXUgC9ipojRL6PYYxA8gN8PzsdXFdgW5woJZKYr4cT+gRfjczXk8z6hAQnYIkwpkqGiwp+bpPN0Idfe83NrDMSnyZ8fiBDqmmeIAoFNLxXgVlP3ymewElfyqaHAh0aHxAOHJzSyYBX9xh5TwgF1lwd37825mPvEvm+Up2axwImuAhZFtE46HfAS959lYI/Tg6/IdOisZIvPiUbuBc9+dfTZ0KVBlyJz/dxbLt8guP72Yf8/32f/1BCxP88gZcA++cMD9oH4/SCeAqu/eDfXxf/PF83tyjg3pyTnZOvm/02hse1mhqVlu/BGYJPmISSEn55NX+Nyo3teOy1tR38Trh6nSbSofM9ZMdDEwrAPW58GX8SGFJi+QQAXz6kaPLLzbO9PtFi1WWT0ylNHxbOa+AvOL+QOcOjx9EXXx313eb3Jm63R4T/0VY6SiLyaka6L8ff+j7ah6AY56IaP54i+KQb3Vuy/QWJaV4tVZprej3pXwsRjDo1SVRaJ086z691lVwzhWwfWNpBkIzlQh07FnYf8q1F6fvi8cSFUlsyHH/hFXtcuN3ona+8ZkUPdB5wgpdbKVGihQuxSFRVT4DpB+Oxje91Tfaa5dr4vZ+DFMOhmMEn+LmnuV+xGRJNjM2NTyJiQ4mMkIf32DpoPSGxEs3JKN4jhAha/zdKv2FOUPN5BS3rVJMyMrleHiZSfNFESBXPl/fHymPWQUIwVE0dSBz64/THwP/71ZyhqoTQuEPXSn8uPBa7c7/20PfP4a8jZBvrLO/NSalXBeBWzfLrcsiHHoCTsA1htEIY4eRP6Hlo7PSbCe2jM5cfSaj5IJstn1vjc9b5VoLJdo38zrH1xn+c/VHOazxvifyP/c2HQ+T/7P9+IYh8sdZ5DKAmTyeBLrh0EcjvNg4ZpSqNZMatavrPckIMcBvQuKVWLonh33SSWWOb1t5vcElKCr7eUBbfPGblUZ6akl9gfeLUBgKZm/XsJy5umV/ogk4BPHmmmc8Zf3R+4+PqY+dmkgZsULpyw+P1tGs6GJtS2s7zbfoBzqVa6nGDKjAo6N7+NVPGzD0uCU0aOSooes14ZsaBdffVFqSKGjSuqagKxP08qVnikp1zWfj8CTUOGqhLvCssnbP8c/77sQ32FpOqY81enfUxwlpXERTzCQ35zBOhaYJrt6ySlx36AdwYge97dzaprwbSLIHiqtzJxoYUC0CGYt1UamBwrYi68tPebz+uho1tnc94DWn541ADXzo3+gTK8PiNTZRIsT6mSAlNFFXVT058r/WQ0p7WQd6W1JTVeM676wXM9W/5A/N90sRxTNUz2E9vIqBKNs7OLoeXDPuTodBkh3zxfZLcn+xwD0w+WfaV95Yg6NR6RaYGwbjbvK6faDRp7yfq+2361RL8+IcqB3zFlp1Q0j2shvHK9zw/+Xq58s2fsAoEgqcD0SuftnZw/v0w5I/LlX3+MvweaO+D0xjprLFxTzprkaK1/ru8uoyEKBQvVF3FLTry9UGrSnlc5V/b6J7BE9a+t3YoAWxtxrL+PgS490A/YU6EU43OZqMjCNM9igvMcocfM3Hj2o+1Uw3pK+/5/ZPbk8Sl1/Swq1D0Y6KLhKOrfYCsMzN3PN4cxgjJUX9vJeKe36tD5PbkVt8EPt/VAyKTxEG0HI2HJ8s5ePKAz0ed2IALdwLEH3ma03xkjBD0q1xD9jVjgiCyYgm+FyBwQ2OwHINHsOvUiKrGGpAGhSrdsr6Km1dx2mN7aRgj+wQ+jSuk5HeW8Yjckm0nZHkYEtSM2Vb623YqLWv3Oub3k/IxIJgplmRxYD0NHEdW/WCuQeNzRt7fwGxjsbqcYCuNKjfx1NvDdp8llXvV243ZdXiCL86tkECSLLL8ZtKAm0yw39HIuU/X/5PEcm7CwPzG4qr/XfY8Qb+u0O+EqgKIs+grs5Tl0+qp6ZWhK1N9nhyUiCtz4IorS909OwHyZMT46AJCPPLvCaLIf4g4+qJL2I8phEMkEV+ev8+JurFmsj6IkPJV+v76Q2QefYasB+LS2MDwhrTAuJIAGJbLOsHOKUqfxsgSwC1rpQxuSE0ZKqHk1jZAOKizqp/u89RUhgdPYx3PdQasvF9Dla0l/Xoi2fi4k6fx8Wb/+QdtzvWkovz8ZzHfSmxg6Ad1vlXGmE0G0J/fPPnFLVWIzOZKmPSon5CRqgow3zlVZZCyh7AoeAxZ6fieez4WBRw0Dmf5BSr8McsYKhdedN3h1Qc80eaPL1Tezq2PKAk5Bk7oc6sd/hpXAqqi86PvVAt119vASd6l1MDKTXz663aOS0BFf68Yu74SKAClIDw0AThJuR58vQ4TxCE1Ck0kQsof/jk+SeHXP7+k1fncCUoW5zlLwPrj5uOhsTpE+HJHtlTD3xX3vwfca7o/wQf6330/zv7e7P8GaNycMOJkEG/AG1Li0/jH1Pr+srSMn/zgitJHbaEzhvOq4BGcX8icYRzNGy876niqJKP+MGQRBwC8Ub1vJQfA9pxxGsfvu02um0u5kxjg2x4jkv2KNcC1zVxkcxm6N2z+znfw4ddeG1Qpjt0rgKGKnos8eJxCMYjfRySUmB6LgwgUs5Pvej0x6nwi9sn6gmLVcs21wyCSOT3SWN42xM38mUnXWFXb77i4nCK/W9nqQaqOjKvWKtMvAqh6mwtjfALUWht1j6l5PYHmcMkMWL5lTjBKkhSXe7FOsa76cySN+j41Hok7psLnFRv+8kSyhiz+ANd+6SScVAlMCFWnjMVuJ1no0HZ5hSO3nrW9hEYSYkCAxPdin5NgRVLLw8TJmIKdP/aXs58N2LuEhFf+uIPbCqjMfbGXb4VJGLMdcsYbsHPkyQH+WxgkJQPz5X4c404EwNBdgC8zBp8TGiO76fViPbKJM78ylrgW3ucuVC3iW1fxdY2d46GKdju+riLHNqNewPXQ/gD9vI6Dvl9+jVna1c7ckGx36F5+Fu4M5zWet4r8j3714Sjy//h3RJF/kUHWH5z85rY2gAlu/WaunBiiz4T8rYGeKOQNPA36cqN817zik3QmSOk9n12fayrhVJ4a3y2z9RvPGvLSDdR1agIt5d0U/BuET3ja9wLNAvl7/TrYMkRcEFkz0miUShbHSB1O7HF/bL7f1DyIbi4U+FfLynRNZypOCs55hjidtb1lA5TT8IhuSsfrCpo1R9r/OYAaNy7dNs20fDxt5D71T1Bli/lW4iQ//OBjzGapSfsGpE6zyo5ABhQOb6S2iZhOu9/c1J3Q2eA0jXB4I7E+0/05aLrN03KhoJxjjMwEwg00zZhh95+vh0Dq6NgjxencHQYmQ2uYdEYBhApefwA3EKNgNN91vwMKCKtlNXg9PXI99UNWXW7FTGyvVXHZW84Afak5EfjkGUggEn8MpBy0xyCwrH8dpWvESYR+6Ni5EwmNJlPO8aRzOeTVSY/562MYI3xDj/ny2T4L+Ct3MuCDN5EDAt6nAbJF1aebvPjXdlI8kiKLgyZvvFx6+UP3t0HXYF5B4PfBSGctVObeo0ITEkc96Xlu2uO21/82aCI/UG4FJpX+96uZqo0vy0l9PnkFTNUEHQu/v4JAIDh7cBV9CJSMrlfNxcXv/8IfV9Olhdtym9Z3SfFLed8gvttWm8eIisY+9j/rJ8N9K8GlXY1k1iC/6yYE8rtAcTmFThXyu/XgnmvGFbjvpwpHX3wVk51+HuETSD4JPwZbudxdK3m8D7i2Qrzqzq86sOtj4gGzHvPa0i5QVREmt1okc9U1XO8rzZY/7PvLEMHGG6LGpTnOCVxRAZ0H6awx84IswtHVxM4jZtcizP7Oa8b6rpszPE4btUeJ4y+8Yj3oAThzq6wTZdG9j2yUbAVed881c7ZhjyaKW63K/2oyiL9V1dsAAj2xW6bDe3PoXu3HSUAf99A8AhiKyxSLdf1ebD7G5j+hGIy2PUYQ1xMAnd1PjaHKmMDntZzA7OfekRN/cEKc2wnROElF7/QVmrifo2X96koaIxd18DjUxLBm/kxjsfs1IqbgY6XXfNJ/LDHg//e//zFBDa+8BNzvy++3ROp6u91kuO1kbqqG+Lr5eHXqClCSedRdK/vliGdq2O+n6hJmdP3xuZ0QWc+bSfsIcUH83JtfVYMEFD8feUIh1CuOg6796ax25pV8Xb7FGdDfo7iwbGXWoLgcWzcHcx0f/hb5MebQqbmOqMo05u7n+Aor79f2HgTA8hRNBqwOtiCQZrf3BlHkM9z5iiFU/eYhY16H/DUffJl8t8LRVuooNM3rHrHoZcId9d8pFIj0Wa7i54F26nk8UwPJELhyOdQ4yC7HMqGcwA41sRpDqJkp36cxhDLARPQCwwmFKtvuQu1WOdANgCwYQoQ9BTcUBPIbPZVU0WQkmTU4vJHaz/JGhlzVyUuF/WNkm2+xmxJv0vUkonnj5WCzVcD8XjgZ53/3Y69T9h4YepYCcJQAdDxDDXJ4sJgcdZMz9r2fpoeDr4QZKI/r4c2fXvfVNGN+q/1r4WoarqCj3z8pzE7TsJae82oAP5nJP8vHSMvY9WTDhryDfe/GnO9W4M1qAQzUiVxBGFLk+9sFEPTT9z87ZjPEQefmSWo+2j4/F/m5F6ru8BVDdmyBSiZ6zhU5vpItuH4eNDO1G1+OluVktT8mf4IT2o+xhEFI1RT6PZRrw/sF2R+ESl3HVDt8wnKSp6U/WRmz01oEXxkXei9UmcHJgZCabOk2cPdPN/jEf/f/O3kQjwjnVcEjOL94mucM0SufNv+LxlHCc3IeMI3sKCHtV5fZdRV9zBqVNepNc5Pgy1ASm/eBifcLqMOe0WmzFG2WWOJeHRgSXq/2yfDiyjBRUFyOnWslCYu47QFg7tWkKi8up47oZyw+Ocn6z4djJcrid1rXWOWh/xmKMfnxAtyYgr4bjjaPLdFOcQYp5Xksz/u00L0m321s5eNku7Dbq1ezQUxTTRNrK0ixbzWNTONddv3nSXhLPnb3zCeZ3N/78ucADON3vw8RgMH3TSIePl/kzW75vZbHGbz/Fr0WUnrb7frEPiNbeSLfJ3UH4oRuu75Axuxbtw72++GVJoPxLJBeZnvuXIXU82O9Ifz55VjzaP9zwHBOSwkXQh8D9oQ7fz0U1/pxKCd760mLlgkzojJCm7WIZ2pQFQEM9yG0bh8nxXiheZpd54I5H7fVDG2bx9mUCOS2QzxmJ1sp2tZY5XeoSmCw3ZF9sM8D5wjgVhgDbu+BkEjI3/7YvIC7JvC+L+a9/l7g94Dr9ye8DEeoog3oLVnJTo7Ae5sBXvKFJ5cCCR7aNxJVrbxfO+OcbyVnVnl1XuN5q8i//jcejiL/5v/jQijyLzSRT971ZJ0SKqXhhP5JthEEXsoX8iDjJUVjjT+IXONd69MjjWKdvLd61Yx/MfMDX2pWZdbLver77vYUsHJLEY6QsiF0QR4jPk/KrDrLLiDLfNJtLPALZVzjSjsdwo+vTe13RUEkf07gF3YiJnkTRf/G5t+sx26mg4Dd89bjfvF+SePWPz7fQXz7+ksAYMvC+TkJAP4kj/9muH8e7TdPZvnNLQk08XR89rykDJ3HfFIUIth9IpOf2yGEyMSxCpVFCCVwgHA5IRCeQJvxu8f38EbqEJ9UTeJ7cPJrzmnIT5/AJ8KbiAHaDl/OT37yRnwUUNn9YxNxbjFgnoetxjiJ4F+vudWSD9+OjK+zr3YaHhP/O+DXBndf2gFJHCLBAXcC5gePfhNA+56nzgopjejzY0G3r1wCYG1kxohmrm7idjN8m6Gx8Pf996h5nXm9P5+A8WbQwPC6fVIyeCxBCIT9aWn7A6/QBZMTAm++GDqO9FhVbjKFlHBLt8/uun9eA3/B+cXTNGdQn/kU2jy25DgARGWFNkuhV/OBHQ7Qk7bJzswuDwB6ZWjQTOQ7AEfdP0b48+QBAEtM0+dp2/5YaB5QrJsLDpHz1ICPV78edyTGkmdjYipM3WsbXROXb9XO/RxA8J4+Br95vR0/O658LkPxgS8ACIHb8yUHJerVDOmOy3Kqwzn0ysRWAvLjxuNYYEgy0ZiTgxLFlSXHvs+PdWnOSbEtNff1K7TM59n4qr5JPcXE9fT8zgd4JS6fYxIWCeH8OMonGnlTVz5n8C0vfPFDqFowFJfUy4ZANu9Hg8a2zlhOsIsCXFvYkxp3DtbvJXH85SjBsGjuGRq739uB5lyh4xJKgFCc4p+7/mdNNQvf1sn2QpQEMGS4eUzrIFI/KiPnORH7XJ3vrnNxsiI0V+eJtMXjZY9ZP4CFZHrlnjsEvwHvSRW7XNzi9wYcEwmFbMtCFrd+rDo6hnrxcjwm9hMOdhlG5pvPDMVp/Jrvg/qtAf380OeCeAKX30d5f7ViPR2IOwFjiez/JkLfLz+2XEDIe3mRlc9ZkPnnNZ4XIv/+cCGJ/J2v9lYm1PCUg5NpXGkN9BcTApHh9KM0y7gKv5A/Pl2g+EU3pATkth4hMp2TZH5pLA8e/XLTk1S2Y53szXL99hdlYP194JUO7n6MZE/ZsQoRctVUWWI9FFRTNUKo1FeVLZY+mKHanNjGX+RhD7gBE8+Aj124ucqV+yja8QYCLH6j5Bf+MQ9p1/6lf49eO8tgnoh7gj95I4wlnYh0m2+aEs6l2/1v0PcYH/UZ9BTx9NpYYGrHxMlIryGTXc8IyegTemPwg+DTgI+Z9pkmA5xIH7vWkCrdt9yh5XnTKk4C+018+Rg4uepfy+gayKt4QiXzdM1JZ9pO+kMEPS9FJIw16vVV+KEJNz8W/jr8aquxkkz+vnk+Xh7tVyktKqfux0EVJL0SZEw5Rq+5KnjTMDbbg6N+0okhhC0BcDS8lrnj8M6/I2+b6fD1MeWgs96Af6zfsM63b+KvWTsz737Mzxm6p/J7q92+Rz6FtnfS/YjWzb/Pk3w1eRKfCH0z3uCm7CSUJsk6AZ77u2d3fT+vgb/g/OJpmDOoz3wKUdkzIG2W2OdtZi5wRPDTcwCDZThC73EiPwSu+PcJ8rjSSHfmUIdzm1gIKc35eorLKYr12FaQ+nEY4M5jfNuxUAzsCyvupb8P7YfZVrhqs9+2smP2K+7ocXbzwCROihLIM/MfMI+BwXGKyto+j8oa0e27aDcuAwDqzelAREBkEvnbk0o8lPT1E9FcTELxKSmcfSLMEf54ZDEnwXTKqgW66rWzmg9QrzjfysJXuwJuxebxunJENxzco30RSc4T+ty6dux+O3b/5fG6b91Cj8c+AwxFGNQ3ge/Pos/b17yExFhsFZorAL0IahA3jqjXQ9xDSKwQEpHQ89LjzDiBbz7bE/LJPHL2aYyoD322zVrnfSL97Xw5ICrx98Ndd/8+j7VD881ggmBBfwB/uySMGRvfouuAP37e0wpwfyP+fHOsMsGfWwysf05ICIWqdn0hDuD2T+HCppCdk2+NHFuOZ5gsN/s9FKsuShqPoVhPQX3lzL6H74F0TamX4ST5/DlASBhHSbOzclk4r/G8JfKv/Q0k6gRS5QTUusS/+kCIfAfnOSjnTWaJgPG9skhd4petjWUH+YVmrLmpr3C1ZEbAHiP0eX8dgHuDJ8UsVxjQBZU6mlOA4CsTiNQi+ARVqDt4v2x/4fKxqKkLMAwaTqMsDtlv8MmFn5AATOaVJiKcrOcXe9+KI501NmObzmrE+4VtAkavU4Jgdk0NGvByLz8eOAN98EzKGnqNjkkocOIkXSiTzbPxoSDB8dTzPveomyKWn//sQC3tPx5rpkYTH35u82Bn6fZwkqKqcJmov5zfkwEYfpb/tnlybBGJ7wc6XBUNDDPwofHZ7bAgy3/NBw/keJDOrzFjKnF+LXTXGQ2uQf51BuiPIwUsoX3kih4CKc2yPdiGwhQU0SSNXj+pVN5uj/2+qymveBqS9T5CpD+HX2XjH7Ox52Mqbto/vjyN0U8EjMGvIPEDcp58ooZ7fNLoE+8EvyJoTBnOt8Ftbeg3FipTJ2R77r6EEmuUJO+3Nax24MkPPyEChM9tWgYYJ1XGlh9LuPdjH36WW9ONKQj9axT9nspLfVLFEjm1+1unBAwto9MWP/e3hwqegy+9atVDy9say1//rn1v+9de6/ZlOOHjY1t0zzivgb/g/OK8zhna118aELNkucgbkhJIhR8i5TmisrZEPyf5yX4HcK14aBu+0n7sNW75ks7CEk0i9+l9HpdRA9zmUo75llG78UozPnfgjVe5p3ioKnKR6MfH8rYe3Es5eOJ+kX0etwv1GwEToZ/uzA0pX1bAwaH54OqKtSBSt/egN3rjb0rIRAcztN3yUZ6h3biM8vqqk1jwLflofunHlWPxOb9/czsW/jrgkpF8XTz2501IjzfMPYKTmssfPFpbzuMvvBIUWtlxs3kb0M/HeOKIz6n5nNtvgguME6AhMtEnlRetZ4zk1wlsvwL/c3bOP5Jwoc87sXOJwfkxNg4e9520rL9MqB/TonWMVQvz2I/H/SR6o/mVs67uvG6mGlEZIZlHqNZYTMyU877wrV6Gsywn65N5lwxjVju0Lv5bIWI1KH454ZgOjssC4dVpvhP+2mmFZH5T3tC6fbvJUPNVWp7PV/n5ygU4fJ/8xIRv5xO6rvn2zydh7NrvJ2jtuEYqrnilGSf5zboWW6aG7HUIZEtL4Bzdor54Zr3mP+8vpzNjr1Osx8h3G3v9i0s48Toh/uSLaH74IwBA8sLzqH/8LoC+J09x2Rx8nyOja2tonYTzGs9bIv+Zv/5wiPwP/59C5HO88td+EwDOzNNpDNTx3i8RAxAs4SPFXsirziedgaFNTKis3m7jBM+xRcv4amI/KQB0ZE3q3hSsZ59HjITIKQJPcpxEKJmxLG7Ks6hh5yIFfsjvHGDqxgXKSD4Bye829qJ/tJVCpxEm2/WAaK6msZ2oVdME6azGfCt3gnAab77bWLKZkhe+Ut6McfxGz4l4n7yn133i2Sf2fRX+QCHi3VB0Cqy8r+ErjBdd1E8LCtj9kjUA8FXUfu8FXqbGj+WYVzcFKf7r/u9kTIngK4qB4aRzrHlk6Pv0Ax8+bn+Mdh9GKgfGlufb5gkhncIqrEPr8a99IWuqEJnPAwzazsKAshxPhPpJFt+/kXvu0++bknBE8o8RswS/qR3gEqkhmy1nnwPVIP3xcG11QoS7T/iGrot+oyj/+zgpqeLfM/gkn4hdKmO2yywPJ2zA0OvejI9v233fEvcjnpc2cTBz75c8GU0TVL+BNT82RBAtslcb69/gYywpPvaZUJN2/vlFFlDAYjI/FFcA/XfKv0vyO7W/cc9PVtXAys/MmOabkW0Sya0DyBOXHwvaB7LgC/12+XWQls/v9pMo304KAN78J18LHk+BYAx/6dX/AVHRQL/9zlkPxYIqB7lXOTVXB2D97GmSDPS/ebJN8dXu5FPfZqm1z6HHvo1OyEIn1BfGB/fXD70O9P73fiUqgTd65ffN0LJmXJEzX/IVhT64eMC3/DxtM/lQ0pve9+8J3MrHt9fhVkNEzuuNtZ6sLys0GytWgU99BOLbh/Y7o74G8e1DtDt3EOUZ9LWr9vzgvbXMMe3j85AgIkSqUqxFDXT74+vGmbz6ja+DQIS1E3cdAUs7vQUr0J8D2Te/t/D7OAnNGy9b8ZNP0vvVFGNJGN5jYVGlYmie6ZPPPmHZb2t8H0JxPlm42M+zxDr/XGi9RIiOxU2ccO23573vzQVpeyTY4LGgY38YIGP5NsbGPiYSC62HlufjIw94XoHAfeH5XILGbC1ju/OZf2ekVKffg/99uOPsr0FLt80ylHDhcY/zmRGeJ+R2QMdizCaHXrPrmISrCWj8fmUCgSckKAb0j5EVdrDrxVgCic4pPj56Hvp9OMeLPaft+YlHYHjO+AIzAr9nhERf7lhcQaZPytvlAvdCv9m7f48GwlVvY71tqH+kLwzmvSOBPqYOiTF5lVB+NyxMze8cQx0UqDeniL79lhUZkFjNF7Bxdwl+/SRQHD/YzyxCfrdCvF+g2pzgf/79/0NwubOGEPn3h1MT+S/9t/8jANdSYozUpsk+vT64eSwgvPmP4Mrvfgc7X31tkG0MlRjyzBf3eSZyu1pWg0whTeRDTUzHVPW8FAhwg7eQ4s3dXvc/oPwNESyh0jBO/gaDibK31aEAitsAELHECbRFOCnA4uVRwNByhLCIWOF+2nw/+Of8slTAENaAmTRw//viyhLufCrF+n+pcXgjQb6rg7YbROATOEnJzzke7DgKaa/RDOASzH6JG9AHOUBPzNl9Dig5Quc6gWyf6PjQ+c3thqqpWkjSEPlGXpu8xJfbufg+qarSNtFB5wBfhk+8fM96TqDbYI+pf/2AKaQ8sO/Nhr+zUHLDJxb5+WSUrt5xroYBOb3nPK/dwGkRQpUCY78XYPz6EdoWrYc3ez5JiR4qGeTEvD92/tugpCKdw2Pe/lxRrmpgcksPiFyusuZl1WPVO+a/a8nDeywAJujKd0/+UkJ2Y/zYmGX639ZpyftQ8pL/3vz7jK+m8RNSnPD1K4VGFWqBQD/UpCr0/Y0lqRfdD32lCv8MP7/pOjHWZDhU7XBa0v+k5Lp/3p32PuUmy/TgOmrHzhK/dnwj1RRWNbjWP/eTf2T9d+WHtb2mk00BeVXXE2Cy03uj8u9wUXIu9J3S9YNbFDVphO//v/53weMiEIzhL736PyC+fRh8r83MD4J85vvXw7JQfxLuN4gFgOaHP0L8yRcdNXzoM75VDi3rk+S+FzsHqfa5Zz4Ax56F1k8Kfb/hLd9OyAM+5ANMzVF98t2vauNe5D5JTtcsSqSbbbVWCen3mOK9a8jfnYPseWj5MVSeuIP7Hfv7Tssusvuh5zy2p6SMOiigV3PEN++gPThE+9wNZ9v0/Vj7nbIEVlfMNjuPfJ9QSWe1tdLhxzl0Hwn1R7L7yOJ6bps3WM5TxTrHjsVjpHwmIhAwxObqz/RgzsdtifK7la3MGEuc+HM7ivPz3coh7Um9yoVV1BTZ/w55DMTjBsJYBfxYQ1FgSFDS8Qupmvn7ofdCcwE+T/HByVb7uZH5ub9NlwgeLh/6/KJ4z3k+IoTyK5g5/OMYWoYTyv5+hpJN/jlOZD5PTIREJXYMzHIHgNP0Nt1TgziX9tknl323g9OCrjm8X6Ef4x1vjP9WAQwSJn6DXqeidX/8HPRFNwT/+NFr/PN+QtEfCy1r1+eNl8ePofn0SX3cfL97AMFkMwDL5QAYNIdflOgOgccKvPfJGOrVLHivout+yHLHfpZd1+Kqtcp7wL3vNpkh3YnIp7hBHc7RbJj7EPVZqaYKxbqyfCZVzPkCMW6l6zeb5/sRV/r8E/lb/5uHQ+Rv/7+FyOd46b/9HxeWk/AbMm+44d+4/Bu3rygD+otkyI7kpDGMTdTH7HMAQyyEJuQcixrcqWrYHDCUEed2BFx57ZCWgQaHfL38vVCzEqAnuPk+LSIieJB3kkJ/EbG/iGzh8CcU/PNE8hH8Mks6dtyvO521yHcrpDtzNJdyVNMEhzdShzAjMt9vBkyBOC8fNmM5mcwE3FJa/7v0iROuRhgDJ6b98aSzPkFVTw0pSuc4KZ5DyiYz3nagwvIbStHv1i/1Jasb7l9JSQQ+sRrzbefvcQI9lJhzP9MrO7iV1CJC+zTXKA7+W/S/lxMbd46Uqy76fp3xnMAzc1+9MX91v/rIr8QgjJHUqmoxv6oGJfNmuX6cJ1Up8OVCia3jDfM/23eVCn7jb5+M9H0T+233jY+IzJ9veWpFpob3Ax1aR+g6yJcJeeFTIBayZOEYu1byiQFX2LifpWWHrxGSIzfoDyn+eJ+Xkyqo7HYy99wDMAjUFzWfpePjvhbuh8C/P04g+X66Yw2FQ+M5icz3xxxS9fsYs/MJxQyLkjJAeILLJ1v+/Z3eJyLFJ1Z8z1FfJcTPD95AnR+rUIKYixve+r8JkS+4N/xXf/E3APSWLoBrNUMT1xCpz5Xt5r9rWUPrIpBHPS1DKnkA0CsTZ1k/uaBXJojKGvVmz76qokZUNKg2J47amyu9eWKAxhuC3xCXwJvTjpH5IVtCALY/lI9FidHQXIiud5PteqCgJoGMXc9IQsMdnxqMOaSuXGR5MNbIkLbPSZb8bn/c6RiGGgSr253fW55ZJX4IROBzux5/v321JtBb61AcXk2jwRzYjnOE8PNjUH9OGbY9bNEsM/u3OsL0Z8ra25Goi1sQ+Ukfv8eMT7rz+Ui+28djftWF36+Aq0Z5ryTqpWTnM5XroT0WB4b4gdAx5P9PirE5uRzywveXOykW5s9PEmYtgq+25/vFn4/5wA/GN6LWD51vPCYZO87NVEMnLVQdId1Tdiy+ANGfI5FQzN8Gb2ZLCnZfwV9PTP+n0HEkJf9JVcshwZQPPwZcxGv4Nor8GPq2TqGxhZIU6Z5yKjTJNognlMYa0YYEIzz+Cx03d1+HY/aPn19NO1ZxHOIg/OsFMEz++j1geMWcD960duyavghjKn2/uotATeLH+ELObYaEw9wKmuyem1Th8IZZL12vqSk6nV/+MV95z8RUlFg+uprYayowzgMkswbprMa/+tf/x3s5TI8Nlsi/+pWHQ+Tf+t0LQeQvNn304JM8IXJdZyZQoAsaBRRcrccnoLRsiCTl5CcPOmN2sXECjQwAhuXyAJAe9R6Q8a5XqhkglAG3gZ3iKv+AjU86M8tSA0nf91tVwDGzRLClS4k36U56uxz/JuooOVKAX9q4Opw33uVjtOvhXcAr89yqfCq35JHgZ/v4uk5jz0PwbXF8IjKd1c46uVI3ZCFCYzm8kQE3MjshWb5VozoymUxzLiprN0DHaeX9Bikoc9k6HcrjqsXytiGkCqbcX97W9vhW08iei0SajTVTrKddMJ66Cm7fdod7J/pVLVwRkMzgXOSrZSrL67ZJxCS/Wc7g3DxU2UBVXdPg7qaT77ZIZ8MGpWZ80eDxmLc1ACfpoKrISeLRvvke+b7ygEDHjAdKKnGvLyEy3vHz9kgrnfW/uVBw65cvqjocEI+piUITZz7WRQqcfju80oKtewHJ2Y+vD6D88lReosd7VIwpjGkC59vAhCYCvOKCgvCl291nUvO5ehoBcJvtqjoa+Cz6Fic0TnPNAmr0gZhPIFPizhyLvhqFr4sT9dVyBGCcYPCtV3RqjodvO3AalbdREprHxXqEbN9tVjc2WRwo7NNete1MvljAX1bGQ5S+w/6aFU4CLQLdG9JZi7xaFDi79wlVtgOVCwDoLPae84RJ2J+ek/+Eehojhafk85Kaoea3AAbVFn7SzDnn0/7eQ89pmTGCgVetAP3jkAJNp8YOwexT939iAjVKslI8RNdXP1FhrY8q9zn/DY8lO3UGFGziskhlJhAsAk3EaSJMtjSG+DaEO7ejAQxhb+xP3HVxYt5/jRPlQOf93inv0pu7ZrlDeMr//jGps5OdmU0U0GvZzYPu+TDJQAkCQwbkVikY7xcOscArADh5X69mjgWJYgpnwFznfJKDrpdUqu+DbA2pGs1cc829sq/gHP7+51vJgJzRWYR6mnr3hX5sXDVp3y0AFahs4Op2u6ynyOfVCv66o6JB0pEu6U4zaN5rlfLTGECKyYdzo+Tslqk2n0GTKuR3jlGvZkhQWsWjPx6g7zEQ7xegM4W2qfJkkIBe+0nlVPepqrXXWz5/8Im2sfu8TgOkWzcv5En/bD+CnscoNhogbTH547jzyTfLV1UEILYKTl+wkFo7wv48pOp13cU1FC+QxVJ6pLtEhTn2VkjUxWNcINH3XeirNpYAq+jncalOFTBlcbMTI/eWc3SMOKyIwTs+JwlQ+P16TNkd2l5oGR++x3ioMo6WC1Xr8gpKiuX4ePj546uvaZvWwpTbrbA5EReOZUT6epXiIYJYlxHSrgKkWjPVIGQXSHENPadYZ7B/FR+bNz+pQ/sWWW98XUbgNoSDuRoj9Y0YLBrEYPw74KjhX1cpLuzHwsVKQB+D0WHTtYnj+Px2cBytYCPqj3cV2eNpLXmYlQ4wrFr3v3te6V8vuz2rQskl/h7xGEC4p5R/j/DnDMls6G3PYXmkQKUZMIzzLZnu2egArtLer4wLVfb5pL2v9Ofr11kWTOjaObW9JhKX1vGAt8J2nNxujJ7X0xSHN0yfx6VdbZO/6Uzh6OrQQYRb1nE/f1W2TgIA6OdRPGlA8HsBCJ58nFqR//L/1ljr+KTE2OSYZ6VOKpMf87IHhopIv/kdfw8Yquu4Oj9UTjXWtJBvK/S63zCWb7+eDn3K+I2ZX0x9Ww6uOPZL8vv9Hd6w+AXYt7kZO95+Q2C7Dx4BsgghxaqPe20iyC1gaFlSlPv+isvbFVuPe+Gbb+WophHmm5G98S1/0L9PlRi8yVeoHIlvj597xfqQ9AsFLM5zdkx926mxcr8xywjfdghwFcx+uWyoIYrZN7fZma/eIgUn7yEQUtGMgX+GK7Bp3ZzAHCvz42pvXqFBx8JPMnIrpJC6xrEnWeAR6f/WgMXe93bsTCE7hhCZ5ivaCT6JTAgl0UJe82M9Mvz1+OXUY+fzmFLHLuepwn2f9FA5ul+p1SdJtW1UDfS/RX8f/HtHyDaAg1R1vE+A8/4kfP6MVULZJGzpJiKcz3ZEy6LvbaxiiZqLOdv2JiTJzCRSJjvDADx0PfevdaFqhbFlAffa7R/j0zQxDoFXD4XO1bGEw1iZLveFpv3ivs9+LDF2HQ4Fyr6C0WxveF73Y3TX6fec4ApBwJ3A0SSN3g8lPUMxBgdZqPF4wR+rr2ZMZ6145AvuGX/xv/5H9vGYNc3oZJpNzKMDdkPM3QsnJ+R9nKY57WlAyQUgbM8ztl1KJnCElPZj10lf4ewnMEMJzdje81x1P1nyAMOY3a+s4rGgXW8ZJgU48rvVwDoopNAnkpyqHk4Lm/zxSPxQlQO9T8rKeL9wmhHr1dxaKJDdDCfvgZNVnvz7De2n32PAt2S1y3mkKc3puM84gZN19JxisZDtqh97XfrxzDZNrqaxTXjQ+Hls4schlDge68sSiikXxTShij4/9hxTwDvHmcX6oXht4WcXzNdOs57TKOzvZTz+mPi8h58/Y/Z9XKnPbVz9dRL8WHasEoETwyHxAX02NGej8YT20yGkOxV6m7W2Qa6vTOdj4ep9/3lojsaTDM68bkQpP/aeL7ADPIFZNTzefkU574vBjzmJWqn6wD8f/diM80p2uYAoNsTDcSzqrXYaHgjAoEdZiND3ORreE8aPA7ja3i7f9TdZiIINOBAv+Ml69/1kYLN3UsPc5KC0SXluKRaqUNp/LsGkI/vJLkdnhgNJ5v3v3OeFuIWc32h9zKLUB583fftf/PcnLn8WsIr8zf/1w1Hk7/x/RJHPYdVhMBcXv3EkJ9m4MjJE4Pk38P7i1AKeIpJn9AHX752vj4KJsUl4XLoK40XkPW2XPuerks1nXTKRX5yBvms64JFalUs88i/A3ow9S6FQsGFvkJyQ9M57TrByX3zuDV91440Dx25MaR8iOxY1pvUVtXxCYALdYTJnQDBlkb1RFJdjpDNtJw6hpmE6M8G5qkyG00c1jXC0ZVT+OnVJdE7m84ZWvVq+U5p7TYRsEO6pAXiixSE0jxYTQH7/AXt8PBI/ROj7+8EJKO4JToQqV/tzOCpwRvKSmtisEyjXIsfuKLRPfF/jqkV61Dp+b37A7wcQNCHi6ldVDYNan9jir1sCLFAxEwq4/eQCgEEFUQhUHdQ/Hlku9Nv2FPwDz1BW0RK6jtE6+XWY/+bN+lzbGfO5PkkVVy5x7Fs+jSU/SHnEX6un5r7hq+75+niFhqp61bhRviubNFOVHoy7V0f3CnteZeB+z24wpCq3SojboyRzU/XEP58cud8/V+jQ7zUOJJsp2CIv2TBCCdf+O6YA0Iyl//5pm/TbW9pdnMih8TjPqXKh7Ptp+NftcLDIqj48In0R6cO3GXzPbjucWD0NuAK0WKfHzGLDI/CpQmyMwAIwtCWoNJrMjW386zZdr/24iCsPL/3EXGQObyTQqYkfeL8K3iOBV+X58O3H+nGa18q1YYUSv2bH1bCSaPx8FQgWw0+mUUWgmRwnwYm8zhPoPLHkq0W+4EYagE/82tcXkLNudUBq1wP0hEKbxwOSfpGvPcEnegFS3cMh2gFzXamnMXRljhcdR58c4c85STLaHLfS6OdY4zG8u1x//+LXFR6HmDguAaacADHXDVJ9j9necPCEif+9tXmMejVzjvEgwdGR1MlBiXi/AF9DdDCzWtv4YIY4z0DfIhE8VGHhn3+hpJB/jP3EirknNgBiqKyP90NxFY+fnMeM1OcKa7qec7Kf5pxUYcrvO3bORb+1UiMvNYorS0hnNYr1tLuX9fvHY6K4au36QnM9My925/ZciEHJEl+k4tvpYereY32iM6RoPq1dzaJ1jS0P3DsRf9J2T4Izf2EVd3x+Rq/bGKMCdA2rpg81KgUCFo4+cb/ArsjfnxAxboWF3bl4UiKBE9L1spkfaEbaq9oo1v3lzX64Fjyc1De/i9b5LO07qdTt2Nl5ZBNh3rzRSaBkbl8iEoZxdwWaK3CiX1W9xahdr3c+0hho3LSekGiD9iVE6tM5QKLSYyg7N+O9LvqxjHiq32sSquMWkpFrPgCbSDTL99frMfjJc6cyriiHcUGeuWQ+Pc4zRGU1sO0Lbs8RGCSj93S+P3QvrqYJ8rsVyIavXs2QzmrEHxRQ5RQ6i1Csx87vl6pwzZyk7+9ZLSv04jde2dXPdWn+wUWyfO4VsjQ999CGo3jwdVwM3FeNRT0B6gnrrM0zlJkJVPgNm27uY80wAOY15v22eiKQSloMARUzEmBxiX/36ZQsAcwFK15AIgAnE/6+r7otkzrqA6yQclMnAAKWGny/udrC7whP4IGcqlwVr69w6JXLqiuVDO+7nyThtja+JVJITUEB/SKVJtBPCIiwNzdKtySrWE8dUo6X4eZ3jvu15e5k0GyTlyYDQANfyZTMFFa8SabZVjUoASZ7HhvYJUDt3ZABN3kD9N8X3eB9VbL/2IxlaGsCwF7YOQGkPHLIt14xVSPUFKWvZPCtb/j6OXzLFQKRrHysdI5yv/5qaiyO6EbCy+fohn90NXEsJAicyKLxAa710Jh6ZixodF5nwVrN3h8j9Dk4kcYTc4Nqi2xIep80eYCXHDJjoeMcOUkiXvJpx8bjoWl/foXK9HzCMp1RYx7zmcmt1lGr0++fN3K222aNpfxjYYPQbtxkvcMnG0Tgk2LYWJSZ/aPSUDM5VCwpGUNVrW36ybfNe224RKRiY3OTG87vjY3ZHu+RSgz+2+bHuVpWKNbpHqncCXtA1TO0P+rPf6CbLDt37MhpPMWTX4vslriVGoH3z/CTaGP9BcwYw/eSMQI/nS2+V9O12E8snLRe/j4PeJ1G24HKtLGKvEEC2iEX3GsinWt0PbTX50AiEkDfAGsKxLvmPfK4XN7u+/X0PVEiZHtwvIMxgXct6K8zodjDHoPavW7V07AKUiB4UJA1i59wdSsZc6uGpliOJtCmOWyMqCNRQ/Y6J6rz4CrvTprEc0LX2Rcia4vGePt3r3NSIoTQ5Nm5ljBrsbGEpR+PcjFM7FyjXI947slvmrVW3Zh6uzlaH4EIGLof8CQmXYvpPTdm6PerX95LFHiETugY93ZM7jWZ3zdoP6tp4iQ4uG1Rb+HEzo+yBDL2fTGyx0ZY3blCys/q+vpg3HyuERpvyHOeI5m5PaZ8QQ/QiyjoOp5V1AvMXVe+2yCdNUgOSjtm3iwRMN+XtSKkquZpbCvf6Pv07XAAc8/Mdxu7T9VUWeudwTx817UX4h769Ng/NgBweKO366P4kleqcZGg40XtCUbGEtxjhLz/eXp82vvfot5e9vFIHDaIn/nnvc8sqnZOj9zeY8BQUEkx/GkqHIIe81y0wmwCVYVBTOzvky8qIBU6X5aT1Jb4735izdT8vkmhTyIa7i1fd3HwoDmrNw/k80tjP9Wya6CpBIhnqq9uPXLPHVWZuYuqgPJSi9nHWuiku/4cuTZRZPdDfE+o/4Jf0cDf598Tr1pYNOe1CZbuO6onZu7kn2MNm//3MHOpJlMDQjgEP2m5yMeeQ+cJfCs1INy83n6mawTrK+nbLAW4NV/h/XDK0r3me0r9UOxAr/F+PAqAKobjpIQv3Yfyn9xBs7GC5sqSfY3iA50pqDw2cU6lkM4a67cPuHyjnYsGRGH+HI9+3+azlDhVADS7ZsejVeyCpwOnJvJ5VtJv7BlqkOiXjBO5Qsv7NyuuYPXhk1B8YhBq6uAr6F2lsq9Mpf3rLR/44xD4+jiRR6QdJ+LNetjWWdbX99DjJYL8dUtQsW0BACgTXbulmlQ1EQIvjxxT0ROZT/vPfRKB8eDEjN1cRHof9uE2aLLAy4B5xrPqgs2+tKhxlPaaBeOOCok1JaMA2/ccJaSzelAOy5elgNUGQIzQo5ul2V9XrWwVM93y9B6VR/kEGU+aqMB3QkRPj9b5frgKhqorCHRhN+dTHGzIwq1z/JJX32bFHGN3G3HVYml3+B2Tev7oaoL6uSQYQFqFfPdbsIEPerudQbPr7tjb97vXOXEVOvd9P3q/HJce+yWgi5pP29dp3f42Um/9noJo7Ddq9+ko/L6/Hr+ZNqEZXPv6373vJU/krk98pkca6MYRlzDKMgC6Gm92ahMMnoLIjj9zr2OceKTrWMjP20wQo+5cUt1x6Bty8u9B1WaMfk8TXuLOk0T+ee5PeqzSpqvkcJrMpsB8kybe/Xh4rxdznIe/E6PGHN5n6gmg2TnuTCgC5w9918V6/5pfBm+u/ZxYUsFJYkiV3icEaZ+78s4RAsNZX8mP/9B+gJYJeULzz8WVdnzztaOE76sd/ETp2H38OGCNZtYVoVoGUnbe++vl121eicGvsXTN95c3/QLMeojUV1lfnUSqzflm5Fgk0XnCG8bZ/fQmrjX6yTYRI4N+O3SOs0n+IMYQCO4TdI0gxdiYZaPOIhRZ2pF/PTGazhqooid8m9wQlLyxLcdpSH2/tH6RDQ5Zv7R5bMUi/nJEnEdFE1yH3yTVfGZoJRkCJ1K4raSd82SRmwiw6+0rHHisPIyDlVN5xa/f1CDVbzwIAIMmp4GkrrtP3fffEcv8/bHEMP2nON23ZKD3zLq6RsSsssM5N4pyQOK3q9NgQ2WeXND5lD3mx9S1R4q76gVftET3TLp/8Gq/2nor9w3vAQwSszrphQyh6tujqwlwNYHpDbHajccVDHFizsR4Clxpz2Oi9Eg7lRZUEUnEUF42yO/2ZBbNmeh74t87t+mprvr3/W5MZX/fIgtUAg+5yzUYtXYSOEYBwjMEn2QeI7VDr50Uqw9eH5kj8z5/fr8p//GiebZdlsXg9TSy93MgAqb9Nml7OoMh40+qRvC4CY6xauTB/K6LI/j8mH/Wb+hbLw+J/waGxDfLd+f+1BDufDw8ucCFMcTHlJfMZ8m2x65/apr2AgDSFjppkd+OnfWYWLzb9loDdIR9fKRstX8z1UAVBQUUPnkfIu5D4HNevq98bsExZrUbB9a/yN4a6Ajiaez0tvCrv0Jqe45QVVXITo2qoGh5v7+MbVhOifyQCv/g0H2eZW7SlpBnC+347Ji6uGDMXo2qw5KDEjkJDzZWoPMESx/M0FzKbUVXeX3V9HBEZpOivs2n8cbv+3BSFTudh8nMzElMP0R3rkGxfTLvhJlTgBIz1EvnJDvt84a21Wjb+6vE5uu4KLgnRb61g+kUgNxeh04s36edf9ZX7xPGvFoJhVfWQssb0kINJp5jzSeHY+LBZoR8VzvBD6kN/Al/SCXMS7K4EtuHQwiH/NcYQUz/KdALNo3x1uFPxB3CjCVXFjVpHFMAjFkXhXyWi/VAmZZnvxBSK5mgsC/LAoi85yWr/utcedRvc4wUIsLfbU6l7aTIkJrD5oV+oGD2nfZ56JMXIvBCRNMYOFF/WnsWv3SVbgx8XzgpmMxd0nTMr5L3W+CEf5NGaELe3Wy8eYDo5/sImGNL5Y60Tz5JzwOarBpXnvrE+fi23eeh75ZIM/4+J9hDzYNCgdqiCYMfsI1VERD8yg+3ImpxkOe85iWV4o707u3CXFKfBwE67RXC/qTkpO3yhK0f1NP1c3bNLa+m//x4JkdM3X/Ur49fQ3Xa2/r4NmRj9yp/u3Zd3TWYVxIAPVHK94lXutjqDK9kfFGz49C54RP4IUWP8343oaN95VZNvnqcY2jRNUz+ALDqHU4sBfcl89c3TLpTozwz/nBvD954kSsEeYWRgZusDpH5vs2XO17z3487nKQRja0cVhs2aW8911tP9L+f+VZir63VNOmUlr2ylT/nPRV0ZQL+pR0zxpopvfwSdv8aHxIPEFEEDH8zoT4dAsG9wMQ6/TXC/933yl+yOesTg6ps0aTKIX8pnqNT2CcJgHygmAPGrXS4H24ofgSAanNiCQvyTielt16ZICpr1JtTW4qv8+SeS9h9ZT3Qe+pyYn0M3EKOmo0apCeun6+jv2YQeR9Dr/fXXF4JwKsq7X1hOrTIBDCokvKRMOsgPi6yYAqR+Ga95j1uy+Ao8YnAB1xSh5FAnMQfg1PtyxWlnohI3WE2UXdqTNCr4oHYEquY9XE178Oj08767Mi9x/Aq1HItGhCp/j0prvoeWX5ynSfWnAovuy5zv8p3T9e7oLfM6pNU5rvs7RzqaYy47BMEVMlOIphsj3ELczd+HdiK+vPdQMUkF13Q8eH/nc+PxOb0nh1HQBFN908/sRCap9vlA/EWj+f4nIcLWELw7Y35PI7+++RuyKbHGSOrSA2N0xephObItC/+Ov31Dpo5s3nV8Uavxm9JPDTRlkRH9148Uw6J78fU9F1k+905xxT4hPioT6oBwxjJjLOrfp0nznt2LrCnRgl5wBWpOeMLHDtVAUu3u8enJF3pt+zPPQdWkEToelzP2G/geF0h7e7VZPPm9F8JNKElDO/PYfiNaocJepNw1ysTQ+aHLPZWV4aKfKC//nMEiPyx63+oia65v9TIOkEBobmUG05q05yEtPfJQYn1/1RaW7hkZ4aorNBmKfRqjvkzExsnWcy4QKqfr/pJmobxJ5YrrHoedr7V3Y+YoOikJN65QNviga1xTtf+9anAfVnrEHwVGk1mTUlITwT6F/WQGp8TGyfdzEOkva8+BGAVBSozFhEhz+lQA0k+6Wiy3quKb9snb4CexFt0szLrd8cfah7EUU3DCvsQYakqryyRHSvffof7jfPxhDqTh5T1Y+WjfbDCy4ZbpBhroOgqhUwmmLyah96jvl9ZyL/M7xIOsMlRV9JEE43EbityupCrcugbT+QQeebr1CV7gd5XXScmMM/2+hIpZ12BLLjjScltjhgZ758//ELvezGnMzgJNoAFYzX95sJWEPy84CTZooDYL5NUdV8mzMkknQ79Gmk9fJwAUC648fBSTcAldPk6xgLT0HuhRA099oPuRY1y/W3ZsQXsMMbACVy+Dd8re0yl0X+HfeBGit9+34a/H5/kViWdw+71gdtt8c8RRlVHfNLCFDvWf57vs/XAdNdN/pCU2KBzjycFaJ3A4vMoeJzJqmS5/03zc8bfh9B+AsNJD63bTjgD59tYsihY5cUSCoNqm6x/3I9v3J4mlAT3q9UGitqAfYCPsUq3vqcAv/e5E4AmJZUuwM9Vft77x9yvOPPv82QJEbLWCVWP0L2ek99APxEjhSVgJtS+el+nsKobIvaP11V3r25xeCOBKk0DdiJAuz3pxmvunSvvl/b+eHgjs78vnszjpL5OgSNqJj4f/obMsWHHkhJrXmJKILgf9BPHGLxhG2zvC2XJfIDH3uGYk8h9slkcNFftJssAwCsuuXo7tE4O+/k8QXJQ2nX3inuuvM97tfrUvZn7HrX3Cr9ZHlflL4KfBOXK/cF7nk0YKbD5e5RQVGXjJQS67+kU1wc+bv948Ng+ndXAzHxPRNBTI0H7PtBZMJnPR0VjCB5O3PsIkD8hEj/UQHcskeCDN272LZesvSkjyaupQr6LntyuA3as3f2G4lxOWiZHfYNEoL/nOQmysrG/I5rfkCVSNVV2fjAmZgglgTj6CuaYxQHx4B4fslv056g8HvLPqXu9Bzkq8L3+dX+uG9rv0xD7Y8uf5Nc/anlXuRafFKsuakbbW+aa5xQ/uZaSfYWgXUfpJoec9Z8gqgzFub5Yic8D/UTHIvDllv8E0Ilyq7W7KlxOwhPZH7rCpnvd9YuIci4E22eijyp8zjniBk8AR3MPEhSF5pA2Lq8NR8DPeVoHHxcXZhxvdOsNxPk0Dt/Smot16HUg/J0SfGK43xZVRLkCniZVtgKHq+tPagxOIJJ+rHqOCG4f6vZeYOkRBDzzQ+vk132edHDEAAGC31frUzI/3i+QHs7RbKygXs3Q5rEjBHAasXdJifh2hZWbd4CyhL52FdXmxFrhkAWhTsNzCrt7u1x814/Tva7314pFVl2CJxOnJvJD6kSTNaYbRWTVaRx+ebmfCez9vrt1d95eYGRMKGMdujj5TdrIhgEActbYg/8IrJpvmRNOPIhj+82zz6zJEIdP1p0mAHGa0gaSEdRYdJFi3m88PKYAphtrzfy1fSLYWW/WKS9T9zXA9aEOjcMHNRzkFyRad9JZ8ZCvPd0w6PyqtvoB+P7FYz5uNCkA+tJgs2xfYgoAer0nqHgZqq9YdtZ9pLG0S+t2lct+0oeOi0/O84ajfB28w/wg0cJUB9meIX7IYxYwE5ziyhJMyW7vd27GY3pX+MEYKTD5Obiouuakc5rOKRU6B1lAxD0IHwSLgv5FNlehzwKwyh7nmuf5L9r1+sfIKw09ze/f99AfC/Y5rI9jKLAuh9+hf73lEx27Tm9Z8m8NgRTHlgBg+3lSBYlZdzdm71rlVyQNXvcUxP76eLBsP4vhxMKZeAQqqHgyYel2v6yfJBibeHIidFGyJjQB4CS+fxwW2TP5pP0ii5SBcocFiz6xTdczSgL5yZx+neMq/3t5/TTnDyVsVNJfZ3gyy7eVGiqPwmohbm9GyX9/wkrg5wInz+tJBNU1bJvc0r19jpcESY80lrsGxry3jOkT0Y+PvIfTWQVqUggA6//pcNAbhvtpa0uy9BUL5SV3wk37Bbjn3WmuQQLBIviKUPJ9BczvzGkSbX/vvbWhXu+XNeC/2dgmB/3G4sEG8LuLVeFmO11igdstWvGIe0HyRSI+KI7lJHWoES7flq9cp/HwqlGzf+4yY+Q+t8vjczBeIWq9yweEHjVqDVe2+or+EPixsdUUzMd+uLyXgOkIfGOp1nswE3kCmAa2o+Q9YdVYMnHFZrvSS3c5iUPbiPeH9g+hMfvg1R1ALyiabNeD4zj5cD5YHujPE24RWlyOHVs5AM45wa2IzPgLzyYoga4U8rsVqmkCsluIyxYpWsdOh9Zt/vtVHv226B7FBUhj8Buqk3rYFyEQFvV5cY+V+zwsXAh/djR5MRKzj4kLfWGVT5pzsSP/PI9HT5oz+DEkn69x8HkmKfS5sJJvg8feflLlpHlZiDT2Y3pf+MT3I1RV4qzfE0OSkMZUsPTnDvWNColdaL2+oIf86/nyITKfN5IOVcD4STRgGMv2c6meaOX99oA+7vIrrf194VyaWVc0mKfzStQqINAKwRe9+EId4lt8pwQOTujzhCa/VgOn7GlzMDtxGQDDaquQUr97jW+XSPSxpAHBT05wKz5S5ROSnVlfNXBQIOuU/PQ/un23Hyv58/MKgiyDur2H/PaekQmUJdqNy2gzY+dXXE6t3TP/vvqEi1mNFU97gmP3N7L4vn0u0LZ44Ga3osgfIqT49LPsIQLBBHtDZTMnpalhS78t176D+7taIoeW9W6cjuKx7i+a5SVT+uSrYYOeZs74h+u25VQ1nGYvIVJm0Q3RlD65tiU+jEKme+zdLLjCkxN6IZViaBwUDKiqtSVnjfc9cG+t+yFq+JhjNpng+2omGrRPfWMOAE5jpX7cbpBN6iwAg8a3Zv2JUz1A4IGxPyGrvQZjIfW8T+4PGos6hByfQJnz2xBkxvc5nfWq1l4x3Xt8k5qtmiqsvD+c0NG+F1eWBsotv6yS3wjoe+f7oNn5FcJpCP7T2pXQ50K/zRBBSiBFxCKiPOTlGEpiDMZ4kiUPU+WGFBO+LcUiUnKwDwH/yrHx+L0x6Hc/lhQE3CQRke8hMsTHWPUIEP7dB5OCgSA31LeBr8NXlfCJRqgEdkxxvGjiEZqI+cp5+/6Iuoify2MJoMG4anf9/v0kVCa8aLv3Ar86i5PXY/Cv4YtwGiKeo59IDsuD7WPvHCDLGH6MSfnkrJv1SwAWK1JC57S10GP9PHwbPdon+qMmY9Wy8o6VS+Y7RNsU1tOSNwckMsvsO/9+wicXqS6PtvpEBJ3/0w/6ijKypaJJrV/dRMdOILgfkM8rB8UbviUVqYh5TMV7AY1VqvJG8Ga97u+7t7jyCPTMFW2ECHmfePWtVDDzP+H/PvtlKS4lkjaUcOv3u99OcTlmdnahyqfA9qz9jYmTScTkWCJwyxonJlpM/vDEg++J7x9DIt85WV2zigkim30VPNnlREWDhJPsXTNX6nOgPrg17oXMyP125w4iTvKsriAqa+hVU1mxSEkaIvntPjPCynnNI7poX2hdtqnzQYGoaGx6iltBxSCrBmNnsbw9rDDO7xbOuGxD5s4Cip4b+7baiqN8Ap7Qz0OHvwe/kTH1VnDmU6wi/yTYe/lIUpleOymuOSnOeFCMkfeLiPeTqlJ9Utt+rh6+NibcINtEArcRHOxDoLLS52ROI/4wn3X/99voPz+s5nWXDc2PQkR66LtP5oBmivjkaEjK87H6Mb6NGb3vj1eK8+V4wiNUJWv7RWZugpT2a2BtUxlb2DH750UYukf0sRz3wqf75knrXUTe98v0BD6hv0ckUPAa1RYNEs+Oxr431pT2fkF2OiECfwHIa98n8emeYP35u2s2Xa+HxH7lrMe3BOLL6WtXDfl/MOv3v6sU4BZ/6c1d836WITqYIQIQlVMAU1TT3HHSoOst8UI0d6PfMJ2P8S6cCnyK+881tAaiB/S4F4/8IY43ug8chSd3PlFykrcXPyG5BY852dyLn0M4s5tise42CvIzwdx/EOiJHj9bzMfbX/xYk8UA2beoMsBXw/LX/Rutr5AZ+hDDXqwHYxgppRrfp26dDlHbKynSI+3c7KtlNWigykv3eIASUhyQpxet1/dW58EHJ++54j6kQuHEvbtNtxGu21W96Z4PG3OZz/rn3Hhwz217dKqQ362d9wjFeuoEy9Twii6yOjM+zLNrxp+UWx/4mX7zeUMKHV31frbrCkDqlVT2F3WgJ3D9889/zs+zMcL+NIGe85pn/QT0pKVPxtJ7yRwOqemDGoCNjccPOO12eIOlQODs78O9EKS8WofWH8JY4M8Tlo7C5BRkGg/w+0nX2LLud877gZwEnmwCxq1zzPPwhM4PYrm6nycZ/NJh/jg04TAJW29bdKw9L1Z/vRx+c9zQ9dO3sAlu03scvI+Qsp8R0v6kdixB4ayHlUtborkcEls0foJ/T6LrxHgjtntTc5y24qY+4XdJSW+rxA8cjzpQJZftm2VDvV36dbvJiaAVQLk4WOKqLsBMLmmyCUSsMsg9p3XadtZjJtCeX1V2PRT35LsNwk0t6TlZjCRQqcLyrOq2FYMaax2vK2sRSPfk9Ki/v3KSkBLJvu++QHAvcEr//Yqm7l7JLal8sdBJRAQR1CHi0PpErw+vY/5EF4jtY26zWE/dE/9+GsX18Xy+MFnuNyQNvW7+0z549/CqJ+s5Ie6TvAQ/fubE/r16/NN4iHR2Eo+W7O5JZUpipJ59DTUHBHqLhTErhqis0W5cDpJDrd/4EEBblD2ZX5SIAMS3+3WOKTNp+yGLhdBR4g2Sx2C/k1WvcXLnuUyNEs130trjRb0J8jvH0HmCapogrrSd89ByeisfNJYuLsf2OZ1LTaaQ7zZsbtR9ppvfAMP7/Zi9ExeDnEYQksKr6Czdue/A7u6EihsOvzL/QcCvXb5Iox+PF3+f8n7p8xFcPR5cPiCmdMdxutjMPz6cRyBhJTD+nfCKyYHoKLBOwHVEGI518XyF3nMqI9lx8gn2kAiMiz78imrLPQX6LwC9X30/dneeRsfAn6+E+JdwXH3y98ateavloR3yIi7GH8O9wBeS+NB5AuSJTR4SFirv2XX41Bgj6/11nYLUD13r6TpPnvhErkdFgzjU7DZLghY7/jL0n97TG2v9Pe32XWDjsn2eHBRmbN749Kq5H6z/+5mzXn5vokQAb0ofV9pannH+jdT7gqcHpyby137c+8RTRkensBYzvGzJKmy93zInUuqpf6MOT87thZZZ99Ak21cVclTTCJgPbw5ciWn3gf33FUR8XKfxlwo1kTXrGXoLG7QDZUQIYzcDboMR73bve2SbHwT1it2hyjLkmc+3E7IB8hsKNl3pmz2mU2WtPPgxNI1YI3cfyjCJTkoUshfgShjbYIqp8gFzcpMCSGeubY97bHuf/tPAtQDqm0nRTY/GO6bYByLbhBYAMkbk8pJSncFWq/jfjU98AX2X87EKj0XB8KLgzHy2f7xQjRKoSlkUnFJ1y6Bp1MgYFil4QuNwxhoYh9MANR1fbhF8S5axsfjbCT1fVCIawiKCl//eQtckwqLrRXC93vWHV3zwcyj0HfDndK11rKnK4XL+6/w1N9EVIRvbZjJUIlA1ha8Q4tVioWNH6pex/QZO/u4WKfV5c9JFkzfaJvUp4MTZonvVWELZX6bfzvD7Oe0kmY8/dF8ZrfoJJC/onMpG4gSORee8P5mie1BIhb9oYj5o8JYMx8wnnaHf6nyzL7lOYM7Fcs18hhqYFeuJ/Xy+q5GXfSNBnUXANIZO824Z07Q9v1shBZDuzFFtTpDvhvfB3q/SfuKuqhYr7w+bGwsE94KV9ytLChaXY+f+EhKm6MxPZtPy3Ryji2+4fRaBx6cnXZtIRcnvO3StqKbJwioxnQ5tMvj2OdJZO7CBDGFoQeNaGPiq75OJ4j4mPskOhivwfTX+Im90wLXXoeRDsd73PqimJpEIVhFrYvh+/4j4DhH2XPFoSP3Kvm7JGN8XP8sQra4Ya4IQUdRZG/gYEE+nIIZCCkwiVYLLk9LT+xypQOtNk4k3yY7+eyOfevKmpgoHnrwBgLyz4lFl49iz8QQUza1iT2nrf9f03LVM7IVQ9jW27rg8+Z4xRgz7gjGz7cVJgX5cJwtG7DbvsVLQrospu7loYtGyp9kOJ/GB4TzopHXeC0HrV8EDI8co7WMSH351Ny03Rm7TuMdsXhb5uPucx7gwqR+H/5rdTkAgBfTfoy9acOwtA/O7AenP432WJPYtHp3PjOwPxaKO1dR0uA7aZsjb3rexDom3FoHfs/i1gfu8E3TeX/N6IjxdTOYDJ5LunHA/yQYn1MD2QeBb5/RjSpxl6D8n9gefyWNWBZD0xP7qire+KpjciD2roQhwjh1ZEcUAklX3wpR126RGvNV0PG44VxBrnXvCqYn8lff6jBsFfHRSkFKYLj7+RdH4srY43vj/t3fuPJJkVR4/GfmqmuqeadieaWZXgL8grQEOIFwkPgEWFhiYLBZaB4SDgYTG2UHDN+ALjIRmnZVWeGg9nDVArHZnxDQ7TTNVRb4i14g8Eeeee859RGY9evr/k1pZnRlx40ZkZNx7z+N/DoMA6ztfDQ8jqRumH8w6wrF/mIpoY16EDl4nOwrRk2+Q71uDtGUYSaWxlUbuyEkQURyRb6ELkHha7p7hNvDOCdkaXsRPn4WREjLV0pKoGRApXZdxAUy+1nJQauck5F0mh3Ob9gb9wYC/61NDd/OmLyzWLia0/Gi4QfSiRxYr6xdGB8N+H1W/mGYj9CUySkZei80F9VEpctEqvy92eshrTHT4Dp+Fx5H7DA6Yrt2FM/GRE4dUIRvteAnOTziuei3HOdnR684ESX9ufnZwBPIxSyRt+v0O+2QjlTOf67Zqja5JozxH1qr+lBjodd+0sbnfJshkOmxvRDVOnWfB0C+/mE4Oy5jvZT55EU36/9Y5W6nN65nKBFJtBRkgZN8P3uJuezEUwmo34flZWLJRHtZCwDNG8/jkHdcqdNTOiehySL8M+9k5BqUzMfjcyHTQf3v3o+ssMhZiltOHsc4359Ro1hScrzcWNwtxn28OhQYX8TXU2VH6/pMG/KAvhzZY85SfnbpANZFwWBwcilx7ZdC1Hu7v7TlRs26i6F05jswuO8cyG4Ku/vHVIOp+OLdQVm75bEOW9AZHfQJQyyv/9XT4m6hPI+eisbyw1LUcmKCI+kYULVdZV0REs+vB6M94WThW9mjn5J1Ez6I2kuqKx8XZNdHZs0GWhIii+SSRbRjXkfG6gGDQTzbK83x25Ucc6AhJbs+KzOd2Vociwt7vnZ1+g5G3FYbewShsSfbQZdhfLWcjoxa7/8cDaPsg1JrbL6dEQh5nst4OWsREoZyOY8A3kcaUw9/6W9dGpvbBeXR9g1pry+E66+91+3BBu0+HNQe4wDAb8Pnarz5lTCwc44yXxcE6+hoeM/T3L4OT9DpQZ3TJNYU0IKaiuy2GzNJhXNbjf0kwQcow7wWHlFCbqZv7XDoKrOxEmWU51ngv35P6+anae0SZ70gEYcm+9uclJEita5663lIOJEU053fmZUTi2qqszt6udB2+X5pdEXyHytFsGdqlg9eypcyVEVPWJdR4gaOBTK7KBvPsTLJfVqHr1hh7pB6+fo6PoeTZ7+6rpNiORUe/95H1KpvKIjT0z8XfB9vVYcxgyTgi6sYobcw/jFu6OHvnbFCZamz0X6+DMW/2tNs23+v7wb5taX+ktM4e0jox0vDJgzmnUxIJQ9AV0fJZqG2uC2XwBF4Wb+DiN7IYW3/srIGkSX4ujUr8f4uZkPrQ2vms9xkazMJockmJQV4+XAeDPvfRf8jL7fQxuU09cZKeWl3s17veXUGyLgWTLijYR7ZJdNACFganwPArqrFL5MCuo/KZ5Ucbmj5f9Ys/o5XhL0Mfv1ltg9RevvfkPRycu9KC5Pf4e9gtKLgWkq7fcaRrznjJ13loY/hbGvNT+tVEvuFeHoeIzGK8qT5qA7qFZQDLGbnlaw1WFH1wnOKnmr2PZQz2ZHjkM8M7X23As9pJZQHI7BbL4JmaDKcKkBEN90mN4d5qW2vX99fiXEySiczoFomMVEplhsjXXNaF1T73xdteTvjla3T9hYPAM24T2cbxSFYqmquK78R4hurj6Sj39WuDdIW+7q1aYMn9U/IWXjGvoB8JJyGTKhZn/a339ZxX1jPSivYL+qvTtpWxwMokSDlW5G/dy06Ubclzun5dGttD4yTLC338D7zN8N0OKeUHR/KjUEeTqHOMs8RCd577gyP74MxWc42rN+YHQ0291AYAXlQzG5mb5ZQW/zukshN1C/HtwwXNnw6DPGvXrj591u2/aWn1aB5F1Fu/U11wlygcq/j33j8eRRZvuyBqrTFqdpBBXBO98uGWZNHRrt2GNhfxXH4aPK8Mo75j6GWjt5Xiz1hR4NqgMllvAwO61PzdL6eugTfV5+T2aj7OMjvymCwns19OaffqkmZPL2my3ghpnfDByfcJrwf0NevvCEs3P2gnnlzsF7MuctIw+HvRoO3DJbVLe0EgayMQhUYwWRdAZwjzWmN7MaUtTc21QY6UQ0lG+2vnQbeGtCfQJWP50BZnXIZZNeb+cn6cCppRc6TazFkpycdtZeeLI9YSmtwx9PzLC9KSa3gtBxi2t3eD+yz089EqzmvhZTDr2k9Ew3XUdZ/0/tq4ThTPAz0pS71etUit5cw5mpEVmvqM52haM5/HIf7u2K6Sk5SS+zOhhO5hv8Wkl9jxMlmsObl2MnR94edRPPfrnbmLpq/9wcbp4bVuUV9qpGd0EW9JoNRQUAOl+Jgq2l5L8OT6KfshDfxDrZZln2knx0f992S9pebja2HUn0fZCMH1X61p+/ePuj5zXZbSYsLghaF4mPrwn5Y0u7Z1aHmhKg1szZofHHtqNp1eOBNqIXcPEtZQe/A/3SSEF5m6UrNOz5WpuEThAl/3s5d0EAP47Gp4/2+HBb+cWMjPbaTHs3unj8QT8gh+ZED3AF49GowDndd9OE89KPNgIPXjefLHD/Ddgvrr5pF62OcKH3FBPXbS8CRfTxK19q6uc6CjxzlKlNOc22cTat9Y0vLZJtCK7Pq4DVK9tg8XQaR8s95Ta0WwUFzMNmbQKk1NhGQ2Q4nzJpcqarUxOHna6POUlqSFllYisqNlZcphTsZmOPbhVUzkPIOsTi3V7RxTZDGnKW7JruScFN7n24yRkPfPZQ/oxYyr318oQRT8P5HCmaJkMk8UGkaIQkMmv5ZE4pcwZl1lRUwHCzqD2kggyxCfu4f1eBm1b0g7MPzd6eysdj6h+VU3NvKpWVFsZpS54WzQUnNRHzdxFCtL4KXQhvBsBoNyUljRXanr5WHJieXS3HWfAkeAcoKU/oZyDjluTzp0+RnNfVz8hejyzdBR32waml03B6kFoqsnXItl0OLnV563cHH169ebXrMfgGoOBlGOPJMLVTbaygh9IqLrN5Y0u9zR7s2LQI9bRgLPL1u6+O9Lmqx2tHl8HkSVT1a7Po29fXAetC1Ty3UEMWdfERGdPWMN8dD4YY2XXNtpZxSJHfafds+B19l4O/zGAskTL/vlIR9r2gdEyUxTIoqi8/fLaVBc1UVFkI8x1ocFAMN+yKjIXjqAIwzXQ5QiOxn2i1lggJEGFF1sUH7nfSFBacAXBnl2CnBWiEfKqCQNM9uHi2wtgc5I3p1jEBjkrElqgraIBmO91U6/7lIBWHwfe8Y8K1slOu46zhbU+1hGWG+c1PvKIAdrXC4dj/Q6QH7rPOc31x9Sf90IGkrNJzWWrcQjNQeSTpEOHVTYvbLjXtfz8O4hKYeUWzvqjCnrXHheaakaeMFSwXmrSPnSNUJp5rX8W+8j7UI8v5QBhjXBTvpaWtlhls2gREqKkTVidP90gfigDlaiJiO/N13z8ygcf+X41C67YrdDQdju+SyfoZaRW49HVvZYimAMKNgmeD+TLZAaG7zt2BltbifOn/8uMfxLaZ/9YtbPnXavLnuD/LBtOK51zuWhP6tPzbvsikVD89WuoCLDPQDSOlUU20XkYpEL4vWfbWL9dy7suZtP6PLN4ed2/jSMvLaKu+4WDbWPBo/ma39Y9dkAsijq2bM2kCPRWs9EvmamfJhr479Oz5WRbToa3fJyygU2t8/RANqA2cy6L0Ea8WUUnTQU8/H4usiJnyykGmg2Hzy1fZ+MNGFrYsbyAxyNr6OLlh/taHtIi756o+nf4wIbsn/S4dBHAR4mml7ldJYNGLQ35YjetbdazIloHlyH4H5yIuf1sezBzC6+2/dA6+w7GRA1kRFdu/FjtrtXbAdI0Ae1jSeVUjRZZ1kJor4orTZae5Mnfa+nHFleW2MjYXQqqmw7Mrwetud/Fl4/as6Nt5f7mBIvKkI7MNhXXI9IHkBPFlXqp9mGs09uuyAtWES/nGIxo9v3tpfX1/pua5xErqF/G2dtmdsVGGf9z/Lt91qnasI+v2qp3YR1NZp1vKDg8YEoXnx5kjHdcYZtmm1c24OPl8Jb5Nf+nrw+msdMXFP9zCp1iBE5CzUjYyVF7jcipQb0Nnz92Biv2/zb49BYr48n7+XunipLawfAgw34kj66/Pmqj+KbPR0WrA+MRX2QjXlJga768g//Z0b+tw/Oo7ab5ZSWf/i4/yzq72EBrLXiWWKKaDBkyAASPqfN4/NAbpRomLe98mF4PK0Tz7CBWBv0m3Xb17yQfZdRflLihYj6DAbJdNP2fZdR4f01MBwSHmz076PhleGdP+ujChczmojoQf7+ud99u8ow0nx83X1nwjgzezpEFUpZgr1qXzszUnJEUqs/FWm5fSjuM5Gh7hEXJx8y2YP3N3Fgln4/h1Uoefj/vl/XeRHdej4y3aS35TlKYIC8omB7/ZnMCLbm5ET2HE3Ptb3xP5jvWxHgmWxgrfXORl1rniRl8fr3CoIJrOwh/b65n5fVcNhvJX6/slaaJ8Ur/x9mfsQZ4DKYwpuvRZmm83ibFHoOZmFlTJe077VnZQToNVJJQEaqpsOx9YasTFi2Bc1VTcHe7lJgCLUcPBy8aY1BenzgZzK/a8q3GUoJEl9tYTzeKGZmrjlG/1QdGrmfdjZLcjVqLKRzxKJdzpLtNqtt4Bx5Rc2p2r97rbpPt067J5rAkF9K8V0m0/j1A343n/QR5Qw/7HXU2OrRoIdOFBvcZLrq7LIr2jMUZGsCoyo/bJp123mdNnyMaVS4jiP31691r4vnhwFAGc+igoibCc2uOokCbQS3zlcOxFzgdXZJdP5hG2QWaLpJz4Su3iQiaqidDwVXZNScvHa6WruMUpSDLhdRJeocB4u/dH9r/eRms6cNdRI5q0UTFDDm69Nsu+g+K9Xv+o3uYi6fHR7uyhjP58IeXy9KYCh260ecSFKTlPD8bGN8ScqqFy0jJz+5drSjQretHRsad5JgTDa6+7DO9+pJ33hG65R0jvdZbhKtJ1VjorajgkaJzL1ah4GVNmoa3RJR/DnZmNSxS7Yz9w2ce3VGVl1Q1t1nQ2axWWlMT0VanYrUtU/tw8h7VGaHZL+fymhwovKshxzDuBqi+8wZT4EU0jyuayPxrg2RuDbbeLvSgrilvwWzb5lsGt0Wy2JYbXpR+fq8LAeOpbHP+wftJaL3guddwgDR/78gM6ePMr6MP2d0hKZnZACgBr2otRbGucWyhI2w7XJGrTCmyijy6fMVTdZb2jw+7z/j95qPr4lW68HocDD6bh9f9NHo7aKh1aM5yUxUaVjntcjuoCdPRNQsu/1mf13T7K+doVdmqRLFBnL5mSxeO/vrmuZGUdQuSp2zF5ZDew/ZwHLey5XqoBsiCow90hCtde+9KHMrU6DLcAivQ7/985UdjSm0hSerXS8rwP/XWsREHE3vG+Cl80I6J3R2QXfNctkJy8jYr50AnA3RrNugDoCUn2U2Fw1Ns+OTlVltG/VryBkPZVCYtY/U17bQ6xG9nTe3GeaTw1ykndvjcjT3uj5sezm0VRKYVEtKXpAuj5+zuYVbK+blepz2gkL095KaL8l6S1YAFFH3PttT9FpLr6dS670a43tpIFDJ51E/dMDKjALJyb5ddY11Vkvu93AMnoTlbmH0M5GpE7dh20RYbjHYdh4W2G5WWzPrS491rZI5q836KiXlpE2RKk5eMz/hfWS7uT5ZBvkxxn9Nbb/Bi03VHZNKFedU0Z6DkXl+eNVeX7N9Nj4LjcBktPQFEdGUdFS8NMbrwYKN314EMBu5Ax3hLfXFYbp9VdRCYvANDb3+A2y63tOc9nT2LHzfKmhXemx5fEanXw3HGSI56crX4NfHDLX899F3KLcZ/n94VTr0vF9e9iYtQeMhDeY5o3rt8UudCRa6KJVGTu4H54NIlROe974fwsnTtZHX3rM0m/vP2Bh7TWbEhd1vsb+MkjZSJ83IDZFm6ekoWqSMksdGmZaee8mxUo4Q7cSQTscS54NcGFlGVf39puCCsl7kSiqjw3q/nasFgGUYPYE2aXDcgjmem31Ret2F47M4/XukFAwR9dFP+rcjJa0s2aqgvUxmSbOJ5eU8J1aQEq+uVUn2gu5X6X1e8z4R0do5T329ZLZO8fe58YtsMp4zTP8uUtlAUV9V//T19rIduv20bEi6+B0AJZQsSD2jaa49zxjAkjIyYp7fs7TMuYZSs+L/2233RlyiQLeW+yX3MfdXkffyXKKIxP6zOFLRipjn9+aXO5pf7iLjvO5TUKhQReXnCt1KuDAun5suLmgZ3wdDfffA2lsP4wwyAnL36jK4JnyeMnpU9t3KdpDs5g3RhXMPXszMGloaGXEvs5E3F00f9CTXCNaag9d83jrF20+SWsN1fdtH73XtFkoqJgz807UfEZzKMLCyq63jSCnWFNb8KiUlZKFra5SSMj7rfnlyR0mplSv/o6EPdcZkViDQtes8rOtXmlXgOQFKo/hTgQ2p7YLPKubf+lroQEhJrkZU7TE5AEe+b9laGLtGRiyTrB24zXoXZRlxwW253W7e0FSNRda4Y8HPZW8Mr8kKC/dbBOP+MbTLWbao/LHG8lMY7IP2FuyEuR3HyY2y3xM5gbx1bbwcVN1JshhKjZYXUZnhNVuUJaHzRjRMHKabyVFe+qQ3/gBP0EomU1ILrdbIG0azx8VxNd7kR0sv6D56yElXF/FvF4eV7cgJa9cn5xoVSt+kPpf3TGripwknCfEDORWpkkNvm5qMa6R0VHwe4weOMb+HpATKzN4mFb3rbZfCM/DrY4w1qpfKrJQWRzoVpfIzSYO5YVQtSVuVDgB+LZXWKaHUwXGsoyRos3CkO6Y2A1FZn+QiiaVvkg4xI4uBj2XVaPC+Y8txJH8/qXvC+kxH4RP5BntpmNdRdm7kl5ZEMpwNriSW4QD00M+yVBFmvZ91vtK4UJM2HznvtvE1k9umCCSuEtdge05E50SzazVfWIfzPQBugpMvZp322GAv0dFzclvdnozK1oVWdbsyc6C0b6U0GTlh6VTIycgQUZ+dkGvX6rmWJLB0gvm6aiO/Lh7raQzztfaMP9Los5vHhWO7bULje5m2/fHotaE06ms4kyIVILRbNGYUfQ0la+5aPfCgvYOcbjtP9ZHlp8pq6Uh0FLol8eI503XmcicNFBck5b915mpt0EXN9np9VivpckpS7ZX0p7Y4Lb/Xz7/+Erd5qixBK6AphT6WPP+igsCV6yNd64AVKJbPatoYHIkyQNKyPUgZ5CCgURbB1pH5mefoxgnE1HI93jM9lcmWQ2abWW2b/TLGSW/szEna1FC7fW6u9EIa7B327Z72R0rr7GHIjwmL4h00VI90fm0MI8SY7a2Bx9L6I6r3kNop5xO6fr0pSuuXlBh5ep1ht13WHSw4ntRnT+lhz1Pef/0gbaMJqiwKFrabkuGw9duH99xdT4ZXP4HInmSWRin024vCw0R8nmljvJ5M1hwvRenvoVSn2o1+cLQtg/8nnhve9+FJXdQ6BErfH0uNcVnKtlQdI5POmjtmStonJTtS4pA5ZST9KR0l3jVLFjPNGMKtbSy8zIstTfp6EqljlLar3/ei8T3ZrOC18r7MZS2Yv1lx7vKelIs6SS/1dvjMTMXX51HwrLmp7AkJ6wnnxj2NNf9wnXcj+2cVHQ6cPCcybAFgLV5Pbcy3MI+RWxgbxn9+v4TUdoEUwQ2dv6X33/MwfiuViWC1nbt+cn/PUJ+SzJHSBJ6joVkJJ8uh/1ImiciuNZMz5ufwtPFT2cQl2b6WMV/SZb7nM4hrNbnjwKl0wJe35qstnJuDpXnNeYUlP3cILvCkBoO2hbwv77tVcqS5wJfbombt6QVZjnXOyPZSAZxe+9bvz2vHyyKZPkt2MdreRWQxWBJkEpnB31auxfvzU/UiktuSff4pdQM2wGv5Yh2R36wHp6s0pg/fja0Tn8Iy2Keece2caEvT6ByaXDCs2j6XVRUcMyFpR3TzxvcUKTki9/ifIGM9OB3FM0grsswqiCi92GMNkLUP+VQhT20U9fD6ysZeT2d7rDHOgxfQsiZBLUVpedFxJ4UG9XFR4V7EQX8ccd9YEaolRrUc1jWVdRxy9HqOjmEjjpR2Uk9zckjOtRqr/ZgzZlmf6yjsU+hOem2VRL3IgsyptnLtlPapaJ8R96Clx3jbeNHVjP6d3EREruUoq3EKHPPM9QzF/edGlFdOdqfq+PJa60Jp27I2U1H3lgHfHacSkjdmBHwiAySJ46Dmc51d230JCuAp2ZvAOTAb3gscI4nngxfZWBLxaGkJl5DbNjVPKXmmeb9Vr2Bht09dPwAo4RQGb4k2TB9rjE0x3bRRirpGH7/UuODtfxsknXIXRuSlKvKbQxrTWaZmumkjx4F37p50Tc217aV+ElkGTcKIMt3UfTfympbKxmj02rY04zuUNu0oHZvkmNDOw3GvJCN6qr4jfVwreCg3rnjR26lsQf78vtdzqTYCe+2obHSzqLCxD39fsv5HLSVOfeuetYzr9r0Z34PauWXtlzOGp8hJF0/XRMuP7DFKasbnjLE38bwfDPTl32lfc7IiQMMufrsPZHfaxSRyKoxpN719G48xArOIuLgu0XegZNRYKu62KT3mKR0J95p9S3S0tM7L4/QoNkNwqk83QPvbpT6zsAZ2b7D3IvJNjeaM0TVuw06H5/8vhJHZ2oZJDda1ckSleJM1z8FxSqNsfMzj9s0ZzEoNeJYRyjXqiElgzvGTmiyWSDJZlBpNxkxUdT+0DqP+ver/8/annCSXFmmy8DILPMZoOJYyRjLolE6/U5AzwN6UrMbY9HDLkVNaNKvXlDekaoLrkCiOTOR/h6VGfWs7L0uCP4v64Oij67+Pud+kUbxR459FbhtOhU8e01nI56iVNNJ496MX/ThdKwmdE/1Ocu0cW0AtFSShF7M3NV8BLwe6WFwkxbKcVkej57To3f1uIJKuRMImxW368K1rPwZd+FW/z0iDi4Vv+HIizDO6/14/b9q4dhPZStN12oAv5Tf1fvK1+zt8huvxrCuWaWvlW+QK2h4zt64qaLoOXyWnmLNaevVdv8a1XWpcrpEXZtkVyVgDvaakTl0N1vnre9MiVz/O3a/wOsjnyZhngdaOL2Xsc8M7rzHfe26fnIGdPx9e+ZNhrNHFvzVcVNd2FKSPb44xl/4zPyXLVvJ+Td88zHouq23xPCgrr2PMRfTY/yJwl9I6b7/9Nv3sZz+j999/n77whS/QW2+9RV//+teP6stNUzyXHCYJp13ceQVxNCXpUvEi1x6Mx1Bq0EwZZW8jyi0lTXIb6YG5yIncdqeMrDgmM+QmdYF1dGTpscbcP94+NU4uovR3UpuFU+vsOwZbdutmjiWLRDHHOg2soljesTXHZETVRrWMoaamBVPryOmP1Uctdf/X2Sa1jlm9oEsVfvO2GauxOdZZWlVTIFWE2mhPXr+UkyZ3zl7x5FMwZBKybujwmZ+Kr1Jz1f0zVc9yj2OM4pZhJldrZQy2Y/L2o4bBJwO/iOvNcFvRamOPc5ML6pxh/tjCfIx37mOuiRUxb90hY4omp44h25XRnTksY12NAU3KWxzDMdnaMuOhWe+q2zqV48K6bqm2PedFv69TE46oPkKbKG2XKKn3V4OuQ5cqXpqjpBizt4/cb3b5Yhj/3Ox49b53v2n999w+xxD+9vbR+/KYKSP6bUeMHzOu3kHCeSC3ltyuIIvCw9pPFrQvcSR7xWmPoV0s4vvjFqQLPyn86le/ou9///v09ttv09e+9jV655136Jvf/Cb97ne/o8997nN33T2XF+YbtoqbStr5JFk852XXeb1rjb+xk8+xxsjaojREN5upEHL8vXiss6N2fynXdBtG3lOTKkB8KkqdkiUcG2njPe9OPTkdQz+hveNnklXrI/w8VVekTCLlWFms8JiF251QBogokYHg1KrQOrN9OwW69UTjszXuE6eMZrfmPLtF80I+h8HLw/R5poJqIacyQt819+08bqM2QQ1jjSrdvuMH2LuQOKqlVrbJb+du9/eMkO2icdvezRtaOk6QU12XU2HdS/V9vF0j+m0GVqVI/Q69a1jb9+D+O9gkjnnu1GBJdk03bdU51BifxxZ6rUGOIXcl+3LMODbGKVJynrnaLiDDHUnr/PznP6fvfOc79N3vfpeIiN566y369a9/Tb/4xS/opz/96XH9uUGKfwFXb9z/yQ64v4w1ZL3sDhiP23M68PH4e8D3cTvgeQtCTikzc5fknl2fjGf+J+EcABhPFJEPQIK7KuSHAoJ3T06G6UXhRerrfeNl+P2f4lin7O8pnbn3zTF8U7ws53mXbGlj1Vuvb4OInj9/Hry/XC5puYznpuv1mn7729/SD3/4w+D9b3zjG/Sb3/zmuM7cMMV35H/+6z/fZD8AAAAAAAAALzj/9u//ctddAAAAAAAA95zFYkGf+cxn6D8+ePck7T148IA++9nPBu/96Ec/oh//+MfRtk+fPqXdbkdPnjwJ3n/y5Al98MEHJ+nPTQHXEgAAAAAAAAAAAAAAAIBb4ezsjH7/+9/Ten0a3dD9fk+TSZgdbUXjS/T2Vhv3DRjyAQAAAAAAAAAAAAAAANwaZ2dndHZ2duvHffz4MU2n0yj6/k9/+lMUpX/fgBAzAAAAAAAAAAAAAAAAgE88i8WCvvSlL9F7770XvP/ee+/RV7/61TvqVRmIyAcAAAAAAAAAAAAAAADwUvCDH/yAvv3tb9OXv/xl+spXvkK//OUv6Y9//CN973vfu+uuJYEhHwAAAAAAAAAAAAAAAMBLwbe+9S3685//TD/5yU/o/fffpy9+8Yv07rvv0uc///m77lqSyX6/3991JwAAAAAAAAAAAAAAAAAAYAONfAAAAAAAAAAAAAAAAADgHgNDPgAAAAAAAAAAAAAAAABwj4EhHwAAAAAAAAAAAAAAAAC4x8CQDwAAAAAAAAAAAAAAAADcY2DIBwAAAAAAAAAAAAAAAADuMTDkAwAAAAAAAAAAAAAAAAD3GBjyAQAAAAAAAAAAAAAAAIB7DAz5AAAAAAAAAAAAAAAAAMA9BoZ8AAAAAAAAAAAAAAAAAOAeA0M+AAAAAAAAAAAAAAAAAHCPgSEfAAAAAAAAAAAAAAAAALjH/D/dU5OuePI0UgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def get_two_year_heatwave_figures(df1, df2):\n", + " fig, ax = plt.subplots(\n", + " 1,\n", + " 2,\n", + " sharex=True,\n", + " sharey=True,\n", + " figsize=(20, 5),\n", + " gridspec_kw={\"width_ratios\": [1, 1.2]},\n", + " )\n", + "\n", + " im = ds_1948[\"heat_waves_per_time_period\"].plot(ax=ax[0], vmin=0, vmax=50)\n", + " im2 = ds_2021[\"heat_waves_per_time_period\"].plot(ax=ax[1], vmin=0, vmax=50)\n", + " # cbar_ax = fig.add_axes([0, 10, 20, 40])\n", + " # fig.colorbar(im, cax=cbar_ax)\n", + " # ax.axis('off')\n", + "\n", + " ax[0].set_title(\"1948\")\n", + " ax[1].set_title(\"2021\")\n", + "\n", + " # ax[0].get_legend().remove()\n", + "\n", + " for i in [0, 1]:\n", + " ax[i].spines[\"top\"].set_visible(False)\n", + " ax[i].spines[\"right\"].set_visible(False)\n", + " ax[i].spines[\"bottom\"].set_visible(False)\n", + " ax[i].spines[\"left\"].set_visible(False)\n", + " ax[i].axis(\"off\")\n", + "\n", + " handles, labels = ax[1].get_legend_handles_labels()\n", + " # print(labels)\n", + "\n", + " cb = im.colorbar\n", + " cb.remove()\n", + "\n", + " cb = im2.colorbar\n", + " cb.ax.get_yaxis().labelpad = 15\n", + " cb.ax.set_ylabel(\"# of heatwaves\", rotation=270)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "78791f93-0818-4087-a9e2-05128ab49f34", + "metadata": {}, + "source": [ + "Exploring the data, " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4c255b45", + "metadata": {}, + "outputs": [], + "source": [ + "# time_bnds = [(np.datetime64(\"1948-01-01\"), np.datetime64(\"2022-04-30\"))]\n", + "# time_var = ds_tasmax.variables[\"time\"]\n", + "# start_date = np.datetime64(\"2022-02-01\")\n", + "# end_date = np.datetime64(\"2022-04-30\")\n", + "\n", + "# start_index = np.where(time_var[:] == start_date)[0]\n", + "# end_index = np.where(time_var[:] == end_date)[0]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "6cf41cdf-9152-4a6f-b2f3-b3adf1ca7798", + "metadata": {}, + "source": [ + "### Boundaries of the region of interest\n", + "\n", + "In this part, we get the shapefiles of the country we're interested in looking at" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c96e8a24-1f29-4e8f-92f4-92b9c8f39dbc", + "metadata": {}, + "outputs": [], + "source": [ + "INDIA = geopandas.read_file(\"../../data/shapefiles/india_district/sh819zz8121.shp\").to_crs(\"EPSG:4326\")\n", + "CHENNAI = INDIA[INDIA[\"laa\"] == \"CHENNAI\"]\n", + "DELHI = INDIA[INDIA['laa']=='DELHI']\n", + "HYDERABAD = INDIA[INDIA['laa']=='HYDERABAD']\n", + "MUMBAI = INDIA[INDIA['laa'].str.contains('MUMBAI')]" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "b1257bec", + "metadata": {}, + "outputs": [ + { + "ename": "type", + "evalue": "only list-like objects are allowed to be passed to isin(), you passed a [str]", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[87], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m PHILIPPINES \u001b[39m=\u001b[39m geopandas\u001b[39m.\u001b[39mread_file(\u001b[39m'\u001b[39m\u001b[39m../../data/shapefiles/philippines/phl_adminboundaries_candidate_exclude_adm3/phl_admbnda_adm2_psa_namria_20200529.shp\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[1;32m 2\u001b[0m MANILA \u001b[39m=\u001b[39m PHILIPPINES[PHILIPPINES[\u001b[39m'\u001b[39m\u001b[39mADM2_EN\u001b[39m\u001b[39m'\u001b[39m]\u001b[39m.\u001b[39misin([\u001b[39m'\u001b[39m\u001b[39mNCR, City of Manila, First District\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mNCR, Second District\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mNCR, Third District\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mNCR, Fourth District\u001b[39m\u001b[39m'\u001b[39m])]\n\u001b[0;32m----> 3\u001b[0m CEBU \u001b[39m=\u001b[39m PHILIPPINES[PHILIPPINES[\u001b[39m'\u001b[39m\u001b[39mADM2_EN\u001b[39m\u001b[39m'\u001b[39m]\u001b[39m.\u001b[39misin(\u001b[39m'\u001b[39m\u001b[39mCebu\u001b[39m\u001b[39m'\u001b[39m)]\n", + "File \u001b[0;32m~/anaconda3/envs/heatwaves/lib/python3.11/site-packages/pandas/core/series.py:5563\u001b[0m, in \u001b[0;36mSeries.isin\u001b[0;34m(self, values)\u001b[0m\n\u001b[1;32m 5490\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39misin\u001b[39m(\u001b[39mself\u001b[39m, values) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m Series:\n\u001b[1;32m 5491\u001b[0m \u001b[39m \u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 5492\u001b[0m \u001b[39m Whether elements in Series are contained in `values`.\u001b[39;00m\n\u001b[1;32m 5493\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 5561\u001b[0m \u001b[39m dtype: bool\u001b[39;00m\n\u001b[1;32m 5562\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 5563\u001b[0m result \u001b[39m=\u001b[39m algorithms\u001b[39m.\u001b[39misin(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_values, values)\n\u001b[1;32m 5564\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_constructor(result, index\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mindex)\u001b[39m.\u001b[39m__finalize__(\n\u001b[1;32m 5565\u001b[0m \u001b[39mself\u001b[39m, method\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39misin\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 5566\u001b[0m )\n", + "File \u001b[0;32m~/anaconda3/envs/heatwaves/lib/python3.11/site-packages/pandas/core/algorithms.py:459\u001b[0m, in \u001b[0;36misin\u001b[0;34m(comps, values)\u001b[0m\n\u001b[1;32m 454\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mTypeError\u001b[39;00m(\n\u001b[1;32m 455\u001b[0m \u001b[39m\"\u001b[39m\u001b[39monly list-like objects are allowed to be passed \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 456\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mto isin(), you passed a [\u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mtype\u001b[39m(comps)\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m]\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 457\u001b[0m )\n\u001b[1;32m 458\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m is_list_like(values):\n\u001b[0;32m--> 459\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mTypeError\u001b[39;00m(\n\u001b[1;32m 460\u001b[0m \u001b[39m\"\u001b[39m\u001b[39monly list-like objects are allowed to be passed \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 461\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mto isin(), you passed a [\u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mtype\u001b[39m(values)\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m]\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 462\u001b[0m )\n\u001b[1;32m 464\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39misinstance\u001b[39m(values, (ABCIndex, ABCSeries, ABCExtensionArray, np\u001b[39m.\u001b[39mndarray)):\n\u001b[1;32m 465\u001b[0m orig_values \u001b[39m=\u001b[39m values\n", + "\u001b[0;31mTypeError\u001b[0m: only list-like objects are allowed to be passed to isin(), you passed a [str]" + ] + } + ], + "source": [ + "PHILIPPINES = geopandas.read_file('../../data/shapefiles/philippines/phl_adminboundaries_candidate_exclude_adm3/phl_admbnda_adm2_psa_namria_20200529.shp')\n", + "MANILA = PHILIPPINES[PHILIPPINES['ADM2_EN'].isin(['NCR, City of Manila, First District', 'NCR, Second District', 'NCR, Third District', 'NCR, Fourth District'])]\n", + "CEBU = PHILIPPINES[PHILIPPINES['ADM2_EN'].isin('Cebu')]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "2114c019-02ee-4333-b36e-4033cdb33123", + "metadata": {}, + "source": [ + "Taking a quick visual inspection," + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "b5c33844-b089-4e46-9c8f-71eb1555faaa", + "metadata": {}, + "source": [ + "## Clipping\n", + "\n", + "In this step, our intention is to clip the heatwaves incident data using boundaries." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "5475d7c6", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/wbdatalab/anaconda3/envs/heatwaves/lib/python3.11/site-packages/geopandas/geodataframe.py:1538: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " super().__setitem__(key, value)\n" + ] + } + ], + "source": [ + "import shapely\n", + "CHENNAI['geometry'] = CHENNAI['geometry'].apply(lambda x: shapely.wkb.loads(\n", + " shapely.wkb.dumps(x, output_dimension=2)))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "26279742", + "metadata": {}, + "outputs": [], + "source": [ + "def clip_area(ds, area):\n", + "\n", + " ds.rio.write_crs(\"EPSG:4326\", inplace=True)\n", + " clipped_area = ds.rio.clip(area.geometry.values,all_touched=True, drop=True)\n", + "\n", + " return clipped_area\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a0718b3c", + "metadata": {}, + "outputs": [], + "source": [ + "clipped_hyd = clip_area(ds_mean2_era5, HYDERABAD)\n", + "clipped_chennai = clip_area(ds_mean2_era5, CHENNAI)\n", + "clipped_delhi = clip_area(ds_mean2_era5, DELHI)\n", + "clipped_mumbai = clip_area(ds_mean2_era5, MUMBAI)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "2384b422-4022-4aaa-8a99-abfa8802c4d6", + "metadata": {}, + "source": [ + "Now, converting to a dataframe and `geopandas.GeoDataFrame`" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "48966b4d", + "metadata": {}, + "outputs": [], + "source": [ + "def convert_to_gdf(clipped_area):\n", + " clipped_area = clipped_area.to_dataframe().reset_index()\n", + "\n", + " # clipped_area = geopandas.GeoDataFrame(\n", + " # clipped_area, geometry=geopandas.points_from_xy(clipped_area[\"lon\"],clipped_area[\"lat\"])\n", + " # )\n", + "\n", + " return clipped_area" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "0de1d8a7", + "metadata": {}, + "outputs": [], + "source": [ + "clipped_hyd = convert_to_gdf(clipped_hyd)\n", + "clipped_chennai = convert_to_gdf(clipped_chennai)\n", + "clipped_delhi = convert_to_gdf(clipped_delhi)\n", + "clipped_mumbai = convert_to_gdf(clipped_mumbai)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "89d28dff", + "metadata": {}, + "outputs": [], + "source": [ + "clipped_india = clip_area(ds_mean2_era5, INDIA)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "2d7ae4fe", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "64.0" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clipped_mumbai['heat_waves_per_time_period'].sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "8c004208", + "metadata": {}, + "outputs": [], + "source": [ + "clipped_manila = clip_area(ds_mean2_era5, MANILA)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "103afb20", + "metadata": {}, + "outputs": [], + "source": [ + "clipped_manila = convert_to_gdf(clipped_manila)#.plot(x='time', y='heat_waves_per_time_period')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "edbb7722", + "metadata": {}, + "source": [ + "Write to file so it can be plotted on foursquare" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "b85b7632", + "metadata": {}, + "outputs": [], + "source": [ + "clipped_india.to_file('../../data/gldas/india_mean2.geojson', driver='GeoJSON')" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "7260750d", + "metadata": {}, + "outputs": [], + "source": [ + "#clipped_india = clip_area(ds_mean2, INDIA)\n", + "clipped_india = convert_to_gdf(clipped_india)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "f481fbca", + "metadata": {}, + "outputs": [], + "source": [ + "clipped_philippines = clip_area(ds_mean2_era5, PHILIPPINES)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "c0cfc54e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGyCAYAAADOGD89AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgXklEQVR4nO3deXhU5dk/8O+ZNfuQBTIEAgkaVAybARFcwLKoFdGiYgt1afEtVqWNwota+3tFraC0AiotdatYqMWlYtVaJKiggGwRFFBBIECAhEAI2TOTmXl+f8ycMzNZZ82czHw/1zUXZOaZyTkcMrnnfu7nfiQhhAARERGRimgifQBERERELTFAISIiItVhgEJERESqwwCFiIiIVIcBChEREakOAxQiIiJSHQYoREREpDoMUIiIiEh1GKAQERGR6ugifQCBcDgcOHnyJJKTkyFJUqQPh4iIiHwghEBtbS2ysrKg0XSSIxF+On78uJgxY4ZIS0sT8fHxYujQoWLnzp3K4w6HQzz22GOid+/eIi4uTowdO1bs3bvX6zWamprE/fffL9LT00VCQoK44YYbRGlpqc/HUFpaKgDwxhtvvPHGG2/d8ObL73y/MihVVVW4/PLLcfXVV+O///0vevXqhUOHDqFHjx7KmEWLFmHx4sVYsWIFBg4ciD/84Q+YOHEi9u/fj+TkZABAYWEhPvjgA6xevRrp6emYM2cOJk+ejOLiYmi12k6PQ36d0tJSpKSk+HMKREREFCE1NTXIzs5Wfo93RBLC980CH374YWzevBlffPFFm48LIZCVlYXCwkI89NBDAACLxYLMzEw888wzmDVrFqqrq9GzZ0+sXLkSt912GwDg5MmTyM7OxkcffYRrrrnGpxM0mUyorq5mgEJERNRN+PP7268i2ffffx8jRozArbfeil69emH48OF4+eWXlcdLSkpQXl6OSZMmKfcZjUaMHTsWW7ZsAQAUFxejubnZa0xWVhby8/OVMS1ZLBbU1NR43YiIiCh6+RWgHD58GMuXL0deXh4+/vhj3HPPPfjNb36Dv//97wCA8vJyAEBmZqbX8zIzM5XHysvLYTAYkJqa2u6YlhYuXAiTyaTcsrOz/TlsIiIi6mb8ClAcDgcuueQSLFiwAMOHD8esWbPwP//zP1i+fLnXuJYra4QQna626WjMI488gurqauVWWlrqz2ETERFRN+NXkWzv3r0xaNAgr/suuugi/Otf/wIAmM1mAM4sSe/evZUxFRUVSlbFbDbDarWiqqrKK4tSUVGBMWPGtPl9jUYjjEajP4dKREQq43A4YLVaI30YFGYGg6HzJcQ+8CtAufzyy7F//36v+w4cOID+/fsDAHJzc2E2m1FUVIThw4cDAKxWKzZu3IhnnnkGAFBQUAC9Xo+ioiJMmzYNAFBWVoa9e/di0aJFQZ8QERGpj9VqRUlJCRwOR6QPhcJMo9EgNzcXBoMhqNfxK0B54IEHMGbMGCxYsADTpk3D9u3b8dJLL+Gll14C4JzaKSwsxIIFC5CXl4e8vDwsWLAACQkJmD59OgDAZDJh5syZmDNnDtLT05GWloa5c+di8ODBmDBhQlAnQ0RE6iOEQFlZGbRaLbKzs0Py6ZrUSW6kWlZWhn79+gXVTNWvAGXkyJFYs2YNHnnkETzxxBPIzc3F0qVLMWPGDGXMvHnz0NjYiHvvvRdVVVUYNWoU1q1b57XmecmSJdDpdJg2bRoaGxsxfvx4rFixwqceKERE1L3YbDY0NDQgKysLCQkJkT4cCrOePXvi5MmTsNls0Ov1Ab+OX31Q1IJ9UIiIuo+mpiaUlJQgJycH8fHxkT4cCrPGxkYcOXIEubm5iIuL83osbH1QiIiIAsW902JDqK4zAxQiIiJSHQYoREREpDoMUIiIiPy0YcMGSJKEc+fOtTtm/vz5GDZsmPL1XXfdhZtuukn5ety4cSgsLAzpcR05cgSSJGH37t0hfd1IYIBCFCOa7Q4029mDgshXd911FyRJgiRJ0Ov1GDBgAObOnYv6+nqfnj937lx88skn7T7+7rvv4sknnwzV4QIAsrOzUVZWhvz8/JC+biT4tcyYiLonh0Pg+ue/gEMAHxdeBa2GxYpEvrj22mvx2muvobm5GV988QXuvvtu1NfX47bbbuv0uUlJSUhKSmr38bS0tFAeKgBAq9UqXd27O2ZQiGJArcWGA6fqcLCiDrVNzZE+HIpxQgg0WG0RufnbWcNoNMJsNiM7OxvTp0/HjBkz8N577ymPFxcXY8SIEUhISMCYMWO8uq23nOJpqeUUT05ODp588klMnz4dSUlJyMrKwgsvvOD1HEmSsHz5clx33XWIj49Hbm4u3n77beXxllM88lTUJ5980u5xAsAHH3yAgoICxMXFYcCAAXj88cdhs9m8zqVfv34wGo3IysrCb37zGz/+FQPDDApRDLA025W/NzVzmociq7HZjkH/93FEvve3T1yDBEPgv/ri4+PR3OwO8h999FE8++yz6NmzJ+655x788pe/xObNmwN+/T/+8Y/43e9+h/nz5+Pjjz/GAw88gAsvvBATJ05Uxvy///f/8PTTT+O5557DypUr8bOf/Qz5+fm46KKL2n3djo7z448/xs9//nM8//zzuPLKK3Ho0CH86le/AgA89thjeOedd7BkyRKsXr0aF198McrLy/H1118HfI6+YoBCFAM8g5JGj2CFiHy3fft2vPHGGxg/frxy31NPPYWxY8cCAB5++GFcf/31aGpqatWgzFeXX345Hn74YQDAwIEDsXnzZixZssQrQLn11ltx9913AwCefPJJFBUV4YUXXsBf/vKXdl+3o+N86qmn8PDDD+POO+8EAAwYMABPPvkk5s2bh8ceewzHjh2D2WzGhAkToNfr0a9fP1x66aUBnZ8/GKAQxYAmm2cGhQEKRVa8Xotvn7gmYt/bHx9++CGSkpJgs9nQ3NyMG2+8ES+88AK+/fZbAMCQIUOUsb179wYAVFRUoF+/fgEd3+jRo1t9vXTp0k7HdLZqp6PjLC4uxo4dO/DUU08pY+x2O5qamtDQ0IBbb70VS5cuxYABA3Dttdfixz/+MW644QbodOENIRigEMUAz6CEGRSKNEmSgppm6UpXX301li9fDr1ej6ysLGVvGTlA8dxrRu6gGuodm33pzNrZmI6O0+Fw4PHHH8fUqVNbPS8uLg7Z2dnYv38/ioqKsH79etx777344x//iI0bNwa1105nusf/ECIKSqOVGRSiQCQmJuL888/vsu+3devWVl9feOGFre674447vL4ePnx4wN/zkksuwf79+zs8z/j4eEyZMgVTpkzBfffdhwsvvBB79uzBJZdcEvD37QwDFKIY0GRzf6JjgEKkXps3b8aiRYtw0003oaioCG+//Tb+85//eI15++23MWLECFxxxRX4xz/+ge3bt+PVV18N+Hv+3//9HyZPnozs7Gzceuut0Gg0+Oabb7Bnzx784Q9/wIoVK2C32zFq1CgkJCRg5cqViI+PR//+/YM93Q5xmTFRDGjiKh6ibmHOnDkoLi7G8OHD8eSTT+LZZ5/FNdd41+s8/vjjWL16NYYMGYLXX38d//jHPzBo0KCAv+c111yDDz/8EEVFRRg5ciQuu+wyLF68WAlAevTogZdffhmXX345hgwZgk8++QQffPAB0tPTgzrXzkjC30XhKuDPds1EBPx79wn8dvVuAMCztw7FzQV9I3tAFFOamppQUlKC3NzcgFe3xIKcnBwUFhZ22P5ekiSsWbPGq2W+2nR0vf35/c0MClEMYJEsEXU3DFCIYoDntA5rUIioO2CRLFEM8K5BYYBCpEZHjhzpdEw3rMoIGDMoRDHAO4PCIlmKjFj65RrLQnWdGaAQxQDPTrKsQaGuptU6u7dardYIHwl1Bfk6y9c9UJziIYoBbNRGkaTT6ZCQkIDTp09Dr9dDo+Fn42jlcDhw+vRpJCQkBN0KnwEKUQywMINCESRJEnr37o2SkhIcPXo00odDYabRaNCvXz+fWvR3hAEKUQzwrDuxsAaFIsBgMCAvL4/TPDHAYDCEJEvGAIUoBrAPCqmBRqNhozbyGScCiWJAI5cZE1E3wwCFKAYwg0JE3Q0DFKIY4FmD4rmih4hIrRigEMUAzwyKxcYiWSJSPwYoRDHAMyhhBoWIugMGKEQxwKtRm40BChGpHwMUohjg1eqeGRQi6gYYoBDFgJY1KA4HN20jInVjgEIU5YQQrXYwZqEsEakdAxSiKNdWMMJmbUSkdgxQiKKcZzCice3dxWZtRKR2DFCIopw8vaPTSEg0OrffYoBCRGrHAIUoyskZlDi9FvF6rdd9RERqxQCFKMrJS4zj9BrEMUAhom6CAQpRlJP7nhh1nhkUruIhInVjgEIU5eRgxJlBcf7Is1kbEakdAxSiKCdP8cQbtO4pHra7JyKVY4BCFOUscpGszh2gMINCRGrHAIUoyrmneDxqUNhJlohUjgEKUZRrbHav4ok3uAIUZlCISOUYoBBFOc8+KHKRLJcZE5HaMUAhinKeUzxKDQoDFCJSOQYoRFGuqbl1ozYGKESkdn4FKPPnz4ckSV43s9msPC6EwPz585GVlYX4+HiMGzcO+/bt83oNi8WC2bNnIyMjA4mJiZgyZQqOHz8emrMholaaPFbxsFEbEXUXfmdQLr74YpSVlSm3PXv2KI8tWrQIixcvxrJly7Bjxw6YzWZMnDgRtbW1ypjCwkKsWbMGq1evxqZNm1BXV4fJkyfDbucnOqJwYA0KEXVHOr+foNN5ZU1kQggsXboUjz76KKZOnQoAeP3115GZmYk33ngDs2bNQnV1NV599VWsXLkSEyZMAACsWrUK2dnZWL9+Pa655pogT4eIWpKzJfEGbhZIRN2H3xmUH374AVlZWcjNzcVPf/pTHD58GABQUlKC8vJyTJo0SRlrNBoxduxYbNmyBQBQXFyM5uZmrzFZWVnIz89XxrTFYrGgpqbG60ZEvpG7xhp1GhhZg0JE3YRfAcqoUaPw97//HR9//DFefvlllJeXY8yYMaisrER5eTkAIDMz0+s5mZmZymPl5eUwGAxITU1td0xbFi5cCJPJpNyys7P9OWyimOY5xcMMChF1F34FKNdddx1uvvlmDB48GBMmTMB//vMfAM6pHJkkSV7PEUK0uq+lzsY88sgjqK6uVm6lpaX+HDZRTGtsc5kxi2SJSN2CWmacmJiIwYMH44cfflDqUlpmQioqKpSsitlshtVqRVVVVbtj2mI0GpGSkuJ1IyLfeC4zljMoFmZQiEjlggpQLBYLvvvuO/Tu3Ru5ubkwm80oKipSHrdardi4cSPGjBkDACgoKIBer/caU1ZWhr179ypjiCi05GAkXq9FvMH5I88aFCJSO79W8cydOxc33HAD+vXrh4qKCvzhD39ATU0N7rzzTkiShMLCQixYsAB5eXnIy8vDggULkJCQgOnTpwMATCYTZs6ciTlz5iA9PR1paWmYO3euMmVERKHn2UnWqGMNChF1D34FKMePH8fPfvYznDlzBj179sRll12GrVu3on///gCAefPmobGxEffeey+qqqowatQorFu3DsnJycprLFmyBDqdDtOmTUNjYyPGjx+PFStWQKvVhvbMiAiAexWP52aBjdwskIhUThJCiEgfhL9qampgMplQXV3NehSiTlz61HpU1Frw4ewrkJpowOVPfwqDVoMDT10X6UMjohjjz+9v7sVDFOXk6RzPRm1WuwN2R7f7bEJEMYQBClGUa7J5LjN2/8izDoWI1IwBClEUczgErHKAotMgTueu9WKAQkRqxgCFKIrJBbKAM4Oi0Ugw6LjUmIjUjwEKURRr8ugYK3eRdbe7ZzdZIlIvBihEUUyexjFoNdBqnNtJyHUonOIhIjVjgEIUxeQgxOhRHMsNA4moO2CAQhTFPLvIytwbBjJAISL1YoBCFMUaPTYKlCkBCrvJEpGKMUAhimKeGwXKlCkeG4tkiUi9GKAQRTH3PjyeUzyuIllmUIhIxRigEEUxpQbFo0GbvGGgZ48UIiK1YYBCFMXkOhPPVTxysMIaFCJSMwYoRFGszSkeAxu1EZH6MUAhimJyEOJZJKtkULjMmIhUjAEKURRramOZcbyBnWSJSP0YoBBFMUtz6ykedpIlou6AAQpRFGtsI0CJY4BCRN0AAxSiKOZeZtxGJ1kGKESkYgxQiKKYUoNiaGsvHq7iISL1YoBCFMXkdvZejdo4xUNE3QADFKIo1tRmDQpX8RCR+jFAIYpibS4zZgaFiLoBBihEUaypjd2MjSySJaJugAEKURRTVvG02QeFRbJEpF4MUIiimJxB8dosUK5B4WaBRKRiDFCIolhbjdri5c0CbQxQiEi9GKAQRTF3o7bWUzzNdgGbndM8RKRODFCIopi8F098G43aAHefFCIitWGAQhTF5Gkcz2XGRo+2942sQyEilWKAQhSlbHYHmu0CgPcUjyRJbNZGRKrHAIUoSnlO33hO6wBs1kZE6scAhShKeQYfntM6AHc0JiL1Y4BCFKWUHig6DTQayesxNmsjIrVjgEIUpdrqIitju3siUjsGKERRqq2NAmXxLJIlIpVjgEIUpZra6CIrU7rJMkAhIpVigEIUpeQpnvg2AhR52TEDFCJSKwYoRFHKvVFgGwGKK4PCRm1EpFYMUIiilNJFVtf6x1zOoDRyFQ8RqRQDFKIoJWdH2q5BYZEsEakbAxSiKCV3km1rFQ9rUIhI7RigEEUpZSdjruIhom6IAQpRlOpomTFb3ROR2jFAIYpSjT4EKGx1T0RqxQCFKErJwYexrRoU133MoBCRWjFAIYpSTR3VoOhZg0JE6hZUgLJw4UJIkoTCwkLlPiEE5s+fj6ysLMTHx2PcuHHYt2+f1/MsFgtmz56NjIwMJCYmYsqUKTh+/Hgwh0JELXS0WSADFCJSu4ADlB07duCll17CkCFDvO5ftGgRFi9ejGXLlmHHjh0wm82YOHEiamtrlTGFhYVYs2YNVq9ejU2bNqGurg6TJ0+G3c43S6JQ6bBRG2tQiEjlAgpQ6urqMGPGDLz88stITU1V7hdCYOnSpXj00UcxdepU5Ofn4/XXX0dDQwPeeOMNAEB1dTVeffVVPPvss5gwYQKGDx+OVatWYc+ePVi/fn1ozoqI0NRBozau4iEitQsoQLnvvvtw/fXXY8KECV73l5SUoLy8HJMmTVLuMxqNGDt2LLZs2QIAKC4uRnNzs9eYrKws5OfnK2NaslgsqKmp8boRUceUDEqbAYqrSJZ78RCRSun8fcLq1avx1VdfYceOHa0eKy8vBwBkZmZ63Z+ZmYmjR48qYwwGg1fmRR4jP7+lhQsX4vHHH/f3UIliWoc1KK5GbRYbAxQiUie/MiilpaX47W9/i1WrViEuLq7dcZIkeX0thGh1X0sdjXnkkUdQXV2t3EpLS/05bKKY5G7U1sFmgcygEJFK+RWgFBcXo6KiAgUFBdDpdNDpdNi4cSOef/556HQ6JXPSMhNSUVGhPGY2m2G1WlFVVdXumJaMRiNSUlK8bkTUsY46ySqt7m0OCCG69LiIiHzhV4Ayfvx47NmzB7t371ZuI0aMwIwZM7B7924MGDAAZrMZRUVFynOsVis2btyIMWPGAAAKCgqg1+u9xpSVlWHv3r3KGCIKXkdTPHIGxe4QaLYzQCEi9fGrBiU5ORn5+fle9yUmJiI9PV25v7CwEAsWLEBeXh7y8vKwYMECJCQkYPr06QAAk8mEmTNnYs6cOUhPT0daWhrmzp2LwYMHtyq6JaLAdTjFY3Df12Szw9DGUmQiokjyu0i2M/PmzUNjYyPuvfdeVFVVYdSoUVi3bh2Sk5OVMUuWLIFOp8O0adPQ2NiI8ePHY8WKFdBqW3/SI6LAdNRJ1qDVQJIAIZzLkVPi9F19eEREHZJEN5yArqmpgclkQnV1NetRiNoghMD5j/4XdofAtt+NR2ZK66L2Qf+3Fg1WOz7/36vRLz0hAkdJRLHGn9/fzOsSRaFmu4Dd4fzsIdebtBTPZm1EpGIMUIiiUJNHf5O2djMGPNvdM0AhIvVhgEIUheSgQ5IAYzsFsEo3WQYoRKRCDFCIopBFXmKs07bbAJH78RCRmjFAIYpCHS0xlsk1KBYGKESkQgxQiKJQYwddZGXMoBCRmjFAIYpCHXWRlbmLZB1dckxERP5ggEIUhTrah0emFMlyw0AiUiEGKERRyJ8aFM8lyUREasEAhSgKKTUo7TRpAzx2NGYGhYhUiAEKURRSlhl3kEFRalBsrEEhIvVhgEIUheRpGzlL0hZlFQ8zKESkQgxQiKJQkw9TPOwkS0RqxgCFKArJS4eNHaziiedePESkYgxQiKJQow+reLhZIBGpGQMUoijkSx+UeDZqIyIVY4BCFIXkoCPel0ZtzKAQkQoxQCGKQhZO8RBRN8cAhSgKycuMuVkgEXVXDFCIopDc26TDTrKuAMXCGhQiUiEGKERRyL3MuIO9eAzMoBCRejFAIYpCSifZjqZ4dKxBISL1YoBCFIWalL14OghQDO5VPEKILjkuIiJfMUAhikK+9EGRHxMCsHDDQCJSGQYoRFGoyYdlxp7TPyyUJSK1YYBCFIXkAKWjGhS9VgOtRgLAQlkiUh8GKERRyJcaFIAbBhKRejFAIYoyQghlFU9Hy4wBtrsnIvVigEIUZSw2B+RFOZ1lUNjunojUigEKUZTxLHjtqJMswHb3RKReDFCIoow8vaPVSNBrpQ7Hst09EakVAxSiKKMsMdZpIEm+BSjMoBCR2jBAIYoyjT40aZPJRbSsQSEitWGAQhRlfF1iDDCDQkTqxQCFKMrI2ZDOlhgDHkWyVgYoRKQuDFCIoowvXWRlSpEs9+IhIpVhgEIUZfyZ4lEatTGDQkQqwwCFKMr4slGgLM7ARm1EpE4MUIiijHuZsQ8ZFB2LZIlInRigEEUZJUAx+FCDomRQWINCROrCAIUoyjS5Cl59yaBwN2MiUisGKERRRi549akGhY3aiEilGKAQRRl5Lx7fVvGwBoWI1IkBClGUsSjLjP1o1MYAhYhUhgEKUZQJpFEbi2SJSG0YoBBFmSY/NguMY5EsEakUAxSiKNOo7MXDVTxE1H0xQCGKMkqre53vq3hYg0JEauNXgLJ8+XIMGTIEKSkpSElJwejRo/Hf//5XeVwIgfnz5yMrKwvx8fEYN24c9u3b5/UaFosFs2fPRkZGBhITEzFlyhQcP348NGdDRO4aFB8atXGKh4jUyq8ApW/fvnj66aexc+dO7Ny5Ez/60Y9w4403KkHIokWLsHjxYixbtgw7duyA2WzGxIkTUVtbq7xGYWEh1qxZg9WrV2PTpk2oq6vD5MmTYbfzDZIoFPxp1BbnUSQrhAjrcRER+cOvAOWGG27Aj3/8YwwcOBADBw7EU089haSkJGzduhVCCCxduhSPPvoopk6divz8fLz++utoaGjAG2+8AQCorq7Gq6++imeffRYTJkzA8OHDsWrVKuzZswfr169v9/taLBbU1NR43YiobRY/imQ9sywWG1fyEJF6BFyDYrfbsXr1atTX12P06NEoKSlBeXk5Jk2apIwxGo0YO3YstmzZAgAoLi5Gc3Oz15isrCzk5+crY9qycOFCmEwm5ZadnR3oYRNFvUZ/djP2qFORO9ASEamB3wHKnj17kJSUBKPRiHvuuQdr1qzBoEGDUF5eDgDIzMz0Gp+Zmak8Vl5eDoPBgNTU1HbHtOWRRx5BdXW1cistLfX3sIlihj/LjHVaDfRayfk8GwMUIlIPnb9PuOCCC7B7926cO3cO//rXv3DnnXdi48aNyuOSJHmNF0K0uq+lzsYYjUYYjUZ/D5UoJimreHwIUORxzXYbMyhEpCp+Z1AMBgPOP/98jBgxAgsXLsTQoUPx3HPPwWw2A0CrTEhFRYWSVTGbzbBaraiqqmp3DBEFp8mPKR7nOLa7JyL1CboPihACFosFubm5MJvNKCoqUh6zWq3YuHEjxowZAwAoKCiAXq/3GlNWVoa9e/cqY4gocA6HUIpdfc2gsN09EamRX1M8v/vd73DdddchOzsbtbW1WL16NTZs2IC1a9dCkiQUFhZiwYIFyMvLQ15eHhYsWICEhARMnz4dAGAymTBz5kzMmTMH6enpSEtLw9y5czF48GBMmDAhLCdIFEs8V+L4PsXj/JzCXihEpCZ+BSinTp3C7bffjrKyMphMJgwZMgRr167FxIkTAQDz5s1DY2Mj7r33XlRVVWHUqFFYt24dkpOTlddYsmQJdDodpk2bhsbGRowfPx4rVqyAVuvbmykRtc8zyPClkyzAdvdEpE6S6IbdmWpqamAymVBdXY2UlJRIHw6RapRVN2L0wk+h10r44akf+/ScaS9+ie0lZ7Fs+nBMHpIV5iMkoljmz+9v7sVDFEXc+/D4npFkDQoRqREDFKIoIi8V9mUnY1k8V/EQkQoxQCGKInKzNV+XGHuOtTBAISIVYYBCFEWUnYz9yaC49uNhozYiUhMGKERRxOJnF1kAMLrqVdjqnojUhAEKURTxZ6NAmTuDwiJZIlIPBihEUcSfjQJl8oofFskSkZowQCGKIvJSYaM/y4wNLJIlIvVhgEIURZQiWYMfGRQuMyYiFWKAQhRFlGXGPra5B9wBClvdE5GaMEAhiiJN1gBqUJhBISIVYoBCFEWabPIyYz9W8bDVPRGpEAMUoigSUKM2TvEQkQoxQCGKInKQ4c9ePHK2hQEKEakJAxSiKNIUQCdZ1qAQkRoxQCGKIoF0ko1jDQoRqRADFKIoonSS9atRGzMoRKQ+DFCIooi8WaBfjdpcPVOsNgfsDhGW4yIi8hcDFKIoojRqC2CzQACwcEdjIlIJBihEUaTR6v8Uj+dY+flERJHGAIUoisgZFH+WGWs0EgyuaR650RsRUaQxQCGKIu5lxv79aMt1KMygEJFaMEAhiiKBdJIF3HUobNZGRGrBAIUoilgCaNQGsN09EakPAxSiKGF3CFjtgQUobNZGRGrDAIUoSnhmP/yuQWG7eyJSGQYoRFHCK0DxY5kx4A5oGKAQkVowQCGKEvISYYNOA41G8uu5rEEhIrVhgEIUJdxN2vz/sY5jgEJEKsMAhShKKBsF+lkgCzCDQkTqwwCFKEpYbIEHKHLn2UYrV/EQkTowQCGKEvISYX+btHk+p4mbBRKRSjBAIYoS7ike/3+s4w1sdU9E6sIAhShKyEuE/dkoUCYvS7Ywg0JEKsEAhShKNAXY5h5w78XDDAoRqQUDFKIooUzxBLDM2MhW90SkMgxQiKKEspOxIfAiWXaSJSK1YIBCFCUsrk6y/ra5B9jqnojUhwEKUZRQOskGsorHlUGxMEAhIpVggNKGOosNq7cfQ1W9NdKHQuSzYDrJcjdjIlIbBihtWLX1KB5+dw/+uvFQpA+FyGdNQXSSjWORLBGpDAOUNhytbPD6k6g7CGaZMWtQiEhtGKC04XRtEwCgwvUnUXfQGEwnWW4WSEQqwwClDadrLc4/6ywRPhIi31mC2c3YwACFiNSFAUobKlwBSkWNBUKICB8NkW/cUzz+/1jLS5Ob7QI2O+tQiCjyGKC04HAInHFlTiw2B2ottggfEZFvlEZtQWRQAKDJxgCFiCKPAUoL5xqb0Wx3Z00qajjNQ92DvIonkM0CjR7t8TnNQ0Rq4FeAsnDhQowcORLJycno1asXbrrpJuzfv99rjBAC8+fPR1ZWFuLj4zFu3Djs27fPa4zFYsHs2bORkZGBxMRETJkyBcePHw/+bEJArj9p72sitVIatQXQSVaSJPdKHm4YSEQq4FeAsnHjRtx3333YunUrioqKYLPZMGnSJNTX1ytjFi1ahMWLF2PZsmXYsWMHzGYzJk6ciNraWmVMYWEh1qxZg9WrV2PTpk2oq6vD5MmTYbdH/o2x5codruSh7iKYGhTn81goS0TqofNn8Nq1a72+fu2119CrVy8UFxfjqquughACS5cuxaOPPoqpU6cCAF5//XVkZmbijTfewKxZs1BdXY1XX30VK1euxIQJEwAAq1atQnZ2NtavX49rrrmm1fe1WCywWNyZjJqaGr9P1FfMoFB3ZbEFvlkg4KxdOYdmNmsjIlUIqgaluroaAJCWlgYAKCkpQXl5OSZNmqSMMRqNGDt2LLZs2QIAKC4uRnNzs9eYrKws5OfnK2NaWrhwIUwmk3LLzs4O5rA7VMEAhbopJYMSwBQPwHb3RKQuAQcoQgg8+OCDuOKKK5Cfnw8AKC8vBwBkZmZ6jc3MzFQeKy8vh8FgQGpqartjWnrkkUdQXV2t3EpLSwM97E7JAYleK3l9TaR2jUH0QfF8Hqd4iEgN/Jri8XT//ffjm2++waZNm1o9JkmS19dCiFb3tdTRGKPRCKPRGOih+kXOoAzMTMa+kzWtMipEatRsd8DucK4+C7QGJZ7t7olIRQJ6J5s9ezbef/99fPbZZ+jbt69yv9lsBoBWmZCKigolq2I2m2G1WlFVVdXumEiS29xfnJXi+poBCqmfZ9aDGRQiigZ+BShCCNx///1499138emnnyI3N9fr8dzcXJjNZhQVFSn3Wa1WbNy4EWPGjAEAFBQUQK/Xe40pKyvD3r17lTGRJGdMLs4yub7mKh5SP8/CVs+eJv7gfjxEpCZ+TfHcd999eOONN/Dvf/8bycnJSqbEZDIhPj4ekiShsLAQCxYsQF5eHvLy8rBgwQIkJCRg+vTpytiZM2dizpw5SE9PR1paGubOnYvBgwcrq3oi6bQSoDgzKFUNzbDaHDAE+KZP1BWaPDYK7Gw6tT3uDApX8RBR5PkVoCxfvhwAMG7cOK/7X3vtNdx1110AgHnz5qGxsRH33nsvqqqqMGrUKKxbtw7JycnK+CVLlkCn02HatGlobGzE+PHjsWLFCmi1gaWmQ6Wp2Y7aJmdr+7xeydBrJTTbna3vs3rER/TYiDrSFGSBrOdzWYNCRGrgV4Diy8Z5kiRh/vz5mD9/frtj4uLi8MILL+CFF17w59uHnZw9Meo0SInXoWeSESerm3C6lgEKqVuwS4wBsJMsEakK5y08yPUmPZONkCQJPZONrvtZKEvqJu/DE+gKHsCjBsXGAIWIIo8Bigc5g9LLFZj0TI7zup9IrUI5xdPEDAoRqQADFA9ypqSnEqDIGRSu5CF1UzYKDCJAkVvks0iWiNSAAYoHdwYlzvWn0et+IrVqsgW3USDgXp7MIlkiUgMGKB4qatrLoDBAIXULxRSPO4PCAIWIIo8BiofTdd41KL0YoFA3YXEFFfHBBChcZkxEKsIAxYPnKh7PP88wQCGVU5YZh6BI1sIaFCJSAQYoHlrVoKS4V/H40gOGKFIam0O3zJgZFCJSAwYoLnaHwJk6KwB35iQjyQAAsNodqG5sjtixEXVGrhsxBtGozegKbliDQkRqwADFparBCrtDQJKAdFdgYtRp0SNBD4B1KKRuoZjiYQaFiNSEAYqLvIInLcEAvdb9z9IziUuNSf3k7q/BFMnGcTdjIlIRBigu8goeeXpH1iuFzdpI/ZpCWIPCRm1EpAYMUFwqarxX8MiYQaHugLsZE1G0YYDi4u6BEud1v7ySR54CIlIjdw1K8BkUu0Og2c4sChFFFgMUl5ZdZGVKBqWOAQqpVygyKEaP4IZZFCKKNAYoLi27yMqUGhRmUEjFQhKg6DSQJO/XIyKKFAYoLqeZQaFurDEEy4wlSXIXylo5xUNEkcUAxaXzDApX8ZB6yXvxxOmC+5FWlhrbmEEhoshigOLS/ioeZ5FsTZONaW9SrVBM8QAezdqs/L9ORJHFAAVAvcWGetcbsrxqR5YSr4PB9amUS41JrZpszimZeENwAQrb3RORWjBAgTvwiNdrkdjiDV6SJNahkOopGZQg9uIB2O6eiNSDAQo86k9SjJDkZQweuJKH1EwIEZLdjJ3PZ7t7IlIHBijw6IGSZGzzcWZQSM2sdgeEcP7dGKIaFLa7J6JIY4AC4LRrnx05U9KSfP9pruQhFfIMJoLPoDifzykeIoo0BigAKmo7y6A4C2eZQSE1kpcYayTAoOUUD1GknK614Oo/bcCSogORPpSowAAF7iLZlit4ZKxBITVr9Fhi3FYNlT9YJEsUuM0Hz6DkTD3eKT4e6UOJCgxQ4EsGhTUopF5NIegiK4tjDQpRwErO1AMATlY3MgsZAgxQ4M6g9OykBoUZFFKjphB1kQXcfVT45krkvyOVzgBFCKD0bEOEj6b7Y4ACHzIoru6yZ+oscDhElx0XkS+UACXIJm2AO8hhgELkvyOuDArgzqZQ4GI+QLE7BM7Wu/ugtCXDFbjYHAJVDdYuOzYiX8hdZINt0ga4gxy2uifyjxDCKyiRsykUuJgPUCrrLHAI5wqI9MS2AxS9VoO0RAMA1qGQ+sjBRLBLjAF3kMMiWSL/VDU0o6bJpnxdcoZTPMGK+QBFnt5JTzJCq2l/BYS8yzHrUEhtLLbQbBQIeNagsEiWyB8tp3SOcIonaDEfoJzupP5EJtehcMNAUptQ7WTsfA3WoBAFQg5Ikow659ec4gkaA5TajutPZHKAUsEAhVRGznbEhyKDwkZtRAGRA5Ir8zIAAGXVTazlClLMBygVcpv7ZGZQqHuSgwljCGpQjGzURhQQeYpneL8eSIlzZlGOnmUWJRgxH6AoUzydBCi9kp1dZuWAhkgtGkM4xcMMClFg5AxKTnoicjMSnfexDiUoMR+gyFM2cgDSHmZQSK2UTrIhWGbM3YyJ/CeEwBHXqp3cjETkuAIUruQJTswHKL5nUBigkDq5i2RDsMyYGRQiv52ps6LOYoMkAdlpCchJZwYlFGI+QHFnUFiDQt2TvMw4lEWyrEEh8p08vZNlikecXqtM8ZRwJU9QYjpAEUL4nUGptdhYmU2q4m7UFtplxkJwWwciX8gFsnJgksMalJCI6QClzmJTPil2FqAkGXXKmzezKKQm7t2MQzDF42rU5hCA1c46FCJfHJULZDMSAAC5rimeiloLGqy2dp9HHYvpAEUONJKMOiQYdB2OlSSJK3lIlZps8jLjUGwW6H6NJisDFCJfyAWycu2JKUGPHgl6r8fIfzEdoPhafyJjHQqpkVzQGooaFL1WUrZ8kAMfIuqYPMUjByief2dH2cDFdIAiBxoZPgYovdhNllTIPcUTfIAiSRLidM63BdZaEXVOCOHugZLhDlCUQlnWoQQspgOUQDMonOIhNQnlMmPAY8NAZlCIOnW61oIGqx0aCeiXlqDcz6XGwYvpAMXXFTwy9kIhNQrlZoEAYHTVoTCDQtQ5OUPSJzUeBp37V6pcMMspnsDFdIDi3oen4y6yMm4YSGoUyk6ygEcGhd1kiTrl2eLeUy67yQbN7wDl888/xw033ICsrCxIkoT33nvP63EhBObPn4+srCzEx8dj3Lhx2Ldvn9cYi8WC2bNnIyMjA4mJiZgyZQqOHz8e1IkEwv8MSpzX84jUQJ6KiTeEaIqH3WSJfFbi0eLek1yPcqbOgtqm5i4/rmjg9ztafX09hg4dimXLlrX5+KJFi7B48WIsW7YMO3bsgNlsxsSJE1FbW6uMKSwsxJo1a7B69Wps2rQJdXV1mDx5Muz2rn1DPB1wDQoDFFIPeSrGGKIMimezNiLq2JE2VvAAQEqcHumJBgDA0UpmUQLRcfOPNlx33XW47rrr2nxMCIGlS5fi0UcfxdSpUwEAr7/+OjIzM/HGG29g1qxZqK6uxquvvoqVK1diwoQJAIBVq1YhOzsb69evxzXXXBPE6fgn0BqUyjoL7A6hLMckihQhBCy20K3i8Xwdtrsn6pw8xdMygwI4syiV9VaUnKlHfh9TVx9atxfSGpSSkhKUl5dj0qRJyn1GoxFjx47Fli1bAADFxcVobm72GpOVlYX8/HxlTEsWiwU1NTVet2A12x2orLcC8D2DkpZogCQ5u2xW1jOLQpEnBydA6FbxxHFHYyKfOBxtLzGWcSVPcEIaoJSXlwMAMjMzve7PzMxUHisvL4fBYEBqamq7Y1pauHAhTCaTcsvOzg76WCvrnMGJTiMhNcHg03N0Wg3SE7mSh9TDcxomVBkUbhhI5JtTtU1oanZAq5HQNzW+1eO5rpU83DQwMGFZxSNJ3lMfQohW97XU0ZhHHnkE1dXVyq20tDToY5RX8GQkGaHxY6qGdSikJnKWQ6eRoNeGKoPCGhQiX8hLjLNT49v8+eOmgcEJaYBiNpsBoFUmpKKiQsmqmM1mWK1WVFVVtTumJaPRiJSUFK9bsPytP5GxFwqpSWOIe6AAXMVD5CtlD542pncAz3b3LJINREgDlNzcXJjNZhQVFSn3Wa1WbNy4EWPGjAEAFBQUQK/Xe40pKyvD3r17lTFdwd8usjLux9M1vjpWhcc/2MdmYZ0IdRdZ52uxURuRL9rrgSKTA5ez9VZUN3Kpsb/8XsVTV1eHgwcPKl+XlJRg9+7dSEtLQ79+/VBYWIgFCxYgLy8PeXl5WLBgARISEjB9+nQAgMlkwsyZMzFnzhykp6cjLS0Nc+fOxeDBg5VVPV2BGRR1e/yDb/F16TnkpCfizjE5kT4c1ZIDlFAtMQY8imTZ6p6oQ/LUTVsreAAgyahDz2QjTtdacORMPYZm9+jCo+v+/A5Qdu7ciauvvlr5+sEHHwQA3HnnnVixYgXmzZuHxsZG3HvvvaiqqsKoUaOwbt06JCcnK89ZsmQJdDodpk2bhsbGRowfPx4rVqyAVhu6N9nOuLvIBpZB4X484VNnsWHviWoAwI4jZxmgdECuQZG7v4aC/FqNVq7iIeqInEHpn57Q7pic9ARngFIZPQGKwyGw72QNNuyvwGf7K9DU7MDrv7zU7w/8nfE7QBk3bhyEEO0+LkkS5s+fj/nz57c7Ji4uDi+88AJeeOEFf799yASeQWE32XArPloFu0Mof6f2yVmOkE7xuPYTYQaFqH0Oh1AasLWXQQGc0z87jlQp9SrdVXVjMzb9cAaf7a/Ahv2ncabO+3fgf/eW4Y7ROSH9nn4HKNGiQglQfNuHR8ZVPOG3vaRS+XtZdRNOnGtEnx6tl/AR0OSqEwnVPjyAx148rEEhaldZTRMsNgd0GqnD9ydlJU83W2oshMD+U7X47PvT+Gx/hdcHRwBINGhx+fkZcAiB9d9VYFvJWQYoocIaFPXadvis19c7j5xFn2F9InQ06ubOoLAGhagryfUn/dISoOtgib9708DuEaAcrKjFq5uOYMP+CpRVe5cynN8rCVdf0BPjLuiFETmpMOq02Ha4Euu/q8COkrM+tRTxR0wGKEKIoFfxNFjtqLPYkGSMyX/CsGm02vH18XMAgAkX9cL675yR+40MUNqk7GTMVTxEXUoOONpbYixzLzVWf4BSb7Fh2otbcdbVZT1Or8GY8zKUoCQ7rXWtzdDsHjBoNaioteBoZUOn/x7+iMnfrjVNNlhdLcL9zaAkGnVINGhRb7XjdK2FAUqI7SqtQrNdwJwSh58M74v131Vg5xHWobSnKQx9UNx78bBIlqg97W0S2FKOq5vsuYZmnGuwooePncsjYeXWozhbb0W/tAQ8cePFuGxAeqfvLXF6LYZmm7DjSBW2l5wNaYASlk6yanfatQInJU4X0Bu7UodSw5U8oSZP74wakIYROc7tEL4vr+F25e0IZ6M2Cxu1EbXLvUlg+yt4ACDBoENmivN3hpqneRqsNrz8+WEAwG/H52HcBb18fl+5NDcNALCt5GwnI/0TkwFKRYD1JzJlJU8d61BCbbvrP/iluWnITIlD39R4OASw69i5yB6YSoVnisf5WtyLh6h9vk7xAN1jmmfV1qOorLeif3oCbhyW5ddzL81NBwBsP1LZyUj/xGSAclqpP/FvBY/MnUFhgBJKFpsdXx1zTueMcv2HH5njjMx3crlxm+QsR0hX8bDVPVGH7A6B0rONADqf4gE8C2XVudS40WrHS67syX1Xn99h0W9bCvqnQiMBpWcbUVbdGLLjiukAJdAMitLunhmUkPrmeDUsNgcykgw4r6fzB7qgv3Oap/hoaFOH0UIOIkLZqC2OuxkTdejkuUZY7Q4YtBpk+dACQe2bBv5j21GcqbMiOy0ePxnu/4KEJKMO+X1MANxZ8FCIyQAl0BU8MmZQwsNzekdeqibXoew6dg42O4s2W3JP8YRhmXGzo8OmjESxSp7e6ZeeAK2m82W1ap7iaWq240U5ezLu/IB3RZez3QxQghRsBqUXMyhhsfWwc/7yUtd/dAAY2CsZyXE6NFjt+L68NlKHplqNyl48oftR9szGWGwMCola6myTwJY8e6GoLej/5/ZjOF1rQZ8e8Zh6Sd+AX0culGWAEiRlH56UYDMoXMUTKja7Q2lrP2pAunK/RiPhkn7OLMrOI5zmaSksy4w9gh3WoRC1VnLGtxU8Mnmvntomm9JjRA2amu3468ZDAJy1J4YgPujIGZQfKupQGaIP7zEZoCgZlKTAimTl4tqWexFQ4PaerEGD1Q5TvB4XZCZ7PTbCVYfCQtnWmmyhn+LRaTXQa51pa9ahELV2xI8VPIDz5zPL5Py9oaZpnjd3lOJUjQVZpjjcUhB49gQA0hINGJiZBADYEaLeVTEZoCg1KEFmUCrrrayLCJFtrumdkTlp0LSY0y3IkTMoVapLj0aaUiQbwgAFcK8KamKzNqJWlE0CfZziAdzBjFpW8lhsdizf4Mye/DrI7Iks1NM8MRegWGx2nGtwNv3qmRRYgJKWaIBWI0EIZ5BCwZP/Q182IK3VY8Oye0CrkVBe49w4kNzcUzyh/VGOM7DdPVFbbHYHjp11Bhn9/eia2t8VzBxVSQblrZ3HUV7TBHNKHKaNCC57Igt1P5SYC1DO1DkDCr1WQo8EfUCvodVISE90tivmSp7g2R0C24+4V/C0lGDQ4eKsFABQ6lTIKRw1KM7XY7M2oracONcIm0PAqNOgd4rvZQJyvYoauslabHYs/+wgAODX486DMUR9lOQFDt+eDE3375gLUNz1J8agdl2Up4dO17FQNljOVvbOjRcH9U5pc4zcD4X78ngLRydZgO3uidojBxj90xNaTUd3RE1Ljf9VfAInq5vQK9mI20Zmh+x1zaY49EtLgEOE5sNkzAUo8sqbnn5Evm2Rp4eYQQmevP9OQf/UdjsYsqNs25qUZcahzqCwWRtRW3zdJLClXKVZW0NEa+msNgf+7Mqe3DP2vJBnX0NZhxJzAYrcuyTQJm0yZT+eWgYowZL/I49qo/5EJq/k2c+NA72Eo5Ms4N2sjYjcjsgFsn7u2pudlgBJAuosNqXUIBLe/eo4TpxrRM9kI6aP6hfy12eAEgQ54xFokzaZ0guFAUpQhHDXn4xqo/5E1islDtlp3DiwpXB0kgXcUzzMoBB582eTQE/OpcbOtviRmuZptjvw5w3O7MmsqwaE/H0DcL+Pf338XNB9lGIuQAlZBkWuQWGAEpQfKupwtt6KOL0Gg/v06HDsiP6c5vFkdwhYXcvc40LYSRZw17SwURuRN3+7yHry7CgbCWt2nUDp2UZkJBkwY1T/sHyPfmkJyEwxotkugv4wGXMBSsgyKHINSi2LZIOxrcRdf9LZOnxuHOjNYnMHD+HKoDBAIXJrtjtwvMrZ6sDfKR4AyHGt5InEpoE2u7v25FdXDQj5tLBMkiSlZnBHkN2/Yy5AcWdQgiuSda/iYQYlGNuU/XfSOxnJjQNb8qwPCf0yYwYoRC2Vnm2A3SEQr9ciM4BGn5FcyfPv3SdxtLIBaYkG/Pyy8GRPZKNCVIcSewGKvIon6AyKM8CpqLGwu2mAhBA+FcjKuHGgN7k+xKDV+LSjqj+6YhXPscoGvFN8HHYHf36oe5ADi/7pCQG1qciNUDdZm92BZa7syf9cOQAJBl1Yv5/csK34aBWag/gwGVMBihAiZDUocoBjsTlQa7EFfWyx6EhlAypqLTBoNRiW3aPT8Z4bBwabOowGyhLjEPdAAcK/ikcIgV+t3Im5b3+Nv20qCcv3IAo1ObAIZHoHcBfWHq3s2l2NP/jmJErO1CM1QY87Roc3ewIAeb2S0CNBj8ZmO/aeqA74dWIqQDnX0Ixmu/M/RUaAbe5l8QYtko3OKJS9UAIjT+8My+7h8xQFNw50C1cXWSD8q3g2H6xUsmB/3nAQNVw6Tt2Av5sEtpSdmgCNBDRY7V22AtTuEHjhU2f25O4rByDRGN7sCeD8MCnXoQQzzRNTAYqcPUlN0IdkY6SeKSyUDYb8H7et9vbtGeH6T1/MjQPD1kXW8zWbwrQXz6ubDit/P9fQjJc2Hu5gNJE6yFM8/mwS6Mmg06Bvate2vP/wm5M4fLoepviuyZ7IQlGHElMBSqhW8MjklTxcahyYbX7Un8iGZfeAjhsHAnC3oQ/1TsaAu/Fbky30AcrBijp8tv80JAl45LoLAQCvbiphoN8NHK2sx5aDZyJ9GBETaA8UTzlKR9nwByh7T1Rj0dr9AIC7r8hFclxg+88FwnMljyPAOrOYClDkfXOCXcEj65XCbrKBOl7VgBPnGqH1qCvxRbxBy40DXRrDOMUTpwvfbsavbXbWnIy/sBd+ddUADMvugcZmO1745GDIvxeFTlOzHbe9uBXTX9mGDfsrIn04Xc5is+Ok60ORvFw4ELnprgxKGFfyNNsdWLr+AG7682acONeI3qY43Hl5Tti+X1suzkpBgkGLmiYb9p8KbFFDTAUozKCoh7z/zuA+Jr/nRAvkhm0xvnGgMsUT4n14ACDOEJ4i2ap6K/711XEAwMwrBkCSJDx0rTOL8s/tx1SzFT219vcvj6DctQryT+v2x9wUa+nZRjgEkGjQKu/9gejvmh46GqaVPPvLa/GTv2zG0vU/wOYQuPZiMz6YfQVSujB7AgA6rUbpXRXoNE9MBShyIBHsCh5ZrxS2uw+UP8uLW5L7ocR6oWw4V/GEq0j2je3H0NTswKDeKbjMde1Hn5eOsQN7wuYQeHbdgZB+PwqN2qZmLN9wSPl674karN1bHsEj6npHlF2MEwNaYixTNg0McTAuN2K74YVN2HuiBqZ4PZ776TAs//klQS8KCVSwdSgxFaDIgQQzKJG3rcS5gqej/Xfaw40DneT6kHDUoISj1b3V5sDfvzwCAJh5Ra7Xm/z/XnMBAOD9r09i38nAlyVSePxt0xFUNTRjQM9E3DvuPADAs0UHYqqHjVIgG0T9CeBRg1JZH3BtRksHK2px81+/xB8/3g+r3YHxF/ZC0QNX4cZhfYIKpoIl90PZVnI2oIxbTAUop0McoPTiKp6AnKppwpHKBkiSe1WOP0KxceB3ZTWYtXIn9hzvvr8Mw7VRIBCeVvcf7SnDqRoLeiYbccPQLK/H8vuYlPv++PH+kH1PCt65Bite+cK5yuqBCQMxa+x5SInT4WBFHf69+0SEj67ruAtkA68/AYC+qfHQaiQ0NTtwKsjfHXaHwMufH8aPn9+Er0vPITlOhz/dOhSv3DlCqZGMpCF9TTDoNDhTZwlo1VJMBShyIBGyDEoyMyiBkFfvDOqdEvC8qLJxYAAN2+otNtyzqhgf7zuF+//5VVgKQbuCuw+K+hu1CSHwimtp8R2X9W9zmf+ciQOh00jYsP80trp65FDk/XXjYdRabLiodwquH9wbpng9Zo11ZlGWrv8hqE6h3UkwmwR60ms1yE517moczFLjkjP1uO3FL/HUR9/BanPgqoE9se6Bq3BLQd+IZk08xem1GNa3B4DApnliKkBx16CEaBWP63WqGpphtcXGD2koyA3aRuV2vv9OewqCaNj21Eff4Wils0DtaGUDFhd1z0/s4WzUFupW99tLzmLviRoYdRrMaGcfkJyMRPz00mwAwDNrv4+5Ikw1qqhtwootzlVXcyYOhMa1pcIvLs9BRpIBx8424K2dpZE8xC5zJMgusp7cS439L5R1OARWbC7Bdc99jp1Hq5Bk1OHpqYPx+i9GorcpPuhjCzW5z9X2AD5MxkyA0tRsR02TsyV9qDIoPeL10Ll+YM9w00CfBdKgrSW5UHZ3qX8bB372fQXe2HYMAHCP61Pgq5tKsLv0XMDHEinhDVCcbw2hClBedbWzn3pJX6QlGtod95sf5SFer8WuY+dQ9O2pkHxvCtxfPjuEpmYHhmX3wPiLein3Jxh0uHfc+QCAFz45GPWbSjY123GyWl5iHIIAJcBNA5ua7bjzte2Y/8G3aGp2YMx56VhbeCV+emk/1WRNWro0iELZmAlQ5OyJUadBSlxoWv1qNJIS7HAlj28q6yz4oaIOQHABiufGgd+V+bbG/my9FfP+9Q0A4JeX5+Lh6y7ETcOy4BDAQ+980+2yYF1Rg2K1OYIu5DtaWY+i75zBxswrcjoc2yslDr90jfnjx/tjqghTbU6ca1SC+f+95oJWvwCnj+qH3qY4lNc04R+ucdHq2NkGCAEkG3VI7yDA9pV700D/ApQnPvwWX/xwBvF6LZ688WKsmjlK6UyrVpf0T4VWI+F4VaPfzTVjJkDxXMETykiTdSj+kaPoCzKTO/wk3RmNRvKY5uk8MhdC4NE1e3C61oLzeyVh3rXOVSP/d8PFSEs0YP+pWq9llN1BYxfUoADBd5N9bfMRCAGMHdgT5/dK7nT8r646D6Z4PX6oqMO7rp4p1PWeX/8DrHYHRg9Ix+XnZ7R6PE6vxW/G5wEA/vLZQdRH8aapnh1kQ/H7I5Busu9+dRxvbDsGSQL+ensBbh+do0y5qVmSUYd8V3PNHX5mUWImQAl1DxRZr2Su5PHHthBM78j82Thwza4T+O/ecug0EpbeNkz5BZyWaMD8KRcDAJZ99gMOBNjxMBKUKZ5wNGrzDFCCKJStaWrG264ahZlX5Pr0HFO8XlnKunT9D1E/faBGJWfq8Y4rOJzrWgLellsK+qJ/egIq661YseVIFx1d1wt2k8CW5L18jp5t8ClD+X15DX63Zg8A5zTo2IE9Q3IcXUV+v9/GAKVtp0O8gkfGDIp/Atl/pz1yR9nONg48ca4Rj/17HwCgcEIe8vuYvB6/YUhvTLioF5rtAvPe+abbTCuEc4pHq5Fg0DrfHoLpNfPm9lLUW+0YmJmEK/Nafwpvz51jcmBOicOJc41YtfVowN+fArPE1ePkRxf2UjKVbdFrNXhgwkAAwIsbD6G6MTr7Erk3CQzNdEpWjzjotRKsNodS29Ke2qZm/HrVV2hqduDKvAwla9WduHc29m91XgwFKKFdwSPr6Xo91qB0rrqhGd+X1wAITQbFl40DHQ6BuW99jVqLDcP79VAKYz1JkoQ/3DQYyUYddpeeU/aKUTuLLXxTPADQz/VmXPjm7oB+8djsDuVTdcvGbJ2J02tROMH5Rvznzw7GdEO+rvZ9eQ0++OYkAGDOpIGdjr9haBYGZiahpsmGlz+Pzl2pQ7FJoCedVoPsNOfPV0creYQQeOhf36DkTD2yTHF47qfDoe0G0zotyQHKodP1qPRjQUnMBCih7iIrYwbFdzuOnIUQwICMxJAEir5sHPi3zSX48nAl4vVaLJk2DDpt2//lzaY4/O76iwA49xk5VhmefTJCqSmMuxkDwOJpQ2GK12PXsXOY/vJWnK23+vX8tfvKceJcI9ITDbhxWB+/v/8tBX0xoGciqhqa8fIX3SNojAbPrjsAIYDrB/fGxVmmTsdrNRIenOicBvrb5pKoXNEoBxGhClAA9zRPR5sG/m3zEXy0pxx6rYQ/z7gkqLq9SEpNNOCCTGf92VfHfG8NETMBSvhrUKLvhzLU5HXwocieyDraOPDAqVoscnUl/f3kizp9c/npyGyMHpCOpmYHHn73G9X34QjnbsYAMKRvD6z+1WVITzRg38ka/OylrX7VWslLi2dc1j+gY9RpNfjfSc5ffK98cZgfArrA7lLn8m6NBDww0fephGsuzsSQviY0WO3drti8M41Wu7JJYm6QTdo8dVYou/PIWSz86DsAwO+vH4Thfuz6rkby+74/vatiJkAJdwblDN88O6U0aAtB/YlM7oeyo0UTIKvNgQfe3A2rzYGrL+iJ6Zf26/S1JEnC0zcPRpxegy2HKlXfgEquQQnHZoGyi3qn4M1Zo5GZYsT+U7X46YtbUdbJnDng/JS069g5GLQa3N5OYzZfXJtvxlDXL74/f3Yw4Nch3zy7zhnQ3zS8j08rrmSSJGGOK5hcufWoT/9HuoujZ50BhClej9QQZjA6ClDO1Flw3xtfweYQuGFoFu4YHfjPkFrIAUp72e62xEyAEq4alF4eUzxq/8QdSXUWG/aelOtPAu8g25KyceCpWtR41Ck8/8kP2HeyBqkJejxz8xCf6x/6pydiruuN9g//+Q6natS7Oiucjdo8nd8rCW/NGo0+PeJx+Ew9pr34JUrPdjwFJmdPpgzLCupDgSRJeOjaCwEA/9h2tFtMvXVXWw9X4osfzkCnkVA4vvPak5auysvApTlpsNoceOHT6AkmlRU8ISqQlcmv17JZm90h8NvVu3CqxtkS4empg1XbhM0fcoCyv9z3lZIxEaA4HEKZFw11BkXextpqd0RtBXsoFB+tgt0h0Dc1Hn16hK4ds7xxoPDYOLD46Fn8ZYPzDfKpnwz2e9OsX1yei6HZPVDbZMPv39ur2sBTzqCEqwbFU//0RLx1z2j0T09A6dlGTHvxSxw+Xdfm2BPnGrF2bzkAZ0O8YI05PwNX5mWg2S6wZP2BoF+PWhNC4E+u6dDbRmYrBdL+kCRJWZL81o7SqAkmS8JQfwK4u8mWnm30Wjm4pOgANh+sRIJBi7/+/BIkGkPTWDTSMlPikJOeAH/eTmMiQKlqsMLmEJAkID0ptEVGcXotTPHODe98qUOpt9jw1s5S/OrvO/HEB98qq1qiXSj232nPSGW58VnUW2x48K2v4RDAT4b3wY8H9/b79bQaCYtuHgK9VkLRt6fwnz1loT7kkOiqDIqsT494vDVrNM7rmYiy6iZMe3Frm31jXt9yBHaHwOXnp2OQq4g5WPOucWZR3tt9Aq98cRhVfhbsUsc2HDiNnUerYNRpMPtHgS9jvTQ3DVcN7AmbQ2BplAST7gxKaAOUrB7xMGg1sNodOOlahfjp96ewzDWV+fTNQ/yaZusORvq5e31MBChy4JCWYIC+nVUcwehsJY8QAsVHq/DQO9/g0qfWY94732Ddt6fwt80luHbpF7hx2Sas2nrUa4oiGjRYbfjwm5O4Z2UxXnGl/EeFsEBWVpDjbtgmbwSYZYpTGrAF4gJzsrLXyGP/3qfKX4jh3M24PZkpcXhz1mhcaE7GmToLfvrSVuw9Ua08Xm+x4Z/bnW3PfW3M5ovBfU24cVgWhHBOvY1a8Anue+MrbDxwutv0rVErIYRSe3L7Zf1hNgU3DT7XtTR5ze4T+KEbNT5sj7zKJhSbBHrSaiQlU1Vyph6lZxvwwJtfAwDuHN0fU4ZmhfT7qYG/CyQiGqD85S9/QW5uLuLi4lBQUIAvvvgiLN/ndJgKZGXtdZM9XWvBS58fwsQln+Pm5Vvw5k5n06rcjEQUTsjDdflm6LUSvj5ejd+/txcj/7AeD7y5G18eqlTttEJnGq12fLSnDPf94ytc8mQR7n9jF9buK4fV5sAFmcmYMCgz5N9zRH/3ZlTy3iF/unWoktkK1H1Xn4+BmUmorLfiyQ+/Dfo4Q8lmd8Dm+sUcjk6yHclIMmL1ry7DkL4mnK23YvrLW7HLtXTw7Z2lqG2yYUDPRIwb2KuTV/LPoluG4IkbL8bFWSmw2h34zzdluPNv23HlM59i8br9ndbFUNvW7i3H3hM1SDRo8etxrfsE+WtI3x645uJMCAEsLur+WZRQd5H1JGdlDpyqxb3/+ArVjc0Ylt0Dj14/KOTfSw38zaBHbHLrzTffRGFhIf7yl7/g8ssvx4svvojrrrsO3377Lfr163zFhT/CtYJH5plBsdkd2LD/NN7aWYpPv69QfonE67X48eDeuG1kNkbmpCpFT5V1FqzZdQJv7SzFgVN1WLPrBNbsOoH+6Qm4taAvbinIDvoTTbg1NduxYf9p/GdPGT757hQarO7W5P3SEjB5SG9cP6Q3BvVOCUuxV16vJKTE6ZTdqn95eS7GtLF3iL8MOg0W3TIUU/+yGe/uOoEbhmXh6gtC+0s3UE0eGxt21RSPpx4JBqy6exR++doO7DxahZ+/sg2v3DkSr7kas/3i8tyQ7xNi1Glxx+gc3DE6B3tPVOPtnaV4b/dJnKxuwvOfHsTznx7E5eenY9qIbFxzsTki/y7djd0h8KwriPjlFblITwrNe+ScSRdg3ben8N+95dh7orpV92bA+WHm6Nl6HDlTj5IzDc4/K52NvPqkJiA3PQE5GYnIyUhEbnoi+qbGt9vHKFzqLTbl90colxjLcjOcGZTFRQfQYLUjNUGPP8+4BAZddE5uZKfFo1eyEb6uj4xYgLJ48WLMnDkTd999NwBg6dKl+Pjjj7F8+XIsXLjQp9c4UdWAGnvnp3DIVcwX6hU8MjmD8q/iE3jlixKvWpRh2T1w28hsTB7SG8lxrT/RpycZcfeVAzDzilzsLj2Ht3Yexwdfn8TRygb8ad0BLC46gKsG9sRtI7KRl5mMBqsN9RY76i021FttaLC6/m6xOx/zeFwjSUgwapFo0CHBqEWSQYcEow6JBi0SjTokGrVIMOiQaHD+Xa/VwNf4QQjg+/JafPjNSaz/9hTqPYKSvqnxuH5Ib0wenIX8PuEJSjxpNBIu6Z+KDftPe20EGArDsnvgl5fn4pVNJXj03T1YdfcoVbx5nGtwTwcaI3Q8KXF6vP7LS/E/f9+JLYcqMeOVrXAI53LMmy/xvzGbP/L7mJDfx4RHfnwR1n17Cm/tKMWmg2ew+WAlNh+sREqcDjcO64Opl/Tx64OJEM7+MvLPlPNnzPNnzo4G15/1FufPn1GnQYLrZ0r+M9GgRYJRhySP+xIMzp9FnVY9KzI+238aByvqkBKnw91XDgjZ6w7MTMaNQ7Pw3u6TePq/3+P20f1x5Ew9jlTWo+RMPY6caVB6i7Tl0Ol6fN7iPp1GQnZaAnJcgUtuRiJy0hORnZYAfZj+TQ+ddmZPUhP0MCUEl5Fti5yVabDaIUnA0p8OD+kiArWRJAkj+qei2MfxEQlQrFYriouL8fDDD3vdP2nSJGzZsqXVeIvFAovF/Uu/psZZWHrN0i+gMfpebR7uDMp+13xrWqIBU4f3wbSR2RiY6VuRkyRJGN4vFcP7peL/Tb4I/91Tjjd3lmJ7yVls2H8aG/afDsuxh0qWKQ7XD+mN64dkYWhfU5cvi7vv6vOhlSQ8dN2FIf/k/OCkgVj37SkcO9uAHz27MaSvHSyjThPRHU0TjTr87a6RuGdVsfJ/dMaofkgwdM1bS5xeiylDszBlaBZKzzbgneLjeKf4OE6ca8TKrUexkvv4+GTW2POCnhJtqXDCQHzwTRk2HTyDTQfPtDnGFK93ZUjcQUd6ohHHqxpQUunMrhw504AjlfWw2BwoOeMMcNDF74fhmN4BvLMy3XETwED84oocvOjj2IgEKGfOnIHdbkdmpnc9QmZmJsrLy1uNX7hwIR5//PFW9xt0Gmh9/PSYHKfHxEHhSc9fc7EZb+4oRb+0BNw2Mhs/ujAzqE/ZCQYdbi7oi5sL+qLkTD3e3lmKf+8+iTqLTflkpnxKM+iQZNQqmRHn1zrEG7QQQItPe62zL3UWGxpcnxStNv92rc1IMuKai824fkhvDM/uEdFflCNz0jDyrtAX4ALO6/GnW4fi16uKUaeyLeV/Mjy8mQpfxOm1ePH2Ajzy7h58c7wad12eE5HjyE5LwAMTB+I34/Ow5dAZvLmjFBv3n4bV7t//a3cWxJV59Mh+JBp1SlYy0ahDvF6LZrvD+fNkcf08WT1+5lw/W/UeP4dqK+q90JyMu8bkhPx1czIScf/V52PV1qPI6hHvFYjI0za+Nj5zOATKa5qUaSBlWqiyHifPNYb131Sv1eDmS/qG5bWH90vF0OweOK9nYrfcBDAQF/XufPsEmSQiUI158uRJ9OnTB1u2bMHo0aOV+5966imsXLkS33//vdf4tjIo2dnZqK6uRkpKaJYxEhERUXjV1NTAZDL59Ps7IhmUjIwMaLXaVtmSioqKVlkVADAajTAawzM9Q0REROoTkeo6g8GAgoICFBUVed1fVFSEMWPGROKQiIiISEUitornwQcfxO23344RI0Zg9OjReOmll3Ds2DHcc889kTokIiIiUomIBSi33XYbKisr8cQTT6CsrAz5+fn46KOP0L9/99+1kYiIiIITkSLZYPlTZENERETq4M/v78h3nCIiIiJqgQEKERERqQ4DFCIiIlIdBihERESkOgxQiIiISHUYoBAREZHqMEAhIiIi1WGAQkRERKrDAIWIiIhUJ2Kt7oMhN7+tqamJ8JEQERGRr+Tf2740se+WAUptbS0AIDs7O8JHQkRERP6qra2FyWTqcEy33IvH4XBg4MCBKC4uhiRJPj1n5MiR2LFjh1/fx9/n+DO+pqYG2dnZKC0t9Xk/oXAeT7jHq/F8w/091HjOPN/QPicazjnWztff50TDOavpfIUQKCgowIEDB6DRdFxl0i0zKBqNBgaDodPoy5NWq/V7Y0F/nxPI90hJSfH5OeE+nlg73676Hmo6Z55veJ7Tnc851s430Od053NW2/kaDIZOgxOgGxfJ3nfffWEd31XfI5yvr7bx/uI17n7j/aXG44+1c4618w30OeF8fbWN91e4jqdbTvFEA3+2nI4GsXa+QOydc6ydLxB75xxr5wvE3jmr6Xy7bQaluzMajXjsscdgNBojfShdItbOF4i9c4618wVi75xj7XyB2DtnNZ0vMyhERESkOsygEBERkeowQCEiIiLVYYBCREREqsMAhYiIiFSHAUoQPv/8c9xwww3IysqCJEl47733vB4/deoU7rrrLmRlZSEhIQHXXnstfvjhB68x5eXluP3222E2m5GYmIhLLrkE77zzjteYnJwcSJLkdXv44YfDfXqthOJ8Dx06hJ/85Cfo2bMnUlJSMG3aNJw6dcprTFVVFW6//XaYTCaYTCbcfvvtOHfuXJjPrm1ddc5quMYLFy7EyJEjkZycjF69euGmm27C/v37vcYIITB//nxkZWUhPj4e48aNw759+7zGWCwWzJ49GxkZGUhMTMSUKVNw/PhxrzFqucZdec7RdI1feukljBs3DikpKZAkqc1rF23X2JdzjpZrfPbsWcyePRsXXHABEhIS0K9fP/zmN79BdXW11+uE+xozQAlCfX09hg4dimXLlrV6TAiBm266CYcPH8a///1v7Nq1C/3798eECRNQX1+vjLv99tuxf/9+vP/++9izZw+mTp2K2267Dbt27fJ6vSeeeAJlZWXK7fe//33Yz6+lYM+3vr4ekyZNgiRJ+PTTT7F582ZYrVbccMMNcDgcymtNnz4du3fvxtq1a7F27Vrs3r0bt99+e5edp6euOmcg8td448aNuO+++7B161YUFRXBZrNh0qRJXv9fFy1ahMWLF2PZsmXYsWMHzGYzJk6cqOyPBQCFhYVYs2YNVq9ejU2bNqGurg6TJ0+G3W5XxqjlGnflOQPRc40bGhpw7bXX4ne/+1273yvarrEv5wxExzU+efIkTp48iT/96U/Ys2cPVqxYgbVr12LmzJle3yvs11hQSAAQa9asUb7ev3+/ACD27t2r3Gez2URaWpp4+eWXlfsSExPF3//+d6/XSktLE6+88orydf/+/cWSJUvCduyBCOR8P/74Y6HRaER1dbUy5uzZswKAKCoqEkII8e233woAYuvWrcqYL7/8UgAQ33//fZjPqmPhOmch1HmNKyoqBACxceNGIYQQDodDmM1m8fTTTytjmpqahMlkEn/961+FEEKcO3dO6PV6sXr1amXMiRMnhEajEWvXrhVCqPsah+uchYiea+zps88+EwBEVVWV1/3Rdo09tXfOQkTnNZa99dZbwmAwiObmZiFE11xjZlDCxGKxAADi4uKU+7RaLQwGAzZt2qTcd8UVV+DNN9/E2bNn4XA4sHr1algsFowbN87r9Z555hmkp6dj2LBheOqpp2C1WrvkPHzly/laLBZIkuTVACguLg4ajUYZ8+WXX8JkMmHUqFHKmMsuuwwmkwlbtmzpilPxWajOWaa2ayync9PS0gAAJSUlKC8vx6RJk5QxRqMRY8eOVa5NcXExmpubvcZkZWUhPz9fGaPmaxyuc5ZFwzX2RbRdY39E6zWWO8vqdM4t/LriGjNACZMLL7wQ/fv3xyOPPIKqqipYrVY8/fTTKC8vR1lZmTLuzTffhM1mQ3p6OoxGI2bNmoU1a9bgvPPOU8b89re/xerVq/HZZ5/h/vvvx9KlS3HvvfdG4rTa5cv5XnbZZUhMTMRDDz2EhoYG1NfX43//93/hcDiUMeXl5ejVq1er1+/VqxfKy8u79Jw6E6pzBtR3jYUQePDBB3HFFVcgPz8fAJR//8zMTK+xmZmZymPl5eUwGAxITU3tcIwar3E4zxmInmvsi2i7xr6K1mtcWVmJJ598ErNmzVLu64pr3C13M+4O9Ho9/vWvf2HmzJlIS0uDVqvFhAkTcN1113mN+/3vf4+qqiqsX78eGRkZeO+993Drrbfiiy++wODBgwEADzzwgDJ+yJAhSE1NxS233KJE6mrgy/n27NkTb7/9Nn7961/j+eefh0ajwc9+9jNccskl0Gq1yjhJklq9vhCizfsjKZTnrLZrfP/99+Obb75pleUBWl8fX65NyzFqvMbhPudov8advUagrxNK4T7naLzGNTU1uP766zFo0CA89thjHb5GR68TCAYoYVRQUIDdu3ejuroaVqsVPXv2xKhRozBixAgAztUdy5Ytw969e3HxxRcDAIYOHYovvvgCf/7zn/HXv/61zde97LLLAAAHDx5UTYACdH6+ADBp0iQcOnQIZ86cgU6nQ48ePWA2m5GbmwsAMJvNrVa4AMDp06dbRfxqEIpzbkskr/Hs2bPx/vvv4/PPP0ffvn2V+81mMwDnJ6fevXsr91dUVCjXxmw2w2q1oqqqyiujUFFRgTFjxihj1HaNw33Obemu19gX0XaNA9Xdr3FtbS2uvfZaJCUlYc2aNdDr9V6vE+5rzCmeLmAymdCzZ0/88MMP2LlzJ2688UYAzqpwANBovC+DVqtttcLDk7zCx/M/l5q0d76eMjIy0KNHD3z66aeoqKjAlClTAACjR49GdXU1tm/frozdtm0bqqurO3yzj7RgzrktkbjGQgjcf//9ePfdd/Hpp5+2CqByc3NhNptRVFSk3Ge1WrFx40bl2hQUFECv13uNKSsrw969e5UxarrGXXXObemu19gX0XaNA9Wdr3FNTQ0mTZoEg8GA999/36vWDuiiaxySUtsYVVtbK3bt2iV27dolAIjFixeLXbt2iaNHjwohnFXPn332mTh06JB47733RP/+/cXUqVOV51utVnH++eeLK6+8Umzbtk0cPHhQ/OlPfxKSJIn//Oc/QgghtmzZorzu4cOHxZtvvimysrLElClTut35CiHE3/72N/Hll1+KgwcPipUrV4q0tDTx4IMPeo259tprxZAhQ8SXX34pvvzySzF48GAxefLkLjtPT11xzmq5xr/+9a+FyWQSGzZsEGVlZcqtoaFBGfP0008Lk8kk3n33XbFnzx7xs5/9TPTu3VvU1NQoY+655x7Rt29fsX79evHVV1+JH/3oR2Lo0KHCZrMpY9RyjbvqnKPtGpeVlYldu3aJl19+WQAQn3/+udi1a5eorKxUxkTbNe7snKPpGtfU1IhRo0aJwYMHi4MHD3q9Tlf+HDNACYK83Kzl7c477xRCCPHcc8+Jvn37Cr1eL/r16yd+//vfC4vF4vUaBw4cEFOnThW9evUSCQkJYsiQIV7LjouLi8WoUaOEyWQScXFx4oILLhCPPfaYqK+v78pTFUKE5nwfeughkZmZKfR6vcjLyxPPPvuscDgcXmMqKyvFjBkzRHJyskhOThYzZsxoc0lfV+iKc1bLNW7rPAGI1157TRnjcDjEY489JsxmszAajeKqq64Se/bs8XqdxsZGcf/994u0tDQRHx8vJk+eLI4dO+Y1Ri3XuKvOOdqu8WOPPdbp60TbNe7snKPpGrf3vgdAlJSUKOPCfY0l1wkRERERqQZrUIiIiEh1GKAQERGR6jBAISIiItVhgEJERESqwwCFiIiIVIcBChEREakOAxQiIiJSHQYoREREpDoMUIioy2zYsAGSJOHcuXORPhQiUjl2kiWisBk3bhyGDRuGpUuXAnBuSnb27FlkZmaGbEt2IopOukgfABHFDoPBoGz3TkTUEU7xEFFY3HXXXdi4cSOee+45SJIESZKwYsUKrymeFStWoEePHvjwww9xwQUXICEhAbfccgvq6+vx+uuvIycnB6mpqZg9ezbsdrvy2larFfPmzUOfPn2QmJiIUaNGYcOGDZE5USIKC2ZQiCgsnnvuORw4cAD5+fl44oknAAD79u1rNa6hoQHPP/88Vq9ejdraWkydOhVTp05Fjx498NFHH+Hw4cO4+eabccUVV+C2224DAPziF7/AkSNHsHr1amRlZWHNmjW49tprsWfPHuTl5XXpeRJReDBAIaKwMJlMMBgMSEhIUKZ1vv/++1bjmpubsXz5cpx33nkAgFtuuQUrV67EqVOnkJSUhEGDBuHqq6/GZ599httuuw2HDh3CP//5Txw/fhxZWVkAgLlz52Lt2rV47bXXsGDBgq47SSIKGwYoRBRRCQkJSnACAJmZmcjJyUFSUpLXfRUVFQCAr776CkIIDBw40Ot1LBYL0tPTu+agiSjsGKAQUUTp9XqvryVJavM+h8MBAHA4HNBqtSguLoZWq/Ua5xnUEFH3xgCFiMLGYDB4FbeGwvDhw2G321FRUYErr7wypK9NROrBVTxEFDY5OTnYtm0bjhw5gjNnzihZkGAMHDgQM2bMwB133IF3330XJSUl2LFjB5555hl89NFHIThqIlIDBihEFDZz586FVqvFoEGD0LNnTxw7diwkr/vaa6/hjjvuwJw5c3DBBRdgypQp2LZtG7Kzs0Py+kQUeewkS0RERKrDDAoRERGpDgMUIiIiUh0GKERERKQ6DFCIiIhIdRigEBERkeowQCEiIiLVYYBCREREqsMAhYiIiFSHAQoRERGpDgMUIiIiUh0GKERERKQ6/x+j8joQ5U7TxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "convert_to_gdf(clipped_philippines).groupby([pd.Grouper(key='time', freq='Y')]).sum().reset_index().plot(x='time', y='heat_waves_per_time_period',label = 'Philippines', color = '#1F77B4')" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "id": "ea39dca7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGwCAYAAACKOz5MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKTklEQVR4nO3de3RU5b0+8GfPJJkkSCYEyO1HiGi5o5gGJEGhWCQKglqlsHo0ioVaCiqaY22jeO06Rc5BCQhK6UFS2tUk9oRbTykalpJAiRzBxNqLCpY2FCemYJKBXGaSzP79kew9M7nOnsxk3tn7+aw1S2bnnZ292UAe38v3lWRZlkFEREQkMFOoL4CIiIhoIAwsREREJDwGFiIiIhIeAwsREREJj4GFiIiIhMfAQkRERMJjYCEiIiLhRYT6AgLF5XLhiy++wPDhwyFJUqgvh4iIiHwgyzIuX76M1NRUmEx996PoJrB88cUXSEtLC/VlEBERkR/Onz+PMWPG9Pl13QSW4cOHA+i84bi4uBBfDREREfnCbrcjLS1N/TneF90EFmUYKC4ujoGFiIgozAw0nYOTbomIiEh4DCxEREQkPAYWIiIiEp5u5rAQERH5oqOjA21tbaG+DMOIjIyE2Wwe9HkYWIiIyBBkWUZtbS0aGhpCfSmGEx8fj+Tk5EHVSWNgISIiQ1DCSmJiImJjY1lkdAjIsozm5mbU1dUBAFJSUvw+FwMLERHpXkdHhxpWRo4cGerLMZSYmBgAQF1dHRITE/0eHuKkWyIi0j1lzkpsbGyIr8SYlN/3wcwdYmAhIiLD4DBQaATi952BhYiIiISnKbBs2LABM2fOxPDhw5GYmIi7774bn3766YCfKy8vR2ZmJqKjo3HNNddgx44dPdqUlpZiypQpsFgsmDJlCvbt26fl0oiIiEjHNAWW8vJyrF27Fu+//z7KysrQ3t6OnJwcNDU19fmZc+fOYdGiRZgzZw6qqqrw9NNP47HHHkNpaanaprKyEsuXL0dubi4++ugj5ObmYtmyZTh58qT/d0ZERESaFRYWIj4+Xn3/wgsv4IYbbgjZ9Sg0BZbDhw9jxYoVmDp1KqZPn47du3ejpqYGp0+f7vMzO3bswNixY1FQUIDJkydj1apV+O53v4tNmzapbQoKCrBgwQLk5+dj0qRJyM/Px/z581FQUOD3jRFp1drWAZdLDvVlEBF5WbFiBSRJwurVq3t8bc2aNZAkCStWrAjY91u+fDk+++yzgJ0vUAY1h6WxsREAkJCQ0GebyspK5OTkeB277bbbcOrUKXW2cF9tTpw40ed5HQ4H7Ha714vIX83Odty88T088Ob/hfpSiIh6SEtLQ3FxMVpaWtRjra2tKCoqwtixYwP6vWJiYpCYmBjQcwaC34FFlmXk5eXh5ptvxrRp0/psV1tbi6SkJK9jSUlJaG9vx8WLF/ttU1tb2+d5N2zYAKvVqr7S0tL8vRUi1HzVjItXHDj9j/pQXwoRDRFZltHsbB/ylyxr78n9+te/jrFjx2Lv3r3qsb179yItLQ0ZGRnqscOHD+Pmm29GfHw8Ro4cicWLF+Pzzz9Xv/73v/8dkiRh7969uOWWWxAbG4vp06ejsrJSbdN9SKi7Dz74AAsWLMCoUaNgtVrxjW98Ax9++KHme9LK78JxjzzyCP74xz/i+PHjA7btvpxJeViex3tr098yqPz8fOTl5anv7XY7Qwv5rbXN1fnf9o4B/+wRkT60tHVgynNvD/n3/ctLtyE2SvuP34ceegi7d+/GfffdBwB488038d3vfhdHjx5V2zQ1NSEvLw/XXXcdmpqa8Nxzz+Fb3/oWqqurYTK5+yieeeYZbNq0CePHj8czzzyD73znOzh79iwiIga+rsuXL+PBBx/E1q1bAQCvvPIKFi1ahDNnzmD48OGa78tXfgWWRx99FAcPHkRFRQXGjBnTb9vk5OQePSV1dXWIiIhQqw321aZ7r4sni8UCi8Xiz+UT9dDa1gEAkGXA2eGCJWLwG3UREQVSbm4u8vPz1V6SP/zhDyguLvYKLPfee6/XZ3bt2oXExET85S9/8RoNefLJJ3HHHXcAAF588UVMnToVZ8+exaRJkwa8jm9+85te73/2s59hxIgRKC8vx+LFiwdxh/3TFFhkWcajjz6Kffv24ejRoxg3btyAn8nOzsZvf/tbr2PvvPMOZsyYgcjISLVNWVkZnnjiCa82s2fP1nJ5RH5TAkvnrxlYiIwgJtKMv7x0W0i+rz9GjRqFO+64A7/4xS8gyzLuuOMOjBo1yqvN559/jmeffRbvv/8+Ll68CJers/e4pqbGK7Bcf/316q+V/X3q6up8Cix1dXV47rnn8O677+LLL79ER0cHmpubUVNT49d9+UpTYFm7di1+/etf48CBAxg+fLjaK2K1WtW9AvLz83HhwgXs2bMHALB69Wps27YNeXl5+N73vofKykrs2rULRUVF6nnXrVuHuXPnYuPGjbjrrrtw4MABHDlyxKfhJqJAUIaEAMDR1gHERIbwaohoKEiS5NfQTCh997vfxSOPPAIA2L59e4+vL1myBGlpafj5z3+O1NRUuFwuTJs2DU6n06ud0mEAuKdkKOFmICtWrMC//vUvFBQUID09HRaLBdnZ2T2+R6BpmnT7xhtvoLGxEfPmzUNKSor6KikpUdvYbDavlDVu3DgcOnQIR48exQ033ICf/OQn2Lp1q1e31ezZs1FcXIzdu3fj+uuvR2FhIUpKSjBr1qwA3CLRwDx7WFo8fk1EJJLbb78dTqcTTqcTt93m3Tt06dIl/PWvf8X69esxf/58TJ48GfX1gV9IcOzYMTz22GNYtGgRpk6dCovFoi6iCSbNQ0IDKSws7HHMlxnES5cuxdKlS7VcDlHAdB8SIiISkdlsxl//+lf1155GjBiBkSNHYufOnUhJSUFNTQ1+/OMfB/wavva1r+GXv/wlZsyYAbvdjh/+8IfqKEswcS8hInQPLOxhISJxxcXFIS4ursdxk8mE4uJinD59GtOmTcMTTzyB//qv/wr493/zzTdRX1+PjIwM5Obm4rHHHhuSui2S7M+CcAHZ7XZYrVY0Njb2+iCJ+rOj/HO8/PtPAAAlD2dh1jUjQ3xFRBRIra2tOHfuHMaNG4fo6OhQX47h9Pf77+vPb/awEAFocXIOCxGRyBhYiNBZME79NeewEBEJh4GFCIDDc1lzO3tYiIhEw8BCBE66JTIKnUzbDDuB+H1nYCEClzUT6Z1SKK25uTnEV2JMyu+7Z8E6rcKrxB9RkLSwcByRrpnNZsTHx6Ourg4AEBsby01Oh4Asy2hubkZdXR3i4+N71I7RgoGFCN69KhwSItKn5ORkAFBDCw2d+Ph49fffXwwsROCQEJERSJKElJQUJCYmoq2tLdSXYxiRkZGD6llRMLAQAWhtZw8LkVGYzeaA/AClocVJt0QAWp1cJUREJDIGFiJ0LxzHwEJEJBoGFiJwDgsRkegYWIjQbZUQK90SEQmHgYUIrHRLRCQ6BhYyPJdLhsNjlVALh4SIiITDwEKG5xlWAMDBHhYiIuEwsJDhdR8C4pAQEZF4GFjI8LpPsuUqISIi8TCwkOF1DyhcJUREJB4GFjK8FmdHv++JiCj0GFjI8JQeldiozr1FHO0uyLIcyksiIqJuGFjI8JRJtvExkeqx7iuHiIgotBhYyPAcXXNY4jwCC1cKERGJhYGFDK+lK5wMj45ApFnyOkZERGJgYCHDU3pToiPNiI4wdx3jkBARkUgYWMjwlHBiiTDDEqkEFvawEBGJhIGFDM/dw2JCdKTJ6xgREYmBgYUMT1nWHB1pRnQkh4SIiETEwEKG19pVKC4m0owYDgkREQlJc2CpqKjAkiVLkJqaCkmSsH///n7br1ixApIk9XhNnTpVbVNYWNhrm9bWVs03RKRVa1fNFQ4JERGJS3NgaWpqwvTp07Ft2zaf2m/ZsgU2m019nT9/HgkJCfj2t7/t1S4uLs6rnc1mQ3R0tNbLI9LMa5WQ0sPC/YSIiIQSofUDCxcuxMKFC31ub7VaYbVa1ff79+9HfX09HnroIa92kiQhOTlZ6+UQDZpnYLFwWTMRkZCGfA7Lrl27cOuttyI9Pd3r+JUrV5Ceno4xY8Zg8eLFqKqq6vc8DocDdrvd60Xkj5Y2ZUjIrA4JcQNEIiKxDGlgsdls+P3vf49Vq1Z5HZ80aRIKCwtx8OBBFBUVITo6GjfddBPOnDnT57k2bNig9t5YrVakpaUF+/JJpzyXNcdwSIiISEhDGlgKCwsRHx+Pu+++2+t4VlYW7r//fkyfPh1z5szBW2+9hQkTJuC1117r81z5+flobGxUX+fPnw/y1ZNeqYElgsuaiYhEpXkOi79kWcabb76J3NxcREVF9dvWZDJh5syZ/fawWCwWWCyWQF8mGZCjlyEhB1cJEREJZch6WMrLy3H27FmsXLlywLayLKO6uhopKSlDcGVkdO7CcSaPHhYGFiIikWjuYbly5QrOnj2rvj937hyqq6uRkJCAsWPHIj8/HxcuXMCePXu8Prdr1y7MmjUL06ZN63HOF198EVlZWRg/fjzsdju2bt2K6upqbN++3Y9bItKmxaNwnBJYuFszEZFYNAeWU6dO4ZZbblHf5+XlAQAefPBBFBYWwmazoaamxuszjY2NKC0txZYtW3o9Z0NDAx5++GHU1tbCarUiIyMDFRUVuPHGG7VeHpFmSg+LhaX5iYiEpTmwzJs3D7Is9/n1wsLCHsesViuam5v7/MzmzZuxefNmrZdCFBCtbax0S0QkOu4lRIbnVelWKRzXzh4WIiKRMLCQ4SmrhGK8hoTYw0JEJBIGFjK0DpcMZ4d7WXNMFIeEiIhExMBChuYZTKIjTe4hIQYWIiKhMLCQoXkFlggzLFwlREQkJAYWMjRlcm2U2QSTSeIqISIiQTGwkKEpReOUoBLDwnFEREJiYCFD81zS7PlfB4eEiIiEwsBChuZo7z2wODtc6HD1XSCRiIiGFgMLGZpnlVvP/wLuMENERKHHwEKG1mNIqGtZc+fXOCxERCQKBhYytJZugcVkkhAVYfL6GhERhR4DCxmae0jI3bMSHcGlzUREomFgIUNTh4Qi3H8VuJ8QEZF4GFjI0LrPYfH8NeewEBGJg4GFDE0JLDFegYVDQkREomFgIUPrvqwZcIcXBhYiInEwsJCh9TYkxA0QiYjEw8BChtbaVRzO0uscFvawEBGJgoGFDK23ISF1WTMr3RIRCYOBhQytpZdJtzFRXTs2OxlYiIhEwcBChubobVlzV3l+RzvnsBARiYKBhQyt1yEhLmsmIhIOAwsZmrvSLSfdEhGJjIGFDE2ZWBsdxWXNREQiY2AhQ1Mm1nr2sCgTcLlbMxGROBhYyNA4h4WIKDwwsJChOdq5+SERUThgYCFDc/ew9Nz80MHCcUREwmBgIUPrrXCcMp+FheOIiMTBwEKG1dbhQodLBtBtDkvXiiGW5iciEofmwFJRUYElS5YgNTUVkiRh//79/bY/evQoJEnq8frkk0+82pWWlmLKlCmwWCyYMmUK9u3bp/XSiDTxnFTbW6VbzmEhIhKH5sDS1NSE6dOnY9u2bZo+9+mnn8Jms6mv8ePHq1+rrKzE8uXLkZubi48++gi5ublYtmwZTp48qfXyiHzmGUgsEVwlREQksgitH1i4cCEWLlyo+RslJiYiPj6+168VFBRgwYIFyM/PBwDk5+ejvLwcBQUFKCoq0vy9iHyhVrmNNEGSJPU4VwkREYlnyOawZGRkICUlBfPnz8d7773n9bXKykrk5OR4Hbvttttw4sSJPs/ncDhgt9u9XkRatPay8SHgnoDLHhYiInEEPbCkpKRg586dKC0txd69ezFx4kTMnz8fFRUVapva2lokJSV5fS4pKQm1tbV9nnfDhg2wWq3qKy0tLWj3QPqkLmmO8A4s3EuIiEg8moeEtJo4cSImTpyovs/Ozsb58+exadMmzJ07Vz3u2SUPALIs9zjmKT8/H3l5eep7u93O0EKaqPsIRXrnduV9u0tGe4cLEWYupiMiCrWQ/EuclZWFM2fOqO+Tk5N79KbU1dX16HXxZLFYEBcX5/Ui0qKvISHP963tnMdCRCSCkASWqqoqpKSkqO+zs7NRVlbm1eadd97B7Nmzh/rSyEDUjQ+7BRbPFUMsHkdEJAbNQ0JXrlzB2bNn1ffnzp1DdXU1EhISMHbsWOTn5+PChQvYs2cPgM4VQFdffTWmTp0Kp9OJX/3qVygtLUVpaal6jnXr1mHu3LnYuHEj7rrrLhw4cABHjhzB8ePHA3CLRL1Tek+6DwlJkoToSBNa21ycx0JEJAjNgeXUqVO45ZZb1PfKPJIHH3wQhYWFsNlsqKmpUb/udDrx5JNP4sKFC4iJicHUqVPxu9/9DosWLVLbzJ49G8XFxVi/fj2effZZXHvttSgpKcGsWbMGc29E/eprSEg51trm4n5CRESC0BxY5s2bB1mW+/x6YWGh1/unnnoKTz311IDnXbp0KZYuXar1coj85lACS0QvgSXCDKCNtViIiATB5Q9kWO6dmnv+NWC1WyIisTCwkGGpOzVH9T4k5NmGiIhCi4GFDEvpPbH0NiTE8vxEREJhYCHDcg8J9RZYOCRERCQSBhYyrL4q3XYeY3l+IiKRMLCQYbV2FYWL6a2HJYKBhYhIJAwsZFjuHpaegUWZiMs5LEREYmBgIcPismYiovDBwEKG1V+lW2XlUCsr3RIRCYGBhQyLy5qJiMIHAwsZVktXGOm9cJypqw17WIiIRMDAQobl3kuo51+DGC5rJiISCgMLGdZAuzUDgINDQkREQmBgIcNqbWelWyKicMHAQoalhJFeC8dFcpUQEZFIGFjIkGRZVifU9leav8XJwEJEJAIGFjIkZ4cLstz5a0t/PSycw0JEJAQGFjIkzyDSaw9L18ohDgkREYmBgYUMSVnSLElAlLnvISGuEiIiEgMDCxlSi8eEW0mSenxdncPCVUJEREJgYCFDcm982HP+CsDCcUREomFgIUNq7afKLeBdh0VWZucSEVHIMLCQIfVX5RZwrxxyyUBbBwMLEVGoMbCQIfVX5bbzuMmjLYeFiIhCjYGFDEkpCNfbkmagc+WQMhe3lcXjiIhCjoGFDMnR3v+QkCRJHhNvubSZiCjUGFjIkAaaw+L5NQ4JERGFHgMLGZJ7WXPffwXUardc2kxEFHIMLGRILRp6WLgBIhFR6DGwkCFpGxLiHBYiolBjYCFDUoeEIvoLLBwSIiIShebAUlFRgSVLliA1NRWSJGH//v39tt+7dy8WLFiA0aNHIy4uDtnZ2Xj77be92hQWFkKSpB6v1tZWrZdH5BN3D0s/c1hYnp+ISBiaA0tTUxOmT5+Obdu2+dS+oqICCxYswKFDh3D69GnccsstWLJkCaqqqrzaxcXFwWazeb2io6O1Xh6RTwZa1uz5Ne7YTEQUehFaP7Bw4UIsXLjQ5/YFBQVe73/605/iwIED+O1vf4uMjAz1uCRJSE5O1no5RH5RJtLG9BtYOvM8d2wmIgq9IZ/D4nK5cPnyZSQkJHgdv3LlCtLT0zFmzBgsXry4Rw9Mdw6HA3a73etF5CufljVzSIiISBhDHlheeeUVNDU1YdmyZeqxSZMmobCwEAcPHkRRURGio6Nx00034cyZM32eZ8OGDbBareorLS1tKC6fdEIpBmfxZZUQh4SIiEJuSANLUVERXnjhBZSUlCAxMVE9npWVhfvvvx/Tp0/HnDlz8NZbb2HChAl47bXX+jxXfn4+Ghsb1df58+eH4hZIJ3xa1hzBSrdERKLQPIfFXyUlJVi5ciV+85vf4NZbb+23rclkwsyZM/vtYbFYLLBYLIG+TDIIpdfElzksHBIiIgq9IelhKSoqwooVK/DrX/8ad9xxx4DtZVlGdXU1UlJShuDqyIi4rJmIKLxo7mG5cuUKzp49q74/d+4cqqurkZCQgLFjxyI/Px8XLlzAnj17AHSGlQceeABbtmxBVlYWamtrAQAxMTGwWq0AgBdffBFZWVkYP3487HY7tm7diurqamzfvj0Q90jUgy9DQtytmYhIHJp7WE6dOoWMjAx1SXJeXh4yMjLw3HPPAQBsNhtqamrU9j/72c/Q3t6OtWvXIiUlRX2tW7dObdPQ0ICHH34YkydPRk5ODi5cuICKigrceOONg70/ol6x0i0RUXjR3MMyb948yLLc59cLCwu93h89enTAc27evBmbN2/WeilEfmttH3hIyMIhISIiYXAvITIkpXCcT7s1M7AQEYUcAwsZjizLcLQrheM4h4WIKBwwsJDhKGEFGGiVEOewEBGJgoGFDMczgPi0+WE7e1iIiEKNgYUMRxniiTBJiDT308MSwUm3RESiYGAhw2nxoQZL59e5WzMRkSgYWMhwfKly2/l19rAQEYmCgYUMRwkgln6KxgHeuzX3V3uIiIiCj4GFDEetcjtgD4v765x4S0QUWgwsZDhKD0tMlG89LJ6fISKi0GBgIcNR57AMMCQUaTbBbJK6PsMeFiKiUGJgIcNx7yPUf2ABPKvdsoeFiCiUGFjIcHydw+LZRgk5REQUGgwsZDitPtZhAdwriTgkREQUWgwsZDi+Fo7rbNNVPM7JHhYiolBiYCHD0TIkpKwk4pAQEVFoMbCQ4Th8XCXk2cbBSbdERCHFwEKGo2UOi2e1WyIiCh0GFjKcFh8LxwHcAJGISBQMLGQ4Sm+JJWLgP/4W1mEhIhICAwsZjpYhoRgOCRERCYGBhQyntV1ZJeT7kBB7WIiIQouBhQzH3cPiQ6XbCC5rJiISAQMLGY66W7OWVUIsHEdEFFIMLGQ42pY1K0NCnMNCRBRKDCxkONo2P+SQEBGRCBhYyHCUHhaLL5VuuayZiEgIDCxkOK2aCsdxWTMRkQgYWMhw3ENCrHRLRBQuGFjIUDpcMpwdXYHFh0q3ykoibn5IRBRaDCxkKA6PybPc/JCIKHxoDiwVFRVYsmQJUlNTIUkS9u/fP+BnysvLkZmZiejoaFxzzTXYsWNHjzalpaWYMmUKLBYLpkyZgn379mm9NKIBeQYPTcuauUqIiCikNAeWpqYmTJ8+Hdu2bfOp/blz57Bo0SLMmTMHVVVVePrpp/HYY4+htLRUbVNZWYnly5cjNzcXH330EXJzc7Fs2TKcPHlS6+UR9UuZixJlNsFskgZsr6wkamHhOCKikIrQ+oGFCxdi4cKFPrffsWMHxo4di4KCAgDA5MmTcerUKWzatAn33nsvAKCgoAALFixAfn4+ACA/Px/l5eUoKChAUVGR1ksk6pO6pNmHGiyA/pc1tzg7fFotRUQUakGfw1JZWYmcnByvY7fddhtOnTqFtra2ftucOHGiz/M6HA7Y7XavF9FAtFS5BdxLn5UNE/XkjaOf47oX3sbJv10K9aUQEQ0o6IGltrYWSUlJXseSkpLQ3t6Oixcv9tumtra2z/Nu2LABVqtVfaWlpQX+4kl3tFS5BdwriZztLrhcctCuKxROnruEdpeMD2saQn0pREQDGpJVQpLkPVdAluUex3tr0/2Yp/z8fDQ2Nqqv8+fPB/CKSa8cGjY+BLx7Yhw662VpaO7s4WxocYb4SoiIBqZ5DotWycnJPXpK6urqEBERgZEjR/bbpnuviyeLxQKLxRL4CyZda9E4JOTZrqVNX/M9Gpo7g0pDU1uIr4SIaGBB72HJzs5GWVmZ17F33nkHM2bMQGRkZL9tZs+eHezLI4NRh4R82EcIAMwmCVFmZcdmfU28bWhhDwsRhQ/NPSxXrlzB2bNn1ffnzp1DdXU1EhISMHbsWOTn5+PChQvYs2cPAGD16tXYtm0b8vLy8L3vfQ+VlZXYtWuX1+qfdevWYe7cudi4cSPuuusuHDhwAEeOHMHx48cDcItEblpXCSltnR0uXQUWl0tGY1dgqW9mDwsRiU9zD8upU6eQkZGBjIwMAEBeXh4yMjLw3HPPAQBsNhtqamrU9uPGjcOhQ4dw9OhR3HDDDfjJT36CrVu3qkuaAWD27NkoLi7G7t27cf3116OwsBAlJSWYNWvWYO+PyItSAM7XISHPtnqqdmtvbUPXVDI0MrAQURjQ3MMyb948ddJsbwoLC3sc+8Y3voEPP/yw3/MuXboUS5cu1Xo5RJooBeB8nXQL6HMDxAaPkMIhISIKB9xLiAxFWenj67JmwD3fRU8bINY3Oz1+3dbv/4QQEYmAgYUMRWvhOMCzeJx+Aosy4RborDGjp+EuItInBhYyFH8Ci9LDoqcf6g3N3sNA9c0cFiIisTGwkKG4K936HliUFUV6WiXU0G2ibff3RESiYWAhQ3EXjtMwh6Ur3Ohp0m33pczde1yIiETDwEKGog4J+Vg4DtDnsubGbgHFc04LEZGIGFjIUPwZEorR45BQC4eEiCi8MLCQoTja/R8S0tey5s6AEmmWut5zSIiIxMbAQobSqnG3ZsBjSEhHuzUrQ0JpCbGd7zkkRESCY2AhQ9G6WzMAREd0Vbp16q+HZdzIYZ3vm9jDQkRiY2AhQ1HmsGjZ/DBaKRynoyEhZVVQeldg4aRbIhIdAwsZyqAKx+lkSKi9wwV7azsAYNyoziEhLmsmItExsJChqKuE/FrWrI8eFiWsAB49LFwlRESCY2AhQ1En3UZp361ZL4FF6U0ZbonAyKuiAPQsJEdEJBoGFjKU1kFUutVLYFHCSfywSIyI7QwsjS1O7thMREJjYCHDaO9wod3V+UNZy5BQjM4q3Ta2dPawxMdEIT42EgDQ1iGjWUeroIhIfxhYyDA8J80aefPD+qauHpbYSMREmhHVtWybxeOISGQMLGQYnoHDEuHHkFC7PgKLsoQ5PjYKkiQhPqazl4UTb4lIZAwsZBhK4TdLhAkmk+Tz55ThoxanPoaElEm3SlBRhoUYWIhIZAwsZBjufYR8Hw7qbN/510QvewkpwWRErBJYOifeNrRwSIiIxMXAQobh3qlZ2x97ZQm03oaErF1BRelp4dJmIhIZAwsZhj9VbgH3kFBbh4z2jvAfFlKGhJQeFnVpMyfdEpHAGFjIMFr82KkZ8A44eijPrwwJxcdyDgsRhQ8GFjIM98aH2gKL54oiPSxtVpYvK3NXlP9ySIiIRMbAQoahDglpWNIMACaTpIYWPQSWRqWHpdsqoUZOuiUigTGwkGH4O4fF8zPhXu22rcOFy47OzQ/jOemWiMIIAwsZhjL/ROscFkA/GyA2trhDiTWm27JmTrolIoExsJBhtDq1b3yo0MsGiMrE2rjoCJi7iudx0i0RhQMGFjKMQQ0JRehjSEhd0jwsSj02Qi0c18Ydm4lIWAwsZBitfla6BYDoKH31sCjzVgB3D0uHS1bntxARiYaBhQzDvazZjyEhZZVQmFe77b6kGegMcMowWSOHhYhIUH4Fltdffx3jxo1DdHQ0MjMzcezYsT7brlixApIk9XhNnTpVbVNYWNhrm9bWVn8uj6hXrX4WjgP0s0qoscW7aJwiPkaZeMvAQkRi0hxYSkpK8Pjjj+OZZ55BVVUV5syZg4ULF6KmpqbX9lu2bIHNZlNf58+fR0JCAr797W97tYuLi/NqZ7PZEB0d7d9dEfWiZVDLmk1e5whX9WpZ/iiv40qAqedKISISlObA8uqrr2LlypVYtWoVJk+ejIKCAqSlpeGNN97otb3VakVycrL6OnXqFOrr6/HQQw95tZMkyatdcnKyf3dE1AeHsvmhxsJxgDvkhPuOzUoPijWmWw+LslKohT0sRCQmTf9yO51OnD59Gjk5OV7Hc3JycOLECZ/OsWvXLtx6661IT0/3On7lyhWkp6djzJgxWLx4Maqqqvo9j8PhgN1u93oR9Wcwq4RidLasue8hIfawEJGYNAWWixcvoqOjA0lJSV7Hk5KSUFtbO+DnbTYbfv/732PVqlVexydNmoTCwkIcPHgQRUVFiI6Oxk033YQzZ870ea4NGzbAarWqr7S0NC23QgakTJiNiTLuHJaGlt6HhEYMYy0WIhKbX5NuJUnyei/Lco9jvSksLER8fDzuvvtur+NZWVm4//77MX36dMyZMwdvvfUWJkyYgNdee63Pc+Xn56OxsVF9nT9/3p9bIQNp6SocZ4nQHlgsOpnDog4JdethscYoGyCyh4WIxBShpfGoUaNgNpt79KbU1dX16HXpTpZlvPnmm8jNzUVUVFS/bU0mE2bOnNlvD4vFYoHFYvH94snwlN4RvyrdRuhrSKhHD4uyASJ7WIhIUJr+5Y6KikJmZibKysq8jpeVlWH27Nn9fra8vBxnz57FypUrB/w+siyjuroaKSkpWi6PqF+DKRwXE6WTISGlDksfk27Zw0JEotLUwwIAeXl5yM3NxYwZM5CdnY2dO3eipqYGq1evBtA5VHPhwgXs2bPH63O7du3CrFmzMG3atB7nfPHFF5GVlYXx48fDbrdj69atqK6uxvbt2/28LaKe1FVCfpXmD//Ccc52F5q6hsV6Lmt2l+cnIhKR5sCyfPlyXLp0CS+99BJsNhumTZuGQ4cOqat+bDZbj5osjY2NKC0txZYtW3o9Z0NDAx5++GHU1tbCarUiIyMDFRUVuPHGG/24JaLeBaJwXDgva1Ym3EoSMDza+6++0uPCISEiEpXmwAIAa9aswZo1a3r9WmFhYY9jVqsVzc3NfZ5v8+bN2Lx5sz+XQuQzd+E4/+uwhPOkW88aLCaT9yR5pYeFQ0JEJCruJUSGIMvy4HZr7go54TyHpa8Jt53HunpYWtrgcnHHZiISDwMLGUJbhwzl53C0H8uao3VQOE6ZcNu9yi3gXubskoHLrdyxmYjEw8BChuA5Wdav3Zp1EViUHpaegcUSYUZs10ooZa4LEZFIGFjIEFq7VsdIEmAZxF5CYT0k1BVE4nsZEgLcE2/rOfGWiATEwEKGoBaNizD7VJW5O/cclvDtYanvYx8hhbq0mRNviUhADCxkCO6icf79kdfD5ofqxocxffSweEy8JSISDQMLGcJgVgh5fq61PYyHhJQqt332sHQNCTWxh4WIxMPAQoagDAn5UzQOcK8s6nDJaOsIz9DS4OuQEHtYiEhADCxkCErBN4ufgcVzZVG4Fo9TgshAk24bOOmWiATEwEKG0DqIKrdA58oiZa5uuM5jUYaEelvW3Hmck26JSFwMLGQIamDxo2gcAEiSpH7WEaZLmweadGuN5bJmIhIXAwsZgnunZv//yIfz0ubWtg51KCt+2AA9LJzDQkQCYmAhQ1B+WMdE+dfDAoT3BojKUmWzScJwS+97niqTcTkkREQiYmAhQxjskBAQ3tVulV2Y42Mi+yycNyKWk26JSFwMLGQISsjwd5UQ4C7pH45DQkoIsfYx4RYArF1zW+ytbejgjs1EJBgGFjKEwVa6BdzDSeEcWOJ72alZoeziLMuAnfNYiEgwDCxkCErI8LdwHOAeTgrHarfuJc29rxACgKgIE67qmt/CibdEJBoGFjKEwZbm7/xs15CQMwx7WFoGHhIC3L0s9Zx4S0SCYWAhQ2gNyLJmpYcl/AJLvQ89LAAwomvJcyMn3hKRYBhYyBAC0cMSzjs2N/owh6Xz652Bhj0sRCQaBhYyhEAsa7boYVnzsP57WOK5tJmIBMXAQoagDgkNqnBc+C9rHrCHhcXjiEhQDCxkCC1qD8vg57CEY6VbNbAMMOlWGRLiKiEiEg0DCxlCQFYJRYTvkFBDi2+TbjkkRESiYmAhQ3C0K6uEBjHpNqrzr4sjjHtYrAMOCXHSLRGJiYGFDCEghePCdFlzi7NDDWwjBph0q+wn1MghISISDAMLGYI6h2UwdVi6hoRawqxwnDIcFGGSMGyAScfKkBB7WIhINAwsZAiBmMNiUVcJhdcclvomZcJtVJ87NSuUISHOYSEi0TCwkO7JsuyxW7PxKt0qPSwDrRAC3MueL7e2o70jvIIZEekbAwvpnsNjs8LAVLoNrx/kvtZgAbwn5XIeCxGJhIGFdM/hETACMek23FYJuWuw9D/hFgAizCYMj+aOzUQkHr8Cy+uvv45x48YhOjoamZmZOHbsWJ9tjx49CkmSerw++eQTr3alpaWYMmUKLBYLpkyZgn379vlzaUQ9KBNuzSYJkebBDAmZvM4XLrQMCXm2Y7VbIhKJ5n+9S0pK8Pjjj+OZZ55BVVUV5syZg4ULF6Kmpqbfz3366aew2Wzqa/z48erXKisrsXz5cuTm5uKjjz5Cbm4uli1bhpMnT2q/I6JuWgNQ5RbwmMMSboGlq4dlhI+BZQQn3hKRgDT/C/7qq69i5cqVWLVqFSZPnoyCggKkpaXhjTfe6PdziYmJSE5OVl9ms7trvqCgAAsWLEB+fj4mTZqE/Px8zJ8/HwUFBZpviKg7ZZLsYOavAOE8h0XpYRl4SAhwz2OpZ2AhIoFoCixOpxOnT59GTk6O1/GcnBycOHGi389mZGQgJSUF8+fPx3vvvef1tcrKyh7nvO222/o9p8PhgN1u93oR9Ubd+HCQgUVd1tzeAVmWB31dQ6Xex32EFO4eFg4JEZE4NAWWixcvoqOjA0lJSV7Hk5KSUFtb2+tnUlJSsHPnTpSWlmLv3r2YOHEi5s+fj4qKCrVNbW2tpnMCwIYNG2C1WtVXWlqallshA1EKvQ2maFzn5zsDjyx7rzwSXaO6Ssi3HhbuJ0REIorw50Pdi0/JstxnQaqJEydi4sSJ6vvs7GycP38emzZtwty5c/06JwDk5+cjLy9PfW+32xlaqFeBGhJSKt0CnSuPBnu+oaJUrfV1DotaPK6FPSxEJA5N/8s5atQomM3mHj0fdXV1PXpI+pOVlYUzZ86o75OTkzWf02KxIC4uzutF1BtHAKrcAkCkWYKpK0OHU/E4ZXmy1dfAwjksRCQgTYElKioKmZmZKCsr8zpeVlaG2bNn+3yeqqoqpKSkqO+zs7N7nPOdd97RdE6ivrjnsAxuSEiSJI+Jt+ERWGRZdg8J+TjpVhkSamRgISKBaB4SysvLQ25uLmbMmIHs7Gzs3LkTNTU1WL16NYDOoZoLFy5gz549ADpXAF199dWYOnUqnE4nfvWrX6G0tBSlpaXqOdetW4e5c+di48aNuOuuu3DgwAEcOXIEx48fD9BtkpEFYqdmRXSkGU3OjrBZKdTs7ICzq8S+5mXNHBIiIoFoDizLly/HpUuX8NJLL8Fms2HatGk4dOgQ0tPTAQA2m82rJovT6cSTTz6JCxcuICYmBlOnTsXvfvc7LFq0SG0ze/ZsFBcXY/369Xj22Wdx7bXXoqSkBLNmzQrALZLRKYXeLAEKLJ7nFJ0yHBRlNvkc2JShI2XTRCIiEfg16XbNmjVYs2ZNr18rLCz0ev/UU0/hqaeeGvCcS5cuxdKlS/25HKJ+qUNCEYMPLO4dm8MjsNQ3uavcDrRTs0LpYeFeQkQkEu4lRLqnVrod5BwWwB16wiWwKKHD1xosgHvS7RVHO5xhtHybiPSNgYV0L1DLmgEgJiq8qt3Wa6xyCwBxMZFQOmPYy0JEomBgId1TdmsOzKTbzr8yjjBZ1qzu1Bzjew+L2SQhLpobIBKRWBhYSPcCVekWcA8JKecUnXsfId8Di2f7BvawEJEgGFhI9wI5JBRuOza7d2r2fUgIcA8hKZN2iYhCjYGFdK81CMuaW8NkMqrWKrcKZQiJPSxEJAoGFtK91iDMYQmfHhZlHyFtPSwjWO2WiATDwEK61xLIZc3hVjjOj0m3gMeQECfdEpEgGFhI99TNDwNQOE5dJaTjZc2d7TkkRERiYWAh3XNvfhiAwGKAwnGAxxwW9rAQkSAYWEj33KuEBv/H3V04TvzAIsuye0hI87Lmrg0QOYeFiATBwEK65y7NH4i9hMKn0u0VRzvaXTIAf5Y1d22AyMBCRIJgYCHdcxeOC8SQUOdfmXCYdKv0jlgiTJrvXelhaeSQEBEJgoGFdE+pmRLIVULhMCTkb9G4zs9w0i0RiYWBhXTN5ZLVHYcDWuk2DArHNbT4V5YfAOJjOkNOs7MjbPZNIiJ9Y2AhXXN4BItAFI5TzuEIgx6Wej8n3ALA8OgImJQdmzmPhYgEwMBCuuY51yQwPSzhM4dFmX+i9JZoYTJJsMZw4i0RiYOBhXRNmWsSaZZgVroMBiGc5rAMpoel83PK0mZOvCWi0GNgIV1rDWCVW8BzL6EwmMOiBhbtPSydn2MPCxGJg4GFdE0JFoHYqRkIrx6WwUy6BdzVbhtb2MNCRKHHwEK6plS5jYkKzB91JbA42l1wdRVlE5V7WbN/gWWEugEie1iIKPQYWEjXWp2BHhJyn8ch+NJmZe6J1Y9JtwBgVWqxMLAQkQAYWEjX3PsIBSiwRLj/yog+LBSoHhYOCRGRCBhYSNfcOzUH5o96hNmEiK7VRq2CF1RraAnQpNsm9rAQUegxsJCuBXLjQ0VMGGyA6HLJ6pCQvz0s6rJm9rAQkQAYWEjX3D0sgQssljBYKXTZ0Q5lTnBczOBWCXEOCxGJgIGFdK0lCD0s4VDtVimnHxNp9vve4znplogEwsBCuuYuHBe4P+rhUIulfpDDQZ2fVZY1c0iIiEKPgYV0zRHEOSwOgeewKBNurX5OuO38bGfYcbS7hA5nRGQMDCyka61dtVJiogI/JCTyD/HBTrgFgOGWCHX/JfayEFGoMbCQrrU4gzckJPIcloZBbnwIAJIkceItEQnDr3/FX3/9dYwbNw7R0dHIzMzEsWPH+my7d+9eLFiwAKNHj0ZcXByys7Px9ttve7UpLCyEJEk9Xq2trf5cHpFK6QUJ1F5CAGCJEH9Zs9Ij4m8NFgUn3hKRKDQHlpKSEjz++ON45plnUFVVhTlz5mDhwoWoqanptX1FRQUWLFiAQ4cO4fTp07jllluwZMkSVFVVebWLi4uDzWbzekVHR/t3V0RdlCGhYKwSEntIqKuHxc8lzQq1FguHhIgoxCK0fuDVV1/FypUrsWrVKgBAQUEB3n77bbzxxhvYsGFDj/YFBQVe73/605/iwIED+O1vf4uMjAz1uCRJSE5O1no5RP1yF44L3JCQWjhO4Eq3Dc2D26lZoQ4JtbCHhYhCS9O/4k6nE6dPn0ZOTo7X8ZycHJw4ccKnc7hcLly+fBkJCQlex69cuYL09HSMGTMGixcv7tED053D4YDdbvd6EXWnBJaYgPawiD8kNNiy/Ip4Lm0mIkFoCiwXL15ER0cHkpKSvI4nJSWhtrbWp3O88soraGpqwrJly9RjkyZNQmFhIQ4ePIiioiJER0fjpptuwpkzZ/o8z4YNG2C1WtVXWlqallshgwhGaX5jDQl1fr6Rc1iIKMT86ieXJMnrvSzLPY71pqioCC+88AJKSkqQmJioHs/KysL999+P6dOnY86cOXjrrbcwYcIEvPbaa32eKz8/H42Njerr/Pnz/twK6VygNz/sPJf4hePUZc3DBtfDoiyLZg8LEYWapjkso0aNgtls7tGbUldX16PXpbuSkhKsXLkSv/nNb3Drrbf229ZkMmHmzJn99rBYLBZYLBbfL54MyV3pNhhDQgIHlpbA9LBY1Um37GEhotDS9L+dUVFRyMzMRFlZmdfxsrIyzJ49u8/PFRUVYcWKFfj1r3+NO+64Y8DvI8syqqurkZKSouXyiHpQJsZGB7RwnNhzWDpcMhoDNIdF6WHhpFsiCjXNq4Ty8vKQm5uLGTNmIDs7Gzt37kRNTQ1Wr14NoHOo5sKFC9izZw+AzrDywAMPYMuWLcjKylJ7Z2JiYmC1WgEAL774IrKysjB+/HjY7XZs3boV1dXV2L59e6Dukwyqxdk1JBTQHhaxNz+83NoGuWunZutg57DEcFkzEYlBc2BZvnw5Ll26hJdeegk2mw3Tpk3DoUOHkJ6eDgCw2WxeNVl+9rOfob29HWvXrsXatWvV4w8++CAKCwsBAA0NDXj44YdRW1sLq9WKjIwMVFRU4MYbbxzk7ZHROYKwrDk6Quwhofqu4ZthUWZEDbLCLwvHEZEoNAcWAFizZg3WrFnT69eUEKI4evTogOfbvHkzNm/e7M+lEPVLHRIKwrJmUTc/bAhQldvOc7gDi6+T64mIgoF7CZFudbhktHV0jo0EdLfmqK5lzYIWjnPXYBnccFDnOTpDj7PDJewQGBEZAwML6ZbnkE1AC8cJPiTk3ql58D0sw6LMiDQrOzZzWIiIQoeBhXTLs0fAEsDdmi2C79aszDexBqCHRZIkWDnxlogEwMBCuqX0gERFmGAyBW7uhbvSrZhzWJSekBEBCCye5+HEWyIKJQYW0i21ym0Ae1cA8QvHNSqTbmMGPyQEcKUQEYmBgYV0S934MIBF4wD3fBhRVwkpPSyBmHTbeZ6uIaEWDgkRUegwsJBuBWPjQ8/zOTtc6HDJAT13IARqp2aFUt6fPSxEFEoMLKRb7iGhQAcW918bEYeF3ENCgephUQILe1iIKHQYWEi3WoNQ5RbwDkAiBhZ10u2wwA4JcVkzEYUSAwvpllLYzRLgISGTSUKUWSkeJ948FqUnxMpJt0SkIwwspFvKkFAgi8Yp3Eubxephae9wwd7aDiCQy5pZh4WIQo+BhXSrJUhDQp3n7Coe5xQrsChhBRj8Ts0KddJtC3tYiCh0GFhItxxBWiXkeU6HYPsJ1Xf1ggyPjkCEOTB/vePZw0JEAmBgId1SJ90GeJUQIG6124YA12DxPJeyYzMRUSgwsJBuqcuagzAkFCNotdvGlsBWuQXcgaXdJaNJsCEwIjIOBhbSLbWHJcCVbgH3yiPReljqmwLfwxITaUZU1/YG9U0cFiKi0GBgId1qCeqQkJg7Nge6yi3QuWOzMvG2kRNviShEGFhIt9xDQkEILBFiLmtWJsYGakmzYoRaPI49LEQUGgwspFtK4bhgLmsWL7B09bAEaEmzwsricUQUYgwspFvKsuZgFI5Td2wWrNKt0gMSyCEhwN1jw6XNRBQqDCykWy1BrcPS+VdHtMJxjS2Bn3QLuFcdsYeFiEKFgYV0K5jLmkUdEnL3sAQ4sMSy2i0RhRYDC+mWEiYCvfmh5zlbBat06y4cF9ghoXhOuiWiEGNgId0yYqXbxiBNulV6WBo5JEREIcLAQrql7tYchMJxIla6betw4bJD2ak5OJNu2cNCRKHCwEK61ToEuzWLFFiUCbeSBMQFelmzMumWc1iIKEQYWEi3jDYkpCw5jouOhNkkBfTcI4axDgsRhRYDC+lWa3swK92K18MSjJ2aFe5lzU64XNyxmYiGHgML6VJbhwsdXT9Yg1E4TtlQUaRVQvVBWiHUec7OEOSSoc6TISIaSgwspEuemxJagjGHpauHRaTCccqQUKBXCAGdvVTKMBhXChFRKDCwkC4pQzWSBFgigjHpVrw5LMGqcqtQh4VauFKIiIaeX/+Sv/766xg3bhyio6ORmZmJY8eO9du+vLwcmZmZiI6OxjXXXIMdO3b0aFNaWoopU6bAYrFgypQp2Ldvnz+XRgQAcHQFCUuECZIU2AmogHtejEOoISFlp+bADwkB7iBUzx4WIgoBzYGlpKQEjz/+OJ555hlUVVVhzpw5WLhwIWpqanptf+7cOSxatAhz5sxBVVUVnn76aTz22GMoLS1V21RWVmL58uXIzc3FRx99hNzcXCxbtgwnT570/87I0FqDuI+Q53lF6mFRJt1agzAkBHiU52ctFiIKgQitH3j11VexcuVKrFq1CgBQUFCAt99+G2+88QY2bNjQo/2OHTswduxYFBQUAAAmT56MU6dOYdOmTbj33nvVcyxYsAD5+fkAgPz8fJSXl6OgoABFRUWaru9CfTPsHZpvi3TmfH0zgOBMuPU8b0tbB/7Z9b1CrbaxFYC7yFugKT03/7jULMw9E1H4u2z37d8TTT/ZnU4nTp8+jR//+Mdex3NycnDixIleP1NZWYmcnByvY7fddht27dqFtrY2REZGorKyEk888USPNkrI6Y3D4YDD4VDf2+32zs8VHIPJEqvltkjHgtfD0tk52eGScfPG94LyPfwVjFVCneftDEKvln2GV8s+C8r3ICLjcTmCEFguXryIjo4OJCUleR1PSkpCbW1tr5+pra3ttX17ezsuXryIlJSUPtv0dU4A2LBhA1588cUex6MiTDAHYZIlhR+TJGHJ9NSgnNsaE4lvTkrEH85eDMr5/ZUUF42sa0YG5dw5U5Nx+E+1aBZoZRQRhb+ODt9+Zvs1dtJ9EqMsy/1ObOytfffjWs+Zn5+PvLw89b3dbkdaWho+fHYB4uLiBr4JokGQJAlvrpgZ6ssYUrdMTETVczkDNyQi0sBut8O6aeB2mgLLqFGjYDabe/R81NXV9eghUSQnJ/faPiIiAiNHjuy3TV/nBACLxQKLxaLl8omIiChMaRo7iYqKQmZmJsrKyryOl5WVYfbs2b1+Jjs7u0f7d955BzNmzEBkZGS/bfo6JxERERmL5iGhvLw85ObmYsaMGcjOzsbOnTtRU1OD1atXA+gcqrlw4QL27NkDAFi9ejW2bduGvLw8fO9730NlZSV27drltfpn3bp1mDt3LjZu3Ii77roLBw4cwJEjR3D8+PEA3SYRERGFM82BZfny5bh06RJeeukl2Gw2TJs2DYcOHUJ6ejoAwGazedVkGTduHA4dOoQnnngC27dvR2pqKrZu3aouaQaA2bNno7i4GOvXr8ezzz6La6+9FiUlJZg1a1YAbpGIiIjCnSQrM2DDnN1uh9VqRWNjIyfdEhERhQlff35z/S8REREJj4GFiIiIhMfAQkRERMJjYCEiIiLhMbAQERGR8BhYiIiISHgMLERERCQ8BhYiIiISHgMLERERCU9zaX5RKQV77XZ7iK+EiIiIfKX83B6o8L5uAsvly5cBAGlpaSG+EiIiItLq8uXLsFqtfX5dN3sJuVwuTJgwAadPn4YkST59ZubMmfjggw98/h7BbG+325GWlobz58/7vBeSSNfvz2f0cM+83/4Z7Z6Ndr+A8e7ZaPcLBP+eZVlGZmYmPvvsM5hMfc9U0U0Pi8lkQlRUVL/prDuz2axpo8RgtweAuLg4nz8j4vUb7Z55v74x2j0b7X4B492z0e4XCO49R0VF9RtWAJ1Nul27dm1Yt9dKxOs32j3zfgNPtHvgMw480e6BzzjwgnFNuhkSCne+bq+tJ0a7Z6PdL2C8ezba/QLGu2ej3S8gzj3rqoclnFksFjz//POwWCyhvpQhY7R7Ntr9Asa7Z6PdL2C8ezba/QLi3DN7WIiIiEh47GEhIiIi4TGwEBERkfAYWIiIiEh4DCxEREQkPAaWAKqoqMCSJUuQmpoKSZKwf/9+r69/+eWXWLFiBVJTUxEbG4vbb78dZ86c8WpTW1uL3NxcJCcnY9iwYfj617+O//mf//Fqc/XVV0OSJK/Xj3/842DfXg+BuN/PP/8c3/rWtzB69GjExcVh2bJl+PLLL73a1NfXIzc3F1arFVarFbm5uWhoaAjy3fVuqO5ZlGe8YcMGzJw5E8OHD0diYiLuvvtufPrpp15tZFnGCy+8gNTUVMTExGDevHn485//7NXG4XDg0UcfxahRozBs2DDceeed+Oc//+nVRoTnPJT3q7dnvHPnTsybNw9xcXGQJKnXZ6enZ+zL/erpGX/11Vd49NFHMXHiRMTGxmLs2LF47LHH0NjY6HWeYD5jBpYAampqwvTp07Ft27YeX5NlGXfffTf+9re/4cCBA6iqqkJ6ejpuvfVWNDU1qe1yc3Px6aef4uDBg/j4449xzz33YPny5aiqqvI630svvQSbzaa+1q9fH/T7626w99vU1IScnBxIkoR3330Xf/jDH+B0OrFkyRK4XC71XP/2b/+G6upqHD58GIcPH0Z1dTVyc3OH7D49DdU9A2I84/Lycqxduxbvv/8+ysrK0N7ejpycHK8/s//5n/+JV199Fdu2bcMHH3yA5ORkLFiwQN3fCwAef/xx7Nu3D8XFxTh+/DiuXLmCxYsXo6OjQ20jwnMeyvsF9PWMm5ubcfvtt+Ppp5/u83vp6Rn7cr+Afp7xF198gS+++AKbNm3Cxx9/jMLCQhw+fBgrV670+l5BfcYyBQUAed++fer7Tz/9VAYg/+lPf1KPtbe3ywkJCfLPf/5z9diwYcPkPXv2eJ0rISFB/u///m/1fXp6urx58+agXbs//Lnft99+WzaZTHJjY6Pa5quvvpIByGVlZbIsy/Jf/vIXGYD8/vvvq20qKytlAPInn3wS5LvqX7DuWZbFfMayLMt1dXUyALm8vFyWZVl2uVxycnKy/PLLL6ttWltbZavVKu/YsUOWZVluaGiQIyMj5eLiYrXNhQsXZJPJJB8+fFiWZXGfc7DuV5b19Yw9vffeezIAub6+3uu4np6xp77uV5b1+4wVb731lhwVFSW3tbXJshz8Z8weliHicDgAANHR0eoxs9mMqKgoHD9+XD128803o6SkBF999RVcLheKi4vhcDgwb948r/Nt3LgRI0eOxA033ID/+I//gNPpHJL78JUv9+twOCBJklcxoujoaJhMJrVNZWUlrFYrZs2apbbJysqC1WrFiRMnhuJWfBaoe1aI+IyV7t+EhAQAwLlz51BbW4ucnBy1jcViwTe+8Q31+Zw+fRptbW1ebVJTUzFt2jS1jajPOVj3q9DLM/aFnp6xFnp+xkrl24iIzm0Jg/2MGViGyKRJk5Ceno78/HzU19fD6XTi5ZdfRm1tLWw2m9qupKQE7e3tGDlyJCwWC77//e9j3759uPbaa9U269atQ3FxMd577z088sgjKCgowJo1a0JxW33y5X6zsrIwbNgw/OhHP0JzczOamprwwx/+EC6XS21TW1uLxMTEHudPTExEbW3tkN7TQAJ1z4CYz1iWZeTl5eHmm2/GtGnTAEB9BklJSV5tk5KS1K/V1tYiKioKI0aM6LeNaM85mPcL6OsZ+0JPz9hXen7Gly5dwk9+8hN8//vfV48F+xnrZrdm0UVGRqK0tBQrV65EQkICzGYzbr31VixcuNCr3fr161FfX48jR45g1KhR2L9/P7797W/j2LFjuO666wAATzzxhNr++uuvx4gRI7B06VI1yYvAl/sdPXo0fvOb3+AHP/gBtm7dCpPJhO985zv4+te/DrPZrLaTJKnH+WVZ7vV4KAXynkV8xo888gj++Mc/9ugJAno+I1+eT/c2oj3nYN+vEZ7xQOfw9zyBEuz71eszttvtuOOOOzBlyhQ8//zz/Z6jv/NoxcAyhDIzM1FdXY3GxkY4nU6MHj0as2bNwowZMwB0rh7Ztm0b/vSnP2Hq1KkAgOnTp+PYsWPYvn07duzY0et5s7KyAABnz54VJrAAA98vAOTk5ODzzz/HxYsXERERgfj4eCQnJ2PcuHEAgOTk5B4raADgX//6V4//GxBBIO65N6F+xo8++igOHjyIiooKjBkzRj2enJwMoPP/rFJSUtTjdXV16vNJTk6G0+lEfX29V69DXV0dZs+erbYR6TkH+357E87P2Bd6esb+0sMzvnz5Mm6//XZcddVV2LdvHyIjI73OE8xnzCGhELBarRg9ejTOnDmDU6dO4a677gLQOescAEwm78diNpt7rCDxpKwg8vyDJpK+7tfTqFGjEB8fj3fffRd1dXW48847AQDZ2dlobGzE//3f/6ltT548icbGxn7/8Q+1wdxzb0L1jGVZxiOPPIK9e/fi3Xff7RGqxo0bh+TkZJSVlanHnE4nysvL1eeTmZmJyMhIrzY2mw1/+tOf1DaiPOehut/ehPMz9oWenrG/wv0Z2+125OTkICoqCgcPHvSarwcMwTMe9LRdUl2+fFmuqqqSq6qqZADyq6++KldVVcn/+Mc/ZFnunFH93nvvyZ9//rm8f/9+OT09Xb7nnnvUzzudTvlrX/uaPGfOHPnkyZPy2bNn5U2bNsmSJMm/+93vZFmW5RMnTqjn/dvf/iaXlJTIqamp8p133hl29yvLsvzmm2/KlZWV8tmzZ+Vf/vKXckJCgpyXl+fV5vbbb5evv/56ubKyUq6srJSvu+46efHixUN2n56G4p5FesY/+MEPZKvVKh89elS22Wzqq7m5WW3z8ssvy1arVd67d6/88ccfy9/5znfklJQU2W63q21Wr14tjxkzRj5y5Ij84Ycfyt/85jfl6dOny+3t7WobEZ7zUN2vHp+xzWaTq6qq5J///OcyALmiokKuqqqSL126pLbR0zMe6H719oztdrs8a9Ys+brrrpPPnj3rdZ6h+nvMwBJAyvK27q8HH3xQlmVZ3rJlizxmzBg5MjJSHjt2rLx+/XrZ4XB4neOzzz6T77nnHjkxMVGOjY2Vr7/+eq9lzqdPn5ZnzZolW61WOTo6Wp44caL8/PPPy01NTUN5q7IsB+Z+f/SjH8lJSUlyZGSkPH78ePmVV16RXS6XV5tLly7J9913nzx8+HB5+PDh8n333dfrEsKhMBT3LNIz7u1eAci7d+9W27hcLvn555+Xk5OTZYvFIs+dO1f++OOPvc7T0tIiP/LII3JCQoIcExMjL168WK6pqfFqI8JzHqr71eMzfv755wc8j56e8UD3q7dn3Ne/fQDkc+fOqe2C+YylrpshIiIiEhbnsBAREZHwGFiIiIhIeAwsREREJDwGFiIiIhIeAwsREREJj4GFiIiIhMfAQkRERMJjYCEiIiLhMbAQUcgcPXoUkiShoaEh1JdCRIJjpVsiGjLz5s3DDTfcgIKCAgCdG6x99dVXSEpKCsj280SkXxGhvgAiMq6oqCh1a3siov5wSIiIhsSKFStQXl6OLVu2QJIkSJKEwsJCryGhwsJCxMfH43//938xceJExMbGYunSpWhqasIvfvELXH311RgxYgQeffRRdHR0qOd2Op146qmn8P/+3//DsGHDMGvWLBw9ejQ0N0pEQcEeFiIaElu2bMFnn32GadOm4aWXXgIA/PnPf+7Rrrm5GVu3bkVxcTEuX76Me+65B/fccw/i4+Nx6NAh/O1vf8O9996Lm2++GcuXLwcAPPTQQ/j73/+O4uJipKamYt++fbj99tvx8ccfY/z48UN6n0QUHAwsRDQkrFYroqKiEBsbqw4DffLJJz3atbW14Y033sC1114LAFi6dCl++ctf4ssvv8RVV12FKVOm4JZbbsF7772H5cuX4/PPP0dRURH++c9/IjU1FQDw5JNP4vDhw9i9ezd++tOfDt1NElHQMLAQkVBiY2PVsAIASUlJuPrqq3HVVVd5HaurqwMAfPjhh5BlGRMmTPA6j8PhwMiRI4fmooko6BhYiEgokZGRXu8lSer1mMvlAgC4XC6YzWacPn0aZrPZq51nyCGi8MbAQkRDJioqymuybCBkZGSgo6MDdXV1mDNnTkDPTUTi4CohIhoyV199NU6ePIm///3vuHjxotpLMhgTJkzAfffdhwceeAB79+7FuXPn8MEHH2Djxo04dOhQAK6aiETAwEJEQ+bJJ5+E2WzGlClTMHr0aNTU1ATkvLt378YDDzyAf//3f8fEiRNx55134uTJk0hLSwvI+Yko9FjploiIiITHHhYiIiISHgMLERERCY+BhYiIiITHwEJERETCY2AhIiIi4TGwEBERkfAYWIiIiEh4DCxEREQkPAYWIiIiEh4DCxEREQmPgYWIiIiE9/8BwvbBqceVkrkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "clipped_manila.groupby([pd.Grouper(key='time', freq='Y')]).sum().reset_index().plot(x='time', y='heat_waves_per_time_period',label = 'Manila', color = '#1F77B4')" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "8bcd5859", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDSUlEQVR4nO29eZgb9ZXu/5b2pbvV++b20t7a2AZjzGIDBieAA9ws4GTCzeRCmEl+ExIgQzwMGZLcYSaZhGSGySW5ZMKQBUJyMyQZAyEDQwLBxoCNwcYGA953975LLXVrq+/vD+lbqu7WUlWqklTS+TxPP9BtSV1qdaveOuc97xEYYwwEQRAEQRBFwlLsAyAIgiAIorIhMUIQBEEQRFEhMUIQBEEQRFEhMUIQBEEQRFEhMUIQBEEQRFEhMUIQBEEQRFEhMUIQBEEQRFGxFfsAlCCKInp6elBdXQ1BEIp9OARBEARBKIAxhkAggPb2dlgsmesfphAjPT09mDt3brEPgyAIgiAIDZw5cwYdHR0Z/90UYqS6uhpA4snU1NQU+WgIgiAIglCC3+/H3LlzpfN4JkwhRnhrpqamhsQIQRAEQZiMXBYLMrASBEEQBFFUSIwQBEEQBFFUSIwQBEEQBFFUTOEZIQiCIAgjiMfjiEajxT4M02K322G1WvN+HBIjBEEQRMXBGENfXx/GxsaKfSimp7a2Fq2trXnlgJEYIQiCICoOLkSam5vh8XgoUFMDjDGEQiEMDAwAANra2jQ/FokRgiAIoqKIx+OSEGloaCj24Zgat9sNABgYGEBzc7Pmlg0ZWAmCIIiKgntEPB5PkY+kPOA/x3y8NyRGCIIgiIqEWjP6oMfPkcQIQRAEQRBFhcQIQRAEQRBFhcQIQRAEQVQQgiDg6aefBgCcPHkSgiBg3759RT0mmqYpEyYjcbgd+QfPEARBEKXLrbfeirGxMUlM5MvcuXPR29uLxsZGXR5PK1QZKQN+8foprPyHP2DrwYFiHwpBEARhIqxWK1pbW2GzFbc2QWKkDNhzcgRxkWHPqdFiHwpBEITpYIwhFIkV5YMxpvm4N2zYgC996Uu45557UF9fj9bWVvzDP/zDtNscOXIEV1xxBVwuF5YvX44XXnhh2r/PbNPE43F89rOfRWdnJ9xuN7q6uvD9739f8zEqhdo0ZUAoEgcA+KdovwJBEIRaJqNxLP/7PxTle7//jQ/B49B+Kv75z3+OzZs3Y9euXdi5cyduvfVWXHbZZbjmmmsgiiI2bdqExsZGvP766/D7/bjrrruyPp4oiujo6MBvfvMbNDY2YseOHfirv/ortLW14ZOf/KTm48wFiZEygIuR8UkSIwRBEJXEeeedh/vuuw8AsGTJEjz00EP405/+hGuuuQYvvvgiDhw4gJMnT6KjowMA8O1vfxvXXXddxsez2+34x3/8R+nzzs5O7NixA7/5zW9IjBDZCUViAEiMEAShH4wxHB2YwPwGLxy28u7ou+1WvP+NDxXte+fDeeedN+3ztrY2aVfMgQMHMG/ePEmIAMC6detyPubDDz+Mn/zkJzh16hQmJycRiURw/vnn53WcuSAxUgZIbRoSIwRB6MTOY8P485/swqcunov7N52X+w4mRhCEvFolxcRut0/7XBAEiKIIAGn9KLnSUn/zm9/gy1/+Mv71X/8V69atQ3V1Nf7lX/4Fu3bt0u+g02DOnz4xjSBVRgiC0Jm3TicM8ccHg0U+EkIry5cvx+nTp9HT04P29nYAwM6dO7Pe55VXXsGll16KL37xi9LXjh07ZuhxAjRNUxZMSgbWWJGPhCCIcuHkcAgAMBWNF/lICK1cffXV6Orqwi233IK3334br7zyCr72ta9lvc/ixYuxe/du/OEPf8Dhw4fxv//3/8abb75p+LGSGCkDgmEysBIEoS+nhhMVkUkSI6bFYrHgqaeeQjgcxsUXX4zPfe5z+Na3vpX1Prfddhs2bdqEm266CZdccgmGh4enVUmMQmD5DDkXCL/fD5/Ph/HxcdTU1BT7cEoKUWRY+NXnpM8PfvNauPI0RBEEQVz0rRcxGAijo86NV7/ywWIfjq5MTU3hxIkT6OzshMvlKvbhmJ5sP0+l52+qjJicmVctZGIlCCJfJsIxDAbCAKhNQxQGEiMmh0/ScKhVQxBEvvAWDZDypBGEkZAYMTk8Y4RDYoQgiHw5lTSvAkAoGs8rspwglEBixOTMrIxQJDxBEPlyUlYZYQwIx8QiHo1xkMjSBz1+jiRGTA5VRgiC0JtTQ6Fpn5dbq4YHhYVCoRy3JJTAf44zA9jUQKFnJmeWZyREYoQgiPyQV0aAhFG+rkjHYgRWqxW1tbVSbLrH48mZTErMhjGGUCiEgYEB1NbWwmrVPsmpSozcf//9ePLJJ3Hw4EG43W5ceuml+O53v4uurq6M99m2bRs+8IEPzPr6gQMHsGzZMvVHTEyDZ4xwKPiMIIh8kXtGgPLMGmltbQUASZAQ2qmtrZV+nlpRJUZefvll3H777bjooosQi8Xwta99DRs3bsT7778Pr9eb9b6HDh2aNmPc1NSk7YiJaUxGqU1DEIR+TEbi6PNPAUgscZuMxsuuTQMkdrS0tbWhubkZ0Si9b2rFbrfnVRHhqBIjzz///LTPH330UTQ3N2PPnj244oorst63ubkZtbW1qg+QyM7MygiJEYIg8uHUSKJFU+Oyod7rwMnhUFlWRjhWq1WXkymRH3kZWMfHxwEA9fX1OW+7evVqtLW14aqrrsLWrVuz3jYcDsPv90/7INIz84qFQs8IgsiHk0nzamejF+7kJttyrIwQpYVmMcIYw+bNm3H55Zdj5cqVGW/X1taGRx55BFu2bMGTTz6Jrq4uXHXVVdi+fXvG+9x///3w+XzSx9y5c7UeZtnDN/bWuBJvGlQZIQgiH3jg2fwGL9z2xCliplGeIPRG8zTNHXfcgXfeeQevvvpq1tt1dXVNM7iuW7cOZ86cwQMPPJCxtXPvvfdi8+bN0ud+v58ESQb4FUubzw3/VIDECEEQecG39S5o8GAkGAFAkfCE8WiqjNx555145plnsHXrVnR0dKi+/9q1a3HkyJGM/+50OlFTUzPtg0gPr4y0+hLLiQI0TUMQRB7IKyN86WY5e0aI0kBVZYQxhjvvvBNPPfUUtm3bhs7OTk3fdO/evWhra9N0X2I6IakykhAjVBkhCCIf+FjvgkYPPI6EGKE2DWE0qsTI7bffjl/96lf43e9+h+rqavT19QEAfD4f3G43gESLpbu7G48//jgA4MEHH8SCBQuwYsUKRCIR/PKXv8SWLVuwZcsWnZ9KZRIKp9o0QGLbZiwuwmalcF2CINQxFY2jZ3wSAPeMWKWvE4SRqBIjP/rRjwAAGzZsmPb1Rx99FLfeeisAoLe3F6dPn5b+LRKJ4O6770Z3dzfcbjdWrFiBZ599Ftdff31+R04ASCyxAoBWn1P6WmAqhjqvo1iHRBCESTk7GgJjQJXThgavA26pMkLtX8JYVLdpcvHYY49N+/yee+7BPffco+qgCOWEwnyaxg6Pw4pQJI7xySiJEYIgVHMiOdY7vyERj87FyGSkPBflEaUD1fJNDu/lepw2+NyJJUXkGyEIQgvcvLqgMZGo7SYDK1EgSIyYHF4+9TqskhjxT5EYIQhCPXxB3oIGDwCZGKE2DWEwJEZMDq+MuB1W1LioMkIQhHb4JM38hmRlxEGVEaIwkBgxOVyMeB021FCbhiCIPEhVRma2acgzQhgLiRETwxiT2jQeeZtmkkqqBEGoIxIT0T2aGOuV2jQOatMQhYHEiIkJx0SIyQEnj9OGGjftpyEIQhtnR0MQWaIa0lSdiAqgNg1RKEiMmJhgOHW14raTgZUgCO2k/CKJsV4g1aahBFbCaEiMmBj+BuGyW2C1CDTaSxCEZk4MJfwincmxXgBSHPwUiRHCYEiMmBgpY8SRaM/waRo/iRGCIFQiX5DHoZwRolCQGDExcvMqAJmBlcQIQRDqOMkX5CXNqwCkrb3UpiGMhsSIiUlVRpJixENtGoIgtJGuMsLfW8IxEaKYex0IQWiFxIiJydSmITFCEIQaonERZ/lYb2OqMsKnaQBgKkbVEcI4SIyYmIxtmqmYoqWGBEEQANAzNomYyOC0WdBS7ZK+7rKlxAi1aggjITFiYmZWRrgYiYsMQXrjIAhCISdlY70WiyB93WIR4LInThOT9J5CGAiJERPDc0Z4ZcRlt8BuTbyRUKuGIAilpPOLcPhEzRRN1BAGQmLExPArFa8z8WYhCAJN1BAEoZp0GSMcXnmlNg1hJCRGTAxvxbjtNulrtCyPIAi1yNNXZyK1aagyQhgIiRETw5dX8coIQBM1BEGoZ+a2XjmpZXkkRgjjIDFiYqTKiGz8jto0BEGoIS4ynBnJXBnxJCuvVBkhjITEiImRPCMOatMQBKGNnrFJROMMDqsFbT73rH93UWWEKAAkRkxMMNmmmV4ZSQgTqowQBKEE7heZW++GVTbWy3EnPSMhqowQBkJixMSE0lRG5MFnBEEQucjmFwFS0zS0uZcwEhIjJmZmAitABlaCINSRLWMESC3LI88IYSQkRkzMzEV5QKoyQmKEIAglnBhKtGk6G2ebV4HU+wvljBBGQmLExITC0+PgAZqmIQhCHbkqI5TAShQCEiMmRmrTyHNGqDJCEIRCRJHhVHKsN5NnxC1VRsiHRhgHiRETk83ASmKEIIhc9PmnEImJsFkEtNe60t7GLXlGxEIeGlFhkBgxKZGYiJjIAGQIPZsiMUIQRHb4JM3ceg9s1vSnA0pgJQoBiRGTIi+ZppummYqKCMfozYMgiMxk20nDSVVGqE1DGAeJEZPCWzQOqwV22RVNtcsGIZlbRK0agiCykStjBKDKCFEYSIyYlHTmVQCwWARUO3kKK13JEASRmVNDaioj5BkhjIPEiEmRMkbs1ln/RhM1BEEoQaqMNCqpjNDFDWEcJEZMSpBnjDhts/6NTKwEQeSCMaasTUMJrEQBIDFiUtJFwXMo+IwgiFwMBMKYioqwWgTMqZ29rZdDnhGiEJAYMSnpouA5tJ+GIIhcnBxKVEXm1LrhsGU+FfD3GKqMEEZCYsSkpCojWdo0JEYIgsiAkrFeINWmicYZonEysRLGQGLEpGSrjPg8VBkhCCI7SvwiQGprL0DVEcI4SIyYlOxtmkS1hMQIQRCZUFoZcdossCSzi6bIN0IYBIkRk6KsTUOjeARBpOfEkLLKiCAINFFDGA6JEZMijfamq4xQzghBEFlgjOGUgowRTmpzL4kRwhhIjJgUPmbnTZMzQmKEIIhsDE1EEIzEIQjA3PrMY70cN03UEAZDYsSkBJNtGneaBFYKPSMIIhu8KtLuc8Npm/0eMhP+PkOeEcIoSIyYlFRlJLMYocoIQRDpOJk0ry5ozG5e5biT3jRq0xBGQWLEpEiVkTQGVh56FpiKIS6ygh4XQRClD6+MzM9hXuW47YlTBbVpCKMgMWJSpMpIljh4AJiYookagiCmI1VGcoz1cmiahjAaEiMmJZgUI+40YsRhs0hvHtSqIQhiJmorIzxCgPbTEEZBYsSkpCojs9s0AFDjpuAzgiBmwxhTnDHCcVFlhDAYEiMmJZhlay9AEzUEQaRnNBRFINm+zZW+ynE7EqcKMrASRkFixKRIcfBpckYA2txLEER6+E6aNp9r2t6ZbPA2zRRVRgiDIDFiQmJxEZFYYnumJ8ObCY33EgSRjpRfRFlVBJC1aagyQhgEiRETEpJdnXjS5IwA8v00JEYIgkhxcohP0ijziwCpaRpq0xBGQWLEhISSe2lsFgEOa/qXkCLhCYJIh9pJGiDlTaM2DWEUJEZMSEgKPLNCEIS0tyExQhBEOtRmjACUM0IYD4kRExLKMdYLyKdpKPSMIIgUWiojqa299H5CGAOJERMiTdJkGOsFgBoX5YwQBDGd8VAUo6HEe4LSvTSAvDIiGnJcBEFixIRIGSMZzKsATdMQBDEbPtbbXO2UxnWVwCsjk1QZIQyCxIgJ4eN1HnvuNk2AxAhBEEm4GFEzSQPIxAh5RgiDIDFiQoLh3JURMrASBDGTU0nzqpqMEUDWpolQm4YwBhIjJoRfnWTzjMjbNIyxghwXQRCljVQZaVRZGbFTm4YwFhIjJiQY5mIkd5smJjIqrRIEAUB7ZcQja9PQxQ1hBCRGTMhkjiV5/N+slkQGCbVqCKLwPPtOLz738zcxHiqdv79TGj0jruR7jciASJxaNYT+kBgxIcFI7sqIIAiySHgqrRJEoXnkleN48cAAth4aKPahAAACU1EMTUQAaPeMALSfhjAGEiMmJKSgMgLQeC9BFJMB/1Tiv4GpIh9JAt6iaaxyoDq51VspdqsFdmui0kptX8IIVImR+++/HxdddBGqq6vR3NyMG264AYcOHcp5v5dffhlr1qyBy+XCwoUL8fDDD2s+YEJZ6BlAwWcEUSxEkWEwEAYA6b/F5qSG5FU5tLmXMBJVYuTll1/G7bffjtdffx0vvPACYrEYNm7ciGAwmPE+J06cwPXXX4/169dj7969+OpXv4ovfelL2LJlS94HX6koMbACqfFe2txLEIVlJBRBTEwYPQdKRIycHklURubVq2vRcDwO2txLGIfyCD4Azz///LTPH330UTQ3N2PPnj244oor0t7n4Ycfxrx58/Dggw8CAM455xzs3r0bDzzwAD7+8Y+nvU84HEY4nPoD9vv9ag6z7JmMJto03iw5IwC1aQiiWPT7U62ZUqmMDPgTx9Hqc2m6P/eN0OZewgjy8oyMj48DAOrr6zPeZufOndi4ceO0r33oQx/C7t27EY2mP0nef//98Pl80sfcuXPzOcyyg1dG5KaydFDwGUEUB3k1pFQqI9y70lzt1HR/3qahyghhBJrFCGMMmzdvxuWXX46VK1dmvF1fXx9aWlqmfa2lpQWxWAxDQ0Np73PvvfdifHxc+jhz5ozWwyxLeM/W68xe2Ept7iUxQhCFZNCfEiClVhlprtZWGfFQJDxhIKraNHLuuOMOvPPOO3j11Vdz3lYQhGmf89CcmV/nOJ1OOJ3a1HslwBfluWmahiBKEnmbZnwyinAsDqct+9+r0fAKTXONtvdW/n5DbRrCCDRVRu68804888wz2Lp1Kzo6OrLetrW1FX19fdO+NjAwAJvNhoaGBi3fvuKRKiO5DKwuMrASRDGY2ZopdnWEMZZ3m8adXMxJbRrCCFSJEcYY7rjjDjz55JN46aWX0NnZmfM+69atwwsvvDDta3/84x9x4YUXwm5XN+tOJAiqzBmh0DOCKCwzs0WKLUYC4RimoonkVK1tGmlzL4kRwgBUiZHbb78dv/zlL/GrX/0K1dXV6OvrQ19fHyYnJ6Xb3Hvvvbjlllukz2+77TacOnUKmzdvxoEDB/Czn/0MP/3pT3H33Xfr9ywqiLjIpDcVCj0jiNKk3z9dfBTbxMr9ItVOW872bibc9sTpgjwjhBGoEiM/+tGPMD4+jg0bNqCtrU36+PWvfy3dpre3F6dPn5Y+7+zsxHPPPYdt27bh/PPPxze/+U384Ac/yDjWS2RH/kaQO2eEQs8IohjwSkhjlXPa58WCV2qaNPpFgNT7DVVGCCNQZWBVsq3xsccem/W1K6+8Em+99Zaab0VkgEfBCwLgsmfXkjRNQxCFR+7PWDmnBtsODRZdjPDvr9UvAsgSWKkyQhgA7aYxGaFwyryaaRqJw8VIKBJHlDZtEkRBGA1FEY0nLtyWt9UAKJ02jVa/CJDKNSIDK2EEJEZMBn8jUNL3lS/DolYNQRQGXhWp9zowp84NoHTaNPlURjw02ksYCIkRk8HbNF4FYsRqEVCdDEaj8V6CKAypKoQTTZJnpLibe/PNGAEAF03TEAZCYsRkpCojyuw+FAlPEIWFB541VTvRVF0iBlY92zRUGSEMgMSIyVBTGQFIjBBEoeFViJYaF5prEif/wYmwogEA445JxzYNVUYIAyAxYjLUeEYAwJcc7/VPUfAZQRQC+eRKY5UDABCNM4yFindBoEebxk3TNISBkBgxGUGFUfAcHglPlRGCKAy8TdNc7YTTZkWtJ/E3ODhRnFbNVDSOQPJipCmfNo2DT9PQhQ2hPyRGTMakwih4TioSnsQIQRQCeZsGgGRiHfAXR4zw7+u0WVDj0rwbVaqM8ARogtATEiMmI5jMGfE4SYwQRCki+TOSLRHJxDpRnIka+fHkyibKhrSbhto0hAGQGDEZ/I0gVxQ8hwysBFE4GGPSXho+udJc5IkayS+SR4sGkIeeUZuG0B8SIyYjGNbWpiExQhDG45+MIRJLtDF4RYT/t3htmvwnaYBUZWQqKkIUizcZRJQnJEZMBg8cUu0Zof00BGE4/cmWiM9tl3a58IpEsQysAzrspQFSlREAmIpRq4bQFxIjJiMoGViVtmlocy9BFAp5+iqn6JURaaxXnzYNQCmshP6QGDEZIa2VkUnq8xKE0XCzaIvsxJ8ysBZXjDTlWRmxWAQ4bYlTBplYCb0hMWIyUmJEWWWEPCMEUTj601RGim5g1ckzAqQugqgyQugNiRGTodbAykPP/FNRMp0RhMGkxmhnV0bGJ6NF2Xg7qNM0DUAprIRxkBgxGfxNwKswZ4SP9jIGTNBIHkEYSjqzqM9th8OaeKsdKnCrJhoXMRyMJI4pjyh4Dm3uJYyCxIjJ4KFnbruyNo3LbpX6vONF3I1BEJWA1BKRnfgFQUiZWAvcquHix2YRUO9x5P14vCJLm3sJvSExYjJ4HLzSyghAwWcEUShmRsFzGovkG+ETPI1VTlgs2tNXOVIkPFVGCJ0hMWIiGGPSFYnSrb0AZY0QRCFgjKUd7ZV/XnAxosO2Xjku8owQBkFixERMRUWwpAdV6dZegPbTEEQhCIRj0kl6plm0WG0ayVCrwyQNIGvTUGWE0BkSIyYiKDOgygOIcsE3dVKbhiCMg1dFql22WZXLolVG/DxjJP9JGkC+uZfECKEvJEZMBHewu+1WVf1fCj4jCOPJVoWQgs8Chd3cq1cUPMedrMhSZYTQGxIjJiIVBa+8KgJQ8BlBFIIBf+Y8j6aq4lRGBgOzp3vygXJGCKMgMWIipPRVFZM0AE3TEEQhSEXBzz7x8xC0ohlY9WrTOJJx8FQZIXSGxIiJCCUzRtSYVwGapiGIQiBVRtIspJPvp2GscEnImaZ7tMLXUJAYIfSGxIiJCCXbNGrGegGqjBBEIejP4s9orEoEjkXjDGMFCh8URSaFntFoL1HqkBgxEbxNo7YywvfTkBghCONIpa/Orow4bVbUehJ/h4Ua7x0JRRATGQQhEXqmB+QZIYyCxIiJ4GJEbWWEckYIwngGc0yuFNrEyls09R4H7FZ93uppay9hFCRGTARv03g1T9PQaC9BGEW/P3vAGG+VDE4UZryXG2qbdPKLANSmIYyDxIiJSFVGVLZp3Inb+yejBTXPEUSlMBGOIZj8+0zXpgFSlRFesTCaVBS8PpM0QKoqSzkjhN6QGDERwTwrI5G4iHBM1P24CKLS4X4Rr8OKKmf6i4VCj/fmahtpgbdpKIGV0BsSIyaC92nVhp5VOW3gga1kYiUI/VFShZAqIwXzjOi7lwaQGVipMkLoDIkRExEM89AzdW0aQRBovJcgZsAYgyjq07ZUErsueUYKJUYMqIyk2jTkPyP0hcSIiZiMaouDB2iihiBm8pePvYkP/us2Xa7ys431cqRpmgkTe0akRXnU7iX0hcSIiZAqIyoNrABljRCEnFhcxLbDgzg5HMJ7PeN5P56SKgSfauHCxWiyLe7TChcjkbiIWJwECaEfJEZMhFbPCEDL8ghCzkgwAj5YdmRgIu/H4wIj3V4aDt8P45+KGW4AZYxlXdynFXnGEY33EnpCYsREaN3aC1CbhiDkyFslR3UQI/0KTvw1bhsctsRbrtG+Ef9UTJqc0ysKHgCcNguEpBmexAihJyRGTESqMqKhTZPMGqHgM4KYLgZ0qYwoaIkIglAw38hg8niqXTYpqEwPBEFI+UYi1KYh9IPEiInIpzJSQ5t7CUJiaCIi/f/R/kDej6fULCpt7zW4MqL3tl45/P0nFKULG0I/SIyYiBB5RghCF+RioGd8ChNh7SfWyUgcganE/XO1RCQTq9FiJKC/X4TjoqwRwgBIjJgExlhqa6/KnBGApmkIQs7QjDbJsTxaNbxF47JbUJ3jb7O5UJUR3jbS0S/CoWV5hBGQGDEJ4ZiIeDKgSe3WXoAMrAQhZ6YYyMfEyqsQLTUuCNzdmYFUm8bY8V4j2zRuWpZHGACJEZMgvwrxaDCkUZuGIFLwygj/u8jHxJprW68c3jYxvjJSgDYNiRFCR0iMmARuXnXYLLBZ1b9sNVQZIQgJLgbWLqwHABwd0G5iVZPnUTADawHaNLS5l9ATEiMmgVdG1G7s5UhtmilywBMEr4ysW9gAQJ82jZITf6ENrE1GtGlocy9hACRGTEIwj4wRICVGJsIxinEmKppoXMRoKFEhXLeoEQBweiSk+eSa2o6buzLCWzlDE2HdlvSlY9CA9FUOTdMQRkBixCSE8sgYARLhRxyqjhCVzHAyY8RqEbCkuQo1LhtEBpwYCmp6vJSBNXcVojEZehaNM4wZ1DKdjMQRCCsbNdYCtWkIIyAxYhJCYe0ZIwBgt1qkFg/5RohKhvs1GqscsFgELGmpBqDdxJpKX81dhXDYLKjz2Kcdh96oGTXWQmpzL4kRQj9IjJiEUDS/Ng1AEzUEAaT8ItxPsaS5CoD2JFZpL43CKoTRJlb5JE2uUWMtuJPvQVQZIfSExIhJCCXLrl6n9j0TNSRGCEJWGUmIgsVcjAyqr4xMRePS31OLQn9GysRqTNaIkRkjAOWMEMZAYsQk8KsQdx6VEdpPYxz7zozhsddOgDHjTImEPvAldU0zxMiRfvVihAsbh80iLaPMhdFZI0aO9QKA2544bZAYIfRE/4YiYQjcwKp1tBegNo2RfO2p/Xivx49zO3xYM7++2IdDZEGqjFRPFyMnh4OIxkXYVeT4yLf1Km2JGD3ea2TgGZBqFdM0DaEnVBkxCanKSB5tGtpPYxjdY5MAgL5xY/MjiPyZWRlp97nhcVgRjTOcGg6peizeEmnJsa1XjtH7afgxGZExAgAu2k1DGACJEZMgLcnTwcDqn6TRXj2JxkWMJXMrRkORHLcmis3QjMqIxSKkfCMqk1jVRMFzjDewqj8mNZBnhDACEiMmgbdp8qmMUJvGGHhuBQCMBkmMlDozKyMAsLiJixF1vpFUS0SFGKky1sA6KCXCGtWmocoI53f7uvHZx94kH54OkBgxCcE84+ABSAY7yhnRF/k6ep7sSZQuQ1JUukP62uKWpIlVqxhR06apKdRor0FtGqqMSPz7y8fxp4MDeP7dvmIfiukhMWISJvOMgwfk+2nohKkncjEyRm2akmYqGpcSiJuqUgJiSXMi+ExtZURTmyb5ff1TMd2DwyIxESPJ6hy1aYyHV7feOTtW3AMpA0iMmIRgMmfEk0fOCLVpjGFI1qYZITFS0gwnT9QO6/RR3JRnZAJxFTtjtLREatw2OGyWaffXCy6MbRYBdR5Hjltrg9o0CWJxUfp9eufseJGPxvyQGDEJk9H84uABCj0zCmrTmAd5FLx8FHdunRsOmwXhmIju0UnFj6dmLw1HEATJNzI4oa8YkW/rtVj0T18FUr61yWi8onN1hiYi4E//QK8f4Vhli7N8ITFiEqTKiC7TNHTC1JOhALVpzMLMSRqOzWrBwkYvAODooLKJmuktEXVmUSlrxK+zGNHQNlILFyNxkSFSwRvA5VWtaJzhYK+2dQJEAhIjJiHlGcm/TeOfilX0FY3eTKuM0DRNSZNukoajNomVP5bdKkjL75QiZY0YVhkxZpIGSHlGAGAqUrliZOY01Dvd1KrJB9ViZPv27fjIRz6C9vZ2CIKAp59+Ouvtt23bBkEQZn0cPHhQ6zFXJEEdDKw89CwuMkyEKWtEL4ZlAsQ/FUOsgq8WS52hGXtp5Kg1saaqEOoX0hmVNZKa7jGuMmK3WmBLtoAq2cQ6M0H3nTNjxTmQMkG1GAkGg1i1ahUeeughVfc7dOgQent7pY8lS5ao/dYVjR6VEZfdAkcy6ppPFBD5M/OEMkZtsJJlcMbGXjlSZUShGOnPI+k0tZ9G36yRQYMDzzi8VcPzjyqRmUm3ZGLND9WX2ddddx2uu+461d+oubkZtbW1qu9HJBI+eW82nwRWQRBQ47ZhaCKC8VAUc2rdeh1iRSOfpgESvpF0V95E8eEttcaq2ZMmS1pSEzWMsZzVjnxO/IZVRqSNvca1aYBEqyYwFavwykji9b9qWTOeePMMjgwEEIrE8qpeVzIF84ysXr0abW1tuOqqq7B169astw2Hw/D7/dM+KpmQbIQunwRWgDb36k1cZBgJJk4APJBuJEg/21JlMIunYkGDF1aLgIlwTKp6ZCM1SaP+xN9s0LI8owPPOPx9SO+cFDPBf5dWzPGhpcYJkQHvdlf2uSofDBcjbW1teOSRR7BlyxY8+eST6OrqwlVXXYXt27dnvM/9998Pn88nfcydO9fowyxpeCnUbhWkfAKtUNaIvoyGIhAZIAjAwmSkOO2nKV14FStdZcRhs2B+gwcAcETBjhotgWcc4zwjyWMy0DMCpEysoQrOGpELv/M6agFQ+Fk+GF5P6urqQldXl/T5unXrcObMGTzwwAO44oor0t7n3nvvxebNm6XP/X5/RQsSaWOvPb+qCECbe/WGl/3rPA7pBEPjvaXLYCC7z2NJcxWODwZxdGAC65c0ZX2sfMyi/PsPTYQhikyXTJC4yCSxZXibhoLPUoF31U6s6vDhhff7yTeSB0UZ7V27di2OHDmS8d+dTidqamqmfVQyoXByL40zf+1IWSP6Miy70q5NjndS8FlpMhmJS1NkmcSIGhOr5M/Q0KbhnqJonOlmeB4JRhAXGQQhfeVHTzyOyo6EZ4xNS9+lykj+FEWM7N27F21tbcX41qYkqMPGXg6JEX3hlZEGr1OK36askdKEv1ZOmwVVGYS9NN6rIGtkIA8Dq8NmkbJJ9GrV8ONp8Dpgsxr71i7tp6nQyshYKCoNFTRWOXBehw8AcHI4hHG6GNGE6kvtiYkJHD16VPr8xIkT2LdvH+rr6zFv3jzce++96O7uxuOPPw4AePDBB7FgwQKsWLECkUgEv/zlL7FlyxZs2bJFv2dR5kxKG3vzr4zwfRzUptGHQVmiZ703KUaoTVOSyKPSM03KSDtqBrOLkahsL4nWlkhztQujoSgGAlPoaq3W9BhyChF4xqn0zb18RLzWY4fTZoXTZsW8eg9Oj4TwTvdYzhYfMRvVZ7fdu3fjAx/4gPQ593Z85jOfwWOPPYbe3l6cPn1a+vdIJIK7774b3d3dcLvdWLFiBZ599llcf/31Ohx+ZWBIZYRyRnRhiNo0piE11pu5krGoqQqCkGh5DE+E0ZDhtkMTYTAGWC0CGrzaWiJN1U4c6g/oVhkZ9BdmkgZItWkq1cA6kOZnfV6HLyFGzo6TGNGAajGyYcOGrFHijz322LTP77nnHtxzzz2qD4xIEZIqI/qJEaqM6IP8BEdtmtIml3kVSAj+jjo3zoxM4ujAREYxIgVeVWlfSKf3RE0+bSO18DZNpY72pn7WqSrUqo5a/Nc7vXibklg1QbtpTEBIhyV5HJqm0Zdh2a6TVGWExEgpoqQyAgCLm3KbWPWIXdc7a6QQUfAcV4VP06TLc+G+kf20o0YTJEZMQCiafxQ8hwys+sLbNA1VDskzMkZtmpJESWUEAJa05N5R0++ffWWsFt0rIwVKXwUAjz1xYRSq1MoIr4zJhN/KOT5YBKB3fGrWEj0iNyRGTICeo7011KbRlbRtmlAEokhbkUuNIamKld3jwSsj2cSIHlWIJqkyos+Jq6BtGkfi1DFVoZURbmCVCz+v0yYZoN85Q9URtZAYMQFS6Bl5RkoKxlgqZ6Q61aYRGRAgg3DJobQysriFt2kyp7DyvTQtpVQZKWCbxl3h0zR8Y/PM36Vz59QCoLwRLZAYMQE8Dl4PAyuvjIRjYsWaz/TCPxmTsgYavA44bVbpNSLfSOmRmnzKIUaSV7f9/nDGHU79fv08I3qIEcaYzMdgfJvGnfSvVeo0zWCGHUCr5iZ8I29TEqtqSIyYgFRlJP82TbXTBh6xQMvy8mMouSCv2mWTchdqPZQ1UqoorYzUuOxoSYqMTK0aPVoiPA/EPxXL+8LAPxlDJCYmH5cqI0aTaSGhPIk129QpMRsSIyZAz8qIxSKgOuk9IRNrfgwFZk9n1HlpoqYUCYZT6+5zVUaA3Ems3MCoZWMvp8ZlkxZf5lsd4eKoRiaMjcRTwdM0oUhMWiswcxXAOW3VsFsFjIaiODs6WYzDMy0kRkyAnp4RAPB5uG+EfA35kG4DbCprhIReKcFP9h6HVZERPFsSa2IhXf4BY4Ig6DbeOyDbk1IIKjmBlQtRj8M6a62A02bFstbELjVamqcOEiMmIKhjHDxA4716kS63oo7aNCWJ0owRjrQwr3+2iXV4IgyRARYBGUPRlKKXibWQkzRAZW/t5ZM0mdphPG+ETKzqIDFiAiYjPPRMn8oIBZ/pQ3oxQm2aUkSpX4SzJEtlZEDWnrNqTF/lNCV/d/gJTivp4smNpJK39ub6Wa9K+kbeJjGiChIjJiCYzBnx6JAzAsj305AYyYd00xkpAyv9bEuJlHBUtkeGV0bOjk5Kni2OFHimwwgtf4xBf35ZI4Vu01Ty1t50UfByzk1WRt7t9lPekApIjJiASR0TWAFZ1gidMPOCn+AaZCe4VAorVUZKCbWVkYaqxBZmxoDjg8Fp/6bnCG1TVeIx8q6MZJjuMAq5Z6TSpkYGcvwuLWmugstuwUQ4huND2bc/EylIjJiAYFjnNg0Fn+lCujaNtJ/GZAbW/WfHsfbbf8KTb50t9qEAACIxEZ98eCe+9tR+XR5vMFnF4id/JWRKYk1N0uhXGeGPqZVMIVxGIX8vmoqKBfmepcJAjowZm9WCle3cN0ImVqWQGClx4iJDOJkfoMeiPCBlshyh7bJ5IcWLV6eZpjFZZeT/7TqFPv8Ufru7NMTIwT4/3jg5gv9447SUn5EPvDLSWK2sTQNkTmLtD/ATvx6VEX08I4MFDDwDMG18uNJ8I4Oy5ZiZSOWNkBhRComREkfer9arMsL75kMkRvJiKDDbM8LbNGYSI4wxvHJkCABwqD9QEmV3ntEgMuD0SDDHrXMzpOAEMhPJxJqhMqJHS0S/aZrCRcEDgNUiwJnMSKk0MTIgeYYyC79UEutYIQ6pLCAxUuJwg5hFgPTHny+NyTfAIZ12YlQimUK0pDZNKFoSJ3UlHB8KonsscfIfCUbyvkrXg7OjIen/Z3o2tJCqjCg/WUvjvTPEiLSXRgezqGRgDYQ1mx2nhXAVqE0DyMd7KyuvKFMUvBxeGXm/x49ovLLaWFohMVLiyDNGBCG/MUIOvzocKoGTjlnhC/Jcdsu0ihVv00Riomn2dryarIpwDvVlXhBXKOTplceH8hMjjDFFpfWZ8BTWU8Ohaa2ifh0rIw3exGPERIYxjR4uXqlx22eHcBlJaqKmck620biI4WRFOdvrP7/eg2qXDeGYWBJ/T2aAxEiJw9s0eqWvAqnpj+EgrbrXyqDMvCoXiR6HVYr4Nkur5pUjgwAg7SwqhTdPuRg5kWdlJBDWtrelpcaJaqcNcZHh5HDiGER5+qoOLRGHzSK19vjIqFrkLRq9LliUwN+TZo4+lzP8tbdZBOnCIx0WiyALPyPfiBJIjJQ4/OpaSYS1UvjVWDyPq7FKJ1OipyAIUvDZmAlGpyMxETuPDQMArlrWAgA4WBJiJNWmOZFnZYSX1aud6va2CIKARVISa6JVMxKKICYyCILyNNdcSCZWjW3TQqevcipxWd6gLPDOkiPwjrdq9nePGXxU5QGJkRJH2kuj4/Irh80iZY1Qq0Yb2eLFzTSttPf0KIKROBq8Dmy6YA6A4ldGGGMz2jT5ZTUMafCLcGaaWHngWYPXAbtVn7fPfE2sKUNtYSZpOPw9Kd+Nw2Yi11ivnFXJysjbZ6gyogQSIyVOKGlM8zr13cQpTdSQiVUTfJKmKc2oaK2JIuFfPZrwi1y2uBHLWhMeicP9AcSL2L4bDUWn+W2GJiJ5ZeJo8YtwUibWhEBLBV7pd+LPd1lerhAuo0i1aSpIjKgIl+OVkUP9gYoSbFohMVLipDb26mtM41f0NN6rjeFgMn3VO/tNKZXCWvptmu1J8+r6JY2Y3+CFy25BOCbi1HD+Eyxa4S2alhqn9KafT6tmSEPGCGdJy/TKCB/r1CPwjJN3ZSSgXzy9GiqxTTOgImOmzedCY5UTcZHhvR6/0YdmekiMlDjcHObV0cAK0HhvvmTbdVJrkuCzsVBE2iy6fkkTrBZBmiA5nGZbbaHgLZqOOg8WNnkBACfyaNXkUxnhP4/jQ0HE4qIhC+ma8qyMFDrwjOOpwM29aiojgiDQBl8VkBgpcVKVEX3FCI335ocUeJbmTUna3FviVacdx4bBWMIX0epLnMi6kq2aYppYeWWko86NzsZEZSKfrJF04XRKmVPrhstuQSQm4szopK57aTipyojGaZoCb+zluCtQjKjdcUQTNcohMVLiyHNG9ETyjJAY0YQSA2upb+7lI73rlzRJX+O+kWKaWFOVETcWJSsj+WSNSJURDSdri0XAItmOmn5q00i4KrJNo074rZJi4ccMOqLygcRIiRPSeUkep0GqjJT21XupMqhIjJTuz5Yxhu2Hk36RpY3S17tKSox40NmYFCP5VEayvFZKkJtYjTGwJh5LS5smEhMl0VusNk0lGVgHFUTBy+GVkeNDQQSmSvvipNiQGClxQsmrDr2W5HEaqU2jmXAsjsBUQiSm84zUeUt/muZEMgLeYbXgks566etcjJwcDhZtAkDeplmYrEqcHApqDuhTW1qfiTTe2z+R8mcYUBkJTMVU/8y5KLZbU/k2haLSRnvlSb5KKyMNVU7MqXWDMWB/N7VqskFipMSh0d7Sg0fB262ClNciR6qMBEv3SoiP9K6ZXzdN6DZVOVHvdUBkqaCvQiLPGOmo86Cjzg2bRcBkNI4+v3pPBWOpxFQtOSMAsDhpYj0yMCG1RPTYS8OpcdmkvVNqWzV8uqepqrDpq0DltWlGQ1FE4wlBrKbKxpfmkW8kOyRGShyjDKyNsjaNWRa6lQr85NbgTX8C4GJkrIQrI+laNEBiAqCrhZtYCz+OKM8Yaa91wW61YF6DB4C28d7xSfkJRP1oL5Bq07zf65ceS8tkTiYEQdA8USO1jXQUR0rhIrZS2jRciNZ57NLKByWcO6cWAPlGckFipMQJGWRg5W9+kbiIQLhydkvoQepKO/3JjYuRYCSOcKz03qijcRGvH09EwF8hM69yiukbkWeMOG0JAb5Q8o2or9Tw18rntkuPp5b5DR7YrYIUBKf2ZKSEZo0mVrWGSj1xOxI/g0pp02gdoaYkVmWQGCkAe06N4odbj2pKtTRiUR6QKLHyDZ96t2oGAlO45nsv46Z/34mn93aX3ZtVrlHRapcNfG1FKQaf7TszholwDPVeB5a31cz6d0mMFCFrRN6i4XDfiJaJmgFpl4i2qggA2K0WLGjwSp/r2aLhaB3vlQyVxRAj9soa7VUTBS9nZVKMdI9NYpg8ehkhMVIA/v537+Jf/nAI2w4NqL6vUZURQD7eq287YfvhIRwZmMCuEyO469f7sO7+P+Gf/ut9KcXS7AwFs09nWGQbPUvRxPrK4cRI72WLG9Mu+ypm1ojcvMrJZ6KG/27nG5XOk1j1eKx0aB3vNSL3RCnuimvTaDNC17jsUnjfO2RizQiJEYNhjEm9bi1uaqM8I4B8vFdftc6zGBY2edHuc2E0FMVPXj2Bq5PVkt/tM3e1hFdGGrJcbUv7aUrQxCqPgE/H0qRnZDAQLviyP3nGCIe3abR4RuRbVvOBm1gBY078Wsd7BwyY7lFKpU3TpLYjq3/9pbwRatVkhMSIwYwEI5KgeF/DfgIpDl7naRrAuOAzLkauW9mKV77yQfzs1gtx9TktsAjArhMj+OsnUtWSYxp8AMVmSEG8eKlWRsZDUVkEfHoxUuW0YW59QgwU2sSark3TmbyqPDsaUu3BGcoj8EwON7EC+gaecbRXRorXppHi4CtGjGj/XaJY+NyQGDGY0yMh6f/f79UiRpI5I3Yj2jTG7KdJpVS6YLUI+OCyFvzkMxfitb/7IL589dJp1ZKr/jVVLSlFs2c6lIRo1XlLU4zsODYEkSVOrm0+d8bbdbUkvCSFNrGma9M0VTlR5bRBZMDp4VCmu6ZFr8rIEpkYMeLELxlYVV4YpKLgC9+m4aO9ldKmGczDLMzFyNtnx2l6MQMkRgzmTPJKD0hc9alZhS6KLCVGDKmM8DdAfU+YfRneINt8bvz11Utk1ZLmadWS6x58Be+aoKeqSIwk2zSlZmDN1aLh8Fj4Qi7Mm5kxwhEEQeq5H1PpG8k38IzT2eiVTMlGGli5uFBCXExlqBSlTVNhlZF8xMjyNh+sFgFDE2H0jmvbQVTukBgxmDMj06/kDqiojkzJKgV6x8EDqRAovR3ePIiJL1+bSapachFe/coHcdfVS9BY5cTxoSA2/dsO/PTVEyV99cBDz7KtpOdtmkJ7LrLBGJP20aQb6ZVTDBPrzIwROZ0afSNKWmpKcNmtkpdmQaM3x63Vw8XI0ERYcdLscDAMkQGCADR4tU8LacWTrIxEYqKmSUGzMaAyCl6O25H6/aFWTXpIjBgMLztz1PhGguHEG7MgAC6NGQnZaDLAMxIXmdRbVdJbb691466rl+KFL1+Ba5a3IBIX8c3/eh9/+dibJTkGF4uLGEm2Xhq85mrTnBoO4ezoJOxWAZcsrM96W6ky0hfQHMOulnQZI5yFye29J4bUeYz0qowAwEN/fgH+/eY1OCfNOHS+8CpbTGSKf2d4FaXB64TNWvi3crmpvtyrI8FwTFpaqrVNt4o2+GaFxIjBnBmZPh3wngoxwuf33XZr2hHMfGk0YFnecDCMuMggCOquRuu8Djxy8xp882Mr4LBZsPXQIK79/it4LRlbXiqMhCJgDLAIQH2Wq9FSbNPwqsjMCPh0LGj0wmG1IBiJo3tsMutt9SJdi4bDTaxqxntFkWE4mD0TRg2Lm6vwoRWteT9OOuxWi/T7pNQ3kk/bQA+cNgt4AHG5Z43wCyyPwwqvU5t/7zxpgy+JkXSQGDGYM8mrPf4mpsbEGozwjb36m1cBY5bl8au1xir1V2uCIODmdQvwzB2XYUlzFQYDYfyvn+7Cd58/iGhc1HQ8cZFh++FB3POfb+OHW49qegw5fKy33uuANYtArC3BaZqUXyR7iwZInBwXJU2bhWrVpDOvcrSM946GIlL7INsYdqmgNoVVmqQpgl8ESPy9VkrwmR7CTz5RU8pt6GJhzFmOAJA4EfYkryqvXdmKn756AkcHAojEREVx0pJ51QC/CJB6gw5F4ghFYrqInr6kOas1D5PfstYaPHPH5fjms+/jV7tO40fbjmHHsWH83/+5WtpTkosDvX48tbcbT+/tnpbd8PELOjJ6WZSgdB19alleaYiRaFzE68cSEfC5zKucZa3VONDrx6E+P65Z3mLk4QFInzHC4Z6R4WAE46EofAo21PKKX53HDnsR2hhqaap24mBfAHc9sQ9VLhtsFgE2iwVWiwC7VYA1+bkt+f/8vaVYlREgUbUNReJl36bJJ2OE09VaDYfNAv9UDCeHQ9LvNJGAxIiB9PmnEI0z2K0CLphXB5/bjvHJKI4MBLCi3Zfz/iGpMmKMGKlyJraFhmMihgIRzGvI/9ehX9pqmt8bpNthxbdvPBeXL27E3215B2+fGcP1P3gF37pxJT52/py09xkITOGZfT3Y8lb3NKNwrceOeJwhEI7hyECgIGKk3psMPSuRNs3bZ8YQCMdQ57Er+t0DCm9izdam8TptaK1xoc8/heNDE1g9ry7n4+npFykE58+txStHhjAcjEjtJSUsaqrKfSODcDusQLD8PSO84tuUx/ua3WrB8rYa7DszhjdPjJAYmQGJEQPhmQjttW5YLQKWt9Vg5/FhvN/jVyhGjK2MCIKAxionuscmMTgRVlx1yEb/uHbHeTquP7cN53X4cNcT+7D71Cj++ol9ePXIEP7hoyvgddowGYnjj+/34cm3uvHKkUFwr6XdKuCqZS248YI5+EBXM+741Vv44/v9ODowoahNkQk+SZOr7M/bNP6pKGJxsSgGQzm8RXPZ4sas7SU5fHtvobJGsrVpgER1pM8/heODQUViRKlwLBU2X7MUH1nVjlAkjrgoIhZniInJj7iImMgQFxmi8cT0SkxkcNmt2FiAqlUm3FLWSHkv29RrIeFVy5qx78wYHttxEn92YUfard+VCokRA+F+kbnJK73l7UkxotA3kkpfNe5laqxOiBG9fCP9ySuIfNo0M+mo8+CJv1qLH7x0FA+9dAS/3XMWe06N4oL5dfjv/b2Syx0ALphXi00XdODD57VJggBI7Bb54/v9OJLnfhylJ7had6IywlhijX1DkU+ISkd65fDKyPGhIMKxuOatt0rIlDEiZ2GTFzuPDyv2jZitMiIIgjT+aRb4RE25R8Lr0aYBgP+1dj7+bdsxvN/rx6tHh/K6MCo3SIwYyNlkxsjc+qQYSY4EKp2oCcmmaYyCj/cO6zRRo1ebZiY2qwWbr1mKSxc14K4n9uH4UFDa4jq33o0bV3fgxtVzMpY+eZx3vsv6BhWKEZvVghqXDf6pGEZDxRUj45NRvH1mDABwuUK/CAC0+VyodtkQmIrh2EAQy9v1H2nlZMsY4UgL8xSO95qtMmJGUgZWbQZzs6CXsK3zOnDTRXPx2I6TePjlYyRGZJAYMRCevsr3fPA38wM9fjDGcpboQsmcEUMrIzpP1HADqxEplQCwdmED/vuv1+Of/3AIggDcuHoOLpxfl/NnubgpccV5LO/KCB8VzT2dUed1wD8Vw1iRJ2p2JiPgFzV50V6bOQJ+JoIgYFlrNd48OYpD/X5DxUi2jBEO90YoHe81W2XEjPDKSLm3afQco/7c+k784vVTeO3oMPafHce5Hco8XGbl5cPKttWXvsXcxPD0Vd6mWdxcBYfVgkA4JpWks2Hkxl6O3mIkFXhm3K6MOq8D9286F9++8VxctKBeUd91UXNqGiOfVFS+x6dRwZtSary3uCZWNSO9MymUiZX/PczJIpZ4ZeTkcFBRENugTumrRGYqZXOvntuRO+o8+OiqdgDAw9uP5f14pcyxwQl86T/2KbotiREDkTwjyTaN3WrB0tbE1Z2SVo3kGTFQjDTomMIajsWlE72RYkQLHodNOtHl06oZDibFSJb0VQ4PPiv2eO+rCvfRpKOrtTAL81Lm1cwm6o46N+xWAVNREb3+3Ps9BlUIR0IbqcpI+YqRSEyU3tf0Wkj4V1csBAD89/5enBpWt+LATHznvw8qXhVAYsQgpqJxycw5VzYdwH0jSkysqcpIAdo0gfxPmHz8zWG1SCfiUiJf34goMkV7aTj1JRB8dmo4iNMjIditAtYubFB9fx4Lb7wYyZwxwrFZLZiXFPbHB3O/hrylRpUR45A8I2VcGeEXanarIBnT8+Wcthps6GqCyIAfv3Jcl8csNXYdH8YL7/crnt4jMWIQ/M3V47BOiw2XxIiCykiwAJURPds08kTIUhxZy1eMjE9GEeOJngoqI6XQpuEtmgvm1WnyHvHpjt7xKVUbp9WSa5KG0yntqMl+NRkXGUZ4FUuBcCS04amAzb28RdNY5dR1Lcfnr1gEAPjt7rO6pmCXAqLI8O3nDgAAPrEmfS7UTEiMGIR8rFd+Yl6ezBd5vyf3foJJg3NGAKCpWt0+jGz0jes/1qsnS5Ji5MiAtqt8/obhc9sVJeiWQpvmVT7Su1Sba9/ntqM9GRJ3uN+46kiujBHOIoU7akaCEYjJHUJKhCOhjUqIgzdqB9DahfVYNbcW4ZiIn+84qetjF5vfv9ODt8+Ow+uw4gtXLlZ0HxIjBpEa653+5rqsLXGl2TM+lfMkFZTEiPFtmsBUDOFYfm8o/X5jJ2nyhVdGtE7UpMZ6lV1pF3tzbywuYsfRRAT85YvV+0U4RptYp2eMZBcjqfHe7GKEn0By7RAi8sPlKH8xwiu+TTr5RTiCIOALVya8I4/vPIVguDwmkqaicfzz84cAAF/YsEixZ4vEiEGkxnqnl51rXHap730gh28kFOahZ8ZVRnxuO+zWxJt1vlkjXIwUa3FXLrgY6Rmf0vSHn0pfVfb8+H6aYm3ufftsIgK+1mPHyjnaxwdTJlblSx7VMD1jJLsYWSiN92YXlJQxUhg8FeAZ4V44I97Xrlneis5GL8Yno/iPN07r/vjF4PGdJ9E9NonWGhc+e/lCxfcjMWIQM8d65axoV2ZiLYSBVRAEqYydb9+Si5FSbdPUehzSyemYAgPkTIZUjoryNs1IkSoj2w+rj4BPh9EmVt6iaa52wpUj4I9XRrrHJrOOk1LGSGFwV0RlxJg2DQBYLYI0WfPTV09o3k5eKowGI/i/LyW2o//NxqWqYilIjBjEzLFeOUpNrIUY7QX0G+/l00Ol2qYBgMXJvJEj/drFiNo2TbFCz149mhzpzaNFA0xv0xix+lxpiwZI/OyrXTYwBpxK7n5KB2WMFAZXBVRGBqU2jTG/SzeunoPGKid6xxOLPs3MD146gsBUDOe01WDTBR2q7ktixCDOjExPX5WzXHVlxFgxotd4b6l7RgDZRI2WykiAp6+qb9MYcRLPxvhkFPs0RMCnY1FTFWwWAYGpGHrHc+d7qEVJxghHEAQsTFZHTmSJhVcTTkdoh/vZyjlnJGVgNeZ9zWW34i8vXwAA+Pftxwr+XqEXJ4eC+OXrpwAAX7v+HNXVWBIjBjA+GZXGINO1abgYOTIwkbXUzP/AvQa2aYDUyTXfiZqUGCndE8DiJu3jvVJlROEJrjbZpomJDIECm9N2HhtGXGRY2ORVdJLPhsNmkdojRrRq1FRGAJlvJIuJlSojhaESEliNbNNwPn3JfFQ5bTjcP4Gth5TFp5ca//yHg4jGGTZ0NWm6ACIxYgDcL1LvdaTNdmitcaHOY0dcZBnbBYwxqU1j5GgvkMphyKdNE5iKStM/pVwZWZLMzdAkRpLTTw1eZW0al90qvVkXerz3rdOjAIDLFuVXFeEYOVGjNGOEI03UZBnvTQlHyhgxErcjcQop1zaNKLJUZcTAiyyf244/v2QeAODhbeYLQdtzagTP7e+DRQDuve4cTY9BYsQAzkoZI+mv9ARBkLVq0ueNhGMieIqux8BFeUDq6jGfaRruF6l22gxd7JcvvE1zajioepRZS+m/3luc4LPu5Ak+0xZjtaRMrPpP1CjNGOEsbOJtmiyVEW5grSpdYVwOuO3l3aYZDUWkoEOjJ7P+8rJO2K0C3jg5gj2nRg39XnrCGMO3nk0EnH3ywrnShYtaSIwYQMovkvlKb4UUfpb+zV3+x+3OMWGQL3qksA6U+Fgvp7naiWqnDSIDTg5lNkDOhDGmepoGSLVqCp010jOe+B1sr9XnZMzHe/WujKjJGOGkKiNZPCMqYvsJ7XA/21SZipEBWV6N3Wrs6bLV58IN5yfSSv/9ZfMs0Pvvd/vw1ukxuO1WbL5mqebHITFiANkmaTi5dtTwHAyX3WJ4aJMeYqSPj/X6SvtKVBAELG5R7xuZCMcQjiXG7tRcIXETa6HbND1jXIwoO8HngldGjg1O6Dp+qCZjhMPFyGgomvbnGo2nFpuRZ8RYyj0O3qj01Ux8PhmC9sKB/rwWehaKSEzEd/77IIDEsTfn0aInMWIA2TJGOLxNc6A3kHYdOv/jNjJ9lZPyjOTfpmkxyHGuJ9zEqiYWnv9svA6rqummuiK0aaJxUbqia/PpI0bm1LrhdVgRjbOce2HUoCZjhONx2NCWFL3pTKxciFgtgiQGCWPgr1lMZIjESi8j4+RQEAfzaC0OFDivZnFzNa5Z3gLGgB9vL33vyC9eP4XTIyE0VTvx/61XHnCWDhIjBpBKX818IljY6IXDZsFEOIbTI7PbBbwyYrR5FUjt7hgNRRDTeNUrTdKUeGUE0LYwj1eNlKavcnjwWSGzRvr9U2AssT1Zqdk2FxaLgKUGhJ+pbdFwsvlG+NVsg9eh62IzYjbyFnKpVUdEkeGmR3bihh++JrWR1SIt/yzgRdZtyerIU3u7pffVUmQ8FMX/fekIAOBvrlmat1dQtRjZvn07PvKRj6C9vR2CIODpp5/OeZ+XX34Za9asgcvlwsKFC/Hwww9rOVZTwBhTVBmxWS1S6Ttdq6YQS/I49V4HLALAWOqqUi2SGDFBroMWMTKsMvCMk9rcWzgx0jOWeC3aal26noyNSGJVkzEiJ5tvRBrrNcHvotlx2CywJX/HSm2898xoCP3+MKaiIl5Jbq9Wi5FR8JlYM78eFy2oQyQu4mevnSjY91XLD7cdxVgoiq6WavzZhXPzfjzVYiQYDGLVqlV46KGHFN3+xIkTuP7667F+/Xrs3bsXX/3qV/GlL30JW7ZsUX2wZmAwEEY4JkIQcvfAsyWxFmJJHsdqEaSpD61ZI2YIPOMsaU6cVI8PBRFP0yJLx+CEusAzTr20ubdwbZrepHm1TecqVVeL/uO9misjjQlBma0yQntpCgOvjpTaRM1hWWzCa0e1iZHUVFZhf5c+f8UiAMCvXj8N/1Rxdltl48xICI+9dhIA8HfXL9PF16j6THfdddfhuuuuU3z7hx9+GPPmzcODDz4IADjnnHOwe/duPPDAA/j4xz+u9tuXPNy82lbjyrlmPtuOmkJljHAaq5wYmoho9o1InhETtGnm1LnhtFkQjok4MxLCAgXjr1oTPYuxuZdXRvQyr3KkhXn9+o33qs0Y4XQ2Zc4aGaLKSEFxOawIhGMlt5/mcH9KNL96dAiMMQiCupNmITJG0vHBZc1Y0lyFIwMT+H+vn8YXNiwq6PfPxb/84RAicRGXL27EhqVNujym4Z6RnTt3YuPGjdO+9qEPfQi7d+9GNJpe8YXDYfj9/mkfZkHJWC9HyhpJUxkJFbAyAqSuIoc1VEZEkUm9VTNURqwWQUrxVNqq0boFNtWmKdzVjTRJo5N5lcPbNGdGJjGhU6Ks2owRjhQJPxycZQCnykhhSU3UFDZlOBdyMTIQCOOIhumUYnhGgIRH6/NXJgTIz147oToTyUj2nRnDM2/3QBCAe69fplrgZcJwMdLX14eWlpZpX2tpaUEsFsPQUPrS2f333w+fzyd9zJ2bfz+qUEh+EQVipKu1BoKQGIudKQJCBfSMACkvhJbx3pFQBNF44oRQqBG4fFnSzCdq1IoRdZ6ROqlNU7jKiNSm0SljhFPndUivr/yNXitaMkY4HXUe2K0CIjER3UnxxeHVPaqMFAbeppmMlNY0DW/T8ON7VYNvpBBR8Jn46Kp2tPlcGAyE8fEf7cBPXjku/W0XC8YYvp0MOPv4BR1SXpYeFGSaZqZy4ouAMimqe++9F+Pj49LHmTNnDD9GvZAyRhSUnaucNixoSFzhzWzVhJJXnl5n4do0gLbxXu4XaawyPhhIL9SaWIc1ekbqimBg7TaoTQOkYuH1MLFqyRjhWC0C5jekn6jhW1bVCkdCG+4SzBqJxUUcS/5tb7ogESSm1jcyEY5Jv5/FELYOmwX3JhfOvdvtxz89ewDr7n8Jn3x4Jx7feVKqABaS3adG8cbJEbjsFvzNRu0BZ+kw/MzR2tqKvr6+aV8bGBiAzWZDQ0ND2vs4nU7U1NRM+zAL2bb1piOTiTWU/MPmcctG0yBt7lX/Cy45zk2QMcJRu71Xa5uGe0bCMbFgPXV+9aR3mwZImVj1ECNaMkbkLMwwUUOVkcKSMrCWTpvm1EgIkbgIt92K/3lRYufL68eHVQX28XFgr8NatBUXH13Vjp33fhDf+NgKXLSgDgDwxskR/P3v3sMl334Rn/7J6/iPN04XrPK6/2xifcmVS5t0yzDiGP4TXrduHX7/+99P+9of//hHXHjhhbDb7UZ/+4KjJH1VzvL2Gjy7v7cEKiPap2nMkr4qh7dpjg1MKDK2SfHiKq+2vQ4r7FYB0TjDSCiCOQ79BYKcUCSGsaQ/Re82DSBfmJe/j0tri4bTmSFrpFgTEJVKKW7uPZJsIy5pqcKK9hrUeewYDUXx9pkxXLigXtFjSC2aIvvgmqtduGXdAtyybgF6xibx3P5e/P6dXrx9ZgyvHR3Ga0eH8b+ffheXL2nER85rxzUrWlDjMubcyoMil7Zo2z+TDdWVkYmJCezbtw/79u0DkBjd3bdvH06fPg0g0WK55ZZbpNvfdtttOHXqFDZv3owDBw7gZz/7GX7605/i7rvv1ucZlBDRuIje8cSJWUmbBshSGUleRatJ+8wHPiWST5umpcT30siZ3+CF1SJgIhyTxFQmpqJxybCpdppGEISCRsLzSZpqp82QN6RlfKKmLyC1W7WiNWOEsyg53itPYQ3H4hifTIgxqowUBqlNU0LTNIf6EtWyJc3VsFgEXLo4sb36VRWtmsECp68qob3Wjc+tX4jf3X4Ztv/tB3DPtV04p60GMZFh26FB/M1v38aF//Qi/nt/ryHfn2+ZX1IKYmT37t1YvXo1Vq9eDQDYvHkzVq9ejb//+78HAPT29krCBAA6Ozvx3HPPYdu2bTj//PPxzW9+Ez/4wQ/Kcqy3d2wKcZHBYbMoNjzx8d5jgxPTriy4GPEWaJqmKY/9NGbKGOE4bBbMb0icBHP5RvibksNmQbWGci0XI2MFmKgxyrzKWdJSBYuQ8Hvk27PWqzIiH+/l3h67VYDPXX6V11JEatOUUGXkcPIKvqs1IVgv52JEhYm1mOZVJcxr8OCLGxbjv/96PV7cfCXuunoJ5jd4EImJeGpvt+7fjzEmGdd5ZVlPVL+zbtiwIesV0WOPPTbra1deeSXeeusttd/KdJyRjSkqTb5sqnaiscqBoYkIDvUFsGpuLYBU/7VglZGkGBkJRiCKTFVyp5QxYiIxAiR21BwfDOLowATWL8k8Kz+crGg0eh2axtgKubm310DzKpDYRbKgwYvjQ0Ec7AvkVcLWmjHC4Z6RnvFJTEXjcNmt08Z69Ro5JLJTipt7D/fxNk3iCp6Lkb1nxhCYiqJaQdWwWGO9WljcXIW7rl6KixbU49M/2aXLtNtMBgNh+KdisAipdQx6Yo7RB5OgJAZ+JoIg4Jxkq+Y9WasmWODKSEPSCxEXGcYm1V3Bm7FNAySu8oHc471aA8849QUMPuNjrnqby+ToNVGjNWOEU+91oMZlA2PAyeFEdUSr0ZjQDhcjpZLAGomJko+Iexvm1nswv8GDuMjwxokRRY8z6C+9Nk0u+PM9NRLS3VDMR6UXNHjhtOl/kUxiREdS5lV1b65S+FnvuPS1Qu6mAQC71SJdwatt1ZixTQMoH+/N9wQnBZ8VIBI+NUlj3GuRMrFqFyP5ZIxwBCEVXnci2aopxT5/uSPljJRIm+bkcBAxkaHKaZv2d3CZSt9Iqbdp0tFU7USD1wHG1O3eUgI3r/KLOL0hMaIj0livyrJzOhNrsMBx8IAsa0SFFyAaFyXTq+nESFPipHpMsRjRlltRV8A2jVFR8HJ4Ems+peB8MkbkSOO9QzMrI5QxUihKTYwc6kudNOWtOt6qUZo3Uqwo+HxZasAOKSBVGeG7vfSGxIiOqB3r5XAT68G+gLS4jVdGCjnf3qBhWR6/erBbBdR7zHUCWNScOJENByNZtxUPaQw84xQy+KzHYAMrkNpRc7g/oHjR4EzyzRjhLJxhYqXKSOHxlNg0DR/rXTrjpLluYQMEIXFSHcgxQQeYyzMih1cuD+ssRo5SZcR4nnzrLH75+qm8H0drZaSzsQouuwWhSBynkr3vYLiwBlZA23gvb9E0V+u7rr4QeBw2zElelWcrafKr7QatYsRbmP00jLGUgdVAz8i8eg9c9sSiQf77qpZ8WzScTmm8N/H65SscCfW4Sqwywq/gl7ZOFyN1XgdWJuPLc7VqIjFR+ns1U5sGkHm6dDSxJiZpqDJiKGdHQ9j8m7fx9affxTGFaZzpmIzEpZOWWs+I1SJI+Q08/KzQo72AtvHeAZOaVzlKfCN6tWnGDK6MjIWi0gnByAA6q0WQSsFaTaz5ZoxwFs4IPqPKSOHhyzxLpTLC24dL01zBK/WN8Oqw3SpIXjqzoOfKBs7gRBjjk1HDJmkAEiN4WjaPrXZ3gRzeoql22TTlG3AT63s9fkRiImLJ8ndBKyN8WZ4Kz0jfuDnNqxxlYiQZL56vgdVgMcJbNI1VjrxaH0royrMvrVdlhO92GgtFMRKMSMKR0lcLh9uROI2UQmVkKhqXJqvSpYSuX5LyjWSLqOAXWU0mHBHnz3sgENYtaPFosioyv8Fr2HtLRYsRxhielIkRLVsdOfKxXi2/vHITq3wkqxgG1mEVv8D9AXNmjHBS23szn1Slyki+o70GT9PwFo2RY70cfvX1Xo+2WPh8M0Y4bodVmpg4MTSRyhmhykjBkNo0JVAZOT4YhMgAn9uetr2yZn4dnDYL+v3hrJVwqcJmwve1KqdNEvl6tWp4tWmxAWFnnIoWI2+fHZ+W3rjz+DBiKhYpyZHEiMoWDSc13uuXWjQOq6WgW3AbNbRp+sukMpJpoiYaF6XkVO0G1kSlbCIcQyRm3Jp1XhlpN9C8yrmkM7HkcvvhQU1JrPlmjMjh473v9wYQSHqtqE1TOKQ2jcrKCGMMP95+HC+836/bschbNOkuCl12Ky5K7qbJdvFpxrFeOXoutARSWUzpWl96UdFi5Mm3zgIAPnxeG6pdNgSmYnhX45XemVFt5lXOstZqCEJCkZ8aTrxRewq0JI8jGVhVnFz6A+XhGekZn5JMw3L4lI3VIqBWY7x4jcsO7u0dmzSuVdNTwMrIuR0+rJ5Xi0hcxP/bpc78rUfGiJzO5HgvD7PSGttPaMOtsTKy59QovvXcAdz1xF5V23SzkRIjmU2WKd/IcMbbmF6M6GxiPWKweRWoYDESiYn4/ds9AIA/u3AuLl2UuNLT6htJVUa0iRGPwyZlJuw5lXhT9Rjc958JH+0dmogoXoLGo+BbTVoZqfU4pIpHurItv+qv9zo0TwtZLEJBgs944NkcAzNG5PzFZZ0AgF++fhrhmPITkV4ZIxxuqHvjROLkYsY+v5nRmjPyWlIMBCNxze2+mSgRIzxv5PXjwxlF0KBJx3o5eppYGWPSrh+jxnqBChYj2w4NYDQURXO1E5ctatC0SEmOVBnR2KYBgOXJsbM3T44CADwFvrrjpe1IXIR/SlmUMG/TFHvNdj4sTuaNcPUvR6948ULsp+nhUfAFaNMAwHUrW9Fa48LQRBjPvqN8S6heGSMcXhnhwpj8IoVF2tobjava5LzjWOq99k2FEe25kMZPs5w0l7fXoNZjx0Q4hnfOjqW9zYAJo+DlyLNG8t2uPTQRwVgoMUmzqInEiO7wrYYfO78dNqtFKt3tOTWqutzIGMNZDXtpZsJNrG+dSoqRAppXgUQ/tSopgJT4RoLhmNSjN2ubBpBN1KSpjKRyK/ILdEtt7i2PNg2QWCFw87r5AIBHXzup+E1PzxYNMPsNkiZpCgsXI4wBYYWeqMlIHHtPj0mfv3EyfzESisSkqcauLJURq0XAZYv4xWf6Vg0f7TVrm2ZhYxVsFgGBcAw947kD3rLBzf2JfCHjzkkVKUbGQhH86cAAAGDTBR0AEldX7T4XInERb6r8wxgLRaWTcj7TAdzEyh+r0GIEUDfeywPPvA6roi2YpcripszjvXqNinIT64hBbZq4yNCXfD0K1aYBgP950Vw4bBbs7x7HW6dHFd1Hr4wRTnutGw5b6q2sqdpcScBmxy07QSm9kNtzahSRuAhbsvW5++QIRI1pvpyjAxNgLNFuzhVQeFmOaHheGTFbFDzHYbNI7ctDffm1wHjFeLGBfhGgQsXIf73Ti0hcxDltNdLGXEEQcv6CZoKr8aZqZ165ILwywvEUMPCMo2a8l5fFzTpJw+FrxtOKkQBPX9WnMmJUm2YwEEZcZLBZhIKWlhuqnLjh/HYAwM9eO6noPnpXRqwWAQsaUsKGKiOFxWoRJDEYUugb2Xk88R577cpWuOwWjIaieYVOAspaNBzeln/r9Ogs47ooMukixKyeESC1tuFQX34/V14ZMXKSBqhQMcJbNJtWz5n29cuXqNvqyEnFwOf35tpU7Zx2IilOZUT5eO9AwNxjvRzepjk1HJxlxOSiLF/PCI+EN6pNw8d6W2pcsBY4lp8bWZ9/t0/yrWRDr4wROdw3ApBnpBionajZcSzRHrlyaRNWz60DkH+rhu+kydai4cxr8GBuvRsxkUlTWJyRUAQxkUEQ8r8IKSZdSfGQb2VEjcjLh4oTIyeHgthzahQWIeEXkXNpso/4Xo8/6+K0mWhdkJcOvjQPKJIYqVbepkmlr5r7zb+52olqpw0iA04Ohab9m/4GVmPaNFwEFCJjZCbntNVg7cJ6xEWGXyjY8aRnxghnocw3QpWRwsPfq6YUVEYCU1G8c3YcALBuUQMu6kzkfuRrYuVjrEsUiBEgVR15ZcbQAm/R1HscBc150hupMpLGmK8GXjE2cqwXqEAxwhNX1y9pmjUB0lTtlNajy53euTijg3mVI2/VFKNN0+BNvJEPKliWVy5tGkEQsLglfRKrXome9dJorzGVkUKmr6aDV0f+443TWa+O9c4Y4VBlpLjwykhIQWXkzZMjiIsM8xs86Kjz4OJkCNnMCoVauLehq1XZSTNTW56bV806ScPhFaJjAxOac1yGJsIYCUYgGDxJA1SYGGGM4am9iaCzTRfMSXsbLb4RPcZ6OcuLXhlR3qbp95dHmwbIbGLVa5rG6P00qfTV4oiRq89pQUedG2OhKH63rzvj7fTOGOEski3vospI4VGzuXdHMl9k3cJEttPqebWwWgT0jE9JVTO1BKai6E5WB5cqvIK/dFEjBCFRUeEtZyC1l8bMcQVAQux7HFZE4tq3a3OBN6/eY/ietIoSI7tPjeLMyCS8Dis2Lm9Ne5vLFW51lKPHWC9HXhnxFiFFsolP01SaGEmzMC8uMowE9WnTpDb3ll+bBkiYGD+zbgGA7GO+emeMcBY2VkEQAItg/itaM8IvnJR4RnYeT4qRZNCk12nDyjk8Y0lbdYTHlTdXO+FTuGW33uuQ2uI7ZGmsZk9f5VgsgtSy0rrQkleKlxi4k4ZTUWKEx79fd25bRpV3cWc9bBYBZ0YmcXo4t0oXxVTZWQ/PyPwGr/SH7S5wAiugzsDKo+Bbfeb+owXSi5GxUAR82pAvu9MKv/+IQZWR3vHitmkA4JMXzYXHYcWh/gB2Hkuf32BEiwZIGIT/6YaV+Kcbzi2KiK90UsFn2cMSR4MRvN+bMFRyMQIAFy9ImlhPKBsPn4lkXlXYouFclubic7BMxAgALGtJhZ9pQYqBV+jDyYeKESNT0Tj+K5kSmalFAyRU+gXzEn8YSqoj/YEpROIirBYBbb78r0qtFkHyrVQV4U1VGu3N4RlhjEmeETOPv3G4Oev4UBDxpALhLZo6jz1vIxtv04xPRqXH15NiV0aAxKbUjydzezKN+XYbMEnD+fQl8/Hnl8zT/XGJ3KSmabJ7E3adGAZjiStt+fsGX16ntTLCx1fVmiwvl7XleTWPt2zKocK2tDW/ygiP16fKiI786cAAAlMxtPtcWNvZkPW2anwjfKy3vdYFm07O6zs/uAQfWtGCDyxr1uXx1MA9I6FIHKFI5qucsVBU2kBr1mAgOXPq3HDaLIjERMmQrNckDZCapmEM8E/q26oJx+KScGovYmUEAG69bAEA4E8H+9P2qY2YpCGKD6+MZHvPAFIjvZcumv4ezMXI0YEJVZOMHK1ZGBctqIfDZkHv+BSODyV+XwfK6CKLX9ge1rgw76i0rZcqI7rBWzQ3rJ6Tc+HZ5UuSS/OODeVMBdRzkobzgWXN+PebLyyKMvc6rHDZE78WQ4HMbwo87bPe64DTVvh2kt5YLYI0Hsr/APUUI3ZrapOs3iZWPmLtslsk0VMsFjVV4cqlTWAM+PmO2WO+RmSMEMWHV0ZyjfZyMbIuGaPAqfM6pKtvLdURaUGeyjaNy27FhfOTlfDkiK8UBV8GF1lcRJwaCeUUijMZnghjuECTNECFiJGhiTBePjwIIHuLhnNeRy2qnDaMhaJSfzMTUsZImby5CoIgnXwHs/hGuHm1HPqqHP5myM1wgzqlr3J48JneYqR7LDVJUwrbanl15Le7z2BiRrqlUZ4RorjIl+VlYsA/haMDExAEYO3C+ln/rjVvZDwUlVrGWtoJ8rBLxpisMmL+97amaicavA4wlj5hOhv8fbCjzm34JA1QIWLk92/3ICYyrOrwKcrXt1st0h9LLt+IlL6qw1hvqdCgwMTK/2BbdfDJlAozTax6pa9y+ETNqM77aXjGSLFbNJwrlzRhYaMXgXAMW/aclb6eyBihNk05oiRnhE/RLG+rkTxUci7W6Bvh6+3n1Lo17cjivpHXjw1jfDIqCapy8IwAqeqIWt8INwUrHZXOl4oQI0++lcg9uHF17qoIR6lvRM/01VJByXgvb9O0lEFflTNzey9PodXrTcmorJHeZMaIHgZqPbBYBKk68tiOk1KrcywURdCAjBGi+Chp0+zM4Bfh8MrIuz3+WftisiGZLDXGla9o98HntiMQjuHF5ALVKqetKKGTRsAnjNRO1PDKyGKDY+A5ZS9GjvQHsL97HDaLgI+sas99hyRcLb9xYiTrHxjPGCmnHrg03pvFMyJljJTICVAPeIn32MAEGGMyz4g+bZp6w9o0ycpICZ3gP35BB6pdNpwYCkotUt6i0TtjhCg+bgU5IynzamPaf59T68acWjfiIlO8ARpInWS1miytFkESSDwUsxxaNBxuYj2k0sTKx3qpMqITPP59Q1dzzrXSchY3V6G52olwTMRbp9L/YYRjcfQmT8rzyqgyoiRrJBV4Vj5/tPMbvLBaBEyEY+jzT8nSV/WqjBizn6Z3vPhjvTPxOm246cK5AICfvXYCAE3SlDOpaZr0YuTMSAinR0KwWgSpApKOizX4Rvgit3wmPnglnAumcmnRAClT7yHVlZH8Kk5qKWsxIooMT/MNvQqMq3IEQciZxtozNgXGEiVKva6eSwH+XIaD2cRIci9NGbVpHDYL5idX0R8dmJDEmBoRm406jzGbe3tLsDICAJ+5dAEEIbGI7OhAgCZpyhh3jjh47hdZ1eHLmp/ER3zVbPDVY8U9f6/nwcFmj4KXw0XaQCCseDfWSDAiXYwtLkDGCFDmYuT148PoHZ9CjcuGD2rI7MjlGzkzkrrSK4UpBr2Q9tMoaNOUk4EVSO2oOdI/IQW/6SU0uYFVS45CNnjgWTHTV9Mxt96Dq89pAZDwjlBlpHzJFQe/UxrpzZ7xdHFnYsx27+kxKccoG8MTYV1Omomlfanfy3Jq01Q5bdJzU2pi5ebVxH6bwnhnylqMbEkaVz+8ql1Tj5qLkXe6xzGeprRejuZVIHebJhYXpX8rh1l8ObwkuffMGCLJTZe6TdNInhH92jT+qSgCSbNfKbVpOH+RNLJu2dON93oSY/JUGSk/si3KY4zJzKvp/SKcRU1VqPc6EI6J2N89nvP7HpYtcsvnpCmvhAPl1aYB1IefHSlg2BmnbMVIKBLD8+8m499VTNHIafW5sLi5CowBO4/Pro5IY71ldqXHKwGZckaGJhI7W6wWAY3e8vqj5VdXryfLytVOm25mSyPaNLxFU+uxl6T7f93CBixrrcZkNI7dSe8VVUbKD/67l06MnBgKos8/BYfVgjXJgLFMCIIghZApGfGVws508DVcJhMj5VQZAdSP9x4pYAw8p2zFyB/f60cwEse8ek/OP4BsZPONlHtlJDAVSztJ1CcLPMuVZms2Fjcl/mh54Fmjjm9KRhhYe8ZLs0XDEQRBqo5wSIyUH6ndNLPfL7gp9IL5tYqEvRoTa0qM5H8FLx85LocoeDldGisjhViQxylbMbIlGf9+4+o5efk5Ur6R2VtIy3GsF0gsPLNbEz+z4TT+Bil9tYxMXpxFzd5pnzfkua1XjjTaG4xIS7nyJRV4VrqvxcfOnyP5ZYDSM9oS+eN2JE4l6SojSls0HG5i3X1qNOc6jiM6TNJwGqqc+NCKFtR67FjRXpP345US8qwRJe89vP1FlZE86fdPSaZTtVM0M7lkYT2sFgEnhoKSAY9zJjkdUE5jvUDiarbBy02ss1s1A9y8WmZ+ESBRbp4jO1nq5RcBUm2amMhmxaRrpUcWBV+quOxWfOrixDZdyhgpT9y8TTOjMiKKTJqkyRR2NpMV7TXwOKwYn4xK6arpYIxJ2Rl6jZ/+26fXYM/Xr5H8XeXCwsYq2CwCAuEYepK7rDIxGoxInsBCTdIAZSpGfrevGyIDLpxfh/kN3tx3yEKNy45VHT4AwA5ZdWQiHJOmIsopCp7TWJ15vFdKXy3Dyggw/Q+Q/xz0wGVPLSEc06lVI7VpStC8KucvLuvEqg6fJEqI8oK3acIxEXFZNePwQAAjwQjcdivO66hV9Fg2qwUXzEu01t/I0qoZDIQxPhmFRcdFblaLAGuZtZ6BRGzBwqbEufBQX/Z9a7xFM6fWDW+WMWy9KRsxEomJONDrx9N7u/H/dp0GANyYZ1WEk843wsd6az12TfsQSp1sKaxSxkgliBEdKyMAUJ+sjug13svbNHNKuDICJKYTfnfH5fjyNUuLfSiEAbhl1S65z4xfwF3UWQ+HTfnphvtGsokR3kpY0OClapsCuloTradDfdkX5umR26KF0rPf50AUGc6OTuJQfwCH+vw42BfAob4ATgwFEZMpcqfNgg+fqzz+PRuXLW7ED146iteODkEUGSwWQRIj5bKtdybZNvf2l3llZImBYqTW40DP+JRukfClbmAlKgNe8QMSvhF+Rb0jxz6aTFwkW5rHGEvr+9O7RVPudLVU4fdQUBnpL7x5FTCZGPnUI6/jpF+Ulm3NpNplw7LWaixtqcZ1K9vg8+hTsVg9rw5uuxXDwQgO9QdwTluN5BcpxxYNkD1rpByj4OUYWRmp8yZ+J/Vo04giQ2+y/1sqS/KIykQQBLjtVkxG45JvJBYXsUulX4Szel4t7FYB/f4wzoxMYl7D7Is+Pn7aVeCTplmRKiP9yiojhTSvAiYTI/u7x2FxeuCwWrCouQrLWqvR1VqNrpbEf9t8LkOSUB02Cy5ZWI9thwbx2tGhhBgp+8oI39ybuU3TWqaVkeliRF8jm56be4eDEURiIgSh/JJwCfPhcSTFSLJN816PH4FwDNUuG1a0+1Q9lstuxblzfHjr9BjeODmSVoyktvWSGFECF23HBiYQjYuwW9O3zQ5TZSQ3D/zZebhgcTsWNHhhy/CDNIrLFzdi26FBvHp0CJ9bvzAVbV1mkzSclGdkemVkKhrH+GTiqr4cR3uBhGBY2OTFmZEQFjTmZ4CeCfeMKN0RkQ2+IK+52pnxjYUgCgX3bfBlebxFs3ZhgyZT6EWd9Xjr9BjePDGCT6zpmPZvjDFdx3orgUS0uxWhSBynhoNYnGYb71goImUsFXKSBjCZgfXalW1Y3FxdcCECpPJGdh0fQSQmSumr5TbWy8nUpuEtGrfdihqXqbSsKp74/9biuS+t179No2PwWc8Yb9GUZ6uQMBfuGftp+EjvuoXqWjSci2W+kZn0jk8hEI7BZhHQqfMFQ7lisQhStSNTEqt8kibbQkMjMJUYKSZdLdVorHJgMhrHW6dHcVpq05TniYCPtM4UI33jKb9IOS0HnElzjcuQMqWebRqeMVLqkzREZcCX5U1F44jERClB9dLF2sTIhfPrIQjA8aGgdLXO4ebVzkavqimdSmdZSyr8LB282lToqghAYkQxFosgJQg+83YPJqNxCAIwp1zFSLIiMBqKIhZPbc/sD5T3WK/RSCmsOoiRXmmShl4LovjI2zRvnx3DZDSOBq8DS9O0A5Tg89gln8PuGdURbl5d2kotGjXwn1emyoieu37UQmJEBTxv5Jl9PQCAlmoXnLbynG+v8zjA27zyTIyBMh/rNRppP01QhzYNn6ShyghRArhlm3t5vsjaRQ157a/iI767ZuSNcJOlVqFTqeTa3nuU76Qpws+VxIgKLluSECM8yrtcx3qBRBJhvXd21oi8TUOoR8/Nvak2DQlDovjwNs1kNI4dxxIBkWpHemdyUWd630gxr+DNDN9Rc2okhFBk9kqKw0XMbiExooI5te5pZqlyHevlpBvvpTZNfvA2zYgebRoysBIlBK+MjAYj2Ht6DIDy5XiZ4CbWA71+BKYS1URRlE3SUJtGFY1VTjR4HWAs5Q/hjIeiGCjSJA1AYkQ1l8nMWOU61stJN97bP05tmnzgbZqpqDgtNlst0biIgUByYy+1aYgSgE/TvHp0CJG4iNYaFxakyQdRQ6vPhXn1HogM2HNqFADQPTaJyWgcDqsF88v8PdgIeHXk0IxWDQ87a/e5irLihMSISrhvBCjfsV5OqjIiEyPJEyCFbGmjymmDLdlDz8fE2u+fgsgAh9WChjLbMEqYE14Z4aLh0kUNukzcXTRjxPdQ0ny5sKnweVPlAM9lOdQ3U4wkJ2mKlNtCr6RK1i1sBP/7KtexXs7MrBHGWMozUk1iRAuCIKTGe/MwsfIY+FafKy+DIEHoBa+M8K296/L0i3Au7kxs8H3zRELkHE5ewXdRi0YTmUysUuurCC0agMSIanweO/7i0k5c3FmPVXNri304htJYnRAjw0nPiH8yhnAsMebbTAZWzdR7efCZ9soIN6+2k3mVKBG4GOHoJUZ4ZWTf2TGEY3FKXs2TTOO90k6aIpmCyzdC00D+/iPLi30IBWHm5l7eoqn12Glldx7oEXzG01fbybxKlAhu2XvC/AYPOnQy+Hc2etFY5cDQRATvnB2X2gskRrTBf26DgTBGghHJVF+sbb0cqowQGZk5TUMtGn3QIxJeCjyjyghRIsjFSL4jvXIEQZCqI68fG8bRQV4ZobFeLVQ5behIWgy4sBufjKIvmSFVjEkagMQIkYWZnhG+l6aFzKt5IaWw5rEsL9WmocoIURrI2zRrNe6jyQQXI1veOotITITLbin7aAUjmekb4WFnbT4XaoowSQOQGCGywMXISDACUWQpMVJNfpF8oDYNUY7IKyN6+UU4FyfDz04OJ3aCLWmuJuN2HiydsTCPx+sXqyoCkBghstCQbNPERYbRUAT9fgo80wPephnToU1DlRGiVOCG92Wt1WjWuZV7TlvNtC2yxTJZlgtdMyojR4oYA88hAyuREbvVglqPHWOhKIYmItSm0QkeCT+isU0zGYlLfhPyjBClwuq5tXjwpvOxck6N7o9ttQhYM78OLx8eBEDm1XyRxEhfAIyxkojXp8oIkRW5b4TaNPqQ736anmRVpMppK1p/lyBmIggCblg9B4sNurrmrRoA0jZfQhsLG6tgswgIhGPoGZ9KLcgjMUKUKvIUVt6mofTV/Kjz5jdNQxkjRCXCTawAtWnyxWGzYGFTYs/a7pMjUoiiUUJSCSRGiKzwysiAPyzljZBnJD/yNbDSgjyiElk114clzVVYNbcWc8grlTddrYl22rPv9AJIbGL3uYtXaSXPCJEVLkYO9gUQFxksQuprhDbqk2IkMBVDNC7CrnK/Rs84VUaIysNps+KPX75Cl303BNDVUoXfA9hWIj4cqowQWeFtmvd6xgEATdVOWGmkLi9q3HZpv5GWiRqpTUOVEaLCICGiH7wyEkmu+CjmWC+gUYz827/9Gzo7O+FyubBmzRq88sorGW+7bds2CIIw6+PgwYOaD5ooHLwKwg1O1KLJH6tFkMqhWkysvL/bRqVqgiA0smzGokHTVUZ+/etf46677sLXvvY17N27F+vXr8d1112H06dPZ73foUOH0NvbK30sWbJE80EThYOLkVhyEyeJEX2oz2O8N1UZodeCIAhtzKl1wyNLzV1itsrI9773PXz2s5/F5z73OZxzzjl48MEHMXfuXPzoRz/Ker/m5ma0trZKH1Zr5kVr4XAYfr9/2gdRHBpnjPG20LZeXahNBp9xU7BSGGOp9FWqjBAEoRGLRZhWDSlm4BmgUoxEIhHs2bMHGzdunPb1jRs3YseOHVnvu3r1arS1teGqq67C1q1bs972/vvvh8/nkz7mzp2r5jAJHeGeEU4rVUZ04dw5PgDAL3aeAmNM8f3GJ6OYjMYB0Ig1QRD5wfNamqud8HmKm1mkSowMDQ0hHo+jpaVl2tdbWlrQ19eX9j5tbW145JFHsGXLFjz55JPo6urCVVddhe3bt2f8Pvfeey/Gx8eljzNnzqg5TEJHZk7ONJMY0YXbNiyCw2bBrhMj2H5kSPH9eFWkscoBlz1zdZEgCCIXy9oSYqSrtfghcppGe2c6mhljGV3OXV1d6Orqkj5ft24dzpw5gwceeABXXHFF2vs4nU44ndQOKAVcdiuqnTYEwjEA5BnRizafG7esnY+fvHoC//KHg1i/uFHR4i/uF6GMEYIg8mXT6g4cGZjAxy/oKPahqKuMNDY2wmq1zqqCDAwMzKqWZGPt2rU4cuSImm9NFJEGWauG2jT68cUPLEaV04Z3u/147t1eRffhC/LaqEVDEESe+Dx2fPvGc7Fmfl2xD0WdGHE4HFizZg1eeOGFaV9/4YUXcOmllyp+nL1796KtrU3NtyaKiLxVQwZW/aj3OvC59Z0AgO/98TBicTHnfbrJvEoQRBmiuk2zefNm3Hzzzbjwwguxbt06PPLIIzh9+jRuu+02AAm/R3d3Nx5//HEAwIMPPogFCxZgxYoViEQi+OUvf4ktW7Zgy5Yt+j4TwjC4GHHaLEWNCy5HPrd+IR7feQrHh4L4zz1n8T8vnpf19r2UvkoQRBmiWozcdNNNGB4exje+8Q309vZi5cqVeO655zB//nwAQG9v77TMkUgkgrvvvhvd3d1wu91YsWIFnn32WVx//fX6PQvCUBqrE22alhoXJSDqTJXThi9uWIR/evYAvv+nI7hh9ZysxlTaS0MQRDkiMDVzhUXC7/fD5/NhfHwcNTU1xT6ciuPBFw/jwReP4KIFdfjtbcrbcYQypqJxfPCBbegZn8LX/8c5+Nz6hRlve9l3XkL32CS2fOHSkujzEgRBZEPp+Zt20xA5WdSUSOYr5nrpcsZlt+Kuq5cCAH649SgCU+n31cRFhn4/94xQm4YgiPKBxAiRk+vPbcPjf3kx7r1+WbEPpWzZdMEcLGryYjQUxU9eOZH2NkMTYcREBqtFQHM1iRGCIMoHEiNETqwWAVcsbUKNi8yrRmGzWvA3GxN5PD955TiG08TEdyczRlprXLQ5mSCIsoLECEGUCNetbMW5c3wIRuL44dZjs/49ZV6lqghBEOUFiRGCKBEEQcDffihRHfnl66ekSghH2tZLGSMEQZQZJEYIooRYv6QRaxfWIxIX8f0XD0/7tx6evkrmVYIgygwSIwRRQgiCgHuuTRiF/3PPWRwdmJD+jbdp2iljhCCIMoPECEGUGBfMq8PV57RAZMD3Xjgkfb1nnNo0BEGUJyRGCKIE+dsPdUEQgOf292H/2XEAQA8ZWAmCKFNIjBBECdLVWo0bz58DAPjnPxxEOBbHUHLcdw5VRgiCKDNIjBBEifLla5bCbhXwypEhPPVWNwDAZbeg1kN5LwRBlBckRgiiRJlb78Gnklt8v/3cAQAJ8yotKyQIotwgMUIQJcwdH1wMt90K/1QMAJlXCYIoT0iMEEQJ01ztwl9ctkD6nMyrBEGUIyRGCKLE+fwVi1DjsgEA2qgyQhBEGUJihCBKHJ/Hjn/82ArMb/Dg2hWtxT4cgiAI3bEV+wAIgsjNjas7cOPqjmIfBkEQhCFQZYQgCIIgiKJCYoQgCIIgiKJCYoQgCIIgiKJCYoQgCIIgiKJCYoQgCIIgiKJCYoQgCIIgiKJCYoQgCIIgiKJCYoQgCIIgiKJCYoQgCIIgiKJCYoQgCIIgiKJCYoQgCIIgiKJCYoQgCIIgiKJCYoQgCIIgiKJCYoQgCIIgiKJiK/YBKIExBgDw+/1FPhKCIAiCIJTCz9v8PJ4JU4iRQCAAAJg7d26Rj4QgCIIgCLUEAgH4fL6M/y6wXHKlBBBFEUuXLsWePXsgCIKi+1x00UV48803FX8PI2/v9/sxd+5cnDlzBjU1NUU/nkJ8j1J8zpX2fI3+HqX4nOn56nufcnjOlfZ81d7H6OfMGMOaNWtw+PBhWCyZnSGmqIxYLBY4HI6sqmomVqtV8Q+2ELcHgJqaGsX3KcTxVNpzrrTnW6jvUUrPmZ6vMfcx83OutOer9T5GPmeHw5FViAAmMrDefvvtpr69WgpxPJX2nCvt+Rbqexj5+KV2e7WU4vFX2nOutOer9T5GPr6S25uiTWN2/H4/fD4fxsfHVatVs1Jpz7nSni9Qec+50p4vUHnPudKeL1A6z9k0lREz43Q6cd9998HpdBb7UApGpT3nSnu+QOU950p7vkDlPedKe75A6TxnqowQBEEQBFFUqDJCEARBEERRITFCEARBEERRITFCEARBEERRITFCEARBEERRITGikO3bt+MjH/kI2tvbIQgCnn766Wn/3t/fj1tvvRXt7e3weDy49tprceTIkWm36evrw80334zW1lZ4vV5ccMEF+M///M9pt1mwYAEEQZj28Xd/93dGP7206PGcjx07hhtvvBFNTU2oqanBJz/5SfT390+7zejoKG6++Wb4fD74fD7cfPPNGBsbM/jZzaZQz7dUXuP7778fF110Eaqrq9Hc3IwbbrgBhw4dmnYbxhj+4R/+Ae3t7XC73diwYQPee++9abcJh8O488470djYCK/Xi49+9KM4e/bstNuUwmtcyOdbbq/xI488gg0bNqCmpgaCIKR97crpNVbyfMvpNR4ZGcGdd96Jrq4ueDwezJs3D1/60pcwPj4+7XGMfI1JjCgkGAxi1apVeOihh2b9G2MMN9xwA44fP47f/e532Lt3L+bPn4+rr74awWBQut3NN9+MQ4cO4ZlnnsH+/fuxadMm3HTTTdi7d++0x/vGN76B3t5e6ePrX/+64c8vHfk+52AwiI0bN0IQBLz00kt47bXXEIlE8JGPfASiKEqP9ed//ufYt28fnn/+eTz//PPYt28fbr755oI9T06hni9QGq/xyy+/jNtvvx2vv/46XnjhBcRiMWzcuHHa7+w///M/43vf+x4eeughvPnmm2htbcU111wj7YsCgLvuugtPPfUUnnjiCbz66quYmJjAhz/8YcTjcek2pfAaF/L5AuX1GodCIVx77bX46le/mvF7ldNrrOT5AuXzGvf09KCnpwcPPPAA9u/fj8ceewzPP/88PvvZz077Xoa+xoxQDQD21FNPSZ8fOnSIAWDvvvuu9LVYLMbq6+vZj3/8Y+lrXq+XPf7449Meq76+nv3kJz+RPp8/fz77P//n/xh27FrR8pz/8Ic/MIvFwsbHx6XbjIyMMADshRdeYIwx9v777zMA7PXXX5dus3PnTgaAHTx40OBnlRmjni9jpfsaDwwMMADs5ZdfZowxJooia21tZd/5znek20xNTTGfz8cefvhhxhhjY2NjzG63syeeeEK6TXd3N7NYLOz5559njJXua2zU82WsvF5jOVu3bmUA2Ojo6LSvl9NrLCfT82WsfF9jzm9+8xvmcDhYNBpljBn/GlNlRAfC4TAAwOVySV+zWq1wOBx49dVXpa9dfvnl+PWvf42RkRGIoognnngC4XAYGzZsmPZ43/3ud9HQ0IDzzz8f3/rWtxCJRAryPNSg5DmHw2EIgjAtTMflcsFisUi32blzJ3w+Hy655BLpNmvXroXP58OOHTsK8VQUodfz5ZTia8xLsvX19QCAEydOoK+vDxs3bpRu43Q6ceWVV0qvzZ49exCNRqfdpr29HStXrpRuU6qvsVHPl1Mur7ESyuk1VkM5v8Y8kdVmS6ywM/o1JjGiA8uWLcP8+fNx7733YnR0FJFIBN/5znfQ19eH3t5e6Xa//vWvEYvF0NDQAKfTic9//vN46qmnsGjRIuk2f/3Xf40nnngCW7duxR133IEHH3wQX/ziF4vxtLKi5DmvXbsWXq8XX/nKVxAKhRAMBvG3f/u3EEVRuk1fXx+am5tnPX5zczP6+voK+pyyodfzBUrzNWaMYfPmzbj88suxcuVKAJB+/i0tLdNu29LSIv1bX18fHA4H6urqst6m1F5jI58vUF6vsRLK6TVWSjm/xsPDw/jmN7+Jz3/+89LXjH6NTbG1t9Sx2+3YsmULPvvZz6K+vh5WqxVXX301rrvuumm3+/rXv47R0VG8+OKLaGxsxNNPP40/+7M/wyuvvIJzzz0XAPDlL39Zuv15552Huro6fOITn5AUeKmg5Dk3NTXht7/9Lb7whS/gBz/4ASwWCz71qU/hggsugNVqlW4nCMKsx2eMpf16sdDz+Zbia3zHHXfgnXfemVXBAWa/Pkpem5m3KbXX2OjnWwmvca7H0Po4emH08y3X19jv9+N//I//geXLl+O+++7L+hjZHkctJEZ0Ys2aNdi3bx/Gx8cRiUTQ1NSESy65BBdeeCGAxJTFQw89hHfffRcrVqwAAKxatQqvvPIKfvjDH+Lhhx9O+7hr164FABw9erSkxAiQ+zkDwMaNG3Hs2DEMDQ3BZrOhtrYWra2t6OzsBAC0trbOmjYBgMHBwVlKvtjo8XzTUezX+M4778QzzzyD7du3o6OjQ/p6a2srgMQVUVtbm/T1gYEB6bVpbW1FJBLB6OjotGrBwMAALr30Uuk2pfQaG/1802Hm11gJ5fQaa6UcXuNAIIBrr70WVVVVeOqpp2C326c9jpGvMbVpdMbn86GpqQlHjhzB7t278bGPfQxAwp0NABbL9B+51WqdNWkhh0/ayH+JSo1Mz1lOY2Mjamtr8dJLL2FgYAAf/ehHAQDr1q3D+Pg43njjDem2u3btwvj4eNY392KSz/NNR7FeY8YY7rjjDjz55JN46aWXZgmmzs5OtLa24oUXXpC+FolE8PLLL0uvzZo1a2C326fdpre3F++++650m1J5jQv1fNNh5tdYCeX0GmvF7K+x3+/Hxo0b4XA48Mwzz0zzxwEFeI3ztsBWCIFAgO3du5ft3buXAWDf+9732N69e9mpU6cYYwnn8datW9mxY8fY008/zebPn882bdok3T8SibDFixez9evXs127drGjR4+yBx54gAmCwJ599lnGGGM7duyQHvf48ePs17/+NWtvb2cf/ehHTfmcGWPsZz/7Gdu5cyc7evQo+8UvfsHq6+vZ5s2bp93m2muvZeeddx7buXMn27lzJzv33HPZhz/84YI9T04hnm8pvcZf+MIXmM/nY9u2bWO9vb3SRygUkm7zne98h/l8Pvbkk0+y/fv3s0996lOsra2N+f1+6Ta33XYb6+joYC+++CJ766232Ac/+EG2atUqFovFpNuUwmtcqOdbjq9xb28v27t3L/vxj3/MALDt27ezvXv3suHhYek25fQa53q+5fYa+/1+dskll7Bzzz2XHT16dNrjFOrvmMSIQviI18yPz3zmM4wxxr7//e+zjo4OZrfb2bx589jXv/51Fg6Hpz3G4cOH2aZNm1hzczPzeDzsvPPOmzbqu2fPHnbJJZcwn8/HXC4X6+rqYvfddx8LBoOFfKoSejznr3zlK6ylpYXZ7Xa2ZMkS9q//+q9MFMVptxkeHmaf/vSnWXV1Nauurmaf/vSn047SGU0hnm8pvcbpnisA9uijj0q3EUWR3Xfffay1tZU5nU52xRVXsP379097nMnJSXbHHXew+vp65na72Yc//GF2+vTpabcphde4UM+3HF/j++67L+fjlNNrnOv5lttrnOm9DwA7ceKEdDsjX2Mh+WQIgiAIgiCKAnlGCIIgCIIoKiRGCIIgCIIoKiRGCIIgCIIoKiRGCIIgCIIoKiRGCIIgCIIoKiRGCIIgCIIoKiRGCIIgCIIoKiRGCIIgCIIoKiRGCIIwjG3btkEQBIyNjRX7UAiCKGEogZUgCN3YsGEDzj//fDz44IMAEgu5RkZG0NLSUrRV8gRBlD62Yh8AQRDli8PhkFaYEwRBZILaNARB6MKtt96Kl19+Gd///vchCAIEQcBjjz02rU3z2GOPoba2Fv/1X/+Frq4ueDwefOITn0AwGMTPf/5zLFiwAHV1dbjzzjsRj8elx45EIrjnnnswZ84ceL1eXHLJJdi2bVtxnihBELpDlRGCIHTh+9//Pg4fPoyVK1fiG9/4BgDgvffem3W7UCiEH/zgB3jiiScQCASwadMmbNq0CbW1tXjuuedw/PhxfPzjH8fll1+Om266CQDwF3/xFzh58iSeeOIJtLe346mnnsK1116L/fv3Y8mSJQV9ngRB6A+JEYIgdMHn88HhcMDj8UitmYMHD866XTQaxY9+9CMsWrQIAPCJT3wCv/jFL9Df34+qqiosX74cH/jAB7B161bcdNNNOHbsGP7jP/4DZ8+eRXt7OwDg7rvvxvPPP49HH30U3/72twv3JAmCMAQSIwRBFBSPxyMJEQBoaWnBggULUFVVNe1rAwMDAIC33noLjDEsXbp02uOEw2E0NDQU5qAJgjAUEiMEQRQUu90+7XNBENJ+TRRFAIAoirBardizZw+sVuu028kFDEEQ5oXECEEQuuFwOKYZT/Vg9erViMfjGBgYwPr163V9bIIgSgOapiEIQjcWLFiAXbt24eTJkxgaGpKqG/mwdOlSfPrTn8Ytt9yCJ598EidOnMCbb76J7373u3juued0OGqCIIoNiRGCIHTj7rvvhtVqxfLly9HU1ITTp0/r8riPPvoobrnlFvzN3/wNurq68NGPfhS7du3C3LlzdXl8giCKCyWwEgRBEARRVKgyQhAEQRBEUSExQhAEQRBEUSExQhAEQRBEUSExQhAEQRBEUSExQhAEQRBEUSExQhAEQRBEUSExQhAEQRBEUSExQhAEQRBEUSExQhAEQRBEUSExQhAEQRBEUSExQhAEQRBEUfn/AUrTKRZHGxY4AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "clipped_india.groupby([pd.Grouper(key='time', freq='Y')]).mean().reset_index().plot(x='time', y='heat_waves_per_time_period',label = 'India', color = '#1F77B4')" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "87e01444", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGwCAYAAAD16iy9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC220lEQVR4nOy9d5zcdp3//5I0bWe29117d91L7BT3OE4jkJB6BI7jCJBLCPUIJFy+vwMCBxfgwAfHcQFyhB5CO+AouRwHCWkkthPXxInjXnfX3t53Z3aapN8f0kejmZ0iaaSZWe/7+Xjsw95ZjaQpkt56v1/v15uTZVkGQRAEQRCEDfDF3gGCIAiCIM4fKLAgCIIgCMI2KLAgCIIgCMI2KLAgCIIgCMI2KLAgCIIgCMI2KLAgCIIgCMI2KLAgCIIgCMI2XIXeoCRJ6OnpQUVFBTiOK/TmCYIgCIKwgCzLmJycRGtrK3g+c16i4IFFT08P2traCr1ZgiAIgiBsoLu7G/Pnz8/494IHFhUVFQCUHausrCz05gmCIAiCsMDExATa2tq063gmCh5YsPJHZWUlBRYEQRAEMcvIJWMg8SZBEARBELZBgQVBEARBELZBgQVBEARBELZRcI0FQRAEMXsQRRGxWKzYu0EUALfbDUEQ8l4PBRYEQRDEDGRZRl9fH8bGxoq9K0QBqa6uRnNzc14+UxRYEARBEDNgQUVjYyP8fj8ZGp7nyLKMUCiEgYEBAEBLS4vldVFgQRAEQSQhiqIWVNTV1RV7d4gCUVZWBgAYGBhAY2Oj5bIIiTcJgiCIJJimwu/3F3lPiELDPvN8dDUUWBAEQRBpofLH3MOOz5wCC4IgCIIgbMNUYBGPx/FP//RPWLhwIcrKyrBo0SJ84QtfgCRJTu0fQRAEQRCzCFOBxVe+8hV85zvfwUMPPYTDhw/jq1/9Kv7t3/4N3/rWt5zaP4IgCIIoOmfOnAHHcdi/f7/j2/rxj3+M6upqR9a9YMECPPjgg46sm2EqsHjppZfwlre8BTfddBMWLFiAt7/97bjuuuuwd+9ep/ZvziHLMqRwuNi7QRAEMSu58847ceutt854/C9/+Qs4jiNfjgJgKrC4/PLL8cwzz+DYsWMAgFdffRXbt2/HjTfemPE5kUgEExMTST9EZs7ddx+OX3El4sPDxd4VgiAIwkai0Wixd6EgmAosPvnJT+K2227DihUr4Ha7sWbNGnz84x/HbbfdlvE5W7duRVVVlfbT1taW906fz0y//AqkyUlEjh8v9q4QBEEoyDIQDRbnR5ZtfSnBYBCVlZX4zW9+k/T4//7v/yIQCGBychIAsHv3bqxZswY+nw/r16/HK6+8MmNdhw4dwo033ojy8nI0NTXh9ttvx9DQkPb3q6++Gh/96Edx3333ob6+Htdeey0A4Otf/zouvPBCBAIBtLW14SMf+QimpqZmrP+xxx7DsmXL4PP5cO2116K7u1v728mTJ/GWt7wFTU1NKC8vx4YNG/D0008nPX9gYAC33HILysrKsHDhQvz85z+3/saZwJRB1q9+9Sv87Gc/wy9+8QusWrUK+/fvx8c//nG0trbijjvuSPuc+++/H/fdd5/2+8TEBAUXWZCCQQCAqH65CYIgik4sBHy5tTjb/nQP4AnYtrpAIIB3vvOdeOSRR/D2t79de5z9XlFRgWAwiJtvvhnXXHMNfvazn+H06dO49957k9bT29uLq666Ch/4wAfw9a9/HdPT0/jkJz+Jd7zjHXj22We15R599FH8/d//PXbs2AFZDZJ4nsc3v/lNLFiwAKdPn8ZHPvIRfOITn8C3v/1t7XmhUAhf+tKX8Oijj8Lj8eAjH/kI3vnOd2LHjh0AgKmpKdx44434l3/5F/h8Pjz66KO45ZZbcPToUbS3twNQykLd3d149tln4fF4cM8992jOmk5iKrD4x3/8R3zqU5/CO9/5TgDAhRdeiM7OTmzdujVjYOH1euH1evPf0zmALMuQQiEAgDQ5M3olCIIgcvOHP/wB5eXlSY+Joqj9//3vfz8uu+wy9PT0oLW1FUNDQ/jDH/6Ap556CgDw85//HKIo4kc/+hH8fj9WrVqFs2fP4u///u+1dTz88MNYu3YtvvzlL2uP/ehHP0JbWxuOHTuGZcuWAQCWLFmCr371q0n78vGPf1z7/8KFC/HFL34Rf//3f58UWMRiMTz00EPYtGkTACVAWblyJXbv3o2NGzfi4osvxsUXX6wt/y//8i/4/e9/j8cffxwf/ehHcezYMfzpT3/Czp07tXX88Ic/xMqVKy29p2YwFViEQiHwfHL1RBAEaje1CTkSAdT3UkqTFiMIgigKbr+SOSjWtk3yhje8AQ8//HDSY7t27cJ73vMeAMDGjRuxatUq/OQnP8GnPvUp/PSnP0V7ezuuvPJKAMDhw4dx8cUXJzmPbt68OWl9+/btw3PPPTcjgAGUMgULLNavXz/j78899xy+/OUv49ChQ5iYmEA8Hkc4HEYwGEQgoGRnXC5X0nNXrFiB6upqHD58GBs3bkQwGMTnP/95/OEPf0BPTw/i8Timp6fR1dWlvYZM63AaU4HFLbfcgi996Utob2/HqlWr8Morr+DrX/867rrrLqf2b07ByiAAIE5RKYQgiBKB42wtRzhNIBDAkiVLkh47e/Zs0u/vf//78dBDD+FTn/oUHnnkEbz3ve/VXCdlA7oOSZJwyy234Ctf+cqMv+kHeLFAgdHZ2Ykbb7wRH/7wh/HFL34RtbW12L59O973vvfNsNFO54LJHvvHf/xHPPnkk/ja176GJUuWoKysDG9/+9s1gSh7DcVwTzUVWHzrW9/CZz/7WXzkIx/BwMAAWltb8aEPfQif+9znnNq/OQUrgwBUCiEIgnCS97znPfjEJz6Bb37zmzh48GBSOf+CCy7AT3/6U0xPT2uDuXbu3Jn0/LVr1+K3v/0tFixYAJfL+KV07969iMfj+Pd//3etAvDrX/96xnLxeBx79+7Fxo0bAQBHjx7F2NgYVqxYAQDYtm0b7rzzTrz1rW8FoGguzpw5oz1/5cqVGdfhNKa6QioqKvDggw+is7MT09PTOHnyJP7lX/4FHo/Hqf2bUyQFFpSxIAiCcIyamhq87W1vwz/+4z/iuuuuw/z587W/vetd7wLP83jf+96HQ4cO4Y9//CO+9rWvJT3/7rvvxsjICG677Tbs3r0bp06dwp///GfcddddSXqOVBYvXox4PI5vfetbOHXqFH7605/iO9/5zozl3G43Pvaxj2HXrl14+eWX8d73vheXXnqpFiQsWbIEv/vd77B//368+uqreNe73pUkS1i+fDmuv/56fOADH8CuXbuwb98+vP/979cCJSehWSElhBRMBBYiaSwIgiAc5X3vex+i0eiMcn55eTn+93//F4cOHcKaNWvwmc98ZkbJo7W1FTt27IAoinjzm9+M1atX495770VVVdUMLaKeSy65BF//+tfxla98BatXr8bPf/5zbN26dcZyfr8fn/zkJ/Gud70LmzdvRllZGX75y19qf/+P//gP1NTU4LLLLsMtt9yCN7/5zVi7dm3SOh555BG0tbXhqquuwtve9jZ88IMfRGNjo5W3yhScbKSYZCMTExOoqqrC+Pg4KisrC7npkmdq23Z0f+ADAIDA5Zej/QffL/IeEQQxFwmHwzh9+jQWLlwIn89X7N1xjJ///Oe499570dPTQ5l3lWyfvdHrtymNBeEsyRoLKoUQBEE4QSgUwunTp7F161Z86EMfoqDCZqgUUkLoAwsqhRAEQTjDV7/6VVxyySVoamrC/fffX+zdOe+gwKKE0Lebko8FQRCEMzzwwAOIxWJ45pln0vpQEPlBgUUJQaUQgiAIYrZDgUUJIYV0GYtQCHKWliWCIAiCKEUosCgh9BkLgMohBEEQxOyDAosSQq+xACiwIAiCIGYfFFiUEKkZC+oMIQiCIGYbFFiUEDNKISTgJAiCsB2O4/DYY48VezcMceedd+LWW28t9m6YggKLEiK1FCJSYEEQBGGavr4+fOxjH8OiRYvg9XrR1taGW265Bc8880yxd8003/jGN/DjH/+42LthCnLeLCFmijeDGZYkCIIg0nHmzBls2bIF1dXV+OpXv4qLLroIsVgMTz75JO6++24cOXKk2LtoiqqqqmLvgmkoY1FCyOoQMqG2FgBNOCUIgjDLRz7yEXAch927d+Ptb387li1bhlWrVuG+++5LGn0+NDSEt771rfD7/Vi6dCkef/zxpPUcOnQIN954I8rLy9HU1ITbb78dQ0ND2t+vvvpq3HPPPfjEJz6B2tpaNDc344EHHkhaB8dx+MEPfpBxO6Io4n3vex8WLlyIsrIyLF++HN/4xjeS1kGlECIvWMbC1dQEABAnSbxJEETxkWUZoVioKD9m5mSOjIzgiSeewN13341AIDDj79XV1dr/P//5z+Md73gHXnvtNdx4441497vfjZGREQBAb28vrrrqKlxyySXYu3cvnnjiCfT39+Md73hH0voeffRRBAIB7Nq1C1/96lfxhS98AU899VTSMtm2I0kS5s+fj1//+tc4dOgQPve5z+HTn/40fv3rXxt+zaUIlUJKCKaxcDc2InL4MIk3CYIoCabj09j0i01F2faud+2C3+03tOyJEycgyzJWrFiRc9k777wTt912GwDgy1/+Mr71rW9h9+7duP766/Hwww9j7dq1+PKXv6wt/6Mf/QhtbW04duwYli1bBgC46KKL8M///M8AgKVLl+Khhx7CM888g2uvvdbQdtxuNz7/+c9ryy5cuBAvvvgifv3rX88IYmYTFFiUCLIkQZqeBpDIWEhBylgQBEEYhWU3OI7LuexFF12k/T8QCKCiogIDAwMAgH379uG5555LO0fk5MmTSYGFnpaWFm0dRrYDAN/5znfwgx/8AJ2dnZienkY0GsUll1ySc/9LGQosSgQ5HAbUg8LV1AiASiEEQZQGZa4y7HrXrqJt2yhLly4Fx3E4fPhwTl2C2+1O+p3jOEiSBEApUdxyyy34yle+MuN5LS0thtZhZJlf//rX+Id/+Af8+7//OzZv3oyKigr827/9G3btKs57bRcUWJQIWqspx8HV0KA8RqUQgiBKAI7jDJcjikltbS3e/OY34z//8z9xzz33zNBZjI2NJeksMrF27Vr89re/xYIFC+ByOXeZ3LZtGy677DJ85CMf0R47efKkY9srFCTeLBGYcJMvK4NQWQkAEKkrhCAIwhTf/va3IYoiNm7ciN/+9rc4fvw4Dh8+jG9+85vYvHmzoXXcfffdGBkZwW233Ybdu3fj1KlT+POf/4y77roLoo3DIZcsWYK9e/fiySefxLFjx/DZz34We/bssW39xYICixJBCywCAfABpa5HPhYEQRDmWLhwIV5++WW84Q1vwP/7f/8Pq1evxrXXXotnnnkGDz/8sKF1tLa2YseOHRBFEW9+85uxevVq3HvvvaiqqgLP23fZ/PCHP4y3ve1t+Nu//Vts2rQJw8PDSdmL2Qonm+nlsYGJiQlUVVVhfHwcleqdOQGE9u1D57vfA09HB1q/8q84887b4J43D0ueebrYu0YQxBwjHA7j9OnTWLhwIXw+X7F3hygg2T57o9dvyliUCExjwQX84CsqANAQMoIgCGL2QYFFiaCVQvx+8OVKYCFNTZkyhyEIgiCIYkOBRYkgBRMaC6FcVTKLImTV24IgCIIgZgMUWJQIrBTC+/3g/H5AEACQlwVBEAQxu6DAokTQl0I4jgNfzjpDqOWUIAiCmD1QYFEi6NtNAUBggQWZZBEEQRCzCAosSgR9xgKAlrEQycuCIAiCmEVQYFEiJDQWSsaCr6BSCEEQBDH7oMCiREjNWAhqy6lIpRCCIAhiFmEqsFiwYAE4jpvxc/fddzu1f3OGVI0FM8mSqCuEIAii4DzwwANJ48vvvPPOnBNTFyxYgAcffNDR/ZoNmAos9uzZg97eXu3nqaeeAgD8zd/8jSM7N5fQt5sCAK96WUjkvkkQBGGYO++8U7vpdbvdaGpqwrXXXosf/ehHM0aa282ePXvwwQ9+0NFtzAZMBRYNDQ1obm7Wfv7whz9g8eLFuOqqq5zavzlDxlIIaSwIgrABdo6ZC1x//fXo7e3FmTNn8Kc//QlveMMbcO+99+Lmm29GPB53bLsNDQ3w+0t/vLzTWNZYRKNR/OxnP8Ndd90FjuMyLheJRDAxMZH0Q8yESiEEQTjF8CM/xtH1GzD1/PPF3pWC4PV60dzcjHnz5mHt2rX49Kc/jf/5n//Bn/70J/z4xz8GAIyPj+ODH/wgGhsbUVlZiWuuuQavvvpqznV/7WtfQ0tLC+rq6nD33XcjFotpf6NSiILlwOKxxx7D2NgY7rzzzqzLbd26FVVVVdpPW1ub1U2e1yQCCzVjQV0hBEHYxPjvfgtIEqYPvG7p+bIsQwqFivJj17yka665BhdffDF+97vfQZZl3HTTTejr68Mf//hH7Nu3D2vXrsUb3/hGjIyMZFzHc889h5MnT+K5557Do48+ih//+MdaoEIkcFl94g9/+EPccMMNaG1tzbrc/fffj/vuu0/7fWJigoKLNMzUWDAfC8pYEARhnVhPDyLHTwBInGfMIk9P4+jadXbulmGWv7xPGXNgAytWrMBrr72G5557DgcOHMDAwAC8Xi8AJRPx2GOP4Te/+U1GnURNTQ0eeughCIKAFStW4KabbsIzzzyDD3zgA7bs3/mCpcCis7MTTz/9NH73u9/lXNbr9WofHJEeWTdsLDWwoFIIQRD5MPXCNu3/c0lnkQ5ZlsFxHPbt24epqSnU1dUl/X16ehonT57M+PxVq1ZBUOc4AUBLSwsOHDjg2P7OViwFFo888ggaGxtx00032b0/cxJpOqz9X7P01jQWVAohCMI6Uy+8oP3famDBlZVh+cv77Nol09u2i8OHD2PhwoWQJAktLS34y1/+MmOZ6urqjM93u93J+8ZxjneazEZMBxaSJOGRRx7BHXfcAZfLciWF0KGlJ3kenJrdYeJNKoUQBGEVKRpFcOfOxO8WSyEcx9lWjigWzz77LA4cOIB/+Id/wPz589HX1weXy4UFCxYUe9fOO0xHBk8//TS6urpw1113ObE/cxIppBuZrnbY8AEm3qTAgiAIa0zv3QtZl6WYK6WQSCSCvr4+iKKI/v5+PPHEE9i6dStuvvlm/N3f/R14nsfmzZtx66234itf+QqWL1+Onp4e/PGPf8Stt96K9evXF/slzGpMBxbXXXedbSpdQiG11RRIdIXIkQjkaBScx1OUfSMIYvYy9bxSBhHq6yEODc2ZwOKJJ55AS0sLXC4XampqcPHFF+Ob3/wm7rjjDvC80gz5xz/+EZ/5zGdw1113YXBwEM3NzbjyyivR1NRU5L2f/XBygaOEiYkJVFVVYXx8HJWVlYXcdMkS2rMHnbf/HTwLF2Lxn/4IQBF0Hlm1GgCw9MUdcNXWFnMXCYKYhZy84UZET59GzbvehdFf/AKeJYux+A9/yPm8cDiM06dPY+HChfD5fAXYU6JUyPbZG71+0xCyEkBMaTUFAE4QtN9JwEkQhFmi3d2Inj4NuFyoeNMbAQBScG5kLIjiQoFFCcBqoHyKOIq8LAiCsArrBvGvWQOXmt6fK6UQorhQYFECpNNYAGTrTRCEdVhgUX7Vldq5hQILohBQYFECpLpuMoRysvUmCMI8UjiM0M5dAIDAlVcmzi2xGKRotIh7RswFKLAoAVLnhDA0LwvKWBAEYYLQnj2QIxG4mpvhXboUvM5kyqqXBUEYhQKLEiAxMj2lFFJOXhYEQZiHtZmWX3mlYm7ldmst6zKVQwiHocCiBGBK7dSMBU04JQjCLLIsa+PRy6+6UnucdBZEoaDAogTIpLHgy6kUQhCEOaJnziDW3Q243Qhceqn2uNa+TqUQwmEosCgBMneFUCmEIAhzBLcp00z969clnVO0wIIyFoTDUGBRAkgZfCyoK4QgCLMk9BVXJT1OpZDC8cADD+CSSy7Jez0cx+Gxxx7Lez2FhgKLEoClJlOnB1IphCAIM0ihEEK7dwNI1lcAc6cUcuedd4LjOHz4wx+e8bePfOQj4DgOd955Z+F3zAK9vb244YYbir0bpqHAogTIlLHQSiFk6U0QhAGCO3dBjsXgnjcPnoULk/7GxOFzIWPR1taGX/7yl5ientYeC4fD+K//+i+0t7cXcc/M0dzcDK/XW+zdMA0FFiUAO9CFFI2FwJw3g5SxIAgiN1PbEm6bHMcl/W0uaSzWrl2L9vZ2/O53v9Me+93vfoe2tjasWbNGe2zBggV48MEHk557ySWX4IEHHtB+5zgO3/3ud3HzzTfD7/dj5cqVeOmll3DixAlcffXVCAQC2Lx5M06ePDljP7773e+ira0Nfr8ff/M3f4OxsTHtb3v27MG1116L+vp6VFVV4aqrrsLLL7+c9HwqhRCWYQf6jFJIQJ0VQqUQgiByIMsygqq+InDllTP+rmksLAwik2UZsYhYlB+rA7jf+9734pFHHtF+/9GPfoS77rrL0rq++MUv4u/+7u+wf/9+rFixAu9617vwoQ99CPfffz/27t0LAPjoRz+a9JwTJ07g17/+Nf73f/8XTzzxBPbv34+7775b+/vk5CTuuOMObNu2DTt37sTSpUtx4403YvI8yFC7ir0DhL7dNDVjQaUQgiCMET15ErGeHnAeDwKbNs34ez4ai3hUwvfufT7vfbTCB79xFdxewfTzbr/9dtx///04c+YMOI7Djh078Mtf/hJ/+ctfTK/rve99L97xjncAAD75yU9i8+bN+OxnP4s3v/nNAIB7770X733ve5OeEw6H8eijj2L+/PkAgG9961u46aab8O///u9obm7GNddck7T8d7/7XdTU1OD555/HzTffbHofSwkKLIqMHI9DjkQAZLb0loJByKIITjB/cBEEMTdg3SD+jRuTLLwZ3BwqhQBAfX09brrpJjz66KOQZRk33XQT6uvrLa3roosu0v7fpE6KvfDCC5MeC4fDmJiYQGVlJQCgvb1dCyoAYPPmzZAkCUePHkVzczMGBgbwuc99Ds8++yz6+/shiiJCoRC6uros7WMpQYFFkZF04qJM000B5WQg6H4nCILQM6X6V5SnKYMACQ2XlcDC5eHxwW9clXtBB3B5rFfs77rrLq1E8Z//+Z8z/s7z/IxSSywWm7Gc2+3W/s+0K+kekyQp476wZdi/d955JwYHB/Hggw+io6MDXq8XmzdvRvQ8GBJHgUWR0dKSLhc43RcVAHiPB5zbDTkWgzQ5SYEFQRBpEaemENq3D8DMNlMGl0cphOM4S+WIYnP99ddrF2pWttDT0NCA3t5e7feJiQmcPn3alm13dXWhp6cHra2tAICXXnoJPM9j2bJlAIBt27bh29/+Nm688UYAQHd3N4aGhmzZdrEh8WaR0beapqq4AZpwShBEboIvvQTEYvB0dMDT0ZF2mbnUFcIQBAGHDx/G4cOHIaQpJV9zzTX46U9/im3btuH111/HHXfckXY5K/h8Ptxxxx149dVXsW3bNtxzzz14xzvegebmZgDAkiVL8NOf/hSHDx/Grl278O53vxtlaUpYsxEKLIpMYgBZIO3feRpERhBEDoIvZO4GYcxV583KykpN95DK/fffjyuvvBI333wzbrzxRtx6661YvHixLdtdsmQJ3va2t+HGG2/Eddddh9WrV+Pb3/629vcf/ehHGB0dxZo1a3D77bfjnnvuQWNjoy3bLjacbLWXxyITExOoqqrC+Ph4xg97LhHctRtdd9wBz+LFWPx/f5jx99N//XaEDx5E23e/g/KrilPjJAiidJFlGSeufgPi/f1o+/73UX7F5WmXC+7eja6/uwOeRYuw+I//l3Wd4XAYp0+fxsKFC+Hz+ZzYbaJEyfbZG71+U8aiyGSabMrgy8nLgiCIzESOHUO8vx+czwf/xg0Zl2Pt7Oe7pTdRfCiwKDKZJpsyqBRCEEQ2WJtp4NJLwWexf56LGguiOFBgUWSkUPaMhaANIqPAgiCImST0FVdkXU6vsShwBZyYY1BgUWQ08WaOUog0RelLgiCSEScmEHrlFQCZ/SsYmgGfKGqmfAThBBRYFJlcGQuacEoQRCaCL74IiCI8ixfDo3N5TIfejdNoOYQyG3MPOz5zCiyKTC6NhVYKIY0FQRApMH1FrmwFAHCCAE4NLnIFFsxVMkR6jDkH+8zdKYaNZiDnzSKjN8hKRyJjQV0hBEEkkCUJU9uZjXd2fQWD9/shTk/nnHAqCAKqq6sxMDAAAPBnMPAjzh9kWUYoFMLAwACqq6vzMgqjwKLI5Go3FTSNBQUWBEEkCB8+DHFwCLzfj7J16ww9h/f7IQ4PG2o5ZQ6RLLgg5gbV1dXaZ28VCiyKTO52U1YKocCCIIgErBvEf9lm8B6PoeeYaTnlOA4tLS1obGxMO5iLOP9wu922WJqbDizOnTuHT37yk/jTn/6E6elpLFu2DD/84Q+xzmDETCQja4FFjq4QEm8SBKHDjL6CkWg5Nd5lJgiCbfMziLmBqcBidHQUW7ZswRve8Ab86U9/QmNjI06ePInq6mqHdu/8R8xVClEzFhRYEATBiI+OYvq11wCYDCy0CackyiScw1Rg8ZWvfAVtbW145JFHtMcWLFhg9z7NKeRc4k1m6R0MQpZlElABkKanwfl89F4Qc5bgjhcBSYJ32TK4TdTDE6UQ8sUhnMNUu+njjz+O9evX42/+5m/Q2NiINWvW4Pvf/37W50QiEUxMTCT9EAlyTjdV200Rj0MOhwu1WyVL7Nw5HLtsC3r/6Z+KvSsEUTSC29RukKuMZyuAuTvhlCgspgKLU6dO4eGHH8bSpUvx5JNP4sMf/jDuuece/OQnP8n4nK1bt6Kqqkr7aWtry3unzydytpsG/ACvfExk660o4eXpaYT27i32rhBE0Yh2dgIAfBdeaOp5NC+EKASmAgtJkrB27Vp8+ctfxpo1a/ChD30IH/jAB/Dwww9nfM7999+P8fFx7ae7uzvvnT6fyNVuynGcztabOkPYlFdpbLzIe0IQxSM+OAgAcDU0mHpeQmNBpRDCOUwFFi0tLbjggguSHlu5ciW6uroyPsfr9aKysjLph1CQo1HIahtXplIIAPDlavqSAgtNxCpOTEAWxSLvDUEUHlmWdYFFo6nnsu4zylgQTmIqsNiyZQuOHj2a9NixY8fQ0dFh607NFaTpae3/eh//VGjCaQIpqAZXskydMsScRJqchByNAgBcDfWmnsv7lZsUmQILwkFMBRb/8A//gJ07d+LLX/4yTpw4gV/84hf43ve+h7vvvtup/TuvYelIzu0Gl8XghtdaTiljIereA3GcyiHE3INlK/jKSvBer6nnsoyFSKUQwkFMBRYbNmzA73//e/zXf/0XVq9ejS9+8Yt48MEH8e53v9up/TuvyeW6yUjYetMduj5LIY6NFW9HCKJIxAeHAACuenPZCiChsZDJx4JwENPOmzfffDNuvvlmJ/ZlzpGrI4SheVmQxiJpyitlLIi5iFXhJkDtpkRhoLHpRUTKYefNoAmnCaSpRAqXMhbEXCQ+pGYsrAQW1G5KFAAKLIqIprHIkbHQbL2pFJJSCqGMBTH30DIWeZRCqN2UcBIKLIoIu2sQcmgseK0rhDIWSaUQylgQc5C8SiGUsSAKAAUWRYTZeefKWJCPRQKJukKIOU58iAUWFjIWOo2FLMu27hdBMCiwKCK5XDcZVApJoA+uKLAg5iJ2ZCwgy5B1PjoEYScUWBQRo+2mVApRkEUxqTZMpRBiLiIOWhdvcjojPiqHEE5BgUURMdpuKmhdIXM7Y5EqOKOMBTHXkKJR7XtvRbzJ8TzpLAjHocCiiJj2sQjO7YxFamBFGQtiriGqZRDO7QZfVWVpHRzNCyEchgKLIpLQWOQohZClNwBAnKKMBTG3YR4WQkM9OI6ztA5qOSWchgKLImLUIItZesvhsDYNdS7CxKvaGPmJCcjxeDF3iSAKSj7CTQa5bxJOQ4FFEUmUQnKJN8u1/89lW2823dU9f/6MxwhiLqC5btbnEVhoGQsKLAhnoMCiiBhtN+VcLk3NPZe9LFgpSKiuTuhORseKuEcEUVjiA9Y9LBhUCiGchgKLImK03RTQTTidw3fokipe5csDEFThmjg+VsQ9IojCks+cEAbLkFIphHAKCiyKiNGuECAh4JzLXhas7CGUV0CorlYeIwEnMYdIzAnJR2NBXSGEs1BgUUSMijcB3YTTOey+yUohfEVFImNBLafEHMIW8SZlLAiHocCiSMiybFhjAQBCgAUWczdjwYIqoaJcy1hIlLEg5hCJUghpLIjShQKLIiHHYoDaKmlEY0GlkERHDB8oh1CtZCzilLEg5giyJNmjsaB2U8JhKLAoEvq7BV7n358JKoXoSyHlmusgZSyIuYI4Pq7djLhqay2vhyy9CadxFXsH5irayHSvF5wr98cglLMJp3M3Y8E6YoSKCm0yI2ksiLkCazUVamrAeTyW10OlEMJpKLAoElJI1VcYKIMAunkhVAoBX14BPhJRHhujjAUxN7BDuAlQxoJwHgosioRsotUUoAmnQCJbw5cHIIhKSpjaTYm5QnyItZpaF24CpLEgnIcCiyJhxsMCUO7SAUCc0xqLRCmEQaUQYq5gW8ZC87GgUgjhDBRYFAnRRKspoBdvzs2TgSzLiVJIRQUgCAAoY0HMHUQbWk0BmhVCOA8FFkVCNmHnDZCltzw9DYgiAKXdlInXpKkpyLEYOLe7mLtHEI5jX8aCSiGEs1C7aZEwXQphPhZztCtEe908Dz7gh1BZmfjbxESR9oogCkd8UMlYCPlqLNRzjhwKQZakvPeLIFKhwKJImHHdBBJdIXM1Y5EQbpaD4zhwggBeDS5IZ0HMBezuCgEAKTSd17oIIh0UWBQJM5NNgYRgUQoG5+RdhibcVAMsALoJp6SzIM5/7AosOJ8P4JVTPwk4CSegwKJIMOGUkQFkQCJjAVmek7VR5t/B6wMLNuGUvCyI8xwpFNKynHkHFhyXVA4hCLuhwKJImNVYcF4voAoU52I5RNJ3hKjQhFNirsBmhHBlZYaznNkgkyzCSSiwKBKaxsLgSYLjOK0MIM7JwCJNKYRlLKgUQpznaMPH6uvBcVze6yNbb8JJKLAoEmYzFkDibn0uellopRDKWBBzEDYnJN8yCINaTgknMRVYPPDAA4oiX/fT3Nzs1L6d11gKLMrVk8EcdN9k5R/2HgD6jMVYEfaIIAqHJtzMs9WUQaUQwklMG2StWrUKTz/9tPa7oDogEuZgKUjORGDBJpzOyVJIUMlYCGkzFlQKIc5vtFKIXRkLKoUQDmI6sHC5XJSlsAF2pyCYEGJppZASn3AqTU+DLyuzdZ2JrhBdYFHN2k3HbN0WMfuQwmFwXq8t+oN0yPE4ZEkCn8e48nywq9WUkZgXQhkLwn5MayyOHz+O1tZWLFy4EO985ztx6tSprMtHIhFMTEwk/RCJA9pcxkIthQRLN7CYev55HF2/ASM//7mt69VKIRUk3iSSiY+O4viVV+Hs3R91ZP2yLOP0X78dp266GXI06sg2cqFNNs1zTgiDNBaEk5gKLDZt2oSf/OQnePLJJ/H9738ffX19uOyyyzA8PJzxOVu3bkVVVZX209bWlvdOnw9Y01iUfikktHcvIIrKvzYipusKIfEmASBy7DikiQkEt293xDwuPjCAyNGjiHV3I9bXZ/v6De3DoFOlEAosCPsxFVjccMMN+Ou//mtceOGFeNOb3oT/+7//AwA8+uijGZ9z//33Y3x8XPvp7u7Ob4/PA2RZNt1uCugmnJZwKYSp1yWbswisEya5FFKt/I00FnMaVgqTo1HEe3ttX3/0TKf2f1aSKDRaxsIm8SZHGgvCQfKabhoIBHDhhRfi+PHjGZfxer3wer35bOa8Q45EAPXOivcbDyw0W+8S7gphJ964zVkEzdK7YmbGQgqFIEej2sRTYm6hz1hFu7rgnjfP1vVHu4obWMiiCHF4BIB9GQuBSiGEg+TlYxGJRHD48GG0tLTYtT9zAv3BzJf5DD+PD6gGWSXsY8HU63ZnEcQ0zpt8ZSWgivVIZzF30X/20c7OLEtaI9apDyyGbF9/LuLDw8qNCM9DqK21ZZ0ctZsSDmIqsPj//r//D88//zxOnz6NXbt24e1vfzsmJiZwxx13OLV/5yVaq2lZGTgT7bqJUkjpZyzsvtAnfCwSGQuO57Xx6aSzmLvoy276soVdRDuLm7EQ1WBdqKs1db7IBrWbEk5iqhRy9uxZ3HbbbRgaGkJDQwMuvfRS7Ny5Ex0dHU7t33mJ2cmmDFYKEUu0FCLHYhBHRwGoU1htKk/I0ahSPkKyeBNQdBbi+DhlLOYw+rKbExmLJI3FUBEyFja3mgLUFUI4i6nA4pe//KVT+zGn0CabmugIARLCxVIVb8ZTuoPEiQlbxGai7q6KTwks+OoqoJNKIXMZycFSiCxJiHZ1ab8XI2OhnxNiF+S8STgJzQopAlZaTQG9pXeJBhYp9We7yhOsDML5/eBcybEwtZwS4uiY9v9YdzdkUbRt3fH+fi1bBpxHGQsKLAgHocCiCFhpNQX0pZApyLJs+37lS+rdnF1ZBObbkc6lVDPJopbTOYv+eybHYojZ2HKqZUB45VRZlIwFG0BWb2dgwcz2SGNB2A8FFkXAcsaCdUTEYkl3UaXCjMDCrowF87DQdYQwhKpqW7dFzD60z169+Nsp4GTr8q1YoWxreBhyPG7b+o1g95wQgDQWhLNQYFEEpJB6oTQbWPj9WntlKXaGMBMfhl1ZBObbobfzZiTmhVDGYi4iy7L22XuXLQOQ7DuRL0xfUbZmjRK4yDLiIyO2rd8Idk82BRKzQuRw2NbSEUEAFFgUBaviTY7ntTsNsQR1Fo6XQsopY0EkI09Pa/M7yi66CECy70S+sFKIZ+FCCHWKh0ShyyFaxqLRfo0FQFkLwn4osCgCWsbCpMYC0E04LcXAQj0BshZT+8SbbLJpuoxFtbItyljMSbTP3eWC74ILANhcCuk8AwDwdHRoGgexgAJOWZYdEW9yHg+gCqEpsCDshgKLImBVYwEkfBxKshSingA9ixcDsO9iz6a5pi2FVFEpZC7DPnehuhqeBYqfjl0tp7IkIdalzDbyLOjQJosWMmMhBYOQw2EA9pZCOI6jQWSEY1BgUQTyCSxYxkIsQS8LdsL1LlkCwL6MRdZSSDW1m85l2OcuVFXBoxr1Rc+etUVgGe/tVcosbjfcLS1axqCQgQXrCOHLy8GXldm6bmo5JZyCAosiYLXdFChdLwtZliGqPhZeuzMWk1kyFlQKmdMwgbBQXQ1XUxM4rxeIxxHr6cl73Zq+Yv58cC6XVgop5LwQJ4SbDLL1JpyCAosikF8ppDQnnErj45BjMQCAd6m9GQv2WlPtvIFEKUSenoZUgi24hLPoMxYcz8PT3gbAnnKIFliomZCiZCyG7NdXMBItpxRYEPZCgUURkFlXSOD8KYUw4SZfWQlXYyMAG7tC2GTTNKUQvqICUAczkUnW3EPTWKgBppuVQzq7Mj7HKGwdWmChZg0K6b6ZEG46mLGgUghhMxRYFAHRoo8FAAglOuFUr1y322Y7WymE4ziacDqH0TIWaklM01nYmbFQRaGs3bOQGQvRAXMsBpVCCKegwKIIJDIWVjQWysVVDJZmxsLV0KCd5O0qT2ilkDTOm4BeZzGW97aI2UVqxiIRWJzJe90ssHC3twNIzlgUylLfiVZTBrlvEk5BgUURyKsrpEQnnCbmGdQrwY9qr2xHOUTM4mMB0CCyuYy+3RQAPB0LAOSfsZBFEbHu7qR1sou7HA4XTDzNAgvBSfEmBRaEzVBgUQTyEm/OglIIx/O2XuylqRyBBXWGzFkSpRA1Y6GWLWJnz2liYivEenshx2Lg3G64W5oBAHxZmfYdLFQ5hHWgOFkKkSmwIGyGAosCI8tyIrDIw3mz1Cy9tVKIemfFAgspz4u9LElaDThjKcSmbRGzD1b+YsGlq7ERnM8HiCJi585ZXi9z73S3t4NTxcGArhxSoJbTRLupc4GFSBoLwmYosCgw8vQ0oNZnLZVCAmrGotQCC3YCVAVu7EQfzzNjIQWDifcro8aCSiFzFc3HQg0uOY6DR9VE5FMO0Vt56ylky6kcjWrfaTvnhDDYjQ1lLAi7ocCiwGj1TI4DZ8FJr2RLIQ5lLLQAyu3WZpCkQqWQuYl+sin7vgH2dIakelgwNFvvIecDi/jwsLpRV9LrswvW7k4aC8JuKLAoMJrrpt8PTh2BboaSLYWkqNftyiIk7LzLM75fPIk35yRSMASoOgoWXALQzQyx7mURS/GwYBQyY6EP1jne/lM1tZsSTkGBRYHJR7gJJASM8vR0XuI0O5EiEUgTEwD0gUU1gPyzCJpwM0MZBABcbFtkkDWnkFR9Bed2J2X/bM1YLEgfWBRiwqmTraaArt2UhpARNkOBRYHJN7DQ21qXyp0GE7JxHg941awqkUXIM7CYzGznzaCMxdxE32qqz2blG1jI8TiiZ88q61L1GgyhvnATTvUt3E5A7aaEU1BgUWDYQcxZsPMG1Lsznw9A6ZRD4oMDANSUrXqC1zIW+ZZCcrSaJm2LNBZzitRWUwaz9Y6dO6dMJzVJrKcHiMfBeb1wNTcn/a0opRCnMhYUWBAOQYFFgdFaJ/3mW00ZfIkJONkJUNDNM9B8LPIthUzmLoUIVdW2bIuYXSSEm9VJj7saGsD5/YAkIXrWfMupVgZpb5uhbSjkhFMnJ5sCpLEgnIMCiwLD6plWMxZAYsKpWCqBRZpasF0Zi2yTTRPbUiecRiKQpqfz2h4xe2DfLT4lY5HccnrG9Ho1D4sU4SaQaPsUx8YsZUPMoGUsHGg1BcjSm3AOCiwKTL4aCyBRFpCmSuNOI92gJLuyCKKBjAUfCAAuly3bI2YPqXbeevLRWWRqNQXUTJz6XdPaQR3CcfEmc96MRktGCE6cH1BgUWC0dlMLrpsMzctiqsQyFrqUrV3tpgk778zvF8dxNC9kDiKOjgFAWo8HpwILjud17pvO6iwKVQoBKGtB2AsFFgXGnoxFiZVCBjKXQuRIBFI4bHnduSabpm6PWk7nDpk0FkAiKIhZ8LKIdrHAYkHavxdCwCnLsuPiTc7jAed2A6DAgrAXCiwKjC2BhSbeLJGuEM3IJ3ECtKs8kZhsmiOwoIzFnCNTVwigN8kyl7GQYzHEVMGnp6M97TKFmBcijo0lzL8cylgA1BlCOAMFFgUmEVjkUQphGotgiQQWaWrBdpUnNB+LisziTYBaTucihjIWvb2QTIgsY+fOAaIIzueDq7Ex7TKFyFgw3ZJQVQU+g5W9HXBk6004AAUWBSahsTg/SiGyJGkiNldD8p2VYINJlhjM7WORtC0KLOYM2cSbQl2dkjWTJMS6uw2vM9Fq2p7RRlvLWDjovsmCFqHBuWwFAAia+2ZpCMGJ8wMKLAqMHRmLUiqFiKOjgCgCHAdXXV3S3+xoOZWMlkJsam8lZg/ZSiEcx8HdYX7KaTbhJoO1fzqZsXBaX8HgqBRCOEBegcXWrVvBcRw+/vGP27Q75z92aCyYkLEURqdr5lg1NZoQjJHIIoxZXr/hUogN2yJmD0mTTdNkLABdZ8gZE4HFmfQzQvRopZACZCycDiwSJlkUWBD2YTmw2LNnD773ve/hoosusnN/znvsaDflA8pFthQsvbPNM8i3FCLLcsLSO2dXiD2zSYjZgTQ1pWTKkL7dFLDWcmooY1GAdtPEceV0YEGlEMJ+LAUWU1NTePe7343vf//7qKmpsXufzmvs7QopvsYi251VQlA5ZmndciQCxOMADGgs8twW4Sx2O6KybAXn9YJXZ+ekwtpFWfuoEaJd6cel69FnLGRZNrxuMxSqFMKTeJMwiDgxgfCRI4aWtRRY3H333bjpppvwpje9KeeykUgEExMTST9zGS2wyMfSW717F0vAICvRapomY1Gdn6BSC5w4LmcgRu2mpUvo5VdwdP0GDD70n7atUzPHylAGAcxnLORoVOkKQXo7b4bW/hmLOfZ9c9oci0HtpoRRJp95Fp3vfo+hZU0HFr/85S/x8ssvY+vWrYaW37p1K6qqqrSftrY2s5s8r7DTIKsULL21E2CaeQb5CioTHhblGRX6M7ZFXSElR/DFFwFRRGj3btvWmWg1TV8GARI6iXhvH6RIJOc6o2fPAZIEzu/PmingPR5tu06VQwqWsfDTvBDCGMFtLxhe1lRg0d3djXvvvRc/+9nP4MuQfkzl/vvvx/j4uPbTbaL163xDliTIWsYiD42Fam8tTU05loo1SnwoSylEPflKFnUPzHWTzyHcTN1Wsd8TIhmWMbDzIsxKXtkyFkJNjaLNkWXEunI7cLKBZZ72dnAcl3VZ1gYqOiTgTJQYHc5YBGjCKZEbOR7H1PYdhpc3FVjs27cPAwMDWLduHVwuF1wuF55//nl885vfhMvlgqiKqfR4vV5UVlYm/cxVpFCizmxHVwgkqehq7mwp23x1D6zrRQgYCCyYhXgspgVvRGnANA62Bhas1TRLxiJ5ymnucogR4SbDSZMsKRzWyoCUsSBKgelXX4U0MQG+ytj121Rg8cY3vhEHDhzA/v37tZ/169fj3e9+N/bv3w9BECzt9FxBCql3BTwPzuu1vB7O59Pssos9iEwczJyyzbcrxMhkUwZXVqa1u1I5pLSIqS2c0tSUbSLOXK2mDDM6C0uBhQMZC7ZOzus19N3PB9JYEEaYemEbACBw6WZDy5sKLCoqKrB69eqkn0AggLq6Oqxevdr83s4x9K2muVKt2eA4LuGYV+SWU80hMFvGYmzMUnnCTCmE4zjwNk1UJexDHBtLCvTsuhBnM8fSo80MMeBlETMTWKhtoKwt1E70Ldz5nCeMkPCxoFIIkZmpFxR9RWDLZYaWJ+fNAmKHcJPB7mSKaestBYPaa3I1zJyrwDIWciwG2cKdKnttQg7XTYaLBJwlR2qmwK7BXZITGQsD5lgMJ0sh2XRLdsO0XpSxIDIR6+9H5PBhgOMQ2GwsY+HKd6N/+ctf8l3FnEF2ILAoZsZCS9mWlaVtn+X8fsDtVtryxsdNv27W9ZLLw4LBU8tpyTEzsLDnQhw3oLEAdIFFDvGmFI0i1tub9JxsODkvpFDCTUBfCqGMBZGe4DalDOK78EK4amsNPYcyFgVEZKUQGwILbcJpETMWenOsdClbjuN0jphjptdv1M6bQS2npUdqCYLdjecL6zTicwQWzI8i3teXVd8R6+4GZBm83w8hZeZNOpzNWBSm1RQggywiN0xfUX7llYafQ4FFAbGj1ZTB7uKLaett5ASYz9RRZgCWawDZjG2RrXfJoGUsVB8Suy7E7PvkylEKcdXUaMFHtCtzqzvbT/eCDkO6Bm0QmYMZi3S6JbvRSiE0K4RIgxyLIbhDaTMtv/IKw8+jwKKA2KuxKP6E02xzQhj5mGRJk8ZGptuxLcIZWAnCt2IFABsDC/UzzpWxAKBrOT2TcRlNX2GgDAIkvvPS5CSkcNjQc4xSqAFkAHWFENkJvfwKpGAQQm0tfCYaNCiwKCB2BhZM0FhMW29jGYtqANayCJqPhdFSCNsWlUJKAlmWtUxA2fp1AOy5w5clCaI6GiCXeBMwJuA002oKKBon1jJud9YiWwu33WjnolgMcjTq+PaI2QVz2yy/4vKc7sd6KLAoIHZMNmVo4s1iZiwMzDPIR2NhdLKpHdsi7EccG4OkBgD+tWsB2JOxkCYnAUkC4ERgscDQPnAclxBw2txymjiuChhYIKEBIwjG1PNqm6kJfQVAgUVBsbUUUl58HwsjKdt8sghMvGm4FEIZi5IieuYMAMDV3Az3fGVGkGhDu6k22dTvB+/x5FyetY/GsnhZmM1YAM4IOGVRRHxkJGn9TsK5XFrmhRxrCT2xnh5Ejh8HeB7lW7aYei4FFgWECaTymWzKKIUJp1opJM0AMoYd4k3BcGBBGYtSQn+x1i7Cw8OQ01j/m8GInbeeXBkLKRxGnLWaGvCwYCTcN220Kh8dBUQR4Di46oy19uUL6SyIdLBukLKLLzaUGdRDgUUBsbUUUj5bSiHVACyKN5mPhdFSSI26LcpYlARJgUVdLcBxgCQpF888MDLZVA8LLOKDg2kvnjF1MCJfUQGhpsbwfjCfCTszFixYF2prwbnythkyBAUWRDqmVP+K8qvMlUEACiwKiq3izYri+ljI8ThEAylbqxkLvVun8VJIYls04bT46C2yOZcLgmquk++FOGHnXW1oeaGqSls2nVGWFgAZmGqqx4l5IUaCdbtJtJySxoJQkKJRBF96CYA5/woGBRYFxF6NhepjESxOxiI+PALIMsDzWe/yrGYs9P4chksh7EITj9NJsgSIdioXcVZesEuTwDqMjGYsAF05JI3Owoq+Akj4TNiasRgoXKspgzIWRCrTe/dCDoUgNNTDu3Kl6edTYFFA2IHL2RJYFLcUot1Z1dWByzLVVuvUMJmxYKJUzufTppbmgvf5NCEamWQVF32rKbtga10UeQo4jU421ePuyDw+3cyMED1OiDcL6brJoMCCSIV1g5RfcaWlQXgUWBQQdhct2KCxKHYphAnWhBzzDKxOOJW0VlNj2Yp02yOKhzgyonyGHAd3m9IRYl/GYgyAxYxFusDCYsaCtYPa0enCKE4phCacEslo+goLZRCAAouC4sR0UzkWgxSJ5L0+sxh1B9RO/vG4Kdtgs5NNU7cnjo+Zeh5hL+xi7WppBq9mkewa3GUlY8H8KWwNLGzsdGEUJ2NBE06JBNHubkRPnQIEwfCY9FQosCggtpZCdOsohpeFaPAEyPl84FSvAcnExV4yaY7FoIxFaZDOIrsUMxbS9DTi/f0AEgPLjGJnpwujkJNNGYmMBQUWBDD1glIG8a9Zo9kamIUCiwJiZymEE4SEmrsI5RCjKVtlwmm18hwTF3ttsmm5ufcqH98Mwj7SZQHsGtylZSzU9mIjMP2EODQEcSqR8meDyfiqKrhMtJoCsLXThVHIOSEM0lgQeoKqf0XAQpspgwKLAiHH45DVkoUdGQsgcTcvFkHAGTcxz4Bd7CUTF3vNzttsKYRsvUuCdBbZLpu6KKxkLISKCi0IiHUlshZsMJnZMgjD7pZTrRRC7aZEEZDCYQR37QIAlF95leX1UGBRICTVkwGwxyAL0Ak4i+C+aWaegZXyhDbZ1KJ400wQQ9hP2oyFrhSSj8+IWYMsRrpyiN7Dwgp2zgsRp4KarTZlLIhiENqzB3I4DFdzM7zLllpeDwUWBUI7aF0uw+2TueADqpdFETQWZlK2VlpOpak8xZvUblo0ZFlOmGPpWjjZRVienrZcz5dFURtsZtZmODE+PU1gkW/GwoZSiKh2WvF+v203H0bgKLAgVBJtpldYajNlUGBRIPR23vl8YHqKNeFUlmVDc0IYVjIWrLxj1HUzn20R9iIODSkXKZ6He/587XE+ENDujuODA9bWPTGhGLMBECorTT2XBTl6k6yYRQ8Lhp2lEBac5GrhthuBSiGEyhQbk56HvgKgwKJgaAPIbNJXAMUrhUiTk5pexEgt2EoWwaqPBU/izaLDsgDulpYZ00fZhVi0eCFmJS4+ENC6jYyStRRiNWNho/tmMVpNAcpYEArRM2cQ6+wC3G74L92c17oosCgQdnpYMJiwUSxwVwg7AfIVFeB9vpzLW8pYsFKIyXYnF2Usik62i7WQ5+AuK8JNhjslsJCCQW0/LAcWNnW6AOZ0S3ZCGgsC0LWZrltnuhsvlcKMzyNsnWzKYGUCaaqwKUxtnoFB5bqVLIIm3jSpsaCMRfHJZpGdb+nAijkWg3WoiCMjECcnETt7VluXlUAFsDljUYRWU4AMsggFNibdqtumHspYFAgnMhbFKoWYTdla8ZZgPha8aR+Lam1bsiSZei5hD9kyFuxuPO+MRbX5QEAoD2iDw6KdXYkhaRazFYDdGovCt5oCZOlNKNen0O7dAPLXVwAUWBQMKaRmLBwphRRWvGl2noGlUog6tdVsKUS74EhSURxJCZ3GIl1gwS7EFtsz88lYAHqdxRndflprNQV0nS6hUJLxlhVKIWORTxswMXsJ7toFORqFe948eBYtynt9FFgUCEc0FkUaRGb2BKjPIhjFcinE6wVXVmZ6e4Q9yLKMaFfmTEC+80KYAJi3WLrQt5zmK9wE7Ol0YRRLvMkyFhBFyNFoQbdNlAZMXxG4Mr82UwYFFgXCCY2FoGksCpyxUPvtjbSaArqMxfi4oTsiWZdtEEx2hSRtjwScBSc+MAh5ehoQBHjmzZvx93x9H/IRbwKJICKWFFgssLQuRr6dLoxizAkBAF4NxAEqh8xFZFnWbLzt0FcAFFgUDEe7QgodWJguhagXAVE0FARJoZDmVWDWxwIgk6xiwiyy3a2tadtB8+2iyLsUovOysCNjAeTf6QIoU4rFkREARWg3FQQty0cCzrlH9NQpxM6dA+fxILBpky3rpMCiQJxPpRCjk00ZSeUJA1kELfhwucAZaGdNhTIWxSPXxZoFo+LICORYzPT6ExmLakv7x/Yrcvy49j22ao7FsEPAGVeDCggCBJPD0OxAazmlCadzDua26d+40bbrEwUWBcKRUkhFkTIWqvBOMKFeN5NFSEw2LbdU76MJp8UjliOwEGpqAEEAAMSHh02vP5GxyE9jwQJ9obbW8mhoRr6dLoCuhbuuDhxf+NNywsuCSiFzDaavKL/yCtvWSYFFgXCmFKJkLORQCLIo2rbebEjRqHZyN5OyNXOx1+y8LZ7wKWNRPHJlLDieh6uuDkCivdIM+WYs+EAg6XubbxkEyL/TBdDplgrcaspITDiljMVcQpwKIrRvHwD79BUABRYFg00t1BTYNiDo9AeFEnBqAjW321Sd28zFnvlyWNFXAJSxKCbZzLEY+Qg489VYAMnBhK2BRT6lkCK1mjIoYzE3Ce18CYjF4O5oh2fBAtvWayqwePjhh3HRRRehsrISlZWV2Lx5M/70pz/ZtjPnM07MCuE8HnBeL4DCeVnohZtmyhSJi/1YzmW1jpC8A4vc2yLsQ5YkRLu7AWS/YCcuxOYCCzkeT5TJLJZCgGTfCk8eHhYMO9w3zQz1cwKy9Z6baNNMr7zK1vWaCizmz5+Pf/3Xf8XevXuxd+9eXHPNNXjLW96CgwcP2rpT5yOaQZbN45C1CacFct+02mtvJmNBpZDZSXxgAHI4DLhccKdpNWW4LHZRiOq4dMD8ZFM9+vZSWzIWNswL0SabFr0UQhmLuYIsy5jaxtpM7dNXACZnhdxyyy1Jv3/pS1/Cww8/jJ07d2LVqlW27tj5hhMZC0AZeSwODSF65oxhERofCFhOJZttNWWYKU9I2gAyixmL6vxKIXI8DgiCbePt5wqsDOKe1wrOlfnUYrV0oJljVVRkXX8u9MFEOndQs6R2unBut+l1lE4ppHQzFlI4DM7rpePSJiLHjiPe1wfO54N/wwZb12356BRFEf/93/+NYDCIzZszj1iNRCKIqCO2AWBCd9cxl3BCvAkk7urPffwfjD+J49D+wx8gcNllprenzTNwMmPBRqYHrAYWxreVijQ9jdNv+2vwFRVY8Ktf0knMBEZ9IQSLpYN8zbEYev1HvuZYgK7TRRQRHxmBu6nJ9DrMDvazm1IPLOJDQzh5/Q0IXH455j/4H8XenfOC4HYlWxHYtMnQlGozmA4sDhw4gM2bNyMcDqO8vBy///3vccEFF2RcfuvWrfj85z+f106eDzjRbgoAlTffhOipU4a7QmRRBOJxjP/P4xYDC4sZCxNZBCnfUoh64ZEsGGQFd+1C9PRpdT8m80q5zzWMOllaFW8yzUw+wk0A8C5eDP/69XA1NuY9HhpIdLrEBwYQHxg0HViIU0GEDx8GAPiWLct7f6zAAgu5RAOL8KFDkKamENq1q9i7ct4QPXMGAOC76ELb1206sFi+fDn279+PsbEx/Pa3v8Udd9yB559/PmNwcf/99+O+++7Tfp+YmEBbW5v1PZ6FyNGoZgZkd8ai7s47UXfnnYaXD+7cha4778TU9u2QJcl0z7zVlK2Zi70m0LNcCqkGoNTkZVEEp/omGIFZ2wLKa6XAwjhGMxZa6cBkuykrheSbseBcLnT87Kd5rSMVV0ODElhYEHCGdu1UlPnt9irzzcBueMQS1Viw91UcHYUcjaZ1dSXMoWXJHCi/mW439Xg8WLJkCdavX4+tW7fi4osvxje+8Y2My3u9Xq2LhP3MNaTpae3/dgcWZvGvXQM+EIA4PIzwwUOmn29VvW6pFGJyAJm2LfYdk2VTrqSyLGPq+ee13/NR+c9FmJ13zsCioRGA8v6amaZpV8bCCax2ugB6Zb59PgJmKfWMhf5YtGKsRszESV1P3j4WsiwnaSiImbC6JefxWBJ22Qnn8SBwmaKJmXrh+RxLz6Qw4k0WWFjLWHAej3aiNCPgjJ4+jdi5c9rvVgyc5iqyJCHWpbaa5rDIZl0hciwGyYTmyi6NhRNY7XSRZTnhfHhVEQOLQGlbeuuPxXy6b4gE2k1ifZEDi09/+tPYtm0bzpw5gwMHDuAzn/kM/vKXv+Dd73637Tt2PqHpK4qcrWAE1DsjfdrfCLIkaXcLlsWbExOQJSnrsvmWQpK2Z0LAyU7wDMpYGCfe16eM3Ha74W5pybos7/WCV7NKZt5jO8yxnMJqp4uTynwzlHq7aVLGgo7LvJFFMXEud8A7xVRg0d/fj9tvvx3Lly/HG9/4RuzatQtPPPEErr32Wtt37HzCqY4Qq7CU6/RrryE+Omr4eeL4OKBqRZgts1G0u0xJylme0Eohecxw4C20nAbVwIKdZOnOyDiavmLePEOtoFYuxFKec0KcxGqnS3CbOgBq00bblflmmA1dIdr/KZOYN+LYGCCKAMfBVVtr+/pNiTd/+MMf2r4DcwHJATvvfHA3NcG7fDkiR48iuH07qlL8STKhmfhUV5sWT7HyhBQKQRwby5rOZoGH1VIIALiqqxGB8YyFFAwiuGcvAKDyxhsw9t+/oTsjE5gdQe6qr0f05ElzGYuSLoUogZJZQWop6CuAWRBYUMbCVrRzeU2NI+V5mhVSABKlEHtbTfOBncjYic0I+Yp9jGYR8rX0BgDexDRVAAjuVJX5bW1aStqKEG+uYmRGiB4rg7u0rpASLIW4LbTQipOTCL38MoASCixKsBQiy3JyxoKOy7yx6kdkFAosCkCpZSyAhFAsuH27YQ+MRGBhzcRH0z1kCSykSCTRmptHKcSsxmLqBWZte2VeQ7LmKixjYdTJ0koppJQzFoJudLrRTpfgiy8BogjPwoXwFLkFX9NYlGDGQgoGIes666gUkj9WRfhGocCiADClNVciGgsAKLvkEvAVFRDHxhA+cMDQc0SLc0IYWmdIlou9pr/guLzMxMx0oaQq8xNDpegEZhQrpRDgfBJvmu90YV1Zxc5WAMmlEDMtwIUgNatFAX/+OG0hT4FFAWB3AYLNrpv5wLlcCGzZAmBmN0Qm8h2UJFRVA8henhCZviIQMG3elbQtA9kRRuT4ccR7e8F5vfBv3KgdbNL4OKRo1PI+zBVkUURMm2q6wNBzzA7ukqPRREmxBDMWZjtdSqXNlKEJy2VZGSRXQqSWPqgUkj+JYZKUsZi1sBNiKWUsAPM6i3zrcpqtd7aMxZR68chDXwHog5jM22KwbhCmzOerqjRBk0h3RzmJ9fZpw7fcLc2GnmM2Y6FNNuW4knVDNVPeiRw+DHFwCJzfj7L1653etZxwZWWAOhen1HQW7DvCJuaKg0Mll1WZbVDG4jyg1NpNGeVXXA4ACB88aOhkmKjLWS2FVAPIobHIc7JpYlvGSyEJfcVVAACO4yAwwyNqOc0Jc9x0t7UZtk83q7FgnyNfWWnKor2QmAmW2HcucOml4EvAnprjefBlZQBKT2fBSrDelSsAqOUmi5OLCQWW9aHAYhZTqoGFq6EBPnXc/dS27TmXzzfKNSKo1EohFu28zWyLbU9T5utS0iTgNI5ZfQWA5HKTAefeUhZuMsx0umhlkBLQVzC4QGm2nLJj0DNvnlYGo+MyP0i8eR7g1GRTOwhceQUAY/becbvEm9kyFtpk0zwzFgZbW4MvvgTE4/AsWJCkzHfVU2BhlJiFwIKvrNS8UIyIZEtZuMkwmoURx8YwvX8/AKBcPf5KAcFfmu6b+hsaq9bpRDLUbnoeUKoZCyBxxxTc8SLkeDzjctL0tOYv4Wi7aTB/Dwv9tqSJiayva2pbegFd4gRGpZBcmPWwAJRykzbl1IAYTxwdA1DiGQuDpZCpHTsASYJ36RK4W1sLsWuGKN2MhXIMCvX1iYCfSpSWkYJBbdic4MCcEIACi4KQCCxKL2NRdtFFEKqqIE1MYPrVVzMuxw5kzuezLKw0It60rRSiE/iJGSzEZVlGUBWuBlJS0pSxMI6VUggATccSM/Aez4qMhcFOFzajJ/U7V2wSJlmlFljoMxZ0XOYLe+84vx9CuTPXJAosCkApGmQxOEFA4HJFxJmtO0Rfk+NU9bhZClkK4VwuzWCL3e2mEjlyBPHBQXBlZTMGQFkdKjXXkONxRNWJsGYDC80G28B7PCs0FgYyFrIkYWpbsli4VChVW2/9FE7ymMkfp1tNAQosCkIpWnrrYWWAbH4WdtTkksoTGdw+Ra0rJL+MBaAPZMbS/p0FUumU+VTLNUastxeIxcB5PHA1G2s1ZZjpopgVGQsDwWj44EGIIyPgAwH4164p1K4ZohQnnMrRKER1UKKrkTIWdpBvd58RKLAoAKWssQCgZCw4DpEjRxDr70+7jB19z1p5QpYTvgQpaD4WgfwyFkDuDIl255jGoIgyFsZg+gp3e5tpQ7PEReI8yVgY6HRhwXvgssscGf6UD6WYsYiPjCj/cbshVFXRcWkDTgs3AQosCkIpl0IAwFVbC99FFwIAgurFNhU72pM4t1vTZ2TSWWiTTfMshQDZW07F8XFMv/IKAKD8ipnKfP0JTJakvPflfCWhr1hg+rlm7j5nQ8bCSKdLKbltpsIyqiUVWLDzTl0dOJ6nTKINON1qClBg4TiyLJd0uymj/IrsLpyaoUpjflEuu+PMZHDjRCkk3baCqjLfs2Sx5uinx1Vbq/wnHjc8yGwuYlW4CZgTyCYCi9LNWOTqdImPjCD8mjKXJ3BFCQYWgdKbcJqaKaVSSP447boJUGDhOHIsBqjtjqVaCgF0005ffBFymvkYdkW5uVpONfFmnl0h+m3F0wQGqW6bqXAeD4SaGuX5JBTLCHPdtBRYmEhrz4ZSCJC90yW4fTsgy/CuWAF3U2Ohdy0npZmxYMLN+qR/pclJSCU202S2kBDDUsZi1qKP/pllbiniW7UKQm0tpGAQoVf2z/h7vuZYjFwTTplXBm9DGxS7u03NWCQr8zPfOVqZwDnXyCtjwdLaw8M5y02zoRQCZO90SQSzpZetAEpUY5Fyd51UbiKdhSW09zTP7HM2KLBwGGZEwvl84FyuIu9NZjie17QG6Vw4851sysjliCmqgYUtpZAMGovwwUMQh4dzKvMTd9QUWKRDjsUQO9cDwJw5FsNVV6cMvspRbpKi0YShT4lnLDIFo7IoavqlUtRXAPrAooRKIUPJmVJ9uYkCfmvYdZOYDQosHEbUWk1LtwzCYPbewZS2U1kUIQ4r6uy8MxZZBJVyPK5dQHg7201TxrSzwClw2Wbt7icdVM/NTqynB4jHwfl8cDWaT+1zbreu3JT5Pda+Kzxvy/fCSTJ1uky/9hrE8XHwlZUou/jiYuxaThLtpqWUsVAvgrq7azourSPH4xDVThsqhcxi5BJvNdVTvmULwPOIHD+hXDRUxJERQJIAnlfuMvOAz3CxBxJlEAAQbBC6ZtJzGHU+JAV6drQySJv5VlOGEcMjTV9RWWl5O4Ui00VPazPdclnJZi5LshSSZgqnUYdTYibx4RFAlgFB0IJ6Jyjto/Q8oNQ9LPQI1dUou+QSAIl6MKArg9TW5j2y2pWtBVT1sOC83qyZBKOk03PER0cx/dprAHLXus04Q85FrMwIScXI3ac0S/QVQOZOl2AOsXApoHWFlFIpJI1oXKBSiGW099OGc3k2KLBwGHEWtJrqKdemnSbKIXbW5PgsplXSFPOwsCfdnW5bmjJ/+XK4m5qyPl87gRkYgz0XyUe4yTBSL9eEmyWurwDSd7rEBwcRPngQAFB+xeVF2S8jlFopRJZliGnMnKgUYp344AAAZ/UVAAUWjjObSiGAbtrpzp2Q1LZTOw1VsrWbMnOsfCebpm5LmppS2n6R8Okwoswnl7/ssMDCnU9g0ZhbIMsyTnwJe1gw0nW6TG3bDkDpvHKyrp0vpVYKkcbHteNWLxrXvEKoDdw07FwmODgnBKDAwnFmUykEALwrV8LV0AA5FML03r0A7LWAzdZuKmoeFjYFFpWVStcBAFGdTxLcrpzkjSjzacJpdgqdsXDNhlJImk6XqW2l67aph52j5FCoJNxmtRJsVVXSLB/KWFinEOZYAAUWjpOw854dpRCO47TuEHZ3b+eXMWvGImjPZFMGJwjg1fkk4tgYwgcOQBwbA19RoWlJssHupqVgsGTu4koFORpFTJtqusDyejQdiwHxJj8LSiGpnS5yPI7g9h0ASte/gqG/+ZGnp4u4JwqZ7q5dDY1JfyeMIxag1RSgwMJxpFnUbsrQ7L1fSAksbCyFSJOTkFVHUoaolULsaynUDyJLKPO3GFLm84EAONXUjE5iyUTPnQMkCVxZWV5GO0buPlkH0WwQbwK6LMzAIKb374c0OQmhuhq+Cy8s8p5lh/P5ALXrRiwBW+9MNzRJ5aYMU5KJ9BRiTghAgYXjMCFUqQ4gS0dgy2WAICB6+jSi3d22ijf1xlepE041O28bvQoSvhnjpp0PyYwnM1oZpL0dnFpusoIRhf9ssfNm6LU5LOsXuPxyR1X4dsBxXFI5pNhkDCxqa5VykyhqI9UJYzAhOmUsZjmzrRQCKBd//9q1AJSsReIAzz/K5VyupPKEHq0rxAY7bwa7GEVOnkD49dcBmFPmmxntPZeI2aCvABJpbSkUyjj8arbYeTP0wehUibttplJKAs7EnJDki2BSuYkyiaZIzAmhwGJWMxtLIUDiRDj1/PO2W8BmcsTU7LztLIWoF6OJP/wfAFWZb+J1UMYiPXYINwElk5er3JRoN63Oa1uFgpWGwgcPInLkCMBxCFxeum2mehItp6VbCtE/RselcWRZLsicEIACC8eZbV0hDDbWOfjSTk3IZVddLpOttyOlEJaxOHoUQMK23CjUcpoeO8yxALXclOM91kohsyxjMfnsswAA30UXwuWgy6GdlFTGIssUTiOOrUQy0uSkNrmaNBaznNkaWHiXLYWruRlQ+8j5QMC21yBkMMnSfCxs6grRb4thVplPtt7psStjAeS++0yUQmaXxoIdO6XeDaKnpAILyljYCnuv+IoK8D6fo9syFVhs3boVGzZsQEVFBRobG3HrrbfiqHonSKRnNmosAOVOUn9CtFPsk2g5HUt6XJyy18dCvy1ACTLKLrrI1PNpwulMpGgUsd5eADYFFlnuPqVwGHI4DGD2iTcZpWzjnUpJBRZaCTZNxoIyiaax048oF6YCi+effx533303du7ciaeeegrxeBzXXXcdgiVQjytVZqvGAkjYewP2ps4ymWRJWmBhp8YicTGyoswn8eZMYmfPApIE3u9PckS0Sra7Ty2rJQi2BpxOon9PhLo6+FZdUMS9MUepaCykcBiS2jWWPmNBmUSzFKrVFABMjdl74oknkn5/5JFH0NjYiH379uFKk+m+WE8PYmrqOyuCAFdTU14tbXYiR6Omvsyi2unAzcLAwn/pZsDtBmIxW8U+BS2F6DIWhpX58QjACYDgKgnxpizLiPf3AyZ69vmKCsV51AGYvsLd0WHLcZn2PY6GAHdZUqtpMc8BkiQDAHg+9z6wThcAKL/8cscmssaiItwee1tYE4PIipuxYJkIzutNaK4kCYAM8EJJlEJkUQQ4ruQn7jIK5boJmAwsUhlXLwy1tbUZl4lEIohEItrvE2oUeuqWv0K5wbvHmve8B83/9Jk89tQepGgUp266GbHubtPPnY0ZC6E8AP/6dQi9tNOWO1NtvRnEm1opxAHxpmFlfjwKPLQB8FYCH96WcIYcGYEsikXxIuj75wcw9utfm3uSy4WOn/wE/rVrbN8fO/UVQJq09tAJ4DtbgIvfCbHx3QCKK9yUJBn/vXUPYhER7/ynjXDluJizThd5etqxNtOXHjuJ/X/uwts+sQ5NC+wLILVSSJEHkenvrjmOA6YGlONy8TXA3zySCEaLWKLs/sAHEDl5Cov+7/8g2Ngi7xTZxLB2YznUkmUZ9913Hy6//HKsXr0643Jbt25FVVWV9tPW1gZAHY2d60f1hx9//PEZLo3FYHrvXiWo4Dhj+6/+lK1dC4/6umcbde9/PzwdHai84Qbb1snKE5IuYyHLcqIUErAvY+FdsQL+DRtQ8573KMY6uRg+Dox1Av0HgKl+CLW1ihuhJCE+PGzbfpmBeSFwbreh7xsEAYjHEdz5kiP7E+08A8DOwCIlY3FmGxAPAyeeKQlzrIEzExjqnsL4wDTOHs1tyMRxHGre+U74N2xA+VXO6Cs6Xx+GJMk4Z2B/zFAqpZAZd9ddLwHhMeDg74HgcNFLlNEzZxB88SXE+/sRPnSwKPtglkK1mgJ5ZCw++tGP4rXXXsN2dahTJu6//37cd9992u8TExNoa2vDshd3oDJHqlYWRRy/bAvE8XFMv/aaZtpULJhzY9Xb3orWL32pqPtSKMq3bEH5k0/kXtAE7O4zrstYyKGQmuq0txTCezzo+OlPjD9h+GTS/7mKZgh1tRAHhyAODcHd2Jj5uQ4ghcOIq0LJJS88b6htceg738Xggw9qJlZ243jGYkT9DMbPQhxR50UUMWPReTARUHYdHMGCC3Pf8TV98hOO7Y8syxgfVFrAxwbszSyUinhzhnBTOy5l4OSzcC2+UflNNVYrtDieXQsA5XgIbNxY0O1bgWV3Sk68yfjYxz6Gxx9/HM899xzmz5+fdVmv14vKysqkH6NwgqClr5k1bjFhsyZmk8q7FGF3n5LOIIuVQSAImmFSURg5NeP/xaznsrIbX1lp+OLKvCWinV2O7JMWWOTpYcHQyk3Dw0pmcuS0+hcZYt8ZAMXNWHS9nggsOl8fgizLRdsXAAhNRBGPKHqb8QF7h4VxpRJYpGYs9Mfl8T8rc3zUfS3GccmuBQAQ63LmOLObQoo3TQUWsizjox/9KH73u9/h2WefxcKFC53aLw3WmaD/IItBtLsb0VOnAJcLgcs2F3VfZjvpJpxqws3y8uIKdUdOzvh/MQWc+uyA0feFZRKiDmQspEgE8d6+pO3ki1BTo5SbZBnxkZGkrJHYrwRWxQosQhNRDHSqVvM8h4mhMMb6i3vRHddlKcZtzlgIrBRS5MCCTeHUtF36wOLE04AkJkpoBW45lUIhhHbv1n5nYuZSRyzVdtO7774bP/vZz/CLX/wCFRUV6OvrQ19fH6YdHLEbuPxygOMQOXwYsf4Bx7aTCxbY+NesSRqkRZhHy1gEg5oTHJtsWvSWwmHdCUy9wBWzZ14/7Mso7jZlWXF0dMagt3yJdXUBsgy+vFzRn9gAJwhw1dUBAOIDA8Doae1v4rASxAg11bZsyyxdh5RsRUN7BVqXKfvQ+XpxtDaMMV2WIjgeRSxi34RPLWNRbI1F6rAsfYlyegQ497I276LQAX9w1y7tvAU4E8DbjRSNJozmSi1j8fDDD2N8fBxXX301WlpatJ9f/epXTu0fXHV12rjh4PZtOZZ2juALs2uYUCnDV1Qo0wmRmHAqTQUTfysmSRkLtRTCTmADRchYnDGvZxDKAxDUuzm7T3pRNe1rJoNiBLa/8c4jinBTRRwZUf5epIwFCyI6VtehY7US/HQdLG5gkZqlGB+0L7tQMhoLfSkkMgVMKQEmFl2t/HviqaKVKIOqmJplrqNdXZBVfVipIqrvEed2F0SvZLoUku7nzjvvdGj3FJgDZLF0FlI4jOCuXQASMzQI63CCoHksMNU/m2wqFDNjEQ0Ck72J30dOAbJcGhkLk3oGrRxic5o2EegYz6AYQdNZdCU7+TKTpGKINyVRQvchJbDRBxbnjo8hGi5el9pYiq5irN++jHHJBBb6KZysDFJWC1z4DuX/x/9clHkhsixr16Hq224DBAFyOKxk2koY9n4KDfUFKTXPCmcPprMI7tgBWfXfLyShPXsgh8NwNTfDu2xpwbd/PsJXJ5tkaaWQYmYs2AnMW6UYZMVCwGRvyWgszOCUzoKtz22TvoKhBW9n1TKIX7mIi1PFs/PuOz2BSCgOb8CFxgWVqG7yo7LeByluf5unGVjGwlfuVn63M2NRAu2msihqrd2uhoZEFrFuMbDkTcr/e16Bq0qdilvA4zJ66hRi586B83hQvmUL3PPnKY+XuM4iIdx0Xl8BzJLAwrd6NYTaWkjBIEIvv1Lw7bMItfzKK0vGAXS2k2qSpU02LWbGgtVx65cCNR3aY6zvu+AiselpxXETVgKLBQCcCyzsEm4ytOBtQM0YLbkWACBOK/qBYmQsWDdI+wV14HkOHMehfZUS8HQeHCn4/gCALMlaJ0iHui+pGYx84P3FF2+KY2OKyyzHwVVXmzguaxcDFU1Ay8UAAJeoHBuFPC5Zm6l/wwbwfr+jQmk7SbTvUmChwfE8yq9Q2k6D2wpfDplSt0n6CvtIzAtRMhZSUAks7PSwMI3+zqh2sfaYvpZbyFZDpmcQqqpMX1idzljYHlho77GqX5i/HrK3CmJUOUUVI2PB/CtYCUT//2K1nQbHI4jHJHA8h7aViqeJnZ0hzNJbDocVy+oiwO6uhdpacC5XIpNYpx6TS68DALhCx5KWLwRTLzwPIHEtcCqAtxtNDFsA4SYwSwILAAgUSWcRPXMGsc4uwO2Gf9OlBd32+Uxqy6moZSxKoBRSuzhxEhs+qR2McjisuYMWAm0mhwW/CKbJsNMkS5qeRrxPbTVdsMC29QI6geyYOj+objHkyoWQJSVDWOiMxdRoBEPdUwAHtF+Q6H6Zt7wGgovH1EgEI72FLxewbEVlnQ81LYGkx+xAbzQlOdjtlw1tCmdqq2ntIuVfFliMKdnrQmUsxKkgQnv3AUjo/rQAvqvEAwvKWKSnfMsWgOcROX4csZ6egm1XazNdv25W+MHPFoSqagD6UgjTWBSzFKI7gbGT2Mgp8GVlWommkEIxdrLytFsILFQLeXF8fMZMFuv7Y96syyhaxmJK1VDVLoLoVW3wBb7gQ/xYm2ljRyXKKjza426PgHnLqwEUp+2UOW1WNZahqkHRGIQmoraJSTm3G3AphszF0lnMMMca1mUSAWDeOqCsBi5evSkZGSnIyIfQzpeAWAzujnYtsGaBhVMut3ZRSHMsYBYFFkJ1NcouVmprejtVp0noK8ht006EVPFmKXSFaKWQRbpSCGs5LbyAM5+yA+/3w6Xaj9uVptXPCLFba6SZHU3zkHkPUNUG0dMMABDKXAXXNnW9PrMMwmA6i2K0nbLsRFWjH16/OyHgtClrwXFc0QeRJQUW4QkgqHZcsGCfF4DFb4TglQCeU4zVCjDHh113ynWdgaw7KtrVXdItp4WcEwLMosACSNS12FAmp5FCIYT27EnaNmEPMzIWzMeiWKWQyCQwpYjBlFJIImMBSdK1nBYusIhZ8LDQY7fOIqbzsLAb9v7KIgcp0AHwAkRBuYAL3sJqGURRQtfhRJtpKuyx3uPjiE4Xtu2UZSyqG8uS/rVzZkixW06TpnCyMoi/HvDpdDZLrwPHAS7V/d/pTKIsy4mRDrprgbu1FXC5IEciWpmwFKFSSBZYXSv40kuQdM5nTsEc1tzz5sFTAPvyuYQm3lQzFkUvhWgnsDqgrBqoagd4l2LWNNkzcwJnAch3Joc2M8SmVjgrLqBG4X0+8H4vACDuVuYPiVC8TgSX88e6nr4T44iFRZRVuNHYPjPQrW70o6qxDJIko/tIYbtD2PCxqkZ/0r9O6CxKohQyklIGYSx5IwAOLk9EfY6zPhKRY8cR7+sD5/PBv2GD9jjncsGjzssqVQGnLEkFHZkOzLLAwrtyJYSGesihEKb37nV8e/oIldpM7SW13VQrhRTLx0Lf0gYAgguoWaD9rdAuf1IwqG2rVDIWmjmWTcPHUnGpaf04r5RwRFG5HRVcYcW8rECwbpD2C+rA8emP+0R3SOHKIbKUmGqamrGwtTNEy1gUKbDQpnDW63RPKYFFoB6Ytw6uMkl9jrMZC9YNEti0CbzPl/S3Um85FcfHAVWDwqzznWZWBRYcx2n1Lae7Q2RZRlDdButIIewjVWORKIUUK2OR5s4oTcupWCAFutZqWlOjuZSaxW13YOFQqynDVaaUPOKS6sqqlhkEj5w8hMphOrPoKxjMQ6Lr9eGCtZ1OjUUgxiTwPIeKWuXixjIW9npZFLkUkjZjsWjmgkuvheATk57jFGykQ0A1a9Rjd2bQblirqVBdDc7jybG0PcyqwALQ2Xs7rLOInjqFWE8POI8HgU2bHN3WXCS13VQ/3bQosFHd+jsjXcupUGDxph0Xcf2dVL4XPykU0myLHQssPIrLZjym3IWzbJbglQoWWEyOhDHSEwTHAW26NtNUWpdVw+XmERyPYvhcYVqQWVaisqEMvKCcuqtZKcQJ982iBRZpNBapGQsAWHotXD41Y6EayTmBODmJ0MsvA0hcf/RoAXyJjk+f0WVTAGZdYBHYchkgCIieOoVod7dj22EZEf/GjeDLyhzbzlyFaSzkUAji1JQ2LbBolt7Dae6MdC2niVJIgTIWeQo3gYQWQpqczLvlNB+zLkOIcbh4JbiMh9QBdWwao0dKnm7pICxb0bSwCr6AO+NyLreA+Stqkp7jNGNaR0jifMRaTqcnY7YJSfkiTjiVgkHIakDjamiY2Wqqp2UNXJVqENp93LF9Cu54ERBFeBYt0tq49ZR6KSRRWqLAIiNCRQX8a9YASGggnEDTV1AZxBH4igpAEAAAsbNnE48HiuQVwlKutRkCiwKPaGYXcncew754nw+uZqVlM3rmTH77k4dZlyHGu+HyKR4W8Qklc6FlLDxS8tRZB+lK47aZiULrLFjGggUTAOApc6GsQgmA7OoMKWYphB1fvN8PXogDITWQr01TCuF5uBZfpDyvx7mLeq5rAXPfjHV1Fc2tNBuJjEVhhJvALAwsACDA2k4dCizEqSBC+1SHNWozdQSO4zTtAAsseL8fnBpsFJTwBBBUA4Z0pZCR03DVq0Oxxsa07IqT2KVnsOtuyml9BUZOamltcVi5mGgZC6+UEPE5iBiT0H1EGS5mJLBgfhZ9pyYQDjo/HJFlLFj5g1Ftc2cICyzkYgQWuimcWrYi0Ah402cyXSu3KM8bGXNkf2RZTox0SKOvAAB3SzM4txtyLIZYb+m1nIoFbjUFZmlgwcyqQrt2QwqHbV9/ksOaUydSQiuHRFlgUawyCLsbDjQAPp1QsqoNEDyAGIHATQJutWuhAGY8iQv5grzWY1tg0eVwYDF8Cq6yZCFeoTMWPSfGEI+I8Fd5UN+WW+tTWV+GmmY/ZElG92Hn207Hda6beqps9rJgWUOxCKWQZOFmyoyQNLguVuy941Mi5FH7NQ6Rw4chDg6B8/tRtn592mU4QYBbLZEwE7lSQpu9UqBWU2CWBhbeZUvham6GHA5rBlZ2Qm6bhYHV6mNnzwEooodFaqspgxe0llNu9LTWquV0OUScmtLuMvJt7bTLcjjhYeFcxkJgQrzBlIyFR1LMyyKTzmxbhZU02lfVGW4vZ5mNLofLIZIkY3wofcbCbi+LomYsNOFmQ+bjUoerbQkAQJY4SK/9wfb9YVnxwObN4LN0VJSyzkJ7TyljkR2l7VRJS9nddprksEb6CkdhGYuYKsIViuW6me3OKN2UU4dbTtnJSairy7tLxq5WuHzNunIyfFLLWIhjY5Ci0UTGgk02dbgzRNNXrDLe69/OdBYHhyFLzrWdTo2EIcVl8C4O5bXJPgrVWsupXRmL4msscraaqvA+H/gy5YIff/Up2/dHu8m8In0ZhFHKM0MSc0IosMhJuUM6i8ixY4j39ysOaxs35H4CYRktY9GjZiyK1Wo6nEa4ydBaTk8l5oUMOJuxiNmoZ7Cj5VScCkJU73qc1FgIHhlwqYLeri7N1EdoUV1vHewMGR+cxmhfSBlHnqXNNJXWxdVwewVMT8Yw2O1cRkWbEVJfBj7FtKtKM8myKWOhOW8WMbCorzeUsQB0c2aO7QXiEdv2RRwbw/SrrwLIrK9glLKXBbWbmsB/6WbA7UasqytvxbseLfW1aRN4r9e29RIzYSZZ0WKXQrJmLFhnSOEzFnZcxN1tbQDHQQoGIY5Y0wHEVH1FPmZdWRFjwFiXMvuhTrmoR06cAABwHg+4JiXd7WTGgmUrWhZXwVvmMvw8wc0XpO2U+VRUNc6c8sq6RMLBmC0i0mK2mybNtDCgsQAAV4uib4hPxYDOF23bl6kdOwBJgnfpUmUmSBY8JeplIYVC2udYqAFkwCwOLITyAPzr1wGwN2uhuW1SN4jjsIyFPK3caRWvFJLlzkhnklWoCad2eFgweK8X7pYWZb0W07SOd4SMdQFSHHCVwdWotMdGjiuBhVBdDa7O+cDCiNtmJgrRdprOw4Lh8bngr1LKAczyOx9Kod3UVeUDptVAOF0mUYd2XIZ54Lh95ZBgmqFjmdACi7NnCzLC3SgsUON8voK28s/awAKA7fbe4sQEQq+8oqyb9BWOw7PaOfu9GF0h02NASL0g1KYZNMdOaqNntJZTxwML7UJuz7Av5oVhNU3rfKspc1dcqGWFWMZCqKpKfC4OlULiURHnjhpvM02FPaf/zASmp5xpRWYdIdUN6c36WNbCjpkhRQ0sWMbCpQZI5c2AJ/sFUcskhgXg+J9t2Q9ZkjC1bTsAIHBF7muBq7lZscuOxRDr7bVlH+xAnwEq5Lyr2R1YqJFkaPduWw6C4Is6hzV1Yh3hHEJqYFFeBHMslq0ob0rfK185HxC8gBSDK6AcmI6XQmweT56vYt3p4WN6jUvawKIuIaB1gnPHxxCPSSiv8aK21fx3sLzGh7p5AUAGug8503aayFjMLIUAegGnDRmLIk03leNxrVzn4seUB3OUQQCdxmJaAIaPJ+z58yB88CDEkRHwgQD8a9fkXJ7jebjb1ZbTEtJZMD1YoaaaMmZ1YOFZtAjuefMgx2II7tqV9/qm1EEzlK0oDKnW0EUphWSansjgee2O2eVSglcnMxbi5KR2cnXb1NrJvDAsBxY2Bzoz0A2AYydAppsSaqoTn01wUDEzsxkrbaapOFkOkUQJE0OZSyH6x2dzxiI+PALIMiAIEKKq0VSOMgigy1hAFd2eeDrvfWFZ8MCWLeDcma3d9eR7nDlBvAjmWMAsDyw4jrOtO0RJfRmvqRH5I1RVJ/1elFKIgZY2dmFzcWMAlIPVqYmW7G5HaKiHYFMGJ++Mhfo8t2PmWAmNi3YCVK2R+aoqxbQsoD7uQNaiKw99BUPzszg4AsnmttPJkQgkUYbg4lFR40u7jK0ZC+ZjEY1CjjnvKMrQ9BV1deDGjAk3AZ3GIqa+NzaUQ6ZM6CsYpehlUYyOEGCWBxYAEFD7i4PPv5DXyT6sOqzxfj/K1q2za/eILMzIWBSjK8RIS5sadAiiehcVi+U91CsTTugZtFY4Cy2n4tQURNVptCAZixTluot9R2oTIlo7GesPYXxwGrzAad0dVmhaVAWPT0A4GMNAp71ZFf1UU45Pn1FJmGTZl7EAAGnavnHsuYgPKtNzk4aP5Wg11ZYHEJ9Ug6DT24CY9f2Oj4wgfOAAACBwefY2Uz2JwOKM5W3bTTHmhADnQ2CxaRM4jwexnh5ET1o/6TAFsD+HwxphH6zdlFEUHwvdRS0j6smNnzij6UJEh3QW7KRka2Axfz7A85BDIdNlHC2DYoNZV1riUaUrBFAyFim1YE3gq+ks7O0MYaWLliXV8PiMt5mmIgi85n9hdzmEdXpUZyiDAIlSSCQUR3gqvywD5/Fo6f9C6iy0tH19vbHjUoUFFtLkFKRAKxCfBs7ssLwfwe3bAVmGd+VKuJsaDT8vYZJVOi2nxZhsCpwHgQXv98O/cSOAhEbCCqSvKDx8IAC4Eidzvhgai5EcGgsgqeVUaHC25dSuGSF6OI9H68OPmeyzdyLQSWKsC5AlwO0HKppnnAC1rJZu0qyddJqYZpoLp+y9xwYye1gw3B4BgWrFd2dscHbqLLS769pKIKzYuaMmTadWCnxVlRYIiU1qhiGPckhipIO5a4GWGTx3rmRaThMW6ZSxMA37AljVWcRHRw07rBH2wXFcUmdIwUshoRFgWmkzTNtqymAXtbFOx70sEjM57Gk1ZbD1ma3/FmKqKQDlPeY4bR4LQ/t+sM/AxlJILCKi59gYAHsCCzbtdKBzEqEJ+9pONdfNDK2mjETLqY2dIQUMLFgWUPCr5Z7KeYAnczDF4DguEfBXX6I8aDGwkEVRyVjAvNbO1dgIzucD4nHEzp2ztH27oYxFHrBgILRvH8SpKdPPD+54UXFYW7ZMMxMiCoNeZ1Fw8Sa7+61oyd4rX9EKuHyAFIerSjnROdVyGnOotdOq5bCd9uJpSbFT5zyepO+E9n8HWk7PHR2FGJdQUedDTXPuC1guAlVebSpq1yH7shYsY5GtFKL/ux0zQ7R5IYUshbCMhVe92zfQEcJgczDi7jaAdwOjpy0FodOvvQZxfBx8ZSXKLrrI1HM5nodHm3JafAGnLIoQh5UOs0JONgXOk8DCs2CBYgIUiyH40kumnz/1wvMAKFtRDPQZi4JrLIwKxHheO8m5/Moh48S8EHFsTJvoaXvGwqJi3XEPizS1dL3QTOscYheZ0LBiamYDmttmHm2mqdjddiqJEiaHwgCyl0L0f7cjY8EVoxTCPBcE9ebQTGDBBJxjU0DHZcqDFrIWWjfI5VvAucxrbkppZkh8eBiQJIDnZ2QCnea8CCyAxIjzoEmdhSxJCDKHNdJXFBwWWHAeT+FFs0ZaTRkssPApwjgnMhbML8LV2JikzLcDt9XAomAZC31gkUjbagJfb4ViYgbYkrWQZTkvG+9MdKxWgqLuQyOQRCnv9U0MhyFJMgQ3j/Lq7LOLqh3oDCnkIDJNvMmpJmMGhJsMzSRrcAhYep3yoIXAQhvpYPFaUEotp1ppqa4WnCAUdNumA4sXXngBt9xyC1pbW8FxHB577DEHdss8ep2FmZa68OuvQxwdBV9eDv+a3A5rhL2wVHdRPCxMtLSxk5yLVyZYOqGxcPIirh+SZPT4EMfHtbZauzMoGmkzFrrAQu/OqrWc5i/gHO0LYXIkDMHFY95y622mqTQtrIQ34EIkFEff6fzbTvX6ikytpowqrRQynbfPSqE1FrIsJ0ohcdUS28hxqaKVQgYHE4HFme1A1HgpJz44iPChQwByj0nPhNUA3gmKMS6dYTqwCAaDuPjii/HQQw85sT+W8W/cAM7nQ7y/H5Fjxww/T3NYu+wyww5rhH2wC4cjrYy5MNHSljDJUu6mHMlYOFh28MyfDwgC5OlpxAcGjO2PmkERGuqdGWAUjwDjZ5X/6y4irB7M+XzgfTpDKJZZsiFjwbIV85YpY8/tguc5tK9U2k7t6A5J6CtyZ7CYeDM6nX/LaaEnnEqTk5CjiuDVFVUvyqYyFrrJw/VLgep2QIwqnhYGYbNBfKtXWy4dlFLGIuG6WVh9BQCYLiLdcMMNuOGGG5zYl7zgvV4ENm3CxAvbMP6HPxq+UE099xwA4wpg5qrH57h7sIwkKe13grGPRpZlBMciptz+PD4XfAHngqjwVAzRiLF2q7C/HhFPFbyFDixkObedtx6WsYj3AChsxkKOi5CkOARP9lR4Nji3G+558xDr6kK0sxPupqbc+2PjlNW0jHYq33VPOVCe8AtgF4lUAzXtc0rTchqLiKYGgJ15TTnpsk4OO+lYXYfjewfQeXAYl95q8OIoy8DEOeX90DF+VvmeVVXFEn4fDG8lUFat/eryCCiv8WJqNILxwWmUVVgvLbLAIt7fZ7zDwe2Gu9G474MedjzxFeXg4z0AOEOtpgyXvg2c45SsxZ4fKOWQ5dcbWoemrzBYBpEkGZBl8ELi/py1icfOnYMcjSqDySwiyzIQj1u+4S1mxsK6I4xBIpEIIpGI9vvEhP1e/wz5ojXYLt6Muu2vY9X332TquUYc1sSYhF99aTd4gcM7Pr0h6QtlG7+5Ezj9AvDhHUDVvJyL/+UXR3FoW4+5bXDAX91zCdrUOys7ObV/EH/6zgETz1gIXPZlLIofhHGplg2ERoCI2iufrdWUwTIWsXMAGiFNTkIKh5PvqPMkk3X2X776KI51N+MdH+tAzQWrLK/f09GhBRYB1fvFyP4UqtWUwU6EqUPq9H4ieoLjEfzigV2ITpv3DrBTX8Fou6AO4ICh7ilMjUZQXmMgIPzdB4AD/z3j4fGRzwJYi+pXvgQcTZmBwQnAXU8CbRu0h6oa/ZgajWBsIITmRSnvnwlYhmrk0Z9g5NGfGH5e/Uc/ioaP3m16e5rfQrVaEq2aD7iNH1tJGQtAF1g8pQRtOcS5ciyG4A7FVMvoTebj33gFY/3TeOdnN2o3aq7GBnBlZZCnpxE9dw7ehcaDo1QGvvpvGP35z7HgV7+Eb+VK08/X3tMCt5oCBRBvbt26FVVVVdpPm9qO4wQDohdxlx8DjesQ91eC83oN/VS99a2GHNZ6ToxhtC+E4XNB9J1yIEAKDgGHHle8FQ4/nnNxMSbh2O5+AIDg4iG4c//wPAfIwNFdffbvP4AjLyn1UZ7nDO2PICgH/LmylZBtnrGQFXZRq5wHuLO38QEAKpoBtx+8K67dhdhZDpFlWedhkbiQx4NTONrVirjsw7Gn9+W1DaaTiBlM0zph1pVESqspI7BpIzwLF6Ly5puSl69NXwo59cogotNxcByMfefUn8VrG1DdZK9IFgD8lR40dlQCMNh2GpkEDj6m/F/wKq3N6s+YqBibVXmGkx4HJwCyCLz2q6RVJYaR5dcZUn7VVRDq6gyfQ9ld9fjvf29J36HdXVeqQZiRYF+H5i8zNARZkoAFVyjv5XgXMHg05/On9++HNDkJoaYGvtWrcy4/1h/CuaNjCI5FkjqAOI6z7BmjR47HMfbb30KORjH+2P9YWkciYzELSiFmuf/++3Hfffdpv09MTDgWXJw9q1ykZE5A2T9/FkvecrOt62cufez/rUurbV0/TjwDQD0ojz8FXPr3WRfvOTmGeESEv9KDO/91S05xFwCcPTqK//mPV9B1cBiyJBt6jlHEuISzRxTDqb/+5Drt5Jr1OaKEH/6/bYiEgYGuSTQtyP0cW8hwUcsIxwG1i8D1vw5XdTliAyOIDwwq2gUbEMfGIKnZPE974vg4t+MliFACma4zHDblsQ2z9d+CZSxSaumuhgYs/tMfZy7PPqvpUSXj5Fe1DOpxuekti7Du+gXO7KtJOlbVYuDMBLpeH8YFW1qzL3z6BUCKKan/e17R7q5FUcLkx54HIKPq/z0J6DMfR/8E/Nc7gRPJd+TVDWwYWX6iy8DGjVi2Y7vh5aVQCMc2XYrYuXOInj4N7yJz+UftIlimnv9MCDcBJDQR8TjEsTG4amuBBZcDJ59R3qPGFVmfz5yXA5dfbqiDIula8Powlm9q1n73dHQgcvSo4QA+HdOvvqqdD6a2bUPT/Z8yvY5iDSADCpCx8Hq9qKysTPpxgsjoCHonEuZWna8ZE6iZQS/GcmI8clJ7lAFFszbueXWd4QChZXEV3D4B05MxDHZPWt7VdPSeGEMsIqKs0oOGNmNdHoLAa2I3R97TTJgRbjJYy2kly1jYp7NgJyFXczP4skQGpfOVbu3/A6F5CPWaLHvpMNtjrwUWTnlYmOnKARQTswr1GFd1FvGYqAWzrNWzFGD70nV4BGKutlN23C+9LillPzkUhizJcHl4BKpTavULrwQEDzB6Bhg+oT1sV8bCLEmjFZ4374CsCQ09atnczHEJ1VitRunuYSUAM22nZvUV+mtB16HhJI2bHQJO/XsYPXUK0e7uLEunR3tPG8/DwKJQnN32EiS4wENRQ3f11UCOi7atf3xwGqN9IeUCzgHDZ5X6qW1IohJdA8oJQ4zkVDR36Qx+jCK4eLStcOZCrvkCXFBrKhPSbrOpkCHMXtSAhIBTvauyU8CZLjsgSxI6zyqiVu17/cJOy9tIajmVsl/s4qOjkBwy69JgIkxTwV2yzqLn2BjiMQmBai/q5jnQuWKRxo4KlFW4EQuL6DsxnnlBWVaykwCw9NqkP2kzQhr8Mw28PAGgY4vyf92FMzE+PZR3y6lZmMEgMxw0g3Z3LaglZpMZCwAz7fbZ+9n5EhDOXLqO9fUhcvQowHEIXL4l53ZiERHnVCt43sUhEoxj4Exi/XaYZLFAh5WYzI6rSGrfLUIpxHRgMTU1hf3792P//v0AgNOnT2P//v3oMjncyG46X1M0AxcsOAcXF0ZIrMLQq6/Ytn6Wbm1ZXKWl6+207cW5fUqK11cFXHyb8tiJpzIuPjGUCHTaVprrw7fbHZDReVBpxWw3KYjr0GYsTGB60r4ZC1mxlLFQAwv1rsrpwGL82FFMxOrBI4YLFyuZis6DY5a34Z43D3C5IEciiPf3Z12WDStzNTUlZVBsIxZO22qak5SWU22I2Kpa29wz7YDjObRfoB5nB7McZwOHlW4Ql09J3etgWYeMVt5p7sgrG3wAB8TCIqbZGPECwUylQnv3QZwy16aqzbSQ1ffKZMYC0As4BxPrqF2slJlOZw52prYpN3BlF18MV03uc6lmBV/rw6KLlW3qz6X5Zixi/f2IHDkCcBxqbr8dgHnjRykYhBxWHFtnRWCxd+9erFmzBmtUM6n77rsPa9aswec+9znbd84osiShs1f5QizasABttUqQ0bnrsG3b0E9BdOTCzE4Oi68Blt+YeCzDXYc27nlxFbx+c+1IrMWu/8yEqRa9bEwMTWO0N6gGOua6TQLV6owFGeg6NGLL/mTFbKspQzPJUu5O7BRvpmvt7NyxHwDQWtWLxVuWAwC6hxogRa1dMDiXC555SqdRrpOeU8PQNEZPA5CVlsmAiRNfSsYi4Z5ZOmUQRvtqA5lBdtwvvHKGiHg811RTFlh0vghEFBtsl1tARY3STWHHzBAzeBYsgLtdGa0Q2mUus6bdXbuCAMcDNQtMb9+VbvIwy1ocz3yTFnyBuW0aM8XKdS3Qxqf39kKKmj+/BtVAx3fRhah6y1uUx3btgqQGCkZg9uh8IGC7i68RTAcWV199NWRZnvHz4x//2IHdM8bQq/sREqvh4sJovWwzOlYq9f3OU/akAuNREee0Om7iy9R9eARiPH/bXgDJddaFqqJ5rAsYSm/2xb7c7avMt4yW13hRN0+9kB+050LOMjrNiyoteWSwYKcg5ZDgEBCdhNIrv8D489SLmsAp3wVHMhY6PUPnMSUz0rHUi6aNG+HlpxCRAujbvcvydtwsTduZPcPo/IwQFtgtytkKmIQ2jOwUxvpDGB+YBs9zmL/CPvdMu2hfWQeOA0Z6gpgcyXBRYBe8JdfO+NPYoOq6mSljUbdY+f6KUUUAqlIsnQXHcQkHZJM6C5G1RpZJSqupy7xnC8tYiPqAXx9YpLlJk6NRZQglEmMhspFqBc/OW4NdkwiOK8erUF+vXMwlCbGzZ02/Dv3Ydu+ypXA1N0MOhxHas8fwOoo11ZRxXmgsOnceBADMr+2DUFaG9ivWAwD6p1oQHsxfxHnuuFLHLa/xorY1gIa2RP2092SW+qlRJvuBXmVsO5a8SamfLphZP2XEY/pAx9qdmt1Zl3znLrDnpQqhHIGVQUz2yqO8EfCUw+VT/BLYyTBfkltN1Va1iXGcG1eEih2XXQTe5UJ7g7K9zj0n0q/IAKyV1XDGokBTTQ2jaznVsnZLq+Apc7zBzTS+cjeaFipeEmmPs/A40KUOTVw6M7AYzzXVlBlBAUnniSobZ4aYJaGzMD5aQYpGteF7Lp9oSV8B6Eoh+oC/43LAVQZM9gD9B2c8J/Tyy5BCIQj19fBdkNsrYrQvhMnhhBW80lqs3MiymzSO4xIBvEmdhRyNIvhiItCxGqwVsyMEOE8Ci66Tyhe4Y7kidKvoWIhaXx9kCOjeZl3spq2fdV+oUxA5ntMiVTtse3FCNb5puSThQKidMGam8OwQrGlZl0MjeV/I4zERZ48mMjpWaF5YCa/fNUMI5QhWL2ocB9QuhMunZKnsyliIIyOQpqYAjlNSyQDObd8JCW5UuodQvUI54XWo2amuLuuuqUbrv5nMumzDisYFSLgxhsfRdUApeXasKr0yCEMLmNPpLE79RfGiqFs6w7dBjEuYHDYw1VR/nlAv5NW6mSGFxr9xIzivF/G+PkSOHTf0HFE9jjgXD94jmz8uVZgVfNLkYbcPWKRmItLcpLE20/IrrgDH574csgCxVWcFny7bajSATyX08iuQgkEIdXXwrbpA2TcWrG2zElgU59iY9YFFeHgQfVPKnV37Feu0xzvaldpW54H87yrT3Y1rd/zZhFlG0ZdBGEn10+S2UP3+WBWsNS+qhKfMhXAwlveFvOf4GOJRCYEqj1JisQAv8Gi7oEBtp1YvagBQuxiuMqXbKD4yAlnMv/OInXxcLc3gvUoKuPNVxUa5Y96UdsJru2ITAAlD0y2Y6rYmDEsEFmcyLpOUQSngVFNDePxA5TzEZA/OHVeOCyfcM+1CC+CPjEKMpZRN0x33KhND05BlwO0V4K/MYgu94HJF+DlxFhg8AkCXsRgsfMaC9/ngv1RxWwkavBAyrZIQcClVMSvHJdK4bzKWqC7M7AZOB+tgKTeor+jSxMIzrwXdhxMTbY0cZ+lgwUP55Zdrx73/0s2A241YZxeiZ4ytT9TmhFDGwhLdL7wEGQJqvf2oXJj4QnasV6Lezv66vNpOx/pDGB+cBi8k13HbVtZq9dOJ4TzuDMQYcFKZV5J0gqlbrETuUgw4laxo7rTQZpoKL/CayDLfC3mSn0YeyvyOQuksrF7UAKBuMVxeCeAAiCLE0dG8dydVuClLEjrPKZ1H7ZckzLL8LS1o9CvOpl3bjNdb9TDNRKyrO2PLqTg6CmlSuWiXVKspo3YRzkUuhCgC5bVe1LQUXpxmlPr55fBXehCPiOg5MZb4Q1Kb6czxAyzbUNVYlv2YcpcpLpOAFqhU2zjl1ApmU/cJcyz1+2i1FFKfphQCJMpMXTuB6THt4ejZc4ieOAkIAgKXXZZz/dFwHD3Hlefrg9nGBYquLDod1xyZrXaGMCGp3lZcKA/Av165aTbadsreA6EIHSHAeRBYsIxER3uyp0TzpZvg4UIISxUY2LfX+vpZ6mtpNTy+RB3XF3CjebFSP81LANm9W5lZUVYLzFub/Dcm6NKl8DIFOlawS2fBXn++d47phFCOkGfGguMBoUxJg9pRDol2JQcWI4dex1S8FgKimHf5pUnLdixSLhSdh61lmdwtLYDbDTkaRby3N/3+nGEZlBZbZ6EkNhBSWiwBy8FdZ1Q50Xasri+pNtNUOJ5L+LTos5t9rwFT/YDbn/Cj0DGu87DISUrZtLK+DBwHxCMiQhMFat/WwQKL0MsvQ5zMbcKnGTm51Bs0qxkL1QhKCgaTx73XLADqlytlp1PPaQ+zjErZmktmzqVJw9kjo5BEGVUNZUlW8DzPaSJ6di7VvCxMBBaxc+cQOX4C4HkEtiR/J5iw1HiwRhkLy8hxEV19ygfavm5B0t8Ejxdt9Ypws3N3bq/4THRp3RczL5q2dDIwr4olbwT4FCtZdsI48bRWP2Unp5Yl1XkL1tjBMNg1afkENDYQwlh/CDzPacZbVkknhLIdq62mDM0kSy2H2NBymjqTo+tFZYjbvJpeuMuTHUw7NrC20yaIUfPBF+dyaTbkmU56qYGO7YyeVv71VWm23GaQaxajM6IE4aVcBmF0pNNjsWzFoqvTdkCM5fKw0KPdkStGUIKLR0WdEhAWQ8DpaWuDZ+FCQBS1jotsME2EyxdVWk2rrX3v+EAAnBoIzzgu07SdavoKA90gQHJmNpXUawE7duK9fZAixo5TzU/jkpmBDivVhPbsSQ6aMlDMyabALA8sBl/Zh2mpEm5uGi2XXjrj7+0rVUX2aWt3NHqHtXQnMPbY2SMjM+unRtHSoTPrrFiwRVE0T5wDBg4B0Llt2nBCDVR50dDOLuTWgiPNOMwmZb7jLpxT/UDMeq+8ZpLlVoR1SUIxi6TqGTpPKD4VHctmXlQa161HGT+BmFyGvpesCZNzpWkd97DQl6IsZBvG+CWYFJvAc3HMX156baaptK2sAcdzGO1Tso0AMrptMnJ6WOipXagIQKW4IgjVPa8YAk5AVw4xoLPQLoI+EahuB1zWRo1zHJe+MwRIvM8nngYkCVIkguDOneq+5tZXyLKc0FekDSxqFUfmc4ojs1BbC768HJBlxAzacScCnZm24p5Fi+CeN0/pGtmVu92cukLyoHOXkoloq++HkCZl23GFMk54INSCUIa0bzY0h7U6H2qaZx7g9fPL4a/yIB6VtNqbKcbPAf2vA+CAxW+c+Xd3meJpAQDH/4xYVBfo5KGv0JNvOaTz9cwZHUv7s2qmEMpWWG2/qs3aCSxQD3grtXpwvhkLWZYR03lGRMdG0TuhDK1q33LJjOU5l4D2JiWb07n3tKVtJgKL9F4WMceHj+WhrwDQ2a90Ts3zHoHbU/qnMK/fjRatbDqsDFA7u1v5Yxr/CsCA62YqS5PLptUNxfGyYDCNgJG2U60U4pMs6ysYicAi5bhs3wx4ypUbi77XENqzF/L0NFyNjfAuX55zvSM9QUyNRuBy85iXZvhkWbkn4ch8cFiZcmpCZyFFowi+pLQepxvbznFc0nuaDTkahTg2BqA4c0KA2R5YqOfVjpXpB5sF2tpRX9YDgEf3NvOmQrm6LziOy687hKmU568HAhkuzFr99OkkK1m7BGvpFM1GSQp0bEpJpxNC2YrVVlOG1nKqlkLy1FiIQ0NKapPn4Z4/X5t5U+UZRPWy9BMZOy5UBFmd3dbu7Nwd2cc6O2+Old9n0HlGORY73LsUs7NZQNJ54tRzgCwBDSuB6rYZy8ZjIiZHDbSa6kkxgiqmlwUAlK1fD87vhzg4hMjh7A7ICfGmaP24VJkxL0T7g1cpOwHA8acS3SBXXWlIo8OuBfNW1MDlST/9NPUmzcOOMwNeFqE9e5RAp6EB3hXpj3tmmR58PnuwFh9Wr0UulyHtiBPM2sBiur8P/UHWZroh43IdHcoFwOyFX5Zl3RyCzBfNvDoZmCgzw12L8jdVMd71EjpfVbIu+bSZptK4oBLegAuRUBx9p81dyM8dVVroymu9qG2xZwBUOiGUreQj3GTULk5kLPIMLDS/iJYW8B6PNvOmY37mC0LbFZeCg4iRcDMmz5wyvc1sd1KFaTW1rnGJhuPoOaF8Tzu8Lyc+zxKHZfTOHRlF/MizyoMZyiATg2FABtw+AWUVBj1LOrYoQtCpPqDvgOa+WaxSCO/xIKCWp3PdYSdlLPI5LpGl5RRInEuP/1mbvRG4wqCNt4FOvFRHZreJjIXeVjzTuT2waRM4jwexnh5ET2U+7rX3s77ekDeHE8zawKJr2y4APOp8vShvy3wC7NiwRFl+sAFSPG54/akOa5mYv7IWPM+p3Rom7g7iUa0emukEA0Cpn9YvgyyJ6HxNGRxldshXNnj9sCSTF3L9dFU7lfmO2nvn02rKqFucyFjkWQrRX8RlSUJnTzUAoGNtZn2Dr6ERTeVKkNm5zXzHExOJxrq7Z/hwiMPDkIJBxayrbebdtC3kEdwxZX6ldwxVQk/i8yxx6uYFEKj2Ih6TcO51teae4bgf0xw300w1zYTLCyxURYgnntKmnI4PFn7KKUPTWWQZoCVLUuJCWGbddZORdl4IQ32/o0deUfwgXC5DbaaR6bjmsJyt5Ks5MkcUR2YzpRAjQlK+rMzQaPpiTjVlzNrAQosgO7IPZGrawGYslKN/927T65+nc1hLh7fMhZYlzLbXRCdD10tAdAoINCiOm9lYci1GxfmYnODBuzjbBWtWdBZJGR2blfnJQijjg3cMkWd9H4CSsbDJfVNfdhh+7VUEdTNvstGxSLngdB6ZMr1Nd0szOLcbciyGWIr2KCmD4jU/ryEn0SAwqW7TQtpb+861jCq6z1mSsUgqm04sATwVQNtMwTmQ0EVknBGSCV05pKLeB47nEI9KCI4VvuUUSIgip/fv12r+qYjj44B6w+fy2pmxSHNcVs0HGldhqkcpIfrXrYNQntvQr/vQCGRJRk2zH1UNmT8TjueSMtiGXW67uhA9fVoNdLIf94lgLVtgUdxWU2CWBhZSPI6uASUaYxmJTPAet27GgjGLWSB7a1EqbBlTnRVam+m1QK501dJr0aW2181bmj3QsUL7BeqF/KyiaDbCWH8IE0Nh8C4ua0bHCslCKBvbTmVZN/wqz4yFTe2mUXU8uaejIzHzpqYfrhwTCTsuVex+z440Q5w2l+7mBEGzDk+t/xZs+FhZjelWU1mWE1myxeoxMEsyFoDO3juyFlh8dUbx8NhgImNhChZYdO+CEB0vasspALhbW+FdugSQJEzt2JF2GdZVJXhFcC5B6QrJg4ziTcbSazHVqwTM6bov0qENfDRxLeh8fRieBQuUfenrg5TlGGXZCv/atRAqKjIuBySEnaF9mUfTF7sjBJilgcXAnj2ISOXw8kE0b9yUc/n2C5QLX9cZYxfkaDiOXtUlz0j3BVvm7NFRxKMGXT6zuO7N3MBl6IwqOpJUIzA7KKvQXcgPGQuOtIxOinGYXTgymn6yF4iFAE4AavK4cOoyFnIolPEAN4J+JkfnSeW707Ei9wWl/pI18AvjiMs+9Lz4kuntZrIcZoGOYzNC8ihFMWW+4OYx74Im9cHZE1jMX1EDnhMxLrZirPHGjMtZzlhUtyuCUFkCTj6rc+AsTmAB6ASHGe6wE62mknJMCtbn4ABZxJsqUtuVCA2ogcXll+dcnyzJSSXfXDBH5tHeIEKiD3ylcl6NZmk5NWMr7unoUMTXsRhCO9Mf91QKsQjLPLTVD4L35P4itl+ppBwHp1sRPJe7pziTw1omalsDKK/xQoxJWpdEVkY7FV9/jgcWX5Nz8WhcQE9UHUTlNl7OMYNZXYPdbaapODKant0tV7fndwLz14KvqATvUvZLTJd2NYAsy9qFXK6uQt+k2mZ6+bpsTwMAcDyP9mbFTrzzZfNzQ1hgEetKbjlNeFiUXqtpojxZA1ej+vyR02nHYZciHnEMLW4lK9U5fVHG5cYHLGYsgMSNyvGndTNDiiPgBHSOkdu2p7WQ18Z75zHVVI82Oj3DHJ9QLwdZ5ODyx+Hx5xarD52dQmgiCpdXQOuS6pzLJzkyHxrJWQ6RwmGEdinn9IDBDEouF05Ns1KkVlNgtgYWp5Xd7lhVbWh5ZcaCYiHc9ULuC7PZEeBJ9VMjF2ZWBmnbpKSEc3D2yCgkWUCl0Iuqvj8Y2iezmLmQK8r8saTn2U2SEEo/YyEf2N1ynnVcpeV0MYQ8dRbxgUHIoRAgCOg/0QkZAmq8/ahclL28x+i4SPFz6Ow2eWcLXcYitRTiuIeF9YxF0nFZ06EE5tEpYGrAzj10jhPPoMO7DwDQdSK9kDweFbVypOmMBaBz630K1fWsFFK8wMK/dg34QADiyAjCB2eOLU+aE5LvcQlAqK1VSsuSlGi71DG1TSnJlLdGwLHzcBbYd65tRQ0Et7HLpf5aoAXwGQKL0O7dkCMRuFpa4F261ND69TqLdMJcylhYIHjuLAan1Tu7K9OLn9LRvlC1xD40nnU5WZZN6Su09Wt3/EO5VdjHVf+KJQbKINAJ1rz7wJ3boxjs2Exju3ohD4uaAjoT546OQorLqKz3GcroWCFJCGWXziJP/4QkahcldBYWAwtWhnC3tqLrsDpvpc24WJW1nY5FGzF+4pipbXvSeFkktZo6pbHQWk3NfQaR6Tj61O9lx+o6pQuiSrEmnzXlkBNPKS2yAM4dG0MsMvOOmmUXPGUu+AIWsmptlyrC0OAgqlyKSLaYpRDO7dY6L9LdYWtTOH35e1gAin5IqKtNWjdDlmXNNru8JZx2jHoqVjKzbNmzR0YgzM+esWDvSfkVmdtMU/Fv3ADO50O8vz/taHotC0QaC+N0bVMyDg1lPfC3tBp+XsfGZQCA7qGGrDMWRnqCCI5ldljLxPwVNeAFDhND4ex3CLEwcFqdVprOxjuFJMFa05BWP7Ubjue0A6IrR9Ylcefo7AAo2+297Wg1ZdTpOkMsCjgT+op2dPYpmauOdQsNP99bW4+Wih4AQNf2V0xtW8tYnD0LWVXlxwfVDArPa/NEbEdrNTV3ETl7eASSJKO6SafMZ5/jbBBwSiJw4mnUCGdRUcVBjEs4d3TmZFy946alY8vlUYShAKomlBr8+OA0ZKl45aJsjpFJGQs7jktknnIaPX0Gse5uJdhpigI9LwNTmW8KwsEY+k/rglmD6B2ZRyuU4zmdSZYsy9p7ks5tMxO814vAJkVbyPQZ+nWKgwkfi2Ix+wKLQ2MAgI6F5urujevWw8dPIioH0L8zcznEiMNaOjw+F1rVQCTrhbBzhyIgLG8Gmi/Mud4kwdpF6kXneO4UnhUSGYLM+69vM2VGVk6hF0JNDNmQzrWj1ZRRuzjvjAVLj4aqWzEtVikzbzYbz8IBQMcS5TvaedTcXamruRmc1wvE44j19CTtj7u1FZzHmqtnViKTiqUyYPoiktagiH2OsyFjcW4fMD0KrqwKHRc1A0h/nhgzMyMkE6rhXmXf/4HnOYgxCVNjDk4LzkHgCuWiGT5wAPGR5Owj694QfKLpYDMTmpdFSsDPLsL+DRvAz1fPvSefybie7kMjkGVFQ1dRa3zKr7403h9RbhjSZSyiZ5RAB263ZiZmlMBVCRdOPdL4OOSYYsEgUMbCGFI0hq5Bpa7MMhBG4V0utDcpB3Ln3swnIiMOa5lI1Nay3MHqhw+ZsJKdv7wGrhVq6UQdpGM3bRcoF/KRniAmhtNfyEd6g5gaUQMdhwdAJY+mzzNrIUm6VlMbTmD6jEWm1rYcsJPNoKy8xvl16WfeZKNj82oAwNnRFsSDxj0tOJ6Hp70taT+c11eo77+/DiirNvy0jJ4psyljwdLui69Bx4XKCb/z4PCMsmli+JgFfQVDbTvlz+1BRa07ab3FwN3UCO/KlYAsI7h9e9Lf4v1Kucbl54Aqe4beZRpEFtRnB7RRCZnLIWa1dnq0AZU9yucbHxiYMZVUc9vcsB58wJxzsTaa/pVXIE4kRKjsNQtVVeCduDkwyKwKLPp270JU9sPHT6Jx/XrTz9fuyLvSv+GRUEzTF+TzZTp3PH39FEBCuJnNbVNH0pe7Xa2fhoaAXnOpbyP4Am40L2IX8vS6Br0y320io2OVxIyFPHUWkz1APAzwLstjmZOoXZRw3xzos7QKlh7tiyivsWNl9h72tLux+iIEXKMQ4cG5HeamnbpTBJzOW3lbK0UNnZ1CaDwKl4fXsoIAdBkL87bmBUc3xXje8hoILh6Tw2GM9iVfbBLj0vPIWFS2Ak0XApBR7Z9KWm+xKFets1N1FpqZU1MLINjTtq6VQnSTh6VgEKE9iktt4EpdYHHiGUCcKaSVJWMjHTLRtkJxZB4fiiDSoJZDUjqw2HvBMjpm8MyfD8+iRcpoel27uRZYNBSvDALMssCic88JAEBb4zB4l/kvYftVmwFIGA43Y4pNMNPRfXhUc1irrDd/x1Dd5EdlvQ9SXMbZNPVTDJ8Ehk8oFzc2ECcLM6xkBTew+A3KHx0qh+RqO02MbXe2DJK6P2ePjCAeM+gRkg52UavusOcE5q+Fq1o5+cf7ekw/XZYkRLu7EXUHMBhX9Awdl2eeeZMJjufR0aJ8RzpfMTaemZHaCsemnTo+fMxkKUrL2q2oTVbm1+oCi1JuOZ3sB3r3K/9f8ia4vQJal1UDmHmcMfFmXhkLQGs7rYISdBUzYwHodBbbt2ttoFIoBGlaESu75ttTBgHSzwsJ7toFORaDu61NMa6avx7wVQPhMeDcTFv8gc5JhKdicPsENC8xP8jLo3NkHl2olDn004SVQGcPAHP6Cj3pXDi1VtMilkGA2RZYdCppPastjr6GRjQHlItA5/aZXyYzDmvp4Dgu+1AyNs20fTPgy/1lZVaySYK1lPHIdqOl8I6MQIwll1ui03H0nsjtmW8neY+mZ9ipr1BxNSkBQXzIfJkmPjAAORzGSN0FUGbe9KFcneFhlo6LlWF8nWfNpVO1wKIrOWPBXDltZ0QN5k1mLLoypaSr2xWzs1gImLSWNSoI7LhvuQQoV0u5TCitK/HFoiKCqhYir4wFoN2RVweV81wxvSwAoOzii8FXVkIaH8f0q68BSFwEOUEC32Ks1dII6UyytO6LK9VpprwALHmj8sc0N2natWBlLQTB2mWSXUeGK5Wx7HqdRXDXbiXQmT8fnoXGBdt6tGBt2wuaR0ii1ZQCC0NMdXdiONwCQEL7FeaELnq0GQuHJ5MeT3JYy8ObQbP3fn1m/TRJX2GArnR1ZTYJ9dzLjoyMrm/LfCHvPpJQ5ud94jOIXgjVZWYWSyp2tpqquOYrJwRxIqgJpozCyg+jTYpGoqPd+jyH+VdsBo84JmL1GDt6xPDzmAlWtLMzyazL+VKI8RNpOBhD3ykWzKZkyVyexNjxUhZwnkiUQRjsO91zfAzRsJKKZx0hXr/FVlM98zcC3ipUScr7UuxSCOdyofzyLQCUCyGQPNWUszPgb0zOWChtpmm6L7LoLKxYDqTCPuMhsQ4i705yuU24bRob256OsnXrwLPR9EeU474U5oQAsyiw6HpBSRs1BXpR1tRkeT3tm5RZ92eHmyCGEwdbksPa4mrL69fqpyNhjPbq0o/REHBGnfKXbUy6it5PIymwqGxRu0lkpT5oM9myLvkIW/MhobPIQ8CZx6juTAhtKwBOFWeNmAt6op2dkMFpdzMd663vl6eqGi2VaiZuh3HtDSt5xM6eQ7ynB/L0NCAIBWg1Nf5auw8nlPmVdWnKA6Uu4BTjwAk2Jj0RWLAspCTKOHtEKZuO29ERwhBcwJJrUCUo4siJIrecAgktAetkYBoIZaqpA6WQwUElYD5xAvGeXnBerzYdFACw+I0AOKDvNWAiMYwvNBHFQKciiMznXFfbojoyyzxGq5dpGQt9m2nAgI13JniPB/7NytAytr5SmBMCzKLAovOw+kFbyxppNFyyFmXCOGJyGXpfSojdrDispcPtETBveXXSOgEAZ7Yr4sHK+UDjypzrGerOYiW7xNlySHuatlO9n0Z7gfQVDCaEGusPWTf7seifkA2ufkmiM2TAXMtptLMTExUdiAoV8HAhNF26MfeTstCxVBEkdx4zbrDlamwE5/MBooipF18EALjnzQPnzvNuOR3hCSCovkcmgrucBkWl3nJ6djcQGQfKaoF5a5P+lOrTkhiXnqe+grHkWlQIg+A5EWJcwqTdk4JNUn6FMpsjfOgQYgMDiA8orccunz2umwxWCpHDYUhTU9pF179pI3h911V5A9C6Rvk/K1cB6D40DMhK9jZQbX3Crz7bOly3KqFlOnlSCXQ8Hs2PwiqazuL5lMCiiB4WwCwJLMRwGN3DSpaiY9PyvNbFuQR0sBkL+85oj+fTWpRK4g5bV6pgQYCFNtMZgQ678zn5jGK8YzNtF9SCUy/k4+qkxeFzUwimU+YXAL0QylLbqSRZru9npU7XGWJyXki0sxPDdasAAG31AxA8+Y0o77hMmT1xbqwVscncMxAA1nKq6ClY65vjVt6BBsBXaegpsiSnLwfqKfWMBTvul7xRqevr0Ep8attpYviYTWXGJW8Cz0mo5JW78WJaewPKxc63Win9BbdtR/yccky6/ACq2mzbDl9WBl4dhx4fHNLpK66aubDOAp3BOtDsyMxqgUXtBYgPDkGcCmr749+0CXxZfkGkNpr+1Vchjo2ReNMMvTt3IiaXoUyYQMOa3AOacqH1kXcr0aveYc0OUSJbR++JcUSn44piPU2dNRtZT6jzNyjiz+lRxXjHZrxlLrSo/hGdqq5Br8x3uZ1vM00lcXdnQWcxcRYQIwDvtvUEpphkqRmL3rOmnhrtPIPhWmX0eccF5lXnqdSsvAAV7mFIcOPcduPTTlkgEdzxYtLvtmOh1XSwexLTk4oyn30fZ1DqLafMvj/NcT9vaTVcbh5ToxGM9ATtz1hUNAEtl6DaxQKL4naGALo77G3bEO85AwBw1VbNCLryhd2xR8+cRuhlxUY9bfeFdpP2HCDGIBkJZk0wb3kNeBeHcFkDQmWNiHV1Jtw2DQ4dy4a7pQXeZcu00fSJUghlLHLSuU+JbNubRsC58v8Ctl25GRxEjEaaMHHquGWHtUxUN/pR1airnw6fAEbPAIIHWJj7y6QXrKX9cgsutT4Ix7tD2EFmZ0Ynn/05d2wUMaOj6RnsolazwLZeeQBAWTVc5UrZIN4107M/E7IkYap3FJOVCwAA7VfmVwYB1LbTVkWQ3Ln/nOHnMZ0FM+9x3BzLRMpbK0+urIXgynCqYrX5kVOOmMblxUQP0H8AAJc4XnW4PALmrVBM5jpfH9a1mtoojF56naazKLaAE0jcYQd37EBcdXx1NTTavh12xz7++P8C8Tg8CxfC05bmpqJ1DeCvByITQPcu9J+eQCQUh9fvQtNCY5m1bHh8Lq2UPVy3CuFDhxDap9wMGhmTbgS2nsk/PwVpUjkHUMbCAJ1dysW+40J7ojBvbT2a2YyFbS87ctFMcuFkF/+OywBvec7nGgp0CtV2enQUwbEI+k4p6XWnbbwzoQmhYulnLGTFgVZThlBbDQCI93ZlX1BHvK8Pw+XKBNN6Xw8C8+zJonRcMg8A0HmuIu2I6nSkBhLOeViYdz01JBau7lB8YeJhYLI383LFgHWBzVsHBNK/BvbaTuwbQGhc6QyyLWMBAEuvRbVLOdeNDwTtW69FfBdeCKG6GtLkJIJHFN8VV4v97c3sjn3yGUXgnvEizvO6ttM/a67JbRfUgrfYZppKohyyCqO//JUS6HR02BbEs3Hrk88qImHO4wFfYd5sz05KPrCYOH0So5EmcBDRduVm29bbsVjJfJw5GkpvF5zv+nWOkfIxpq8wVgYxdEJlk1F7X1UMeGymtjVxId/5PycV47CWDMr8ApDcdmpSZzFif0cIw9WoaH/i/cZ9FPT6io6F9mlk5l2+GQKimIzXYfTQzBHV6ZgRWDhdCjEY3E1PRtF/hgWzWY4DQeekWmoCzuO5j3v22ga7lDtNX7kbXr+N4tl561Clum+O95gMyB2AEwQEVBdOiEqXiqvNgeOS3bGrbeCBbGUHre30ac1x2IlrwVj1EkwdVjKbAYumWOnwr1mjaErU1+pqaHB0OKQRLAUW3/72t7Fw4UL4fD6sW7cO29RRtE7QtU1JGzWX98BXZ196p+NSRUTUOdKB8FQMHp+gzaWwg9al1XB5eATHIhg+qdbfjUwzlWR0HTIQ6JQ3plU02wXHcZqu4chLfbn3pwDo205zjqbXY8E/wSiuVuVuSxwxftIOnzqNkRqlM6hjg33GQO6KSsyrVu7aO186YOw57bpAwuWCu9X4xGBTmPQR6To0AshA3fxylNfkELaydZaSgDMeBU6xKcaZ28urGspQ0+xP+t1WeAFVS5Tv2PioCKnILafATG2Ba8EFtm9DXwrgysrg35DF1XbxNQDHI9jbowV47RfYd66rbvKj3C9B5t0YrVZmXKUVklqEc7sR2LJF+73YZRDAQmDxq1/9Ch//+Mfxmc98Bq+88gquuOIK3HDDDejqMp4KNkPnESV9177Y3uRK3UXKjAVGWx4Oa+lwuQXMV4d0dYYuUu6q6pbkfN5AV0KwltNK1sAgnXxIzZh0FKkMwmBCqImhMMb6TQjRLFpJG8E1X1lnfMx4mrnv1ROIuwPwSFNo2pi/vkJP+zKldNZ53JjhlquxAZxfubB55s0DZ8EqPyfTY0BIzTIZDCxMeaaUYstp904gOql0wbRcknVRfUbGCeO58lWXgUcMksRjaqS4LacAELh8S6IzjpMhLLrY9m0IunbLwKWXZh/I5a8F5q1HV0S5UWvsqIC/0r4BXhzHoW2x4oo7XLdKDXTMz7rKhr7UU2zhJgCYPot8/etfx/ve9z68//3vBwA8+OCDePLJJ/Hwww9j69athtczePIIwuXZ9QaSGMfZUSXV3LR+CUIxe1XN85pHceyscvFvXhBHaOiYretvWSDizAHgZGQD2lqbgYGxnM85skfJDrQur0JECgPZSuULrwRe+Cpw6jlg8AjA2Rx8NUjgBaWj1eXhUFU9iNCQ/W6fZmju8KDnZASHXjiMpWuMnIQlYCgIiI2A1AT025sOjtcux7S3FtMxGT07XjDUSnymVwACQJOnG2E5CsSsu26m0njpBcDuYfROtKLnwMtwGZiWGmtbitiZbsitHRg4fsi2fdEYOam8//46YCwOIPtnIMsJZX7TikDu4766XXnf+14HbD6GLXPwt8o+LX4DIIaBLBWv5hXleFX1uvPXu2w/z2HRZahwPYvxeBs69+xD05Li3iAAgLjyIkRPdkPwShiMVtp+XIY9lZj2Kq/Tu34LBnKtv/nNOH5AcUBtXQTbrwWtKwQcPqDoLKT6Pgx12RsEx9uatdfLl1U6cxwDmJwyNkGZk03klKPRKPx+P/77v/8bb33rW7XH7733Xuzfvx/PP//8jOdEIhFEIhHt94mJCbS1teHf3vs4yjzGZhsE3eP46brPATaXjRYMX4Trj70PAPCTdZ9FyGOs/98oFeFavPuVf7b03L8s+i8caTI3rdIJbj70EcwfX45Tta/iz8t/VOzdwUU9V+OyzrfmXnAWcKzqJ3j2AvvbhW975Z9QFS5+OjRfIkIIP97wGchciXV72AwvCXjvnq1wS148tfTHOFlv/+TiNx95PxaOXmj7es9Hfrf66xio6My9oAlcohsf2PllyHzxRpnbwXQ0iH985K8wPj6OysrMXTOmMhZDQ0MQRRFNKZbaTU1N6OtLL17bunUrPv/5z894XOSiiHO5RUoSJ+HV1udsDyoA4Gz1YZyrPI6xsgHbgwoAmPSN4Hj9XiwcvsjU8yZ8wzhd+5rt+2OFV1ueRUW4Dq+1/KXYuwIAOFH/Mlb1X45AxD49TL64JIA3ee1zxQax+5LXHdmfV1uew6VdfwVeMpbB4mVAkIA4D8jF1XxpyJyM11r+ct4HFQAg8SJemfc0FoxciLNVRx3ZxvGGvWidWAxBcqDUZRG3CIg8IDn0nXOJyvdZNJHI7a08hcFy+8v6cSGGIJ5HQLoKMYdsgLTjWACcUtKInLHsqqmMRU9PD+bNm4cXX3wRmzcnOjS+9KUv4ac//SmOHJk5AClTxqJ3qDdrxEMQBEEQROkwMTGBlvoWezMW9fX1EARhRnZiYGBgRhaD4fV64fXOVHX73X743YWZkEkQBEEQRH7E3XFDy5lS+3k8Hqxbtw5PPZU8v/6pp57CZZddZmZVBEEQBEGch5guuN133324/fbbsX79emzevBnf+9730NXVhQ9/+MNO7B9BEARBELMI04HF3/7t32J4eBhf+MIX0Nvbi9WrV+OPf/wjOpxy7CMIgiAIYtZgSrxpBxMTE6iqqsop/iAIgiAIonQwev0u+VkhBEEQBEHMHiiwIAiCIAjCNiiwIAiCIAjCNiiwIAiCIAjCNiiwIAiCIAjCNiiwIAiCIAjCNiiwIAiCIAjCNiiwIAiCIAjCNiiwIAiCIAjCNkxbeucLM/qcmJgo9KYJgiAIgrAIu27nMuwueGAxOTkJAGhrayv0pgmCIAiCyJPJyUlUVVVl/HvBZ4VIkoRly5Zh37594DjO0HM2bNiAPXv2GN6Gk8tPTEygra0N3d3dhmedlNL+m13eyut1ep+cXp4+4+Lvk9PL02dc/H1yenn6jO3fH1mWsW7dOhw7dgw8n1lJUfCMBc/z8Hg8WaOdVARBMHUwOL08AFRWVhp+Tqntv9OvtxD7VGqvudT2nz5jY9BnXNx9KrXXXGr7X2qvFwA8Hk/WoAIoknjz7rvvntXLm6XU9t/p12tlG6W2vFlKbf/pM7afUtt/+oztp9T2v9Rer9HnFLwUMtuZa2Pf59rrBebea55rrxeYe695rr1eYO695lJ6vdRuahKv14t//ud/htfrLfauFIS59nqBufea59rrBebea55rrxeYe6+5lF4vZSwIgiAIgrANylgQBEEQBGEbFFgQBEEQBGEbFFgQBEEQBGEbFFgQBEEQBGEbczKweOGFF3DLLbegtbUVHMfhscceS/p7f38/7rzzTrS2tsLv9+P666/H8ePHk5bp6+vD7bffjubmZgQCAaxduxa/+c1vkpZZsGABOI5L+vnUpz7l9MubgR2v9+TJk3jrW9+KhoYGVFZW4h3veAf6+/uTlhkdHcXtt9+OqqoqVFVV4fbbb8fY2JjDry49hXrNpfIZb926FRs2bEBFRQUaGxtx66234ujRo0nLyLKMBx54AK2trSgrK8PVV1+NgwcPJi0TiUTwsY99DPX19QgEAvirv/ornD17NmmZUvicC/l6z7fP+Hvf+x6uvvpqVFZWguO4tJ/d+fQZG3m959NnPDIygo997GNYvnw5/H4/2tvbcc8992B8fDxpPU5+xnMysAgGg7j44ovx0EMPzfibLMu49dZbcerUKfzP//wPXnnlFXR0dOBNb3oTgsGgttztt9+Oo0eP4vHHH8eBAwfwtre9DX/7t3+LV155JWl9X/jCF9Db26v9/NM//ZPjry+VfF9vMBjEddddB47j8Oyzz2LHjh2IRqO45ZZbIEmStq53vetd2L9/P5544gk88cQT2L9/P26//faCvU49hXrNQGl8xs8//zzuvvtu7Ny5E0899RTi8Tiuu+66pO/sV7/6VXz961/HQw89hD179qC5uRnXXnutNr8HAD7+8Y/j97//PX75y19i+/btmJqaws033wxRFLVlSuFzLuTrBc6vzzgUCuH666/Hpz/96YzbOp8+YyOvFzh/PuOenh709PTga1/7Gg4cOIAf//jHeOKJJ/C+970vaVuOfsbyHAeA/Pvf/177/ejRozIA+fXXX9cei8fjcm1trfz9739feywQCMg/+clPktZVW1sr/+AHP9B+7+jokP/jP/7DsX23gpXX++STT8o8z8vj4+PaMiMjIzIA+amnnpJlWZYPHTokA5B37typLfPSSy/JAOQjR444/Kqy49RrluXS/IxlWZYHBgbk/7+9ew2JKoHiAP4fpxldM8ZHOpO5ZfQwTK22YGyxJyFGYWBGhNCDPvTAWHoTBMIuhUFFRssGQbb0oXGXVKIiKPIViZVNZEGUZkXh7GxmKloz1pz9EF68O6Zu3RnH2f8P/ND1dJjDv+R45965AKSqqkpERDwej1gsFiksLFRqPnz4ICaTSU6dOiUiIu/evRODwSA2m02pef36tYSEhMjVq1dFJHBz9tW8IsGVcV8VFRUCQNra2lTHgynjvr40r0jwZtzrjz/+EKPRKD09PSLi+4z/l2csBuJyuQAAYWFhyjG9Xg+j0YibN28qxzIyMlBSUoK3b9/C4/HAZrPB5XJh0aJFqn6HDx9GTEwMZs2ahYMHD8LtdvtljqEayrwulws6nU71wSthYWEICQlRampra2EymWC1WpWa9PR0mEwm3Lp1yx+jDJlWM/cKxIx7T3tGR0cDAJqbm+FwOJCZmanUhIaGYuHChUo+9fX16OnpUdXEx8cjJSVFqQnUnH01b69gyXgoginj/yKYM+79NM5Roz4/HszXGXOx+Jfp06dj4sSJ2L9/P9ra2uB2u1FYWAiHw4GWlhalrqSkBB8/fkRMTAxCQ0OxefNmlJWVYfLkyUrNTz/9BJvNhoqKCuTn5+P48ePYtm3bcIz1RUOZNz09HaNHj8a+ffvQ3d2Nrq4u7NmzBx6PR6lxOByIi4vz6h8XFweHw+HXmQaj1cxAYGYsIti5cycyMjKQkpICAEoGZrNZVWs2m5XvORwOGI1GREVFDVgTaDn7cl4guDIeimDKeKiCOePW1lb88ssv2Lx5s3LM1xn7/emmgc5gMODChQvYtGkToqOjodfrsXTpUixbtkxVd+DAAbS1teH69esYO3YsysvLsXr1atTU1CA1NRUAsGPHDqU+LS0NUVFRyM3NVTbjQDCUeWNjY/Hnn39i69atOHHiBEJCQrB27Vr88MMP0Ov1Sp1Op/PqLyL9Hh9OWs4ciBnn5+fjwYMHXmdWAO+MhpLPv2sCLWdfz/t/yHiwHl/bRyu+njdYM+7o6MDy5cuRnJyMgoKCAXsM1Oe/4mLRjzlz5uD+/ftob2+H2+1GbGwsrFYr5s6dC+Dz3QInT57Ew4cPMWPGDADAzJkzUVNTg19//RWnTp3qt296ejoAoLGxMWAWC2DweQEgMzMTTU1NePPmDUaNGoXIyEhYLBZMmjQJAGCxWLzumACAv//+22u7DgRazNyf4c54+/btuHjxIqqrq5GQkKAct1gsAD7/pjJu3DjluNPpVPKxWCxwu91oa2tT/RbvdDrx448/KjWBlLOv5+3PSM54KIIp468VDBl3dnYiKysLERERKCsrg8FgUPXxZcZ8K2QAJpMJsbGxePr0Ke7evYuVK1cC+HyVMQCvZ9Lr9XqvOwb66r1jpO8/iEDypXn7Gjt2LCIjI3Hjxg04nU5kZ2cDAObNm4f29nbcvn1bqa2rq0N7e/uAP6SH27fM3J/hylhEkJ+fj9LSUty4ccNr+Zk0aRIsFguuXbumHHO73aiqqlLymTNnDgwGg6qmpaUFDx8+VGoCJWd/zdufkZzxUARTxl9rpGfc0dGBzMxMGI1GXLx4UXU9GeCHjL/58s8RqLOzU+x2u9jtdgEgx44dE7vdLi9evBCRz1fQVlRUSFNTk5SXl8vEiRMlJydH+ftut1umTJki8+fPl7q6OmlsbJQjR46ITqeTy5cvi4jIrVu3lL7Pnj2TkpISiY+Pl+zs7BE3r4jImTNnpLa2VhobG+XcuXMSHR0tO3fuVNVkZWVJWlqa1NbWSm1traSmpsqKFSv8Nmdf/pg5kDLeunWrmEwmqayslJaWFuWru7tbqSksLBSTySSlpaXS0NAga9eulXHjxklHR4dSs2XLFklISJDr16/LvXv3ZMmSJTJz5kz5+PGjUhMIOftr3mDMuKWlRex2u5w+fVoASHV1tdjtdmltbVVqginjweYNtow7OjrEarVKamqqNDY2qvr46//x/3Kx6L3t6N9f69evFxGRoqIiSUhIEIPBIBMmTJADBw6Iy+VS9Xjy5Ink5ORIXFychIeHS1pamur20/r6erFarWIymSQsLEySkpKkoKBAurq6/DmqiGgz7759+8RsNovBYJCpU6fK0aNHxePxqGpaW1slLy9PxowZI2PGjJG8vLx+b+3yB3/MHEgZ9zcrACkuLlZqPB6PFBQUiMVikdDQUFmwYIE0NDSo+rx//17y8/MlOjpavvvuO1mxYoW8fPlSVRMIOftr3mDMuKCgYNA+wZTxYPMGW8Zf+tkHQJqbm5U6X2bMx6YTERGRZniNBREREWmGiwURERFphosFERERaYaLBREREWmGiwURERFphosFERERaYaLBREREWmGiwURERFphosFEQ2qsrISOp0O7969G+6XQkQBjp+8SUReFi1ahFmzZuH48eMAPj/o6O3btzCbzcP26GwiGhn42HQiGpTRaFQe2UxENBC+FUJEKhs2bEBVVRWKioqg0+mg0+lw9uxZ1VshZ8+eRWRkJC5duoSkpCSEh4cjNzcXXV1d+P3335GYmIioqChs374dnz59Unq73W7s3bsX48ePx+jRo2G1WlFZWTk8gxKRT/CMBRGpFBUV4cmTJ0hJScHPP/8MAHj06JFXXXd3N06cOAGbzYbOzk7k5OQgJycHkZGRuHLlCp49e4ZVq1YhIyMDa9asAQBs3LgRz58/h81mQ3x8PMrKypCVlYWGhgZMnTrVr3MSkW9wsSAiFZPJBKPRiPDwcOXtj8ePH3vV9fT04LfffsPkyZMBALm5uTh37hz++usvREREIDk5GYsXL0ZFRQXWrFmDpqYmnD9/Hq9evUJ8fDwAYPfu3bh69SqKi4tx6NAh/w1JRD7DxYKIvkp4eLiyVACA2WxGYmIiIiIiVMecTicA4N69exARTJs2TdXH5XIhJibGPy+aiHyOiwURfRWDwaD6s06n6/eYx+MBAHg8Huj1etTX10Ov16vq+i4jRDSycbEgIi9Go1F10aUWZs+ejU+fPsHpdGL+/Pma9iaiwMG7QojIS2JiIurq6vD8+XO8efNGOevwLaZNm4a8vDysW7cOpaWlaG5uxp07d3D48GFcuXJFg1dNRIGAiwURedm9ezf0ej2Sk5MRGxuLly9fatK3uLgY69atw65du5CUlITs7GzU1dXh+++/16Q/EQ0/fvImERERaYZnLIiIiEgzXCyIiIhIM1wsiIiISDNcLIiIiEgzXCyIiIhIM1wsiIiISDNcLIiIiEgzXCyIiIhIM1wsiIiISDNcLIiIiEgzXCyIiIhIM/8AGk7kgkLXHn4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "#clipped_india.groupby([pd.Grouper(key='time', freq='Y')]).mean().reset_index().plot(x='time', y='heat_waves_per_time_period', ax=ax, label = 'India', color = '#1F77B4')\n", + "clipped_hyd.groupby([pd.Grouper(key='time', freq='Y')]).max().reset_index().plot(x='time', y='heat_waves_per_time_period', ax=ax, label = 'Hyderabad', color = '#FF7F0E')\n", + "clipped_chennai.groupby([pd.Grouper(key='time', freq='Y')]).max().reset_index().plot(x='time', y='heat_waves_per_time_period', ax=ax, label = 'Chennai', color = '#2CA02C')\n", + "clipped_delhi.groupby([pd.Grouper(key='time', freq='Y')]).max().reset_index().plot(x='time', y='heat_waves_per_time_period', ax=ax, label = 'Delhi', color = '#D62728')\n", + "clipped_mumbai.groupby([pd.Grouper(key='time', freq='Y')]).max().reset_index().plot(x='time', y='heat_waves_per_time_period', ax=ax, label = 'Mumbai', color = '#9467BD')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "5aca7bfb-beea-4dab-900e-a4e451b84751", + "metadata": {}, + "source": [ + "## " + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "11f4e96f", + "metadata": {}, + "outputs": [], + "source": [ + "df_mean3 = ds_mean3.to_dataframe().groupby([\"time\", \"lat\", \"lon\"]).sum()\n", + "df1_mean3 = df_mean3.groupby(\"time\").sum()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "41fad60c", + "metadata": {}, + "source": [ + "## Comparing heatwaves using multiple definitions" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "16053a54", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9UAAAINCAYAAAAwUFzpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9VklEQVR4nOzdd3zU9f0H8Nf3dtZl7wQChISZsEQRWTJUEFHrqlRcdVvtz7Zaa1u1Dqyt1tFWrYuquCtOUHEwVFDCCIEwk5C9Q3Zuf39/3H0vCSQhl9zd98br+Xjk8ZDk7r6fBEPy/r6XIIqiCCIiIiIiIiJymULuAxARERERERH5KwbVREREREREREPEoJqIiIiIiIhoiBhUExEREREREQ0Rg2oiIiIiIiKiIWJQTURERERERDREDKqJiIiIiIiIhohBNREREREREdEQqeQ+wGDYbDZUVVUhIiICgiDIfRwiIiIiIiIKcKIooq2tDSkpKVAo+s9H+0VQXVVVhfT0dLmPQUREREREREGmvLwcaWlp/X7cL4LqiIgIAPZPRq/Xy3waIiIiIiIiCnStra1IT093xqP98YugWir51uv1DKqJiIiIiIjIa07VgsxBZURERERERERDxKCaiIiIiIiIaIgYVBMRERERERENkV/0VA+GKIqwWCywWq1yH4WIPECpVEKlUnGtHhERERH5lIAIqk0mE6qrq9HZ2Sn3UYjIg0JDQ5GcnAyNRiP3UYiIiIiIAARAUG2z2VBSUgKlUomUlBRoNBpmsogCjCiKMJlMqK+vR0lJCcaOHQuFgt0rRERERCQ/vw+qTSYTbDYb0tPTERoaKvdxiMhDQkJCoFarUVpaCpPJBJ1OJ/eRiIiIiIgCZ1AZs1ZEgY/f50RERETka/gbKhEREREREdEQMagmIiIiIiIiGiIG1TKZP38+fv3rX8t9DPKSjIwMPPXUU3Ifw2Pc8fk98MADmDJlilvOQ0RERETkLQyqA1igB3K+aM2aNYiKijrp/Tt27MCNN97o/QN5SaB/fkRERERE/fH76d9E3mQ2m6FWq11+Xnx8vAdOIz+TyQSNRhOwnx8RERER0akEXKZaFEV0miyyvImi6NJZbTYb7r77bsTExCApKQkPPPCA82MtLS248cYbkZCQAL1ej7PPPhv5+fnOjxcVFWHFihVITExEeHg4TjvtNHz11VfOj8+fPx+lpaX4v//7PwiCcMrd3aIoIj4+Hv/73/+c75syZQoSEhKcf962bRvUajXa29sBAE8++SQmT56MsLAwpKen49Zbb3V+rKWlBSEhIfj88897XeeDDz5AWFiY83GVlZW4/PLLER0djdjYWKxYsQLHjh1zPn7Tpk2YOXMmwsLCEBUVhdmzZ6O0tPSUX1uplPiFF15wrlu79NJL0dzc3Otxr776KsaPHw+dTodx48bh3//+t/Njx44dgyAIePfddzF//nzodDq88cYb/V5z06ZNuPbaa9HS0uL8mkt/pydWDQiCgBdeeAHnn38+QkNDMX78eGzbtg1Hjx7F/PnzERYWhlmzZqGoqKjXNT755BNMnz4dOp0Oo0ePxoMPPgiLxXLKr4d0zeeeew7nnXceQkJCMGrUKLz33nu9HnOqv49rrrkGF154IVavXo2UlBRkZWX1+fmVlZVhxYoVCA8Ph16vx2WXXYba2tpe13rssceQmJiIiIgIXH/99TAYDIP6PIiIiIiIfEnAZaq7zFZM+PMXsly78C/nIFQz+C/pf//7X9x111348ccfsW3bNlxzzTWYPXs2Fi1ahGXLliEmJgbr169HZGQkXnjhBSxcuBCHDx9GTEwM2tvbsXTpUjz88MPQ6XT473//i+XLl+PQoUMYMWIEPvjgA+Tm5uLGG2/EDTfccMqzCIKAuXPnYtOmTfjZz36G48ePo7CwEGFhYSgsLMSECROwadMmTJ8+HeHh4QDs642eeeYZZGRkoKSkBLfeeivuvvtu/Pvf/0ZkZCSWLVuGtWvX4txzz3Ve580333QGW52dnViwYAHmzJmDLVu2QKVS4eGHH8a5556LvXv3QqFQ4MILL8QNN9yAt956CyaTCT/99NMpbxBIjh49infffReffPIJWltbcf311+O2227D2rVrAQAvvvgi7r//fvzzn//E1KlTsXv3btxwww0ICwvD1Vdf7Xyde+65B0888QReffVVaLXafq935pln4qmnnsKf//xnHDp0CACcX6u+PPTQQ3jyySfx5JNP4p577sGVV16J0aNH495778WIESNw3XXX4fbbb8eGDRsAAF988QV+8Ytf4JlnnsGcOXNQVFTkLLm+//77B/U1+dOf/oTHHnsMTz/9NF5//XX8/Oc/x6RJkzB+/PhT/n1oNBoAwNdffw29Xo+NGzf2eSNJFEVceOGFCAsLw+bNm2GxWHDrrbfi8ssvx6ZNmwAA7777Lu6//37861//wpw5c/D666/jmWeewejRowf1eRARERER+YqAC6r9SU5OjjMYGjt2LP75z3/i66+/hlKpREFBAerq6pxB3N///nd8+OGHeP/993HjjTciNzcXubm5ztd6+OGHsW7dOnz88ce4/fbbERMTA6VSiYiICCQlJQ3qPPPnz8d//vMfAMCWLVuQm5uLESNGYNOmTc6gev78+c7H9xy0NmrUKDz00EO45ZZbnNnelStXYtWqVejs7ERoaChaW1vx2WefObPhb7/9NhQKBV566SVnoPzqq68iKioKmzZtwowZM9DS0oLzzz8fY8aMAQCMHz9+0F9fg8GA//73v0hLSwMAPPvss1i2bBmeeOIJJCUl4aGHHsITTzyBiy++2Pk5FBYW4oUXXugVVP/61792PmYgGo0GkZGREARhUF/za6+9FpdddhkAe+A+a9Ys/OlPf8I555wDALjzzjtx7bXXOh//yCOP4Pe//73zbKNHj8ZDDz2Eu+++e9BB9aWXXopf/vKXAOxB/caNG/Hss8/i3//+9yn/PpYsWQIACAsLw0svveQMsk/01VdfYe/evSgpKUF6ejoA4PXXX8fEiROxY8cOnHbaaXjqqadw3XXXOc/y8MMP46uvvmK2moiIiIj8TsAF1SFqJQr/co5s13ZFTk5Orz8nJyejrq4OO3fuRHt7O2JjY3t9vKury1kO3NHRgQcffBCffvopqqqqYLFY0NXVhbKysiGff/78+bjzzjvR0NCAzZs3Y/78+RgxYgQ2b96MG2+8ET/88EOvQPrbb7/Fo48+isLCQrS2tsJiscBgMKCjowNhYWFYtmwZVCoVPv74Y1xxxRX43//+h4iICGdwtnPnThw9ehQRERG9zmEwGFBUVIQlS5bgmmuuwTnnnIPFixdj0aJFuOyyy5CcnDyoz2fEiBHOgBoAZs2aBZvNhkOHDkGpVKK8vBzXX399r0y+xWJBZGRkr9eZMWOGq1/KQen595+YmAgAmDx5cq/3GQwGtLa2Qq/XY+fOndixYwceeeQR52OsVisMBoPzxsWpzJo166Q/79mzB8Cp/z4kkydP7jegBoADBw4gPT3dGVADwIQJExAVFYUDBw7gtNNOw4EDB3DzzTefdJZvv/32lJ8DEREREfkXq03ErrLjmDYiGkrF4KpO/UnABdWCILhUgi2nEwdeCYIAm80Gm82G5ORkZ6lsT9Jk6d/97nf44osv8Pe//x2ZmZkICQnBJZdcApPJNOTzTJo0CbGxsdi8eTM2b96Mv/zlL0hPT8cjjzyCHTt2oKurC2eddRYAoLS0FEuXLsXNN9+Mhx56CDExMfjuu+9w/fXXw2w2A7Bnbi+55BK8+eabuOKKK/Dmm2/i8ssvh0pl//ux2WyYPn26sxy7J2nw1auvvoo77rgDn3/+Od555x388Y9/xMaNG3HGGWe4/PlJ2Vfp6wzYS8BPP/30Xo9TKnvfHAkLC3P5WoPR8+9fOltf75POarPZ8OCDD/aZNdfpdEM+R8/rnOrvAzj110MUxT5L9Pt7PxEREREFtoc+LcSaH47h7nOzcev8TLmP43b+EX0GmWnTpqGmpgYqlQoZGRl9Pmbr1q245pprcNFFFwEA2tvbew2UAuxBrdVqHfR1pb7qjz76CPv27cOcOXMQEREBs9mM559/HtOmTXNmMfPy8mCxWPDEE09AobDPu3v33XdPes2VK1diyZIl2L9/P7799ls89NBDvT7Pd955xzmMrT9Tp07F1KlTce+992LWrFl48803BxVUl5WVoaqqCikpKQDsg9YUCgWysrKQmJiI1NRUFBcXY+XKlYP+Gp2Kq19zV0ybNg2HDh1CZubQ/yHavn07Vq1a1evPU6dOdb7+YP4+TmXChAkoKytDeXm5M1tdWFiIlpYWZ/n++PHj+zwLEREREQWWkoYOvLHdPmj4fzsrcMu8MQGXaAm46d+BYNGiRZg1axYuvPBCfPHFFzh27Bh++OEH/PGPf0ReXh4AIDMzEx988AH27NmD/Px8XHnllc6MpiQjIwNbtmxBZWUlGhoaBnXt+fPn480330ROTg70er0z0F67dm2vfuoxY8bAYrHg2WefRXFxMV5//XU8//zzJ73evHnzkJiYiJUrVyIjI6NXMLxy5UrExcVhxYoV2Lp1K0pKSrB582bceeedqKioQElJCe69915s27YNpaWl+PLLL3H48OFB91XrdDpcffXVyM/Px9atW3HHHXfgsssuc/Y7P/DAA1i9ejWefvppHD58GAUFBXj11Vfx5JNPDur1+5KRkYH29nZ8/fXXaGhoQGdn55Bf60R//vOf8dprr+GBBx7A/v37ceDAAWf2frDee+89vPLKKzh8+DDuv/9+/PTTT7j99tsBnPrvY7AWLVqEnJwcrFy5Ert27cJPP/2EVatWYd68ec5S+jvvvBOvvPJKr7Ps37/ftS8IEREREfm8v39xCBabfbhtUX0HDtW2yXwi92NQ7YMEQcD69esxd+5cXHfddcjKysIVV1yBY8eOOXtv//GPfyA6Ohpnnnkmli9fjnPOOQfTpk3r9Tp/+ctfcOzYMYwZM2bQe4QXLFgAq9XaK4CeN28erFYr5s2b53zflClT8OSTT+Kvf/0rJk2ahLVr12L16tV9fi4///nPkZ+ff1JGODQ0FFu2bMGIESNw8cUXY/z48bjuuuvQ1dUFvV6P0NBQHDx4ED/72c+QlZWFG2+8EbfffjtuuummQX0umZmZuPjii7F06VIsWbIEkyZN6rUy65e//CVeeuklrFmzBpMnT8a8efOwZs0ajBo1alCv35czzzwTN998My6//HLEx8fj8ccfH/Jrneicc87Bp59+io0bN+K0007DGWecgSeffBIjR44c9Gs8+OCDePvtt5GTk4P//ve/WLt2LSZMmADg1H8fgyUIAj788ENER0dj7ty5WLRoEUaPHo133nnH+ZjLL78cf/7zn3HPPfdg+vTpKC0txS233DL4LwYRERER+bw95c34rKAaggCMS7JXvH62t1rmU7mfILq6XFkGra2tiIyMREtLy0m/3BsMBpSUlGDUqFHD6iulwPLAAw/gww8/dA7hInuwu27dOlx44YVyH2XI+P1ORERE5B9EUcTPX9yO7cVN+Nm0NMzNisOdb+/B6LgwfP2beX5RAj5QHNoTe6qJiIiIiIjIrTYdrsf24iZoVArctSQLkSFqaFQKFDd04EB1GyakDH2Gj69h+XcQOe+88xAeHt7n26OPPir38VwyceLEfj+XvqZXu4uvfg3Xrl3b77kmTpwo27mIiIiIKPhYbSL+uuEgAOCaMzOQGhWCcK0KC7LtLamfFVTJeTy3Y6Y6iLz00kvo6urq82MxMTFePs3wrF+/3rm660SJiYmIiIjAAw884Pbr+urX8IILLjhpNZhEWtPlB50eRERERBQAPtxdiYM1bdDrVLh1/hjn+5flpOCL/bX4bG81frsk2y9KwAeDQXUQSU1NlfsIbuPKcC538tWvYUREhHPdGRERERGRXAxmK57ceBgAcOuCTESFapwfWzguAVqVAscaO7G/qhWTUiPlOqZbBUz5N7NwRIGP3+dEREREvu2N7aWobO5Ckl6Ha87M6PWxMK0KZ49LAAB8VhA4U8CHFVSvXr0agiDg17/+db+P+eCDD7B48WLEx8dDr9dj1qxZ+OKLL4Zz2V6k0lZ37gMmIt8kfZ9L3/dERERE5Dtausz457dHAQB3Lc6CTq086THLcpIBAOsLqgMmYTLk8u8dO3bgP//5D3JycgZ83JYtW7B48WI8+uijiIqKwquvvorly5fjxx9/xNSpU4d6eSelUomoqCjU1dUBsO/aDZTafCKyE0URnZ2dqKurQ1RUFJTKk/+BJiIiIiJ5Pb+5CM2dZoxNCMfF0/pumzx7XAJ0agVKA6gEfEhBdXt7O1auXIkXX3wRDz/88ICPfeqpp3r9+dFHH8VHH32ETz75xC1BNQAkJSUBgDOwJqLAFBUV5fx+JyIiIiLfUdNiwCvflQAA7jl3HFTKvouiQzUqLByXiM8KqvHp3urgDapvu+02LFu2DIsWLTplUH0im82Gtra2ASclG41GGI1G559bW1sHfE1BEJCcnIyEhIR+J0ITkX9Tq9XMUBMRERH5qKe+OgyjxYbTMqKxcHzCgI9dlpOMzwqq8VlBFe451/+ngLscVL/99tvYtWsXduzYMaQLPvHEE+jo6MBll13W72NWr16NBx980OXXViqV/KWbiIiIiIjIi47UtuHdvHIAwO/PG3fKIHlBdgJC1EqUN3WhoLIFOWlRXjil57g0qKy8vBx33nkn3njjDeh0Opcv9tZbb+GBBx7AO++8g4SE/u9e3HvvvWhpaXG+lZeXu3wtIiIiIiIi8rzHvzgEmwicMzER00f2X5EsCdEondnsz/b6/xRwl4LqnTt3oq6uDtOnT4dKpYJKpcLmzZvxzDPPQKVSwWq19vvcd955B9dffz3effddLFq0aMDraLVa6PX6Xm9ERERERETkW/KONWFjYS0UAvC7c8YN+nnLJtungH+61/+ngLtU/r1w4UIUFBT0et+1116LcePG4Z577um39Pqtt97Cddddh7feegvLli0b+mmJiIiIiIjIJ4iiiNUbDgIALj8tHZkJ4YN+7vzsBIRqlKhs7kJ+RQumpEd56JSe51JQHRERgUmTJvV6X1hYGGJjY53vv/fee1FZWYnXXnsNgD2gXrVqFZ5++mmcccYZqKmpAQCEhIQgMtL/J70REREREREFo42FtdhZehw6tQK/XpTl0nPtJeCJ+CS/Cp/trfLroNql8u/BqK6uRllZmfPPL7zwAiwWC2677TYkJyc73+688053X5qIiIiIiIi8wGK14fEvDgEArj9rFBL1rs/ckkrAP/PzEvAhrdTqadOmTb3+vGbNmgE/TkRERERERP7t/Z0VOFrXjqhQNW6aN2ZIrzE/Ox5hGiWqWgzYXd6MaSOi3XxK73B7ppqIiIiIiIgCV5fJin98dRgAcPuCTOh16iG9jk6txKIJiQD8ewo4g2oiIiIiIiIatFd/KEFtqxGpUSG4atbIYb2WVAK+vqAaNpt/loAzqCYiIiIiIqJBOd5hwnObigAAvz0nC1pV3xugBmtuVjzCtSpUtxiwu/y4O47odQyqiYiIiIiIaFD+9e1RtBksGJ+sx4rc1GG/nk6txGJHCfinfloCzqCaiIiIiIiITqnieCde21YKALjn3GwoFIJbXtffS8AZVBMREREREdEpPbnxMExWG84cE4t5WfFue905WXGI0KpQ22rEzjL/KwFnUE1EREREREQDKqxqxbrdlQCAe84dB0FwT5YaALQqJRZP9N8p4AyqiYiIiIiIaECPf3EQoggsy0lGbnqU21///JzuEnCrn5WAM6gmIiIiIiKifv1Q1IBNh+qhUgj43ZJsj1zjrMx4ROhUqGszIu9Yk0eu4SkMqomIiIiIiKhPoijirxsOAgCuPH0EMuLCPHIdjUqBcyYmAQA+K/CvEnAG1URERERERNSn9QU1yK9oQahGiV+dPdaj11rmLAGv8asScAbVREREREREdBKz1Ya/fWHPUt8wZzTiI7Qevd7sMXGIDFGjod2IHX5UAs6gmoiIiIiIiE7y9k9lONbYibhwDW6YO9rj19OoFFgywf+mgDOoJiIiIiIiol46jBY8/fURAMAdC8ciXKvyynWlEvAN+/xnCjiDaiIiIiIiIurlpa0laGg3YWRsKK44bYTXrjs7UyoBN+HHkkavXXc4GFQTERERERGRU0O7Ef/ZUgQA+N052dCovBc2qpUKnCtNAfeTEnAG1UREREREROT07NdH0GGyIictEksnJXv9+lIJ+Of7amCx2rx+fVcxqCYiIiIiIiIAQGljB9b+WAYA+P2546BQCF4/w6wxsYgOVaOxw4QfS3x/CjiDaiIiIiIiIgIA/P3Lw7DYRMzNiseZmXGynEGtVODcSfYS8E/9oAScQTURERERERFhb0UzPsmvgiDYs9RyWjY5BQDw+b5qny8BZ1BNREREREQU5ERRxGMbDgIALpySigkpelnPc8boGMSEaXC804xtxb49BZxBNRERERERUZD75mAdfihqhEapwF2Ls+Q+DlQ9SsB9fQo4g2oiIiIiIqIg1mWy4v6P9wMArp2dgfSYUJlPZHf+ZMcU8P01MPtwCTiDaiIiIiIioiD2r2+PouJ4F1Iidbhj4Vi5j+M0c1QM4sI1aO4044ci3y0BZ1BNREREREQUpIrq2/HCliIAwJ+XT0SYViXzibr1LgGvkvk0/WNQTUREREREFIREUcSfP9oHs1XE/Ox4nDMxUe4jnUSaAv7F/lqYLL5ZAs6gmoiIiIiIKAh9urca3x9thEalwIMXTIQgCHIf6ST2EnAtWrrM+L6oQe7j9IlBNRERERERUZBpM5jx0KeFAIDb5mdiZGyYzCfqm1IhYOlk354CzqCaiIiIiIgoyPxj4xHUtRmRERuKm+aNlvs4A1rmmAL+xf4anywBZ1BNREREREQURPZXtWDNDyUAgL+smASdWinziQY2IyMG8RFatBks+O5ovdzHOQmDaiIiIiIioiBhs4n404f7YBPtGeC5WfFyH+mUlAoBSx1TwD/1wRJwBtVERERERERB4r2d5dhV1owwjRJ/On+C3McZtGU59ingG/fXwmixynya3hhUExERERERBYGmDhNWbzgIAPi/xVlIitTJfKLBmzEyGgkRWrQZLdh62LemgDOoJiIiIiIiCgKPf34QzZ1mjEuKwNVnZsh9HJcoFAKWOgaWrS/wrRJwBtVEREREREQBbmfpcby9oxwA8NCFk6BW+l8oeH6OPajeWFgLg9l3SsD97ytJREREREREg2ax2vDHD/cBAC6dnobTMmJkPtHQTBsRjSS9zl4CfsR3SsAZVBMREREREQWw17aV4kB1KyJD1Pj9eePkPs6Q9SwB/2xvlcyn6cagmoiIiIiIKEDVthrw5MbDAIB7zh2H2HCtzCcanmVeKgG32kR8d3Rw2XCVx05BREREREREsnr4swNoN1qQmx6FK05Ll/s4wzY1PQopkTpUtRiw+XA9zpmY5NbXL65vx/s7K/DBrkpU1TcN6jkMqomIiIiIiALQd0ca8El+FRQC8MiFk6BQCHIfadikEvCXvivBZ3ur3RJUtxnM+GxvNd7fWYG80uPO90eGqFA+iOczqCYiIiIiIgowRosVf/7IPpxs1awMTEqNlPlE7rMsxx5Uf3XAXgKuUytdfg2bTcT2kka8n1eBDftq0OUoJVcIwLyseFw6Ix2npeqQsPrUr8WgmoiIiIiIKMC8uKUYxQ0diAvX4q4lWXIfx62mpEchNSoElc1d2HSoDudOSh70c8ubOvH+zgr8b1cFKo53Od8/Jj4Ml85Ix8VTU5Gg1wEAWltbB/WaDKqJiIiIiCjoWKw2vLClGLPGxGLaiGi5j+NW5U2dePabowCAP50/HnqdWuYTuZcgCFiWk4z/bCnGp3urTxlUd5os+HxfDd7Lq8C24kbn+yO0Kpyfm4JLZ6RhanoUBGFo5fHDmv69evVqCIKAX//61wM+bvPmzZg+fTp0Oh1Gjx6N559/fjiXJSIiIiIiGpbPCqrxty8O4Zf/zUOrwSz3cdxGFEXc//F+GC02zBodiwtyU+Q+kkcsc6zW+vpAHbpMJ08BF0UReceacM/7ezHzka9x17v52FbcCEEAzsqMw9NXTMGOPy7C6osnY9qI6CEH1MAwMtU7duzAf/7zH+Tk5Az4uJKSEixduhQ33HAD3njjDXz//fe49dZbER8fj5/97GdDvTwREREREdGQfXuwDgDQ1GHC85uKcPe5/ru/uaeNhbX45mAd1EoBD104cVjBoi/LSYtEWnQIKo534dtDdc791dUtXfhgVyXe31mBkoYO5+NHxITikulp+Nn0NKRGhbj1LEMKqtvb27Fy5Uq8+OKLePjhhwd87PPPP48RI0bgqaeeAgCMHz8eeXl5+Pvf/86gmoiIiIiIvM5mE7HlSPcO4pe/K8EvzhiJFDcHW97WabLgwU8KAQA3zBmNzIQImU/kOVIJ+Aubi7FudyWsNhHv7azAd0fqYRPtjwnVKLF0cjIunZ6GmaNiPHaDYUjl37fddhuWLVuGRYsWnfKx27Ztw5IlS3q975xzzkFeXh7M5r7LLIxGI1pbW3u9ERERERERuUNBZQuaOkwI16owMyMGRosNf//ykNzHGrZnvzmKyuYupEaF4Fdnj5X7OB4nlYBvLKzFr97ajS2H7QH1zIwYPH5JDnbctwh/vzQXp4+O9WjG3uWg+u2338auXbuwevUgZosDqKmpQWJiYq/3JSYmwmKxoKGhoc/nrF69GpGRkc639HT/X1JORERERES+YdOhegDA7MxY/PH88QCAdbsrsa+yRc5jDcuR2ja8uKUYAPDABRMRonF9zZS/mZwaiexEezY+JVKHX52diU2/nY93b56Fy2akI0zrnbncLl2lvLwcd955J7788kvodLpBP+/EuwKiKPb5fsm9996Lu+66y/nn1tZWBtZEREREROQWmw/b+6nnZycgJy0KK6ak4KM9VXh0/QGs/eXpfteHLIoi/vTRPlhsIhaNT8DiCYmnflIAEAQBb/zydFQ2d2FyaiSUCnn+3lzKVO/cuRN1dXWYPn06VCoVVCoVNm/ejGeeeQYqlQpW68lT15KSklBTU9PrfXV1dVCpVIiNje3zOlqtFnq9vtcbERERERHRcDV3mrCnvBkAMC8rHgDw2yXZ0KgU+KGo0ZnF9icf7anC9uIm6NQK3L98otzH8ar4CC2mpEfJFlADLgbVCxcuREFBAfbs2eN8mzFjBlauXIk9e/ZAqTy5xGDWrFnYuHFjr/d9+eWXmDFjBtTqwNqXRkREREREvm3LkQbYRCArMdw5mCw9JhTXnpkBAHh0/QFYrDYZT+iali4zHv7sAADgV2ePRXpMqMwnCj4uBdURERGYNGlSr7ewsDDExsZi0qRJAOyl26tWrXI+5+abb0ZpaSnuuusuHDhwAK+88gpefvll/Pa3v3XvZ0JERERERHQKmx2Z6PnZCb3ef+uCTESFqnGkrh3v7ayQ42hD8uSXh9DQbsTo+DD8cs4ouY8TlIY0/Xsg1dXVKCsrc/551KhRWL9+PTZt2oQpU6bgoYcewjPPPMN1WkRERERE5FU2m4jNhx1BtaP0WxIZosYdjonZT3x5GB1Gi9fP56qCiha8vr0UAPDQiknQqgJ/OJkvGvY4tE2bNvX685o1a056zLx587Br167hXoqIiIiIiGjICqtb0dBuRKhGiekZ0Sd9/BdnjMR/tx1DaWMn/rOlGP+3OEuGUw6O1Sbijx8WwCYCF+SmYHZmnNxHClpuz1QTERERERH5ok2H7FO/zxwT12dWV6NS4J5zxwEA/rOlGLWtBq+ezxVv7yhDfkULwrUq/HHZeLmPE9QYVBMRERERUVBwln5nx/f7mPMmJWHaiCh0ma34x8bD3jqaSxrajXj880MAgN8syUKCfvDrjsn9GFQTEREREVHAa+kyY1dZM4DuVVp9EQQB9zkyv+/mleNQTZs3jueSxzYcREuXGROS9bjqjJFyHyfoMagmIiIiIqKA992RBlhtIsbEh51y7dT0kTFYOjkJNhFYveGAl044OD+VNOF9x3Tyhy+aBJWSIZ3c+DdAREREREQBb/Nhez/1iau0+nP3OeOgVgrYdKge3x1p8OTRBq2ly4zff7AXAPDzmemYNuLkYWvkfQyqiYiIiIgooIli9yqtgUq/e8qIC8MvHKXVj6w/AKtN9Nj5BsNgtuLG1/JQXN+BRL0Wd58zTtbzUDcG1UREREREFNAOVLehttWIELUSM0fFDPp5d5w9FhE6FQ5Ut2Ld7koPnnBgNpuI37yXjx9LmhCuVeHVa2YiOkwj23moNwbVREREREQU0KQs9awxsdCpT16l1Z/oMA1uX5AJAHjiy0PoMlk9cr5TeWT9AXy2txpqpYAXrpqOCSl6Wc5BfWNQTUREREREAU3aTz3Y0u+erj4zA6lRIahuMeCV70vcfbRTemlrMV7+zn7dv1+ai9mZcV4/Aw2MQTUREREREQWsNoMZO0uPAxh4P3V/dGol7j43GwDw3KYiNLQb3Xq+gXySX4WHP7NPH7/3vHFYMSXVa9emwWNQTUREREREAev7o42w2ESMigvDyNiwIb3G8pwUTE6NRLvRgqe/OuLmE/ZtW1EjfvNuPgDgmjMzcOPc0V65LrmOQTUREREREQUsaZXWUEq/JQqFgD8sHQ8AePOnMhTVt7vlbP05WNOKG1/Pg8lqw3mTkvCn8ydAEASPXpOGjkE1EREREREFJFEUsemQY5XWEEq/e5o1JhaLxifAahPx2IaD7jhen6qau3DNKzvQZrDgtIxo/OPyKVAqGFD7MgbVREREREQUkI7UtaO6xQCtSoFZo2OH/Xq/P28clAoBGwtr8WNxoxtO2FtLlxnXvPoTaloNyEwIx4urZrg0rZzkwaCaiIiIiIgCkjT1+4zRrq3S6k9mQgSuOC0dAPDo+gOw2cRhv6bEaLHixtfycLi2HQkRWvz3upmICuUuan/AoJqIiIiIiAKSs/R7GP3UJ/r1oiyEaZTIr2jBJ3ur3PKaNpuI37ybjx9LmhCuVWHNtTORGhXiltcmz2NQTUREREREAafDaMGOY00AhrZKqz/xEVrcPG8MAODxzw/BYLYO+zUfXX8An+6thlop4IWrpmNCin7Yr0new6CaiIiIiIgCzg9FjTBbRYyICcWouKGt0urPL+eMRqJei8rmLry27diwXuulrcV46bsSAMDfLsnF7Mw4N5yQvIlBNRERERERBRypn3peVrzb11GFaJT4zZJsAMA/vzmK4x2mIb3Op3ur8PBnBwDYh6BdODXVbWck72FQTUREREREAUUURWw+bO+ndmfpd08/m5aGcUkRaDVY8Ow3R11+/vbiRtz1Tj4A4OpZI3HT3NHuPiJ5CYNqIiIiIiIKKEX1Hag43gWNUoFZY4a/SqsvSoWAPywdDwB4ffsxlDZ2DPq5h2racMNreTBZbTh3YhL+vHyi27Pp5D0MqomIiIiIKKBIpd8zR8UgVKPy2HXmZsVjztg4mK0iHv/80KCeU93ShWte/QltBgtmjIzGU1dMgVLBgNqfMagmIiIiIqKA4unS757+sHQ8BAH4rKAaO0uPD/jYli4zrnllB6pbDBgTH4aXrp7hlv3ZJC8G1UREREREFDC6TFb8WOL+VVr9GZ+sxyXT0gDYV2OJotjn44wWK256PQ+HatuQEKHFf6+biahQjcfPR57HoJqIiIiIiALGtuIGmCw2pEaFYEx8uFeu+Zsl2dCpFdhZehxf7K856eM2m4jfvrcX24ubEK5V4dVrT0NadKhXzkaex6CaiIiIiIgCxuZD9tLvednuX6XVn6RIHW6YY5/e/diGgzBZbL0+vnrDAXySXwWVQsDzv5iOiSmRXjkXeQeDaiIiIiIiChibpH7qLM+Xfvd007wxiAvX4FhjJ978sdT5/le+K8GLW0sAAH+7NAdnjY3z6rnI8xhUExERERFRQChp6EBpYyfUSgFnZno3eA3XqvDrRVkAgKe/PoKWLjM+21uNhz4rBADcc+44XDQ1zatnIu9gUE1ERERERAFhs2OV1oyRMQjXem6VVn+uOC0dY+LDcLzTjLve2YP/e2cPRBFYNWskbp432uvnIe9gUE1ERERERAFhkxdXafVFpVTg3vPGAwC+PlgHk9WGcyYm4v7lE73W303ex6CaiIiIiIj8nsFsxbaiRgDA/OwE2c6xcHwCzhgdAwCYMTIaT18xFUoFA+pA5v2aCCIiIiIiIjf7saQJRosNSXodshK9s0qrL4Ig4JkrpuLTvdX42fQ06NRK2c5C3sGgmoiIiIiI/N4mRz/1fC+u0upPgl6H684aJesZyHtY/k1ERERERH5P2k8tVz81BS8G1URERERE5NfKGjtR3NABlcL7q7SIGFQTEREREZFf23zYXvo9bWQ09Dq1zKehYMOgmoiIiIiI/Nomln6TjBhUExEREREFAVEU8V5eOcoaO+U+ilsZLVb8IK3SypJvlRYFLwbVRERERERB4PN9Nfjd+3vxh3UFch/FrXaUHEeX2YqECC3GJ0fIfRwKQgyqiYiIiIiCwO7yZgDAztLjsFht8h7GjaRVWvOy5F+lRcGJQTURERERURA4UN0KAOgyW3G0vl3m07jP5sNSPzVLv0keDKqJiIiIiIKAFFQDwN7yFhlP4j6VzV04UtcOhQCcxVVaJBOXgurnnnsOOTk50Ov10Ov1mDVrFjZs2DDgc9auXYvc3FyEhoYiOTkZ1157LRobG4d1aCIiIiIiGry6NgMa2k3OP++paJbvMG4klX5PGxGNyFCu0iJ5uBRUp6Wl4bHHHkNeXh7y8vJw9tlnY8WKFdi/f3+fj//uu++watUqXH/99di/fz/ee+897NixA7/85S/dcngiIiIiIjq1A9Vtvf68N2CCaq7SIvm5FFQvX74cS5cuRVZWFrKysvDII48gPDwc27dv7/Px27dvR0ZGBu644w6MGjUKZ511Fm666Sbk5eW55fBERERERHRqUun31BFRAICD1W0wmK0ynmj4TBYbfjjaAACYx1VaJKMh91RbrVa8/fbb6OjowKxZs/p8zJlnnomKigqsX78eoiiitrYW77//PpYtWzbgaxuNRrS2tvZ6IyIiIiKioSmssv8+vWh8IuLCNbDYRBRW+/fv2HmlTegwWREXrsHEFL3cx6Eg5nJQXVBQgPDwcGi1Wtx8881Yt24dJkyY0OdjzzzzTKxduxaXX345NBoNkpKSEBUVhWeffXbAa6xevRqRkZHOt/T0dFePSUREREREDlKmenxyBHLTogAAex0rtvzVZkfp99yseCgUXKVF8nE5qM7OzsaePXuwfft23HLLLbj66qtRWFjY52MLCwtxxx134M9//jN27tyJzz//HCUlJbj55psHvMa9996LlpYW51t5ebmrxyQiIiIiIgAGsxXFDR0AgPHJeuQ4gur8Cv+eAC6t0pqXxX5qkpfK1SdoNBpkZmYCAGbMmIEdO3bg6aefxgsvvHDSY1evXo3Zs2fjd7/7HQAgJycHYWFhmDNnDh5++GEkJyf3eQ2tVgutVuvq0YiIiIiI6ARHatthtYmIDlUjSa9DbnokACDfj4eVVbd04WBNGxQCMHcsg2qS17D3VIuiCKPR2OfHOjs7oVD0voRSqXQ+j4iIiIiIPKu79FsPQRCcmeri+g60dJllPNnQSaXfuelRiA7TyHwaCnYuBdV/+MMfsHXrVhw7dgwFBQW47777sGnTJqxcuRKAvWx71apVzscvX74cH3zwAZ577jkUFxfj+++/xx133IGZM2ciJSXFvZ8JERERERGdpLBHUA0AMWEapMeEAAD2VfpnCbhU+j2fU7/JB7hU/l1bW4urrroK1dXViIyMRE5ODj7//HMsXrwYAFBdXY2ysjLn46+55hq0tbXhn//8J37zm98gKioKZ599Nv7617+697MgIiIiIqI+HTghqAaA3LQolDd1YU95M2Znxsl1tCExW2347ohjlRb3U5MPcCmofvnllwf8+Jo1a056369+9Sv86le/culQRERE5H0tnWbUtRkwNjFC7qMQkZuIotgjU939vZ2bFoVP91Zjrx/2Ve8qPY42owUxYRrkpEbKfRyi4fdUExERUWC44bU8LHlqC4rr2+U+ChG5SWVzF9oMFqgUAjITwp3vz02PAgDkl/tf+bdU+j13bBxXaZFPYFBNREREsFht2F1+HKII7PHz3bVE1O1AdRsAIDMhHFqV0vn+Sal6KASgptWA2laDXMcbkk2OIWUs/SZfwaCaiIiIUNbUCbPVvpnjSB0z1USBoq9+agAI1aiQ5Wj1yPejG2l1rQYUVrdC4Cot8iEMqomIiAhF9R3O/z5Sy6CaKFBIQfWEE4JqAMhJs/cj763wnxJwqfQ7JzUSseFamU9DZMegmoiIiHC0R3a6iD3VRAGjv0w10KOv2o+GlW1yBNXzspilJt/BoJqIiIh6BdWljR0wmK0ynoaI3KHdaEFpUyeA3pO/JblpUQDs5d+iKHrzaENisdqwVQqqs7mfmnwHg2oiIiLC0R7ZaZsIlDR0DPBoIvIHh2paIYpAQoS2z1Lp7KQIaFQKtBosONbYKcMJXZNf0YxWgwWRIWpMcWTZiXwBg2oiIqIgJ4oiih2Z6uhQNQAOKyMKBIWOyd99lX4DgFqpwMQU+8f8YV+1NPV7ztg4KLlKi3wIg2oiIqIgV9dmRJvRAoUALBhnL6k8Wtsm86mIaLgG6qeWdJeA+/6wMimons/Sb/IxDKqJiIiCnNRPPTI2DBNT7NOAmakm8n/dQfXJ/dSS3HT797yvDytraDeioNIe+M/NipP5NES9MagmIiIKctK07zHx4chMCAfQe3AZEfkfm03EoRp7xYlU4t2XHEemen9VC8xWmzeONiRbHAPKJqbokRChk/k0RL0xqCYiIgpyUgA9JiEMYx1BdUlDh0//gk1EAytt6kSnyQqtSoGM2LB+HzcqNgwROhUMZhsO+3DbR3fpN1dpke9hUE1ERBTkpKA6Mz4cyZE6hGmUsNhElDZyAjiRv5JKv7OTIqBS9v8rv0IhICfNXgK+t8I3+6qtNhFbj7CfmnwXg2oiIqIg5wyqE8IhCAIyE+39l0dqWQJO5K8Kqxz91En9l35Leu6r9kV7K5pxvNOMCJ0KU7lKi3wQg2oiIqIg1mowo67NCAAY4yj9lkrAOayMyH8NZkiZROqrzvfRTHXPVVoDZd2J5ML/K4mIiIJYkSNwTojQQq+z76jOZFBN5PcGs05LMsWR/T1c24Yuk9WTxxqSzY4hZfOzWPpNvolBNRERURDrWfotGcsJ4ER+rbnThKoWAwBg3CCC6qRIHRIitLDaROyv8q1sdWO70bnuax6HlJGPYlBNREQUxIrq7cPIxsT3DKojHB9rh9UmynIuIhq6A9X2Kd5p0SGIDFEP6jm5jmz1Hh/rq958uB6iCExI1iNRz1Va5JsYVBMREQWxvjLVqdEh0KkVMFlsKG/qlOtoRDRErpR+S3J9dAL4t45+6rPHsfSbfBeDaiIioiBWVH9yUK1UCM7MNfuqifzPkIJqR6ZaKrX2BRarDZsP1QEAFoxj6Tf5LgbVREREQcposaLMkYnuGVQDPSeAt3n9XEQ0PIWOoHrCICZ/S3JSowAApY2daO40eeJYLttd3oxWgwXRoWpMSY+W+zhE/WJQTUREFKRKGzthtYkI16qQEKHt9bFMDisj8ktmq825Y96VTHVkqBoZsaEAfKcE/JuD9iz1vKx4KBWCzKch6h+DaiIioiAlBcxjEsIhCL1/Yc10DCsL5qD6pa3FuPjf37OvnPxKcX0HTFYbwjRKpEeHuvRcZwm4jwwr+/agVPrNfmrybQyqiYiIgpRzSFl8+EkfG5vYnam2BekE8Ne2lWJXWTN++15+0H4NyP9I/dTjkvVQuJjdzUmLAgDk+0Cmuqq5Cwdr2qAQgLlj2U9Nvo1BNRERUZCShpSNSQg76WMjY0KhVgroNFlR1dLl7aPJzmoTUdVs/7x/LGnCmh+OyXsgokE64OynHnzpt2RKun0CeH5FM0RR3htJ3zoGlE0dEY3oMI2sZyE6FQbVREREQWqgTLVKqcDouOCdAF7TaoClR3b6r58f9JtSeLmDIZJX4RAmf0smJEdCqRBQ32ZETavB3UdziVT6zVVa5A8YVBMREQUhm03sc51WT5lSCXitfwST7iT1UY+ICcWcsXEwWmz4zXv5sFhtMp9sYJ/vq8bkB77Ef5lZD1oHqu0T+8e7MPlbEqJRIjvR/jw5+6oNZiu+P9oIAFiQzaCafB+DaiIioiBU1dIFg9kGtVLAiJi+hxlJGWx/ydC6U8+g+vFLchChUyG/vBnPby6S+WT9O1rXjt+8m492owWvfl/CjHUQqmszoKHdCEEAspNcD6oBINdZAi5fX/WPJU3oMluRpNcN6eYAkbcxqCYiIgpCUqCcERsGlbLvXwekYWXBuKu64ri9nzotOgTJkSH4y4qJAICnvz6C/VXyD3E6UYfRglve2IkOkxUAcKyxMyhvhgQ7KUs9KjYMoRrVkF4jVxpWJmOmunvqd/xJmwmIfBGDaiIioiDk7Kfup/QbAMY61modqWsPuqxn+XF7pjrdkcW/cEoqzpmYCLNVxG/ezYfRYpXzeL2Iooh7PyjAkbp2JERoMX1kNADgi/01Mp+MvO3AMPqpJdIE8IKKFlmm3oui6BxSxtJv8hcMqomIiILQqfqpASAjLhRKhYA2gwV1bUZvHc0n9MxUA4AgCHjkosmIDdPgYE0bnv7qiJzH6+X17aX4OL8KSoWAf62chkunpwEAviyslflk5G3dQfXQS6azEsOhUyvQZrSguKHDXUcbtOKGDpQ2dkKjVGB2ZpzXr080FAyqiYiIglBRnf2X5TF9TP6WaFVKjIy1Z2qPBNmwsgpHT3VadHe/eVy4Fo9cNAkA8PzmIuwqOy7L2XraXXYcD31aCAC497xxOC0jBgvHJ0IQgL0VLc61YBQcnOu0UoaeqVYpFZiUYu+r3lvR7I5juUQq/T59dAzCtEMrYSfyNgbVREREQejoIDLVQPewsmDqqzZZbM51QukxIb0+du6kZFw0NRU2Efjtu/noMslXBt7UYcJta3fBbBVx3qQkXH/WKABAfIQW00fYS8A3MlsdNAxmK4rq7TfLhlP+DXSXgMvRVy2Vfs9n6Tf5EQbVREREQaapw4SmDhMAYHR82ICPlYaVBdPQq+qWLthEQKtSID5ce9LHH1g+EUl6HYobOvDXzw/KcELAahNx59u7UdViwOi4MDx+SU6vgU5LJiYCAL4sZF91sDha1w6rTURUqBpJet2wXkuuCeDtRgt+KmkCwP3U5F8YVBMREQUZqZ86NSrklBOCew4rCxblTd391H1NHo4MVeOvl+QAANb8cAw/HG3w6vkA+xTyrUcaoFMr8O9fTEOETt3r40smJAEAthc3oaXT7PXzkfcVSv3USfphT8yWJoAXVrfCZPHebvbvjjTAbBUxKi4Mo+IGvuFH5EsYVBMREQUZKes85hSl30B3eXgwZaorjp/cT32ieVnxuPL0EQCA372/F20G7wWumw7V4dlv7IPSVl88GeOSTi71zYgLQ3ZiBKw2Ed8cYgl4MCisGv7kb8nI2FBEhqhhsthwqMZ7rR9SP/X87HivXZPIHRhUExERBRnnOq0BhpRJxsSHQxDsJeON7cExAbx7nVbIgI+7b+l4pMeEoLK5yzkszNMqjnfi1+/sgSgCK08fgYumpvX7WKkE/It9DKqDgTsmf0sEQUBOmlQC3jzs1xuMnqu0WPpN/oZBNRERUZAZzDotSYhGiXRHxjZYSsC712n1n6kGgDCtCk9cOgWCALybV4GvD3g2eDVarLh17S40d5qRkxaJPy+fMODjpRLwzYfrYTD7zl5tcj9RFN2yo7qnKelRALw3rGx/VSvq2owI1Sgxc1SMV65J5C4MqomIiIKMs/z7FEPKJMFWAl7uWKeVfoqgGgBmjorBLx1Tt3//QQGOOwbAecJDnxZib0ULokLV+NeV06BVKQd8/KRUPVIidegyW/HdEe/3fZP3VLUY0GqwQKUQnMMFh0uaAL7XS8PKpNLv2Zlxp/x/m8jXMKgmIiIKIl0mKyodu4sHk6kGgLFBFlRLmepTlX9LfrMkG5kJ4ahvM+JPH+3zyJnW7a7AG9vLIAjAPy6fgvSYUwf8giBgyUR7tppTwAPbAUc/dWZCuNsC0lxH+feRujZ0GC1uec2BsPSb/BmDaiIioiBSVN8OUQSiQ9WI7WNdVF+k4DsYdlUbzFbUtdl7x09V/i3RqZV48rJcKBUCPt1bjU/yq9x6pkM1bbj3gwIAwK/OHosFLuzvXTLB3lf91YE6WKzem+JM3uXu0m8ASNDrkBypg00E9lV6Nlvd1GHCbkeZOYeUkT9iUE1ERBREpH7qMYMYUiYZm+hYq1Ub+JlqKYsfplEiOlR9ikd3y0mLwm0LMgEAf/poH+paDW45T5vBjFve2AmD2YY5Y+Nw58KxLj1/5qgYRIao0dRhws7S4245E/meAzXuG1LWk7Ray9PDyjYfroMo2m8KJEcOrkKEyJcwqCYiIgoiRXWDH1ImkR5b12YM+J3HUj91WnSoy7t+b1+QiYkpejR3mnHvBwUQRXFYZxFFEXe/vxfFDR1IjtTh6SumQqlw7UwqpQILx9sz218Wcgp4oHLnOq2ectKlCeCezVR/e7AeAHD2OGapyT+5FFQ/99xzyMnJgV6vh16vx6xZs7Bhw4YBn2M0GnHfffdh5MiR0Gq1GDNmDF555ZVhHZqIiIiG5qgLk78l4VoVUiJ1jucHdgl4uYv91D1pVAo8edkUaJQKfH2wDu/lVQzrLC9/V4IN+2qgVgr418ppiAnTDOl1pCngX+yvGXagT76nw2hBqeNmkLuDamem2oMTwC1WGzYftgfVrrQ2EPkSl4LqtLQ0PPbYY8jLy0NeXh7OPvtsrFixAvv37+/3OZdddhm+/vprvPzyyzh06BDeeustjBs3btgHJyIiItcV1XUAAMa4EFT3fHygDyurON6dqR6K7KQI3LUkCwDwl08Lna/nqh3HmvDYhoMAgD8um4BpI6KH9DoAMDcrDlqVAhXHu3CgOrBvigSjgzVtEEUgPkKLuEHOSRisyY5hZRXHuzy2p35PeTNausyIClVj6jD+PyeSk0tB9fLly7F06VJkZWUhKysLjzzyCMLDw7F9+/Y+H//5559j8+bNWL9+PRYtWoSMjAzMnDkTZ555plsOT0RERINnsdpQ0mAPqjNd6KkGgLEJwdFXXdEk7ageel/nDXNGY/rIaLQbLbj7/b2w2VzLDte3GXHb2l2w2EQsz03Bqlkjh3wWAAjVqDA3y15WyynggccTQ8okep0aox2r9zy1WusbxyqtuWPjXW5vIPIVQ+6ptlqtePvtt9HR0YFZs2b1+ZiPP/4YM2bMwOOPP47U1FRkZWXht7/9Lbq6ugZ8baPRiNbW1l5vRERENDzlx7tgstqgUyuQGuVa0Cjtvj0SJJnqways6o9SIeCJS3MRolbih6JGvLbt2KCfa7HacMdbu1HXZkRmQjgeu3iyy73dfZGmgH+5n33VgUYKqid4IKgGgCkeHlYmBdVcpUX+zOWguqCgAOHh4dBqtbj55puxbt06TJgwoc/HFhcX47vvvsO+ffuwbt06PPXUU3j//fdx2223DXiN1atXIzIy0vmWnp7u6jGJiIjoBFLp9ui4cChczAgFy65qqad6OJlqAMiIC8O9S+3tbo99fhDF9YP7uj258TC2FTciVKPE87+YhjCtaljnkCwcnwiFABRWtzqHsVFg6M5Uu3fytyTHUQLuib7q6pYuHKxpgyAA87I4pIz8l8tBdXZ2Nvbs2YPt27fjlltuwdVXX43CwsI+H2uz2SAIAtauXYuZM2di6dKlePLJJ7FmzZoBs9X33nsvWlpanG/l5eWuHpOIiIhO4Fyn5WI/NdA92KyyuQvtRotbz+UrOowWNHWYAAy9p7qnX5w+ErMzY2Ew2/Cb9/JPuSd6Y2Et/r2pCADw15/lIDPBfUFSTJgGM0fFAOAU8EBis4k4WGPvk/dUpjo3PQqAvfzb3YPupKnfU9OjED3EQXxEvsDloFqj0SAzMxMzZszA6tWrkZubi6effrrPxyYnJyM1NRWRkZHO940fPx6iKKKiov+JmFqt1jlhXHojIiKi4ZGyzK72UwNAVKjGOQSpKECz1RWOLLVep0JkyOB3VPdHoRDw+CW5iNCqsLusGf/ZWtzvY8saO3HXu3sAANecmYHluSnDvv6JpCngX+5nX3WgKG3qRKfJCo1KgVFxYR65xvhkPVQKAY0dJuced3dh6TcFimHvqRZFEUZj39MAZ8+ejaqqKrS3d//wPXz4MBQKBdLS0oZ7aSIiInLB0SHsqO4p0EvA3dFPfaLUqBD8ebm9Te4fGw/jYM3Jc2IMZitufmMn2gwWTBsRhT8sHe+26/e02NFXveNYkzMjH+jKmzrxy//mYc33JS4PjPMHUul3dmIEVMph/1rfJ51a6RyCll/uvmFlRosV3x9tAAAsYFBNfs6l774//OEP2Lp1K44dO4aCggLcd9992LRpE1auXAnAXra9atUq5+OvvPJKxMbG4tprr0VhYSG2bNmC3/3ud7juuusQEjK8XiUiIiIaPFEUneXfQw6qA3xYmdRrPNx+6hNdMj0Ni8YnwmwV8X/v5MNk6V0Gfv9H+1FY3YqYMA3+tXIaNCrPBEfpMaGYkKyHTQS+OhD4JeBWm4g7396Nrw7U4oFPCnH1qz+httUg97HcytP91BKpr3qvG4eV/VjchC6zFYl6rcdK14m8xaV/tWtra3HVVVchOzsbCxcuxI8//ojPP/8cixcvBgBUV1ejrKzM+fjw8HBs3LgRzc3NmDFjBlauXInly5fjmWeece9nQURERAOqbzOizWCBQgAy4oaWie3OVAfmrmNpSFm6G/qpexIEAY9ePAnRoWocqG7Fs98ccX7s3R3leCevHIIAPHPFVCRHejbpcM5EqQQ88IPql78rxq6yZoRplNCpFdh6pAHnPrUFXwRQ+bsn12n1JPVV73HjsLJvD9lLvxdkJ7hlwj2RnFwaKfnyyy8P+PE1a9ac9L5x48Zh48aNLh2KiIiI3Esq2R4REwqtSjmk15AGZwVqptoT5d+ShAgdHr5wMm57cxf+vakIC8cnQq0U8KeP9gEA7lqUhbPGxrn9uidaMjER//jqMLYeqUenyYJQjXumi/uao3Vt+PuXhwEA9y+fiGkjo3Hn27uxv6oVN72+Ez+fOQJ/On+833/+B6o9O6RMkutYq7WvsgVWm+iWfdLfOvqp52ez9Jv8n2fqi4iIiMinDLf0G+gu/y5r6oTBbHXLuXxJeZN71mn1Z1lOMi7ITYHVJuKud/fgljd2wWixYUF2PG5bkOmRa55oXFIE0mNCYLTYsOVwg1eu6W0Wqw2/eW8vTBYb5mfH49IZachMCMe6W2fjpnmjIQjAWz+V4fxnv8O+Svf1CHtbS6fZOThsnIeD6syEcIRqlOgwWZ3/lgxHcX07jjV2Qq0UvHIzicjTGFQTEREFASlTPWYIk78lsWEaRIWqIYpwyy/WvsaTmWrJX1ZMRHyEFsX1HShr6kRadAj+cfkUl/eGD5UgCAE/Bfw/W4uRX96MCJ0Kj12c4ywt1qgUuPe88Vh7/elI0utQXN+Bi/79PZ7fXOSXQ8wOOIbepUaFuGVa/UCUCgGTUt23r/rbQ/ZVWqePikW4m3axE8mJQTUREVEQODqMHdUSQRACdgJ4S5cZrQb7/u3UKM/1NUeFavD4z3IAABqlAv9eOQ1Rod7dzyv1VX99sA7mU+zO9jeHatrw1EZ7z/oDyyciKVJ30mPOzIzDhjvn4NyJSTBbRTy24SBWvvQjqlvcuy7K0wqrvNNPLcl1DCvLd8Owsu7S7/hhvxaRL2BQTUREFASGu05LIvVVB1pQLWWpY8M0CPNw5mzBuAT897qZeOemM5Dj6FX1pukjoxETpkFLlxk7Spq8fn1PMVtt+O17+TBZbVg0PgEXT0vt97HRYRo894tpePxnOQjVKLGtuBHnPrUV6wuqvXji4ZGGlE3w8ORviTSsbG/F8Erm240W/FjSCID7qSlwMKgmIiIKcG0GM2pbjQCGV/4NdE8AP1IbWEG1p/upTzQvKx5TR0R75VonUioELBpvD2YCaRL285uKUFDZgsgQNR69aPIpJ0oLgoDLTkvHZ3fMQW5aJFq6zLh17S787r18tBstXjr10Enl397LVEfZr1vdCqNl6DMVvj/aALNVREZsKEYP898jIl/BoJqIiCjAFdV3AADiI7TD7r3s3lUdWGu1pEx1mgf7qX2Jc7VWYS1E0f/6iU9UWNWKZxyryv6yYiIS9CeXffdnVFwY3r/lTNy2YAwEAXhvZwWWPbPVreuj3M1iteGw48aWt4LqtOgQxIRpYLaKzqnjQ8Gp3xSIGFQTEREFOGfptxuyQlL5+LHGTpgsgdOPW+GhHdW+anZmHEI1SlS3GLCvslXu4wyLyWIv+zZbRZwzMREX5Ka4/BpqpQK/O2cc3r7hDKRE6lDa2ImfPfcD/vnNEVh9cIhZcUMHTBYbwjRKjPDSjSBBEJCTNrxhZaIoOvdTs/SbAgmDaiIiogDnjnVakiS9DuFaFaw2EaWNHcN+PV9R3uTIVHup/FtuOrUS87LsQ6K+LPTvEvB/fXsUhdWtiA5V4+ELT132PZDTR8diw6/n4vycZFhtIv7+5WH8/D/bnZUMvkLqpx6XrPfa5HiguwR8qMPKCqtbUdtqRIhaiZmjYtx3MCKZMagmIiIKcN3rtMKG/VqCIDiD8yMBNKzMmakOkvJvAFgyMRGAf/dV76tswb++PQoAeOjCSYiP0A77NSND1Hj251Px5GW5CNeq8NOxJpz39FZ8tKdy2K/tLoXVUj+1d4aUSXLT7ZnqoQ4rk0q/Z2fGQadWuu1cRHJjUE1ERBTgipyTv93zC3igDSsTRRHlx4MrUw0AZ2cnQqUQcLi2HSUN/ld1YLRY8dv38mGxiVg2ORnn57he9t0fQRBw8bQ0rL9jDqaNiEKbwYI7396D/3tnD1oNZrddZ6iknmZv9VNLpGn1RfXtaBvC10HaT83Sbwo0DKqJiIgCmMliQ6mjtNkd5d9A4A0rO95pRqfJPs3YkzuqfU1kqBpnjI4FAGz0wxLwZ78+ioM1bYgN0+AvKyZ65BojYkPx7k2zcOfCsVAIwLrdlVj69FbsLJV3FZm3d1RL4sK1SI0KgSgCBZWuZauPd5iwu+w4AO6npsDDoJqIiCiAlTZ2wGoTEa5VIVE//NJYABgbYLuqpX7qhAht0JWkSiXgX+6vlfkkrskvb8Zzm4sAAA9fOAmx4e75f7svKqUC/7c4C+/dPAtp0SGoON6FS5/fhn9sPAyL1fvD+urbjGhoN0IQgHFJ3i3/BoApjn3V+eWuBdWbD9fDJtrPnBJEN68oODCoJiIiCmA9+6mHM8CpJynjXVzfIUtQ4W7B2E8tWTzBHlTvLDuO+jajzKcZHIPZXvZttYlYnpuC8yYne+W600fGYP2dc3Dx1FTYRODpr4/gshe24XiHySvXl0hDyjJiwxCqUXn12gCcE8D3ujisTJr6vYCl3xSAGFQTEREFMGdQ7abSb8BeIq1TK2Cy2lDuCEj9mdRPnR5E/dSS5MgQ5KZFQhSBrw74R7b6qa+O4EhdO+LCtfjLBZ4p++6PXqfGk5dPwdNXTEGEToVdZc3425eHvHoGKaie4OXSb4nUV+3KWi2rTcTmw+ynpsDFoJqIiCiAuXOdlkSh6DEBvNb/+6q712kFX6YaAJZMTAIAfOkHU8B3lR3Hf7bYy74fvWgSosM0spxjxZRUvLRqBgDgnR3lOOrF+QIHZJr8LZmcFglBAKpaDKhrMwzqOXvKj6O504zIEDWmOsrHiQIJg2oiIqIAdrReKv92X1ANdPdVB8Jare7y7+DLVAPAEkcJ+PdHG4c00dlbpLJvmwhcNDXVeTNALqePjsWi8Ymw2kQ8tsF72Wq5Jn9LwrUqZDr+Pdk7yL7qbxyrtOZmxUOlZPhBgYf/VxMREQUom01EUZ19VZI7M9U9Xy8QhpV1r9MKzkx1ZkI4RseFwWS1OUt0fdETXx5CcX0HEiK0uH/5BLmPAwD4/XnjoFQI+OpALX4sbvT49Qxmq7P6RK6gGgByHdnmwfZVf3NQKv3m1G8KTAyqiYiIAlR1qwFdZivUSgEj3DyEy7mr2s/XaomiiEopUx2kQbUgCFjs41PA84414aXvSgAAqy+ejKhQecq+T5SZEI7LT0sHADy64SBEUfTo9Y7WtcNiExEZokZypM6j1xpIrmNY2Z6KU2eqa1oMOFDdCkEA5mWxn5oCE4NqIiKiACVlkUfGhkHt5pLLnplqm82zgYQn1bcZYbTYoBCA5Cj5ghS5LZlgL6X+9mAdTBbfmujeZbKXfYsicMn0NCwcnyj3kXr59aKxCNUokV/ejM8Kqj16rcIe/dTumuY/FD0z1ae6kSBN/Z6SHoUYmXrgiTyNQTUREVGAkoLqTDf3UwPAiJhQaJQKGMw2VDb77wRwaXp5cmSI2288+JOp6VGIj9CizWjBNi+UMbvi8S8O4lhjJ5L0OvzpfN8o++4pIUKHG+eOBgA8/vkhGC1Wj12re0iZfKXfADAuSQ+NUoHmTjPKHIP++iP1U5+dzSw1Ba7g/elBREQU4JxBtZv7qQFApVRgdHxYr+v4owpnP3VwDimTKBSCc2e1L00B317ciFe/PwYAeOxnkxEZopb3QP24Yc5oxEdoUdbUibXbyzx2HbnXaUk0KgXGp9jPkD9ACbjRYsX3RxsAcD81BTYG1URERAHKE+u0esoMgL7qYF+n1ZM0BXxjYa1PlPR3GC24+/29AIArTkvHfB/OdIZpVfi/RVkAgGe+OYKWLvdPURdFUfbJ3z1JfdV7B9hX/VNJEzpNViREaDExRf4zE3kKg2oiIqIAVVTnmXVaEudarVp/zlQH9zqtnmaNiUW4VoW6NiPyBznV2ZP++vlBlDV1IiVSh/uWjZf7OKd02Yw0ZCaEo7nTjOc2Fbn99atbDGjpMkOlEDA20TPf067ITYsCgAH/X/nWMfV7QXaCrD3gRJ7GoJqIiCgAHe8wobHDBAAYkxDmkWt0Z6r9N6gO9nVaPWlVSmeJ7hcyTwH/4WgDXttWCgB4/JJcROh8s+y7J5VSgd+fOw4A8Mr3JW6fNSCVfo+JD4dWpXTraw9Fbro9U72vshUWa9/D7aQhZQu4SosCHINqIiKiACSVfqdGhSBUo/LINaRsWVFdu8dXCXmKM1Md5D3VEqkE/MtC+fqq240W/M5R9r3y9BE4a2ycbGdx1cLxCTh9VAxMFhue+PKQW1+7sKp78rcvGB0XjnCtCl1ma5831koaOlDS0AG1UsBZYxlUU2BjUE1ERBSApOFh0jAxT8iIDYNSIaDNaEFtq9Fj1/EUq01ElSObmObmPd7+an52PNRKAcX1HbINoHt0/QFUNnchLToE9y71/bLvngRBwB8cZ163uxL7q069x3mwDtT4xuRviUIhYHKqo6+6jxLwbx1Tv2eOikG41jM39oh8BYNqIiKiAOTJyd8SjUqBjFh7MOqPw8pqWw0wW0WolQKS9MG7o7qnCJ0aZ46xZ4a/kGEK+JbD9XjzR/v07McvyfHLYCw3PQrLc1MgisBjGw667XV9aUiZJMdRAr6n/OSbB87Sbx8eMEfkLgyqiYiIAtBRD0/+lvjzsDJp8ndKVAiUCg5RkpwzMQkA8GWhd/uqWw1m/P5/9rLvq2eNdAb3/uh3S7KhVgrYeqQBmw/XD/v1Ok0WHGvsAOBbQfUUx7CyEzPVHUYLfixuAsBVWhQcGFQTEREFIKmn2lOTvyVSX7U/DiuT+qmDfUf1iRZNSIAgAPnlzahpMXjtuo98egBVLQaMiAnFPeeN89p1PWFEbChWzcoAAKxefwDWYa4oO1jTBlEE4iO0iI/QuuGE7pGTHgXAfj6D2ep8//dHG2Cy2jAiJhSj4zzXgkLkKxhUExERBRiD2eoMGD2dqZZe/6gfln9Lk7/TOfm7l4QIHaY6gqWNB7yTrf72UB3eySuHIAB/vzTXY8P1vOn2BZmI0KlwsKYNH+yqGNZrSZO/fSlLDQApkTrEhWthtYnY7xikBnSXfp89jqu0KDgwqCYiIgowRfXtEEUgKlSN2DCNR6/Vc62Wv00AL29ipro/zhJwL/RVbyysxW/fzQcAXHvmKMwcFePxa3pDdJgGty/IBAA88eXhXplcV3UH1b4x+VsiCAJy0+x91fnlzQAAURS791Oz9JuCBINqIiKiAFNUb++9zIwP93iWaEx8OAQBaO40O/di+4sKKVPNyd8nWeIIqrcVNaKly+yRa9S2GnDz6ztxw2t5aOwwYVxSBH53TrZHriWXq8/MQGpUCGpaDXj5u5Ihv460TmuCj2WqAftgNqC7r/pAdRtqWg0IUStxeoDcICE6FQbVREREAUaa/O3pfmoA0KmVGOEISv1tWBl7qvs3Ki4MYxPCYbGJ2OQo5XUXm03E69tLseiJzfh8fw2UCgG3zB+DdbfORohG6dZryU2nVuK352QBAJ7bVITGdtdXz9lsIg7W+N7kb0mOlKmusE8Al0q/Z2fGQqcOrL9Pov4wqCYiIgowRV5Yp9XTWD/sqzZbbahusQfV7Knu25KJiQCAL/e7r6/6cG0bLn1hG/704T60GS3ITY/CJ7efhXvOHRdwAbVkRW4qJqbo0W604Nlvjrr8/LKmTnSarNCoFD459CvXMQG8pKEDLZ1m535qln5TMGFQTUREFGCKvLROS5IprdXyowng1c0G2ERAq1L41DRlXyL1VW86VDesfmDAPjzv718cwrJntmJn6XGEaZR4YPkEfHDLmZiQ4nvZV3dSKAT8Yel4AMAb20txrKHDpedL/dRZieFQKX3vV/foMI2zWmXLkXrsKjsOAJjP/dQURHzvO5OIiIiGzGoTUez4pd0b5d9Aj2FlflT+LfVTp0aHcDpxPyanRiJJr0OHyYofihqG/Do/FDXgvKe34p/fHoXZKmLR+ERsvGserpk9Kmj2g8/OjMO8rHhYbCL+9sUhl54rBdW+2E8tkUrA//XtUdhEYFxSBFKj2FZBwYNBNRERUQApb+qEyWKDVqVAqpd6hZ3l3/X+E1RzndapCYIwrBLw4x0m/Pa9fFz54o8oaehAQoQWz/9iGl5cNR0pQRhw3bt0HAQB+Kyg2pnNHYzCat/tp5ZM6bGvGmCWmoIPg2oiIqIAIg0pGx0f7rUs4BhHUF3fZkRzp39MAOc6rcGRSsA3FtbCahvcyjRRFPHh7kosfHIz3t9ZAUEArjpjJL76zTycOyk5aCsDxiXpccm0NADA6vUHBr2Czld3VPeU4+irlpzNfmoKMn4VVFusNrmPQERE5NO83U8NAOFalbPU86if9FVzndbgzBwVA71OhcYO06Cyq2WNnVj1yk/49Tt70NRhQlZiON6/eRYeunAS9Dq1F07s2+5akgWdWoEdx47jy8JTZ/9busyobLbfABqf5LtB9aRUPaR7eHqdCtNGRMl6HiJv86ugWvpHhYiIiPrWvU7Lu1OCnX3VfhJUl3Od1qColQosHC+VgNf0+ziz1YbnNxdhyVObsfVIAzQqBX67JAuf/moOpo/krmJJcmQIrj9rFADgrxsOwnyKhJGUpU6NCkFkqO/elAjVqJCVaB9YODcr3icHqhF5kl/9H3+s0bVpiURERMHmqAyZ6p7X85dhZRXsqR60JRMcQXVhbZ8ly/nlzbjgn9/jsQ0HYTDbMGt0LD6/cw5uP3ssNCq/+lXTK26eNwYxYRoUN3Tg7R3lAz62u/Q7whtHG5ZzJ9lbBS6dkS7zSYi8z6/+pXN1BQEREVEwEUXR6zuqJf40rMxgtqK21QiA5d+DMS87HlqVAqWNnThU272LvN1owYOf7MdF//4eB6pbERWqxt8uycGbN5yO0V6aPO+PInRq3LlwLADg6a8Oo91o6fex/tBPLfnV2WOx60+LMS8rXu6jEHmdXwXVJQ2dch+BiIjIZ9W3G9FqsEAhABmx3i3/HpvoCKp7BF2+qsrRThaqUSLah0tqfUWoRoU5Y+MAdE8B/6qwFkue3IxXvz8GmwhcNDUVX981D5fOSA/aQWSuuPL0ERgVF4aGdhP+s7mo38cdcEz+9uV1WhKlQkBMmEbuYxDJwqWg+rnnnkNOTg70ej30ej1mzZqFDRs2DOq533//PVQqFaZMmTKUcwJgpppoMIwW6yl7tIgoMEn91OkxodCplV69dma8vTy1qsWANoPZq9d2ldRPnR4dygBwkJZMsJf2fpJfhVvX7sQvX8tDVYsB6TEheO26mfjH5VMQG66V+ZT+Q61U4O5zsgEAL24tQW2r4aTHWKw2Z2WAP2SqiYKZS0F1WloaHnvsMeTl5SEvLw9nn302VqxYgf379w/4vJaWFqxatQoLFy4c1mHZU000MLPVhiX/2IIzHv0a63ZXDHpdBxEFBmfptwylt5GhaiRE2IOqonrf/nkt9VNzSNngLRyfAIVgH0S3vqAGSoWAm+aNxpe/noe5LPcdknMnJWHaiCh0ma34x8bDJ328pKEDJosNYRolRrBNgcinuRRUL1++HEuXLkVWVhaysrLwyCOPIDw8HNu3bx/weTfddBOuvPJKzJo1a1iHbWg3+fzdbyI5FVa1orSxE40dJvzfO/lY9cpPKGtk2wRRsJCC2TFe7qeWSCXgR3y8BFzaUc1+6sGLDddizlh78JybFomPb5+Ne88bjxCNdysiAokgCLhv2XgAwLt55Th8wvdNoaOfOjspAgov7ZwnoqEZck+11WrF22+/jY6OjgGD5VdffRVFRUW4//77B/3aRqMRra2tvd4kxT5+95tITjtL7TtEUyJ10KgU2HqkAUue2owXNhdxzztREDgqY6a653V9fVd1OTPVQ/L0FVPw9o1n4INbZ2NiSqTcxwkI00fG4NyJSbCJwGMbDvb6WKEfDSkjCnYuB9UFBQUIDw+HVqvFzTffjHXr1mHChAl9PvbIkSP4/e9/j7Vr10KlUg36GqtXr0ZkZKTzLT29ezR/cYNv/6AmktPOMntQvfKMkfji13Nx5phYGMw2rN5wEBf883vsrWiW94BE5FHOHdUyZaozHXtqfT2ornDuqGam2hVRoRqcMToWSmZN3eruc7OhVAj45mAdfihqcL5fGlLGoJrI97kcVGdnZ2PPnj3Yvn07brnlFlx99dUoLCw86XFWqxVXXnklHnzwQWRlZbl0jXvvvRctLS3Ot/Ly7h1+zFQT9W+XI1M9bUQ0RsWFYe0vT8ffLslBVKgahdWtuPBf3+MvnxSiY4D1HUTkn9qNFtQ4hh3JlamW1mod8fWgusmxozqGmWqS3+j4cFw5cwQAYPX6g7DZ7PNQ/GmdFlGwczmo1mg0yMzMxIwZM7B69Wrk5ubi6aefPulxbW1tyMvLw+233w6VSgWVSoW//OUvyM/Ph0qlwjfffNPvNbRarXPCuPQmYVBN1Leq5i5UtxigVAjITbeX5QmCgEtnpOOru+bhwikpsInAK9+XYMk/tuDbg3Uyn5iI3EkaUhYXrkWkTGuipKC6/HgnukxWWc5wKp0mCxo7TACYqSbfceeisQjTKFFQ2YJP9lahod2I+jYjBAEYlxQh9/GI6BSGvadaFEUYjcaT3q/X61FQUIA9e/Y4326++WZnpvv0008f0vWK6n377jeRXKR+6gnJeoRqerdbxIVr8dQVU/Hf62YiLToElc1duHbNDtz+5i7UtZ28xoOI/I+znzrBu/upe4oN1yImTANR9N2f11Lpt16nQmQId1STb4gL1+LmeWMAAH/74hDyy5sB2PfNh2kH30JJRPJwKaj+wx/+gK1bt+LYsWMoKCjAfffdh02bNmHlypUA7GXbq1atsr+wQoFJkyb1ektISIBOp8OkSZMQFja0H/rHGjucZTFE1G1XmVT6HdXvY+ZlxePL/5uLm+aOhlIh4NO91Vj0xGa8/VMZv6+I/JwUxGbK1E8tka7vq33V3eu0mKUm3/LLOaORqNei4ngXHv7sAABgfDKz1ET+wKWgura2FldddRWys7OxcOFC/Pjjj/j888+xePFiAEB1dTXKyso8clAAUCsFGMw2VLV0eewaRP7K2U89MnrAx4VqVLh36Xh8dNtsTE6NRKvBgt9/UIArXtzus78EE9GpOYeUydRPLcl09lX75lqt7nVa7Kcm3xKiUeKuxfY5RCUN9nbH8UnspybyBy4F1S+//DKOHTsGo9GIuro6fPXVV86AGgDWrFmDTZs29fv8Bx54AHv27BnqWZ37JNlXTdRbl8mK/VX2gSbTTxFUSyalRmLdrWfij8vGI0StxE8lTVj69FY88/URmCxcv0Xkb476SKZ6rI9nqsubmKkm33XJ9HRkJXZ/D3NIGZF/GHZPtTdlxEpBtW/+oCaSy96KZlhsIhL1WqRGDT77olIq8Ms5o/Hl/83F/Ox4mKw2PLnxMJY9sxV5x5o8eGIicieTxYbSRnuwKH9QbS9X9dUJ4FJPdTp3VJMPUioE3HveeOefx6cwqCbyB/4VVMfZf1EobmCmmqgnaT/19JHREATX94emx4Ti1WtOwzM/n4q4cA2O1LXjkue34b51BWg1mN19XCJys7KmDlhtIsI0SiTpdbKeZawjy1ba2AmjxfcmgJcfl9ZpMVNNvml+djx+szgLv1mc5dKNciKSj38F1bEs/ybqS8/91EMlCAIuyE3BV3fNw+Uz0gEAa38sw6InNmNDQTVEkYPMiHyVs586IXxIN9bcKSFCiwidClabiGMNnbKepS9Spprl3+SrBEHArxaOxa8WjpX7KEQ0SH4VVI+KY/k30YlEUcSusmYApx5SNhhRoRr89ZIcvHXDGRgdF4a6NiNuWbsLN7y2E1XNHBJI5Iuc67RkHlIG2AMCXx1W1mowo6XLXn2TxvJvIiJyE78KqjNi7T+kq1oM6DRZZD4NkW841tiJpg4TNCoFJrqx92rWmFisv3MO7jg7E2qlgK8O1GLxk5ux+XC9265BRO5R5KjgGiNzP7VEGlZ2pNa3boJXOCZ/x4RpuPuXiIjcxq+C6ugwDaJD1QC6Vw0QBbudjtLvnNRIaFVKt762Tq3EXUuy8dkdczBtRBQ6TFY8+eUht16DiIbPV9ZpSaRhZUd9rLLM2U/NLDUREbmRXwXVADDa8QsD+6qJ7KSgerCrtIYiKzECz/x8KgBgf1UrDGbfGz5EFKxsNhFFPrJOS5LpGFZ21Ncy1eynJiIiD/C/oDouDACDavKONoMZNptvD+hyDinzYFANAKlRIUiI0MJiE7G3osWj1yKiwatuNaDTZIVKIWBkrG8Ei1L5d3FDOyxW39l779xRHcNMNRERuY//BdXx3T+oiTxpW1Ejch78Es98c0Tuo/Sr1WDGYccgoOFM/h4MQRCc2fBdjhVeRCS/Ikfpd0ZcGNRK3/ixnhIZglCNEmariNIm35kAXuEs//aNmw9ERBQYfOOnrwtGxzNTTd6xvqAaogi8l1fhs+uk9pQ1QxSBETGhiI/Qevx6UuAulZwTkfy6+6nDZD5JN4VCcPZ3+9Kwsu7yb2aqiYjIffwuqB7jDKrbfTbQocCQ5wgcK5u7UOyjg/G80U/dk1RivrvsOL//iHzEUR/rp5ZIJeBFPjKsTBRFZ/l3egwz1URE5D5+F1SPiAmDUiGgw2RFXZtR7uNQgGozmHGoptX55y0+ukZKKsP2dD+1ZFKqHhqlAg3tJpT5UEknUTCTyr99LaiWhpUdqfWNXdXNnWZ0mOxDFlOjmKkmIiL38bugWqNSOFdh+Mrdbwo8+eUt6DmfbOuRBvkO0w+rTcTusmYAwHQP91NLtColJqXad2Gzr5rIN0g/C31lnZZEWqt1pM43flZL67QSIrTQqd27fpCIiIKb3wXVANdqkefllTYBAMYl2X8p3FbUCKPFt9ZIHa5tQ7vRgjCNEtmOc3oD+6qJfEdzpwkN7SYAvhhUO9Zq1bXD6gNbFNhPTUREnuKfQTXXapGHSQHjz2eOQFy4Fl1mq88FkVKmeMqIKCgVgteuK5Wa7ypt9to1iahvUpY6JVKHMK1K5tP0lh4TCo1KAaPFhkpHQCsn9lMTEZGn+GdQzbVa5EFWm4g9jrLqGRnRmDs2DoDvlYA7h5R5qfRbIg1FO1jTinajxavXJqLenJO/fayfGgCUCsF5E/xInfx91eVcp0VERB7ip0E1M9XkOYdr29DmKKsel6THnCx7UO1rw8p2lXp3SJkkUa9DalQIbCKwt7zZq9cmot6612n5XlANAGMT7a0pR32gr5rl30RE5Cl+HVRXHO/0uT5X8n9SBnjqiGgoFQLOyowHAOyvakVDu29MnG9oN+JYoz3rMtXLmWqgO5D3tZJ4omBz1Ecnf0ukvmpfGFbG8m8iIvIUvwyq48O1iNCqYBOB0kau9SH3OjEDHB+hxYRk+8Tr73ykBFw6Y1ZiOCJD1F6//rQRUfZzcAI4kayKHBVbDKoHJooiM9VEROQxfhlUC4LQowRc/rvfFFjyHAHrjB5l1c4S8CO+UQK+0xHMTvdy6bdEuu6usmbYfGCqL1EwMpitzj5h3y3/dkwAr22DKMr3b0V9uxFGiw0KAUiOZFBNRETu5ZdBNdA9rKyIfdXkRnVtBpQ1dUIQ7FO1JfPG2kvAtx5pkPUXQ8lux+RtOUq/AWB8sh46tQItXWYUN/B7kEgOxfUdEEUgMkSNuHCN3Mfp08jYMKgUAjpMVlS3GGQ7h5SlTtLroFH57a8+RETko/z2JwvXapEnSGuishMjoNd1l1VPz4hGiFqJ+jYjDtbIO8XWZLEhv6LZfi6ZMtVqpQI5aVEAukvRifzRztLj+GxvtdzHGBJpnVZmQjgEwXtr9VyhViqQ4ZwALl9lmdRPncZ+aiIi8gD/Daq5Vos8YGdpE4CTg1WtSokzRscAALbKXAJeWN0Ko8WGqFC18+aSHKaNkErAGVST/xFFES9uKcalz/+A297chYKKFrmP5LLuyd/y/TswGFJftZwTwKVMNddpERGRJ/hxUN2dqfaFclwKDM7dz31kgOc4SsC3HJZ3WFnP/dRyZqemcwK4x+SXN+Oud/aghKX1HmG0WPG79/fikfUHII0E+PpgrbyHGoKj9b49+VvSHVTLV+VT4eg955AyIiLyBL8NqkfFhUEQgJYuM5o6THIfhwKAwWzFvspWAH0H1XMdw8p+OtaELpN8q9zk2k99oqmOnvMjde1o6TLLepZA88zXR/DB7kpc/cpP/PfNzerbjLjyxR/x/s4KKARgXpb9Ztm3B+tkPpnrinx8nZYk07Gr+kitnOXfjkw1y7+JiMgD/Dao1qmVSHFM8OSgJHKHfZUtMFltiAvXYkQfv3iNiQ9HSqQOJosNP5Y0ynBCOykzPE2mIWWSuHAtMmLtX6fdLAF3G1EUsae8GQBQ1tSJG1/Lg8Es302cQLKvsgUr/vkddpYeR4ROhTXXzsTfLskBAORXtKC+zTf20A+G1SY6f/ZlxkfIfJqB9VyrJVdlGTPVRETkSX4bVAPgWi1yq+7S76g+y6oFQXCWgG+VaV91VXMXaloNUCoE5KZHynKGnrr7qpvlPUgAqTjehcYOE9RKARE6FfJKj+Oe/+1lm8swbSioxqXPb0NViwGj48Lw4W2zMTcrHgl6HSal2vfQbznsGyvzBqPieCdMFhs0KgVSfTxQHBUXBoWjsqy+3fs3Lqw2EZXNzFQTEZHn+HVQLe3l5ARwcoe8AfqpJXOzpKBanl++pcB/QrIeoRqVLGfoSSpB5wRw99ntyFJPSNbj+V9Mh0oh4KM9VXjqqyPyHsxPiaKIp786glvW7kKX2Yo5Y+Ow7tbZvfY6L8hOAAB8e8h/SsCloV+j48KgVPjm5G+JTq10Vv/IMaysrs0As1WESiEgSa/z+vWJiCjw+XVQLWWquauahksURWdgOH1kTL+Pm50ZC4UAHK5tR3VLl7eO5zTQIDU5SJnqPeXNsNqYSXWHfEdQPSU9CrMz4/DwhZMAAE9/fQQf7q6U8WT+p8tkxe1v7sY/vjoMALhu9ii8es1piAxV93rcfEdQveVwPSxWm9fPORRFfjKkTJKZYC9RlyOolvqpU6JCfP4GBBER+Sf/DqrjuFaL3KO0sRONHSZolApnKWhfokI1zv3McpSAS+ur5B5SJslOikCYRol2owWHa+Xd3x0opH7qKY5BcFfMHIGb5o0GANz9/l78VNIk08n8S1VzFy55/gd8VlANtVLAX382GX9ePgEq5ck/9qakRyEqVI1Wg8VZKeDrutdp+UdQPTbR0Vctw7AyqZ86Pca3y+SJiMh/+XdQ7chUlzV2wuwn2QXyTVLp9+S0SGhVygEfO3esfQq4t/svO00W7K/qfzq5HJQKwRn8cV/18JmtNuyrtO9LznXcvAGAe84Zh3MnJsFkteGm1/NwjMMZB7Sr7Dgu+Of32F/VipgwDdb+8gxcftqIfh+vVAh+NwX8qJ9M/pZ0Dyvz/s03KVOdFsV+aiIi8gy/DqqT9DqEqJWw2ESUN3XKfRzyY1JZ9YxBBKtzHL98f3e0waslz3srWmC1iUjUa5ES6Tt9gdNHcF+1uxysboPRYkNkiBqj4sKc71coBPzj8inITYvE8U4zrluzA82dXLXVl//trMAVL2xHQ7sR45Ii8NFtszFzVP8tHRKpr/obPwiqRVF0tj35T1BtL//eX9UKk8W7N8HLmakmIiIP8+ugWqEQnL94clgZDYcru5+npEchQqtCc6fZmVX0BikTPH1kdJ/TyeUy1fE1280J4MO2p9z+d5ybfvIE+hCNEi9ePQOpUSEobujAzW/s9Hpw4susNhGr1x/Ab97Lh8lqw+IJifjfLWcOetrzvKx4CAJwsKZNlnkJrmhoN6GlywxBQK+bL75sQooeCRFatBksXh8I171Oi5lqIiLyDL8OqoEea7XYV01D1NJlxmFHSeJgdj+rlQrMGhMLwLtTwHf5yH7qE01Lt5+npKEDjTKsywkke8rtN2mmpEf1+fGECB1evmYGwrUqbC9uwh/WFXDVFoA2gxk3vJaHF7YUAwBuX5CJF34xHWHawU/Ijw7TYKrj677pkG+v1pJKv9OjQ6FTD9yu4iuUCgEXTU0FAHywq8Kr15bKv5mpJiIiTwmAoJprtWh4dpcdhygCGbGhiI/QDuo50mqtLV4aViaKos9N/pZEhqqdJajMVg+PlKmeMsAO8nFJevzzyqlQCMD7Oyvw701F3jqeTypt7MDF//4B3xysg1alwNNXTMFvz8mGYghTnp2rtXy8BPyon03+llw8LQ2AvcTeW+0LFqsNNa0GAMxUExGR5/h9UD0mnuXfNDyulH5L5o6Ndz63zWD2yLl6KmnowPFOMzQqBSam9B9wycXZV81hZUPW0mV29sn2HFLWl/nZCXjwgokAgL99cQif7q3y9PF80g9FDVjxr+9xpK4diXot3r1pFlZMSR3y6y0YZw+qvz/aAKPF6q5jup30b5Y0UdtfZCdFYGKKHmariE/2VnvlmtUtBlhtIjQqBeLDB3fTlIiIyFV+H1RzrRYNV94QMsAjYkORERsKi03E9mLPrziSstS5aZHQqHzv23bayCgA3b/sk+v2VjQDAEbEhCJ2EL/8XzUrA9fNHgUAuOvd/KCbvv7G9lKsevknNHeakZsWiY9vPwu5/ZTND9aEZD3iI7ToMFmRd8w3v54GsxVf7q8BACyZkCjzaVzn7RLwcmc/dciQqheIiIgGw/d+O3fRKEemWhrcQuQKi9Xm3As8Y+SpJwT3NMeRrfbGai3nfmof66eWSDck8iuaud5uiPKl/dQuBIb3LRuPReMTYLLYcONreUGxBcFsteFPH+7DHz/cB4tNxIopKXjnpllI1A9/Ir5CIWC+j6/W+uZgHTpMVqRGhfjsvwcDuWBKCpQKAbvLmlFc7/mb4RXSOi2WfhMRkQf5fVAdrlUhUW/P6njjBzQFloM1beg0WRGhVTn3qA7WHMe+am8MK9tV2gzAtRJ1bxodFw69TgWD2YaD1d7fQxsI9gwhqFYqBDx9xVRMSNajod2E69bsCOibi82dJlz9yk94fXspBAG4+9xsPHX5FLcO65JKwL/x8oTqwfp4j73Uf3luik9tARishAgd5jr+7Vy3u9Lj15Mmf6dHc0gZERF5jt8H1UCPEnD2VZOLpLLqqSOjXS4NnDUmFiqFgGONnShr9FyG0NXp5HJQKARnwL+z1PPl8IFGFEVnUO1qCXOYVoWXr5mBRL0WR+racfubuwKyWuBoXRtW/Ot7/FDUiDCNEv+5agZunZ/p9sDyrLFxUCkEFNd3oLTRt36mtBnMzmB/eW6yzKcZOmlg2Qe7KmGzeXZ6fflxZqqJiMjzAiOo5lotGiIpqJ4xhAxwhE7tDHK3eDBbvae8GaIIjHRhOrkcpK/FLk4Ad1nF8S40tJugVgqYmKJ3+fnJkSF4+erTEKJWYuuRBvz5o/0BtWprV9lxXPSvH1Da2Im06BD879YzsdhD/cR6nRozMuz/L/vaaq0v99fCZLFhTHwYJiS7/v+Jr1g8IRERWhUqm7vw0zHP3oSTWiK4TouIiDwpQIJqZqppaIa7pmpuludLwJ1n9NEstWS6M1PtmwOefJmUpR6frB9yKfOk1Eg88/OpEATgrZ/K8NLWEjeeUF7/2HgYbUYLZmbE4KPbZmNckmcDSudqLR8rAf843176fUFuql+Wfkt0aiWW5dgz7Z4eWFbBTDUREXmBS0H1c889h5ycHOj1euj1esyaNQsbNmzo9/EffPABFi9ejPj4eOfjv/jii2Ef+kSjuVaLhqCmxYDK5i4oBNdLbiXSsLIfjjZ6rOR2KCu/5JCbHgWFAFQ2d6HWsReWBmcoQ8r6snhCIv64bAIA4NENB/CFY0q0P6tvM+L7o/Z98H+7NGdQk9GHS+qr3lbUiC6Tb6zWauow4TvH18GfS78lUgn4+oIaj32NjRYratvs/xaxp5qIiDzJpaA6LS0Njz32GPLy8pCXl4ezzz4bK1aswP79+/t8/JYtW7B48WKsX78eO3fuxIIFC7B8+XLs3r3bLYeXjHH0VJc0dsDq4f4sChxSRnV8sh7hWtWQXmNSaiSiQtVoM1qcgZE7WW0idvv45G9JuFaFbEcGkau1XOPspz7FfurBuG52Bq46YyREEbjz7d0oqGgZ9mvK6bO9VbCJ9hsOI2PDvHLNsQnhSI0KgdFiw/biRq9c81TWF1TDahMxKVXvrM7yZzNGRiM9JgTtRgu+LPTMzZ+qZgNEEQjVKBETpvHINYiIiAAXg+rly5dj6dKlyMrKQlZWFh555BGEh4dj+/btfT7+qaeewt13343TTjsNY8eOxaOPPoqxY8fik08+ccvhJanRIdCoFDBZbKhq7nLra1PgGm7pN2CfvnxWpr0E3BOrtQ7XtqHDZEWYRonspAi3v767TRsRBQBBtzN5OMxWGwoq7YHvFMfXbzgEQcD9yydgXlY8DGYbrv/vDr/+d/EjZ8lziteuKQgC5mfbq1C+8ZHVWh/L8HXwJIVCwEVTuweWeYLUT50WHeLX5fJEROT7htxTbbVa8fbbb6OjowOzZs0a1HNsNhva2toQEzPwPmCj0YjW1tZebwNRKgRkxNr7pYq4VosGSZpSPZygGgDmSvuqjzQM+0wnck4nHxENpYvTyeXAvmrXHappg9Fig16nwig3ZWJVSgX+eeVUZCdGoK7NiOvW7EC70eKW1/amssZO7C5rhkIAzs/xbsnz2eO6+6rlHvpW3dKFHY6BXufnBEZQDQAXT00FYJ9JUeeBlhGpnzqd/dRERORhLgfVBQUFCA8Ph1arxc0334x169ZhwoQJg3ruE088gY6ODlx22WUDPm716tWIjIx0vqWnp5/ytblWi1zRZbJif5X9Zs1wg+o5jmFleyua0dxpGvbZevKXfmqJVKK+r7IVRotv9KL6up6rtFxd6zaQCJ0aL18zA3HhWhysacOv3twFi5+t2vpkrz07e+aYOCTodV699qwxsdCoFKg43iX7zdrP9lZDFIHTMqKREhU4vcEZcWGYPjIaNrE7E+9O5ce7M9VERESe5HJQnZ2djT179mD79u245ZZbcPXVV6OwsPCUz3vrrbfwwAMP4J133kFCQsKAj7333nvR0tLifCsvLz/l63OtFrlib0UzLDYRiXotUof5S2pyZAjGJoTDJgLfH3Vv/+XOsuGXqHvTyNhQxIZpYLLasK9y4AoTspOC6qnDHFLWl7ToULx89Qzo1Ap8e6geD392wO3X8BRRFPHhbntZ8AVTvJ+dDdWocMboWADAtwflXa0VaKXfPV3kyFb/zwMl4N3rtJipJiIiz3I5qNZoNMjMzMSMGTOwevVq5Obm4umnnx7wOe+88w6uv/56vPvuu1i0aNEpr6HVap0TxqW3U+FaLXJFXo9+anf02s3NspeAu3O1Vn2bEaWN9l8KhzsV2lsEQcBUR7Z6N/uqB6VnptoTctOj8I/LpgAA1vxwDGu+949VWwdr2nCkrh0alQLnTkqS5QwLHH3Vcq7WKmnowN6KFigVAs6b7P9Tv090fk4yNEoFDlS3orDKvTfiutdpMVNNRESeNew91aIowmg09vvxt956C9dccw3efPNNLFu2bLiX6xfXapErdjmD6oH7+wdrztjuYWXu6r+Uhn1lJYYjMkTtltf0BvZVD16rwewsLfbkjZPzJifj9+eNAwD85dNCfHOw1mPXcpeP9tizswuy46HXyfP/v7SvesexJrQZzLKc4dN8qQQ+FnFeWCfmbVGhGiwcb/86r9vt3p3VFc7yb2aqiYjIs1wKqv/whz9g69atOHbsGAoKCnDfffdh06ZNWLlyJQB72faqVaucj3/rrbewatUqPPHEEzjjjDNQU1ODmpoatLS4f8WLtFarptWADj8cyEPeI4qi28uqTx9l77+sajGgyE03dnb5Wem3pOcEcLkHPPm6veUtEEUgPSbE4/uXb5o7GpfPSIdNBH715m40tPd/M1RuNpuITxzB5IopqbKdIyMuDKPiwmC2im5v7RgMURQDuvRbIu2s/nBPldv6/rtMVjS022dcsPybiIg8zaWgura2FldddRWys7OxcOFC/Pjjj/j888+xePFiAEB1dTXKysqcj3/hhRdgsVhw2223ITk52fl25513uvezABAZqkasYw9lSQOz1dS/ovoONHeaoVUpMCH51K0FgxGiUWJmhj3r7a7VWs4hZT6+n/pEOWlRUCkE1LYaUenHq5y8Ib+iGQAwJd3zf8eCIODhiyZhYooeHSYr3s079awKuewsO47K5i6Ea1XOKdxykbLV38qwWqtnCfw5MpXAe8O8rHjEhGlQ32bEd0fds0VBylJH6FR+VelDRET+yaWg+uWXX8axY8dgNBpRV1eHr776yhlQA8CaNWuwadMm5583bdoEURRPeluzZo27zt+LVAIu96RW8m1SsJqbHgWNatgdEE5SCbg7+qpNFhvyK+wVHf6WqQ7RKDEhxX6zYldZs7yH8XG7HV+f3LRIr1xPrVTg2tmjAABrt5fBavPNSoKPHaXf50xMgk6tlPUsC8Z191V7u/JCylLLWQLvDRqVwpmJd9fOaq7TIiIib3JfROEDuFaLBmNnqWfKqqVhZduLm4a9Tmp/VQtMFhuiQ9UYFeee3cXeJGXXd7Gvul+iKHZP/naUzHvD+TnJiAxRo7K5C5sPyzeAqz9mqw2fFVQDAFbIMPX7RDNHxSBErURdmxGF1d6baC+K3SXwywO49Fty8TR7mf8X+2vc0r/OdVpERORNgRVUO9dqMaim/uWVNgEApru5rHpcUgTiI7ToMlux89jwgsmdPUq/3TGd3Nukvdq7OAG8X5XNXWhoN0KlEDAxxTuZagDQqZW4bIa9h/X1baVeu+5gfXe0AU0dJsSFa3DmmFi5jwOtSonZmfYqlE2HvLdaa3d5MyqOdyFMo8TCcYleu65cJqdGIjMhHEaLDRsKaob9es5MNfupiYjICwIsqJYy1Sz/pr4d7zA5B4lNc3OmWhCE7ingR4bXFygFo+4+o7dIVQCFVa3oMg0vax+o8svt5f3jk/VeL3G+8vSRAIBNh+udu3x9hVT6vWxyMlRK3/gR5SwB92JftfR1WDwhESEaeUvgvUEQBGe2+n+7hj8FXPr/mplqIiLyBt/4jcVNpEx1SUMHpw5Tn3aX24PV0fFhiHEMtnOnuWPtv3wPZ1iZKIoeK1H3lpRIHRL1WlhsIvY6hnFRb3vKpd5+72WpJaPiwjBnbBxEEVj7Y9mpn+AlXSYrvthvz1JeIOPU7xPNdwwr21V2HM2dJo9fz2oTnSXwwVD6LblwSioEAfixpGnYN3uk8m/2VBMRkTcEVFA9IiYUKoWATpMVNa0GuY9DPijPUZbt7tJvyVmOTHVhdSvq24a2sqiqxYDaViOUCgG5aVFuPJ33CILgvCHAYWV9k/qpvTH5uy+/OMOerX43r3zYMwDc5euDteg0WZEWHeJczeYLUqNCMC4pAjZx+FUog/FjcSPq24yIDFFjjuNGXTBIiQpxlvx/uHt4A8tY/k1ERN4UUEG1WqnACMcPUA4ro75IGeAZGZ4JZOLCtZjomHz93dGhZaulM05M0ft12ac0rGwnh5WdxGy1oaDSXv49JT1KljMsHJeA5EgdmjpMbulhdYeP9ki7qVN8bpbAfC+u1pKmfi+dnOTWDQX+4KKp9n7/D3ZXDrnirM1gRnOnfdgZy7+JiMgbAu6ntXNYGfuq6QRmq825F9iTZdVSZmnr4aFltPx1P/WJpjrOv7vsONsxTnCopg0Gsw0ROhVGyzTdXaVU4OczRwAA3tgu/8Cylk4zNh2yB6wX5PpO6bdkQbb9+3rz4XqPriIzWWzYsM9+k2N5TvCUfkvOnZSEELUSJQ0dzmoOV0lZ6pgwDcK0KjeejoiIqG8BGFTbh5UVMVNNJyisaoXBbENkiNq5fs0T5mZ1DyuzDeGXb+fkbz/tp5ZMStVDo1SgscOE0kbfGoYlN+nmzpT0KCgU8mVkrzgtHSqFgLzS4zjgxXVRfdmwrxpmq4hxSRHIToqQ9Sx9mTYyGhE6FZo6TB6dE7D1SD1ausxIiNDi9NHyTz/3tnCtCudOSgIw9J3VHFJGRETeFnhBdRzXalHfeg7/8mQgM31kNELUSjS0G3Gwps2l53aaLM5duP46pEyiVSkxKdVeCs/VWr3tcfSZy90zn6DX4ZyJ9gBG7my1VPp9gQ/spu6LWqlwDiL81oOrtaTS72U5yVDKeMNFTtIU8E/2Vg2p39/ZT80hZURE5CWBF1RzrRb1Y2eZdyZqa1VKzHIM29l6xLVfvvdWtMBqE5Gk1yElUueJ43mV9LVmX3Vv3UPKomQ9BwCsPMNeAr5udyXaDGZZzlDbasD2kkYAvl3yPN9RAi6Vqbtbl8mKjYW1AIALgmjq94nOHBOHRL0WzZ1mfHvQ9RsY0uRvZqqJiMhbAjCotmeqK5u7YDD7xkRbkp8oith5zHu9yt37ql37hbBnNt3XBjUNhfS15gTwbm0GM446bvpN8YEJ17NGx2JMfBg6TdZhT1weqk/yqyCKwIyR0T49rXmeI6jeW9Ey5On+A5Gmn6fHhPjEDRe5KBUCLpxqz1Z/MISd1eVN9kx1mg//v0RERIEl4ILq2DAN9DoVRBE41sgScLKrajGgptUApULwyi+r0rCyHSXH0WUa/M2dXQHSTy2RPo9DNa1oN1pkPo1v2FvRAlG0Z9HiwrVyHweCIDjXa72xvUyWoXJSybOvln5LEiJ0yEmz7xXfPIxd9P352FECvzzH96afe9vFjing3x6qQ1OHa7vBK5w7qpmpJiIi7wi4oFoQhB4l4Ayqyc7ba6rGxIchNSoEJqvNWdZ6KqIoeq1E3VsS9TqkRoXAJgL5Q5zkG2ik0u9cH8pEXjwtDSFqJQ7VtmHHMe+W6hfXt2NvRQuUCgFLJyd79dpD4anVWi1dZmxy9Gr7+s0Fb8hOisCkVD3MVhGf7q0a9PNEUXT2VKexp5qIiLwk4IJqgGu16GQ7jzUB8N6aKkEQnCXgg12tVdzQgeZOM7QqBSYk6z15PK9iX3VvUlA91YeC6sgQNVY4AjlvDyyTstRnZcb5ROb+VKTVWluO1MNstbntdb/YXwOT1YaxCeHITvS96edykLLV/3NhCnhLl9lZFcOeaiIi8paADKrHMFNNJ5AywDMyvJcBnpvV/cv3YEhBZ05aJDSqwPnWnOboG+YEcHsWzZeGlPUklYBv2FftkX7hvoii6Cx5XuEn2dmctCjEhGnQZrA42zXc4ROpBD6Xpd+SC6akQKkQkF/ejKN1g7tJLvVTx0dooVN7viqJiIgICNCgWlqrVcS1WgSgw2jBgWr7aitvllXPHhMHhQAcrWtHVXPXKR+/uyyw+qkl00fGALD3iw9lb3cgqWoxoL7NCJVCwKTUSLmP08uk1EhMSY+C2Sri3bxyr1xzf1Urihs6oFUpsMSx2svXKRUC5mW5d7VWQ7sRPxQ5pp8H8dTvE8WFazHf8bVet3twA8vYT01ERHIIzKC6x1otOYbukG/JL2+G1SYiJVKH5Ejv/aIVGap29s1+d+TUJeDOyd9eKlH3lnHJEdCpFWg1WFDcENwtGVJfuf1r4ntZtKsc2eo3fyyD1Qs3QD7aYy/rXTQhEeFalcev5y7uXq21vqAaVpuInLRIZDhuCpPdRY6d1et2VQ7qplz3Oi32UxMRkfcEZFA9MjYUggC0GSxoaHdtaigFHmewmhHj9WtLU8A3n6IEvKXLjMO19oAz0DLVaqUCuWlRANhX7RxS5vh6+JplOcmIClWjsrnLY7uYJVab2D3128+ys/Oy4qEQgIM1bYOqQjmVT/z06+ANi8YnIkKnQlWLYVBDH6UhZekxzFQTEZH3BGRQrVMrnQNKOKyM8pwZ4CivX3uuY1jZ90cbBsz8SaXfI2ND/WJYk6ukGwW7SpvlPYjM9jj2dftaP7VEp1bishnpAIDXPTyw7KeSJtS2GhGhUzkzv/4iKlTjHHr47TBvPlQ2d2HHseMQBOD8HAbVJ9KplTg/xz4Vft0gBpaVN0nl38xUExGR9wRkUA0Ao+McJeDsqw5qNpvoHJAl9fZ605T0KERoVWjuNKOgsqXfx+0K0NJvifR57QziYWUWq835/8BUGW7wDNaVM0cAsO9hLmvs9Nh1Ps63B0hLJyVDq/K9UvhTWTBOWq01vL7qTx1Z6pkZMUiK1A37XIHo4mn2KeDrC6rRZbIO+NhyrtMiIiIZBG5QzbVaBOBofTvaDBaEqJUYn+z9NTUqpQJnZsYCALYe7v+X750BOqRMIgWRR+va0dJplvcwMjlU24YusxURWpXzpp8vyogLw9yseIgisPYnz2SrTRYb1hfUAPCfqd8nkrLr3x9tgNEycKA3EKkEngPK+jdjZDTSY0LQYbLiy8Kafh9n31HtyFSz/JuIiLwogINqrtUiIO+YPVidkh4FlVKe/91PtVrLahOdZcHenE7uTbHhWoxyDGDaVR6c2er8cnuWOic9EgqFb69M+sXp9mz1e3kVMJiHHjD2Z8vherR0mZEQocXpo2Pd/vreMCFZj4QILbrMVvxU0jSk1yiqb8f+qlaoFAKWTk528wkDhyAIg9pZ3dBugsFsgyDAq0MpiYiIAjaoHuP4BZ7l38HNOaRMxmB1rmNY2a6yZrQZTs7SHqppQ4fJinCtClmJ3s+me4uUrd4dpMPK9pR33+DxdWePS0BKpA5NHSZs2Fft9tf/yJGdPT/HvofYHwmCgAXZwysBlwaUnTU2DjFhGredLRBd7JgC/t2RetS2Gvp8jJSlTtbroFEF7K83RETkgwL2p46UqS5r6oTJYpP5NCQXZz91hnxBdXpMKDJiQ2G1idhWdPL0Wqn0e+qIKL8NMAZDurERrH3V0uTvKem+X42gUirwc0dv9Rvby9z62h1GCzYW+nfpt0Tqqx7KpHRR7J5+vpwDyk5pZGwYZoyMhk3sXsV2IvZTExGRXAI2qE7UaxGmUcJqE1HW5LlhO+S7GtqNKHFUKkyTOZAZqARcGlI2NUCHlEmkacl7ypq9sgPZl7QZzDhSZ5/v4A+ZagC4fGY6VAoBO0uPo7Cq1W2vu7GwFgazDRmxochJi3Tb68phdmYs1EoBxQ0dOOZiVVRhdSuK6zugVSmwZGKih04YWKSBZf/bWQlRPPnfEClTncZ+aiIi8rKADaoFQcAoDisLalKwOjYhHJGhalnPIu2r3nqk4aSP+UKJujdkJUYgXKtCh8mKQzVtch/HqwoqWyCKQGpUCOIj/GNlWkKEDudMSgIAvPGj+waWOXdTT0mFIPh3ZUaETo3TMuxbBVxdrSV9Hc4el4AInbz/PvmLZZOToVEpcKi2DYXVJ9/oKW9y7KhmppqIiLwsYINqgGu1gp1UZjxDxtJvyawxsVApBJQ2dqK0sfv/x/o2I8qaOiEI/pPBHCqlQnB+jruCrAS8u/Q7StZzuOoXp48EAHy4u7LPeQCuauowYYtjCv4FATLt2tlXfWjwfdU2m4hP8+296pz6PXiRoWosHm/P6n/Qx8AyZ6Y6mplqIiLyrsAOqpmpDmo7HZO/p/lAWXW4VuVcl7WlR7ZaCi6zEiIQGRL42Srpa7AryIaVSdPd/S2oPmN0DDITwtFpsmLd7v6nLg/W+oJqWGwiJqbokZngu2vFXLFgnL0KZXtxIzpNlkE9Z1fZcVQ2dyFcq8LZjr5sGpyLptoHln20pxIWa+95KRWOnur0GGaqiYjIuwI8qOZarWBltFixt9K+wshXyqrnSX3VPfZVS8FloO6nPtE0xwTwYMpUi6LYnal2fP7+QhAE53qtN7aX9tnH6oqP99hLnv19QFlPY+LDkRYdApPF1ucgwr5IU7+XTEiETq305PECzrzseMSEadDQburVTmOziah0DipjppqIiLwrsINqrtUKWvurWmGy2BATpnHuR5bbnLFxAIBtRY0wOzIswdJPLZGGsR1r7ERDu1Hm03hHdYsBdW1GKBUCJqX432Cui6enIUStxOHa9iHvYwaAyuYu/HSsCYIQWCXPvVZrDaKv2mK14bMCR+l3AN1c8Ba1UuFsHfjfrgrn++vajDBZbVApBCTpdXIdj4iIglRgB9WO8u+mDhOaO00yn4a8qWfpt68MQ5qYEonoUDXajRbsKW/ulU2f5mcZzKGKDFFjrKPsd7ejJDrQ5Tuy1NmJEQjR+F9WUq9T48Kp9iDmjR+Hvl5Lys7OzIhBcmRgZRKlEu5vD9afMpu/rbgRDe0mRIeqcVZmnDeOF3B+5pgCvrGwFq2OXv9yaUd1lA4qZUD/akNERD4ooH/yhGpUSI6037EuYgl4UPHFDLBSIeCssd0l4FI2PTpU7TPZdG9w7qsOkr5qfy397ukXZ9gHln2+rxr1bUOrMOgu/U5127l8xRmjY6FVKVDZ3IWjdQPP8JBuLpw3ORlqBn9DMilVj7EJ4TBabNjgyPpLQ8o4+ZuIiOQQ8D/ROaws+Iii6FOTv3uSSsC3HGlw9lNPH+k72XRvkAbHBUtf9W4/nfzd08SUSEwdEQWzVcS7eeUuP/+IYwWSSiHgPMearkASolFi1phYAMA3B/svATdarNiwrwZA4Ew/l4MgCN07qx1TwLlOi4iI5BT4QTXXagWd8qYu1LcZoVYKmJzqWz2scx2Z6r0Vzfj6gP2X72AZUiaRPt+9Fc3O3vJAZbHaUFBhL/Gf6sdBNQBc5chWv/ljGaw21waWSTuZ52XFIzpM4/az+YLB9FVvPlSPNoMFiXqtc781Dc2FU1MgCMBPJU0ob+rkOi0iIpJV4AfVzFQHnZ1l9mFKE1MifW6yblKkDlmJ4RBFe28lAEz3gZVf3jQ6LgyRIWoYzDYcqG6V+zgedaSuHV1mK8K1KoyJ9+8VUksnJyM6VI3K5i58O0A29kSiKOIjR+n3BQE8mEsKqvOOHXf2+Z5Iurlwfk4KlIrgqU7xhOTIEMweY6/8Wbe7sjtTzXVaREQkgyAIqrlWK9hIvbozfDQDLGWrAUClEJCTFiXfYWSgUAjOwWyB3lct9VPnpEVC4edBlE6txGUz0gEAr28vHfTz9pQ3o6ypEyFqJRZPSPTU8WQ3IjYUo+PDYLGJ+L7HqidJp8nirE5h6bd7XDzN3p//wa4KlDUxU01ERPIJ/KDaMQCqtLHT5ZJF8k95x3xvSFlPc7K6g+oJKXq/nAg9XN191c3yHsTD9jg+P3/up+7pSsfO6i1H6lHW2Dmo50jZ2SUTExGqUXnsbL7g7AFKwDcW1qLLbMXI2FDkpPlWW4q/OmdiEkI1Shxr7ERlMzPVREQkn4APqlOjQqBVKWCy2pw9VxS42gxmHKptA+C7QfXMjBhoVPZvvWlBVvotkf5udgVJpjpQguqRsWGYlxUPUQTW/nTqbLXVJuKTfPt05mDIzi6QVmsdOnm1ljT1e3lOSlANJvSkMK0K5/YYfKdRKRAfrpXxREREFKwCPqhWKATnuiKWgAe+PeXNEEUgPSYECXqd3MfpU4hGifmObPW8HlnrYJKbHgWFAFQ2d6GmxSD3cTyi3WjB4Tr7DZ5ACaqB7vVa7+4oh8FsHfCx24oa0dBuRFSoGnPGBv7/6zMyohGmUaK+zYj9Vd3zAlo6zdh8uB5AYPeVy+HiqWnO/06LCvH7NgsiIvJPAR9UA93Dyoo4rCzgOUu/fTwD/LdLcvHuTbOcma1gE6ZVYVySHkDgrtYqqGiBKAIpkTqfvcEzFGePS0BqVAiOd5qxYV/1gI/9aI993dHSycnO6oxAplUpMTvTPjyr5zC3z/dXw2wVMS4pAlmJEXIdLyDNGhOLJMf3VxpLv4mISCaB/1sOuFYrmEgBmq+WfksiQ9WYOSq4V+pMGxkFIHBLwJ2l346hbIFCqRDw85mOgWXb+i8BN5it+Nyxk3lFEJR+S7pLwLuDaqmvfHkQfR28RakQcMl0e7Y6O9G/J+wTEZH/Co6gmmu1goLVJmK3YzDU9JHBHbD6A+nGx84AzVTvKbd/XoFU+i257LR0qBQCdpU1Y39VS5+P2XSoHm1GC5IjdUG1k3l+tr3MfXd5M5o6TKhrM2BbkX193vIcBtWecMfCsXjyslzcvmCs3EchIqIgFSRBNddqBYNDNW1oN1oQplEiO4kllr5OGtK2v7L1lL25/qh7SJlvV00MRUKEzjkg6o3tZX0+5uN8e+n38tyUoOpzTY4MwfhkPUQR2HqkHuv3VsMm2m+ujIhlebInaFQKXDwtDZGharmPQkREQcqloPq5557D/7d35/FRV/f+x9+TSSYh24TsCYQtQBTCIossouCGLG5FLddaqFZ/FStwe633evX6q/21v15tr9eKtVetVWitt1CrWH/XgKIQEFlkCRJ2CEtYshAIkxDIOuf3RzIjKfswS2bm9Xw88njI5Mz5fmZOTsxnzud7zsCBA5WYmKjExESNGjVKixYtuuBzli9frqFDhyomJka9evXS66+/fkUBe8K1Ul1Z26Da+ia/Xx/+4VrxvKZbZ1nD6I/4YNUtOVap8TY1tjjPu9oZrMod9aqoaZA1wqL8LomBDscnXBuW/W3TYdX83e/V2vomfRbGZzLf2LZavWxHJaXfAACEgctKqrt27aoXXnhB69ev1/r163XTTTfprrvu0tatW8/Zft++fZo0aZKuv/56FRUV6ZlnntHs2bP1/vvveyX4S5UYE6XUtmM29nFfdchy3Zvb0e+nRiuLxaJrXOdVHzgR2GC8zFX63TcjIWTPZh7RM1l90uN1qrFFCzcebve9T7ZWqLHZqdy0OPXPDs0PFS7EdV/1km0V2lh6QhaLdPvArABHBQAAfOWykuo77rhDkyZNUt++fdW3b1/94he/UHx8vNasWXPO9q+//rq6deuml19+WVdffbUeeeQRff/739eLL77oleAvRy+O1Qp56w8cl0RSHUzc91WH2GZlRSF2PvW5WCwW92r1n9YcaHcus2vX77sGdwnLM5mvyUlSYkyk6hpbb2sY2TNFGSG0AzwAAGjP43uqW1paNH/+fNXV1WnUqFHnbLN69WqNHz++3WO33Xab1q9fr6am85dhNzQ0qKampt3XlWKzstBWWVOvg8dPy2IJvd2WQ5nrvuoNpdXtkrJgt6ltw7xrQjiplqRvDemiWJtVuytPau2+1g+1jtY2aFXbxlzhWPotSZHWCN1wxhn0lH4DABDaLjupLi4uVnx8vKKjozVjxgwtXLhQ/fr1O2fb8vJyZWRktHssIyNDzc3NqqqqOu81nn/+edntdvdXTk7O5YZ5FvdZ1ZR/hyTXUVp5GQlKjGGzmmAxsKtdkREWHa1t0KHq04EOxytanEbFh1vvEQ/1D3gSY6J01+AuklpXqyWpoLhMLU6jQTlJ6tFWIRSObsxrLQGPjLBoYtumbgAAIDRddlKdl5enTZs2ac2aNXrsscf0ve99T9u2bTtv+78v/XOtRl2oJPDpp5+Ww+Fwfx08ePBywzyL+6xqyr9D0vr93E8djGKirO57bjeGyNFauytrdaqxRXE2q3LTQv/c3O+O7CZJWrylXJW19e7S73BdpXa5LT9T1/dJ1eyb+6hznC3Q4QAAAB+67B10bDabevfuLUkaNmyY1q1bpzlz5uiNN944q21mZqbKy8vbPVZZWanIyEilpKSc9xrR0dGKjo6+3NAuyLVSva/qpJxOE1ZHvIQD187fJNXB55punfX1IYc2Hqh2r3oGM1fp98CuSWGxC33/bLuGdEvSxtIT+s9Pdrk35rojzDfmio+O1DsPjwh0GAAAwA+u+JxqY4waGhrO+b1Ro0ZpyZIl7R779NNPNWzYMEVF+bdENyc5VpERFtU3OVVWU+/Xa8O36ptatKWt3HZY9+QAR4PL5fogZGNbMhrs3OdTh3jp95mmjWrdsGzB+taqotG5KUpnYy4AABAmLiupfuaZZ/TFF19o//79Ki4u1r/927+psLBQDzzwgKTWsu3p06e728+YMUMHDhzQE088oe3bt+vtt9/WW2+9pSeffNK7r+ISRFkj1C0lVhKblYWa4sMONbUYpcZHKye5U6DDwWUa0pZUbyur0anG5gBHc+U2hcHO339vYn6WOsd+80HpXYOCv+IAAADgUl1WUl1RUaFp06YpLy9PN998s9auXavFixfr1ltvlSSVlZWptLTU3b5nz54qKChQYWGhBg8erJ///Od65ZVXdM8993j3VVwi7qsOTRvc51MnheXxPcEu2x6jzMQYtTiNvj7oCHQ4V6SuoVm7Kmolhf7O32eKibLq28NbN5S0WSN0GxtzAQCAMHJZ91S/9dZbF/z+vHnzznps7Nix2rhx42UF5Su5aXH6bDsr1aHGlVRT+h2cLBaLru2ZrI++PqKPvj6sUbnn32+hoys+7JDTSFn2mLArf35odE8t3V6pW/plyN6JHfgBAED4uOJ7qoOJ+6xqjtUKCcYYbT50Quv3t56PO4RNyoLW9LZ7ct/fcFgVQbznQTiWfrtk2mO05ImxemrCVYEOBQAAwK8ue/fvYNYrjfLvYGeM0deHHCooLlNBcZn7bONYm1X5XRIDHB08NaxHsob36Kx1+6v19sp9enrS1YEOySOunb/DMakGAAAIV+GVVKe2rlQfPnFapxtb1MlmDXBEuBTGGBUdPKGCzWVatKVch0+cdn+vU5RVN12Vrmmjuis6kvEMZo+Ny9W6eev1pzUH9MNxvWWPDb4S4nBeqQYAAAhXYZVUJ8fZZO8UJcfpJu2rqlO/bFY2Oyqn06joYLU+3lyuxVvKdMTxTUlwrK01kZ40IEvj8tIUawurH+OQdWNeuvIyErSzolZ/WntAj9/YO9AhXZZyR73Ka+oVYZHyu9gDHQ4AAAD8JKyyEYvFol5pcSoqPaG9VSdJqjsYp9NoQ2m1Pt5cpsVbylV+xr21cTarbr46Q5MGZGls3zSqDEKQxWLRY+Ny9aMFm/T2yn16eExPxUQFzzi7Vqn7ZiQoLjqsfrUCAACEtbD7y69XanxrUs191R1Ci9No3f7jWlTcWtpdWdvg/l58dKRuubp1RfqGvmlBlWDBM7cPzNKLn+7UoerTem/9QU0b1SPQIV0yV1J9TbekgMYBAAAA/wq/pNq1AzjHagVMi9No7b5jWlRcrsVby3X0jEQ6ITpSt/ZrXZEe0yeVRDrMRFoj9IMbeuknf9uqN1bs1f3XdlOkNTgOKdh0sPVoN+6nBgAACC9hl1TnhsCxWpW19YqJsioxJng2cmpxGq3Ze0wFxWX6ZGu5qk42ur+XGBOpW/tlavLATF3XO5UNx8LcfUNzNOez3TpUfVofF5fprsFdAh3SRbU4jYoPOSRJg3M42g0AACCchF1SfeaxWsYYWSyWAEd06XaU1+iVz3eroLhcV2UmqGD29YqICI74f/rRVr2z5oD73/ZOURrfL0OTBmbputxU2SKDYzUSvtfJZtVD1/XQi5/u0muFJbpzUHaHn6d7Kk+qrrFFcTareqfHBzocAAAA+FHYJdXdU2IVYZFONjTraG2D0hNjAh3SRW070ppML95a7n5sR3mtNh06oSHdOv6qWE19kxasOyhJundoV90xKFujc1MUFSRlvfC/aSN76LXCEu0or1XhzqO68ar0QId0Qa7S7wFd7bIGyQddAAAA8I6wy2qiI63q2jlWklTSwTcr23LYoR/8cb0mvfKFFm8tl8UiTR6YpTG9UyVJi4rLAhzhpfl8e4UaW5zqnR6vF+8bpLF900iocUH22Cg9MLK7JOm1wpIAR3Nx35xP3fE/5AIAAIB3hWVm496srKpjblZWfMihR/6wTrf/ZqU+3VYhi0W6Y1C2Pv3RDfrtd4bou23JRkFxuYwxAY724gqKW1fYJ+VnBjgSBJOHx/SUzRqhr/Yf1/r9xwMdzgUVlZ6QxCZlAAAA4Sjsyr+l1mO1Cnce7XDHan198ITmfL5bS3dUSpIiLNKdg7I186be6p2e4G43Li9NsTarDp84rc2HHBrUgf+QP9nQrOW7jkqSJg3MCnA0CCYZiTGaMqSL5q87qNeXl+j3PZIDHdI5nWps1q6KWkkk1QAAAOEoPJPqDnasVlFpteZ8vluFO1uTzwiLdPfgLnr8pt7KTTt706OYKKtuvCpdH28uU8GWsg6dVH++vUKNzU71So1TXkbCxZ8AnOEHN/TSgvUH9dn2Su0sr1VeZsf7GSo+5JDTSJmJMcq0d/w9GgAAAOBdYV7+HdiV6g0HjmvaW2v1rf9apcKdR2WNsOieIV31+Y/H6aWpg8+ZULtMHtC66ruog5eAL3KVfg/I6vA7OKPj6ZUWr4lttw28sbxj3lv9zf3USQGNAwAAAIERlivVrmT14PFTamhu8fu5yOv2H9ecz3Zr5Z4qSWpLprvo8Rt7q3tK3CX1MS4vTTFRESo9fkpbj9Qov4vdlyF7pK6hWct2tpayTxzA/dTwzIyxuSooLtffvj6iJ8b3dW802FG4k+puSQGNAwAAAIERlivV6QnRirNZ5TRS6bFTfrvu2r3H9J031+i+11dr5Z4qRUZY9A/Dc1T45Dj96t5Bl5xQS1KsLVI35rUeM1TQQXcBX7azUg3NTnVPiVW/rMRAh4MgNbBrksb0TlWL0+j3X+wLdDhn+ZqVagAAgLAWlkm1xWJRr7bVal8fq2WM0aqSKk19Y7Wm/m6NVpUcU5TVovuv7aZlT47TC/cMVE6yZytvE9tKwAuKyzpkCTil3/CWx8blSpLmryvVsZMNAY7mG5U19TriqFeERRrQAatFAAAA4HthWf4ttd5XXXzY4bNjtVqT6WOa89lufdV2HFCU1aJvD8vRD2/srS5Jna74Gjddla7oyAjtP3ZKO8prdXUHWg0+3dji3sV8Uj67fuPKjM5N0cCudm0+5NC8Vfv14/F5gQ5JklTUtkrdNyNBcdFh++sUAAAgrIXtX4G9UltXqr15rNbR2gat2XtMq/ce0+qSY9rXthGazRqhf7g2RzPG5irbC8m0S3x0pMb2TdOn2ypUUFzWoZLqwp2VOt3UopzkTsrv0nHiQnCyWCx6bGyuHnt3o/6war8eHZur+A6QxLJJGQAAAAL/V2mAeONYreq6Rq3d15pAryo5pt2V7fuyRUboO9d204yxuT47amfSgCx9uq1CHxeX6Ylb+3aYMuuP2+7znpRP6Te8Y3z/TPVKjdPeqjr9eW2p/tcNvQIdkjaVnpBEUg0AABDOSKov41gtx+kmfbXvuFaXtK5G7yiv0Zm3Mlss0tWZiRqVm6JRvVJ0ba9kJcZEeTv0dm66Ol02a4T2Hq3T7sqT6tsBzoKub/qm9Nt13zdwpawRFj06tpeeer9Yv1+5V9NHd/f7zv1nanEaFR92SFKHPiseAAAAvhW2SXXP1Nak+sSpJh2va1RynO2sNicbmrVu/3GtaUuitxx2yPl3+4H1zYjXqF4pGpWbohE9U9T5HP34UmJMlG7om6rPtleqoLisQyTVy3cd1anGFnVJ6qRBXdm8Cd5z9zVd9NKSXaqoadCHRYc1dXi3gMWyq6JWJxuaFWuzdoh5BwAAgMAI26Q61hapbHuMjjjqtffoSSXHJet0Y4s2HKjW6r1VWl1yTF8fcqjl77LoXqlxGtm2Ej2yV4rSEqID9Aq+MTE/y51U/+iWvoEOx33E18T8TEq/4VXRkVY9MqaXflGwXW8s36t7h+bIGuH/nzHH6Sb9+C9fS5KG9UgOSAwAAADoGMI2qZakXmnxOuKo138Vluhkw05tKj2hxhZnuzY5yZ3cK9GjeqX67N7oK3HL1RmKslq0q+Kk9lTWqnd64FbN6pta9Pn2tl2/B1L6De+7f0Q3/Wbpbu2tqtOnW8v9fovB6cYWPfKHddpWVqPUeJv+z539/Xp9AAAAdCxhnlTHaeWeKvf9v5KUZY/5JonOTVHXzp6dIe1P9tgoXdc7VYU7j2pRcblm3Ry4pPqL3VU62dCsLHuMBndNClgcCF3x0ZH63uge+s3SPXpteYkm+LEiorHZqcfe3aB1+6uVEBOpP35/hPtWEgAAAISnsE6qpw7PUfFhh7p2jtXotpLu7imxQVmyPGlAlgp3HlXBlnLNurlPwOJY1Fb6PSE/UxGUxMJHHhzdQ29+sVebDzm0quSYruud6vNrtjiNnvjLJhXuPKqYqAjNfXC4+mVzXBwAAEC4C+ukun+2XQt/eF2gw/CK8f0y9EyERdvLarSvqi4gq2cNzS1asq1CkjSZXb/hQynx0fqH4d00b9V+vVZY4vOk2hijn/xti/5nc5mirBa9/t2hGtYj2afXBAAAQHCICHQA8I6kWJtG5aZI+majMH/7ck+VahualZEYrSHdOgckBoSPR67vKWuERSv3VGnzoRM+vdZ/fLJT764tlcUi/XrqYI3LS/fp9QAAABA8SKpDiGt1eNGWwCTVBcXlklp3I6f0G77WtXOs7hqULUl6fXmJz67zxvIS/Vdha/+/uHuAbh+Y7bNrAQAAIPiQVIeQ8f0zZY2waMvhGpUeO+XXazc2O/XpVldSnenXayN8PTo2V5K0aEu59h496fX+539VqucX7ZAkPTXhKn1nRODOxQYAAEDHRFIdQpLjbBrZq/U+zwI/r1avKqlSTX2zUuOjudcUfpOXmaBbrk6XMdLvVuz1at8fby7T0wuLJUkzxubqsXG5Xu0fAAAAoYGkOsRMzG8rAffzfdWu+7gn5reulgP+4kp23994SOWOeq/0uWLXUf1oQZGMke6/tpuempDnlX4BAAAQekiqQ8xt/TMVYZG+PuTQoWr/lIA3tTj1aduu3xMHUPoN/xraPVnX9khWU4vR21/uu+L+Nhw4rkff2aCmFqPJA7P0f+/OD8pj9gAAAOAfJNUhJi0hWtf2bC2/Xryl3C/XXLP3mE6calJKnE0jeqb45ZrAmVyr1e+uOSDHqSaP+9leVqOH5q7T6aYWje2bpl9/ezCVFwAAALggkuoQNKltF/CP/VQC7ir9vo3SbwTIuLw0XZWZoLrGFr2zZr9HfeyvqtO0t75STX2zhnXvrNe+O0S2SH5FAgAA4ML4izEETeifKYtFKio9oSMnTvv0Ws0tTn2ytbX0e1Lb/dyAv1ksFvdq9dwv9+t0Y8tlPb/cUa/vvrVWVScbdHVWot56cLhibZG+CBUAAAAhhqQ6BKUnxmh4d/+UgK/dd1zH6xrVOTbKvfM4EAiTB2Spa+dOOlbXqPc2HLzk51XXNWraW2t1qPq0eqTE6o/fv1b2TlE+jBQAAAChhKQ6RLk2DFvk46O13KXf/TMVaeXHCYETaY3Qozf0kiS9sXyvmlqcF33OyYZmPTj3K+2uPKnMxBi98/AIpSVE+zpUAAAAhBCyoBA1Ib81qV5/oFoVNd45ZujvtTiNPtnauhLuuo8bCKT7huUoJc6mwydO6+PNF/5Aqb6pRT/443p9fcihzrFReufha5WTHOunSAEAABAqSKpDVJa9k4Z0S5IxvisB/2rfcVWdbFRSbJRG5bLrNwIvJsqq74/pKUl6rbBETqc5Z7vmFqdm/7lIq0qOKc5m1byHrlWfjAR/hgoAAIAQQVIdwlyrxwU+2gXcVVo+vl+Goij9Rgfx3ZHdFR8dqZ0VtVq2s/Ks7zudRk+9X6xPt1XIFhmhN783TINykvwfKAAAAELCZWVCzz//vIYPH66EhASlp6fr7rvv1s6dOy/6vHfffVeDBg1SbGyssrKy9NBDD+nYsWMeB41LM7Etqf5q/3EdrW3wat8tTqNFbSvgEyn9Rgdi7xSlB0Z0k9S6Wn0mY4x+/vE2vb/xkKwRFr16/zUanZsaiDABAAAQIi4rqV6+fLkef/xxrVmzRkuWLFFzc7PGjx+vurq68z5n5cqVmj59uh5++GFt3bpV7733ntatW6dHHnnkioPHhXVJ6qRBOW0l4Fu9WwK+4UC1jtY2KDEmUteRlKCD+f6YnrJZI7T+QLXW7T/ufvyVz/do7pf7JUm/umegxvfPDFCEAAAACBWXlVQvXrxYDz74oPr3769BgwZp7ty5Ki0t1YYNG877nDVr1qhHjx6aPXu2evbsqTFjxujRRx/V+vXrrzh4XNxk1y7gXi4Bd5WU39ovU7ZISr/RsWQkxuieoV0kfbNaPe/Lffr1Z7skSc/d0U/3DO0asPgAAAAQOq4oG3I4HJKk5OTzn088evRoHTp0SAUFBTLGqKKiQn/96181efLkK7k0LtHE/NbS7DV7j+nYSe+UgDudxn0/9aQBrPShY/rBDbmyWKSlOyr1H5/s0E//3zZJ0o9u6aOHrusZ4OgAAAAQKjxOqo0xeuKJJzRmzBjl5+eft93o0aP17rvvaurUqbLZbMrMzFRSUpJ+85vfnPc5DQ0NqqmpafcFz+Qkx2pAF7ucRvp0W4VX+iw6WK2KmgYlREdqTB9Kv9Ex9UyN06S2D5V+u6x1tfqh63roH2/uE8iwAAAAEGI8TqpnzpypzZs3689//vMF223btk2zZ8/WT37yE23YsEGLFy/Wvn37NGPGjPM+5/nnn5fdbnd/5eTkeBomJE1sW0321i7gH29uvT/7ln4Zio60eqVPwBdmjM11//eUIV30vyf3k8ViCWBEAAAACDUWY8y5D3K9gFmzZunDDz/UihUr1LPnhcsop02bpvr6er333nvux1auXKnrr79eR44cUVbW2TtHNzQ0qKHhm1Llmpoa5eTkyOFwKDEx8XLDDXv7q+o07sVCWSMsWv9vt6hznM3jvpxOo+t+uVRljnr9btpQNnpCh/e7FSU6XtekJ8f3VSRHvwEAAOAS1dTUyG63XzQPjbycTo0xmjVrlhYuXKjCwsKLJtSSdOrUKUVGtr+M1Wp193cu0dHRio6OvpzQcAE9UuPULytR28pqtGRbhb493POV/68PnVCZo15xNqtu6JvmxSgB3/jBDbkXbwQAAAB46LKWbR5//HH96U9/0n//938rISFB5eXlKi8v1+nTp91tnn76aU2fPt397zvuuEMffPCBXnvtNe3du1dffvmlZs+erWuvvVbZ2dneeyW4INeGYgVbrqwE3FVCfvPVGYqJovQbAAAAQHi7rKT6tddek8Ph0Lhx45SVleX+WrBggbtNWVmZSktL3f9+8MEH9dJLL+nVV19Vfn6+7rvvPuXl5emDDz7w3qvARU0c0Fpm/+WeKjlONXnUhzFGBcWt91NPGnB22T4AAAAAhBuP7qn2t0utZceFTXh5hXaU1+rF+wbpXg/O6P364And9dsvFWuzauP/vpWVagAAAAAh61LzUHbtCSOuM6sXebgLuKt0/Mar0kmoAQAAAEAk1WHFdV/1F7urVFN/eSXgxhgtaiv9nkzpNwAAAABIIqkOK30yEtQ7PV6NLU59vr3isp679UiNSo+fUkxUhMblses3AAAAAEgk1WHHtcGYa8OxS+Xa9fumq9IVa7usk9gAAAAAIGSRVIcZVwn48l1HdbKh+ZKe07rrd2tS7bovGwAAAABAUh128jIS1Cs1To3NTi3dUXlJz9leVqv9x04pOjJCN12V7uMIAQAAACB4kFSHGYvFooltq9UFmy9tF3DXKvW4vDTFRVP6DQAAAAAuJNVhyHVf9bKdlaq7SAn4maXfk9j1GwAAAADaIakOQ/2yEtU9JVYNzU4V7jx6wba7Kk5qb1WdbJR+AwAAAMBZSKrDkMVicW84VrDlwiXgH7etUt/QJ00JMVE+jw0AAAAAgglJdZia3FbKvXR7pU43tpy33SJ36XemX+ICAAAAgGBCUh2m8rskqmvnTjrd1KLlu869C/juilrtrjypKKtFt/TL8HOEAAAAANDxkVSHKYvF4t54rKC4/JxtXI9f3ydNiZR+AwAAAMBZSKrD2MT81pLuz7dXqL7p7BLwRVvY9RsAAAAALoSkOowNzklStj1GdY0tWrGr/S7gJUdPakd5rSIjLLr1akq/AQAAAOBcSKrDmMVi0cS2VehFW9qXgLs2KLuud6rssZR+AwAAAMC5kFSHOdeu3p9tq1BD8zcl4B+33U89mdJvAAAAADgvkuowd01OZ2Umxqi2oVkrd1dJkvZV1Wl7WY2sERbdyq7fAAAAAHBeJNVhLiLCogltG5a5dvt2bVA2OjdFneNsAYsNAAAAADo6kmq4d/desq1cjc1OFRSz6zcAAAAAXAqSamho985KS4hWTX2zFqwr1ZbDraXft/XPDHRoAAAAANChkVRD1giLJrQl0C8s2iFJGtkrWcmUfgMAAADABZFUQ9I3pd51ja07gE/Mp/QbAAAAAC6GpBqSpGt7JiulbWU6wiJKvwEAAADgEpBUQ1JrCfhtbbuAX9szWWkJ0QGOCAAAAAA6vshAB4COY+aNveU41aQf3NAr0KEAAAAAQFAgqYZbdlIn/faBIYEOAwAAAACCBuXfAAAAAAB4iKQaAAAAAAAPkVQDAAAAAOAhkmoAAAAAADxEUg0AAAAAgIdIqgEAAAAA8BBJNQAAAAAAHiKpBgAAAADAQyTVAAAAAAB4iKQaAAAAAAAPkVQDAAAAAOAhkmoAAAAAADxEUg0AAAAAgIdIqgEAAAAA8BBJNQAAAAAAHiKpBgAAAADAQyTVAAAAAAB4iKQaAAAAAAAPRQY6gEthjJEk1dTUBDgSAAAAAEA4cOWfrnz0fIIiqa6trZUk5eTkBDgSAAAAAEA4qa2tld1uP+/3LeZiaXcH4HQ61bdvX23YsEEWi8Xr/Q8fPlzr1q0Lmn592XdNTY1ycnJ08OBBJSYmerXvYHw/fNl3MI6hFHzvRzD2Haxj6Mu+gzHmYB3HYHyvfdV3sI6hL/sOxpj528Z/fQfjGErB934EY9/BOobGGA0dOlS7du1SRMT575wOipXqiIgI2Wy2C346cCWsVqtPBtdX/fq6b0lKTEz0ev/B+n4E48+H5JsxlILz/QjWvoNtDH3ZdzDG7BJs4xis7zVz0T99B2PMLvxt4/u+g3EMpeB8P4K172AbQ0my2WwXTKilINqo7PHHHw+6voMxZl8K1vcjGH8+fCkY349g7dtXgvH9CMaYfY332n99+0owvh/BGLMvBev7EYw/H74UjO9HsPbtK4F+P4Ki/Bv+U1NTI7vdLofD4dNPGuE7jGHwYwxDA+MY/BjD0MA4Bj/GMPiF+hgGzUo1/CM6OlrPPfecoqOjAx0KPMQYBj/GMDQwjsGPMQwNjGPwYwyDX6iPISvVAAAAAAB4iJVqAAAAAAA8RFINAAAAAICHSKoBAAAAAPAQSTUAAAAAAB4iqQ4xK1as0B133KHs7GxZLBZ9+OGH7b5fUVGhBx98UNnZ2YqNjdWECRO0e/fudm3Ky8s1bdo0ZWZmKi4uTkOGDNFf//rXdm169Oghi8XS7utf//Vfff3ywoY3xrGkpETf+ta3lJaWpsTERH37299WRUVFuzbV1dWaNm2a7Ha77Ha7pk2bphMnTvj41YUHf40hc9F3nn/+eQ0fPlwJCQlKT0/X3XffrZ07d7ZrY4zRT3/6U2VnZ6tTp04aN26ctm7d2q5NQ0ODZs2apdTUVMXFxenOO+/UoUOH2rVhLvqGP8eQueg73hrH3/3udxo3bpwSExNlsVjOOceYi77hzzFkLvqON8bx+PHjmjVrlvLy8hQbG6tu3bpp9uzZcjgc7foJtrlIUh1i6urqNGjQIL366qtnfc8Yo7vvvlt79+7V3/72NxUVFal79+665ZZbVFdX5243bdo07dy5Ux999JGKi4s1ZcoUTZ06VUVFRe36+9nPfqaysjL317PPPuvz1xcurnQc6+rqNH78eFksFi1dulRffvmlGhsbdccdd8jpdLr7+s53vqNNmzZp8eLFWrx4sTZt2qRp06b57XWGMn+NocRc9JXly5fr8ccf15o1a7RkyRI1Nzdr/Pjx7X5f/upXv9JLL72kV199VevWrVNmZqZuvfVW1dbWutv86Ec/0sKFCzV//nytXLlSJ0+e1O23366WlhZ3G+aib/hzDCXmoq94axxPnTqlCRMm6JlnnjnvtZiLvuHPMZSYi77ijXE8cuSIjhw5ohdffFHFxcWaN2+eFi9erIcffrjdtYJuLhqELElm4cKF7n/v3LnTSDJbtmxxP9bc3GySk5PNm2++6X4sLi7O/PGPf2zXV3Jysvn973/v/nf37t3Nr3/9a5/Fjm94Mo6ffPKJiYiIMA6Hw93m+PHjRpJZsmSJMcaYbdu2GUlmzZo17jarV682ksyOHTt8/KrCi6/G0Bjmoj9VVlYaSWb58uXGGGOcTqfJzMw0L7zwgrtNfX29sdvt5vXXXzfGGHPixAkTFRVl5s+f725z+PBhExERYRYvXmyMYS76k6/G0Bjmoj95Mo5nWrZsmZFkqqur2z3OXPQfX42hMcxFf7rScXT5y1/+Ymw2m2lqajLGBOdcZKU6jDQ0NEiSYmJi3I9ZrVbZbDatXLnS/diYMWO0YMECHT9+XE6nU/Pnz1dDQ4PGjRvXrr9f/vKXSklJ0eDBg/WLX/xCjY2Nfnkd4e5SxrGhoUEWi0XR0dHuNjExMYqIiHC3Wb16tex2u0aMGOFuM3LkSNntdq1atcofLyVseWsMXZiL/uEqTUtOTpYk7du3T+Xl5Ro/fry7TXR0tMaOHeueQxs2bFBTU1O7NtnZ2crPz3e3YS76j6/G0IW56B+ejOOlYC76j6/G0IW56B/eGkeHw6HExERFRkZKCs65SFIdRq666ip1795dTz/9tKqrq9XY2KgXXnhB5eXlKisrc7dbsGCBmpublZKSoujoaD366KNauHChcnNz3W3+8R//UfPnz9eyZcs0c+ZMvfzyy/rhD38YiJcVdi5lHEeOHKm4uDg99dRTOnXqlOrq6vTP//zPcjqd7jbl5eVKT08/q//09HSVl5f79TWFG2+NocRc9BdjjJ544gmNGTNG+fn5kuSeJxkZGe3aZmRkuL9XXl4um82mzp07X7ANc9H3fDmGEnPRXzwdx0vBXPQPX46hxFz0F2+N47Fjx/Tzn/9cjz76qPuxYJyLkYEOAP4TFRWl999/Xw8//LCSk5NltVp1yy23aOLEie3aPfvss6qurtZnn32m1NRUffjhh7rvvvv0xRdfaMCAAZKkf/qnf3K3HzhwoDp37qx7773X/ckgfOdSxjEtLU3vvfeeHnvsMb3yyiuKiIjQ/fffryFDhshqtbrbWSyWs/o3xpzzcXiPN8eQuegfM2fO1ObNm8+qEpDOnkeXMof+vg1z0fd8PYbMRf/w9jherA9P+8H5+XoMmYv+4Y1xrKmp0eTJk9WvXz8999xzF+zjQv10BCTVYWbo0KHatGmTHA6HGhsblZaWphEjRmjYsGGSWncbfvXVV7Vlyxb1799fkjRo0CB98cUX+u1vf6vXX3/9nP2OHDlSkrRnzx5+YfnBxcZRksaPH6+SkhJVVVUpMjJSSUlJyszMVM+ePSVJmZmZZ+0kLUlHjx496xNGeJ83xvBcmIveN2vWLH300UdasWKFunbt6n48MzNTUusn6llZWe7HKysr3XMoMzNTjY2Nqq6ubrfSWVlZqdGjR7vbMBd9y9djeC7MRe+7knG8FMxF3/P1GJ4Lc9H7vDGOtbW1mjBhguLj47Vw4UJFRUW16yfY5iLl32HKbrcrLS1Nu3fv1vr163XXXXdJat1VUZIiItr/aFit1rN2HD6Ta2fwMycQfO9843im1NRUJSUlaenSpaqsrNSdd94pSRo1apQcDoe++uord9u1a9fK4XBc8A9FeNeVjOG5MBe9xxijmTNn6oMPPtDSpUvP+jCjZ8+eyszM1JIlS9yPNTY2avny5e45NHToUEVFRbVrU1ZWpi1btrjbMBd9x19jeC7MRe/xxjheCuai7/hrDM+Fueg93hrHmpoajR8/XjabTR999FG7PWakIJ2Lft0WDT5XW1trioqKTFFRkZFkXnrpJVNUVGQOHDhgjGndXW/ZsmWmpKTEfPjhh6Z79+5mypQp7uc3Njaa3r17m+uvv96sXbvW7Nmzx7z44ovGYrGYjz/+2BhjzKpVq9z97t271yxYsMBkZ2ebO++8MyCvORRd6TgaY8zbb79tVq9ebfbs2WPeeecdk5ycbJ544ol2bSZMmGAGDhxoVq9ebVavXm0GDBhgbr/9dr+9zlDmjzFkLvrWY489Zux2uyksLDRlZWXur1OnTrnbvPDCC8Zut5sPPvjAFBcXm/vvv99kZWWZmpoad5sZM2aYrl27ms8++8xs3LjR3HTTTWbQoEGmubnZ3Ya56Bv+GkPmom95axzLyspMUVGRefPNN40ks2LFClNUVGSOHTvmbsNc9A1/jSFz0be8MY41NTVmxIgRZsCAAWbPnj3t+gnm/y+SVIcY1xEDf//1ve99zxhjzJw5c0zXrl1NVFSU6datm3n22WdNQ0NDuz527dplpkyZYtLT001sbKwZOHBguyO2NmzYYEaMGGHsdruJiYkxeXl55rnnnjN1dXX+fKkhzRvj+NRTT5mMjAwTFRVl+vTpY/7zP//TOJ3Odm2OHTtmHnjgAZOQkGASEhLMAw88cM7jKXD5/DGGzEXfOtf4STJz5851t3E6nea5554zmZmZJjo62txwww2muLi4XT+nT582M2fONMnJyaZTp07m9ttvN6Wlpe3aMBd9w19jyFz0LW+N43PPPXfRfpiLvuGvMWQu+pY3xvF8fx9JMvv27XO3C7a5aDHGmCtd7QYAAAAAIBxxTzUAAAAAAB4iqQYAAAAAwEMk1QAAAAAAeIikGgAAAAAAD5FUAwAAAADgIZJqAAAAAAA8RFINAAAAAICHSKoBAAhShYWFslgsOnHiRKBDAQAgbFmMMSbQQQAAgIsbN26cBg8erJdfflmS1NjYqOPHjysjI0MWiyWwwQEAEKYiAx0AAADwjM1mU2ZmZqDDAAAgrFH+DQBAEHjwwQe1fPlyzZkzRxaLRRaLRfPmzWtX/j1v3jwlJSXpf/7nf5SXl6fY2Fjde++9qqur0x/+8Af16NFDnTt31qxZs9TS0uLuu7GxUf/yL/+iLl26KC4uTiNGjFBhYWFgXigAAEGGlWoAAILAnDlztGvXLuXn5+tnP/uZJGnr1q1ntTt16pReeeUVzZ8/X7W1tZoyZYqmTJmipKQkFRQUaO/evbrnnns0ZswYTZ06VZL00EMPaf/+/Zo/f76ys7O1cOFCTZgwQcXFxerTp49fXycAAMGGpBoAgCBgt9tls9kUGxvrLvnesWPHWe2ampr02muvKTc3V5J077336p133lFFRYXi4+PVr18/3XjjjVq2bJmmTp2qkpIS/fnPf9ahQ4eUnZ0tSXryySe1ePFizZ07V//+7//uvxcJAEAQIqkGACCExMbGuhNqScrIyFCPHj0UHx/f7rHKykpJ0saNG2WMUd++fdv109DQoJSUFP8EDQBAECOpBgAghERFRbX7t8ViOedjTqdTkuR0OmW1WrVhwwZZrdZ27c5MxAEAwLmRVAMAECRsNlu7Dca84ZprrlFLS4sqKyt1/fXXe7VvAADCAbt/AwAQJHr06KG1a9dq//79qqqqcq82X4m+ffvqgQce0PTp0/XBBx9o3759WrdunX75y1+qoKDAC1EDABDaSKoBAAgSTz75pKxWq/r166e0tDSVlpZ6pd+5c+dq+vTp+vGPf6y8vDzdeeedWrt2rXJycrzSPwAAocxijDGBDgIAAAAAgGDESjUAAAAAAB4iqQYAAAAAwEMk1QAAAAAAeIikGgAAAAAAD5FUAwAAAADgIZJqAAAAAAA8RFINAAAAAICHSKoBAAAAAPAQSTUAAAAAAB4iqQYAAAAAwEMk1QAAAAAAeIikGgAAAAAAD/1/ENQkKeISFWAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df_mean2 = ds_mean2_era5.to_dataframe().groupby([\"time\"]).mean()\n", + "\n", + "\n", + "fig, ax = plt.subplots(1, 1, sharex=True, sharey=True, figsize=(12, 6))\n", + "df_mean2[[\"heat_waves_per_time_period\"]].plot(ax=ax, label=\"mean2\")" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "id": "e8399f5a-49b2-4e56-b899-f75893ed8f51", + "metadata": {}, + "outputs": [], + "source": [ + "df_percentile390 = ds_percentile390.to_dataframe().groupby([\"time\"]).sum()\n", + "df_percentile490 = ds_percentile490.to_dataframe().groupby([\"time\"]).sum()\n", + "df_percentile290 = ds_percentile290.to_dataframe().groupby([\"time\"]).sum()\n", + "\n", + "df_mean2 = ds_mean2.to_dataframe().groupby([\"time\"]).sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "id": "4c42558b", + "metadata": {}, + "outputs": [], + "source": [ + "df_mean4 = ds_mean4.to_dataframe().groupby([\"time\"]).sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "id": "cf01ff82", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Number of heatwaves using different definitions of a heatwave')" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAAFuCAYAAABk5hXvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd1jUV9bA8e+doTdBAaUoqKCINAtYsNdoEtNMNdk0UzaJ2WzK7ibZJLt5symbXtx0E1OMJjGJJhpr7L0gCCJFQKQovdeZ+b1/zICAlAEHZsT7eR4eYX7tTkHO3Dn3HKEoCpIkSZIkSZJ0OVKZewCSJEmSJEmSZC4yGJYkSZIkSZIuWzIYliRJkiRJki5bMhiWJEmSJEmSLlsyGJYkSZIkSZIuWzIYliRJkiRJki5bMhiWJCMJIb4UQrxkpmsLIcQXQohiIcTBVrbfJYTYbY6x9UZCiAohxJAeuM40IURWk58ThBDTDN9f8JwLIf4shDhnGF+/7h7fxRJCKEKIACP3bXbfOvMcdLRv08fVEgghrhNCnDGMe9RFnsts/y9JUm8hg2HpkiWEyDD88XRscttiIcR2Mw6ru0wCZgO+iqJE9eSFDY/zrJ68prkpiuKkKEqaGa47UlGU7YYfmz3nQghr4C1gjmF8hT05tu58HbR23zrzHDTdt7XgsMXjagneAB4xjDvG3INpjRDC3/BmxsrcY5Gk7iaDYelSZwX8xdyD6CwhhLqTh/gBGYqiVHbHeCSL1PI57w/YAQldOVkXXnM96aLu2yXIj8vnvkqSxZPBsHSpex14Ugjh2nJDazMbQojtQojFhu/vEkLsEUK8LYQoEUKkCSEmGm4/I4TIE0Lc2eK07kKIzUKIciHEDiGEX5NzBxm2FQkhkoQQNzXZ9qUQ4kMhxHohRCUwvZXxegsh1hqOTxVC3Ge4/V7gM2CC4WPVf7f1YAgh3jB8rJ4uhJjX5PY+QojPhRC5QohsIcRLDcGREGKoEOIPIUShEKJACPFtw+MphPgaGAT8arj234QQy4UQTxi2+xge44cMPwcYxi+EEG5CiN+EEPmGMf0mhPA17HeLEOJwi7H/VQix1vC9reG+ZBpm/z8SQtgbtrkbzlViuNYuIcQF/5cZ8fwHGJ7DUsP9XtVkv8aP9w3P3VIhxDrD835ACDG0yb5zDM93qRDif4ZzLm7j+bE3nK9YCHECiGyxPUMIMauV5/w7IMmwW4kQ4g/D/p16zRleY6sNz0m6EOLRJvv/SwjxvRDiK8P9TBBCjG3rddDG/XvK8BrLEULc02Jbq8+pEGJYG/etM8+BYng+7wcWAX8zjPPXpo9rk3G8YxhjjuF7W8O2aUKILCHEE0L/+58rhLi7yXXmCyFOGMaQLYR4so3HQSWE+KcQ4rThPF8J/e+grRCiAlADsUKIU20c/67Q/x9UJoQ4IoSY3Np+Tbi189i09xq5UggRY7jOGSHEv5qcc2eT56RCCDHBcH/GGI693fC4Bxt+XiyE+MXwfZQQYp/Q/47mCiE+EELYGLZ9JIR4o8X9XSOEeNzwfZuvUUnqNoqiyC/5dUl+ARnALOAn4CXDbYuB7Ybv/QEFsGpyzHZgseH7uwANcDf6P04vAZnAUsAWmAOUA06G/b80/DzFsP1dYLdhmyNwxnAuK2A0UACMbHJsKRCN/k2oXSv3ZwfwP/QzZBFAPjCzyVh3t/NY3AXUA/cZ7sufgRxAGLb/AnxsGKcncBB4wLAtAP3H8baAB/o/gu+0fJyb/HwP8Kvh+9uAU8CqJtvWGL7vB9wAOADOwA/AL4ZtDobHMrDJeQ8Btxi+fwdYC/Q1HPsr8Iph2yvAR4C14Wtyw/1s8Zh09Px/Bzzb8HwAk5rspwABTZ67IiDK8Nx+C6w0bHMHyoDrOf8pRX3DNVoZ06vALsP9GgjEA1mtPdYtn/OW94fOv+YcgCPA84ANMARIA+Ya9v8XUAPMR/8aegXY39broJX7dgVwDggxjG1Fi8exvee0tefKqOegjX1fau3/CsP3LwL70f8eeAB7gf8zbJuG/v+EF9G/tuYDVYCbYXsuMNnwvRswuo3H4h4g1fAYO6H/P+rr1sbbxvG3o//9sQKeAM7Syv8ZRrw+O3qNTANCDa+PMMPzd207z8lXwBOG7z9B/7v/5ybb/mr4fgww3nBNfyAReMywbYphTKLJ41gNeBvG0eZrVH7Jr+76Mu/FYRmQB8Qbuf9NwAn0Hy+tMPeDJ7/M+8X5YDgE/R99DzofDKc02RZq2L9/k9sKgQjD91/S/A+wE6BFH9TcDOxqMb6PgReaHPtVO/dloOFczk1uewX4sslYOwqGU5v87GC4LwPQfwRdC9g32X4rsK2Nc10LxLR8nJv8PBQoMfzh+gh4AENABywHHm/jvBFAcZOfvwGeN3wfiD44dgAEUAkMbbLvBCDd8P2LwBraCSaMfP6/Qv8H3beVY1sGV5812TYfOGn4/k/AvibbBPo/9G0Fw2nAFU1+vp+uB8Odes0B44DMFvs/DXxh+P5fwJYm24KB6rZeB63ct2XAq01+HtbwOBrxnLb2XBn1HLSxb3vB8ClgfpNtc9Gno4A+OKxuMY48YLzh+0z0r3eXDl57W4GHmvw8HP2bJKuW4zXmCygGwtvY1uZj09FrpJVzvQO83c5zci+w1vB9Ivr/bxsC79O0/ebgMeDnJr8jmcAUw8/3AX8Y8xqVX/Kru77MnSbxJfrZhA4JIQLR/1JEK4oyEv0vlyShKEo88Bvwjy4cfq7J99WG87W8zanJz2eaXLcC/YyMN/ocwHGGjwVLhBAl6D+uHdDasa3wBooURSlvcttpwMf4u8LZJmOrMnzrZBibNZDbZGwfo58ZQwjhKYRYafjYtwx9kOre1kUURTkFVKAPbiejf+xzhBDDganoZ7gRQjgIIT42fLRahn7G2VWcz11dgT4oB/0M8y+GcXtgmMVsMt4NhttBnxqTCmwS+tSWrjzvAH9D/4f5oCEl4J529j3b5Psqzr8mvGn+mlCALNrWbH/0z3FXdfY15wd4t9j/GfRvlhq0vJ92wvgFVO3dt46eU2O09Rx0lneLsZ023NagUFEUTRvXugF9sHla6NNhJnTiGlY0f6zbZEjTSBT61JsSoA/t/E7S9mPT7mtECDFOCLHNkJJQCjzYwXV2AJOFEAPQf3qwCogWQvgbxnjMcN5hQp/KdNbwu/9yw3kNvyMraf67/22T8Xb0GpUkkzNrMKwoyk70wUQjoc9f3GDIk9olhAgybLoPWKooSrHh2LweHq5k2V5A/xppGjw2LDxyaHJb00ChKwY2fCOEcEL/kW8O+iBgh6Iork2+nBRF+XOTY5V2zpsD9BVCODe5bRCQfZHjxTC2WsC9ydhcDG8qQT8DrQBhiqK4oP+IVnQw7h3AQsBGUZRsw89/Qv+R5zHDPk+gnxEbZzjvFMPtDefehD4HOwL9H8YVhtsL0L8JGdlkvH0URXECUBSlXFGUJxRFGQJcDTwuhJjZyhjbff4VRTmrKMp9iqJ4o5/t+58wsgxYE7mAb8MPQgjR9Oc29h/Y5OdBnbxeU519zZ1BPxPbdH9nRVHmG3m99l6/0P59a/c5NbGOxpmDPuhqMMhwW8cnVpRDiqJcg/6N5C/A9524hobmb75bZcgP/jv6T0LdFEVxRf/Jl2jvuDZ09BpZgT51ZaCiKH3Qf9LTcJ0LHkdFUVLRB9uPAjsNb97Pov+EY7eiKDrDrh8CJ9GnQbmgD2ibjv87YKHQr7kYB6xuMt6LeY1KUpeYe2a4NZ8ASxRFGQM8iT6HEvQfuQ0T+gVP+4UQRs0oS5cHw3/Sq9D/J91wWz76YPJ2IYTaMPM3tI1TGGu+EGKSYTHI/wEHFEU5g352dJgQ4g4hhLXhK1IIMcLI8Z9Bn7v4ihDCTggRhv4jyW/bP9Koc+eiDzzfFEK4CP3inqFCiKmGXZzRz/SWCCF8gKdanOIc+ty9pnYAj3B+kc12YAn6P4jaJuetNpy3L/o3LE3HpQF+RD/T2xfYbLhdB3wKvC2EaJi99hFCzDV8f5XQL5YS6PN1tYavlve73edfCHGjMCzoQ/8xtNLaeTqwDggVQlxrmEF9mPbfcH0PPC30iwt90T9mXdXZ19xBoEwI8XehX7imFkKECCEi29i/pdZeB019D9wlhAgWQjjQ5Pnu6Dk1sY7G+R3wTyGEhxDCHX1+6jcdnVQIYSOEWCSE6KMoSj3nX3ttXeOvQojBhjfNL6PPq9e0sX9TzugD53zASgjxPOBixHGt6eg14oz+E6kaIUQU+lnaBvmAjrZ/93cYft7e4ueG85YBFYYJraZv0FD05eTy0S8S3agoSolh08W+RiWpSywqGDb8pzER+EEIcQz9R7lehs1W6PMKp6GfRfpMtFJBQLqsvYh+wUhT96EP7gqBkegDzouxAv0f+SL0i0QWgX62Ev2Cu1vQzwqdBV5DvyjNWLeiz9PLAX5Gn9e3+SLH2+BP6BeknEAf+P3I+d+tf6NfWFOKPrj7qcWxr6APHkrE+dXzO9D/wWsIhnejn4Hd2eS4dwB79LOC+9F/LN7SCvR53z+0CBT+jj4VYr/hY9Yt6GeZQf//wBb0Afw+4H9K2zVk23v+I4EDQr+6fy3wF0VR0ts4T6sURSkAbgT+a7hGMHAY/Ux8a/6N/iPzdPRvUL7uzPVaXLtTrznDm5Sr0ae3pKN/Xj5D//G2MVp7HTQ9/+/on/M/0D93f7TYpb3n1JQ+B4IN4/ylle0voX+O4oDjwFHDbca4A8gwjP9B9J+itGYZ+ud2J/rHugbj3/hsBH4HktG/VmpoP8WqTUa8Rh4CXhRClKN/U/B9k2OrgP8AewyP5XjDppa/+y1/Bv1E1m3o1wF8in6ioqXv0P/uN3wiZIrXqCR1ScNqTvMNQJ9r9JuiKCFCCBcgSVEUr1b2+wj9yuYvDT9vBf6hKMqhnhyvJElSW4S+xFsWsEhRlG3mHo8kSZLUMYuaGVYUpQxIF0LcCI3tSMMNm3/BUJvV8NHWMPQrsyVJksxGCDFXCOEq9LVqG3Ij95t5WJIkSZKRzBoMC30h+X3AcKEvdH4v+o+d7xVCxKIvoXaNYfeNQKHQF6rfBjyl9HA7UkmSpFZMQF+uqwD9R7zXKopSbd4hSZIkScYye5qEJEmSJEmSJJmLRaVJSJIkSZIkSVJPksGwJEmSJEmSdNkytrOQybm7uyv+/v7murwkSZIkSZJ0mThy5EiBoiitdr00WzDs7+/P4cOHzXV5SZIkSZIk6TIhhDjd1jaZJiFJkiRJkiRdtmQwLEmSJEmSJF22ZDAsSZIkSZIkXbbMljPcmvr6erKysqipqTH3UKRW2NnZ4evri7W1tbmHIkmSJEmSZBIWFQxnZWXh7OyMv78/QghzD0dqQlEUCgsLycrKYvDgweYejiRJkiRJkklYVJpETU0N/fr1k4GwBRJC0K9fPzlrL0mSJElSr2JRwTAgA2ELJp8bSZIkSZJ6G4sLhiW9d955h6qqqsaf58+fT0lJCQBOTk7tHltTU0NUVBTh4eGMHDmSF154oXFbbGwsEyZMIDQ0lKuvvpqysrLGba+88goBAQEMHz6cjRs3mvYOSZIkSZIkWSAZDJuQRqMx2blaBsPr16/H1dXVqGNtbW35448/iI2N5dixY2zYsIH9+/cDsHjxYl599VWOHz/Oddddx+uvvw7AiRMnWLlyJQkJCWzYsIGHHnoIrVZrsvsjSZIkSZJkiWQw3EJGRgZBQUHceeedhIWFsXDhQqqqqjhy5AhTp05lzJgxzJ07l9zcXACmTZvGM888w9SpU3n33Xc5dOgQEydOJDw8nKioKMrLy9FqtTz11FNERkYSFhbGxx9/DMD27duZNm0aCxcuJCgoiEWLFqEoCu+99x45OTlMnz6d6dOnA/qOfQUFBReM9/XXX288b8MMsBCicfa4vr6e+vr6xhSHpKQkpkyZAsDs2bNZvXo1AGvWrOGWW27B1taWwYMHExAQwMGDB7vxkZYkSZIkSTI/i6om0dS/f03gRE5Zxzt2QrC3Cy9cPbLD/ZKSkvj888+Jjo7mnnvuYenSpfz888+sWbMGDw8PVq1axbPPPsuyZcsAKCkpYceOHdTV1REUFMSqVauIjIykrKwMe3t7Pv/8c/r06cOhQ4eora0lOjqaOXPmABATE0NCQgLe3t5ER0ezZ88eHn30Ud566y22bduGu7t7m+PctGkTKSkpHDx4EEVRWLBgATt37mTKlClotVrGjBlDamoqDz/8MOPGjQMgJCSEtWvXcs011/DDDz9w5swZALKzsxk/fnzjuX19fcnOzu7yYy1JkiRJ0qXt8K8/odVoGHfdTeYeSrey2GDYnAYOHEh0dDQAt99+Oy+//DLx8fHMnj0bAK1Wi5eXV+P+N998M6APor28vIiMjATAxcUF0AetcXFx/PjjjwCUlpaSkpKCjY0NUVFR+Pr6AhAREUFGRgaTJk0yapybNm1i06ZNjBo1CoCKigpSUlKYMmUKarWaY8eOUVJSwnXXXUd8fDwhISEsW7aMRx99lBdffJEFCxZgY2MD6EuntSQXzEmSJEnS5Sl+22Z2fKOf9HPq24+RU2eaeUTdx2KDYWNmcLtLyyDQ2dmZkSNHsm/fvlb3d3R0BPQBZWsBpKIovP/++8ydO7fZ7du3b8fW1rbxZ7Va3am8Y0VRePrpp3nggQfa3MfV1ZVp06axYcMGQkJCCAoKYtOmTQAkJyezbt06QD8T3DBLDPqaz97e3kaPRZIkSZKk3iE7KZEtny1lUEg4ik7Hlk+X4uk/BA+/zvUZ0Om0nNy9gyGjo7DrYPG/Ocmc4VZkZmY2Br7fffcd48ePJz8/v/G2+vp6EhISLjguKCiInJwcDh06BEB5eTkajYa5c+fy4YcfUl9fD+iD0MrKynbH4OzsTHl5ebv7zJ07l2XLllFRUQHoUx3y8vLIz89vrDxRXV3Nli1bCAoKAiAvLw8AnU7HSy+9xIMPPgjAggULWLlyJbW1taSnp5OSkkJUVFSHj5UkSZIkST3vXFoqSft2t/rJ7sUoK8hn7Zv/wbmfB1f99R9c+Ze/YevkxNq3Xqa2qv3YpSmdTsvG/73D70vfIvVQ65OJlkIGw60YMWIEy5cvJywsjKKiIpYsWcKPP/7I3//+d8LDw4mIiGDv3r0XHGdjY8OqVatYsmQJ4eHhzJ49m5qaGhYvXkxwcDCjR48mJCSEBx54oMMZ4Pvvv5958+Y1LqBrzZw5c7jtttsaS6UtXLiQ8vJycnNzmT59OmFhYURGRjJ79myuuuoqQB/cDxs2jKCgILy9vbn77rsBGDlyJDfddBPBwcFcccUVLF26FLVafRGPoiRJkiRJ3SFp3y6+e/4pfnvnVTZ/+gFaTb1JzltfW8PaN/+Dpq6Wa//2HPZOzji6unHVX/5Gad45Nn74rlHBt6LTsfmTpZzYtQ3AZOPrLsLU7yiMNXbsWOXw4cPNbktMTGTEiBFmGU+DjIwMrrrqKuLj4806DktlCc+RJEmSJF2OFEXh0NrV7FrxJd7Dg/EeFsThX3/Cd0QIVz/+NA4ufS7q3Ovee52kfbu49qnnGDqm+afDh3/7mR1ff87U2+9h7NXXt3uerZ9/SOzm9YTPnk/s5vXMuPsBRl1xdZfHZgpCiCOKooxtbZucGZYkSZIkSbJwOq2WrZ9/yK4VXzJswmRu/OdLTL39HuYveZLc1CRWPPs4BZkZXT7/wV9+IGnvTibfeucFgTDAmCuvJXDcRHau+JKsE61PGCqKwvblnxK7eT2R1yxk0i1/Moxd1+Vx9QQZDLfg7+8vZ4UlSZIkSbIY9TU1rHnjJWI3r2fs1ddz1aNPYWWoBjVi0jRu/teraOrqWPHcU5w6cqDT5089fIDdq74mKHoqkQtuaHUfIQRzH3wM1/4D+O3d16gsKW62XVEUdn77BUd/X8vo+dcw+dY7UVnp0y11Ostu4iWDYUmSJEmSJAtVWVLMqn//g/SYI8y89yGm3n4PQtU8fPMKGM6il9+mr7cPv7z+EgfX/Gj0wrqCM6dZ//4b9B88lDkPPtpuWVVbBweufvwZaquq+O3d19AZOtUqisKeVV9z+NefCJ9zJdP+tBghBCqVIRg2YYfe7iCDYUmSJEmSJAtUmJXJin8+QWH2Ga556p9EzJnf5r7O/dy5+V+vMnz8JHat+JINS99CU1fX7vmry8v45fX/w8bOjmue/CfWNrbt7g/gMcif2fc9TNaJeHav+hqA/atXcuDn7wmdOZeZdz/QGFCr1JfGzLDF1hmWJEmSJEm6XJ05cZw1b7yElbUNt/zrNfoPCejwGGtbO678y99wH+jHnu+/If90Ov0G+rW5f8GZ01QUFnDTC6/i3K/tjrctBU+ZQXbSCQ6t+ZGyvHMk7dvFyKmzmL344Waz1g3fW3rOsAyGJUmSJEmSLMy6917HoY8bC595ERcPT6OPE0Iw/oZb6Oc7iD3ff8PZU8kXbG/8XqVm3iNP4D0sqNPjm37n/YZax7sIip7KnAeXXJC+IYRAqFQocmZY6op33nmH+++/HwcHBwDmz5/PihUrcHV1xcnJqbHRRnu0Wi1jx47Fx8eH3377DYDY2FgefPBBKioq8Pf359tvv21sG/3KK6/w+eefo1aree+99y7omCdJkiRJUvfTabVUFhcRNvOKTgXCTQWOm0jguIkmHtl5VjY2XPvUc5w6cpDQGXMa84NbUqutGnOLLZXMGTahzrRS7sg777xDVVVV48/r16/H1dW1U+d49913L6gJvHjxYl599VWOHz/Oddddx+uvvw7AiRMnWLlyJQkJCWzYsIGHHnoIrYW/eCVJkiSpN6qp1E94WXILYwCnvv0Inz2vMTe4NUKtRqeVC+guKRkZGQQFBXHnnXcSFhbGwoULqaqq4siRI0ydOpUxY8Ywd+5ccnNzAZg2bRrPPPMMU6dO5d133+XQoUNMnDiR8PBwoqKiKC8vR6vV8tRTTxEZGUlYWBgff/wxANu3b2fatGksXLiQoKAgFi1ahKIovPfee+Tk5DB9+vTGDnT+/v4UFBRcMN7XX3+98bwvvPBC4+1ZWVmsW7eOxYsXN9s/KSmJKVOmADB79mxWr14NwJo1a7jllluwtbVl8ODBBAQEcPDgQdM/wJIkSZIktaumoiEYdjbzSC6eSq2SOcNd9vs/4Oxx055zQCjMe7XD3ZKSkvj888+Jjo7mnnvuYenSpfz888+sWbMGDw8PVq1axbPPPsuyZcsAKCkpYceOHdTV1REUFMSqVauIjIykrKwMe3t7Pv/8c/r06cOhQ4eora0lOjqaOXPmABATE0NCQgLe3t5ER0ezZ88eHn30Ud566y22bduGu3vbCe2bNm0iJSWFgwcPoigKCxYsYOfOnUyZMoXHHnuM//73v5SXlzc7JiQkhLVr13LNNdfwww8/cObMGQCys7MZP358436+vr5kZ2d3+iGWJEmSJOni1FTo/3Zb+sywMVQqtcWnSVhuMGxGAwcOJDo6GoDbb7+dl19+mfj4eGbPng3oc3G9vLwa97/55psBfRDt5eVFZGQkQGMu7qZNm4iLi+PHH38EoLS0lJSUFGxsbIiKisLX1xeAiIgIMjIymDRpklHj3LRpE5s2bWLUqFEAVFRUkJKSQllZGZ6enowZM4bt27c3O2bZsmU8+uijvPjiiyxYsAAbQ9Hu1uoRtldrUJIkSZKk7lHbkCbh2BtmhtWytFqXGTGD211aBoHOzs6MHDmSffv2tbq/o6MjoA8oWwsgFUXh/fffv2BB2vbt27G1PV/TT61WdyrvWFEUnn76aR544IFmtz/99NOsXbuW9evXU1NTQ1lZGbfffjvffPMNQUFBbNq0CYDk5GTWrVsH6GeCG2aJQZ9m4e3tbfRYJEmSJEkyjV41MywX0F2aMjMzGwPf7777jvHjx5Ofn994W319PQkJCRccFxQURE5ODocOHQKgvLwcjUbD3Llz+fDDD6mvrwf0QWhlZWW7Y3B2dr4gxaGluXPnsmzZssbKEtnZ2eTl5fHKK6+QlZVFRkYGK1euZMaMGXzzzTcA5OXlAaDT6XjppZd48MEHAViwYAErV66ktraW9PR0UlJSiIq6sDe5JEmSJEndq7qX5QwrFh4MW+7MsBmNGDGC5cuX88ADDxAYGMiSJUuYO3cujz76KKWlpWg0Gh577DFGjhzZ7DgbGxtWrVrFkiVLqK6uxt7eni1btrB48WIyMjIYPXo0iqLg4eHBL7/80u4Y7r//fubNm4eXlxfbtm1rdZ85c+aQmJjIhAkTAHBycuKbb77B07PtMizfffcdS5cuBeD666/n7rvvBmDkyJHcdNNNBAcHY2VlxdKlS1G3szpUkiRJkqTucT5NojfMDKstvjqVMLZ3tamNHTtWOXz4cLPbEhMTLygF1tMyMjK46qqriI+PN+s4LJUlPEeSJEmS1Jtt+/IT4rdvYcmX35t7KBfti8f/jLvvIK5+/GmzjkMIcURRlLGtbeswTUIIMVAIsU0IkSiESBBC/KWVfaYJIUqFEMcMX8+bYuCSJEmSJEmXm5qK8l6RLwy9ZwGdBnhCUZSjQghn4IgQYrOiKCda7LdLUZSrTD/EnuXv7y9nhSVJkiRJMpuayopeUUkCLo3Sah3ODCuKkqsoylHD9+VAIuDT3QOTJEmSJEm6HNVUVPSemWErNTqdZTfd6FQ1CSGEPzAKONDK5glCiFghxO9CiJGtbEcIcb8Q4rAQ4nB+fn7nRytJkiRJktTL1VSU94rFc2CYGe5E2VhzMDoYFkI4AauBxxRFKWux+SjgpyhKOPA+8Etr51AU5RNFUcYqijLWw8Oji0OWJEmSJEnqvWoqK3pFWTW4NHKGjQqGhRDW6APhbxVF+anldkVRyhRFqTB8vx6wFkK03UdYkiRJkiRJuoCiKL1sAZ0KnfYST5MQ+pZqnwOJiqK81cY+Awz7IYSIMpy30JQDvdy88847VFVVNf48f/58SkpKAH094fbU1NQQFRVFeHg4I0eO5IUXXmjcFhsby4QJEwgNDeXqq6+mrOz8JP8rr7xCQEAAw4cPZ+PGjaa9Q5IkSZIkdai+tgadVttrZoaFSm3xTTeMmRmOBu4AZjQpnTZfCPGgEOJBwz4LgXghRCzwHnCLYq4CxmbUmVbKHWkZDK9fvx5XV1ejjrW1teWPP/4gNjaWY8eOsWHDBvbv3w/A4sWLefXVVzl+/DjXXXcdr7/+OgAnTpxg5cqVJCQksGHDBh566CGLL5ItSZIkSb1NQytm216SM6y2srr00yQURdmtKIpQFCVMUZQIw9d6RVE+UhTlI8M+HyiKMlJRlHBFUcYrirK3+4fePTIyMggKCuLOO+8kLCyMhQsXUlVVxZEjR5g6dSpjxoxh7ty55ObmAjBt2jSeeeYZpk6dyrvvvsuhQ4eYOHEi4eHhREVFUV5ejlar5amnniIyMpKwsDA+/vhjALZv3860adNYuHAhQUFBLFq0CEVReO+998jJyWH69OlMnz4d0Jd8KygouGC8r7/+euN5G2aAhRCNs8f19fXU19djmLgnKSmJKVOmADB79mxWr14NwJo1a7jllluwtbVl8ODBBAQEcPDgwW58pCVJkiRJaqnG0IrZvhfNDFv6AjqLbcf82sHXOFl00qTnDOobxN+j/t7hfklJSXz++edER0dzzz33sHTpUn7++WfWrFmDh4cHq1at4tlnn2XZsmUAlJSUsGPHDurq6ggKCmLVqlVERkZSVlaGvb09n3/+OX369OHQoUPU1tYSHR3NnDlzAIiJiSEhIQFvb2+io6PZs2cPjz76KG+99Rbbtm3D3b3t1OtNmzaRkpLCwYMHURSFBQsWsHPnTqZMmYJWq2XMmDGkpqby8MMPM27cOABCQkJYu3Yt11xzDT/88ANnzpwBIDs7m/Hjxzee29fXl+zs7C4/1pIkSZIkdV5DMNyrcoZ7U2m1y8XAgQOJjo4G4Pbbb2fjxo3Ex8cze/ZsIiIieOmll8jKymrc/+abbwb0QbSXlxeRkZEAuLi4YGVlxaZNm/jqq6+IiIhg3LhxFBYWkpKSAkBUVBS+vr6oVCoiIiLIyMgwepybNm1i06ZNjBo1itGjR3Py5MnG86rVao4dO0ZWVhYHDx5sbCSybNkyli5dypgxYygvL8fGxgbQJ+y31DCbLEmSJElSz6ip1KdJ9Jac4Uuh6YbFzgwbM4PbXVoGgc7OzowcOZJ9+/a1ur+joyOgDyhbCyAVReH9999n7ty5zW7fvn07tra2jT+r1epO5R0risLTTz/NAw880OY+rq6uTJs2jQ0bNhASEkJQUBCbNm0CIDk5mXXr1gH6meCGWWKArKwsvL29jR6LJEmSJEkXr7flDPea0mqXm8zMzMbA97vvvmP8+PHk5+c33lZfX09CQsIFxwUFBZGTk8OhQ4cAKC8vR6PRMHfuXD788EPq6+sBfRBaWVnZ7hicnZ0pLy9vd5+5c+eybNkyKgwfqWRnZ5OXl0d+fn5j5Ynq6mq2bNlCUFAQAHl5eQDodDpeeuklHnxQvwZywYIFrFy5ktraWtLT00lJSSEqKqrDx0qSJEmSJNPpbTnDKrWVnBm+FI0YMYLly5fzwAMPEBgYyJIlS5g7dy6PPvoopaWlaDQaHnvsMUaObN5oz8bGhlWrVrFkyRKqq6uxt7dny5YtLF68mIyMDEaPHo2iKHh4ePDLL7+0O4b777+fefPm4eXlxbZt21rdZ86cOSQmJjJhwgRAX3Ltm2++obKykjvvvBOtVotOp+Omm27iqquuAvTB/dKlSwG4/vrrufvuuwEYOXIkN910E8HBwVhZWbF06VLUavXFPIySJEmSJHVSTWUFaisrrJp8cnwp09cZtuxgWJirAtrYsWOVw4cPN7stMTGRESNGmGU8DTIyMrjqqqsac2yl5izhOZIkSZKk3mrTJ++TduQgD378tbmHYhJbPltK8oG9PPTpt2YdhxDiiKIoY1vbJtMkJEmSJEmSLERNRXmvyReG3tN047Li7+8vZ4UlSZIkSTKLmoqKXlNJAuQCOkmSJEmSJKkTaiorek2NYTAEw1pZZ1iSJEmSJEkyQk1FOXa9KE1CHwxbdgc6GQxLkiRJkiRZiF6ZJqHVttrcy1LIYFiSJEmSJMkCaDUa6muqe1eahEpfplVRLDdVQgbDZnbvvfcSHh5OWFgYCxcubGygIUmSJEnS5aW2Uh8D9LaZYcCi84ZlMGxmb7/9NrGxscTFxTFo0CA++OADcw9JkiRJkiQzqDa0Yu5tOcOARZdXk8FwCxkZGQQFBbF48WJCQkJYtGgRW7ZsITo6msDAQA4ePEhlZSX33HMPkZGRjBo1ijVr1jQeO3nyZEaPHs3o0aPZu3cvANu3b2fatGksXLiQoKAgFi1a1Jg74+LiAoCiKFRXVyOEMM8dlyRJkiTJrBpaMffGmWGtBS+is9h2zGdffpnaxJMmPaftiCAGPPNMh/ulpqbyww8/8MknnxAZGcmKFSvYvXs3a9eu5eWXXyY4OJgZM2awbNkySkpKiIqKYtasWXh6erJ582bs7OxISUnh1ltvpaHLXkxMDAkJCXh7exMdHc2ePXuYNGkSAHfffTfr168nODiYN99806T3WZIkSZKkS8P5NIneMzMsVA1pEnJm+JIyePBgQkNDUalUjBw5kpkzZyKEIDQ0lIyMDDZt2sSrr75KREQE06ZNo6amhszMTOrr67nvvvsIDQ3lxhtv5MSJE43njIqKwtfXF5VKRUREBBkZGY3bvvjiC3JychgxYgSrVq0ywz2WJEmSJMncahrSJHrhzLCis9ycYYudGTZmBre72NraNn6vUqkaf1apVGg0GtRqNatXr2b48OHNjvvXv/5F//79iY2NRafTYWdn1+o51Wo1Gk3zjwvUajU333wzr7/+OnfffXd33C1JkiRJkixYTa/MGdbPu8qZ4V5m7ty5vP/++415vzExMQCUlpbi5eWFSqXi66+/RtvBE68oCqmpqY3f//rrrwQFBXXv4CVJkiRJskjVhpxhW0dHM4/EdFRq/byrDIZ7meeee476+nrCwsIICQnhueeeA+Chhx5i+fLljB8/nuTkZBw7eDErisKdd95JaGgooaGh5Obm8vzzz/fEXZAkSZIkycLUVlZg6+jYWJu3NzhfWs1yF9AJc3UEGTt2rNKwuKxBYmIiI0aMMMt4JOPI50iSJEmSusf6998gJzmRxe9/bu6hmMzJPTtY997r3PXmh/TzHWi2cQghjiiKMra1bXJmWJIkSZIkyQLUVJT3qsVz0GRmWCfTJCRJkiRJkqR21FRU9LpgWKhlaTVJkiRJkiTJCDWVFb2qkgSA2rCATnagkyRJkiRJktqlT5PoXcGwSmUorSbTJCRJkiRJkqS2KIqinxnurWkSGhkMS5IkSZIkSW2oq65G0el6XZqEXEAnGW3JkiU49bKPRiRJkiRJMk5vbMUMNNZMlgvopHYdPnyYkpIScw9DkiRJkiQzaQiGbXvZxJjKSs4MX3IyMjIICgpi8eLFhISEsGjRIrZs2UJ0dDSBgYEcPHiQyspK7rnnHiIjIxk1ahRr1qxpPHby5MmMHj2a0aNHs3fvXgC2b9/OtGnTWLhwIUFBQSxatKixlbNWq+Wpp57iv//9r9nusyRJkiRJ5lVjaMVs79hbZ4Z1Zh5J26zMPYC27Po+mYIzFSY9p/tAJybfNKzD/VJTU/nhhx/45JNPiIyMZMWKFezevZu1a9fy8ssvExwczIwZM1i2bBklJSVERUUxa9YsPD092bx5M3Z2dqSkpHDrrbfS0GUvJiaGhIQEvL29iY6OZs+ePUyaNIkPPviABQsW4OXlZdL7KkmSJEnSpaOmUh/z9LpqEpdAO2aLDYbNafDgwYSGhgIwcuRIZs6ciRCC0NBQMjIyyMrKYu3atbzxxhsA1NTUkJmZibe3N4888gjHjh1DrVaTnJzceM6oqCh8fX0BiIiIICMjgyFDhvDDDz+wffv2Hr+PkiRJkiRZjl6bJnEJNN2w2GDYmBnc7mJra9v4vUqlavxZpVKh0WhQq9WsXr2a4cOHNzvuX//6F/379yc2NhadToednV2r51Sr1Wg0GmJiYkhNTSUgIACAqqoqAgICSE1N7c67J0mSJEmShemtC+iEIU1CNt3oZebOncv777/fmPcbExMDQGlpKV5eXqhUKr7++mu0HTzxV155JWfPniUjI4OMjAwcHBxkICxJkiRJl6GaygqsrG2wtrHteOdLiLpxAZ3l5gzLYLgLnnvuOerr6wkLCyMkJITnnnsOgIceeojly5czfvx4kpOTcXR0NPNIJUmSJEm6FNRUVPS6fGE4PzNsyWkSomF2s6eNHTtWaVhc1iAxMZERI0aYZTySceRzJEmSJEmmt+aN/1Ccm81db/7P3EMxqYriIj5+8E/MWvwQ4bPnm20cQogjiqKMbW2bnBmWJEmSJEkys5rK8l6XLwyXxgI6GQxLkiRJkiSZWW1FRe8Mhi+BOsMyGJYkSZIkSTKz6sremTMsO9BJkiRJkiRJHaqpKMfOsRcGw5fAAroOg2EhxEAhxDYhRKIQIkEI8ZdW9hFCiPeEEKlCiDghxOjuGa4kSZIkSVLvoqmvR1Nb2zvTJHpJBzoN8ISiKEeFEM7AESHEZkVRTjTZZx4QaPgaB3xo+FeSJEmSJElqR21jK+beFwwLlX7e9ZLOGVYUJVdRlKOG78uBRMCnxW7XAF8pevsBVyGEl8lH2wstWrSI4cOHExISwj333EN9fb25hyRJkiRJUg86332u96VJCCEQKhVKb8kZFkL4A6OAAy02+QBnmvycxYUBM0KI+4UQh4UQh/Pz8zs51N5p0aJFnDx5kuPHj1NdXc1nn31m7iFJkiRJktSDqhuC4V6YMwygVltd2jnDDYQQTsBq4DFFUcpabm7lkAu6eSiK8omiKGMVRRnr4eHRuZH2kIyMDIKCgli8eDEhISEsWrSILVu2EB0dTWBgIAcPHqSyspJ77rmHyMhIRo0axZo1axqPnTx5MqNHj2b06NHs3bsXgO3btzNt2jQWLlxIUFAQixYtamzlPH/+fP27JiGIiooiKyvLbPddkiRJkqSeV1PRe9MkAIRabdHBsDE5wwghrNEHwt8qivJTK7tkAQOb/OwL5FzMwLZ9+Ql5p9Mu5hQX8PQbwvS77u9wv9TUVH744Qc++eQTIiMjWbFiBbt372bt2rW8/PLLBAcHM2PGDJYtW0ZJSQlRUVHMmjULT09PNm/ejJ2dHSkpKdx66600dNmLiYkhISEBb29voqOj2bNnD5MmTWq8Zn19PV9//TXvvvuuSe+zJEmSJEmWrTfnDAOo1KpLOxgWQgjgcyBRUZS32thtLfCIEGIl+oVzpYqi5JpumD1r8ODBhIaGAjBy5EhmzpyJEILQ0FAyMjLIyspi7dq1vPHGGwDU1NSQmZmJt7c3jzzyCMeOHUOtVpOcnNx4zqioKHx9fQGIiIggIyOjWTD80EMPMWXKFCZPntyD91SSJEmSJHOr6eVpEirVpT8zHA3cARwXQhwz3PYMMAhAUZSPgPXAfCAVqALuvtiBGTOD211sbW0bv1epVI0/q1QqNBoNarWa1atXM3z48GbH/etf/6J///7Exsai0+mws7Nr9ZxqtRqN5nyJkX//+9/k5+fz8ccfd9ddkiRJkiTJQtVUlIMQ2Do4mHso3UKlVlt0040Og2FFUXbTek5w030U4GFTDcrSzZ07l/fff5/3338fIQQxMTGMGjWK0tJSfH19UalULF++HK0R74I+++wzNm7cyNatW1GpZA8USZIkSbrcVFdUYOfo1FiGrLdR9ZYFdNJ5zz33HPX19YSFhRESEsJzzz0H6FMdli9fzvjx40lOTsbR0bHDcz344IOcO3eOCRMmEBERwYsvvtjdw5ckSZIkyYLU9tJWzA1UahWKBQfDoqGqQU8bO3as0rC4rEFiYiIjRowwy3gk48jnSJIkSZJMa/XLz1NTUc6il98291C6xbLH7sdzcABX/eVvZhuDEOKIoihjW9smZ4YlSZIkSZLMqKaivNdWkgAQKrVFzwzLYFiSJEmSJMmMaiorenUwbOkL6GQwLEmSJEmSZEY1Fb08Z9jCS6tZXDBsrhxmqWPyuZEkSZIk01J0Ov3McC+tMQygslKj0+nMPYw2WVQwbGdnR2FhoQy6LJCiKBQWFjarnSxJkiRJ0sWpraoCRendaRIWPjNsVDvmnuLr60tWVhb5+fnmHorUCjs7u8YuepIkSZJ0KTqbmszhdb9wxZ8fw8rGxtzDoaaXt2IGQ86wVtPxjmZiUcGwtbU1gwcPNvcwJEmSJEnqpRL37CBp704GDA1k7FXXmXs4ja2YbXtzmoRahabecoNhi0qTkCRJkiRJ6k55GacAOPDLD/oUBTNrCIZ78wI6WVpNkiRJkiTJAig6HXnpaXgNC6KmvIzDv/1s7iE1BsP2vThNQm1lJUurSZIkSZIkmVtp3jnqqqsImTaLYeMncWTdL1SVlph1TDWVlUDvzhkWFr6ATgbDkiRJkiRZhLOpyfz27n+pqajolvM3pEh4+g8l+ubb0dTVcuDn77vlWsa6XHKGZTAsSZIkSZLUjqqyUta89TJJe3dy9Pe13XKNvIw0hEqF+0A/+nr7MnLqLGI3r6csP69brmeMmopyrGxtsbK2NtsYupull1aTwbAkSZIkSWal02lZ//4bVJeV0n9IADEbfqWuptrk1zmXfgp330GNJdUmLLwVhGDvjytMfi1j9fZWzCDbMUuSJEmSJLXrwE/fczouhhl3PcCMux+kpqKcuC0bTH6dvPRTeA4e2vizi7sHEXOu5MSOPyjMyjT59YxRU1GBfS9OkQBQqa3kzLAkSZIkSVJrMuJi2PvjCoInTyd05ly8hwUxcGQYR377GU19vcmuU1FcRFVpCZ7+Q5rdHnXtjVjb2bJn1Tcmu1Zn1FSUY9uLy6qBPmdYllaTJEmSJMms9qz6mvhtm7v1GvV1tSg6ndH7lxcWsP691+nnM5BZix9GCAHoA9SK4iJO7NxqsrHlpRsWzzWZGQZwcOnD2KuuJ+XgXs6mJpvsesaqqSjHzrH3p0loZTAsSZIkSZK5lBXksf/n79n+9Wfd1mhCURSWP/EQX/1tCdlJiR3ur9Vo+O2d19DU13P1409jbWfXuM0vNIL+QwI5tGa1yT5ebwiGPfyGXLBtzJXXYO/Sh13fLTfJtTqj9jLIGZZNNyRJkiRJMquE7VtBUaitrCRuy+/dco3i3BxK885RnJvNyuefYstnS6mpbLtE2q4VX5KTnMic+x+hn8/AZtuEEIy79kZKzuWSvH+3ScaXl5GG6wAvbB0cLthmY+/AuGtvIjM+ltPHj5nkesaqqajo1d3nQC6gkyRJkiTJjBSdjvjtWxgUGsGgkHCOrPsFTV2dya9zNjUJgJteeJUxV15D3JaNfPHXBzm5dyeKojTbN+XAXo6s+4WIuVcRFD211fMFRI6nr7cvB3/54YLju+Jc+ik8Bwe0uT189jyc3T3YvfKrLl+vtqqK3JQk4rdtJvnAng73r6+rRVNfh12vX0CnRqc1Pn2mp1mZewCSJEmSJHWfMyeOU5Z/jkm3/gkH5z78+J9/cmLnH4TNusKk18lNTcLazp4BAYF4DwtixKTpbP70A9a9+18Sdmxl1r1/po/nAIrP5rDhw3cYEDCMqXfc2+b5hEpF1LU3suF/b5Mec5ghoyO7PLaaigrK8s+1e5+tbGyYuPA2Nn70LqmH9hEYNbHV/RRFoaainOLcbArOZFKUnUlh1hkKs85QXpjf5A4IHvr0W+ydXdoZl77hRlfTJBSdDqGy/HlNfTBsuTPDMhiWJEmSpF7s+B+bsHV0JCByPFbWNvpc3LWrCZk+G5VabbLr5KYkM2BoICqV/pz9hwRw23/e5NjGdexe+TVfPvEw42+4haS9O1GpVFz92D86bDQRFD2VvT98y4Gfv2fwqLGNC+w6Ky8jTT8m/wvzhZsKnjKDQ2tXs3vl1zi59aOsII+y/DxK8/MoL8ijNO8cZQX51DepgWxlY0tfH198g0Po5zOQfgP90NbX8ds7r5EZH8fwCZPavF6todNeZ4NhXVUV2Y8/QW1qKr4fvI9dUFCnju9p+mBYg6IoXX4Ou5MMhiVJkiSpl6qpqCDl4F5CZ8zB2sYWgHHX3sjat14mef/uNlMUOktTV0f+6XTGXnVts9tVKjWj5y0gMGoif3zxMbsNC9Su+8cLuHh4dnhetZUVY6++nj+WfUR2YgK+wSFdGl9eeipwYSWJllRqNdG33MGvb73Cin8+0Xi7raMjLh79cR3gjV9oBC4enrgO8KKfrx99PDwvmJ3VabXY2DuQefxYu8FwQ9vpzqRJaIqLOfPgg9Qcj0ft5kbGrbfh/d/XcJk92+hzGKvws8+oSU7GefZsnCZPRtVkkWNnNLxBUhQdQpjuDZipyGBYkiRJknqpk3t3oq2vJ2Ta+UApIHI8bt6+HFzzI8MnTjHJTF1exil0Wg0DAoe3ut25nzvXPPksaTGHqK+pYcgo41MeQqbPZv/qlRz45fuuB8MZaTj17YdDH9cO9w2MmsjVjz+NSm1FHw9PXDw8sXVw7NT1VGo1A0eGcfp4TLv7VVc2pEkYFwzX5+aSufg+6s+cwfe9d7ELCyNryRKylzxK3WN/od8DD5hs5rXkl1/Ie+NNhK0tZWt/RTg44DRlCi5z5+A0ZQoqx/YfE111NXUZGdSfPYtQ9PnCOq2uMTC2JDIYliRJkqReKn7bZjz8BjebERUqFVELbmDjR++ScewIg0eNvejr5Kbo6/N6BbQeDDfoTBDcwNrGltHzr2H3d8s5l5ZK/yFtL4JrS15G2gXNNtoihGDYuOhOX6Mlv9BwTh3eT8m5s7j2H9DqPp1Jk6hNSyPz3sXoyssZ+NmnOEZF6a/z1Vfk/vM58t95l9rkFLxe/k+XZ3AbVMfGcvb5F3AYP56BH39EdUwMZRs3Ur55C+UbNiBsbXGcPAmXuXNxGDOG+txcak+dou5UGrXpadSdSqM+JwcMCxHr77oNQF9erYPUGHOw/KxrSZIkSbrEnTpykNK8sz16zfzT6ZxLSyFk+uwLZgtHTJ6GUz93Dvzyg0mulZuahHM/D5zc+prkfC1FzJmPrYMjB7sw3vraGoqys9qtJNEd/MJGAXA6ru3ZYWMX0FXHxXH6tkUo9fX4ff1VYyAMoLK1xfu/r+Hx+OOU/f47p2+/g/pzeV0ed/25PLIeWYJV//74vP0WKltbHMePx+uFFwjcsR2/b77G9aabqDkeT85TfyN1xkxOL7qds8+/QPGqVWgKCrCPiMB9ySMM+L8X9Sc1VC+x1PJqcmZYkiRJkrrRubRUfvnvi1hZ2zDu+psZe/X1HS4cM4X4bZtRW1kxYtK0C7aprayJvOo6ti3/lOyTJ/AJCr6oa51NTcIrYNhFnaM9tg6ORMy9kgO//EBh9pkL6hK3J/90Boqiw3OwcTPDpuLm5YNTP3cyjx8jfPa8VvepqaxAqFTY2Nu3eZ6K3XvIevRRrPr1Y9Dnn2EzaNAF+wghcL//PmyHDiH7qb+RceON+C79APvQ0E6NWVdbS9aSJegqK/H7/DOs3NyaX0etxmHsWBzGjqX/0/+gOjaWmhMnsBk0CJvBQ7D29mqWP60tK+Psc88jdPoZYq1G06nx9BQ5MyxJkiRd1iqKi7ql7m6DY5vWYWVry+BRY9mz6mu++tsSMuNju+16AJr6ek7s3s7QyAltlvYKnTEXO2cXDq65uNnhqrJSSvPOtZkvbCqj5y3AytqGQ2tXd+q485Uk2l88Z2pCCPxCI8iMj21zRlTfitmpzTzf0nXrOPPnP2MzaBB+337TaiDclPPMmfh/twJhZcXp2++gdN06o8erKApnn3+emrg4vP/7GnbD2n9zI1QqHEaNou+iRThNnoyNr88FCwmFjY3+G0OL7s606u5JMhiWJEmSLltajYblTz7M/p9Wdcv5ayoqOLlnJ8GTprPgiWe4/h//QqfV8MP/Pcu6916nsqS4W6576vABasrLCJ02q819rO3sGD3vatKOHiL/dHqXr5Wbom+20Z0zwwAOfVwJnTGHxF3bKCswPg0gLz0VOydnnN09unF0rfMLjaCmsoK89LRWt+u7z7WeIlG8chU5Tz6FfXgYfl8tx9qz4+obAHbDh+P/4w/YhYSQ88STnHnoYWrTWr9+U0VffEnpmrW4L3kE51ltv246oyEYFtqGBXSWmSYhg2FJkiTpspWXcYqainLOnDjeLedP2LEVTV0t4XPmAzB41FjufGMp42+4lZQDe1j22APEbPjV5LmU8ds349zPg0FhEe3uFzH3Kqzt7Dm45scuX+tsahJCpaJ/D+Tkjr36OgCO/v6r0cc0LJ4zR33bQSHhQNt5wzWVFW2WVct74w0cIiMZ9NlnqF3abtzRGqu+ffH7Yhkef/0rVQcOkHb1AnL//W80BQWt7l+xazd5b7yB85w5uP/5z526VnuESgVWVqgMr28ZDEuSJEmShclJOglAXlqqyfMZFUUhdvN6vIYFNatkYG1jS/RNi/jT60sZEDCMP774mG+fefyiZmebKivIJyP2KCOnzeywjJW9kzNhs64gae8uSs51bYFfbmoy7gP9sL7ICgbGcHH3ZOjYcYY3GR2ntmg1GgoyMzqsL9xdHF3d8BjkT2b8sVa311SUt1pWTVddja6iAsdJk7pcGULY2OD+wP0M3bQRt5tvpuSHHzk1Zy4FH36Irvp805Da9HSyH38c28BAvF952eQd7YSNDTTMDFvoAjoZDEuSJEmXrZykEwBo6usoyMww6bkz42Mpzs0mYs6VrW7v6+3Dwmf/j6se+zsVRYX8+s5rKIZSVBfjxI6toCiMnGrcR91jr7wWlVrF4V87l4sL+hzQs6nJHZZUM6WwWfOoKS8j5eDeDvctzMpEq9GYLRgGGBQ2iuyTJ6ivrblgmz4YvjBNQltUBIBVv4uvzmHVrx8Dnn+OIb+uxTF6IvnvvsepuVdQsvontCUlZD30MMLKCt+lSzusHdwVwtoaYZgR1mlkMCxJkiRJFkNRFHKSE/Eerq+kkJNy0qTnj920Hjtnl3Zr1gohGD5hMpNvu4vinCyyDcF5Vyk6HfE7tjBwZFibtW1bcurbj+CpM4nfvqXTOcxFudnUVlUyILB784Wb8gsJx7W/F7Gbf+9w34bFc8bWGO4OfqERaDUask9e+NzWVLaeM6wxBMNqE5aqsx08GN/338fv22+w8hpA7rPPkjJjJnVnzuDz7jvY+PqY7FpNCZsmwbCcGZYkSZIky1GWn0dFcRFBEyfj6OrGWcNCMFMoLyog9fB+QqfPxqphRX07ho+fhI29PfF/bL6o62YlxlN67iyh0zvXmjfy6uvRabQcWb+mU8edTTWu2YYpCZWK0JlzyT6ZQGFWZrv75mWcwsrWFjcv7x4a3YV8g0aitrLi9PFjzW7X6bTUVlZi20rOsClnhltyGDMG/5Ur8XnnbWz9/fH697+a1S02NZW1DUIjc4YlSZIkyeLkJCcC4D08GK/A4eSmmi4YPr51I4qiEDar9fqyLVnb2TF84hSS9u+itqqqy9eN37YZWwdHAsZN7NRxbl4+BI6PJnbTeuprLvw4vy25KUnY2NvT18e3s0O9KCHTZqFSWxG3ZUO7++Wln8LTb4hZWwBb29nhPWzEBcFwbWUlAPat5AxrCg0zw/36dcuYhBC4XHEFg39ajesNN3TLNRqvZWOD0Onz8RUZDEuSJEmXk+ykRDZ+9J7FfjSanZSItZ09HoP8GRAwnOLcHKrLyy76vFqNhritGxkcPtroVAWA0Olz0NTWkrRvZ5euW1tVSfKBvQRFT8HaxrbTx0fMmU9ddRXJB/YYfUxuahIDhgb2eLDp0MeVwHETSdi5lfq62lb3UXQ68jLSe7zZRmv8wkaRn5FGVWlJ423tdZ/TFhUCXND04lIkbGxAI9MkJEmSeo3KkmI+W3Iv59JSzT0Ui6bodGz9bCnx2zY1fpRuaXKSE/EKGIZKrcbb0DDCFGM9dXg/lcVFhLexcK4tAwKG0c93UJdTJU7u2YmmrpaQaZ1LkWjgOyIE1wFexG837vr1dbUUZGYwoAdTJJoKn3UFtZWVJO/b3er2knO51NdU49nDzTZaMyhUX2KtabOVmsoKoPVgWFNUjLCzQzg49MwAu5GwtgZDpRaZJiFJktQLZJ9MoDTvHFmJ8eYeikVL2reLfEN1hlNHDpp3MK2oq66i4HRG4+K5/kMDEUJlklSJY5vW4+LhyeBRYzp1nBCC0BlzyE1N6lJli/jtm3Ef5E//oYGdPrbh+iHTZpN1Ip7iszkd7p+XdgqdVtuj+cJN+QaH4ubtS+yW1hfSNS6eM2MliQb9hwRg6+jYLFWipkIfDLeaM1xYiLqvm1lqI5uasLFBXOrBsBBimRAiTwjR6v/8QohpQohSIcQxw9fzph+mJEmSZTiXfgqA4tyOg4XLlU6rZe8PK3Af6IdvcAinDh8w95AukJuSjKLo8BkWBICNnT3uAwc1dlPrqsKsM5xJiCNs5hVdSh0YMXk6KrUVx7d1bnY4OymRs6nJhEybfVEBVPCUGQihImH71g73bXjj4NXNbZjbIoQgfNYV5CafbLVG87n0U6jUVrgPbL+FcU9QqdQMGhnO6bhjjeXzzqdJtJIzXFyEVd/uyRfuac3SJC7VYBj4Eriig312KYoSYfh68eKHJUmSZJnyGoPhbDOPxHIl7NxKcW42E2++nYCx4ynMyuxyQ4fukp10AoTAyxAMAwwIHM7Z1GQUna7L543dsh6V2orQGXO6dLyDSx8CIsdzYtc2NPX1Rh2j6HRs+/JjnPr2I2zm3C5dt4FzP3f8w0eRsGNLh/mduanJOLt74OhqvrzW4KkzUVtbE9vKQrq89FP0GzgItZW1GUZ2Ib+wCMoL8xvfSDekSdi3ljNcWIS676WfLwwtZoYv1ZxhRVF2AkU9MBZJkiSLpijK+ZlhIz5Gvhxp6uvZ9+N3DBgaSMDY8QwdMw6AtCOWNTuck5yI+0A/bB3ONxnwChxOTWVFl5/b+poaErZvZdj4aBz6uHZ5bKHTZ1NTXmb0jHr8ji2cS0tlyqK7TdIFLmTGHCqKCjkd23oL4QZnU5PMliLRwN7JmeHjJ5G4a1uzKhiKopCXkUZ/C0iRaDAoNAKATEOqRMPMcGtpEpqiXjQzbG2NqG9Ik+j6G83uZKqc4QlCiFghxO9CiJEmOqckSZJFqSgupLqsFIc+rpQXFhjVDvZyc/yPjZQX5BN98x0IIXAd4EVfn4EWlTes02nJTTmJz/ARzW5vCOy6miqRuGcHddVVhM+Zf1HjGxQWgXM/D+K3bepw39qqSnZ/9xXew4MJip56UddtMHRMFPbOLsS3k6pRWVJMWX4eXgE912yjLWGz5lFXXcXJveercFQU6X9XzdlsoyXX/l64ePTn9HH9m4yaigqs7exRW1k1209RFLRFRai7ocawOQgbGzB8ytGbS6sdBfwURQkH3gd+aWtHIcT9QojDQojD+fn5Jri0JElSz8lL1y/ICRwXDYpCyblcM4/IstTX1nDgp1X4jgjBL2xU4+1Dx44jKzGe2qpKM47uvMIzmdRVV+M9rHkw3M9nIDb2Dl0KhhVF4dimdbgP8sfHsCivq1QqNSOnzSIjLoay/Lx29923eiVVZaXMuOt+ky22UltZM2LydFIPH6CqrLTVfXINVTcGmClfuCnv4SPo5zuoWUe6vAz9JziWUEmigRACv9BwziQcR6fVGloxXzgrrKusQqmtxapvbwmGrRuDYa1WY+bRtO6ig2FFUcoURakwfL8esBZCuLex7yeKooxVFGWsh4fHxV5akiSpR+WlnwIhGtvrylSJ5o5tXEdlSTHRt9zRLDAbOjoKnVZL+rEjZhzdedlJ55ttNCVUKgYMDexSMJybkkR+Rhrhs+ebJCgNmTYLgPjtW9rcpygni5jf1xIybTb9hwRc9DWbXX/6bHRaDSd3b291+9nUJIRKZRFpCEIIwmfP41xaSmPJw7z0NBACD//BZh5dc35ho6itquTsqZQ2WzFriw0NN3pLmoSNDcLwKVqvnRkWQgwQht98IUSU4ZyFF3teSZIkS5OXcQo3L5/GIv4lsqJEo9qqKg6u+RH/iDH4BjXPlvMaNhx7ZxeLqSqRk5yIQx9X+nj2v2CbV2AQ+Znp1Nca34UNIHbTOqzt7AmePM0kY+zj2R+/0AgSdmxpc0Hf9q8+w8rGlkm33GGSazblMcifAUMDOb5tc2P1g6ZyU5LwGDQYa9uLz1E2hRGTp2NlY9vYke5cuv531cbO3swja27gyDAQgszjx6ipqMCujbJqAFa9ZAGdysbmfM7wRSxO7U7GlFb7DtgHDBdCZAkh7hVCPCiEeNCwy0IgXggRC7wH3KK09psjSZJ0iTuXfgpP/yHYOTph7+wiZ4abOLLuF2oqypl084WBmUqlZsjoSNKPHUarMf/HpDlJJ/AZHtzqDK5X4DAUna5TTVWqykpJ2r+b4CkzsLE3XZOEkOmzKcvP43STRg0N0mIOkR5zmAk33NJt1RxCps+mIDPjgsdC0ek4eyoFr0Dz5ws3sHN0YvjEySTu3k5tVRV5GacsKl+4gYNLHzz9h3A6/libaRKaomKgF80MW1tDvX5m+JItraYoyq2KongpimKtKIqvoiifK4rykaIoHxm2f6AoykhFUcIVRRmvKMre7h+2JElSz6ouL6O8IL/xY2FXL285M2xQXV7GkXU/Exg1sc2P64eOGUdtZSU5SSd6eHTNVRQXUZp3Du8mJdWaalxE14lOdAk7tqKtryd89jyTjLFBQOQE7Jycif+j+UI6raae7cs/w83bl1HzrjbpNZsaPnEKVtY2FyykK8rJoq66ymyd59oSPnse9bU1xGz4tdnvqqXxC40gJ+kklcVF7bdi7iUzw8LGBuou8WBYkiRJOr94rmFBTl8vHzkzbHBo7WrqamqYeNOiNvfxCx+F2srK7FUlcpJbzxdu0JA+kZty0qjzKTodcVt+xycoGI9B/qYaJgBW1taMmDyN1EP7qC4va7w95vdfKc7NZvqfFndrDV07RycCx03k5J4d1NfVNt7ekFNt7rJqLQ0YOgwP/yEc+Pl7wLIWzzXlFzoKnVZDbVVl662YCxtyhnvJAjprG6jTL6DT9dYFdJIkSZeDxtXphnxh1wHeVBQVdjq3tLepLCkmZsNvjIieivtAvzb3s7GzZ2BIOKeOHGg1B7Wn5CQlora2pv+QtgMlr8Ago2eGM+PjKDmbS9gs084KNwidPgetRkPirm2A/vHet3olQ0ZHMnjU2G65ZlMh0+dQW1VJ6sF9jbflpiZh6+BIX2+fbr9+ZzR0pNMYAveG31VL4x00ArW1/k1MqznDRUWoHBxQ2VtWvnNXCRubxmCzt9cZliRJ6tXOpZ/CxcMTe2cXANy8vAEoOXt5l1c78PP3aDX1TLjxtg73HTo6ipKzuRTlZPXAyFqXk5TIgKGB7c6oegUMo6KwgPKigg7PF7fld+ycnBsrjJiah99g+g85v5Bt98qv0NTVMfWOxd1yvZYGBofQx7N/s1SJ3NRk+g8NRKgsL4QYMWka1nb2OLt7NP6uWhprG1t8DItMW88ZLuo1s8JgaLpheAN8yXagkyRJkvRl1ZouyHEdoA+GL+dUibKCPOK2/E7I9Nm4GR6P9gwZEwVAmplSJerrajmXfqrNFIkGXoH6fOKzKe3PDlcUF5F6eD8jp83CysbGZONsKXTGHAoyM4jb8jvx27cwev6CHpuVFSoVI6fNIjM+ltK8s9TX1lCQmWFxKRINbOwdmLLobiKvvt7cQ2mXn6EbXes5w72n4QYYSqsZPgySOcOSJEmXqLrqKorP5uDZZEGO2wAvAIpzss01rB6lqa+nKCeLtKOHOLp+DVuXfcQvr70IwPjrbzHqHC7uHnj4D+GUmVoznzuVgk6ruaDZRkse/kNQW1mR00HecPy2zei0WsJmXmHKYV4gKHoKVja2bPnsfzi49DH68TaVkVNnghDEb9/KubRUFJ3OoipJtBQxZz6jrui+hYWmEBA5AUdXt1ZTizRFRVi59bZgWB8NW2qdYauOd5EkSbq85Z1OB0VptiDHxt4BR1e3XjszrOh0HPj5e86cOE7JuVzKCvKhSa6vjb0DrgO8mHnvQ7i4G99EaeiYcRz4aRVVZaU4uPTpjqG3KSdZH9y2VUmigZW1NZ7+QznbTt6wTqfl+B8bGRQS1u2ztLYOjgwbH82JnX8w+dY7sXUwXfk2Y7i4e+IfNoqE7VuwtrUFLG/x3KWmr7cPD378davbtIWF2AW3/4btUiJsbGgoYqiVwbAkSdKlqaGSRMtSTa4DvCnppcFwZkIce77/Bg+/wfgMD2bkVC9cB3jj2t8L1wFe2Du7dKnT2tAxUexf/R3pMYf1M449KDvpBG5ePkYF4QMCh3H8j03otFpUavUF2zNij1KWn8eURfd0x1AvMGHhbfTzHdTjj1mDkOmz+e2d14jZ8CsuHv1x6ONqlnH0doqioCku7jWtmEHfjlmgT7lRLDRnWAbDkiRJHchLP4VDH1ccW3x06eblTdrRQ2YaVfeK2/w7ds4u3PbSmybNh+0/eChObn1JO3KwRwM7RVHIST7JUEPecke8AoOI+f1XCs6cbrV5Q+zm33Ho40pA5DhTD7VVrv0HEHXNwh65VmuGjh2PnZMzFUWFDJ8w2Wzj6O105eVQX99rGm6AoekGoFKpZM6wJJlD8dkczqWfMvcwpEtcXsYpPAcPvWAm1HWAN1WlJdRWVZlpZN2jsqRYvzBs6kyTLwwTKhVDRkeRHnsUTX29Sc/dnuLcbGrKyzrMF27Q2HyjlbzhsoJ80o8eJnTGnG6t82tJGmoeA3gFyhSJ7qIt0tcYtuplC+hABsOS1OO0Gg37V69k+RMP8eN/njNrXVPp0qapr6cwK7PV2cHz5dV6V6pEdy8MGzp2HPU11WSdON4t529NTpK+2YZPB5UkGvTx7I+9S5/GBhNNHf9jEwoKoTPmmnSMli589nxcPPrjHzHG3EPptTSGYFjdixbQqQzBsBAqWVpNknrK2VMpfPv0Y+z5/htcPDypMbTRlaSuKDxzGp1W22prV7deWF5Np9MSt7V7F4YNDAnDysa2R6tKZCclYufoZPR9EkLgFTDsgmBYp9US/8dGBoePpo9n/+4YqsXq5zOQ+z74nH4+A809lF6rd88MC3QaGQxLUreqr61hxzfLWPHsE1SXl3HNU89xxUN/BSAvI83Mo5MuVefSU4HWW7u6GsqrleT2nmD4dGwMZfnnuq2jGuibDviFjeLUkYM99qlNTnIi3sNHdKpRhFdgEEU5WdRUVDTeduroQSqKiwibPb87hild5npbK2ZokjMsZ4YlqXudSYjjq78t4fCvPxE6Yw53vfUhAWPH4TFoMAghg2Gpy/LS07B1cKRP/wEXbLO2tcOpb79eNTMcu2WDYWHY+G69ztAxUZQX5JN/Or1brwNQXVFOUfYZo/OFGzTkDZ89db7EWtzm33Hq586QHmiFLF1+tEWFQC8LhhvTJITMGZaMl33yBMe3bTL3MC4JtVWVbP70A75/8RlQ4MbnXmb2/Y9g6+AIgLWdHW5ePuSflsGw1DV56afw8B/cZhkxNy+fXhMMlxcWkHb0ICHTZnX7wrAhoyNBiB7pRpfbUF94eOeC4QEBgSBEY6pEybmzZMQeJXT6nFbLrUnSxdIUFaNycmrMs+0NGtMkhLDYphsyGLZA25Z/wuaPP6CsIM/cQ7FoOp2Wlc//jeNbNzH26uv50+vvMygk7IL9PP0Gy5lhqUt0Wi35p9NbzRdu4DbAu9ekSRz/YxOKTkdoN3dUA3B0dcNr6LAeyRvOTjqBSq1mwNDATh1n6+BIP5+B5Kbqg+G4rRsQKhWhM+d0xzAlCW1hYa9qxQwtZoZ1OjOPpnUyGLYw+ZkZ+naXio64LRvMPRyLlh5zhIIzp7nioceYevs9WNvatbqfh/8QyvLzmuX9SZIxinKy0NTX4Tk4oM19XL28qS4vo6by0n596bRajm/bhH/4aFxbSQnpDkPHjuPsqRQqiou69To5yYl4+g9p8/+I9ngFDic3NRlNfT3x2zYzdEwUzn3du2GUkgSa4iKselGNYWgyM4xAp9GYeTStk8GwhUnYsRWV2grfESHEbd3Yo3U4LzXHNv6GU99+DJ84pd39GkpimStVQlEU6mqqzXJt6eLkGWpUt1ZWrUFDRYlLfXY4LeYwFYUFhM3q/lnhBg15ybGbf++2a2g1Gs6mpnQ6X7iBV8BwasrLOPzrT1SXlRLejQsLJUlbWNSr8oXh/AI6AXIBndQxrUZD4q5tDB0Txbjrb6a6rJTk/bvNPSyLVJSTTUbsUcJnzUNt1X4jxYZAJi+j+xfqtObk3p18dP8dVBgWRkiXjryMU1jZ2NLX27fNfRpqDRfnZht9Xq1GQ121ZTXqiNvyO45ufRky2rgObabQz3cQwydM5vCvP1HWTeUP044eRFNX2+l84QYNDSb2/7SSPp798QsbZcrhSVIzmqKiXtWKGZrnDMsFdFKHMmKPUlVawshpM/ELCcfNy4djG38z97As0rFNv6FSWxE6s+Oi946ubji6upltZjjtyEHqa2tIPbTfLNeXuu5c+ik8Bvm3u1iqj+cAEKJTi+h2rfiSL5942GL+MJTmnSP92BFDR7X231ya2pTb7wZFYdeKL01+7qyTCax//008/AYzZFRkl87Rb+AgrG3t0NbXEzrzik6VZpOkzlB0OrTFxb1vZrghZ1hB5gxLHUvYsQWHPq74h49BqFREzJlPbkoS59JSzT00i1JXXUXC9q0MnzAJR1c3o47x8B9ilkV0iqKQlRgPQMrBvT1+fanrFJ2OvPQ0PNtZPAdgZWODi7sHxUamSSiKQvL+PZQX5nMmoec6sLXn+B+bEAhCZ/T8wjAXd0/GLriek3t2kG3oEmcKZ0+l8POr/8bZ3YOFz/4f1nadzxcGUKn0C+9UaitCps0y2fgkqSVtaSlotb2q4Qa0SJOwkAmAlmQwbCGqy8s4dfggIyZNa5yZCZ46EytbW2Lk7HAzJ3Ztp666ioi5Vxl9jKffYAqzMns8B7s07xwVRYU4uvXlzInjVFeU9+j1e5uqslKO/r62R/LOSvPOUVddhefgtvOFG7gO8Da6JXPhmdOUF+pTAiwhDUqr0RC/bRODR43Bxd3TLGOIWrAQp7792PblJygmmDkqyMxg9cvPY+fkzI3/fAmHPq4Xdb6JNy5izgNLjH7zLUldoS0uBnpXK2bQV5HA2hoBsrSapbDUBWkn9+xAp9UwcurMxtvsHJ0InjydpD07qS4vM+PoLIeiKBzb+Bv9hwQ05vIZw8N/CDqtlsKszG4c3YWyTuhn/ibd8icUna5Haqr2ZrGb17Pty09IjznS7dfKy9AvnuvfTiWJBm4DvCk+m2NUN7W0mMMA+I4IIeXgXrPPlJw6coDKkuJu7TjXEWs7Oybfdhfn0lI4sWvbRZ2rODebH//zHGpra27850s497v4yg++wSHN/m+WpO6gLdSvK+ltM8MAKmtrVIqCVgbD5leUk8UXf32A9GPd/4e0sxJ2bMXTfygefoOb3R4x9yo09XXEb99ippFZljMJxynMymTUFVe32QShNY0VJXo4VSIrMQE7ZxdGTpmBUz93Ug7u69Hr9zan444B+nqv3e1c+ilUajX9Bvp1uK+blze1lZVGvWlNjzmMh/8QRs9fQHV5mdlTJeK2bMC5nweDR40x6zhGRE9lQMAwdn23vMvVV8oK8vjhpX+i02q58Z8vNbbLlqRLgabIMDPcr3eVVgN93rBQFDkzbAlc3D2xtrVj08fvWVRN0IbawiOnXTjz4DHIH5+gkcRuXm+xJUl6UsyGX7FzdmH4hMmdOs51gBfWtnbk9fAiuqzE4/gGjUSoVARGTuB07FHqa2p6dAy9RV11FbkpJ7GxdyD96GHKiwq69Xp5GWn08x2ElXXHndhcG8qrdZAqUVNRQXbSCYaMGot/xBis7ezNmipRfDaH03ExhM6cg0pl3o5qQqVi+p33U1lcxMFffuj08ZUlxfz40j+prazkhmdepJ/voG4YpSR1n8ZWzG69Lx1HHwzL0moWwcrGhiv+/BiVJcVsX/6puYfTqKG2cFD01Fa3j7riKkrPnSXj2NEeHpllKSvI49ThA4TNmINVJ1tVqlRq3P38ye/B8mplBfmU5p1jYHAIAAGRE9DU15Eea3mfTFwKzpw4jk6rZeod96AoOhK2dd+nJYqicC4tFU//9hfPNThfXq39YDgj7iiKTsfgUZFY29gyZHSkWVMljm/dqO+oNt0yOqp5DwtixKRpHP7tZ0rzzhp9XHVFOT/+5znKiwq5/ul/039Ix6ktkmRpNIX65jNWvTYYVsyeFtaWyyoYBhgQMIyoa24kYcfWHmkD2pGG2sJDRkfi4NKn1X0CIifg6Nb3si+z1lCYP3z2/C4d7+mnryhhTF6nKWQbqkj4jNAHw74jRmLn7ELqJZoqUVVWSsGZ0xd1jtyUpC5/KnM67hhWNrYET5nJoJBwjm/bZJLFVq2pKC6kuqy0w0oSDfp49keoVB3ODKfHHMbOyRmvwGEADJ8wyWypEk07qjlZUMerybfdhVCp2PnNF0btX1tVxU8vP09xThbXPvkcPl2sJyxJ5qYtKkLVp09j9YXeRFhby2DY0kxYeAseg/zZ/MkHZl+Ydr62cNsle9RWVoTNnEt67FFKzub24Ogsh6aujuNbNzJ0bBQuHl1b8e7pP4S66ipK886ZeHStO5MYj62DIx5+/gCo1GqGjoki7eghtBrLXMjZnp3ffsF3zz3V5bFXV5Sz8oW/sfu7r7p0/Om4GHxHjMTK2prQmXMpy8/jdFxMl87Vkbx0fTqNMZUkANRW1vTx6N/uzLCi05F+7Aj+4aMbUxIaUiWS9u+6+EF30sFffqC6vMziOqo593MnasFCkg/s4cyJtt8kaDX1xG5ez5ePP8i59FNc9den8QuL6LmBSpKJ9caGGw2EjQ1Cp5PBsCVRW1lzxcOPU11exh9ffGzWsSTs2IK9Sx8GR7S/eCVs5hWoVCqObV7fQyOzLEn7dlFdXtapcmotefjrFyf21CK6rMQEfIKCm+ViBkZNoLaqkjPxcT0yBlM6kxCnz9tNTura8fGx6LRafVpAJ/PGygryKcrJwi80AtB/WmLn7ELcHxu7NJaO5KWfAiHwbLGgtT2uXt7tNt44eyqF6rJShow+3/zB2saWoWOiSD24r8f+SCiKwt4fvmXfjysIip5qkR3Vxl59Hc79PNi2/NMLXis6nZYTu7bxxeN/Zstn/8PFcwA3v/AqAWPHmWm0kmQa2qLOtWLWanTUVF4aEyuNaRIyZ9iyePoPYfz1t3Byzw5SDpinGUJ1eRlpRw4SPHlah12fnPr2IyBqIvHbNlFfe3ktwFIUhZgNv9HXZyCDQsK7fB73Qf4IoeqRRXSVJcUU52Tha0iRaOAXOgprW7tLrqpEWX4eZfl5AGR0cTa24biq0hJyTnauucLp4/pj/cJHA2Blbc3IqTM5dVhfFszU8jJO4eblg429g9HHuBlqDbeVhpMWcxghVPgb7kODYeOjeyxVQlEUdn+3nH0/fsfIqbOY98jjFtlRzdrWjimL7iI/I414Q264oiikHNrHV08t4fcP3sTG3oHr/vECt/z7NXyCgs08Ykm6eJqiQqNnhqvL61j93yMsf3oPRzeeRqu1zM5uDeTMsAWLuvZGPAcPZfNnS6kqK+3x65/cuxOtRsPIqcZ1NRo150pqKys5uWdnN4/MspxNTeZcWgqj5l7VqXJqLVnb2NLXx7dHOtFlJSYAXBAMW9nYMHjUWFIP77fYd8itaeii59DHldNxnV/IqSgKp+NiGBQagdramuSDezp1/Om4Yzi6uuHepMxZ6Iw56LRaEnZs7fR4OnIu/VRjOT5juQ7wpq66mqrSkla3p8ccwitwOPbOLs1u76lUCUVR2P7VZxxc8yNhM69g7oOPmr2CRHuGT5yC9/Bg9qz6mtRD+1nx7OOsfeM/6LRarnrs79zxyjsMGRV5Uf8nSJIl0RYWoTaixnB5UQ0/vXGU4txKvAJc2ffzKVa9dIicFNNPDOh0iklmn4W1NUKnk6XVLJHayop5D/2V2spKtn7+YY9fP2F767WF2+IzYiTuA/2I2fhbu4vAFEWhLD/PYt+BdVbMxt+wsbcneMr0iz6Xh9/gHqkokZV4HGtbu1YXYAVGTaCqtKTL6QbmkJUYj52jE+Gz53E2LbXTufbFuTmU5ecxbNxE/MNHk3Jwn9GL3xSdjszjxxgUGtEs8OnnMxCfoJEc/2OjSRdFVpeXUV6QT38jF881OF9RIvuCbRXFRZxLS22WItGgIVUipRtTJRSdjq2ff8jR9WsYNe9qZt33sEXOCDclhGD6nfdRVVrCmjdeorK0hLkP/oW73vwfwydMtvjxS1JnKFot2pKSDmeGi89W8tPrR6gqq2PBXyJY8GgEVz4UhqZWy89vxrD1yxNUl9eZZEw1lfWseukgnz+xiy//sYd1S2M5sDaNtJh8ygqqO/X/rrCxRmh16Lpp0fPFav+z+cuA+yB/Jt54G7tXfsXJvTsJmjilR65bkJnBubQUpt95n9HHCCGImHsVWz5bSk7yyWarputrashMiCU95jBpMYcpL8gn+qbbGX/DLd0x/B5TWVJM8r5dhM2a16mPrNvi6T+Ek3t2UF1edsEMnSllJSbgPXxEq+kvg0dForayIuXg3kvm492sxHh8RozEP3wM+378jsz42E7Vem6YTfYLG421rR2nDh8gNzUZ72FBHR6bdzqd6vKyxnzhpsJmzuX3pW9xJuE4g0LCjB5Pu9drWDxnZFm1Bm6GWsPFZ3Mu+EQgw9DoZ/Cosa0eO2x8NCf37CAzIQ5/E+fw6nRaNn+ylPhtmxh79fVMWXT3JTObOmBoILMWP4ROpyN0xlyjaj5L0qVIW1ICioK6ncou+ZnlrH3vGELAdU+Mwt3XGQD/MHd8gtw4vD6DY5sySY8rYMJ1QwmO9kaouva7rq3X8ftHxynJq2LsfH/KCqrJP1PB6fhCGmJgWwcr3H2d6OvjhL2TNfZO1tg6WmPnZI2do+HLyRprG/X5NAmNpkvj6W6XfTAMELngBlIP72fr5x8yMDi0R/rPJ+z8A5VaTdCkaZ06bsTkaez89guObfwNOycnMo4dIf3YEbJOHEer0WBta8eg0Ahs7R2I37GFcdff3G1/+BRF6fY/qsf/2IRWoyF8TtfKqbXkYfjoOy8jrdXgyhSqy8soyMxoM1i0dXBgUEg4qYf2MfWOey0+MKkoLqI4N4ewmVcwYGggto6OZMTGdCoYzoiLwbW/F679B2Dn5IRKrX8zYEww3FAxorXnK3B8NH98+THH/9jY5WBYURSKss+QGR9LZnysvoKBEEZXkmjg4uGJSq2mpJWKEmkxh3Dq26/NT4GaNuAwZTCs02rZ8OE7JO7axvgbbmHijYss/vXWUldLKUrSpURbZKgx3Lf1+CM7uZh1/4vDzsGaBX+JwLV/88khaxs1E64dyvCoAez4Lont3yZxcl8uU28b3hg0G0vRKWxZfoKclBJm3xvMsMgBjds0dVoKsyvJP1NOwZly8s9UkLQvl7qatj/VsrZTM049AKFNs9j0QBkMoy95dcWf/8rX/3iUzZ8u5Zonn+3WPxg6rZYTO/9ot7ZwW2zs7Bk5bSYxv//KyT07AOjrM5CIK65mcMQYfIL0pacSdmxlw//eJjflJN7DTFN3U9HpyM/MICP2KKfjjpKdlIhzX3f6DwkwfAXSf8hQbB0cTXI9nVZL7Ob1+IWNop/PQJOcs2lb5u4KhrNPngD0dYXbEhA1kc2fvE/+6fRO56b2tIZ8Yd8RIajUagaFhHM6LsboN0NaTT1nEo4TPFmf5mLn6IRfaDjJ+/cYNUt5Oi4G94F+rdbCtbaxJXjyDOK2/E51+QNGz/aX5ec1Br+ZCXFUFuv/ELl49CcwKprAqAmd/uRApVbTx3PABRUltJp6TsfFMHzilDbva9NUiVn3PoRKffG5vFqNhvXvv0Hy/t1E33wH46+/+aLPKUlS92houNHazHB6XAEbP4nHxd2OBX8ZhZObbZvn6evtyLWPjyLpwFn2rk7l+5cPM/7aIYyaPcjouGbfz6dIPZzHhOuGNguEAaxs1PQf7EL/wc3/f2yobFFTWU9Nxfl/K4prObw+g3I7N4RWi85CF/rJYNign+9AJt18Bzu+WcbJ3dsZMfni81Pb0lhb2MiFcy1FLriBuupqBgwdxuCIMfTx7H/BPgGRE7Cy+R8ndm2/qGC4oriI03Ex+q/jxxoXB7kP8id0xhwqS4rJTU0iad/5xT9uXj70HxLAgKGBDBs/Ced+7l269tHf11JRVMisxQ93efwtObj0walvP/JOd1/ecFbicaysbRgQMLzNfQLGjmPLp0tJObjvEgiGE7C2s2/Mf/YPG03Kgb0UZWfRz7fjNym5yUnU11TjF35+xjNwXDTpH79HXvqpdruF1dfVkp10goh2PhkInTmXmA2/cmLnH4y58tp2x1JdUc5vb79CpqG0nUMfVwaODGNQSDh+oeH08RzQ7vEdcfPyvmBmOPtkInXV1QwZdWG+cFPDJkwyaarEls/+R/L+3Uy9/R7GXn39RZ9PkqTu09iKucXMcNKBs2xdnojHQCeuWhKOvVPH3VeFEASN98I/1J3t355k30+nOHuqlJl3jsDWof1Uo7htWcRsziRkqg+j5hjf0lxtpcKxjy2OfZoH6nU1Gg6vz0CrNuQMW+haJhkMNzH6yms4uXcXe3/Q19809QINRVEozs3hyPo1+trCbeQPdsS5rztX/PmxdvexdXBg6NhxJO3bxfQ7F6O26lyuXX5mBr9/8Cb5hqDR3qUP/mGj8AsbhV9oxAWzdFVlpeSlpXI2LZVzaSlknUzg5J4dxGz4lTteex9bh87l+xbnZrNn5dcMHTuu1UVHF8PTf0i31ho+cyIer8Dh7eY3OvRxxScomNSDe4m+aVG3jcUUshPj8Rk+onG2sqGxwem4o0YFwxlxMQiVikEjz6cxDB07DvGpipSDe9sNhrMTE9DW1+MX2nZw6DHIH6+A4cRt3cjo+de0OftRlp/H6pefpzTvLJNu+RNDxkThPtDPpJ8CuQ7wJjMhrtmseVrMIdRWVgwKbb8soH/4aJOlSmSdiCd+2yYiF9wgA2FJugRoivSVIKz6nf/bGr8jix3fJeMz3I35fw7Fxq5zIZudozVz7wsh7o8swyzxIa64PxSPQa2nTaTF5LPr+2QGh7sz+eZhJvm/0cpG/3dDq7IBrdZi0yTkctwmVCo1Y666lpJzuZw+fswk5yzLzyN+22bWf/Amn/z5Tr746wNkHj/G6Cuu7rC28MUKnjydmvIyMmI7Xwpr93fLKS/IZ/Jtd3HHa+/x54+/Zv6SJxk5dWarH1c7uPTBP2IM46+/mWue/CcP/O9Lbn7hVcoK8tm6rHOVOhSdjk0fv4/a2ppZ9z5k8pQVD78hFGafQVNnmhW3TdVWVZKfkd7Ygrk9AZETKDhzut1GDebW0IK56YKwPp4DcPPyNrre8Om4o3gFBjVLn3Fw6cPA4FCS9+9pd0Xy6ePHUFtZXbAgraXQWXMpyj5DTlLr9YvzMtJY8dyTVJYUc8Oz/8e4627CY5C/yV9bbgO80dTWUlFc2Hhb+tFD+AaHYmNn3+6xTVMltBexyESr0bB12Yc4u3sw4YZbu3weSZJ6jraoEIRA7eoK6CfP9vx0Cp/hblz1SFinA+EGQgjCZw7kuidHo9MqrP7vERJ2ZV/w/+7ZtFI2LUugv78Ls+8diaqLC+9aUqkEamsVWmGN0GrBQhtvyGC4hcCoiTj0ceXYpq51elMUhZQDe9n08Xt89uhiPn3kHjZ+9C4ZsUfxCRrJ7Pse4Z53P2FcD+Tv+YWNwt7ZhRO7tnfquKKcLNKOHmLUvKuJumYhnv5DujRL7hscwoQbbiVx1zZO7Npm9HGxm38nKzGeaX9a3GrgfbE8/Qej6HQUZmWa/NzZSSdQFB0DgzsOhgOjJgCQ2kMNOOpqqjt9THZSQ/5zi+YhYaM4c+I4mvr2609Wl5dxNi211ZnOwHHRFOdmU3jmdJvHn46LwXvYCKzt7Nq9TtCEKdjY23O8lY50p48fY9W//o5Qqbjl368xMDi03XNdDDcvH4DGVImSc2cpysliiJGfAg2bMIma8rJ22xB35NjGdRScOc30u+7v8HGTJMkyaIqKULu6IgyfwNVWatDUahkc5o6V9cWvIRgwpA83PRuJ9zBXtn+bxNYvE6mv1QelJeeqWLc0DkdXW658KAxrG9PWH7ey0QfDGN7kW2LesAyGW7CytiZk+mzSjhykrCCv08ef3LODtW+9TPKBPXgM8mf6Xfdz5+sf8OdPvuGqx/5O2KwrcBvg3SMrutVWVgyfOIW0wweorao0+rij69egtrIyySrucdfdhE9QMFs//x8l5852uH9p3jl2fvsFfmGjGDmtaznVHWmoKHEu/ZTJz52VmIBKbYVXYNv5wg1cPDzxHDyUlIPd3wHxdNwxlt5zS2OJL2NlJ8ZjZW1D/6GBzW73CxuNpra2zZnYBpnxsaAorbb8DYyaAEKQfKD1BhyVJcXkn043ql2wtZ0dQdFTSdq3m5rKisbbE3dt46dX/oWLuye3/d8buA/y7/BcF6Ox1rBhtj895hDQdkm1lpqmSnRFRVEhe3/4hsERYwgYO75L55Akqee1bLhRXqzvNNveYrnOsney4apHwom6ejBJB8/y42uHyUkp5tf3j4GAq5eEY+/ccU5yZ1nbqNEKK1SGINgSG2/IYLgV4bPmoaBwfOuFs0zt0em07P9pFe4D/Xjo0xVc8+Q/GT1vgaENsHnKGQVPmY6mvs7oltPV5WUk7PiDEZOnm6TEnEqtZv4jTyKEivXvvd7ux7+KorD50w9ACOY8sKTbHjNXzwHY2NuT3w1tmbNOHGfA0ECsbY2bkQuMnEBuShIVRYUd79xFtVVVbPz4XXRaLcc2/96pY9vKfx4YHIpKre6wG11GbAy2jo4MaBFMAzi6uuEzPLjN12amIVXJmGAYIGzmFWjqakncvR1FUTi45kfWf/AmPsNHcPO/X+vyQs7OcO7njtrammLDzHBazGHcvLwbZ4w7crGpEju+WYZWo2H63Q9cciXUJOlypikuwsrtfDBcUVwLgKMJg2HQpy1EXjmYBUsiqCqr4+c3Y6gqrePKh8Jw9bz4Wv6tsbJRo0WNMKRmXJJpEkKIZUKIPCFEfBvbhRDiPSFEqhAiTggx2vTD7FkuHp4MGR1J3NaNaDXGtyHUr7A/w/gbbjFJaSRTGDB0GG5e3iTuNi5NIW7LBjR1tYyZf43JxuDi4cns+x8hNzWJ/au/a3O/+O2bOR0Xw9Tb78bF3dNk129JqFR4+A0mz8Sd6OprajiXltpuSbWWAsdNBCD10H6TjqWpnd8uo6KwEL+wUaQdPUhliXEtOxvyn31bSfmwdXDAKzCo3bzhxhbMIeFt/j4MGx9NwZnTFOVkXbDt9PFj2Dk5G13vt/+QADwHD+X4lg1s+/ITdq34kuETJnP9My9i5+hk1DkullCpcO3vRcnZHOpraziTEMfgDqpItNTVVIkzCXGc3LODyAULGxuASJJ0adDPDJ9PC6w0zAw7u3VPqtPA4L7c/GwkgZH9ueKBUAYM6VyZ186wtlWjxQqBIRi+RGeGvwSuaGf7PCDQ8HU/0PN9jbtBxOz5VJWWkGJkPqei07H/p1X09RnYGOBYAiEEIyZNJzPhOOWFBe3uq9XUE7PxN/zCRpn84+ThEyYzctos9v/8fat/5MuLCtjx1ecMDA4lbGZ7LzfT8PAbQv7pdKNbAhsjJ/kkOq0W307kpPb1GYiblw8ph7onb/h03DHitmxgzFXXMv3O+1F0OhKNzN/OSUpEUXRtLl7zDxtFXvopqspKW91elJNFeWE+/mFtvz8OjNL/rrScHW4WSKuMf2MZNnMu+ZkZxGz4lTFXXceVjz7V413LXAd4U5ybQ2Z8HNr6+k5XjWlMlWhSrrAj+kVzH+Hi0Z+oaxd2dsiSJJmZpqioWcON8uJaVCqBvYvp0xYaOLnZMefekfiFmH5tTlNWNio0igphWLN3SQbDiqLsBIra2eUa4CtFbz/gKoTwMtUAzcU/fDR9PPsTu9m4hXSph/dTkJnB+Otu6tQf754wYtI0UJTGJh1tSdq7i8riog5rtXbVjLsfwG2AF+s/eJOaivN5nYqisOXTpWg1GuY88KjJS9q1xtN/CPU11ZTkdZzHbKysk/EIoepUXWchBIFREziTEEd1RbnJxgJQV13Fpk/ew83Lh4k3LaKf70C8hgURv32LUT3lzyTGt5v/7B+uD3LbqrzS2DnOUIqtNc793PEKHH5B3nBR9hkqiovaPbY1QdHT8B4ezPS77mfaHff2yGupJTcvb0rO5ZJ25CDWtnYdVsJoqTFV4tB+o1Mljv6+lsKsTGbcfT/WNqb9WFWSpO6l1NejKy1t1nCjorgGB1cbk1V1MCdrGzVaRXU+TeJSDIaN4AOcafJzluG2S5pQqQibNY+sE/EUtLPaHfTB3P7Vq3Dz8mb4xCk9NELjuQ7wwmtYULszgoqicHjdL/T1GdgY5JiajZ0985c8RVVJMZs/eb8xIDu5eztpRw8x6ZY/4TqgZ95HNe1EZypZJ+LxHDy00zWVA6ImoOh0LHvsAb7++1/4+bV/s+mT99n7w7fEbd1A2tFDnEs/1WHlhpZ2fvslZQX5zP3zY40BUsi0WRRmZXI2Nbnj+5MY327+s+eQodg5OXM6tvVUidNxMbh5eXfYyCJwXDR56aeaLbDMiG1owdy5eru2Dg7c+uJ/GT1vQaeOMyW3Ad5o6+s5uXcHfmERXZqZDoqeSk15Gatffr7DqiflhQXs+2EFQ8ZEMXTMuK4OW5IkM9EUN9QYPp8zXFlc220pEj3NykaNRqfCrbKGKdfciI199+QmXwxTBMOtvW1pddpJCHG/EOKwEOJwfn6+CS7dvUKmz0ZtbU1sB4uO0o4eIi/jFOOuu9licoVbCp40nfzMjMYmGi1lnThOfkYaY65su2mBKQwYGkj0zXeQfGAP8ds2U1lSzB9ffoLXsCBGzbuq267bUj/fQQiVijwTBcOaujpyU5M6lS/cYMDQYUy/6wECoybg1LcvFUVFnDp8gH2rV7L5kw/4+bV/880//sLyJx5q8/lrKTM+ltjN6xkz/xp8hp+fqR4+YQpWNrbEb9/c7vH1NTWcO5XS7v1RqdQMCo3gdNzRC2aaNfX1ZCbEGbX4bZghrahpVY3TxxsC6Qu7K1o6V0O+bl11dZcb6wwZHcmsxQ+Tn5HGV39bws5vv2izNN72rz9H0emYcdf9XR6zJEnmozUEw2q3ptUkak1aScKcrGxVaHUC59p6wqKiOz1h1BNM0fUhC2jahsoXaLWLgKIonwCfAIwdO7bjz2nNzMGlD8PGT+LEzq1Mvu3OVovm62eFv6OPZ3+CoqeaYZTGGTZhEtuWf0Li7u14+A2+YPvhdb9g7+zSrW2oG0RefT2n447yx5cfk7h7O/W1Ncx98C89ml5iZWNDP99BJguGz6Ymo62v71S+cAMhBKPnXX3B7VqNhsqSYiqLiyg5m8OOb79gxT+fZM4DS/SpL22oq6lm40fv4eblTfTNtzfbZuvgwLBxEzm5ZyfT/rS4zVnfnBTj8p/9w0aRvG8XhVmZuA/0a7w9NzkRTW0tfu3kCzfo4zlAX2LuwB4ir74eraaerBPxBE+d2eGxlqihvBoYX1KtJSEE4bPnEThuIrtWfMmhtatJ3LOD6X9aTOC46MY3rKfjjpG8bxcTb1p00a2kJUkyD22hvppQw8ywoihUFtfiGOFhzmGZjJWNGo1W/3+W0g3NrkzBFDPDa4E/GapKjAdKFUXJNcF5LULEnPnUVVeTuGt7q9szYo9y9lQKUdfe1O0d5S5GQ4e4xN3bL1g0VpSTTdrRQ4TPmd8j+YZCpeKKhx/HysaWMwlxTFh4G/18Om7ra2qefoNNliZxJvE4CIFvUOdnhtuitrLCxd0Dr8DhjJg8nTtefZf+QwJY//4b/PHlx23mk+5a8SVlBXnMefAvrQa7IdNnU1dd1W6zj6zEBKPyn8+3Zm6eKpERF4NKrTa6wcWwcdHkpiRRXlhATvJJ6mtrOp0vbCmc3PpiZWOLh/8QnPteXDk3B5c+zH3wL9zy4uvYOznz69uvsvrl5ynOzUarqWfrFx/h2t+LyKtvMNHoJUnqaZpC/bIsdV99MFxdXo9Wo+s1M8PWvSEYFkJ8B+wDhgshsoQQ9wohHhRCPGjYZT2QBqQCnwIPddtozcArMAgP/yHEblp3wUfBiqKwb/V3OLt7MHLqDDON0HjBk6dTUVTImRPNq+Qd/X0tarWaiDlX9thYnPu6s+Cv/2DUvKuJvPr6HrtuUx7+Q6goLqKqtOSiz5WVmIDHQD/snLqvhJejqxs3Pvcfxlx5DTG//8r3Lz5DRXHzta1nEuI4tnEdo+ctaDMw9x0RQp/+A9pNlchKPI7n4CEdfpzl4u5JX2/fC0qsnY6LMbRgNu7jsMBx0YA+VeJ03DGESsWgkWFGHWtphErF2KuvZ9y1N5rsnD7DR3D7K+8w/a77yU1JYvmTD/PTKy9QnJPFjLsfwMqm+1acS5LUvbTFzYPhyhJ9jeHekjNsbatGo9Hnz+ou1WBYUZRbFUXxUhTFWlEUX0VRPlcU5SNFUT4ybFcURXlYUZShiqKEKopyuPuH3XOEEETMnk9+ZgY5ySebbcuMjyU3+SRR19yI2qpnyzd1xZAxUdjY2zerOVxdUU7Cji0ERU8zSZONzhg4MowZdz1gtjzrhkV0eUbm4bZFq9GQk5zYpRSJzlJbWTHtT/dx5aNPkZdxim/+8ReyEvVvbupratj40bu49vdi0i13tHkOoVIxcupMMuPjKG2lmoamvp7clCSjqyD4hY8i60Q8GsN/clVlpZxLP9VqC+a29PX2wX2gH8n793A67igDAoZh6+Bo9PGWJvqmRQyfMNmk51Sp1Yyet4C73/6IYeMnkRkfR0DkhC6nYkiSZBk0hUWgVqPuo6/1W15k6D7Xt3fMDFvZ6ENNncoKpZMLwXuK7EBnhKBJU7GxdyB207pmt+9fvRKnvv0ImT7bTCPrHGsbWwLHRZO8fw/1dfp3nnFbNqCprWXMlaZrsnGpaMidbitVQqfVknxgDz+9+i/WvvUyB37+nvRjRy6YST6XloqmtrZLi+e6Kih6KoteehMbe3t++L9nObp+DTtXfElpfh5z/9x6ekRTI6fOBCFI2LH1gm1nTxnyn40Mhv3DRqOpqyU76QRg6BynKPiFd64SROC4aLKTTnA2LbVTgfTlxsmtL/OXPMldb/6P+UueMPdwJEm6SNqiItRubo2lIBu7z7n2lmBYP+GlU9labJqE5Sa5WhAbO3uCp8zg+NYNTLvzPhxc+nDmxHGyEuOZftf9PV7U/2IET55OwvYtpB05SEDkeI5t+JVBoRGtLqrr7eydXXDu53HBIrqaigqOb9tEzIZfKS/Ix9ndA7XaqlljCKe+/fD0H4Ln4ADK8s8BdLqe7MVyH+TPopff5velb7Nt+acAjJp3tVHjcHH3xC80gvjtW5hww63N6vFmGdJofIKCjRqHb3AIKrUVp+Ni8AuNICMuBjtHJ/oPCejU/Rk2biL7flwBdL6k2uWon+8gcw9Bki5J5du2kf/2Owz89FOs+3dft1Nj6RtuNCmrVlKDSi1wcO4d6U/WhmBYq7ZGqbPMmWEZDBspYs58jm38jfhtm4m6ZiH7V6/EoY8roTPnmntoneIbHIJT336c2LUNnUZDRXERsx9YYu5hmY3n4CGNwXBh9hlifv+VhJ1b9TO9wSFMv/M+ho4dh0qlpqaygvyMNPIy0jiXfoq89FOkxxxBUXS4D/TDoY9rj4/f1sGRa554hkO//kRWYjyTb7nT6GNDps1i3Xuvkxkf12yxWlZiPO6D/LF3djHqPDZ29vgMH0FGXAyTb7urS53jAPoN9MPN25fK4kIGBAzr1LGSJEnGKvv1V2qTk8l9+mkGfvapWZrzNKUtKmrMFwYoL9KXVRO9oOEG6EurAWjVcmb4ktfPdxC+wSHEbfkd7+EjyIyPZeod915y3Z5UKjVB0VM5un4NJWdz6evty+DwMeYeltl4+A0h7cghVr/8PBmxR1FbWxMUPZXR8xY05hQ3sHN0YuDIMAY2WdhVX1tDQeZpswTCDYRKRdQ1C4m6pnNteAMiJ2Dr6Ej89s2NwbBWoyEnKZGR0zpX1swvbBS7V37FmYTjVBQVdjpFAvT5+dPvvI+q0hKLrswiSdKlS9FqqdyzF6v+/ancu5fir7+m753GTyJ0B01RIfYjz3+iV1Fc02tSJACsrBvSJGxkznBvEDHnSkrzzrHu3f9i7+xC+Kx55h5SlwRPno5Oq6Uo+wyj519j9nfF5uQVMAxF0ZGfmUH0Tbdz//++5Io/P3ZBINwWa1s7vAKHX5LNIaxsbAiKnkbKwb2N7bHzMk5RX1vT6ZSPhq6Fu1Z8AXQ9zWFwxBh9PrMkSVI3qDmRiLa0FM8nn8Bpxgzy3niTmqQks45JW9h8ZriypBanXlJJAvTVJAC0ahuLnRm+fKOgLgiIHI+jqxsVRYWMvfp6rO0uzRerh99g3Af5Y+fsQvCU7m+yYckGjxrLbf95k/s++JzxN9yCg0sfcw+pR4VOn21oHbwT0JeIg87nP3v6D8HO2YWzp1Jw8/K5JN8cSJJkfvXn8ij49FN01a13XLxYlXv2AOA4YQJeL/0fKtc+5Dz5JLqamm65Xkd0dXXoKirON9zQKVQU1+LcSypJwPkFdFqVDIZ7BbWVNaPnX4NTP3ci5sw393AuypWPPsX1/3ihw6oDvZ0QAq+A4ZdEabzu4Dl4KB6D/Ekw1BzOOnEcNy+fTpfZEyoVfqERAEa1YJYkqedpKyotts4r6APDrCVLyH/zLc7+698X1PY3hco9e7AdMQIrd3es+vbF++VXqE1JJe+NN01+LWNoiww1hg2tmKvK69BpFRxde8/fZuvGnGEblHrLfP3JYLiTIhfcwP0fLMPG3vJ6a3eG+0A/vAKGm3sYkpkJIRg5bTZnT6WQfzqd7JMnulwirqEcmn8X8oUlSepeSn09GTfcQPZfHzf3UNqU99p/qYmLw3HqFErXrKH4u+9Men5tRSVVx47hFD2x8TanyZPoe+efKP7mGyp27DDp9YwaU0Mw3K95w43e0n0OmuQMyzSJ3kMIcVnn2Eq9z4jJ01Cprdj+1WfUVlV2uXnIiMnTmPfw47IJhCRZoNLf1lF3+jQVW7dSefCguYdzgdJ16yj+9lv63nUXAz/8EMepUzj3yqtUxcR0fLCRqg4dhPp6HKOjm93u8fjj2A4bRs4zz6IpLDTZ9YzR0IrZql8/ACqKDN3n+vammeGGNAlbuYBOkiTL5ODSh6FjosiMjwXo8syw2sqa4CkzOl1STZKk7qVotRR+8gm2w4ZhNWAAeW+82S0pCF1Ve+oUuc89j/3o0Xg+8ThCpcLnv//FesAAsv/yGJr8fJNcp3LvPoSdHfajRze7XWVri/cbr6MrLyf3mWd79LHRFumDb7WbPjWtvFifu9yrqkk0dKCzsZczw5IkWa6GLoouHp64uJu/CL0kSaZTvmkTdenpuD/0ZzyWLKEmLo7yTZvNPSwAdJWVZD36F1T29vi8/RbC0MRK3acPvu+/h7asjOy/Pm6SGcXKPXtwiIxEZXthoGk3bBieTz1FxY4dJk/PaI+mqBg4PzNcWVyL2kqFvXPvWcdi1TAzbGNvsTnrMhiWJAn/8NG4ePRvLJEmSVLvoCgKBR9/gs3gwTjPnk2fa6/BNjCA/LffNvtH1oqikPv8C9Slp+Pz5htY929ehcYuKAivF/9N1eHDF73ArT4nh7q0NByb5Au35Hb7IhwnTybvtf9Se+rURV3PWNqiQrC2RuXsDBhqDLvZIkTvaLgBoFarUKkEOms7OTMsSZLlUqnV3PHau0y/835zD0WSJBOq2L6d2pMn6Xf//Qi1GqFW4/HXx6nLyKBk9U9mHVvxd99Rtm4dHo8+iuP48a3u02fBAtwWLaJo+XJK163r8rUq9+4FwHFi28GwEALvl/+DytGR7Cee7HJ5t7qMDLIff4KM22/v8A2HpqgIKze3xuC3orgW5160eK6Bla0anZWd2d+AtUUGw5IkAfoOe1Y2NuYehiT1uNLf1lGXkWHuYZicoigUfPQR1j4+9LnqysbbnaZPw37MGPKXfoCuqsqk1yzfto3yP/5AV1vb7n7VcXGce+VVnKZOpd/997W7b/+//w37UaPI/edz1KakdGlcFXv2YOXhgW1gYLv7WXl44PWfl6g9eZLUmbPIf/8DoxfV1Z89S+5zz3Pqyqso27yZ6sNHKN/cfjpKy4YbFcW1OPbGYNhGhdbKFqVOBsOSJEmSZFHq8/LIefJJ8t58y9xDMbmq/fupiY2j332LG3NxQT8D6vnkE2jzCyhavtxk16s/l0fWw4+Q9dDDpEyYSPbjj1O2YeMFAbemuJisxx7D2tMT79de7bBCk7Cxweedd1A5OZL1yBK05eWdGpei1VK1dx+O0dFGpR84T5+O37ffYB8RQcH//kfq9Bnk/POf1Kamtrq/priYc6/9l1Nz5lLyyy+43XorAVu3YOPnR2EHj6+muAgrQzCs0ym9rvtcA2sbNTq1TJOQJEmSJItT8ccf+n937EBraEveHbRlZShabbedvzUFH32MlYcHfa677oJtDqNG4Tx7FoWffY7GUOv2YpX+8gvodHi9/DIuV15J5f4DZD/2GMkTo8lasoTSX39FW1ZGzt/+jja/AJ933kHt6mrUua37e+L79tvUZWeT84+nUXQ6o8dVc+IE2tLSC0qqtcdhzBgG/m8pQ9avo88N11P22zrSrrqazPvup2LPHhRFQVdZSf7//sep2XMoWr4cl/nzGfr77wz457NYe3ri9qc7qImNo/rYsTavoy0sQm1YPFddVodOp/TONAkbtWzHLEmSJEmWqHzLVoSDA0pdHRVbt3bLNarjE0iZMpWUqdPI/fe/qdy/H0Wj6ZZrNag6GkPVgQP0vfeeVqsnAHj89a/oqqsp+Oiji76eoiiU/LQah7Fjcb3+Orz+70UCd+5g0Jdf4nr99VQfiyXnqb+RPH4Clbt20f/ZZ7AP7Vzbd4exY+n/t79RsXUrxd+uMPq4xhbMEyd06noAtoMH4/XCCwRs+wOPx/5CzclEzty7mPQF15A6ew4F772P44TxDFm7Bu9XX8HG16fxWNdrr0Xl4kLRV1+1eX5NURFWfVuUVeuNM8O2KhkMS5IkSZKl0ZaXU3ngAG4334yVtxdl6383/TVKS8l+7DHUrq44jBlD6c+/kHnX3aRMmUru8y9QuXdvtwTGBR9/hNrNDbebbmpzH9shQ3C94QaKv1tJXVbWRV2v6tAh6k9n0mfhDY23CSsrHMePY8DzzxGwYzt+K1bQ9847cV/yCK4339yl67jdcTuOEydQsHSp0ekSlbv3YBs8orF8WVdYubnh/uCDBGzditfLLyPs7LALDsZ/1Up8338f24CAC45ROTrieuNCyjZuoj4394LtuupqlKoq1H3Pl1WD3tV9roGVjRqtylouoJMkSZIkS1KxcyfU1+M8exYu8+ZRsWcP2pISk51fURRynn6G+rNn8X3nbXzffYdhe/fg8847OI4fR+lvv5F5z72kTJpM7nPPUZOUbJLr1pw4QeWOnfS980+oHBza3df9kUcQajX577x7UdcsXb0alZMTLnPntrpdqFQ4jB5F/7//DY+HH+5y6TAhBB6PP4G2pITCZcs63F9bUUlVbCxOnUiRaI/KxgbX669j8A/fM+izT7EPD293/76LFgFQvOLCmezGVsyGmeEKQzDs3Atnhq1s1OiEtZwZliRJ6g20FRVkP/74Rc+kSeZX8f/snXd8FNX6h5/ZvpvspiekkRBK6FWqoCBSxN69Yu9eu6JXf1ev96rXcq+i2LvY+1VBpAiCIr33nkp632T77pzfH7MJCYQUCCTAPJ/MZyazM3POnj1z5nvOvOd9Fy1CGxWFecAAbFOmgN+PvZnZ/62h/MMPqfntN+IeeRjzwIEAaCwWbJMnkTh9uiKMX3uVkNGjsc/5hdxbbmkT7w6l77yLxmolIijEmkIfF0vk9ddj//ln3Nu3H1F6gepq7PMXYDv3XDRm8xFdozWY+/bBNmUK5TM/xldc3OSxhwvBfLzQJyRgnTCBim++PXQi4UEBN6or3Gj1GowhuuOez2ON3qAhoIphFRUVlZOD6vnzsf8yF/vPP7d3Vk4IOurDT/Z6qfn9D6xnjUPSajH17o0hJQX7L7+0yfWda9ZQPP1lrJMmEXHttY0eozGZsE2YQOKL/yX5/ffxl5RQ9kHzo51N4dm3j+oFC4iYejXaYCCH5oi65Wa0YWFH7FHDPmcOwu0mvJ6JxLEm5r57ET4fpW+91eRxjmXLGw3BfDyJvO465Koqqn76qcH+g0MxOyo8hJ5kATdq0Rm1BCQdwtcx2wNVDKuoqKi0Avv8+QA4V69u55x0bIQQFD7zb/aMHddm3graEueqVcgOB6HjxwPK63frlHNwrlqNv7T0qK7tLy0l78GHMCQlEf/vZ1okbiyDB2E9ZzJlH3yAr6joiNMue/ddJJOJyOuvb/E5WquVqDvvwLFsWV1witZQ+d33GHv0wNS3dRPijgZDSgoRV1xB5TffNukjui4Eczv6UDcPGoipXz/KP/m0gRcMf5lyX9SODNdUuE9Kt2qgmEn40anhmFVUVFROdAJVVThWrETS63Gu39BhG/aOQPnMj6n47DMC5eVUfPFle2fnEGq9SISMPOBhIGzKFJDlug7PkSACAfIemkbAbifx1RloQ0NbfG7sQw9BIEDJ9JePKG1vbi5VP89RJgQGRxtbSsTVV6NPSKDoxRdb5QLOvWsX7q1bCb/s0uM+ohn91zuRjEaKZzRu7+zLy8ObmdlkCObjgSRJRF53Hd7MTBx//lm3P1BRazNcK4Y9J+XkOVD8DAfQqhPoVFRUVE50qhcvBp+PyBtvRLjduLdsae8sdUiqFy6k+D//wTpxIqFnnknF558ju93tna06hCxT/dsiQseMaeB2zNi9O8bu3Y/Kq0TJa6/hXLWKTk8+iSk9vVXnGpKSiLz+Oqp++gnXlq2tTrvsvfeRNBoib7yx1edqDAZiH56GZ/sOyj8+vCuwg6n87nskvR7b+ee3Os2jRRcdTdQNN1A9dx6uRu7FmuAod1tNnjsabJMmoouNbVC2/rJyJIMBTYgFOSDjqPKetGJYZ9Ag0BDwHl9f2y1FFcMqKioqLaR6wa/o4uOJvPEGkCQcq1a1d5Y6HK4tW8mb9jCm/v1I+M8LRN1yM4GKCiUgQwfBvXkzgZJSrGePP+Qz25RzcK1bh6+wsNXXrfnjD8refoewyy4l/JJDA120hKjbb0cbEUHxCy8ghGjxee5du6j64QfCLr0EfVzsEaVtnTyZ0LPOomTGDLzZ2c0eL3u92GfNIvTs8a0eiW4rIm+6USmvl6YfUl6OZcvRxcZiaMTt2fFGMhiImDoVx7JldSGlA+VKwA1JknDavQhZnLRmEnqjFoCAv+V1+niiimEVFRWVFhCoqcHx55/YJk5AFxGBsWdPnKvXtHe2OhS+vDxy/3onuqgokt94A43JhPm00zD170/5RzOPewS2w1G9aBHodISeccYhn9nOOQcA+9x5rbqmLy+P/IcfwdizJ50ef/yI86a1Wom59x6ca9dSvXBhi9POveVWtJGRRN/51yNOW5IkOj35JJLBQMHjTzQb5a1m4UICVVWEX3rZEad5tGhDQ4m+806cK1fiWHbA3lkEAjhWtDwE8/Eg/IrLkYxGyj/5FAB/eVldJ6KmlT6G/bKfJ5c/yfhvxvPgkgf5cueX7Kvc16oO1PFEZ1DEsD/QMX6Lg1HFsIqKikoLqFnyO8LrxRr0oxoybBiuDardcC2B6mpy77gT4faQ/M7b6KKjAUVgRd10I97sbGoWL27nXCpUL1xEyLChaMPCDvnMkJqKqU+fVnmVEF4v+x94EBEIkPTKy2hMRze6F3755Ri6daX4vy82640jUFlJzm23I7vdJL/77hGPCteij4sl7m+P4Fyzhspvvmny2MrvvkeXEH9Ekd3akvCrrkSfmEjxSy/VCXj39u3IrQzBfKzRRUQQduGFVM2ahb+igkB5RV0o5gNiuPm645f9PLb0Mf6353/0iOzBltItPLvqWS766SLGfTOOh39/mG92fUNmVeYxFcf7Kvfx6vpXeeSPR8i2N/0mQW/QBPOuimEVFRWVE5bq+fPRxcTU+Yu1DB+G8Hhwb9rUvhnrAAifj7z7H8CTmUnSqzMOicZlPfts9ElJlH34UTvl8ACejAy8mZl1XiQawzblHNxbtuDNyWnRNYv++yLuzZuJ//e/MaSmHnUeJZ2OuL/9DV9ODuWNBGuoRXa7yf3rXfhyckh6/XVM6T2OOm2AsEsvJWTUSIr/+2KjkdNAGY12rFhB+MWXIGnaV0poDAZi7r8Pz44ddfbeRxOC+VgSed21CI+Hyq+/UUaG6wJuKDb1zY0M+2U/jy59lHlZ83hoyEO8dfZbLLh0Ab9c8gv/GvUvRiSMYH3Rep5e+TQX/HgBk76fxLzMeW0migsdhczcOpPLZ1/ORT9dxAdbP2BJ7hKu/PlK5mUe/m2KrtZMAl2HeUNUH1UMq6ioqDSD7HBQ88cfWCdOrHvwW4YMUeyGT3EXa7Uu1BzLlhH/zycbeGeoRdLpiLz+elzr1+PcsKEdcnmA6oWLALA2JYYnTwZaZiphn7+Aik8/JeK6a7FNmtg2mQRCx4whZPRoSt98C39FxSGfi0CA/IcfwbVhAwn/eYGQ4cPaLG1Jkuj01FMIWabgyScbFVKV//sB4Ihto9sa27nnYuzZk5IZMxBeL44/l2Hq3RtdZGR7Z60Bxm7dCDn9dCo+/5xAWfkBTxLlHnRGLUbL4QNu+GQff/vjb8zPms+006ZxQ98bAOX3SrYmc0n3S3h+zPMsvHwhP1/8M0+OfJJIUyQP//Ew9y++nxJnyRHlucpTxfe7v+em+Tcx8buJvLTuJfQaPY8Oe5RFly/ipwt/olt4Nx7+42GeXvE0noDnkGvUmknIWkOH9D2uimEVFRWVZqhZuhTh8WCtJ3a0YWGYevXCuerUFsPlH35E5ddfE3XbbYRfdnjb0fBLLkYTFkb5RzOPX+YaoXrRQkz9+qHv1Omwx+gTEzEPGtSsqYQ3N5eCv/8dU//+xE2b1tZZJfaRh5Fraih9s2FgCSEERf9+lupffyXusUfr7JzbEkNSErEPPIDjj6XYZ81qmH4gQOUP/yNk5Ej0iYltnvaRIGk0xD70IL7cXMo+molz48Z2d6l2OCKvvw5/SQnC40EXpYj1mko3oeGHD7hRK4QXZC9g2mnTuL7P4f1IS5JEii2Fy3pcxmdTPuPBIQ+yLH8ZF/50IT/t/alFo8SykFlZsJIHlzzIuG/G8c8V/6TEWcKdA+/k54t/5otzv2Bqr6lEm6OJD43no8kfcWPfG/lm9zdMnTP1ELMJfVAMB1QxrKJy/PHs3Ytn7972zobKCY59/ny0UVHKaHA9LMOG4dq4Edlz6EjIyU7Abqf8s88pfvFFrOdMJub++5o8XhMSQsRVV1H9668tNj9oa3xFxbg3bW5yVLgW25QpeHbtwrNvX6Ofy14vefc/ABoNidOnIx2DoA6mHj0Iv/xyKr78Ek9GZt3+svffp+KLL4i86SYir7uuzdOtJeKaqZgHDaLo2ecaBCJxrFiJP7/guEacawkho0djGT6ckhkzwO/vUPbC9QkZPRpDly4AaCOCYrgJH8O1QvjX7F+bFcIHo9PouLHvjXx3/nd0D+/O48se585Fd1JQ07j5S4W7gplbZ3L+D+dz64JbWVO4hivTr+Src79i1kWzuHPAnaTYUg45T6/R8+CQB3lj/BsUOgu5YvYVzM084KJQF7QZDmhUMayiclzwZGRQ8sYbZJx/PhnnnU/W1VNPSbGi0jbILpcStnfC2UhabYPPLMOGIbxeXKeI3bAnM5Oyj2aSff0N7B51OkXPPIN58GASnnuuRXajEVOvRtLpKJ8589hnthFqFv8G0KhLtYOxTpoIknRYn8PFz7+Ae9s2Ep5/DkPSsRsdjbnnbjRGI8UvvghA1U8/UfLSdGznnkvstIeOWbqgjLbG//sZZJeLwqefqdtf+f13aMPCCD377GOafmuRJInYhx4EWW73EMxNIWk0RF6vdGJ0McpE05pyN6GRh06eqy+EHz7t4VYJ4fqkhqXy0eSPeGzYY6wvWs9FP13EN7u+QRYyQgjWFa3j0aWPMv7b8by07iWizdE8N+Y5Fl6+kL8N+xt9ovu0yCvHGUln8N3535Eemc4jfzzCUyuewu13H3CtpjV0yMAbhzdOUVE5gfBmZ2OfOxf73Hl4du0CScIyZAgRU6dS8fnnOJYuxdrBGm6VE4OaP/9EOJ3Ygl4k6mM5bQhoNDhXrSZkWNvZbHYUhM+Hc916ahYvpmbJkjrfs8YePYi66SZCx47FPKD/IZ2Ew6GPjcV24QVU/u8Hou+557j7pq1euAhDSgqGrl2bPVYfG4tl2DDsv/xC9N13NRAC9rlzlZHZG27AetZZxzLLSmCJ22+nZPp0Sl59ldJ338MyYgTxzz17XCauGdPSiL7rLkpefhn7ggVYhg6lZuEiwq+6ql1DHB8Oc//+RFz9F0DqkPmrJfySS5D0ekJGjCAQkHHYvYSGNxwZ9sk+Hvn9ERbmLOTh0x7muj5H9xZAI2m4utfVnJl8Jv9c/k+eXvk0P2f8TLW3mr2Ve7HqrVze43Iu73E53SKO3Ddzp5BOfDDpA97Y8AYfbP2ATSWbePm01wGI/dcz6OLjj+p7HAtUMaxyQlP5449UfPIp7u3bATAPGkTc//0f1kkT0cfFIXw+7L/8QtWcOaoYVjkiqucvQBsejmXo0EM+09psit3wSTiJzpubS/bUa/AXFyPp9VhGjCDi+uuwnnnmUdmJRt1wA1XffU/Fl18S89cj94nbWgLV1ThWrSLyumtb7HfWNmUKhU8+iWfnTky9egFKx7vg8ScwDxigjEIeByKvv47Kr76i9M23MKank/Taq8dV6EXddCP2+fMofOppIq68EuHzdTgTifp0+sc/2jsLzSIZDIRfqpShs9wN4lBPEk8se4KFOQt5ZOgjXNv72jZLOzE0kXcnvMsPe39gxvoZJIQk8NSop5iUOgmL3tImaeg1eu4fcj/9Yvpx/+L7WV78JxCFX2g7jN/n+qhiWOWExbV5MwWP/R/G9HRi//Y3bJMnoT+oxynp9VgnT6Lqhx+RHQ40ISHtlFuVExHZ46Fm8WKs50xG0jXeXFqGD6fi00+R3e4W+5f15eXhzd1PyIjhbZndNiNQU0PunXciPB4SX51B6Omnt9m9Y+zWTQnR/NnnRN18c4NwyMeSmt//AJ8P6/iWd4qtEydQ+NRT2H/5BVOvXsgeD/vvfwBJpyPx5elIev0xzPEBNEYjnf71T8o+/JCE519Aa7Uel3RrkfR6Ev79bzIvv4LSN97A1Ldvq0NNqxyemvKgW7V6ZhKegIe5mXO5Kv2qNhXCtUiSxCXdL+GS7pe0+bXrMyZxDAB2uQqIwq+GY1ZRaTtEIEDhU0+ji44m5bPPiLrxhkOEcC1h556LcLup/u2345xLBdnlwrFiRbukrXJ0OJYtR3Y4GjWRqMUybCjC58O1seV2w/mPPkbOLbe0KOTt8UYEAuQ/NA1vVjaJM2ZgmzixzTuRkTfdRKC8nKqffmrT6zZF9aKFaKOjMQ/o3+JzdBERhIwahf2XuYoHh+eew7NjB/HPP4c+IeEY5vZQQseMIeWjj446qMaRYurVi6hbbgbo0KPCJyJ1ATfqmUlk27ORhcyg2EHtla02waA1YNaZsfsrQQK/t+mohu2FKoZVTkgqv/se99atxD7yCNrQph/U5sGD0XXqhH1OyyNKtSUlr79Ozo03URN0Aq9y4lA9fz4am42Q4YcfwbUMCdoNt9BUwrlhA841a8Dvp+TV19oqq21G8fTp1Pz+O50e//sxG7m2DBuKqU8fJURzMyF/2wLZ68Xx+x9Yx41rsX1zLbYpU/Dl5VH8/AtUfvU1kTffhHXcuGOU045NzF//SsILzxN+ybEdTTzVqBPD9UaGM6oyAEgLT2uXPLUlYcYwKr2V6AxafOrIsEpLqVm2jPJPPu2wMcbbG39FBSXTp2MZOhTbeec2e7yk0WA75xxqli0jUFl57DNYj0B1NZVffQ3QIFSoSsdHeL1UL16M9ayzmnSbpbVaMfXpg2P1qhZdt+z9D9CGhRFx7bXY58zBvWNHW2X5qKn84UfKP/iQiKuvJuKqq45ZOpIkEXnTjXgzM6lZsuSYpVOLc+VKZKezRV4kDsZ69ngkvZ7yjz/GPGgQsfff3/YZPEGQDAbCLrzwmLiRO5WpqXCjN2kxmg+YYmVWZiIhNerG7EQjzBBGlbcKvUGD36OKYZUWUPPnMnLvuJOiZ5+lZPrL7Z2dDknJKzMI1NQQ98TjLZ8Ic+654PNhX7DgGOeuIRVffYXscBB50014tu/APmfOcU1f5chxrFqFbLc3CLRxOCzDhuLetBnZ5WryOM+ePdQsWkTENdcoLrPCwih+uWPc5871Gyj8xz+wjBxB3GOPHvP0bJMmoU9IoOzDD495WtULF6GxWLCMGNHqc7VWK6HjxqENDydx+kvHzU5Y5dRB8THccL5BZlUmCaEJmHXmdspV2xFuDMfusaMzaFUziY5CRx5tda7fwP577sGYlkbYpZdQ9t57lL79Tntnq0Ph2rKVym++IfKaqZh69GjxeaY+vTGkpBxXUwnZ66X8k08IGTWK2GkPYerdm5JXZiB3QIfjJwquLVvJvf0OvFlZxzwt+/z5aEJCWuS4P2T4cMVuuBl/w2Xvf4BkNhNxzVS0NhvRt92K44+l7R7S2Zefz/577kGXEE/Syy8fF8En6XRE3nA9rrXrKP/4Y4Tf3+prCL+fiq++Ju/BByn4178oefU1yj/7HPsvv+BYuRL3rt34ioup/u03Qs4444gn68U/+yxps2cddl6CisrRUFPhPsSTREZVBl3CurRTjtoWm9FGlacKvbHjmkm0yJuEJEmTgRmAFnhfCPH8QZ+PBX4CakPk/E8I8VTbZbNtCFRXk33d9UTdcjO2KVM6lHsP965d5N5xB7rYGDp/8D7ayEiE10fJK6+gsViIvK7tZ5OeaAhZpvDpp9FGRxF9992tOleSJGznnkvpW2/hKy5GH3vsJ6FU/fQTgZJSol54QQkVOu0hcm66mYovviDqhhuOefonG0IIip5/Hte6dbi2baPz++9h6tnz2KTl81Hz60JCzzqrRS6szIMHg1aLY9UqQg4z+ujLy6Nqzhwip15d5183YupUyj/5lJKXpmP56st2aZNkh4Pcv96F8HpJfusTtOHhxy3t8Msuo2bJEoqee57K774n7u//d9jyO5iapUspeuEFvHv3oYuPR7hcBKqq4DADHtbxR+4PWBsaAs3MTVA5cfD7AhRnVZPQPby9swIoI8NRSaF1/wfkAFn2LIbHd0xvM60lzKiYSej0J7CZhCRJWuAN4BygN/AXSZJ6N3LoUiHEwODS4YQwgGy3Ixn05D80jbx778VfUtLeWQLAm5VFzs23oLFYSPnwQ3TR0UgaDQnPPUvo2eMpevZZKr//vr2z2e5Ufv897s2biXv44SNyLWQ7dwoIQfW8eccgdw0Rskz5Bx9i6t0by8iRAISMGkXI6adT9tbbBOz2Y56Hkw3H8uW41q0j8vrrkXQ6sq+7Huf6DcckLeeaNQSqqrC1wEQCQBsaiqlPH5yr1xz2mLKZHwMQWa8jpDGZiL77LlybNlHTDt5OhCyT/+hjeHbvJnH6SxjTju9kHY3FQvIHH5D42qvILhc5N9zI/nvuxZube9hz3Lt3k3PLreTeehvC5yPp9dfo9tsieqxcQc+tW+i+7E/SZs+i88cfk/jKy8T94wniHnu0SY8gKqcWq2Zl8sNL61k/v/29uQT8Ms5qbwMziQJHAZ6A56QZGQ4zhFHlqULXgUeGW2ImMQzYK4TIEEJ4ga+AC49tto4N+sREUr/4gtiHp1Hz+x9knHc+VbN/blfTCV9hIdk33QSBAJ0//KCBM3tJpyNx+nRCTj+dgif+gX1u42FBTwUClZWUvDQd82lDsJ1//hFdw9i1K8aePak6Dna7Nb/9hjcri6hbbm4w2hc77SECdjtl771/zPPQ1rh37cb+S/t45BBCUPrqa+ji44l56EFSP/8MbUQ4OTfffEy8dNjnL0CyWAgZPbrF54QMH4Zrc+N2w/7yciq//Zaw888/5FV7+MUXY0hNpfjllxGB4/ugKH39dap//ZXYRx4mdMyY45p2LZIkYZswgbQ5PxNz//3ULFtGxrnnUfzyK8gOR91x/rIyCp78J5kXXYxr82biHnuUrrNnYz377Lp7TNJq0UVFYezenZDhw7BNnkzk1VcrHSh10tcJgSwLyvJqjtn1Az6ZncsL0Bk0rPhhH1v/yDtmabUER6XnkIAbdZ4kwk58TxKgjAz7ZB8a3YntWi0RqN9N3x/cdzAjJUnaJEnSXEmS+jR2IUmSbpMkaa0kSWtL2mlUVtJqibr5Zrr8+AOG1FTyH36Y/ffc0y6jxP7ycnJuuhnZXk3y++81OiqjMRhIev01zIMGkffwI1QvXtzkNb378yh9+20yL7u83YTLsaB4xgwC1dV0euKJo3qVbDt3Cu5Nm5sceTpahBCUvfc++qQkrBMbjiyaevXCdv55lH/yCb7CwmOWh7ZGyDL5f/sbeQ9Nw71z53FP3/Hnn7g2bSL69tvRGAxKx/bzzzGkpJB7x53Y57fdxEgRCFD966+EnnlGi4NoAFiGDQOfD9eGQ0erKz77DOHx1PlprY+k0xFz//149+6jatbso8p7cwgh8GZlUf7Jp+Tcehulb75F2KWXEHn99cc03ZagMRqJvuN2us79Bds5kyl75x32TT6Hyh9+pPS999g3cRKV339PxNSpdJ0/TxW4R4CQRYeeNwPw59e7+erp1Sz/395jkteMjSW4HT4m3dqX1H5R/P7lLnavbr+2uM6tWj0xnFmlWJyeNCPDxjAAhC7QYYNutMRmuDHlcXANXQ+kCCFqJEmaAvwIdD/kJCHeBd4FOO2009r1jjSmpZHyxeeUf/wJJTNmsO+88+n0+N+xnXfecbHbC1RXk3vLrfjy8uj8/nuY+zTafwBAYzaT/PZb5NxwI3n33U/yu+80sKsLVFVhnzefqtmzcK1dB4A2LIyCfzyJedCgNpv0EaiuxrVxI87163Gt34B7xw6MaWmEjB5N6OjTMfXr12ofni3BtW0blV99TcQ11xx11KOwKVMoeWk69l/mEn37bW2Uw4a41q3DtWkTcf94otGoZTH33kf13HmUvPoaCc/++5jkoa2pXrgQz86doNFQ/OJLdH7/veOWthCCkldfQ5+QQPglF9ft10VHk/LJx+Tefgd5DzyA/PTThF/atP9TIQTejAx8BYUInxfh8ymL11f3vy8/n0B5eatfq5sHBe2GV68mZNSouv2BGgfln3+B9ezxGLt2bfRc66SJmPr0oeS1V7GdO6VNQ+3KTieOVatwLP2TmqVL8QU7gobUVKJuuZnoe+/tUPMn9HFxJLzwAhF/+QuFzz5HwWOPARB61lnETpuGMe3kEAjHG583wI8vrScyPoSzru/VoX7zWnatLGDL73lExIewYUEOHoePM6f2RKNpu7xu+zMfW7SJlD5RJKVH8PMbm1g4cwd6o5YuA2LaLJ2WUlMRjD5Xz0wisyqTCGMEEaaI456fY0GYQRHDss6Pz9MxR4ZbIob3A8n1/k8C8usfIISw19v+RZKkNyVJihZClLZNNo8NklZL1E03Ejp2LAX/93/kP/wI9rnziP/XP9HFHLubQna5yL3zTty7d5P8xutYhg5t9hyt1Ury+++Rc9115P71LpLffksRwbNmU7NkCcLnw5CWRsz992M77zwQMhkXXkTB3x8n+YP3j6jh8+7fj2vdOpzrN+DasAHPnj3K5BStFlN6OtaJE/Ds3kPpG29Q+vrraMLCCBk1ktDRowk5/XT0nTodSfE0QMgyRU89jTYykph7WjdprjH0iYmYBw3CPmfOMRPDZe9/gDYigvCLL270c0NSYnDi1CdE3nB9q7xiHCn+sjJK33qbqJtvanXnSMgypa+/gSE1lfDLLqX4xZdwLF/eQPC16Dp+P0XPPU/ouHGEjm7eQ0MtNUuW4N6yhfhnnj5kJFBrs9H5g/fZf8+9FPz97wSq7YdMTvQVFOBYsRLHyhU4V6xs0VsgbXR0q80GtKEhmPv2xbmqoWeIym++Qa6qIuqWWw57riRJxD70IDk33UzlV18Red11rUq7Mey//krll1/hXLMG4fMhmc2EDB9O5I03EDpmDIbk5OYv0o6YBw4k9asvqVmyBK3NhuW009o7Syc0K/63j+Lsaoqzq+ncJ4ruQ+PaO0sNKN1fw5LPd5HQPZwL7h/I2jlZrP0lC48rwIQbe6PVH73zq8oiJ3m7Khh+YRqSRkJn0DLlzv789MpG5r+3jXPv7k9yz8g2+DYtp7GR4ZPJkwQo3iQA/Boffm/H64RBy8TwGqC7JEldgDzgKuDq+gdIktQJKBJCCEmShqGYX5S1dWaPFca0LqR8/pkyq/uVV8i+/gZSv/mm2chmrcFfVoZryxbcW7dRs3gx7u3bSXzpRULPPLPF19BFRJD8wQdkX3stOdcprzW10dFEXP0XbBdcgKl37waiN+7haRT+6ykqv/661Q70S954g9LXXgdAExKCeeBArJMmYhk8GHP//g3Cs/orKnAsX47jz2U4/vyT6rnKBDVj926EXXQRkddee8SvM6t++AHXpk3EP/8cWpvtiK5xMLYpUyj697/x7NmDsfshLzCOCvfu3dQsWUL0vfegMR/eP2TU7bdR+f33lLw0neR33m7TPByM8PvJe/AhnKtW4c3NIfntt1vVOape8Cue3btJ+O9/sE6aRMWXX1H04ot0+e47JE3LH1Bl779PxeefU/nDD6R+9WWLOgFCCEpfex19cjJhFzY+VUFjsZD01pvkT3uY4udfIFBZial3b5wrV+JYvqLODZs2MpKQESMIGTUSQ1oakt6AZNAj6estBgOSXo/GZDoi92KWYcMo++gjZKcTjcWiuNebORPL8OGYBwxo8tyQUaMIGTWS0rfeJuySS4+4/ZGdTgr//W+qvv8f+pTOREydSugZYzAPGXLErsXaC0mjwXrWkXuBUFHI3lbGliX76TcuieIsO79/tYuEHuGEhHWM+uBx+pj7zhaMFh2Tbu2LVqth+AVpGC06ln23F6/bzzm390NvPLo3j9uX5SNpJHqNOjAgYDDpOP+eAfzw0np+eWsLF94/kE5dwo72K7WYmgoPBrMOg6lewI2qTMZ3bn2AmI5KuDEcAJ/Gi8/bIidmxx8hRLMLMAXYDewD/h7cdwdwR3D7bmAbsAlYCYxq7ppDhgwRHZGalavE9t59RO499wpZlo/oGn67XdQsXy5K3n1X5N5zr9g9bpzYnt5TWXr2EnvPPVdU/vjjEefRm5cnCp97XlT/8YeQfb7DHifLssi+8UaxY9Bg4cnJafH1K777XmxP7yn2P/CgcO3YIWS/v8XnyrIsXDt3idL3PxBZU68R29N7ir3nTBE1K1a0+Bq1OFavFrtGjhKZf7n6iH+LxvCVlIjtvXqLopdfbrNr1pL3t0fFjoGDhK+8vNljS959V2xP7ylqVq067DGy3y+q5s4VmVdcKfZPe7jJ3/twFP33v2J7ek+RfdPNYnt6T2H/9dcWnysHAmLfeeeLvedMqasHlbNmie3pPUXlrFktvo5r5y6xvW8/kX3rrWL36DFiz9kThL+iotnz7AsXiu3pPUXF9/9rPq8+n8j7v/+ru9d2DBossm+7TZR+9JFw7dwp5ECgxfk9UqqX/im2p/cU1Uv/FEIIUfHtt8r/f/7ZovOdmzeL7ek9RfGrrx1R+q5t28TeyeeI7T17iaLpLwvZ6z2i66icPDirPeLDh5eKL/61Uvi8flFeUCPeunux+PmNTW3arh4pckAWP7+xSbx5528if2/lIZ9v+zNPvHHHIvHdC2uEq+bI67PfFxAfTPtD/PLW5kY/r6l0i08eXy7ee+B3UZJbfcTptJY5b24SX/xrZd3/Za4y0XdmX/Hx1o+PWx6ONUWOItF3Zl/x4Uezxeu3LxJyoH3qHbBWHE7nHu6DY710VDEshBClH3wotqf3FKXvvdfqcyt//lns6Nuv7oG8Z8JEsf+BB0TpBx8Kx+rVwl9dcwxyfHi8eXli55DTRNY117ZIDNQsWya29+krsm+8Ucgez1Gnb1+8WOw5e0KduPYWFjZ5vCzLovqPpSLz6qlie3pPsWv0aOHateuo83Ew2TfeKPZMmNimDwNvfr7Y3qevKPj3v1t0fMDlErvPHCsyLr/ikHwE3G5R/tXXYs/EiWJ7ek+x+8yxYnt6T5H3yN9aJeqq5s0X29N7ivwnnxSy1yv2nX+B2D12nAg4HC07/5dfFOE7++e6fXIgIPZdfLHYM+4sEXC7m72G7PWKjIsvEbtGjhK+sjLh3LBB7OjbT2TfdHPTnblAQOy78CKxZ+LEFncCZFkW9kWLhGPt2japv60lUFMjtvfpK4pemi5kv1/snTRZZFx8SavqWe6994mdgwYLX2lpi8+RZVmUzZwpdvTtJ3aPOeOIOp+nMlUlTuHztLzTf6Igy7L45e3N4s2//iZKcu11+zf8mi1ev32R2Lkivx1zp7BmTqZ4/fZFYtNvuYc9Zu/6IvHmXb+JL59aKWoqm29zGmPP2iLx+u2LRNbWw99XVSVO8dHf/hQfPLxUVBS2rI08HD6vv0V5/frfq8WsVzfU/b+2cK3oO7OvWLp/6VGl35Fw+Vyi78y+4q2Z34jXb18kPK7WD+q0BU2J4VMuAl1LiLzxBqznTKZ4+ss4Vqxo8Xn2X34h/+FHMA3oT/L779Nj5Qq6LZhP4vTpRN10I5ahQ9vU9KIl6BMSiHvsUZxr1lDx2WdNHuvetZv9996HMS2NxBkz2mSmtnXsWNJmzyL67rupXriQjHOmUPbRTITP1+A4IctUL1xI1mWXk3vrrfjy84l74nG6/frrMbGptZ17Lr6cHNxbt7bZNcs//gSEIKqFM/M1JhMx99yDe/NmqufPB5RJiqXvvcfes8+m8Mkn0VptJM6YQbdFC4m+526qfvqJon8/26JZ1p6MDAoeewzTgP7E/d//Ien1dHryH/gLCih9661mzxeBACVvvIGha1ds50yu2y9pNMQ9/DC+/Hwqvviy2euUvf8+7u3b6fTkk+giIzEPHEinJ/+BY9kyipsIOV79qzJpL+auuxqdiNgYkiRhPessLEOGtIunAU1I0G549Wqqf12ouNe77dZWmaXE3HcfssdD6Tstiz7pLysj9447KHrueULGjKHLTz+2OHCFCrhrfHz59GoWf378vaQca3auKCRjQwnDL0wjOumAb/b+ZyUT3zWMpd/sqbNZbQ9ytpexanYG3YfG0W9sY06qFLoOiuW8uwZQVermfy+ux17adNjzxti2NA9rpInkXoe3CbZFm7ngvoEIWfDTjA3k761stUeLQEBm29I8PntiJZ89sYKKQkeTxyvR5w5Mnqt1q3Yy2QybdCZMWhNuyQl0TPdqqhhuBEmSSHjmGQxpXch78CF8+fnNnmOfO5e8hx/BMngwnd99l9DRpx/XSE5NEXbJJYSceQbF01/Gk5nZ6DG+oiJyb79dcYL/zttHFNTicGhMJmLuvou0n2djHnoaxS+8QOYllyoTewIBqubMIfPCi9h/9z0EqquJf+Zpus2fR+TUqa1ybdUarGefDXo99p/bxudwoKqKym++wTZlSgNf0c0RdtGFGLt3p/jllyl+6SX2jjuLkpemY+reg84ffUjqt99gmzQRSasl+q9/JfKGG6j4/HNKXn216fzUONh/9z1IJhNJM2bUeSewDBlC2CWXUPbRTDx79zZ5Dfu8eXj37iP6r3ce4iUkZORIQkaPpvTtt5WoX4fBvWsXJW++hW3KOQ0CWIRfdhkRV19N+YcfUjX7UHdiyqS91zF06YLt3HObzGdHwzJ8OK6tWyl9800MKSlYJ0xo1fnGtC6EX3IxFV9+Rd6DD1Hy6mtUzZ6Na8uWQ4K11CxbRsZFF+FcsZK4Jx4n6Y3X66LbqbSM7cvy8XsC7F5dROn+6mOWjhyQj6tbs6oSF0u/3k1C93AGnt25wWcajcRZ1/Ui4JNZ/NnOdnG3Zi91seCDbUTGhzDump7NdhiTe0Vy4f0D8Th8fP/fdc2KzPpUlTjZv7OCXqfHN+uZIjI+hAvuHUjAJ/PDi+v57oV17FlbhBxoWsAJWbBnTRFf/nMVSz7fhTXSiE6v5dcPtxPwN35uwCfjqvY1nDxXmYFJayI+5OQK/W0z2nBK1Zit+sOWR3uiiuHDoAkJIem11xA+H/vvVUZqDod93jzypj2MedBAkt95G43Fchxz2jySJBH/1NNIRiMFj/3fIY79AzUOcm+/A9luJ/mdt9vMFdvBGDp3Jvntt0l643Vkh4Psa69j79hx5D80DSFkEv77H7r+Mofwyy475qN62rAwQseMwT53bpsEOqj48itkp7NRP7JNIWm1xDz0IL7sHMo++JCQMaNJ/e47On/4ASEjRzZ4QEiSROzfHiHsskspe+ttyj74sNFrCiEo+Pvf8WZlkTh9+iFePWKnPYQmJITCfz112IegCAQofeNNDN26Yps8udFjYqc9hGy3U/ruu41fw+cj/7HH0NpsxD3xxCGfxz32KJahQyl4/AlcW7c1+Kx6/nw8e/YQfdddx8Rd37HEMmwo+P14du8m8pabjyj/Mffdh3Xsmbi2bKH07bfJf/gRsi6/gt3DhrP79NFkTb2G3LvuJvfmW9CGhZH67TdETp3aId1ldWTkgMyWJfuJ62LDaNax8qeMNk9DCMH2P/N578GlfPJ/y1n8+U4yNpbgdfvbPK1aZFmwaOZ2JAnG39CrUQEYHmdh5CVdydlWxo7lBW2Wtt8XaFY4+n0B5r27FREQrZoY16lLGBc/NBghC+a+vaXFZbh9WQGSBL1GJbTo+JjOVq59ZhRnXNUDj8PHgve38dkTK9m0KPeQNIUQZG8t45vn1rDgg23oDBrO/Wt/Lnl4CGOvSackp5o1Pzc+CFVT2YhbNXsmqWGpaKSTS56FGcMoStzDTf8dgzXy2AxyHQ0ddFpfx8DYpQsJLzzP/rvupuiZZ4h/+ulDjrHPm0feQ9MwDxxI53feaeBloSOhj4ul0+N/J//hRyj/6KM6N0/C5yPv/vvx7NlD8ttvY+rV65jmQ5IkrOPHEzJqFGXvvYdr8xbinnhciSLVCs8EbYHt3CnU/PYbznXrCBk27IivI3s8lH/6KSFjxhyRH+TQM88k8bVXMXXvjiE1tcljJUki/l//QnY4KP7vf9FYQ4m44ooGx5R/NJPq+fOJfXgaISMOjW2vi4wk9qEHKfzHk9hnzybsggsOOcY+dx7ejAwSX55+WDFn6tmTsAsvpOLTz4icOhV9QsMHTel77+HZvoPEV2c0Olop6fUkzniFzMsuY/8999Dlu2/RRUUp5hmvv6EI8XMaF+LtiRCCwn1VxKWFNSoyLIMGgV6PLjz8sB4wmkMXHU3Sa68BIHu9+HJz8WZlHVgys3Bv3074X64i7pFHmvRconJ4MjeXUlPhYcyVPagscrLih33k76kkoXt4m1zf6/Kz5POd7FlbTGKPcIwhevasKWL70nw0OonE7uGk9I0mpW8UYbHmNuvMrJ+fTcG+Ks6+sTe2qMPXjX5nJrFvfQnLvt1Dcq/IoxYprhovXz+9GpfDR0RcCFGJIUQmhBCVEEpkQgjWSBOSRmLpV7spyanmnDv6ER7XusGjqMRQJtzch1kzNvLHl7sZf0PTPpMDAZkdywtI6RfdYAS2OfRGLf3GJtHnjESyNpeycWEOf367h9WzM+g9JpH+45KoKXez4sd9FOytwhZt4uwbe9N9aFxdu9B1UCy9RsWzbn42nftEHVKvGg24UZnJgNimPc+ciIQZwqjyHv4tYnujiuFmsI4fT9Ttt1P2zjuY+vVrIDzs8+YrQnjAAJI7sBCuxXbeeVQvWEDJjFcJPfNMDN26UfjUUzj+/JNOTz9F6JiWh549WjRmMzH33nvc0msM67hxSGYz9jm/tEgMi0CAgN2ObLcTsNsJVNmR7VU4164jUFbWpB/ZpqgNR9vi47VaEl94gVyHg8In/4kmJISwoCmBY9Vqil96CevEiUTedNNhrxF+2WVUfv89RS/8h9CxYxu4rROBAKVvvomxe3eszQSeiLn3Huy//ELJjFdJeOH5uv3uXbsofettbFOmYDsoCl99dJGRJL/+OllXT2X/ffeR8uGH2OcvwLtvX5NCvD3J3FjK3He2MObK7vQfd6ivXo3FQux992Lo0qVNgmdoDAYllPhhAnZ0ZPasLSJvVwVjrujRJn5i25rNv+3HGmUitX80Ab/Mpt9yWfnjPi6eNviohWlxtp3572+juszN8AvTGDIpBUkjEfDLFOyrIntLKdlby/jz2z38+e0ebDFmBo5Ppt/YpKNOd83sTLqdFkuPYU37EpaC5hJfPbOaxZ/u4Px7Bx7V9/7jq924anz0PTORyiIX+Xsq2b26qO5zvVGLLcZM2f4ahkxOIW3gkfnzT+4ZydBzu7Dm50wSeoTT+/TDj/hmbS7FZffSZ0zLRoUPRqORSBsYQ9rAGIoy7WxclMOmRblsWpiDEGC2GTjjqh70Hp2AVndoHR99RXfydlew8KPtXPnEMIzmA7LrYDHs9DnJd+RzcVjjPupPZMKMYWTbs9s7G4dFFcMtIObee3Bv3UrR089g6tkTc//+2OcvIO+hhxQh/O67x31i3JEgSRKd/vlPMs47n/xHHyP0rHFUfvsdUXfcTsTll7d39o47GosF61lnUT1vHsbu3QnYq5Dt1YrgrbYTqN0Oil+5+vD2hCGnn668Hj9OSAYDSTNmkHPrreT/7VE0ISGYevYk74EHMKSkEP/ss00+1CSNhvgnnyTzssspeWUGnf5xwIzB/ssvyqjwK680O1qvT0gg8rprKfvgQyJvvAFTz54HmUc83ux3MfXuTfwzz5A/bRqF/34W5+rVLRLi7YEckFnx4z4AtizJo9+ZSUiNjA4facfoZMHr9rP0693sXKGEuTWF6hlxYccS86X7a8jfU8moS7qh0UhoDFqGntuF37/YRfaWMlL7Rx/RdYUQbP5tP8v/txeLzcDFDw4ivlt43edanYak9AiS0iM4/bLu2EtdZG8tY8/aIv74ajcarUSfMS2fd1AfnzfAwo+2Y7YZOPMv6S0StmExZk6/tBu/f7GLbUvz6XvGkaW9d10xe9cWM/zCNE47J7Vuv8flpzzfQXl+DWX5DsrzauhzRiLDLkg7onRqOW1KKgV7K/njq93EptiITgpt9LjtS/MJjTDSuU/UUaUHENfFxqRb+mIvdbHtz3yMFh39zkxq0szDYNIx4aY+/O+/61j69W7OvqF33WcHR5+rFYsn0+S5WsKN4WzxbGnvbBwWVQy3AEmrJeHF/5J12eXsv/c+ov96J4VPPY25f/8TRgjXoouKotOTT5J3//24t23DdsH5xNx3X3tnq90Iu+gi7HPmUPTMMwBIFgtaqxWtzYbGZkPfqRPaHt3R2MLQ2mxow5T9WlsY2jBb8LgwdNFRx91eUwnT/TY5199A3n33Y+icjHC7SXrt1RbVSVPv3kRMnUrFZ58RdvHFmPv1Rfj9lL7xJsZghMGWEHXbbVR++11dmObSd99VzCNee7XFk7nCzjsX947tlAftoBNfnXHczWZawo7lBVQWOel2Wix71xaTu6O8TR6yJxPF2XYWfLANe4mL06akUl3uZv38HLoMiCEutW0C57QFWxbnojNo6HX6gTkSvU6PZ+OvOaz4cR+d+0a1Ogywu8bHok92kLW5lNT+0Yy/vhemkKaDt9iizfQbm0TvMQnMfWsLv3+xC3OogbRBrR81XfH9XioKnVxw/8Bm061PnzEJ7FtfzLLv99K5dyS26NaZ3TjtXn7/chexKVYGT2w4Wc9o1hHfNYz4rm0byEKjkZhwUx++fmY189/byuWPndYgcAUok/RydpQz9NwubRrS2RZtZuRFLe/cdUoLY8iUVNbOySKlbxTdT1NG7GsqPBgtujoxXetJIi3s6DoKHRGb0aaaSZwM6CIiSHx1BtlXT6XwH09iHjiQ5PdOLCFci23yJJzXXIO/qIiEZ545pSfdhI4ZTbfflyDp9WhDQ9vFHdfRoA0NJfn998i+5lo8e/aS+MorrXqdHnPvPdjnzaXwX/8i9euvsM+Zo0y8a4UY1dpsRN1xB8UvvEDZhx8p5hHnntsq0w+A2AcfxJeTS6CyUvH20cHweQOs+TmTTmk2zr6+N3m7K9m8ZL8qhoMIWbBxkWJmYLEZuOjBQSR0j8Dj9LF/ZwWLPt7BFf93Gjp9+5u+uGt87FpdRM8RnRqIRq1Ww/AL01jw/jb2rCkifXjLQ8rn76nk1w+34az2MvqK7vQfl9SqtlWr1TDp1r789MoGFnywjQvuG0BC95Z1JmVZsGpWBlt+z2PAWcmtDiksSYq5xJdPrWLhzO1ccN/AFv9OQgj++HIXXref8df3RqM9fp1Yi83AxFv68NPLG1jy+S4m3NQwCuv2ZflI0CDiXHtx2pRUcraV8/sXu4jvGkZohImaCk/DyXNVmWgkDSm2lGavF5AFT/+8nT92lzCwczgjukQxrEskKVGWDvlMDzOE4Ql4cPldmHUdb45Dxxt66cCY+/Qh4T//wXb++SS//x7a0MZfy5wIdHr87yS99uoJJ/6OBfq4OHSRkSdsWegiIkj57FM6f/IxtsmtMy3QWq3E/e1R3Fu3UvHFl5S8+SbGnj1bLUYjpl6NPjGR4v/8B214OHGP/71V54PyBibptVfp/MnHHXJUePNvuTiqvIy8uCtavYY+oxPI3lpGVYmzvbPW7jiqPMx+fRPLv99Lar9ornx8WJ2QM1r0jLu2JxUFDtb8nNW+GQ2yfVk+AZ/cqH1ut8GxxHS2smpWRotdQG1Zsp8fp69Hq9Nw6cNDGHBW8hEJEr1Ry3l3DcAWbWLOm1so3V/T7Dkep485b2xm/bxseo9JYOQlR2aOYo00MfbqdAr2VTHnjc34PC3zsrN3bTH7NpQw/Pw0IhOO/+BQYo8Ihp2fxp41RWxbesANqhycONe5b1SH8F6g1WqYcGNvAn6ZRR/vQMhC8TEcWc+tWlUGSaFJGLRNP4u8fpl7vlzPzOVZxFiNLNlVwiPfb2bsi0sY8dwi7vlyA5+uzGZ3UXW7uM1rjDCj8magytMxR4fVkeFWYps0sYG/VBWVjoAuIgLdEXrEsJ07hcrvvqPouedAlkl6/bVWi1GNwUDstIfIe/gR4v/1z6PyddsRRzXcDh/r5+eQ0i+qTuT1PSOR9fOy2fJ7HqMv697OOWw/sreVsWjmdrzuAGdenU6fMQmH/IYpfaLofXo8GxZk02VgNJ26tO0r89ZQ604tMT2CqMRDBzQkjcSIi9KY/eomti3Np/+4w09oE7JgxY/72LAgh9T+0Uy4sTcG89E9Vk2hes6/dyD/++86Zr+2kUsfHnJYs4XyAge/vLWZ6lI3Z16dfsT2vrX0GNYJIQsWfbyD2a9u5Ly7BzT5fRxVHn7/ahdxXWwMPPvQyaTHiyGTU8jfW8mf3+whLtVGTGcrWVvKcFZ56TP6yCbOHQvC4yyMvrw7Sz7fxabfcqmp8DQwHcqsymzWRMLlDXDHZ+v4fXcJj5/bi1vGpCGEYG9xDasyy1mdWc6qzDJmb1I6BtGhBi4bkszU4Z1Jjjw6t681Hj9ZpQ6yyhxklTrILHWSVebA4w9wy+g0LhiQcFhzlPpiuFNIy9+4HC9UMayicoojSRKd/vEEGRdehLFnOqHjxx/RdWznnEPImDEn9BuTw7FuXjZet7+BnWBIuJG0wTHsXF7A8PPTWuwr9WTBUeVh7Zwstv6RR2RCCBc+0IeohMP/9qdf1p2c7eX89vEOrvi/oegM7VNe9d2pHY7kXpEkpoez9pdMeo7sdIgtKlA3wrdnTRF9zkjkjCu7t5mJgDXSxHn3DOCHF9cz+7VNXDJtMGZrw9HCzE0l/PrRdnR6DRc+OIiEepP0job0EfFo9Vp+/WAbP72ygfPvbdz+WAjB71/swu+RGX99r+NqHnEwkkZiwo296+yHr/i/oWz/M5+QMAMpfTuWGVPv0QlkbSljxY/7kP2izkzCL/vJtmczJnHMYc+1u33cMnMta7LLeeHSflw5VLHPliSJ7nFWusdZuWZECkIIcsqdrMosZ+H2It79Yx/v/LGP8T1juXZkKmO6RTdrQ13j8bMqo4yle0rZll9FZqmT0pqG8RbibEZSo0JwBAT3f72R95Zm8Ng5vRjd/dDJp2EGRQzbvfZDPusIqGJY5YSmpsJDZZGDQEAQ8MnIAUHALxPwB7d9MjEp1jZ7UJysGNPSSPnkY/SdOh3VyOzJKISry91sWbyf9OGdDhlJ7Dc2ib1ri9m9uvCIPQCcaLhrfKxfkM2WxfsJBAT9xyUx8uKuzYpbg1nHWdf2YtarG1k1O5PTL+12nHLckPru1A6HJEmMuKgr37+wjs2/5XLalIaz+z0uP3Pf3kLergpGXJTG4Ekpbf5GIyohlHPvGsCsVzbw8+ubuPCBQRhMOoQsWDs3i9WzM4npbOWcO/q1uRlAtyGxaPUa5r27hR+nb+CC+wZisTUU47tXF5G5qZRRl3YjolP7z50xWw1MvKUvP768gbnvbGH/rgpOOye1XUV6Y0iSxFnX9uTLp1fjsnvrzCTyavLwyb7DepIod3i57sNV7Cyo5tWrBnH+gMOPeEuSREpUCClRIVxxWjL5lS6+WJXDV2tyWLhjNV2iQ5g6vDOXD0kmzKJ0dPwBmU37q/hzTyl/7i1hQ04lfllg0mvolxjGWT1jSI0OoUtUCKnRIaREWbAYFAkpy4JZm/L57/xdXPPBKs7oEcOjk3vSO+HAqLdqJqGicowoyanmh5fWN2vbptFIXPn4sHaxZzuRsAwa1N5Z6JCs/jkTgWDY+Yc+pOK7hhGdHMrmxfvpPfpQ84DD4ajyUF3ubldzgdbicfnZuFDxserzBOgxLI6h53YhPLblr16Te0fSZ0wCGxfmkDYwps09DDRH6f7qBu7UmqJTlzDSBsawYUEOfc5IxByqiMGaCg8/v76JigIHZ9/Qi/QRx25yVnzXMCbe2pe5b29h3rtbmXhzHxZ/qkSwSx/eibFT04/ZCHuX/tGc99cB/PLWZn6cvp4L7htU5w/XUelh6de76ZQWxoDx7WcecTAJ3cMZfkEXVv6YARINPIV0JMxWA+Ov68Xcd7bUuYTLqAx6kgg/1EyisMrNtR+sIqfcybvXDeGsnk37jz6YhHAz0yalc8/4bszbWsgnK7J5Zs4OXlywi/P6J2B3+ViRUUa1248kQb/EMG47I43R3aMZkhKBUdd0HdNoJC4alMjkvp34bGU2r/22l3NfW8rFgxJ5aGI6ieFmVQyrqBwL7GUufn59E8YQHefcoYTz1Oo0aLSSstYpa783wLfPreX3L3dx0YOD2sUeVQiBo9LbquhHKh2D8nwHu1YU0P+s5EYjeUmSRL+xSSz+dCf5eypJ7NG8rbTX5efH6RuoKnYy+fZ+Rxx44HjhdfvZsmQ/Gxbk4HH66To4hqHndWnSJKIpRl3ajZxt5Sz6eDtXPj4M/XE0l9i8eP8h7tSaYvgFaWRuKmH9vGxOv6w7Zfk1/PzaJjwuP+fdPYDk3q3z2nAkdOkfzbhr0vntk518/H/LCfhkRl/enf5ntc5bxZGQ3DuS8+8dyM+vb+KHl9Zx4f2DsEaZWPz5TgK+oHlEG7osawsGT0yhotCJVq9pMvpee5PSN4pbXzkDbXDkOtOuhGw+eGQ4p8zJ1A9WUl7j5eObhjEi7cjNPow6LRcOTOTCgYlsy6/i0xXZ/Lgxj+hQI+f1j2d0txhGdY0iIuTIJpOb9FpuGZPG5UOSefP3vXy0LIufNxdww6hU7jpL6TR1VPdqqhhWOeHwOH38/Ppm/D6ZS+8f0uyI78iLu7Lk813sWlVIz2M4inM4/vhyN1uX5jHhxt70GNbxJg6oHJ6VP+1Db9Qy5JzDuzrqMTSO5f/by5bF+5sVw0IIFn2yg6oSF+FxFhZ8sI0L7x903EdIW0LAJ7P1jzzWzcvCVe0jpV8Uw89PI6az9aiuazDpGHddT2a9spFVP2Uw+vLjM/nQXeNjdyPu1JoiMiGE9JHxbFmSR3SylaVf70ar13DxQ4OJST66cmgNvUYl4Hb42bw4l7Ou69Vq12lHQ0L3cC68fxCzX9vIDy+tp9eoeLK3lDH68u6tDqV8PJA0UoPAFh0ZbT0TjozKDKLN0dgMB0wLdhdVc837q/AGZL64dQQDksPbLO0+CWE8f2l/nr24H5LUthOXwyx6HjunF9ePTOXFBbt4948MukRZMGgMVHoq2yydtqRjGdOoqDRDwCcz9+0tVBU7OeeOfi0yfeh9egJxXWws/34vbofvOOTyADtXFrD1jzxMIXoWzdxB1pbS45r+yUZNhYe1c7NwVHqaP/goKdhbSeamUgZNTKl7Rd4YOoOW3qcnkLGplOpyd5PX3LAgh4wNJYy8uCsXPzSY0Agjc97cREWho62zf8QIIdi3oZgvnlrFn9/uITIhlEsfGcJ5dw04aiFcS3LPSPqemcim33LJ31N5VNeqKnFRmFHVrAupOndqTXiHaIxh53VBIFj40XYsNgOXPjLkuArhWgZN6Mz1z55+XIVwLXFdbFz4wCD8Ppk1c7KI7xbWpJcNldaTaW/oSSIgC274cDUAX982sk2FcH00GumYvWFICDfz4mUDMOk17C1xEGYMw+7pmBPoVDHcwSjOtjP3nS38+PIGirM7ZqVpL4QQ/PbpDvJ2V3LWdb1ISm+Z+y5JI3Hm1em4a3ysDIbSPR6U5Faz5PNdJPYIZ+q/RhCVFMq8d7eSv7fyuOXhZMLnDTDnzU2s+imDz55YwYofjl3nRgjFZZbFZmiRTWTfMxJBCLb9kXfYY/bvLGflj/voOjiWgWcnY7YaOP+egWg0ErNf3YSj6tgL/OYoyanmx+kbmPfOVrQ6DeffM4CLHhhEp7S2H7keeXFXbFEmFn2yg9L91chyy/2hOqo8bFqUy7fPr+WzJ1bw/X/W8cU/V7FpUW6jdaKBO7VWmndYI00MvyCNLgOiueThIR361fuxJCbZysUPDqb70DjOvqF3o2HIVY4MIQSZlZkNTCTWZpWTX+XmH+f3Jr3T8e98tRUajURqVAhZpYoYVm2GVZqkMKOKNXOyyNlWhtGiQ6PT8N3za+l/VjLDzu/SqGufU41VszLYvbqI4RemtSoyFCgNef9xyWxanEvPUfHHfOKS2+Fj3jtbMFl0TLylL6YQPefdPYAfXlrPnDc2c/FDg4hOOnEbuOONEILFn+6kdH8N467pSd6eCtYvyGHb0nwGT0qh37ikNrU9zdpSRsHeKs68Or1FLtNs0WZS+0ez7c98Tjs39ZDoXdXlbua/v43wOAtnXdezbiQmLMas1IvpGxQXWg8NPmo/tUeCo9LDyh/3sXNVIaYQPWdenU7v0+OP6Ux8gynoXWLGRr5+Zg0Gk5ZOXcOI7xpOfLcwYlNtDX5Tt8NHxsYS9qwpIm9XBUJAdHIoIy/uitlqYPufefz57R5W/riPbkPj6HdmIrEpyivnzE3Nu1NrisETm48IdioQmRDCxJv7tHc2TjpKXaVU+6obiOF52wox6DSMS49tx5y1DalRIewuriY5ruOGZD6lFJbH6ePzf64itrOVmBQrcSk2YlKshIS138SmvN0VrP0li/07KzCF6Bl+YRr9xyYFR6Yy2LQol30bijnzL+mk9ju8K6D6+LwBijLtRCeFtio+fUdm29I81s3NpvfoBIZMPrIH07ALurB3XRG/f7GLyx897Zg96IUsWDRzOzUVHi5+aHCdSyKLzcAF9ynO9Ge9qvgObc1M/PamLK+GikIn3YYc/8Z548Jc9qwpYsRFafQenUDv0QkMmtCZlT9lsOKHfWz+LZeh53Wh16jGBZwQAmeVl/ICBxWFDgI+gSlUh9GixxSqxxSiLMYQHZIksfLHfYTFmls1G73fuCQyN5Wyd20xPUceOC/gk5n37lYCfplz7uh3SMc2NsXGObf1Zc4bm5n7zhbOu3sAWt3R1U0hCzI3l1JR6MBsNWCx1S5GzDZ9na2izxNg48Ic1s/PRpYFg87uzJApqRiPkyBPTI/gmmdGkr+nkoK9lRTsq2LVLGVWvUYjEZNipVNaGPZSF9nbypD9grAYM0POSaX70Dgi4w+YSfUaFU9JbjVb/8hj9+oidi4vIDbFSt8zE9mxvKBZd2oqKu1FZpUyea7WTEIIwYJtRYzpFk2I8cSXaanRISzaWUQfQxj5jsO/PWtPTvxSbgV+r0xKn0iKs6vJ2VZGrYlZSLiR2BQrsSk2YlOsxHcLP6YO9IUQ7N9RwZpfMinYW4XZZmDUJd3oc0ZCgwfl2KvTSR8Wx+LPdzHnjc10GxLL6Cu6NyrevS4/WVtK2behhJytZfh9MqGRRs65vV/d6MjR4nX5qSx2KkuRC3upC783gJAVP4NCCISsLLIMCEF4pxDSh8XRqWvYEdslZW0p5fcvd9O5TyRn/qXHEV/HYNIx+ooezH9vK1t+z2PAWcfGJdC6eVlkbSnjjKt6HPJ62Rpp4vx7B/LDi+uZNWMjl0wb0qyXCVkW5O2swBJmaDRiVkvxuPxHLHKKMu3MmrEBrztASU4KIy5KO26eOXJ3lLPif3vpOjiGwZMOdISik6ycd9cA8vdUsuKHfSz5fBcbF+Yy9LxUDCYdFQVOKgodigAucOB1tyy8rM6oxe8JMOnWvg0muDRHUnoEEZ0sbF68n/QRB/w1L/12D8VZdibf3vew/lg794li3HU9WTRzB799suOIX0MHAjK7VxWxYUE2FYWHDxNtCtFjCTPgrvHhtHvpOjiGkRd3Iyzm+JsAWCNNpA/vVPe2x+3wUZhRRcHeKgr2VbLl9/2YQ/T0OzOJ7kPjiE2xHrbuxSRbGTe1J6Mu6caulYVs/SOP3z7ZCdAid2oqKu1BRpXSAawdGd6Wbyev0sV9Z58ckS27RFvwBQR6KUQ1k+gIhIQbGX+9MsvU6/ZTur+GkuxqirLslORUk7lJmdwUGmFk7DU9Selz9JFr/N4AlcVOKgqdVBQ4qCh01o2whYQbGX1Fd/qMTjisr8j4buFc+fehbFiQw9pfssjZXs6oS7rS+/QEPE4/GZtKyNhYQu6OcmS/wBJmUMwA0sJY+eM+/vff9Yydmt5gpKol1FS42b2miMoiJ1XFLiqLnDjt3gMHSBAabkRv1CIFDfAlTdAYv/Z/CXatLGDbH3nYYsykD4sjfUQnwmJaPhpaklPN/Pe3EZUYwqRb+x71aG7XwTF07h3JqlkZdBscS0h4274VyNlexqrZmfQYFkffMxsPwhAZH8L59w7gx+kbmP3aRi5+aHCjI/iVxU52Li9g58pCHJUedAYNU+7sT3Kv1k+gWb8gmxX/20ffMxIZfWX3Vom8wswqZs/YiClUT9rAGNbPz8bj8nPGVT1aLS6cdi/GEF2L068qcTH//a1ExIdw1nW9GhVBCd3DueThwWRtKWPlj/v49YPtdZ+ZbQYi4y30GN6JyPgQIjpZiIgPQW/U4q7x4Xb48Dj8uB2+BovRrKPr4Na5PKt1s/bHV7spyrTTKS2MHcuV+j9oYme6Dmp6RL3niPiguUIGIeFGRl3S8qAUPm+AHcvy2fBrDjXlHqISQ5lwc29S+0XXCd7axVXtxVmlbIsYwcCzO5PQPbxV3/VYYgrRk9ovuu5NWCAgo5GkVnUOjGYd/ccl0W9sIgV7K8ndWUGfMzpOWF4VlfpkVGVg0VmIsyj+g+dtLUQjwdm9WudPuKOSGqUMAsh+S4cVw1JzM3CPFaeddppYu3Ztu6R9ODwuPwV7K1n+v31UFDjoOSqe0Zd1w2hpualBRaGDHcsLKM9XXsfay9xQW8QS2KJMRHQKIbV/NL1GxqPVt1yUVBY5WfLFTvJ2VWKLNlFd7kHIAmukibTBMXQdFEunLra6h4ar2sv897eRt6uCvmcmMvry7s2+fvW6/WxYkMPGX3Pw+2TMNgPhsWbCYy2Ex1kIj7UQFmsmLMbcImfvXrefjA0l7FpVyP5dFSCgU5qN9BHxdBsSWycCAwGZmnIP1WUu7GVuqoNL9rYydAYNlz1yWpsJ18piJ189tZouA6OZdEvfNrkmKL6Pv3l2DaHhRi595LRm3y7s31nO7Nc3EZNs5YL7BmIw6fC6/exbX8KO5fkU7K1CkpRRw+5D45TRviInk27p22LftEIWLP9hHxt/zSEqMZSyvBoS0yOYfFvfFpnQFGZUMftVRQhf9KDi/WDljxmsn59N99NiGX9j7xYJ24BfZu3cLNbPzSYs1syYK3s0K+p9ngDf/2ctNRUeLn/stBZ1omRZsH9HOXqjloj4kONuJuR1+/n40WWk9Itm0ITOfP+fdXTqGsYF9w5oUUdOCMEfX+1m6+95jL68O/3GJTXZ4fA4fWxZksfmxbm4qn3Edw1j8OQUUvpGtYtPbRUVldZz64JbqfZW89V5XwEwYfrvRIUa+Oq2kU2fWFMMRVshJBZC48ASBZqO5xeh2O5m2LOLmDJ6O0vLPmHN1DWYdG0bNbElSJK0TghxWqOfqWL4UAI+mTVzMlm/IAeLVc/Ya3o2a69blGln/fxsMjaVoNFIRNSOQnU6sA6PbZmAbAohBDtXFLJrZQFxaWF0HRRDTOfDvzaUAzIrfsxg4685dEqzMfm2fo2KSlkW7FxewKpZGTjtXrqfFsuIi7pii26716Y1FW52ry5i16pCyvMdaHQS0UlWnFUeHJUe6ldFSYKQCCPhsRbGXNGjzaPHrZmTyerZmVxw78A2cZzv9wX44cX1VBa7uPyx01psC5yxsYR572whoUcEtmgTe9cW4/MEFHvVUfH0HBFf93u5HT5+fn0TxdnVjL++V7OTCAMBmcWf7mTXykL6jU1izBXd2bWqkMWf78QaYeLcu/o3GUa1MKOKWa9uxGw1cPGDgwiNONB4rZ+fzYof9pHSN4pJt/VtcvJaUZad3z7ZQXm+g66DYyjJrcFe4qLroBhOv7x7o6FkhRAseH8b+9YXc97dA+jcBm9pjhdLv1HErCXMAAIuf2zoIaFsm0KWBfPf3UrGxhIA9EYtBrNOWUxajMFtjVYic3MpPneAzn2iGDI5pUON8KqoqLSM8d+OZ3in4Tw75lkySmo466XfefL83tx4euOhmQn4YfU7sPhZ8NYc2C9pISQGrHGKOA6NBVsSdD0Lkk4DTRuZfwoBVfuhYBMUbARXBQy5ATr1O8zhgj5Pzue0frvY4HyfRZcvItZy/OeeqGL4CCnOtrPoY+Uh3nNEJ06/vHuDkSYhBLnby1m/IJu8XZUYLTr6jU2i39ikVj38jgd71hbx26c7MRi1TLq1b4OHZu72cpZ9v4eyPAed0sI4/fJux9TbghCC0twadq0spHR/NaERJqxRJmzRJqxRZmxRJkIijK16ld9aAj6ZL59eBQKu+sewQ2b/t5bFn+1k+5/5TLmzH10GtO71+o7l+fz2yU50Ri3dh8TSc1Q88Yexsfa6/fzy1mbydldy5lU96Htm474+fd4A89/bSvaWMoad34XTpqTWXa9gXxVz395MwC+YdEufRoVmrRC2WA1cdJAQrmXrH3n8/uUu4ruGce5dAw6xR/Z7A6yencnGhTlYwoyMnapMAvX7Amz8NZd1c7MAGHJOKgMnJDf4DWrF9siLuzawEz4RqCxy8vmTK9HoJC55aAhxXVpvs+/3Bdi5ohBnlQevK4DX7cfr8uNx+fG6A3hdfnxuP/Hdwxk8KaVd/N6qqKgcPQ6fgxFfjOC+wfdxS79beGvJPl6Yt5Plj55FQngjg1E5K2HOQ8qIcLcJMPIucFcpo8Q1RVBTeGC7uggcxSBkRST3mATpUyBtLBhaOMAkBFRkHRC+BZuUxVmmfC5pQWsAv0u59hkPQ+LgQy5zzoylhNnKuGikm3PTzsVqOP5tliqGj4KAT3m9u25eNmarnrFTe5LSJ5J9G0pYPz+b0twaQsIMDDi7M33GJHRoF2hleTXMfXsL1WVuTr+8G4npESz/fh8528qwRZsYeXE3ug6OOWVer+buKGfWjI0MPa8Lw847TA+8ETwuPzXlbqrL3dRUeCjNrWbb0nyGTE5hxEVdjygvZfk1WCNNLao/fl+A+e9uJWtLWaNi0e3wMeeNzRRlVnHGX9IVH7gHYS9z8cubWyjPr+H0yxqGdi3Yp5hGWMIMXPTA4CYn+O1ZU8TCj7YTlRTK+fcMwGxVOoH5eyr57dMdVBW76D06gVGXdjtELFeXu1n23R72rS/BFmNmzBXdSe0XTfa2Mn5+fRPdhsQy8eY+J2R93LgwB1u0ucOHWlZRUWlftpZu5S9z/sIrY19hfMp4LnxjGUIIZt09uuGBjjJY+A/Y8BnYEmHy89DrfOU1alO4KmHvQtg1F/b8Cp4q0JkUQZw+RRHIkhYqc6AyO7iuv52rCF0AjR5ie0H8AGVJGASxvSHghVXvwMo3wV0J3c6GMx6BzsPrsvHXz9exo6CaxdPGtmHptQ5VDLcBJTnVLPp4O2V5DsxWPa5qH+FxFgZN7Ez6sE6tsv1tTzxOHwtn7iBrszJZ0GDWcdqUVPqPTTphvkNbsuD9rXViTKvXoNNr0OqC69pFp8Fd41PEb7n7EK8EGo1E2qAYJtzc57jNVg8EZBZ9tJ09a4sZPDmFERcq3h1qKtzMfm0TlcVOJt7Uh66DD/8qyuv2s/Cj7WRuKqX36ATOuKoHxVl2Zr+2qUVCuJasLaXMe3crtigT59zRjy1L8tiyZD+2aBNjr+nZbMSs3O3lLP1mNxWFTjr3iaIos4rQCBOXPjLkmHp1UVFRUWlvZu2bxd///Ds/XfQTFhIY8dwiHp6Uzl3jghNoZRk2fAoLnwRPNYz4K5z5NzAegWehgA+ylyvCeNccRew2hjkSwjsfWKK6QcJARfjqmngmuO2w5n1Y8boyctzlDEUUp47mP/OVsMw7n56M7hi+9W0KVQy3EQG/zLp52RRn2el9egJdBkSfkFF4hCzYsDAHd7WPwZNSMIWeHL6IjwRXtZc1c7Jw1XgJ+GQCPhm/Tybgl/F7g2tfAFOIHmukidBIE9YIE6GRRqyRJqyRJsw2Q7u4bJJlwe9f7GL7n/n0OzORvmOTmP3aRjxOP1Pu7N+iCH1CFqyalcG6ednEdbFRnu8gJNzIRQ8MatWExfw9lcx5Y5PSUZCg/7gkRlzYtcViNuCX2fzbftbMyUSjk7jisaFtaq+uoqKi0hGZsX4GM7fOZPU1q/lyVR7/+GkbCx88g26xVijcCj8/APtXQ+eRcO50iOvdNgkLAcXbYe8iReDWF7/GozRh8Dpg7Uew/FXFXKPzKGb1eIZ7fy5kybSxpEa37RyglqKKYRWVkxQhBMu/38vGhbloNBLGEB3n3zOQmM6ta8x2rSpk8ac7sUaZWi2EaynJqWbdvCwGjO9MfNcjszl3VXsJ+EWLRqRVVFRUTnTu++0+Mu2ZzLpoFlPfX0lhlZtFD42FmhJ4bTBo9TDxGRjwl+ZNIjoaPhes/xTmPUp+vzsZtXoUH904tN2i6jUlhjuugauKikqzSJLEqEu7YQrVk7GxlAk39T6iqHbpwzsR3y0Mk0V/xOGAYzpbmXxb47OJW0qtzbGKiorKsWJn+U7mZc7jhj43EG4Kb9e8ZNozSQtLo8LhZWVGObefoUSh4/cXlBHWv66EmCMLI97u6M0w/DbY+h0xxcuAUWSVOiC9vTN2KKeekaiKykmGJEkMmZzK5Y+23KVbY9iizEcshFVUVFROBLaUbOGmeTfxwdYPuHTWpazIX9FuefHJPnLtuXQJ68KincUEZMGkPp2gdC+s+0hxV3aiCuH6dB2PrnAjSUanIoY7IKoYVlFRUVFRUTnp2VSyidt+vY0wYxivn/U6oYZQbvv1Nv6z5j94Ap7jnp9cey5+4SctLI352wqJDzPRPykMFv1T8fgw9tHjnqdjQtezkBCcF7qbzLLDh4lvT1QxrKKioqKicpJT5aniy51fMi9zHgE50PwJ7YTT52RlwUqcvrYVTRuLN3L7r7cTaYrko8kfcWbymXx13ldclX4Vn27/lL/M+Qu7K3a3aZrNkVmVCUCCpTN/7C5hUp9OSLmrYcdsOP0+JWjGyUDiYDCFc6Z2c4cdGVbfiaqoqKi0EJ/s45td3/DFji+4c+CdnJd2XntnSaUNyKzKJNoc3S6BAI41mVWZfL7jc2btm4Ur6C821ZbK7QNu55zUc9C2VVSyo0QWMnMy5vDKulcodhVj0poYlzyOKWlTOD3hdPTaI/d6tL5oPXcuvJNYSyzvT3yfuJA4AMw6M38f8XfGJI3hH8v+wV9+/gv3D7mfqb2mopGO/VhhRlUGADlFoXj8MhN7x8KC+5XocSPvOubpHzc0WkgbS989y9hf48DrlzHoOtZYrCqGVVRUVFrA8rzlvLDmBTKqMog0RfLY0seo8dZwVc+r2jtrHZZydznFzmLSI9I7ZPAUX8DHaxtfY+bWmYQZw7hjwB1c0eOKoxJeHQEhBCvyV/Dpjk/5M+9PDBoDU9KmcHXPq8mryeOtTW/x2NLHeGfTO9zW/zbO6XIOOk37yYFNJZt4YfULbCndQr/ofjw89GHWFq1lftZ85mbNJcwYxsSUiUzpMoXBcYNbJVTXFq7lr4v+Spwljg8nfUiM5dBAOGckncH3F3zPP5f/k/+s+Q9L9y/lmdHP1IUMdvqclLnKKHOXHVi7y4gwRjAodhDdI7ofkXjOqMogzhLH7zvtRFj0DHcvV9yonT+j5RHiThS6jce6/Ue6kkd+pavd3KsdDtW1moqKikoTZNuzeXHNiyzZv4RkazKPDH2EkQkjmfb7NJbkLuHeQfdyS79bOqTYaw9KnCUsylnEr9m/srZoLbKQ6RXZixv63MDE1IntKrrqs69yH48ufZSd5Tu5qNtFFDgKWFWwis7Wztw/5H7O7nz2Uf+mhY5CNpVsYlPJJraXbSfSFEl6RDo9I3uSHplOnCWuTeuNy+9i9r7ZfL7jczKqMog2R3Nl+pVc3uNyoswHwq7LQua3nN94a9Nb7K7YTaottV1EcZGjiFfWv8LPGT8TY47h/iH3c17aeXXC0if7WJG/gjkZc1icuxiX30WcJY4pXaYwJmkMfaP7YtYd3h/56oLV3P3b3cSHxPPBpA+INkc3mR8hBN/u/pb/rvkveo0em9FGubu8bkT9cFj1VgbGDmRw3GAGxw6mb3RfDNrmPeNc9fNVhOqtrFpxGVN6R/NC4a2KK7U7loG2Y9wnbUbVfni5D97xT2MYc2+7ZEH1M6xyyuCTfeyp2MPW0q1sLd3KltIt6DV6bu1/a5s83FROHWq8Nby7+V0+3fEpRq2R2/vfztReU+secj7Zxz+W/YOfM37mxj438sCQB07Z+lVQU8DCnIX8mv0rG4s3IhB0CevChJQJRJuj+WLHF2TZs0gISeDa3tdySfdLsOiP3PPJ0SCE4MudXzJ93XQsOgv/GvUvxnUehxCCP/P+ZPq66eyt3MvAmIFMGzqNATEDWnRdb8DLjvIdbCreVCeAi5xFABi1RtIj0qnwVJBbnVt3TpgxjPSIdHpE9CA9Mp3BsYPpbOvc6u+Ubc/mm13f8OPeH7F77fSO6s01va5hcurkJke5ZSGzOGcxb256k90Vu0mxpXBd7+sYET+CZGvyMavPbr+bmdtm8uHWDwnIAa7vcz239LulyTrh9DlZnLuYXzJ/YXnecvzCj06jo3dUb4bEDmFQ7CAGxw0mzKj4OF9ZsJJ7Ft1DkjWJ9ya+16wQrk9mVSZvbXoLCYkocxRRpqhD1pHmSIocRWwo3sC6onVsKN5QZ/Zg0BjoG92X/jH9SbYm09nWmWRrMp0snerMUoQQjPhiBEOjJ/Hz4uHMG7mTnhuegr98DemTj6J0OzCvD4OwRLj2h3ZJXhXDKictBTUFrCteVyd+d5bvrJsVHG4Mp290X/Jq8sisyqRPVB/uG3wfIxNGHrf8+WQfW0q2kFOdw7BOw0gITThuaZ+M+AI+Mu2ZhOhDCDeGY9FZWv3A9gV8eGUvARFAlmVlLZS1EIKACLCmcA0z1s+gzF3GRd0u4r7B9zX6MJWFzHOrnuOrXV9xafdLeWLEEx3GBvNoqfHWkFmVid1rx+V34fK7cAfcuHzBdXDfpuJNbC3bCkCPiB5MSJnAhJQJdA3vWnctWcgsyV3CzG0z2VC8AZvBxpXpV3J1r6tbJVKOllJXKY8ve5xlecsYnTiap09/+pD0/bKfn/b+xOsbX6fUVcrElIncP/h+km3JADh8DrKqssi0Z5JZpSxZ9iyyqrLwyT4AEkISGBAzgAGxAxgQM4D0iPQ6UVrjrWFP5R52le9iV8UudpXvYk/FHtwBNwDpEelKGaZOIC0s7bDfxS/7WZK7hK93fc3KgpXoJB3jU8YztddUBsYMbNV9USuK39r0FrsqdgEQY46pG+kcEjekSVMAp89JoaOQAkcBBY4CnD4nAREgIAL4ZB8BWdn2y378sp/fcn4j35HPhJQJPDjkQZKsSS3OK4Dda2dj8UbWFa1jfdF6tpZtxS/7AegW3o2+0X2ZmzmXzrbOvD/xfSJNTYeEbyvK3eVsLN7I+qL1bCjewI7yHXV1AkCn0ZEUmkSSNYk4Sxzf7/mefqYb2bMtldWhDyPF9oLrZ594wTVayrzHYO2H8LcsxQfxcUYVwycI1d5qtpdtZ1vZNio9lSSGJJJoTSQhNIHE0ESM2sajclV7q9lXuY89lXvYW7GXvZV76yaE9IrqRa/IXvSK6kWPiB5NvlI6UXD6nPya/Ss/7v2RtUVKHTLrzPSK7EW/6H70je5L3+i+JIYmIkkSftnP7H2zeWvTWxQ4ChjeaTj3Dr6X/jH92zxvQghyqnNYnr+c5fnLWVO4BofvwOzZ9Ih0xiaPZVzyOHpF9WrWzswv+8mqymJ3xW7MOnODkY9TBbffzbL8ZSzMXsjvub9T7auu+0yn0RFmCCPcGE6YMYwwYxg2gw2f7MPhc1Djq8Hpc1Ljq1H+99bglb0tSndAzAAeHfYofaP7NnmcEILXNrzGe1veY3LqZJ4d/WyTo3GegIf1RespchaRGJpIsjWZWEtsq2wOvQEvpa5S5fsbww7bNrT0WplVmXXtR+0635Hf5HlaSYtZZybVlsrZKWczIWVCi0Y1NxZv5ONtH7MoZxE6jY7z0s5jRPwIukd0J9WWeszsdX/L+Y1/Lv8nTr+TaadN48r0K5sUjE6fk4+3fcxH2z7CJ/voH92f/TX7KXYW1x2jlbQkW5NJtaXSJbwL/aP7MyBmQKN2qU0RkANkV2ezLG8Zv2b/yobiDYAi7Go7F93CuyFJEkWOIr7f8z3f7/6eYlcx8SHxXNbjMi7pfslRdyyEEOyr3Mf64vWsLVpbV08BrAYrg2IH0TeqL3avnQJHAfk1+RQ4Cqj0VDZ7bZ1Gh16jRytpSbWl8uBpDzK009Cjym8tbr+bLaVb2FC8gfVF69lYspGuYV15ffzrRJiaD0t/rAjIAYqdxeRW55JbnUtOdQ651bnsr95PTnUOLr8LXeEDPGNczTkVn8OtixXPCycr+36DP16Ci96EiJTjnrwqhoNUuiuZ9sc0QvWhymIIJUQfglVvJcQQXOtDCNGHYNKZMOvMmHVmTFoTZr0Zg8bQZq+NnD4nO8t3sq1sG1tLt7K9bDtZ9qy6z3UaXV1Pt5YYcwyJoYpAjjBGkG3PZk/lHgodhXXHWHQWukV0I9WWSqmrlB1lO6jwVACgkTSkhaXRO6o3vSJ7kWxNxqgzKt9PZ8aoNdZ9b6PWiE6jw+l34vQpi8PnwOF34PA56va5A248AQ9uv7KuW/zKWqvREqoPlrNBKd9QfWhdeYcZw0i2Jjcr8GQhs65oHT/t/YkF2Qtw+V2k2FK4sOuFnJF0Bl3DuzZr6+YNePlm1ze8t+U9yt3lnJV8FvcMuoduEd1a+esdwOlzUuYuY2f5TpbnL2dF/gryavIASAxNZFTCKEYljKKzrTMr8lewOHcxG4o3IAuZWHMsZyafydjksQyPH47b72Z3xe4GI0b7Kvc1EG8SEj0jezK001CGdhrKkLghx20GfG1bcTxMAZw+J3/k/cHC7IX8sf8PXH4XNoONccnjGJEwAl/AR6WnkipPVd26yqts2z12DFpDXb0L1Ydi0Vvq6l2ITrm/JSS0Gi0aSYNWariONkczKmFUq77rzK0zeWndS4xOHM30sdPrOp5CCHZX7GZlwUqW5y9nXdG6Q3yaGjQGEq2JJIUmkWxNrhPIlZ5Kip3FlLhKKHIWUeIsocRZUndP12LWmbEZbHUdgjCDstZr9PhkH96AF0/Ag1f24gv46rarvdXk2HMICMXVlk7SkRqWSvfw7nSP6E7X8K5EmiLr2oXattCsNaPT6I6qLmTbs/lk2yf8tO+nuvKon363iG51a4PGQIWngnJ3ORXuCircwW2Psu32uzFqjRh1xgNtmdaESWfCqDWSUZXBrH2z6BXZi+fHPE9a+OFHXA+mxFlSZ1ubYkuhS1gXZbF1IdmafEzEe5GjqM7uel3ROgSCVFsqydZklucvRxYypyeezpXpVzImccwxexshhCDfkc/6ovWsK1rHuqJ1ZNmzMOvMJIQkEB8aX7eODzmwhBpC0UpaRfwG77HjiSzkRtP0B2RWZpQze1M+O4uqGZQczvAukQzrEklU6PENAS+EYFVWEfe98yvLQqah63UeXPbBcc3DqYYqhoMUO4t5aMlD1PhqlMWrjBYJWlYGGkmDSas0rrUPTkmSDjxI6z1YhRDIyAghEAhkcWA7IJTeoixkAGItsfSN6kuf6D70jepL76je2Iw2Spwl5NXkkVeTx/6a/eTX5Cv/V+dR4amgs7Uz3SK60S38wEMjPiS+QSMghKDIWcT2su3sKN/BjjJlKXYVH+5rHhEaSaM8jIKLSWfCoDUQkAN1o3L1R0gPxmqw0tnauU4I1NpZ2Qw2FuYs5Ke9P5FXk0eIPoTJqZO5qNtFDIgZcEQPY4fPwafbP+XjbR/j8DmYmDqRhJAENJLmkN+xdl+Nt4ZydzllrjJl7S47ZGJFiD6E4Z2GMyphFCMTRh7W5q7SXcnSvKUszl3Mn3l/KqMDB3V+Ik2Rih1hRDrpkYpNYbW3mjVFa1hTuIZNxZvwyl40koaekT0Z1mkYPSJ64Al46sr64FFRl99FqD60bvT0YOFkM9hwB9yK4HKVKCLMWUKxq7hunxCCbuHdSI9U8tUzsic9InoQoj90ZnBADpBXk0dGVQaZVZlkVGWQVZWFLGSMOmOdYKntkNUKl8yqTJbnL8cT8BBpimR85/GcnXI2QzsNRa9p31n+/oBMod1NcbWHbrGh2EwN8/Pd7u94asVTDIodxKU9LmVl/kpWFKyg1FUKQFpYWl396GztTL4jn/3V++tGi2pHkJz+Az5Wa+0WY8wxxFniiLHEEGuJJcYcQ0AEsHvtDTsFnqq6fV7Zi0FjwKANLsFtvUaPUWvEoreQFpZG94judAvvdkxHZg+HN+Aly57Fnoo97K3cWzc6XdupPBwaSUO4MZwIYwRmnRmPrHTC3X53XSe9VmRrJA039rmRuwbedcj3c/sC7C6qJsJiICnC3OHsvktdpfyW8xsLsheQY89hcpfJXN7jcpKtyS063+n1k1XqJKvMQWapA6NOQ/c4K91iQ0kIM7X6+3oCnjYdGKrF7Quwq7Ca7QV28ipcdAozkRoVQkqUhfgwEzrtkQlqWRaszirn5835zN1SSJnDS4hBS694G9vy7bh8SkcwPc7KiLRIhqdFMfw4ieN/z9lOj1WPcZl+OdLdayAi9ZineSpz1GJYkqTJwAxAC7wvhHj+oM+l4OdTACdwgxBifVPX7ChmErKQ6wRDjVcRyU6/E7dfsYmrbVjrbOaCI6C1doa1y8H2h5IkoZE0SEgNtmuFakJoAn2i+tAnqk+rX6m1BCFEk41VqauUQkfhgQeH34MrEPy+wX0+2YdFZ6kbLbfoLFj0Df836UyYtKYWjRI1Vtbl7vI6AVC75Nfk141UgSIGhscP58JuFzK+8/hGTT28fpkyh4eyGi8lNR5Kqz2UObyUVnsQQLfYULrHhtItNpRwizIBqtJdyQdbP+CHvT/g8Xsa2I4ejFbSEmmKrFuizFENtlNsKfSN7tuoWPP4A7i9MlaTDo2mYRl5Ah7WFK5hZf5KIs2RdeI3yhTVZHl6Ah42l2xmTeEaVheuZnPJ5ga2aUCD3672bYfT56wbRW2qcwJg0poU0WWJIdasrGUhK6PXFbuo8lTVHZtsTSY9Ip1kazL5jnwyqjLIrspuMKodbY6mS1gXDBoDLr+rTqzU3lO19a6+AB4cO7hNRr1kWeANyHj8Mh5/AH9AEJCDi6i3HVwcXj95FS721y1O9le4KLS7CchKm6mRoE9CGMO7KA/QYamRhFn0zMucx2NLH8Mv/EQYIxgRP4KRCSMZmTCSTiGdms2rEIIKTwXFzmLCjeFEmaPavRNwMAFZ4PIFcHr8OLwBHB4/Do8fpzdAjceP0+vH4Qng9PoJyBBjNRJrNRJnMxFnMxIVakSrabq9cPgc7Kvcx97KvfhlP5GmSCJMEUSYIog0RmIz2podcZSFjCfgQQiBRW/BF5DZVVjN5v1VbMmrZFNuFbuLqvEHf9MIi55+SeEMSAqjf1I4/ZPCiLOZjqiM3L4AdpePSpePSqcPu8uHRgMmnRajXotJr8Gk1yqLTtk267WHtBHNIcuCMoeXIrubvEoX2WUOMkudZJbWkFXqpNDuPuy5IQYtXYPtotJGWkmNshAZYiDMrD9iAdoc5Q4vOwrsbMuvYnu+ne0FdvaVOOruLUmC+tJEp5FIjrTQOdJCSpSyjgwxYDHoCDFq69YhBh0Wg/L/jkI7szfl88uWAorsHkx6DeN7xXF+/3jGdrFg8lXhNUSwpcTHyoxyVmaUsTarok4cd40JwWLQ4QvI+AIyflngD4i6bZ9fJsSoIy7MRLzNRKew4GI7sI4MNaCVJLQaCU3dWnm7JoTgxhdm8qH7QTQj/wqT/n1MylrlAEclhiVJ0gK7gQnAfmAN8BchxPZ6x0wB7kERw8OBGUKI4U1dtz3EsMPjZ/amfKRgZZQgKFSVm08RriALgS+gVHy/LAe3gzdAQEYIMOg0GHUajHqtstZpMOqU7Vpn0rIQCBFcA4gD+1w+5QFS4/FT7fbXbdcuAVlg1muxGLSY625w5Sa3GLTotRqqXD4qnV7KHV7sDhcuRxVepx2f007AU4Ok0aM1WdAbQzCYQzCaQzGbQ7BaDNhMekKMOnQaCb1Wg16nQV9v26BVbt6ALJRGQJaD5RFcAsr/Hn8At0/G7Qvg9gdweWXc/gAen7Jfo5GwBL+HxXgg/3XfS6+tK0tDcNFqBNX+Yso9+VT5ykmxDED4wymr8VJa46G0pp7oDW7bXR4M+DHiw4AfAz4Mkg+rThmNr/AZcGDCgZlwawjdYkLpHqcI5NToEHSaA42+LGQEcoPOjoQBn1/g8ct4/QdEVe22w+unyqk89CpdXqodLtwuB16XA/xODPjxSiYsIVZCrTbCrFZirCZirEaiQw1EhRrx+GWqXD6qXMqD0+70UuNy4XY6cLscIIHRFILZEkqIxYzNpMNm1mMz6TEbA3gow6yzYNFZMGot6DVaNJraOq7U8/r4A36cgWocPjsOfzVOvx2j1kSkKYYoczQhulD0Wg1ajYROK6HTSGg1muAaKjwlZFXvIcO+h32Vu9lduZv8mjw6hcTTOTSVxNBU4s2diTF1JsqQhJYQXF7lQaOtvV7wAaHTKtfWShIef4Diag8ltYvdTUV1DY7qShw1djwuB7KkQ9bokCUtQtIhNDpkSYfQ6JElHX5ZJuD34wsE8PkDyHIADSK4yGjrloCylhr+ryOABQ8WyUOCRSYhRNDJLBNjDBBl8BGildnvNrC50sjaMj0FfhtlhBEXl8iwrtGkxbswGnyEaVOpcQewu33YXf7gWvmN/bIg1Kgj1KTDatQRatRhNekINekJNSr3idsXwOkN4PD6g4JTEZgOryJENRqprl2obS/qtxk6jdTwng2KfX+9h3vtvVt3H/sO3MMuXwCX90AenB5l7fbJSMgY8KOvWwIYpAP/G4L3ogYZDwY86JVF6PFJekJDQgm32Yi2WQgz67GZ9VhNShnYTHqsJj02sw6rSY+E0ma6fAHc3kDdtssbwO1T7kNZEHwLp7Sz9dtbp9fPvvwSCgrzCQlUEy7VEG9w0yciQDernySzB0dAxz6HmW1VBrZV6SmWbZQLK0ZrFP2SI0mKMNeJIW9AeS74/HLd/x7fgfu30uXF66tfNn50BBBo8KMhgBZfsLb5g7USlA5WuMVAuEVPhMVAhEVPeL21UaehuNpDQZWbwioXBVVuSu0O9AE3JjyYJS8huIkzB+hihRSrIDEkQCdTgBhTgEidDz8air1G8twGchw69lXr2FUhkenQYRdmnJjwowUkwsx6IkOU9JW1IpL9tZ1Ln/Ldvf5Ag7bRF1C2vf7g574AcsCPP+AnEJDRBNyESQ7CcNAl1EvvcJmuVj+dLV46GbxYtR6csp4Kv4FSr55Cj558p5bcGg1Z1RIlXgMedAfKUWjxB8vSjw4/Gmw46aorYUK8i1GR1XTVlaCryoGKTHCUHGgI9SEQEg2hsciWaMoIJ9ttYY/DhE9o0QTbJY1GQqPRHFhLGhwBDSUuDYVuDQUOiVKvDhdG3MKAEyM+dIrOQEYCNMjKry0J9JLgWe27jDJmYHhwM1iOzyS/U5mjFcMjgX8KISYF/38MQAjxXL1j3gGWCCG+DP6/CxgrhCg43HXbQwwX5GVT+c65zR5X+zDUE0Av+YPbSmOvCzZdPnTBRaushQ4vuuANqUVwQHlIB5lh1N4UOgLKItWmFUCHjE4KICEa3OA+ocWHBr+ofVxLWPAQKrmxSG6M+Ggpbgw4hQEvegJokIWGAA0XObjWItfdwIdsS/VFhYzuIEGhQTEDqZUhATQEhHRIGn60BERwHXxQ1D4wlDwEMNT9Bn6MGj9GKVD3INYJ5bHSUvySDidmamQjNcKIE2OD71f7fWq3NdKB308I5dcUSMFF2dZJMhbJixkvxmAz3RQBNMHfwYhLGHBhREcAk+TFRPA6kg9tsAwP+Q5o8KLHJQy4MeAWBrzBGDq1Na+23h1c/5pCICHXPbAP/EaB4G8kB793Y+cpyGgRyiIFgo8rucFaBB8NyrU09baVRVtPiIag1G/dYcqh3ZC00MgbhAAayoSNEhGGD10DMaSXlHpcKxg1CAJogu2HFi9a/HX3vFL364v3ujZDEmglGV3QwMuHRrl/xKH3sEyw0x/8hQ7UWOqVOEiSIsc0UnCp3SeBDjko5vzohB+t8KMVvrr7+2ipLYNaoexFV7f2oqwlqBPXRrwYJEVsG4Oiu/59cmhrq3wXfVP3pEYPcuNtqIyGSsmKQzYFy0mglWo7VuKAwKlr05Uyak35yGgQkhZZ0iolLSl1wSe0eIUGr9DiExoEkiJ4NcE2QnjQ4W8+gSNARktAqhXsurrnkF8og0YHngP1nw0HykISIthytLKeaA2gt4DfrSxtgaQBWxJEpiqmCBGpYIkGVznUlCji2FEMjlKoKQZnKYjj0+Z4z/oXhjPuPy5pneo0JYZb4tU5Ecit9/9+lNHf5o5JBBqIYUmSbgNuA+jcufW+FI+WGJuF8O79gv8dGK2tt1LMCzRa0OrRaA1IOj2SVo9Gp2xrtQblxvJ70fi96H0eAn4vwu9FDq5FINioSnVNcfDvgIjQarVodQZ0ej1avQGNVg8andIoa3TKULXsV5aAD+QAQvYS8PsJ+LwIIaMzhaI1WZGMoWCwKhFrjKFgCFW25QD4nOBzBRdl2+RzYvS5kH1uhOxHDii9diEHEAE/shxAyH6ELCNpNEgaLZJGhyRpkLRaZa3RodFq0Wh1aDRaJK1OEQgaHcpwpFYJwQhohazkJbgWsh+/PzhK4PcjBw4sIuBX0g6ukf1KORmMGAxGDEYTWp1RcUyuNRxY64yNrI2gMyjv27yO4FKNzuvA5qnB6q3B7bDjcVYrsiCYfyEp+ReSBqHRgqRFkkBbb6kVDcq2QKPRgcGiNOI6k7LWm4OLRcln7W/gdaD1OQnxOrF4HXjdNXhdDjRaHTqjBb0pBI3eDHoT6GrXwVe1fjf4c5MstAAAEMVJREFU3Oj8LnQ+N2afC7/Hic8b/D2RUAbFpLp6XSeJG+n4HmyJIYSAQACE8jtJcgAhAiAHgtuycucER9wEKPuC1xYC0OiU+qJVFjQ6pZ5o9Wi0tT42ZZDlhmuhrCWNDp05FKPFhsFiRWMIVcq2tl7rTAfdG7Vr34H/kZT7VKNR1ocswfqpCdbZ+v9Lyv2P3qKkV/tb1m1blOM81cpDtKZIeYDWFKOtKSKquhhD2X5EwI9WZ0RrMKLXG9DpjWh0hmC9NRy4x4N5D/h9+H1e/D4fAb+XQMCHVqNFq9Wh1enQ6vRotVqlrtXeYwiQZZCV+zcQ8CuL30cgoNzDGo1GeRNWt2iQNAfMt5RRruDrsdo2qnZbkpQ2Sas7kG9Nve26/fXvyfr35YH2UhE3nkPWWr8Lrd+DKeBF+D34ve66JeDzIPvcIElIOiOSzoSkN6LVG9HqTWj0JnQGIxqtXjEralDH629LYAoDc0Tji96s/BbOcuU3dZYqwshRisZZSqSjlEhvjVLmdXVIOrReafUNy6F+WWmCv1fAf6D+ykrbrgnWA63sR1+/XtfbDvi9BGQZvSkEqbYe1rYvhuC2LlhPDSEH7pcG945Z6cR5qsFdCW47uKvAYz+w7XNAwI9G9qGR/egDtfk88Cyq+/4a7YH7SdLU+1/T8LP6+yWNcg+bw8EUfuhabz7QMAV84K1R2m5PTV0bjqcmeL83krfa/w0hENFFEb5hyUpdbClyAFyVwbakViQEW9P664C33vPVoay9jgP7Ap4D37m2Tapfb8wRGHqd3/J8qRwzWiKGGzNgOvip2pJjEEK8C7wLyshwC9JuU3TWGHTXftk21+L4x7KW2jBdCcUAvD2QAH1waU8kwBxc2jMPxuBypOd3hLI8JTHZlCWqa4PdWiD8CC6nDS5HUxfao11qS9q1Pmv1YI1Tlg5Ibf04ejTKK/kT4bW8Vn+gw3I80WghJKr541ROGlpiHb8fqD9tNQk42AFlS45RUVFRUVFRUVFR6VC0RAyvAbpLktRFkiQDcBUw66BjZgHXSQojgKqm7IVVVFRUVFRUVFRUOgLNvlETQvglSbobmI/yluZDIcQ2SZLuCH7+NvALiieJvSiu1W48dllWUVFRUVFRUVFRaRtaZF4mhPgFRfDW3/d2vW0B3NW2WVNRUVFRUVFRUVE5thzfGIkqKioqKioqKioqHQhVDKuoqKioqKioqJyyqGJYRUVFRUVFRUXllEUVwyoqKioqKioqKqcsqhhWUVFRUVFRUVE5ZVHFsIqKioqKioqKyimLKoZVVFRUVFRUVFROWSTFRXA7JCxJJUB2uyTePNFAaXtn4iRBLcu2Qy3LtkMty7ZDLcu2Qy3LtkMty7bjZCnLFCFETGMftJsY7shIkrRWCHFae+fjZEAty7ZDLcu2Qy3LtkMty7ZDLcu2Qy3LtuNUKEvVTEJFRUVFRUVFReWURRXDKioqKioqKioqpyyqGG6cd9s7AycRalm2HWpZth1qWbYdalm2HWpZth1qWbYdJ31ZqjbDKioqKioqKioqpyzqyLCKioqKioqKisopiyqGVVRUVFRUVFRUTllUMayioqKionKckCRJau88nCyoZdl2nOpleUqL4VP9x29L1LJsO9SybDvUsmw71LJsM/TtnYGTCLUs245TuixPOTEsSVIfSZLGAgh19uBRoZZl26GWZduhlmXboZZl2yFJ0khJkr4FXpQkqbckSdr2ztOJilqWbYdalgqnjDcJSZI0wOvAWUAOsAr4SQixVpIkjRBCbtcMnkCoZdl2qGXZdqhl2XaoZdm2SJIUC8xFKdNkIBFYK4R4T5IkSe1otBy1LNsOtSwPcCqNDEcAVqAXMBUoAx6SJClUbdhbjVqWbUcYalm2FWq9bDvCgVDUsmwrBgC7hRAfAS8B/wMulCSphxBCqCYoraIvalm2FWq9DHJSi2FJkiZIkjQh+K8NGAlYhBAlwPdAOXBX8NhT5kc/EiRJukySpL8G/1XL8iiQJOkSSZJeDv4bhVqWR4wkSYMlSeoR/DcMGIValkeEJEldJEkyBf+NRC3LI0aSpL9IkvQvSZIuCO7aAJwmSVJXIYQDWAOsBW4H1QSlKSRJOlOSpOH1dm1CKcs0tSxbhyRJF0mS9H+SJJ0b3LURtV4CJ6kYDtq5fQX8H1ABIITIBJYB9wcPK0DpBQ2SJCnhVPrRW4MkSaGSJH0PTAMqJEnSqWV5ZATtsb4AngDuC5bVXmAFalm2iqBwmwO8AXwqSdIEIUQGsBy1LFuFJEmpkiTNBd4HPpckqXewXv4BPBg8TC3LFiAp3AE8AmQB/5Uk6RagBvgEuC94aCWwELBIkhTfDlnt8EiSZJUk6X/AD8DtkiRFAAghyoCvgXuDh1ailmWTSJIUI0nSjyj3cznwkSRJl9Xr6N4TPLSSU7QsTxoxXDtSIUlSJEojXi6EGCeEWFvvsJnA6ZIkdRFC+IEiwA2Yj3d+OzIHjfokA0VCiBFCiC+BQHD/TJSyTFPL8vDUq5dnAO8BK4UQg4AZQO1oxweo9bJZDqqX04CNQoiRwE/ATcH9H6KWZbM0UparhBDjgcXAvyRJ6o1yj49Q7/GWE+wkjASeD756vgsYC4wHfgG6SZJ0dtDUpAzFRrOqnbLb0fECvwHXAPnA5fU++x7oKUnSeLUsW0RXYJkQ4gwhxNvAQ8ADwc++RC3Lk0cMAyYAIUQ58F/ACCBJ0g2SJE2SJClFCLEY5XXVf4PHbgVSAE/7ZLnDYqq33R9IAgiaSTwpSdJoYDvKKNyLoJZlE9QKh+3ARCHEq5IkGYBuQK3t5SZgPfAfUMuyCUxQJ+QcgC+43wbskCSpG8obizWo9bI5astSF/x/G4AQ4nVgGHAVigBZg1ovm0SSpOuCr/Ijg7t2AInBt2gLga3ACKAE+AJ4JVhXxwMSYGiPfHdE6pVluBDCg/K2YiGwG+V1fnrw0E3AV6hleViCZTlWkiQLsA7lzQSS4i1ie3AB2IJSljNO5bI84cVw0C74V5TXUVcFd88AhkqSVABcAEwBZkuS1BX4F0pD9ZokSVuBbKBKtYFrUJb/kSTpL8Hd64ECSZI+RBnxqAT+DlwITAdiJUl6XS3LhhxUllcJIUqFEA5JkkxCCC9KAzQVQAhRATwFJKn18lAOusevCI6+/Ql0lyRpAzAZ0KIIjTOB54B4tV4eSiNl6Ud5bTpIkqQBkiQNQBFvXVDK9BnUenkIQXOIeEmSFgPXo9zLr0mSZANygViUDi8oQqMvECWE+Az4HHgUpcPxiBCi8njnvyNxmLJ8Q5KkaCGEO9hergCKgSsAhBCyEGIm8CnwGGpZAo2W5dUobyTDhBBFkiRphRABlImxYdCgLD/hVK6XQogTdkFpbFahCLNBKI3M/wU/Ox+4vt6xHwIvBLfjUCaHXNDe36GjLIcpy4cAHcos03WAPnjstcC7we1YtSybLcvP6tXL2jI8M7g/pt55MWpZNluWXwDTgp+lA/+rd+wTwOvBbfUeb74svwT+iuKB4wngZ5ROxmnBcr5fLctGy1EbXPcAPgtu64A3gY9Rghd8GGwnw4KfzwT+Xe8ahvb+Hh1haaIsXwO+P+jYi4Nl3A0IATRqWba4LP+/vXsP/WuO4zj+fJuhofiDpDD5a1oYmVo0KyL/kFshl225tGz8YfEfTTK0tRQiy61cIktD0tzviVyj2H4uI3e25ScZL3+8P99t1vD7fn+n7zln5/Wo07638+29V9/v9/c557zP5zy61WvuBc4st/fZ4j06m2XvEFlrRM5/ibK35SjgLUmPleeeAZZGxJ2SVvZeX177BHBcWfdbsv+t0/4ny2fJQfBysidzGtmzdT95iOq0ku135BZ7p40hy97nspfVRHLL/OfeeyhPZvh+qIU30P9kuYrM8j5yj+aXETFF0kdkv+vlERH+jqcxZLkEeFjStaU3eE157hU2t0N8V/LstNJSsgiYEBFPku05fwJI2hgRl5InGh5M/k6eQraYXU+2RL3aey/l3s7OGkOWC4CvI2KmpBfK4ysiYgrwFDnt3yzgI2fZf5bkCZ0jEbEIODUiTpS0tstZtqpNIiJmA2uBa8tD7wNnRcTkcn8isJrSLwj5RyAizgeuJr9Expiy3BEYAW6U9CKwjJxn9ErysN/L5X06fbgUBv5criL3wM0YXqXNN8Ys15TnN5BTgC2IiMuA28n+QmPM3/HVQG+av5Gy3kXAXLJFCpVdRl0WETPJo2N7Ap+Smf4BzIqI6bBpg2MReQRyFXAHcHREvFHWe76G0htnjFmKzPKaLdY7g2zRew44pGwAd9ogWUb2DM8BHiEHzrMkrR168Q3TmivQRcRu5GHlTb0wkj6OiGXkYbz9yR/zG4DFwGxy6+gq4EhgoaQ3ayi9cfrM8gZgjqRvIuJI4HDgPUmv1VJ8wwzwuZxbspxIfkaflvRZHbU3TZ9Z3gicXh47jtywuE3S6zWU3jgDfC7nKHsKLyd7Nuf593KziDgGmCzpvnL/VnLj4jdgvqQjyl74vcnD0gslfRYRewC7SvqqptIbp88sbwaulDRS1kPSSzWV3jgDZLmQ3AieD9wr6e16Km+guvs0+lmA/cu/i4GHyu0J5N6ho8v9/cj+rB3LckDddTdx6TPLXequt8lLH1neBexcd71NXvrI8h463N9WcZZ39z6X5EU2aq+9aQswiZyhqNdzeQ5wfbn9DjnwgNwoe6Duepu8OMvasnyw7nqbvLSqTULSF+XmMuDAiDhBeWbkOkkvl+cuAUbL6zdK+nz4lTZfn1n+sY23sKKPLH8DNtZQYmv0keWvbJ7z2rahz+/4xrLO6NALbQFJo5J+L/kBHM/m/v7ZwJSIeJw8KdF72/6Ds6xOn1m+BW5t/DetaZPYWkRcTB76m1nuTyf7iSZSDuvXWV+bOMvqOMvqOMvqOMtqlH5LkSdkz5f0aeTcrD+Q06eNyC0RY+Isq+Msx6+Vg+HeDBER8Qh59u7v5Ikzn0haXW917eIsq+Msq+Msq+Msq1P2qu1EXgxiBXki0o/kAGR9nbW1jbOsjrMcv9ZNrQabZoiYRDaFHwsskuSZIgbgLKvjLKvjLKvjLKsjSRExjezNPBC4S9LymstqJWdZHWc5fq0cDBfzyH6i45WXbbTBOcvqOMvqOMvqOMvqrCVbTJY6y3FzltVxluPQyjYJ+MfFNGycnGV1nGV1nGV1nKWZ2b9r7WDYzMzMzGy8WjW1mpmZmZlZlTwYNjMzM7PO8mDYzMzMzDrLg2Ezs5pFxB4RMa/c3rfMCWxmZkPgE+jMzGoWEZOBxyVNrbsWM7OuafM8w2Zm24vFwEER8Q7wCTBF0tSIuAA4BZhAXlZ1CXmlqXPJK8mdJOmniDgIuAXYCxgFLpT08bD/E2ZmbeQ2CTOz+l0FrJZ0GLBwq+emAmcD04HrgFFJ04DXgPPKa+4gL716BHAFcOswijYz2x54z7CZWbM9J2kDsCEi1gEry+PvA4dExG7ADODhiOits/PwyzQzaycPhs3Mmm3LS6v+tcX9v8jf8B2AX8peZTMz65PbJMzM6rcB2H2QFSWtB0Yi4gyASIdWWZyZ2fbMg2Ezs5pJ+hF4JSI+AG4a4C3OAeZGxLvAh8DJVdZnZrY989RqZmZmZtZZ3jNsZmZmZp3lwbCZmZmZdZYHw2ZmZmbWWR4Mm5mZmVlneTBsZmZmZp3lwbCZmZmZdZYHw2ZmZmbWWR4Mm5mZmVln/Q31vIoEIUI7gQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1, sharex=True, sharey=True, figsize=(12, 6))\n", + "df_percentile390[[\"heat_waves_per_time_period\"]].plot(ax=ax, label=\"percentile390\")\n", + "df_percentile490[[\"heat_waves_per_time_period\"]].plot(ax=ax)\n", + "df_percentile290[[\"heat_waves_per_time_period\"]].plot(ax=ax)\n", + "\n", + "df_mean3[[\"heat_waves_per_time_period\"]].plot(ax=ax)\n", + "df_mean4[[\"heat_waves_per_time_period\"]].plot(ax=ax)\n", + "df_mean2[[\"heat_waves_per_time_period\"]].plot(ax=ax)\n", + "\n", + "plt.legend(\n", + " (\"percentile390\", \"percentile490\", \"percentile390\", \"mean3\", \"mean4\", \"mean2\"),\n", + " loc=\"upper left\",\n", + ")\n", + "plt.title(\"Number of heatwaves using different definitions of a heatwave\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + }, + "vscode": { + "interpreter": { + "hash": "60ccb5338a3084842c00a66d8f5afe05849727d7c6630fa72612a56be257ddb9" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/measuring-heatwaves/calculate-heatwaves-incidence.ipynb b/notebooks/measuring-heatwaves/calculate-heatwaves-incidence.ipynb new file mode 100644 index 0000000..68d5b7c --- /dev/null +++ b/notebooks/measuring-heatwaves/calculate-heatwaves-incidence.ipynb @@ -0,0 +1,590 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "id": "e924f2d4-51b6-4630-ac7c-fecd106785e4", + "metadata": {}, + "outputs": [], + "source": [ + "import geopandas\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import rioxarray\n", + "import xarray as xr\n", + "from netCDF4 import Dataset\n", + "from shapely.geometry import mapping" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "ab901900-5686-4ee4-be67-7a4ca40b0c0d", + "metadata": {}, + "source": [ + "# Historical Heatwaves Incidence\n", + "\n", + "In this notebook, we will explore heatwaves incidence, based on [pre-calculated data](ttps://worldbankgroup.sharepoint.com.mcas.ms/teams/DevelopmentDataPartnershipCommunity-WBGroup/Shared%20Documents/Forms/AllItems.aspx?csf=1&web=1&e=Yvwh8r&cid=fccdf23e%2D94d5%2D48bf%2Db75d%2D0af291138bde&FolderCTID=0x012000CFAB9FF0F938A64EBB297E7E16BDFCFD&id=%2Fteams%2FDevelopmentDataPartnershipCommunity%2DWBGroup%2FShared%20Documents%2FProjects%2FHeatwaves%20Data%20Collaborative%2FData%2Fremotesensing%2Fhwdi%5F5degC&viewid=80cdadb3%2D8bb3%2D47ae%2D8b18%2Dc1dd89c373c5) obtained from NASA's [GLDAS](https://ldas.gsfc.nasa.gov/gldas) and NASA's [ERA5](https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "14c70209", + "metadata": {}, + "source": [ + "## Getting multiple datasets that calculate heatwaves based on different definitions" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b3f8a4f8-57b8-4398-9570-6aeddc328e58", + "metadata": {}, + "outputs": [], + "source": [ + "# parallel ensures that it being parallel processing\n", + "#ds_mean3 = xr.open_mfßdataset(\"../../data/gldas/ymean3/wld_cli_*.nc4\", parallel=True)\n", + "# ds_percentile390 = xr.open_mfdataset(\"../../data/gldas/ypercentile90/wld_cli_*.nc4\", parallel = True)\n", + "# ds_mean4= xr.open_mfdataset(\"../../data/gldas/ymean4/wld_cli_*.nc4\", parallel = True)\n", + "# ds_percentile490= xr.open_mfdataset(\"../../data/gldas/ypercentile490/wld_cli_*.nc4\", parallel = True)\n", + "#ds_mean2_gldas=xr.open_mfdataset(\"../../data/gldas/ymean2/wld_cli_*.nc4\", parallel = True)\n", + "ds_mean2_era5 = xr.open_mfdataset('../../data/era5/wld*.nc', parallel=True)\n", + "# ds_percentile290=xr.open_mfdataset(\"../../data/gldas/ypercentile290/wld_cli_*.nc4\", parallel = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "b1f1182b", + "metadata": {}, + "outputs": [], + "source": [ + "ds_1948 = xr.open_mfdataset('../../data/gldas/ymean2/wld_cli_gldas20_tasmax_ydrunmean2_hwdi_1948.nc4')\n", + "ds_2021 = xr.open_mfdataset('../../data/gldas/ymean2/wld_cli_gldas21_tasmax_ydrunmean2_hwdi_2021.nc4')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "c3612b41", + "metadata": {}, + "source": [ + "## Change in number of heatwaves from 1948 to 2021" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "27eb77d4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, '# of heatwaves')" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABfIAAAGxCAYAAAAphEeQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e5Rd5Xke/uxv3+Zc5syMZjSMJBBCQshYxqoiGysmVDZFSKJOo9ohbUK8SrLMSgqtI9lEMSYWt3AxSAwlDW1D2pLGpE2dxF5dqTGY4LDcJPxsY+xgTAADQkhIjGakuZzL7Pvvj2+/3/72Pmd0HUkj6X3W0prRmX327Zy99/c97/M+j5EkSQIGg8FgMBgMBoPBYDAYDAaDwWAwGHMS4nTvAIPBYDAYDAaDwWAwGAwGg8FgMBiMmcFEPoPBYDAYDAaDwWAwGAwGg8FgMBhzGEzkMxgMBoPBYDAYDAaDwWAwGAwGgzGHwUQ+g8FgMBgMBoPBYDAYDAaDwWAwGHMYTOQzGAwGg8FgMBgMBoPBYDAYDAaDMYfBRD6DwWAwGAwGg8FgMBgMBoPBYDAYcxhM5DMYDAaDwWAwGAwGg8FgMBgMBoMxh8FEPoPBYDAYDAaDwWAwGAwGg8FgMBhzGEzkMxgMBoPBYDAYDAaDwWAwGAwGgzGHwUQ+g8E4KzE1NYVt27bhmmuuwfz582EYBu6444625ZIkwSOPPIL3ve99cF0XCxYswL/9t/8Whw4dOuz6f/KTn8B1XRiGge9///ttf//2t7+N9evXY3BwENVqFR/84AfxyCOPIIqi2TpEBoPBYDAYDAaDkeLZZ5/Fr//6r+N973sfKpUKFi1ahF/4hV/ACy+80LbsD37wA1x99dWoVqvo7e3FJz/5Sbz55pu5ZV577TXccsstWLNmDXp7ezFv3jxcccUV+PM///O29e3ZswdbtmzBunXr0NvbC8Mw8Pjjj5+sQ2UwGAzGOQom8hkMxlmJsbEx/OEf/iE8z8PmzZtnXO6WW27B1q1b8Qu/8Av4q7/6K3zhC1/An/7pn2L9+vUIgqDje6Iowq//+q9jYGCg49+feeYZXH311QjDEI899hi+/vWv42Mf+xh+67d+C5/73Odm4/AYDAaDwWAwGAyGhv/0n/4Tdu3ahd/6rd/CN77xDfyH//AfMDIygrVr1+LZZ59Vy/3jP/4jPvaxj8H3ffzv//2/8d/+23/Da6+9hiuvvBIHDhxQyz399NP4v//3/+JTn/oUvvrVr+KJJ57A8uXLcd111+Guu+7KbfunP/0pnnjiCTiOg2uvvfaUHTODwWAwzi0YSZIkp3snGAwGY7ZBtzbDMDA6Oor58+fj9ttvz6ny9+7diwsvvBA33XQTHnnkEfX6//yf/xO/8iu/gj/8wz/EjTfe2LbuHTt24OGHH8a2bdvwW7/1W/je976HD33oQ+rvv/qrv4o///M/x9jYGCqVinp9w4YNeP755zExMXESjpjBYDAYDAaDwTh3MTIygsHBwdxr9XodF198MT7wgQ/gmWeeAQD80i/9Er797W/jjTfeQK1WAwC8/fbbWL58ObZu3Yovf/nLAIDR0VH09/fDMIzcOj/xiU/g29/+Ng4ePAjXdQEAcRxDCKmT/P73v48Pf/jD+O///b/jhhtuOJmHzGAwGIxzDKzIZzAYZyUMw2gbdBfx/PPPI4qiNtXMJz7xCQDAX/zFX7S95/XXX8f27dvx6KOPqoF/EbZtw3EclEql3Ou9vb3o6uo6lsNgMBgMBoPBYDAYR4EiiQ8A1WoV73//+/HOO+8AAMIwxF/91V/hU5/6VG4sf+GFF+LjH/84vva1r6nXBgYGOs4nLr/8cjSbTRw8eFC9RiQ+g8FgMBgnE/y0YTAY5yx83wcApaQh2LYNwzDwD//wD7nXkyTBZz7zGXziE5/Av/gX/2LG9f7mb/4mfN/HZz/7Wbz77rsYHx/Hn/zJn+BrX/satm3bNvsHwmAwGAwGg8FgMNowMTGBH/zgB1i5ciUA4I033kCr1cIHP/jBtmU/+MEP4qc//Smmp6cPu85vf/vbmD9/fsfCAYPBYDAYJxNM5DMYjHMW73//+wEAf/u3f5t7/e/+7u+QJAnGxsZyr//BH/wBXnrpJfz+7//+Ydf7kY98BM8++yy+9rWvYdGiRejr68Ov/dqv4Z577sHnP//52T0IBoPBYDAYDAaD0RE333wzGo0GbrvtNgBQ4/t58+a1LTtv3jwkSYJDhw7NuL4/+qM/wt/8zd/gd3/3d2Ga5snZaQaDwWAwZoB1uneAwWAwThdWrVqFf/pP/ykefPBBrFixAuvXr8dPfvIT/OZv/iZM08y1yL799tu49dZb8fDDD+O888477HpfeOEF/Mt/+S/xkY98BP/lv/wXVCoVPPvss/jd3/1dTE9P40tf+tLJPjQGg8FgMBgMBuOcxpe+9CU88cQT+P3f/32sWbMm97fDWXDO9Lcnn3wSN998M37xF38R//7f//tZ3VcGg8FgMI4GTOQzGIxzGl/96ldxww034Jd+6ZcAAI7jYOvWrXjmmWcwPj6ulrv55pvxgQ98AJ/61KfU681mE4AM0ZqYmEBPT49a9rzzzsPXvvY1pdT5+Mc/DiEE7rjjDlx//fVYunTpqTtIBoPBYDAYDAbjHMKdd96J3/u938M999yDf/fv/p16vb+/HwDaOm8B4ODBgzAMA729vW1/e+qpp/DJT34S69evxxNPPHHELC4Gg8FgME4GmMhnMBjnNAYHB/GNb3wDIyMj2L9/Py688EKUSiU8+uij+MVf/EW13I9//GO8/fbb6Ovra1vHxz/+cfT09CiC/4c//CF++Zd/ua3d9sMf/jDiOMYrr7zCRD6DwWAwGAwGg3EScOedd+KOO+7AHXfcgS9+8Yu5vy1btgylUgkvvfRS2/teeuklXHzxxejq6sq9/tRTT2Hz5s1Yt24d/uIv/gKO45zU/WcwGAwGYyYwkc9gMBiQhD4FVj3yyCNoNBo59c7/+l//qy346pvf/Ca+/OUv4z//5/+sArQAYOHChfj+97+PKIpyZP7f//3fAwDOP//8k3koDAaDwWAwGAzGOYm7774bd9xxB373d38Xt99+e9vfLcvCz//8z+Mv//Iv8cADD6C7uxsAsHv3bnz729/G1q1bc8s//fTT2Lx5M37u534OX//61+G67ik5DgaDwWAwOoGJfAaDcdbiySefRKPRwNTUFADgJz/5Cf78z/8cAHDttdeiXC7jscceAyDVOePj43jyySfxX//rf8W9996Ln/mZn1HrWrt2bdv6d+3aBQBYs2YNPvShD6nXt27dis9+9rP4+Z//efzGb/wGyuUy/vqv/xo7d+7E1VdfjVWrVp2sQ2YwGAwGg8FgMM5J7Ny5E9u3b8fGjRvxz//5P8fzzz+f+zuN5++88058+MMfxic+8Ql84QtfwPT0NLZv346BgQF8/vOfV8v/v//3/7B582YMDQ3hi1/8In74wx/m1vf+978ftVpN/Z/mGW+++SYA4Pvf/z6q1SoA5Dp9GQwGg8E4XhhJkiSneycYDAbjZGDJkiV4++23O/7trbfewpIlS/CHf/iHePjhh/H2229DCIHVq1fj85//PH7hF37hiOt//PHH8Wu/9mv43ve+lyPyAeAv//IvMTw8jH/8x39Eq9XCkiVL8K//9b/G1q1bUalUZuX4GAwGg8FgMBgMhsTHPvYxPPfcczP+Xac+XnjhBfzO7/wO/v7v/x6WZeGqq67Cjh07sGzZMrXMHXfcgTvvvHPG9X3729/Gxz72MfX/w/nmM+3CYDAYjNkAE/kMBoPBYDAYDAaDwWAwGAwGg8FgzGGI070DDAaDwWAwGAwGg8FgMBgMBoPBYDBmBhP5DAaDwWAwGAwGg8FgMBgMBoPBYMxhMJHPYDAYDAaDwWAwGAwGg8FgMBgMxhwGE/kMBoPBYDAYDAaDwWAwGAwGg8E463HHHXfAMIzcv6GhIfX3JElwxx13YOHChSiVSvjYxz6Gl19++TTucQYm8hkMBoPBYDAYDAaDwWAwGAwGg3FOYOXKldi3b5/699JLL6m/PfDAA3jooYfwH//jf8T3vvc9DA0NYf369ZiamjqNeyzBRD6DwWAwGAwGg8FgMBgMBoPBYDDOCViWhaGhIfVv/vz5AKQa/+GHH8Ztt92GT37yk/jABz6AP/7jP0az2cSf/umfnua9BqzTvQMMBoPBYDAYDAaDwWAwGAwGg8E4dzA9PQ3f92dlXUmSwDCM3Guu68J13Y7Lv/7661i4cCFc18VHPvIR3HvvvVi6dCneeust7N+/H9dcc01uPevWrcPf/d3f4Td+4zdmZX+PF0zkMxgMBoPBYDAYDAaDwWAwGAwG45RgenoaF11Yxf6RaFbWV61WUa/Xc6/dfvvtuOOOO9qW/chHPoL/8T/+By655BK89957+L3f+z189KMfxcsvv4z9+/cDAM4777zce8477zy8/fbbs7KvJwIm8hkMBoPBYDAYDAaDwWAwGAwGg3FK4Ps+9o9EeOuFC1HrPjHn98mpGBeteRvvvPMOarWaen0mNf6mTZvU75dddhl+9md/FsuWLcMf//EfY+3atQDQpu7vpPg/HWAin8FgMBgMBoPBYDAYDAaDwWAwGKcUtW5xwkS+WletliPyjxaVSgWXXXYZXn/9dWzevBkAsH//fixYsEAtMzIy0qbSPx3gsFsGg8FgMBgMBoPBYDAYDAaDwWCcUkRJPCv/TgSe5+GVV17BggULcNFFF2FoaAjf+ta31N9938dzzz2Hj370oyd6uCcMVuQzGAwGg8FgMBgMBoPBYDAYDAbjlCJGghjJCa/jWHDLLbfg53/+57F48WKMjIzg937v9zA5OYl/82/+DQzDwJYtW3Dvvfdi+fLlWL58Oe69916Uy2X8yq/8ygnt52yAiXwGg8FgMBgMBoPBYDAYDAaDwWCc9dizZw9++Zd/GaOjo5g/fz7Wrl2L559/HhdeeCEAYNu2bWi1Wrjppptw6NAhfOQjH8HTTz+N7u7u07zngJEkyYmVPRgMBoPBYDAYDAaDwWAwGAwGg8E4CkxOTqKnpwfvvnr+rITdLlyxBxMTE8flkX8mgRX5DAaDwWAwGAwGg8FgMBgMBoPBOKWIkgTRCWrMT/T9ZxI47JbBYDAYDAaDwWAwGAwGg8FgMBiMOQxW5DMYDAaDwWAwGAwGg8FgMBgMBuOU4nSE3Z7JYCKfwWAwGAwGg8FgMBgMBoPBYDAYpxQxEkRM5B812FqHwWAwGAwGg8FgMBgMBoPBYDAYjDkMVuQzGAwGg8FgMBgMBoPBYDAYDAbjlIKtdY4NTOQzGAwGg8FgMBgMBoPBYDAYDAbjlCJKEkTJiRHxJ/r+MwlsrcNgMBgMBoPBYDAYDAaDwWAwGAzGHAYr8hkMBoPBYDAYDAaDwWAwGAwGg3FKEaf/TnQd5wqYyGcwGAqblm9TvyeOjcSxYPghjKkGku5K+roFUW8h6q9CTHm593/z5XuwYfXtSFwTAPD089tP3c4zGAwGg8FgMBiM48aKu4cRXtLEG//qNizb8RCsloHYAqyW/LsI5L/Ylv/otcq+BK0BAy/t2IpLtw/DmQR+9PDW03cgDAaDwThjECFBdIIe9yf6/jMJRpKcQ0ZCjHMam5Zvw5OvP5D9HLpJ/S3xfCTTeVLa6HJhuA4Sz89e666q3+P+HgCAqLeQODa++fI9J/kIjg4bV96GxLHw1It34pq1d8HwIgBA4pqIXVm7E14Ic6yu9nvT4i3ZClwH8Hz5E5LQN/wAABBXS7l1mZOFc+aHSBxLLSOmPPVeeD6e3P3wSTpqBoPBYDAYDAbj6HDp9mF4AzHcUYFX7tqKy24ZVmR1KIe78OVQH9Xd8uf0QJ7Qjm0gtrLliOR++b7TT2AvfWQnAODNz34eSx57EADQfV4d0y/3QqyYQvhmFdbSOryxEuxRC6/fuhXLdjyEqCw1jUYtQDKZMvXlCOaojcRJYPgGnEkD3kAMs5G59MZ2nlKwWgbCknyN3vfGLZ872YfNYDAYjDMIk5OT6OnpwcuvDKK7+8Sc36emYqy8dAQTExOo1WqztIdzE0zkM85abFx5GwDkiGXDi6TC3A8kWe37be+LJ6YUiQ9Ikt9wHcBx8stpRL7cjp2tFwB8H0/uf/SkHNvRQifySUWvq+Q3rL49Ox8F6KS9ft7iaglRzQUAReQbfoi424XhRUqND0AR+YmTTgTefU8WR/r7YPhB2/4wGAwGg8FgMBgnA6u2DCt1ufABu5k14nu9AtW9IYKKQGt+nkywGkDsyPeEskEV0/1A0BPD8A10jRmo7EsQVAyEpbxaPbaBsJTAahl49UunnuC/7P/cDj804TdtJC0L9qiFoEfODXbddAsAYNmf3YNozIXZFLBaBoKeGLGVUQT2hIlgIIRoCdgT8tx4/XIdZlPAmTQgAiAsy3MSl2LATs9tIAA7hpi04I4KlPcBZiDXLdKfzz/x+VNyLhgMBoMxt0BE/j/8ZHaI/A++n4l8BmNOY9PiLUi6KzCmGpKQJ6I9JeDjailHUhMxLeqtGUl8RdoX4XR4rdNyU/WZ33sEYl/vECA8uf9RaXdTULNv7PuM6hYwBubJFwvLXLP2LoTdDuzRllLKG34IAOqcRP2yw0AR9WOH5JvTzoPcOUtBljtyPaGy2kkcG3G3i7DbgfDl4F14IWLXgv3uOCvyGQwGg8FgMBgnDatvHkbfa1m3qDUlx/qtoRLGL7YQ25mSPixLNX35PcAdz0+HI9tQhH1YksS/X5PvcyaA+j+ZhrBjiDfLiCpSme5MSnsZem9YArp3x/B6BYSfkddBxQAAvPgHhyf1lzy6Q/5SjrDrht8BIFX2b342I73J+qZrTO5fWAJEiFzBQKnsyxHMUojeWhMlO8CePf1A04TZ72HpeaMoWwGaoaw+HGyV5fmcvxcV08OuRj/GpuVrJSvAT/cMQtixWtdEs4Rmy8Eb/+o2XLp9WJ1nEQDOJFAeiSGCGN/5+m8f/YfJYDAYjLMeROT/cJaI/H/CRD6DMbdA6nFAerFvXHkb4m4X5lhdEugFIp9U4EQ6E9ms1OedSHd0IPM1Ir7ttSKZ36lA4DgdCeyNfZ8BALUtvRMg8XwY3VX1vk1DN0lyvUCG6572gCTmDS/CUy/eqV67et29MCc9RDU3p6BPHCunrM8VONJtHc5eR98GkFn6TC+QMx8ziGGPtlQR4MnXH1DLyX0Icq8DwFXr78ez3/pC27liMBgMBoPBYDB0rLh7GF1jkpDv/WmI+iI55g9LUjFvteTv5fck0W015fucCflzekC+Xn4PqO6VZLPXayKyJdluN2MEZYHJpVAqdnvCRNeY3F7l9XEYfoBgYW9uv1qDLiIHCMqSlDADqdYXPvDCY+0E/hXXSRuc+iKhCgb+RdNwygHCwIRlR3j1k9ux9JGdKO0TiG3glbuy9Sy/b1gd65Kf3Y39kzX4oYlXP5l1vS55dAdQjiAmLVSWTAIApg6WYe9z0DUmz4ndjGH6stjQGjDQHEpgLa1j40WvoBG5ODBdRdnyMehO4dl3LsFL/yI/F1i24yEkToK4FMMohUhCATTNXDECkAWJvpcEYufIBQ0Gg8FgnL1gIv/4wEQ+Y85j0/JtORU4gXzahRfmQlf15XQlOTwfSXclI/b3HehM0gNKkd4RRHY7DuA67T7zKfmtE9TqWEh17zgI9+yFcLvkvvR0q9dzoP3SX/d9xAvmq3NAdjakhCcVPADEjkBkZzdEuyELIcILEXZn67RHW7n1ibEJdSx07qOaq8412ehQYSUcqHT8HIqe+bSvsWvBGm0oL39AdhCoUzyvC2YQ49lvfSFnD5SzRUr3zfADJKMH8c1Df9R2vhkMBoPBYDAYZxdW3jqcC1oVqUZHhFJdX3trGq1BF/VFAuc9P4XYtRA7Al6vDRHEcA8FMCc9jH6oF+UDIWJboL5IIE6nEFNLI1TekVaRXaOS4CZlPZDZ7FT3yg17fXJZuxGj/HYdT714J664bieCioHINjqS96tvHgYgCw5kvxMNBDBH5YGV9xvKAihOh+zk3U/WPf7KJsolX1nnOOVAWuiEAmYphGVHcKwIQ7VJ7D7Yh/m1ulLUJy0LoiUQWwlEaCC2Epj9nnpPs+Ugalm59SydN4YllTH8ZGJI7qOVWXP+6JULIVpyzhFbCewJE6/fuhUrbx1Ga0GMvpdkQUSEQHk/MHlRguoeQwXiLnnsQfR/10LsAHYjgQgSPP/E57HmxmFMDwCNpSHsUQuxLW2KRAB0705QGgnx3DfywiYGg8FgnBkgIv8HPzkP1RMk8utTMX7m/e+dE0S+deRFGIyTjw2lT0PM71fEdScLGiJxld86gGee345r1t7VRhoraKpyuY5AkcdtVjad7HM6oYOlzqbl2zqq7jcN3ZQ7FmWFk/rox940zJ6ettdz0IsKniwg0LHGrgUBIOx2EFRMuH4Mb15XRtj7cY7IB4CgYsF0BIKKiaAiYDdiWFNZUcTww7auBgIVCMyxese/6+c/s/GR/vmxa8FKif6420Hc7eLp57djw+rb24N4A2nNc/W6eyE6rN9Iz9NcCRhmME4m6F51JGuu053JwWAwGAzGbGHJozuw66ZbsOLuYXj9kfJzB6RdCyDV9OTNbjUl0f2jhz+HlbdKklwEwNhl3Up5P/iDGO/+nIn+H5vweiUrPrLYwqtf2opLtw+jNRTBHTNReceEMwlliRPbBtzxOOedH9uSwDd9wPSB5qDAgdUG5ldqWHv9Tjz/1cP7vse29N53JtNjKBmIxxy136F0skHYn9kBiYAsfhLEQx4QCNQDKQqa11+HH1hAGQgDE1HLQjTpIJww8YZTQ1yKsWd/utI0mDYuxTBrPuJAoLs2DQCoT3bBC2XHLgKBCBbiQMCpRWiGNl4YuwCtwMa8UhPN0MZAVwMA0H/+OMb29AKBAZQjBOUISx7dgZJtou8lATOQxL3wgfpiGYD7o4dl+O3a63eiZ76FsCK7K2LbAGBg2Y6HUO4xEJaB0jupNVJoqM6K7z7O4bmMswMXfeU+vPWrt87496KtFoNxtiFO5L8TXce5AlbkM047Ni3egmSqDiw8T/rdQwbJinprZlV7d1WRyHG3HGyKKU8RuxtW355TlevrUcp53VcfQNJdUb/r4a85Ox4qDBzG733T8m152x7HUdtKpuowuquA6yDesy/bXpervO47bg8ZaV4MnCV1fWQLmEGMoGLCbkgFO3mDevPkIN8MJLEfOwaCSqqasQ2URiTp7h6Ug3hSzgtFvLtqX0lNL/dJEuv6vugdAvZoS/1uTfmKrH/muS/iys0Pqv0Ufqy6B+xGiKBiwW6EEF7IYbhnEdZd+4DqtNiw+nY89eKdqpBDnR5H+rw3rrxN3Sf0a3BD6dMwulwkSxap7o+nXrwT16y9SxWpzqbvkrqPAeqeRKB7GRe6GAwGg3GmghTrRHhPD0gi+6Ud7er2lbcO4+X7JBnvTKZe8Sn5/fJ9W7Hibi3kNpCvES7dPqyI4bCMNKxWqr79i6ZhHHQQWwm63zTRHErQNWaoDgBavmus835dfsNDaA0YqlPA6zVU8YGKEYBch98jSeygJ4LZzAoGIjAQ2wlEYCg/fh30NxFqr1lAVJGhs6S6J/IeAGDHMEthbj2kuvdDU9n5OJYcpzt2CD+w0Gw5sOz0tfRvAKR6f9KBOWF23Bfax9qbsjDi9Rqo7ZKdEM1Bgfr52flwJrMuBQCnJSCYceKg8fczz30Ra24cVl0pa24cVst06lQhXHHdThy8VMBqtl9bq28eVt8Z3WZq1ZZhhKX89X2mggKoB78rVK4GdedM/tMm3vhXt53mPWQwZgekyP/+y7OjyP/QynNDkc9EPuO0gSxzDD8ApupI+vsAZER1zkYFOKGgVPKS161YDNfJWesk/X0dA2GPdl82rL49s/LxfFmcACRxD7STbenfk2lPEfm0Lbmvcl+MqYaykQGkjY056SEYKCnyHoBS3seOAbsRQfgxzElPqd1jR/49qMj2X6/XRFAxENvSF7Q0ktni0PvIPqdI5JPXPiAtcwhkgQMAwUBJFRJ0G59nv/UFrLs2K6xQ8YCKEUTgE8SUB8MPEPVXzyoi9lzH1evuVQWd4w0/27R4S1sINBaeB+DsJrEpABtA1iE0Ve+Yo8FgMBgMxpkCssxxJiXxbTcSRA7QWCBgtTJyl4JdX7/1+Ag7UuzTtojkr5+feuHbCdz+Frz9ZdgTpiIM5bYlmR/bwLxXYjQHRZvP+5obh2EG0h4mKAsVdNtYYKCxNETpHQt+LUHiJDAb8tho3VFZjuvJz97wUxIvJfIBwPANJE77FJ6WBZBbj2HF0q8egGHFEHace18cCPWaTuADkqSn18MgG/NHY6mIJ5TbdEf14kNagGlmNkCUVdD/sqeEPu+t7U67EdLj75FFEZlxIM8znfvpfib1z1SsvX4nnn/i81h98/BxZSJcfsND8HozG6bLb3gIANAaMDoW0M50XPSV+yDsGNGYq7qD6BoCzo5CBYNBICL//3t5aFaI/I+s3M9EPoMxG9jY9xlEExP4VvzV3GukTFco+J53VLUjC6N9cv+jSp0fV0s5Eh2AUuLnAmFTgp0CZhONWKf90dX7FOBKhPqxEGSbhm5SobXUYaBb0VDBAoBSJBNhDSBnNQNIkpyCZAEgrJiIHOnHaTeiNiIfkN73Uc1Fa9CFSAl/UuIHZaFaWJ0JoGs8RuQA7iH5XioQkO++TsZTkYCg+98DGXFP26cigl54oM4B/TXaFlnuPPXindK2qENnxtkOCgXWCelcUHB6fTy5/1EVBG1MNfKdJVMNeCuGOED4LMKmxVsQHxiD0eUeVS5Ep+8Rg8FgMBinG8t2PIQ3bvlc22tdY4ZSzlf3StV2UDEUqU/j1MmLbExelMCZNODXpIL+1S9txWW3DGNqqSTjzQkTiZNIgvuCFt74V7dhxd2SxC/vh/K8DysZ+dw8T5L7fq1daU9+75Xdclx7LCQidRiEJVk0aA4BQU8Me0IgLMn9D3riNuJe97CHnQB2LANkkZHocSlu36AdA4GQivxaCLcmx+3kfw8gp653bDnf8AMr9zsgFfkHx+T8JGml85OWgNkQiCpyn8v7MyV+bEkvfN0SKLahMghEKLssqnsD1BfZCCtpZ8OoJPNf2rFVkb6Xbh/OBfuezVh7vQw9fv6JzEKFshYIZCe09vqdiG1DBTNTjoI7Hretg3HmYPl9w4jT7pni/bETljz+5VyQNINxpoGI/L97ecGsEPkfXbmPiXwG42SDSHYi3HPE+1QdiecjmfayMFhAhcwSiBz/5sv35JWqRfi+KgIQgW9o/vOzqWLduPI2pej3lsyD8OWgypz0lL99USlvTfloXCBJWHdcvlcPr/X65HHajQher42gYsDrNVA6EKO6Rw7Og4ql7HWELy9t+n9sC1iNCGElU9NM90oyX24zgTsuB/Q0aRJBgvKI3BedcCelPSnwdfW98trXgm0BtL0WOyJHMJNC+1zAxr7PAJDdGE+1/gRAapWSWjA9ufvhXAGjqDzvBCLzmbA999Cm0KciqOMgWigtuzp1s1yz9i7ucmEwGAzGnMKyHQ9BBAZev1WSuEBGAotQ/uwaA2pvSwFKbBsIKoYi9cOSJOJJtbrk8S/D3pcS1y2ov0sFvvRtJ4gAaj2zRR6vuXFYjbVji2xjJHFPr5H1TNATQYRGTnGvCPzAAOwERimEsGPEQZ7woNf0vxWV91HLUup8XZmvv88pB4rYJyK/2XLUOpNQqEIC2fUYpTAL2k2JfgQGzKZA15ih/P71YGKrJY+diiFrbhxG13iMvz1CtsCZDCrmCD+zlbniup1wxwM8+60vHPNcqBPxzzj7sOIv74K3v4zB7wqM/kyiin10D+nUqbLksQex68bj63hmME4lmMg/PjCRzzgubCh9GkDq7d5dRdJdmRUCUflfp2RUPDEFAJLIJ9JdD7D1fKVAVr7yU/V8cG26LiLvycoGyBP5+nqOVQFOVjGltyfUaxTMGw5kCmndW14ntPVA2rBiwmpkLa26gh3IiHwi4ckWR3ghvHldOasd+t3rtZUiP7YFIkcGc033CsQOpMrJNtA1HsNqRIgdA835FuxmDLtBavmkjcgnX/Ow21HFitgRsKb8nM++HoKrK/RpP2PHQGm/7Kg4G/3MZ8J6cR2E24WnWn+ShS8TkZ+Gl24aukm9xmAcDkW7MnRXVYdP8XqibIJz4TpjMBgMxqnB0kcksZjM8xWxe7gAx6PByluHMd2fIOqJ4O634ExkNjfdu2N4vQLT/ZntBHmtv3zfVqzaMozp/vT1VeNo7Kqh+02hQmNFILtSAaloFj5gN2M1RjaD5LjsO67c/CCAzMaSAl6DHqmwtyfkmD62MysdERrK/z62pe1ObMlpuj1hKs97I/W2J6scILPLsewIflOeHJ3EJ+U9gTzw6fci8U+EPsFv2nDKAbzJLAQXkAQ+7YfuuR8HAsZBORejY9IV+oD8nbIJ/B75u7RUijG1WJy19iFrbhxG7EBZm4ogRnO+hf6XptSYbNWW4VyRg8EAJDmPQJL3ZlPAahmIrXaLsSWPfxmGFZ/wvZfBOBUgIv///XjhrBD5P/eBd5nIZ5x7oMDIohXOkZCz/Cj4wJP9AxGVujVOEUpZqvvJp/71egDsk7sfVmGPOgGfODaMsUPZCjUPfNp2jsjXfPL1fe0E3aInrpaUnQx51duNEPa74zn7nLjbRexaSilPoa6AVNt7fTbilMR3x4Ockr6TdU7sGBB+Aq/PRGu+QGxJRZIIYmWnA+T98mNbQAQxhJ8grJhKaQ9IFROA3P9FkMD0kVtOJ/N1D3si6acXVHLHR9Y7RX99MeUhHKjkiHyvV56vyjuyyHEuEYsbSp/GU60/wca+z+Cbh/5Ikfbw/YzEBzpeKwzGiYCIfAoiYzAYDAbjcFj6yE7EpfiYVJ5LHv+yIngtO4K3vwzYSW4dK+4eRtAjQ1xn8rxftuMhWC1Dke6VfTEmlgl0jQGHVkboftPESzukgl/5zNsJKm9akrAPM0V/15hcR2xJAtnrjxSxTmGywUAI0RJ487MzK52vuG4nmoNEvOf/RkWF6f688p6scsymQFSOM2ucgupetAQM38h87oEsrJYI+kAAdgzDypYhMl8Pq/VDU5H7Oqo1mVFFAbZ60C2Qfl6TLsxSmPPQB/LKfkCS+OSZD0iSkUJv40zLozoPAKnIp6ILEfx+DWe9jc6qLVnY648e3qr84/Vchdg2zlr/d8apAX3PzpbwX8bZCyLyn/vxolkh8td9YO85QeRbR16EcbaDyHud4D5akNe9oXvdHwG0rG6rQ2jztAeA7qoi8Q+nlFdKVCDvqU+hs+l29WNNPB9GuvxMJL5u9YPuao6oB6Q63UJmM6OrzwGpUCclOyAJ/KBiSWI+JdkpnNYGcmS+3ZAEvLLmCVKlvS+9JQFABDHcQ4HalvAzQj12TKWwjx0DkQNF1AOA6SeK5Pf6TEXc6zB9qP2hbei3Dj3gVifo6VyQwr4IvagRpV+fc4nEXy+uw7firyqbHaCdsI8npmB0uR2tdajoxUp9xrGALJueevFOXLP2LkXib1q+DXG1hKdevPM07yGDwWAw5gIu+sp9SlUdl2KgBMCOj8qTWSlHbYFksgvGedOSKK4FbXYvYSlBMs9HULKw5LEHOxLoZJkz3S/J34llAlYTmFgRY9dNtwCQAZity2O4Yya6xkwZDqlZutC2AEMR7SIAKu+YaC1IlehWAiP11p/Jn3rVlmG44wmiXqHIZ7U+jbiWCnTpew/IIFrDN2AWCfoCRCsdG2tK/ZwHvm6pEwgk2mvRpIEIAMoRopYF1DyEgZkLsiUQaV8u+coz37EiVEse6i05H6QiDHVXOOUAYWAqcp8QTTpqX/XAXRFkBRSpvpf5BzSHAQAzSFLx0NlP4gNQga1EtJItDlntrLlxGHYzhjNhtL2XyH7yyWcwdFDuyNJHdgJLoe6jSx7d0VZAZTAYZzZYkX+OgoJYv3nojyQZ7zoIRw4AgLL6OB7QunRLECDvP0+WISe6/7rdiCLbNRU/kA+zJRChf6z7QB0AgOwCUN0Hvi9tf+h3IEf464p0AlnqEKlPanavz25T5LuHoja7HPLIB4Def6znvOdpfQDaOgBag3JfyFPUHY+U2p+88xXxn1rwkBpfrkPa61AHApBZ6dBxAdIPX0x58Bd2q21TOK7umx9ULNVlYAYxnHenOlo0bVx521nv/b5eXKd+F26X/NnTjXhiasbrUQ9jPtvPD4PBYDAYjJOLi75yn/JAN2oBjINOjkQ+kkp9Jujk/5LHvwwAbcWAEw1tXHnrMKxWRpReun04F7BqtQC/Jj3xSwekoj8sSZV415gBv9ZuUXE4EBFLRQKy9yn631Nwr5+KA3U7HQrkjcoxzObMSkTyyyeQql+336H307LJvHQu1LKUBQ6p9zsR+7oSn1AtybE7BeD6gaUKAFHLgpjMhD1mQ6iwWyCzzbFa2msagU8Bw8KHsvmciaA+WwNvL7tlGC/t2KryAQhBxTgsWX/5DQ8BABP6DAbjjAcp8p/98QWzosi/6gPvnBOKfCbyGUrZG+7Zq147kq0OWYGc0HYXb8ksdLSQz7Z9Q16Jrwj1lDQnQp7CQnXyPpmWA9Bip8FM1j5Hu9+KyAek/35/nwzb1cj+uL8HUS2/XXPSQ1RzIbwQYXe+i4FIfUD64jcH7VR5Hynynn6vL3KUst4dD3JEeuwIBBVTWe3opPvkRV1t1jm0jdiRkw67ESk/fq/XhN1IctY8tA+0bipCFI+NughIjW94kQr6BWRArr6OZ7/1BVyz9i4YXsSq4BRHW/Q6FwodjJML/g4xGAwGQ8eSx7+s7FvQNIFyBDFpHZbIP1EyfsljDwJ2DHPUhggMxHbSpoxfeask6HVil0h8ILOSICLfmSASX9q3iACo7EswsUxa9VD4LAXsHisuv+EhNBYYePm+rVhx9zC6xrJiwspbhxGW24sJABD1RCoQ1moZqiAQ29Q5IEl5wzeUHU0nq5qO9jspSN1PZD8AGLVAkfrV2nRbqC1Z8wBAuZTNqXrKLbQCO7csKfFhxxCTFuyJVDwU5INtieC3GlD+8ETqm0ECr9fAjx7eqtTo52p46+qbh/HiHxz+O0hWPOuufQDPfWPbYZdlMIATvy8zGCcTROT/9UuLUTlBIr8xFeOfXbabiXzGmYmNK2/LSGZAqdRn24JjNsj84wHZjBBxnwu2PQKRfyIEPm0bQC5sF5CkvahnkhOy+YmrJUVuA1DK+bDbyZHgumo+qFiwG6EKwSXFeuwYCCoCdiOG1yttcMg/n4h8fb3WlK/+DwB2I0RQsZTSv7rHU4UDAG3vocBbCsAFoMh+6hqg/S9a51BBgdZHyyj7IddU+/vst76Aq9bfn1uGVPsUDswEI4Mxu7hm7V0A5D1J1FuIqyUYvryO+XpjMBiMsxPL/uweFYiahEJZspzplguXbh+GCICu0YwoViSyL73wY1sS6bElf58N3+iVt8rtTvdL730RAu54gsYCOV4Oy1KZrv8MS5liH8gHwFpNIvKzbYgwI/ajcqz8/EUow3PJyiZxEtk9EeQtWciPn0h+0RI5Yl/9HQDKEcxSqAh8Ut/31pqot1ylxAdkwG4yaav1uvstdc5JjU+FB/3zAGRxxW7KbQZlgbCSkfyHVkYwagHKL3fBarHHN4NxrCCLsrgUw6T7RSBtrc7GzhbGmQ0m8o8P7JF/lmHT8m0wUPCLp78VfLbJK/l4cSIkfk6ND6hwz8O+h4JwoRHqTl7VDidbJ5H4nXDcRQjXkT7+QzdJOx3y3U8JMLLT0X3ySalO1jJkKwNINbqunic/fd1rnmxnYsdU3va6zz0p32l99DOa15Wu01DEe+wYsBqRUvYUYXgRhJv6hDpp8JeTqWYomFf4UW7b5INPJLwk9i1J3Hdr6x6bQNzfo5bT91f4McSUp0hEIhoZjJOJddfKe+C5pGqiayt2LcCV1kx0D6O/iykPhh+c0DOCwWAwGHMHy/7sHkSTDiJNYU9Y+sjOzE/58S/DsGK89au3nvJ9XH7fsCKoYyuBCI3DdgCsvDW1t4H0zieLlqBiwG4ksBsJmoNCqvVbwORF0lqHiPM1Nw7jhce24vIbHkJQMY6ohu6E0qgk5sMSUh9/A9XdwOTStHBgS2Lbakki35lMbXfSfdCDckm9Twr22Er/HxiIKjIcV7evsSdESpSnxHwhLFeN95uZ7z6dVyL9Eyf9f0ruRy0LKQ8Py45g2RHG3qspX3wKuU0m5Y6bE6ay83Em84Q9kBYqQrIdkgUPqcIXsBsJzCCBfSBBa75A8zyozAP12RbWx2AcD/QgbPqOnY1YtuMhoJxe9+n1bfiyuymEIUPLU2uumXJAGIzTgQgGInTmqI5lHecKWJF/hmPD6tuRuCbMdw8CkN7tRCI/9eKdkvyequftZ4AjEufrxXUwe3qkn3wHyxsdG/s+g2TaUz7eRJJv7PsMjIF5klgnX/oCKaTIeT9T0cNxANfJhcrqClFdka+U+Th8xwEF+gInVoDI7TuR+Z6vrHYSx0Y4UFGkPXmXU5AkkKnRY9eC12cjtoWyqyFiO3YM5V1PNjZerzwfViNSFjfuwWlFouvqe528B9DmwU9WO7o/vznpQdRbSBwb/sJupconxb83ryun6gfytj4EPfwWgOpIIGKQvg9xtYRgoJTrGKDgTXWOT7DYxGB0whXX7cx1mQg/Qde+xllr6XTV+vthj7YQ1dxc94/wQnX/MN89mBVX0+uTOmP09+jWXUHFhHsoQOwIPPutL5zOQ2QwGAxGB1DIoTlhIuqJUHnTQmOFj103/A4u+z+3o9ly8Ma/ug2AJPPjWgg0zcMSXRd95T4IO0bUsg5r10DWPKT2v+gr9+GtX7012w4ANM02sp5scsKStMMhOxqy2gEkGa4rS8mShIj5NTdKEpgCRItYffMwpvuB8r6ZlzkWrL55WHm9i3RYHFbkT11x/6OHpeUPKe6dyWwZQC5Hy4aljNAnFT8VBGKLigLZ7wTy4ydvflovAHgDBQV/J2W+nUg7JciwW8uO4FhyzFSf7MoI/NQSiEDdBHRcWcCw3L/WBWGuwND3qiy0ANLuM7KNts/ibPXGZ5warLx1WF4jWrGMbK/OJtB9vljIs1pGzopLBnDL+ykV32g5q5ndq6iDqGhhxmCcDJAi/8l/uGhWFPmbPvjWOaHIZyL/LMOG1bcrMqroL7+x7zNqOcN1EE9MwehylXK9GKhZXP7J/Y9iQ+nT8v9dbo4Qp9fpb4brKIsbCpdFd/WoSdlNy7fliHzg7LV7IFsZIsgA5Eh4QBLx+t906x36O/0OyKBckRYA3EOBsr5pXFBRfve0DlLV62G0hhcpD3u5TS3oLC0aBBVT7ScVBvRiACCDfskbPxyowH5rRK0n6a6oMFx7tAVRbyHqr6rlz9bPm3HysXGlJCUSx0LzwqqypqKch7/96tnhvUrK+rDbURkapbcnEA5U1LXt9clrMahQwSxGbAu440EubNseldZgUp0fIOqv5rqHgooFr8+E3Yjb7k92I1T3jzOlGELB7Inn5wrRgHyexd70EbNiGAwG40zCsh0PKQXmsj+7B9GYi1033YIlj38ZpTflWD22AW8ohNvfwuJ5h3CwVUa95eLVT25X67noK/chaVkwaz6iloXueU00X+tBPOQhaVk5mx7yvEcgMkuXlGgiGL5xVMrQy25JFdqaXcvZZrmy+uZhRTr6tYyUp2MmUtJqSrsgEUiivEja0zqUvVBK0JE/P6BZ8QAwa3LOZtkRvMk03ysQihiksFwqvJCq/3ABtxRkC8gCh1/gVPQQXHc8QWQb0lrnn4RAYJzVqmnG7GDpIzthNuS9xGpl5LPVkt3ks1GkO51YtWVYZXsQ0e73ZDkZUSXOFeMI1HFjTpiKzKeiIaGyT2ZThCWtoJgWIym4G5B/82tA+b25XwRZtWU4l71BYdBXXLcT9UVizu//uQom8o8PTOSfpdi48jYYUw2lUt80dFMbsU5EPoAZyXx6HynzdQ/6orJdJ/5pnbo3PdngtAXaFix/gIzI1y1qnnrxzlyhoogNq29X9hCkjjemGsoOZ67jqvX3K6UrecvrZDmAHBkJACKIlXLfboSKZPd6bdVWXBrxcq/Te3RyPnYEnHen1PlOXBPevK5cAUF/j15EkH8Lleo+cSz1OfgLu3NBvPa745mdkuuguXxAefOLqbwVEtt6MI4FZJHTta+hXjtTSOWjxVXr74c15cPwIkwvkFI/9+A0vHld8Pqk9VZpJLXwSlX0QcVEUBHwegXKIzGmewXMIEHtrWm0Bt1cwY/e5+46iLhawvSCiroH2I0IzUFbrYcKgnpORuxabV01cxEqXyVFPDGF2JuGcLvaitTU1ZZ4/mnJhGEwGIzZxpLHHkTpHUspLZc+shOlffKZ0VoQwzhvGtGYCxEasM9v4H2DI/iHXYvarHaWPLoDIjTgjooswHUgaFPp61YOSgVejqS9T0rqH84+h0A++EQAiwB48Q+2zqjaJlU+ebGTlQuRO3MVa24cht8jfw/LmXrW8A1E5Ril/aYk8DUVPpF89B7lVd/KyH76W2xn9j2xJclAUukD+YBd6oBInEQRpmqbGhGvk4Q6gQ9kXQpxquvSOw70fay9FWD8EhsTl0j1f89rJhNvjDas2jKsbJoozPqlHVk3zpmMVVvkPat5XmbLBWTEfS4voydC6R0rH54NKDU+3WtFKK9tuqbpepupkAZkRURS8IcleY7nMq5afz+agzZi21CdPpEDPP/E53HFdTuViOuK63ZiulfmcsTW3D+ucwFE5P/ff1iKSrd5QutqTEX45x98k4l8xtkFRcoPzEO8Z18bcaH+3l1FMlWH0V1VxL1O/gMZ4U9K/GIBAGgn9otBs5uGbsp73GuEe1GRrxP6gCSadeJX/zspSnUin+wi5joxfPW6ewFI1buXetyTcr45aKM8Ikfmus0OAHh9JsojAezRVo58IzW+bo9BsEdbCAZKipy3Rhu580g2HMVOAAKtT7fWMcfquW0Uw37JAgoA4DpK9WtOeupz0z+jYlcJg6HjqvX349lvfeGs9Lm/cvODAKC6CQjCT+AenFaFPvdQoCyzYsdQ/9ffG9sC9UUCpQNZ8c49lFl0UQcPLV/a31LWX4DMxhCBVPJP9wrYzRimD1UEoIyPM8VeZ9PQTep3UuTrRed4Ygpifr+0blu+DcmovG8VCf5gYW8uMBzAWW3RxGAwzl4seXSH/MVOsOvG38ayHQ/l7GuW7XgIQKriroUQkxbMhkBUSQUeBT/7JY89OKOqmmwgREvAbAi8fmtGpKy4O/NFj23plU/rJCJft33QFeB2Q5JRdjNGa77IEcpmIKe7Xq+hSOy5HqJKHQhEvoelRBH5FB7bNZa3DdGDZYmEIxLdbkgFbhFkfUOkPsGeEDlFP4HWDUjVs92MEZTTrj9tfKBytdKxQlARiG0DQSXLCPBr8jMsjWb7ppP3V1y3EyKI8Z2vn9lhzIzjA1lmAfJ6sFry+0y5FnO9KHc4rNoyjOZ58ncqqtHvzkR2fcR2VsgrwmoZmR1OKSu62RMCXn9qdWsnGPobganFqf1uIZuDQriLoPVZLQOvfmnu3icJVLjtGpeiJf13Koy+tGOr6noqkvi6pZszmd0v5/pz4mwAEfn/5x+WzQqR/y8++AYT+YxzA0WLAdHTfUrUh4rIn4FoJ3sMgk4yF4n84t8NP0TiWBBjE8qfnzDXSeGr190Lc9LLkexE5LuH5EO5SLzFtlDKeyoAEIj00xX4ABTBb0566nySmj5xLEQ1F0HFyvnt6+rbsFueVyLyyRJHD1kmIp+2pxP5SXdFWYCQyljUpTxgrn9GjNMLIvDpWiHidN21D5zRZP41a+9SWRd0XRfJcuq+KXrV072AOnTke0K0Bl1EDhDb0n+2azxG5CB3LwGyiTZti/ZB+Imy1AHkRJyKAPS+M3WCTcXrTs+6Tp1iM+GK63YCkOeitL+Fp5/ffoR3MBgMxtzHRV+5T/mhi9DIeasfjYL+eEFkfmxJgl5X21+6fRhdY5l/fGylpJcWcgtk5LXw84r82JbkMxE7VgvHFXB7qrDy1mGlPFYq+9RWx5loX54KFIqAD6GsJgB5TvR1EYlP6nhdga93UbijmRhIBPKfM5ER9/L1OCc+oA5iEcRtJL6uxo9toHRAFl+sBlBfjDOCOGScOlx+w0NoLJDfnZfvO3PV99RtUyTO6ZrM2dykBTOy1qH7IS1Py+j3wuoeoH4+VGA4XbeUpZHbVjnbHtl3AVQMlMWDym5xxinWr7huJ5qDAi/+wVY1XzxWUPi58GXWCXcGnVwwkX98YCL/DMTGvs8AC89re509xc8eEKFHFjvkdU1kHpAFT+rq/KJ3PhFx5GFN/vekkqdtkO1N4tiIu121DbLX0aET+TqJD6CNyCd7pGJhhbolooXz4M3rgntwGgAUAcYht4yjwdXr7oXwwrOCOL163b2qy4VCriNbIKyYys8egCp8UcFOL7TpRT3yyK+f78L0ZZCc12vAagDlA2FOKUee+bRtIumtRj64mtZfzBggy5+z4XNgMBiMMxnkEUy2AbEt7XLOREKGkRFK0/3y/0X1PYXK6sQeeYTT56//TVfWE6Gne/IDQNCjPfvToGQKtRWBLCQ4E1mXgzseKQEAdQRTLg+R980h2T1Alh2VfbLo4teArlH5fbUaQHOBLNzoeQ6Mcxc6Yb/2+p1wD0VntGBn1ZZh1M/PArsJpKgXQXqdpaS6CGRANRHylJkRVWJldVV+L11HB6KfigAEPTSbLLjoPkCB4p06pKwmq9IZJw9E5H/tR8tnhcj/l6tePyeIfOvIizDmGgzXAfwA8HzE/T2KPNXtAp7c/6hU2qf2OLqlzVzEhtW3SzW25x+1CvJsBxHsRJzbDUnMkQ1N4liIB0rK8x5IVfaOkyP3ACgSH5DdDBRMKdy4zXZHTHmIu11J7qdWOroCP6hYcL0Qwo8VgU+Iu12Iqez/iWOp7UY1F6Iuuy42Ld8GuA4ML4J7cFoRgNesvQtPP7+dSXxGRxQH8c8890VlR3Wmg7zlr1p/P4C006XbAVIlHRXo7EYIw5NFO7LUod8BSb7T76iYSikX2dJOwAwSNcEOygJd4/LvpOo3gxj2SIigkl3/dH8wAyCotO/72ULibxq6ac4/KxkMBuNwEAEwPZB5IPs24I4KTPdn1gE/eljaC5DP9FwlaEiN3jU2t1XzJxPfffxz6jwAGbFHmLYNRbITRADEhZBbIG9JpP+t6LcPAEiV+eaEiagcI3EM2BPZXMEMEoggQXkkExro2VlBWSj1f/M8oO9VuXzva9kYjqyD7GaMFx7L/KsBMInPwJWbH0RVz4mzjTOaxAfkvXfF3cOIrUxJT9ckkfixnSC2s6wKsrjya5K4cyaBMBRwJjIlPnXoTPfLv0/3569vuV65Dd0uSyf0O1novPqlrVh+3/CcfUYcCWuv3wnTR5sAiTE3EcNAjHYLqWNdx7kCVuSfodBtZ5QCOg3kA7LwWgAQPd25954IUbFp8ZbMPx/twbVqudTbHJ6PpLsCY6qBZCrzTycrA7VcuiyAXAghHKdtGxtX3qY88IHs+Iu2PMZU1kuqr+OatXcBwJwnnq7c/KAi1or2NYAkyckPn8h+w4sQDMh+1cgW8PpMxLYBdzxCaX8LYbcDe7QFUW8h6q9CTHnqXFIwLQVp6tsFkFPgx66lfO9pm6rwoL1u+KFS+BtepEh9QJ7/jStva/Pl161SGAxAXrPevC6EFRNBxcB3H//cGeeLT5PT0ogHc9KDqLeU9VQxiwLILLHI4iaoCNiNWFnpkO2OeyhAULHUfaA16CKoZDY6FG6rt4iSFUHXeAyrEaE1KK9BESRwD0U5ix4ziNvaUq9af7/aL31/9IHy5Tc8pPbhWAfQV62/H/VFDoKKccrJm02Lt8hf0ucQE/sMBuNMw5obhxWJ2skzPSwBlX0xYtuACBJ4vUKSRK0TsxAgKx6jFrQF4xKW3zesbBvMhlDqb3fMVCTSyluH0TUK9ewiOxw9NLX4bFhz4zDsZnZMdiOG12sqD+111z6A1qClPPSff+Lzyn/7iut2IqgYp+WZc7S4dHuWHRCWAW8oFdqkOQN6AHAxyFL3ogc6hOSm6t+wJJfrGkv/1spbFNHP8oEQdiNScw9AioBaF/agvsjO2f40F8htLPzrcdQvrqH600mMfLQX5RE5Nlhx9zD6/jGG1ysgfGB8RYLaW3P3c2CcfFy5+UHYjQher63GqCJI8PwTc5+MXXPjMLrGYwQVA1OLjdy16NeA8j45DidLK6uZ756xWpKEp2sVyIh5sscRofw//Q5IpX3XWEbSU66GM5Fd77oXfljKlPzFe/5ltwyr5ahToLzfUB1dVIjoGpPr6xQ03gmrbx5WHTmnsoBMdkbUReT1GmyVM8dAivy/+NEls6LI/9Sq184JRT4T+WcYNi3flpHjqSpfgbzmfR/xxBSMLleF1D65/9HMk/44CAry0VdIQ2oPp55XhAi9r4PaXnUR6F75AJKpeptv8abFW9Rx6yS+CshNjy/prqi/YaqOeMH8HKEMIBewCsxdWyI98BKQ5J6umCelLCn1E9fMva77XJN9Dano9ZwBKgqEFRORA5RHAuW/TQN1Wq892lLWPLGbb+qh14pkPinzaXnqCADApD3jsCAffJ3w7mTvMtu4av398HrtE97O1evuVYGouk0OdbmQbRb5x7rjKalxKFAqfCLy5euRKmjQsgS7EaE5aKtW9rCUTcRJPdeanynmrEY2qAXkpKCyL1b++WSrRTZetC8UhgvIa741VEJzvtUWeAcgF3pHPvzf+fpvq+6bTrhy84OoL7LU/rvj8n21NxqqM0j4sepiYDAYDIYEeUnrQbCAJH6qe7L/03OBSI1VW2SQbP38dl/6w2HZn90Dy44QBibwTgkiMI74/qWP7ERcioFUgUqBuJduH8Yrd23N2QNR1wCQhdvqBNCqLcOo7pXZL0FZKLuX7z7+OVxx3U5M9wpMD8hllfK0CdTelkTy5Tc8hKnFRi401h1P5lyI5mW3DKOyL8bUYpGzxNGJe8oIoGcngFwBX/fApnOhr6dI/rvjMjyYiHt9TqGPDwAoO79Dl5Tg9wDzf+TlBD7i1d0ApJBr3bUPwD04jcllFUwsk2rjM1Xxy5hdrLv2AZWxUF9kqWDbk4VVW4bhjicnXChYe/1OtOYLpY4HsmKW3gEDZGQ6eeHT9UjL6FY4ziRUIC4gLXUoWNzwDSRO2jmTFvN0sl9fl+6PT+v1a5k3Pr0nCwLPsjL0kN3ESRCXYoiWQGxlFKI9YUKEUsG/asvwjET5kscehLvfUuuv7sksP5vzLfg9YAu4cxBE5H/1R+9D+QSJ/OZUhOtW/eM5QeSLIy/CmPMohLkSyQ5kZL0izEntni6zaegmbFq8Rfrua1gvrpt5e91VGUxbJOUXb5HraguptRXxXtwOHCfb36l6+7HocB0YY4cAz4fhB3kSf/GWrBgA5HzaRb0Fww8UaUQElE4gz1V7ju98/bfxna//NswgVoPmxLFyZDmQEeNFYh2Ast44HHSlvCQBTeWhHVSsjLRLB+z6tnUUrXZof3U889wX2879XD3/jNOLTcu3qe8akeF2IzqpJP6G1bdjw+rbpdVMECvl/7Hg6nX3qvcR2Rw7BkTqe6+jNegitgVMX9rfSEJfb1+Ps7BpXyPXgyTzuffz9fjINhT5Edupii5VXRJiS77u9RoqdA6QREhYMbWwuozEnwlBJSNP5D4niG1DefPHtoDViNT+XnHdToTdDjasvh3XrL0LG1fehmvW3oV11z6AKzc/mHYfJIp0oGOn+xDtS66ji8FgMM5xrLv2AXn/19SURCqRP7lUWMqOrO8+/jlU98bKZqfow77iL+/Csj+7B8vvG1bb0H8HgGjMlSQ+gKgsn09FEn/5fcNYtuOh9h22E8BOsPSRnbm/h6X0OZJ6PjuT8rVOPs1WA5juFZJES6cQROKLIEbs6OtI1LGNX0ye0wm6d8vn148e3orSgRiRbWDVlvxxnm7M/5GH55/4PCr7EqXcdSalvzwV7L1e2XknwpScT6d8FHZLZJ4I5Xsr+5Js2TD73O1Gos6D3YzbxhixY8iu315bCYeoY7dnlwdnAjh0iZsuK/8+fu2laP3sJdg0dBOe+8Y2PP38dkwsE7Ca8hjm2vlmnHpctf5+mEEsxSK2QHVviPKBw89fTwSrbx7Org27sx0HCeo64bJbhpWHvF4EoGKh/n+5DfnTaqaB1SmRrqvkp/sT+LXsepvuT6/vUP6UVjvZnN1syI4cZzK16LGA0mgCdzyB3Uhy26cxNd1PRZB135DFT9bZY8CZlLY+dF+n7YmWZscbGjCbQoVkL9vxEOrnJ1jy+Jex5LEHcdFX7sOyP7sHK29NnwF2jLCUqAJEWAKqewPJVTRjVPbFWHv9zhnPOePsRpSIWfl3roAV+WcQSI0PIPPG1+xjFEnfXZU+5Iu3yNc0FX4OqT1OXC0pf3pd1U9oKwak65tJ0a8r43Pq+bFDueXUelPlficVvlonqfvT40w8P9dtoJYpFgK0joW4v0fZzjz7rS8opS8AFQJr+OGcUufrJGKnwNrYEXB3HURclcdFhLxuyUEqGrsRSlXMlJfzrqflg4oJr9dEZBswAzkAsBpRW9gtANijLbUfiWsqZTFBV+Try3VS4F697l5W1jI6YtPybYirJRh+iNaFPR1tXmYbZBsTpkQ+kBHlRRufK67bqYoKVIyqn++2qXroOqYQOOp00S11gorIqdlJFW83QrQGXaVqtxpRzmqHQNd5a9BCUCESXpL1pGgntVBYzlQ7pMRzJoD6YqC8HyiPSHUjWfno1zaFbuvEPoXjko1PlE6IusbjnBpf+InqJiDrA8r3qC/K37u9XiM3EaF7Edn90Pmbje8DFQToWQUge7amz8Sku4JvvnwPNq68DXG3O+et2RgMxrkFvZNpul/6LFstQykf+3+cLUtEd3NQSDuVniwoMbPjkcGHpOwshiwGC3zsuuF3AEhLHeOgg2SeHHPPZKuz4u5hBD2xUuO7YyasJtC4IH3eTZgqaJHsdTrZ6BCI/CXbHbshlbVBWeCFx7aqoFhSqpNvNFlZvLRDLkPnZO31O5XFS5jmwcwVdT755Me2fE4D8ngnlhlwJiR5R+P3yDaUtZI7nlnrAcg9o+1mnOXodHjmk8qehBRFkAWnLuKhuQW9dmhVj/LSp47e4pj/ys0P4jtf/+1ZOU+MMxdXXLcTUToUpPHtyfpekP2Y3ciuB7KOKnYArL1+pxrXr7lR3nPCSrslDdl7NRYIiBA5Gxlnst0erGh9RnY4eqdM0eM+tuQ9mPIqaNmuUWlLVd0j7XU6WWIBWRcWrV8X8tA+kHc/Ff6Cnkh1AJCPf1RJ7xHpvVyEBsyGyD03aJ2dQNuf90qs5gexY8DrNVEaCWfFNpW6OyaXWHDHEzQWyCI3ncPYSrDrpltU59bJ7PxgHB6kyP9fP3z/rCjy//U/+ck5ocjnsNszDRpRnTgW0F1RBHni+XkivBN5T+p37W+GH7Zb9NAyToEYL/6/A3LEv+NkkRMzFRTSbX5zd2cSX+2T5+d89vVtbez7DIyBeep1Iv/0+rrhh0oxcs3auwBNvW54EZ568c62boLTDSLRdbKKPP7NSQ8mJPlE1kHkY0+DcDPIr8fwIiSOBVFvIaj1tilt7UYCVKRCKagYSqlQhPLpT0l6C76yvND9/EW9hcS3la2RbqexYfXteOrFO5nEZ7RB2YCl9yLdFutkQ/iZap7Icq/PVMS6jmlN4f7Mc1/ElZsfhOnLSSmpz//2q5/PDUiv3Pxgm7qdbHWAPIkv/2alAbam8q8nBb9O7FPhLrINNTGJHUnKE5QaT1PnkPrGDFJ/zfQWHdtyO5Gd5Oy16BxRQSKyBSJHLk+q/LCSKQBlESRT9NEkTV9/7BgojYSqINAcFCgdIK9jWQiQHQJC3cv0IsiJ4snXH8CG1bcDgAqPzxWFXQeGH2DD6tuRdLswvEjdhw0vQv1iOVC0GtEZk9nAYDDOLjTnW4qAAQBnUnZbzX8x6+iaqZtNJ46APIlPQYx+LQtZjC3A3udgyaM7sOumW6QvPgBhx4gDgSWPf1mR/DrIA//S7cPwa1Jx31oQQ4Ty+adbu3SNyp+H80oXQdZFIAKkpH1GxEW2gfJIjOZg2uXlGwgrktz2eg1cdsswRK8BvyaLAuFiqWylZxgVA+YKvAFZRHnxD7ZizY3DaA3I8xaWkZFzjpEjA6koTiS/SP+R7R0ghQDWlK/mEDR+B+QcQ3iuGuMTOnXpyednqDpxE1cW7vte8xHZAu7YBN78pQvV8qu2DOO856fwHS6Mn9MgK8vIkfcpGicWO0FmE+SZTiS+7qFehKlRFy88Jq1j6ucnKreCwrjpvkM2O8rmJkjtcyqZXZUaa1sZYQ+kmRVBO6FPAdcUfqsjtmXAuTNpZNvTyHu1nAPVbdsckq/RNoCMxKeCrlx3AnvCRNATwfQNSYCXNIFfYAB2AqMpFDkeIbPa0YO0i8clAjmPKh+Q8yzTB6p7/Vkb2z/3jW2yA7gExJah7MSouC1CAytvHUa3I4VHl24fhjcQw/BlNwJ1VbDVz6lDDIH4BA1jYpw7GnUm8s8g6GGum5ZvkwTuVEOR68bhSPf0d+WtnxLj0cJ5Uomu+dPH1RIMx4bhy9eU0r27mqn2IRXwh/PIzynlqShQCK/dsPp2CG3bMyL9uzEwL78Py7chGT2Ibx76IxWcGtVcWKMNqTp3LEU6A5lCxPDDXPhq2O3g6nX3Il4og4EP5998qnDl5gcR99oQQYyr1t+vyHzar2vW3iU/u6kGku4KxJQHC1DqeD2Eivzt44ES7FEZshlULOWJD0hLDbsZq4mQCKR6Ng6yQEsAsuUxJbOUB75LQZ1xzvYncWx88+V7FElGljpXr7sXdr2FjStvm1MdEIy5gaS/D3G3K7tH0mIRZTycTOh+9u54AK/Xlu2eiBVBu/b6nbAbklw2U+W7/pq8foRSnZNCB5DkdTTfwguPbVUWMup1UgTZBsKKCauRkfmysyZWJD6R2wDUNWzaclJOCjsbCSInmxCRrY5S/pRSVX76/8iWE4DpAaBrHCiNhPD6TEROeo9MuwLkPttKSW83QtQX2WryQ4pIKkZQ94BpQxH+gLy/1BcJxJZULpUOZOdI318RyKIFdQt1jcdwx+WsYyalln6/JFyz9i7ErpUrHOr3pagmi0XCM2F48jtApL4qDPuh7ITSCA0LPtzxQJEa6659gMl8BoNxyqGrCYlIIiIiKAt4ve3vIZLbasnfD14qFfq1tzJ7NuXB3sx7zJOKfukjO2H6Qio13yxDAMpmYSaQ9c6l24dhtUSbFc/KW4eBAUkorbx1+LD+6cpn2s7I/DU3DuOFx7YqIt6vAWHJ0LynDRXsSsUKv5ZfT+xI6wyr0tly41SjtUCSZJXUCkP/vC/dPqzCL6kY0jWWEXlkkQMg18lXJEqtKV/Lzso61Gh+odt3klLfu0C2LpCiP7aF6s4DgP4ft2BOenD3HYB32WLVcQEA1b1yzsDPzXMbZGUpid5szBecpGtvzY3DsDSKhOzHAKjum+X3DaO6J83lSMeja24cRn0xYJVS0jy9RKb7s44ZAAg/kN5T90HlcxCZT5lUitQO5XKxg5wlJinHAbmMOyrUvVj32KcsESLw9VwsAErcA0hxH3UnueNk0UljbgPWaNaJRJY+cVjwx7cSlW0CACjL50BUNpTNDiEsJQhLqeWancAohUhCATTlvMKeMBGWgeYCS+WfOJNuToCkg8LJdVBQud41pd9PpnvlZ0Hnxi8ItGMb2H8FZQ4kKO0Tahm9K4FxahAlBqLkxK77E33/mYSjttbZuPI2SRqTnYlGKjNODzauvC3nE38kEGkR1VyYkx7E2ASihVLFbr57UC7kOhppkfVDRf1VxK4Fa7SRs/M5HJGvoxPpT8S7sghKQ3qfav1Jx/frUAUJgucj7u9Rx2eNyn1MHAtibEL9bSYEAyVlP0N45rkv4up19ypS+nQQ+7p1RxFKmT9WV9Y6Uc1FULGU9YRO5AcVS9nr6FY6BFLrkHoHQM7WgkjEyjuNXEEEwGHDbAGovz3z3BfVftO+E9nPYBSxYfXtisgH5Pfbfnd81p8/uoUV2bfEjoHmfAtd43HuGiTS3us129rtr9z8IJrz02sgVb1Rmz699t3HP4fLb3hIquZTYpusAEitI8nwWBXQ4g7KNyLoSSlEyro4VcjTPqrlbUNNVmSQVT7cjqwEwhLQ+9NYbYNUe0FFqG3pRQa7EWLyoi5ViKDjJiLf68vnb9C+6CGGNBmxm3HOx5/2i0J0w4qc+OvEeXHyf/W6e1E/31Xb+u7jn8tZG9H7yBIAgCo+FrNHCEXbAFImRrZA176Guu/Sek9VIDODMVdBKmYiLWYKvmOcPKzaMgy/dvShtVetv19ZnMlsk7ztgh7ACEApFxNHkh9hGco2xyiFM9rr6Fj6yE4YvoE3bsmepRR4S2rX2JZK2U6qSAqqpH3W1aSxJd8XOxl5o5Ng8vjy9kEE6kLoGs265OqLbLzw2FZlrXE4y5+ThZmKGqu2DCvbIPUvRFtXLdndAVlHHwA19zEnvZz4qYi421XCIALNJYKK7H4gG7z6IgfuuFx/9eUD2P2LC2C1snvBpsVb0PzAQvXMZGsdhu5HT3aTs213QsSvbj9FVjQ0RgdkEY+I3OK9h643yh3Rw6WBTKG/5sbhHJGvo5P1jH6PLRLOtCyNmYtWaEB+H3QyX6Q/9fkGKfaJuLcasugw3S+7c2l7IpRhu0FPJDNNUgW+7pOvh96Cirh2rAh7AEA5gr3PQWwniHoiiJaA4RuwWoY6Z6ozoNR+zum+C8hg3O98/bdx2S3DOeuhyj4pZNILia2BzOaHzit1N5gNoTICwjLg1xIV1k45AnQeaJmjfZ7ORRyOUzrdIGudP3nxslmx1vn06pfOCWuds8Yjv0i4kqKaiKDTra4+XSCPaSAjXcOBCoQXwnz3YJvXPv2f7FcASeIDUC2X5lg9p4o/XlItF1RIivwjee8Dyttf3wcqPpAFh5jyMqI/XY6WIdI5U51k6kuypwEyi5inn9+uvl9z6XtE3206DkB+tvoAWw+n1QffQcVUdh7kH0oPevLpNrX2W4I7HijFjn4e9TZaUumHAxWlfiUbHb3T4ep198rCUJqjwGT+7GHjytvU+d80dBOe3P8oNg3dhMTzkUx7HYtlcxlU9Ct+32fjO3PV+vsV8Vokz6d7hZr42o1IqbzXXr8zR0pTpgQANUGg64e8MoGsnf9HD0tFfieinXw1y/vyLb5E/ANQIbL0Om3XHY9yCjtS9tcX2WqwTgQ+IAf97nisOgJoUlPdG+fIe7L2oZbn8kg287CmfEwuqyC2DVWAIEsi6lCg/aTfaVtEPABy0FwekR1BRP4B8u/lkRjTvRmRr/tp2o0I9mgLT714J65edy+8Plud18g2ckFpZAVE78vOvSziqm6MtPuDiteE4vPBm9eF8uujqtBNfsL0E8jCjtdd+4AqsAKZNZDwk1n3/J8tkNUc35sZZwuIHHYmJaG45sZhVay9cvODEH5yTimDV946nCN/gMz6wW7GmFos2gj8sJT6C9dCoGkqCwUgJfKtBEYtgPVOV059fbRYcfcwvP4I7piZez7MVAyioF4CBcHqJDaR+XQs5PdPFkJdY5kSVifx9ecm+eqLEOh/2cOz3/oCLrtleE7YLlDxY/l9w+h7tZ3A0r25dTJf98PXn3VF0DidxFc01/LmdQHIOgOrezzY746rXJmDH+7HvO+NqW5pALmuuE3Lt6G+cj5iW6D2w/dYJHiCuHLzgxi/2MJLO7Zi9c3DEL4MEvX6zLbsprkM3Suf5qQnSuivuXEYfo/MkiBQwVK3FQOye81lt2TFRP0nIIlnmUUi/6/G1U2g9rbMmQrKQo3rdcK+6EFPlj40NvZrGSlP9za6/+gobrtYvDODBO54pAQ+NNbXOxB0YQ+t02q1F3Fpn73+SKnwEYhMnV8k92uh/DsgSf10ebPmIxpzc8p98t0vv5fZpaljKljzUG6Kfi7JXk3ua6LCeUv7zVzoMK3HryVwJvOdEXTfp9f0Ion+WYmw8/ejWJAJy/I7MldEDJTjNlftjInIf/zFVbNC5N+w+kdM5M9lXLP2LhXoqauohRfmAjYBqeKcayTsqQRZCtAgTSdYgSxEN+muKDsLAg3edILY3XVQ/V36s8u717EOwJTKnnzzUw/9Nq9//T2ad7ayFkpJelFvIeqvKiJZV+zrA9BOhCCBjlMPcwWgikHXrL0LYso7ZcGbQGaho+8HgJyfv+4hrvtYWlM+YtdSIbl6CG59kaVCcIAsEJMISgCKyI8cwD0UKRWrvs5O4bkUxvvMc19UnSB0Pslep3gMTBYdP/RuGyIR265xAJiqI0mLZtHEBL4Vf/WU7+uJgK4F/fqdje/NFdftVGQ9tYuHFVMR+VYjgt0I1Tm9/IaHcmFxRGLr/u+kepkeyFQtQDbYq+4NFdFNxH9jQRZARYP40gGpRi/6dhaLbARdrV4k8slSB8gG/LRePRCQCHUq7rmHIrQGsxlEaSRU3T2xa2Hyoq7cfgF5T9GipQ6p7mmwHpaB6u584YJIf3c8ht2I0ZxvKc//YoAukOWAeL22yi7QCyz0+dL9jwh0ItOJyKe/uQenO44lgooF9+C06nLq2tdQ91Zd4U/XoTnpqetSHldWNFLnLN0Xr1fOIuaqYobBOBNBysrmeVAt9iKQdgpkE1Maze4V59r1R/MpAG0FxSs3P4jJJZaybSHim8gSCkAEAKtl5EIEUY7gvuPAauKw1jhF6KGuOpEflmZez8pb09Bb+nxTNaoe8krPYgqU1I+HiPywLEk1vbihSKyU3CmPxBi/WOC870syn8YPQUXA6xUnXaW/4u5hOKvGMXWwjNKbDl65ayvWXr8TU4ulJUT5vSzglsg3/ZzoBX96jtO8aSbQXIvsdgw/UCIpml8RRL0lx5r9farbev+nlgOQNjvWaCM3biObwfJIMKcK2WcCaCzq98jvaffuGM8/8XllLUXhzS/+wVasu/YBhBUTzcGT/x2dLeh5U7O136tvHs4JYIqFShHkO21W35xZ5sRWRgbrywN5ElhXiHu9IpddQkVEnXyn1ynfqniv0tepFxXIT1+/X9E6woqcPxS7c1sDhupUIlB3LBULaBvUFUD31WKXAIXgxlaick4o8DYqxzBqAZKWBdES0lefCH1S6qcKf3pvZbcUPtHcoHjs6vxqtyoi2CmwndApEFgv2hQzCIo5MfTMEYXbIp0rfb1q3wr7pYu45kJg+lwGEfn/7QerZ4XI//WfeZGJ/LkEXb0dV0uKNNR9zosELpHMulUMEb0EUqN7K2TqBxEg7sHpU0r8b1h9O0S9pchw8sAvklSblm87LsVCkQBTgzDyrqcw2W4pP9G95em8FRXsgCRnyR6FlgUATNVnVNYTNvZ9Rnrzk5d/wSv/aG17yGKIyHy1L1MNBBcN5lQmRfU3Ecn6oJS+I0Vieibon9vJAH034moJT714Z06Jrxcr9OsCgCLYdXI3qFjw+szMf1prvXPHI0V0Kd9tP7PV0ZWjQHsLLvnm69ujAhop8nWrlHO5U+ZEoNtUXb3uXmVjRGHNrQszqYUZxLBHsxEeTbAIR7pGzxRcve5epXA+nvbsK67b2WYXEztCeuSnZDGpNPVQrqAs0PdaSxHAdP14fWbOdxLISHSrJQfapJIB5ASFBvY06Y7tzGZHbxMF2pXmBP0aNSc9BAMl1fauPPidbN16u60+sZHnILP+ofZ4KjxQEaE04qnzTuQ0dfroBHqWHZCgOZh59dOkICwB1T1ym/okg86XOy6LGV3jGflN9kFESFDRggJzqUOBcgiKFkSk6Kef7qEgH+ibkhsAlJKQXgeyYmVRPKDfE/VOJcouIeszKijo+0Lfh8jBGaWeYzDmEsg6gaCTuUB2byG/dyDfpQRkWR8EshgTfoKufdmYsnlh9ZRagujWKsvvG4YzeWwk+UwgW7jmgnaSm9SIOolfDMIl+LUEiZPA8A1EAwEMS95vk5YFc8KECIwjqvSX7XhIBfXStp1J6clfecc86uMlRTIVdKmriz57IPP9D0uJsvchlaWO4nMZyCziRCAJ6gOrS/jRw1tVl8PJUGJeun0YrSH5XNp10y1YcfewIpOsFlA/X+5bdY+hrIXo+HUVPiCLNkUVfs6ylKDNy5LuStaxnVqaFu3myq+PAp6PXTdciCV/+HqbOGv1zcO57ru5olidy6D8JhqHXnHdTox+UKDnDUkQUhZTa74kjSko2m7GapzkHpxGa6iEoCLO+PHF6pvlNXo8xD69F4ASsxH5Tb8T6bpqi1xWkb8FdTbQrran+2HpgPw8gLxKnrp8dGJe98b3+iMYtQBOOUAYmIhaliK+3bE0s+qSJrp+WM4R03QfKI3K+YXXaypBEW2XSHp6ztFx0HhcL3RTEUFfTnrMZ8/FxEkkQZ+S8UTox7V0HNw0FZkPQNnpqHOXKvGDgRAIDFTeMdsU99nzKH+spdFEdR2RLVBY1jqqUsscv5Y963UbIspWofu/1TJyQcN69or+uTsT+c+weI7oPAHIWRfxfe7wYCL/+DDniXxSi+uggYPux00ELhG6ANom1ETmBwt7AUC2/wFq+WBA/iSiEkCOACUQyRPZ4rhbcEnZrRPInfbbmGoo0o7OBf2f7CbIAudwZLJuTaEXPIj8BpAR+91VeS7HDgHdVQQLe2G/O672D8iIDfLaJxL+cOT7xr7PyGNynRyBuKH0aYiebiT9feq1b758zzEVLahQIcYmAMjviK78BjJ7lyKUyl/rDKCChl4IApBrK9UtnE4m9M8OkAS9HiBL0El8Quxa8PqyWZbdiJRitajwLSbFk60GBUuSctU9OA1vXleOMOykWtUVuzr51ekzYBweVMik7phnnvsirlp/PwAooj6qufD67JzaN7YFSiMehBe2FX6UNdVUXV3zwJnfGUHnJbLFUfmVk+JHt5IRgVSA0wTYakTqXq/76RN5TGpwImd1QrY1X+R8H4nIBzLSPCzJwSGBWmwpuHa6V6iB7Yxhsimx7vXZOXud+iJbkfdApvDvRIqTasfrNVSAljueKAU+FTd0b3/3kLTdsRtxrhBIBD4tazdkuC0pA/VJBSmLAKnEcSbzbcS6olAecza4diagQvzIcojOLxUN9IwCvcBABQ4zSFDd6+fuZ3pnE3nhExLXVJYCepeS/e64stnx+rJAYCru0D4K1T2Q3tODRFkRUUGJvkf0vb1y84Pq/OrdITquWn+/6ibTLcwAqAB4XdQAoC0fgIurjDMVdC/XO4Do+qafOuj+S/cHvydP5BMoEJDIULpv+D3A1IoQRimE2O/CmTTa2vN7fxoeE9G/9vqdimS77JZhOBNAc4FcV+OCCGa/h6hlwa158CZdmKM2yvsNvLRjK664bif2f8TI/X/0gzLw1moBva8FM85ZSHlPilNnMrOiIWJnuj8lsHsi5X9MinzyFab7eFiGJJztBJU35Y38cAT8ksceBAIDu266Rb126fZh9cwUgQx7ffOzx0ZAEpnfXCCJnaL38qotwzkFLlnlFC01iNQB8gIYrzfz5QeyEPmTpXimboWeN2KlwH/9VpknoPs7037TZ09EYvlAqAr+erAtoAmaAGVbSsKPxPNhuA6iJUNqrhX39yCquWgNyvlgacRDa9BVBXV1faXPN7sRKXtWttA5elxx3U40BwXO+5tRfPPle7Di7mEM/X2gBCNer+zkJMEDdYmS4GK6V6B8IFTjDZrr0TjxTLPdKYKuCV2ZPhNpSraYJBgBMtJY716h65fyrPQxuK7S1slbfQxPIBKXQLZlYSXLhTr0PjkuLu8D6ovlOrvGgOZQVhStvWVg8qLUMqYcSWK/HEFMWjAbUsXuTORV9bo1DI2zKW9EH2dTt5EKMm9lcxW9i226P1HEO4WZU2EXgOrQkuclyRH4APKe+akNj9kQiCoxSvtEbr/d8RiNBULu6wBtPysmR5VYHbdO3FOmFlkIAfL9XaNQGYDUlSyLF5LAD0tpHmBK5svf28+NXuDoGtOKAhNQFkryvOTnKF3jsZpnfefrv41r1t4Fb14X7EYIr8+GeyjoOKa/4rqdioOhbqXVNw+jOSS3Me+VOGdZCmTPpupe/4zqcCIi/7EfrJkVIv/Gn3mBify5gGLIKSAVAeFAdncsKq7jakkFupKVChGxugVJUWGuq+4A5LzGSakPINeCH9sC7njQZmWh45q1d0lfedp/rQ2RVA2diHxSj+u/68R+kcg/EhG3afk2BAt72zx/gTTstqDKx7vvweiuIlo4D+ZYHVF/VZHXpC5U4bfpoC8ZPXhYW5zE82F0VxWBmCP0V9+uSHJd5X+4Y9LPMR0HWQQdLWlMCufcd01rIfUXdsN5dyr3nrjbRWuolFO2nEzfsY0rb1PFg06vkyK0GNZIhFLRhoIG2TRBLY2k10eqUKXf6fttTflt3tAAUHp7os2ySCf5rdGGymRgEv/YsWn5NtUhQoHMup+2bi1GdjCkRCZS0D04re51erdSLmjazUhL6vw4VaAi3Gxuk1q17UacU2SLIG4jVSj856r196M5aKtlm4NCDQrJXur5Jz6v2pMBKMud1qAL3bddt8wpDu6AzC9etw4gckC37CHQoFQn32lwR8S63j1TLOboKvjq3mzgp6vuSyMhWoMWOgVhkS+93YjQHLTV393xWBH5dN7IT1+uP1aBZaQWk+ctm+D4tYz80VVB1NZKkwjaX0AScNTBoBdGaN87BQ0DmTcwkX2kVAKkj6xu00dEvO55r6vvW0OlXKEMyLqgphdUVIcGFZKKpAZ9LrqHLZGPVDghgqRYLKKiCt1jybs/skXHbsIrNz8I91DQVnTVxQuxI5Q1EP2d79eMMwnrrn0gd/8F5PXWmi+Uoo7sxOg+C2QTfLovEelJ9xHKEtKVd3SvEiHgDYVw91uKSCHCW24/VRz2RCjtN2cMylt+37AMTuwBet6Q+1dfLH9vLJDbbl0Qwu1vwbEiTB0swyyFktR/Jx2bpYQGbWPF3ZmaFEjv/7tn9pped+0DqC+ylZ3c5EW28h6mYFhdbY9AQLQE7ImMiNKLJo0FhiJAnElJCs2kxl/y+JdhWDGSSRu7brpFeb4DGVFHRHVUkSG71T1HVnNTMYSsR45WKU+E/qotw20qVr0YnXnt58nzk0nmA9k50b9Py3Y8lO4fWR1lz0jqIiBbnSMS+YRU4ERzN1LkA7Kg/d7abgBAbVeI6ssHlDDEWzIPzrtTOPjh/pwn97yfBOja1+Bny1Fg9c3DqL0V5Dqkp3ul53plX5wbtwFQhUZdSEJj1+oeD/XzXdiNGOW360pwpd8vT5X1x+U3PAQRJLNWPCDve6BdHV+8Bi+/4SF89/HPYdWW4dx9Xg/K1hX5a6/fqc4hCUVoWR3F7QL5cb5aroMND4lzyIoTyHeLUaCu1QImPzQtu5tqPvBOSSniqVhK66Z7rm4LRtYz+r7qBUqg3RefOpb0Y6DurMRJFJlORDjdn0mZn8zzkYTy+2hYsfy9aSoin9T55f2GOvf0zKWCh941oNsa6eQ7kC+k6EUM2n/dK5/OMR0LgXzz6VzoRVGy4dPPMZC309Hnc+p8pcKj3tcCTF5kq2saQM4GtGiXSpbGxeL71evuxdgHSrAb2bil2FVCHR6VfYmac8z1MHEi8v/LD9agVLWO/IbDoFUP8RtM5OexceVtp0SpWfT9VgR4obXPX9itlPP2u+M5wpuIfArS1ENO5TJhjnzsRPIDUGQ1EWa68g6Aep2UejP5rhdV9/q+KCI/PS5anroLdA965QlP0Mi3NjU9LZe+Ru+nAgiRzkSAEwGhW9Mkb+6G0eW2EfOkbL9q/f149ltfyNke6SqLoqKewmpJ2ZF4PoyBeXjy9QdUKC8R+fr+KLuh9P0z2YFctf5+5d+vF0WK39tO32UKBAW04lFK5tM5060WiKgBcNpujnR+dX90ncQnkF8z+S/rAz36P3lEe302gopAdY+nvt+xY6C0v6Wqx8ILFZFfVKnS9vT9YIXn0WO9uA7CledW9HTjyf2P4qr19+d8vXXrEF2ZXbRDIuKPFFB0XcfdrvpO2KMtiLGJrHiHvB0IIO8N5HM621Y8ZIt1uG4eus8cDkTg0LW47toHlEpcDz61m5nf/Ex+yDTJ0BWdRKoXJx4UjkjbJkWoTiI1Fgg1GNQHeaT+FL5UjNCAujiQpUKCDvqcyQ+fjpW+H/oEDsgKAbqtjlpX+rpuQUDvbw4KtT/6ZIYsCnTfXdp3XQ1LExmy5gGgvO6ppVlXDBH0yY4I5KQVkN0NRLbpnsVkVaQXDYh801unaZ+A7Pqh4+nZ5amCPRHlOrGtCuypFR+NCfQxAD0/KUOF3j/+vmouAJnOJRUS6DOm851XA7fnABDo2iZ1Pe0rXbt076UuEt0aTXhhmy82/XTencp1gfE9nHGsOBXdikBmo0P33KZ0yVRqObrH6l1Oel5H8d6oQyc99Dyh5hBQ3k+kfTbBp23pwar0OrX3A3lCvLxfEj2NC9J7ZEpwLHo2xsgaC0FPDHdU3ie8gXTOMyEUwSKPAzlVuE5YkB2Abg0TW+l+h5mqj4rAXq+ZI/SWPLoDsJNcoUInQGpvGW1+0sX/T/fLz0N/nTy8l983nAvKJWKHbG6I0Cd1vn5cr34psxgCOhcJVt88nLOM0G0WdBJctyzq9NrlNzyUI/DIeoGej/T8JVL1VPshX37DQxj9mUR1R9DnTkXx6t5MEUo2cm15YjqJ72e/U65SsmQRRj7ai/4ft2C/ukd54Mf9Pdj1yV5FrF38xATe/We9aCyOsfy/T+L1X6uh+03B1hJHAGUt0DiW7m2tAXlNnPe9Vs4dgLox3UORGvfpwiyvz1SdmkHFUkIN3SZMFxzoQi9CJ/HLieCq9ferzu+Z1qt3JXUCedzr1xh10FCxlshMureQ3VCxiLnmxuGcaIUKvcXrl+YYdH8ksRCN4fSgWiD/zNHHn7pQhu4lRED7PVlAapFEthrA5NJsf2I7QXm/gel+uZw3IJ8TqjOh2U5gk6Ke1PtyPZnK3GpmuTGqi7iMnK1MbCeyiJuGnOvK/FzgeWq3kwvFtWNV/NVh+IYi0Oe9EufmGTRmps7m6X5o92C5bWfSUM81qwWVd0LnLXaycYEOul8BWTcBPWvlMWXnSD9Xeted3gmi2+zQM5nOSe9rgcrBoiI5Ee9mIC2CppbKYn95XzYnIEFY13is5qokOqN5IS2jvhsOUD8fqmtBnqOssDNX78NM5B8fjprIJ7LwZFXRSZWpk9xtfu7koe46CBb25lRwOundicjXoZPFQN4uRUeRsNeJfF2tT6qG4jp1Yl9X16v1U6FiBiJf7a8e6DrWoXeL7DEARdrnbDNSD3w6L7o6moJw6TXdi10HEe2k+tbDsI4FmxZvUQPEIilIRZxwoKKsfIjIJxKfUHwvHYfehQFkhZKj9dsvqvKLeQxAZqtwOoh83V6JPhPaJyo8keoSgNpPIu6ne0WOGNQDIDsFP9Jr7iH5RKPvyfSCiqoSFy1+qBsGYEXnsWJD6dMAAKNL3ovCDy7NFVTIQoW8RUsHMksRmqQBmQcqfa5kt6EHE9N1r5P8+r1X9wDXC6pHey3NBtZd+8ARQ6V10p7IdJ3QBjIi227K4Cmd1C0qkdbcOJzz1AXyagkaTK29ficAqZjQiwhUCAAkUUuK/FwgkjZp0CccRBjpBQd94gVAedDT6+54gOagrVrX64scNTgkclsPi1Uqd207BCLkdcKLSAq9s4GIM53E188nqUT0ddL+6uG+NPgkYl5Hsc2W2qFpckNEvghlYUIn8osBvjQQpv/TBIEUbLqlkvx8EkXm26OtjOzQ1Ia6371+fRl+gPrK+cpGAAAml1VULkl5JFb7Ri3xVIjQrX6IZKRinZ5TIvcxVtcm2QXSfVfvLqQMg07v1Yl8AMpih1T+9Ezl+zjjWLH65mFU94aovD5+UkRAa24cRvlAiPqibMI33Z9Nssn3tmvMUORIJ4SlTO0IZKSHToTSevWCrB5WSAGokxdmRVu/ltmsdI1mNmVer6HI/9ZQpGwSzKaQ6spaCDEpj8kdFTny3uuPlEeyCCR5QxN1en5Yzex33WNeD0Ok5w8VG3QQWU8E9pobh1X3FOWqBGWRI8QocLO54MihtDNh5a3DuWDFYueCTuTT8b1yl7TAITWuM5G3zdFDKunZSs/jY9lH8rynAFn9nFkNqE45qyFD4U8ViU9jnee+sU0VGurny+MLeuR3gwic8khG5Jf2t9R8JmetOgOSdH5puA68yxbDfXW/6tTW52mX3/AQphYbuODpKXjzujC6ym7rGmDMDPLBB6DGtDSmqe4NlGVhEbo1JNCebaYT84CcK9TekAO0sNvJzfuAbMygZyIdrXpez/A6HlxxnRxX6wKbddc+oOab9D0XviTliYjXu6Xo/qArlPX7tn7dk18+FWDdcepkzeYFRXGPrtYHoMacRWsTfR5Q7LD1eg11Pyl2mnbvjlU3qd8j/w2+ECrrM1LWO5NScT2xTNrByPu5XBc99+icyO3mVfRAvuhLQd9y2bzfPBHl1A2lg+x1SBnv9UtLNfX3VHmfOIkMQafXU1s2q2Xkug9IzELCFikGknOV8RWJ6gYjX34qXjqT8jOm4Prxi4XKiqDsFzpevyaPBYCy9wHkM7cYrKt3W4UloPamtECi8ycLpdnnoxePaB5DHTRAlq0CZM9UvWuQhFZFC1bKMWwO2mpuENsGGgsMJQTza9l3wr9oGkko4L7jqAyAw3XknW4Qkf+ffvDhWSHy/+3PfI+JfB2k3AZw0rxUyVrFmGrkSG0AOTI+F2iqKwlS4pq81qkAQFY8RQseWq9uC6IH3RFhrXvm62F4QObPT9shEj4XFqup6IvKV90PP3c8apl2ZX6uqEFhtX5hENZdleciVb3TsR5vwCip2Mlvl87DsdjJ5PIOCupeKuQAyBVVVCEkVQQDGYlP+0QBqkB7+PHREBDk3U/QOxD0TgFCOFBR6gZJwATKp/xkEh6bhm5CPDEFcf4C9ZqusibQ9zaomIqgAvLEkTse5wb0RVueoqqeoHec0Pf3TPdUnwtYL67Dt+Kvqv9vWrwF0cJ5qvMByBT3NCgstuAREUkkPpDZcJiTniqwFIPJqECpWyJ1+h6oLpl9B+T95ShJfXp2HA0pSP72Xq+tBi9BxVDkp9WIUF9kq0EQeUzqCnB3PFDffSJ/CTqZEdvIFUJ0olyfCFFgFJBX5NPgvjwSqHMJoM1WhshrID+wj1WRIRto6xMQvU3aHQ9UR42eb6Efb3ZcebULdWdEtkBr0FKTICpqkD9/J4UQBerSBFEnlglk50SDTnc8UMUEuyl9LuncV/eGaM63FKklz5uhbA90YoyKBFRIaM63MLlUDvRLo5nPKN3P6LwCmQJfJ+qLnwftn/46ER1EwutkRzJ6UIazd1cRV0sIBkptBDgARYID2TVTv7imPktSwnl9JlrzhSpCAGjrHqF90b9fYcVE9aeTucIcgFzRjRT6YbeTs0Kjibp+fcvzJZRIQXghzF37AcdBtFCOHViRzzhWrLxVBrHW3gqUMKCT7dPx4orrdmK6V1oRkO1KeX9eidwpnJD83+l1dc+bzAh9vwYM/EOIoCJUeCRN5Mv7Mrux+iKhCpb6/RyQ6+3eHatnC92X64tSUUW/LDSIwEDQEylCAoBS6+v+w3ooICka9WV0IqOTzYOeL6L/TtALqToZfjQgdT159JOP864bfueo17Hi7mGlkHQmjZw9kNcfwWwKRRQRuaTCCtPPh95DXQE6SadnshwNgb/yVvle+j7oZDSRh80h+aykjjGvV8Adz+faFJXDs4Wr1t8Pa8pH44KKsrPzegXq52eq1OreMNfNFVRMlPa3OuclHQ4FdX68YrF6NtYvrqE0IucFJ9Ne9FzBpuXbkDg29q0fUH7qsQP0veblxuZkpUfkPhHxVKAv5pcVBWjCTzB+iY35L7ZgTnqYXlBR3xFCURBDc48jkfobVt+Oifdn5NnhlteJeN0ihMZulFVFAgcaSxcLkETSk+pYf134kngluxmyc6R7iG7TqCzTgvx9gsb7QVl2bwJAfZGjxvQ6dBEOQb8n0P2XCoAkjGkOZVZq3buzeQ3N24F8zhZ1CBHRTIVbr18qu8kODZCKcwCycBwImBOmUqHrXTw6ca9b1+hzFFqGlPyAfG26XxYKACAuxeo5FZfScXJLoPtNgfr5qdd/2n0GAD2vZkIXKh5RB27sQOUDKA/+VPHvjpmqqEFZIDS/0EU7jQWGUvTrxQj9GQtk1jp6NkwWRpwJA6jgTX/v3h2r7muaj1AxRhcRUX6ILjLTA4mBfLc2zXHCkpz3ZN/rbC5Jy9DziJ7/0/1Aa6kP9x0H1d1Z8YE62eYaiMj/jy98ZFaI/H+35v87J4h8ceRFJAwvUg9u+91xGF6EDatvb1PjngieevFORQrqdjJt8HwYU6k3u+dLlZzvy98dR01s1b5rA5bEsTLVqWMrpR0RtTp5aY02ct7o9Ddz0pMEvhdmagbXUYS9CpWl7bpO9k/bD/1ncT8Pd+x6MQBI1RKOXHeiD8gcRxIP2mv0GR4Om5Zvy1kc0X4WizmAVBBsXHnb0X8P0vNAxZYNq2+X9hrafpHn+5FA+xQMlBC7Vo6Q1ostRwOjuwrDledr09BNSplPtj7yOyL/CS+USod0UGFN+UhcE4lr4pq1d2HD6ttz52q2EE+k30XPV58pfWfElKdI9qBipUSoVHLQIIFCXoSfEpd+khVKvChHRpmTnvrd8CJ1fukcyG0ziT9bIBKfrqW4vwdhtyO7KdJ/ANTADiBrkLw6Rw85taZ8pSpOXBPCC1WRK7JTxY1jSLV/+lnTID52rXT72d/ible+n7p+XAebFm9pK4R1QtjtdCwMEa5ed6+8liumVAcFcVZ4SgnWyJHBrZnahbyNMz/6yJHHJvxsYBTbKWFTzm/TasiBVmwbaA4KeL1Z4UsEMcxAtqBX9/qIbQOmnw+61VsZ9WKv6SPdJ6F1SGTKer0Ao/soknKDXoscSaDL45b3d724EVTk8TYHbdQXWTkC32pEKjQ1rJiKBJb+uJliiMgbM0gy5WIo/18+ECK2hVovKcpNX5IC+vdSBIkamHq9tjzW9HjDshxQTvdLotrvkeeejoWOXbWnUoiYA6U4CSpyAtQ1ln2OOglF59QMktzr8jwJ5UlP54YGwVIZJb3pIwcojwTKF19MySK9bn8Hx5GZFX6oirdBxUJrqKSUdPT80n3odbWcIlb8VFXbK/cxqAgI6sBIiyW0bFAxEVZMVSRSk3M9BF27vmjb1C3Yta+Brn2NXCdhseOQngH6s9ccq8v8HAbjGEFKOFnok9+11lApdw89EfztVz+PFx7bqgJWq3soZC+7hxCpTT65BCJDdFW9mpRbaejgIkup5LpG5b3HmZT3GKshCfnaLrkhWUyWE+nYypT4jQVC3YNEEKf3nnT7yms3gTtmwp6Q1yYRIfTTaknFYmwnCHoi2KNWjvAXoVyGSG06druRyIJtgzKP0r9rFkFE2Agfym6hU2BjEUSQkyI1dqQFz/6PGGkQrtzmsj+7B0se/zKWPP7lw65v1ZZhWE3pkxwNBIo0v+gr98G/aFotR2QSdRL4NSgVv164sBuJ9LZPrY9iRz5znAn5Wa7aMnzEY9TVrFZTdgRcul2+74XHtsKvQWUaeL0iHUtI+zfKpPFryKl6ZxPWlI/JZRVpvZLa+RCR59cS2fWRkrsk1ii/XW+zf01GD8r5M/0D8rat+rw1tUXVRVejHxQ4dEmJSfxZwFXr70d95Xy0LuxB/8segorsJCyPtAtsrClfCm8oC8kx4PXZSqRDiF0LUc3NzYmpw3r+i9Kqp35xDeXXR+H12ii/XUdsC5T2txA7hszZOhTBbsToSotUV25+EFdufvCwx2I35LJ2I1YCQB1rbhyWwbPp7up2j4Akvb1eM0fey/USyZ8RnEBaCNAyLGIrK9zFjrRC08l+vWuJxp2dgr11eFrgLeVpxbah5gc6ovR1modEDlJxRv5+HDlAa0DOc+jeSyQ+LVs6IJ8v/T9uSVswX66f7tt6J1bQE8NsiqxjNZAkvdkUkgRvmkBg5Eh8KpACmR2PCKSqX/8bbYuem3oXBJ0veo7BlmR5XIphlELAlr759fPTroCmLCYUEWnj/rAklfT182n7BmJLdq3JbSTSxsdO0FoQY2pprL5LpOivL07Pb/p8UM/JQHYIRJU47QgwsiJEelx+LVHPSKsln7N+LbUO0ix1nElJqIsw41fM9NlrBnI/aL5I1xRdGzQXsZsxYkeOL5wJoNjtXNkXZ1kKFfm9ilXntXzWd43R/V8WPlpDkfp8Dl0WH/XznXFm4Zg88mmC2qaIT9vuZtM/marSRUW+4Ycwxg6p5fTw1KK63vAiaUWjqdbjBfOzgEfflx5/mnK/qHovWk7oHQP5AoGtPN11BXfxfbTOYpCtUtkjU+Hr+6CH3UIj55OpOpJpD6KnW5H5auClrTPqr+ba6PWOA12JB0CpNXTblqef357zYvf6bEUy6Cq/4jppAqcrBUjpSMpc3RYnqrnq/brVkvocCWkWQOJYykaACAn34HRbIeBwKmBl2+M4HRXG5ONN2yNFM6khKu801LG6B6fV73YjnNXBbdFeiPa5aAEkSSVJSNYXiVxb9XQ/0L07UUpiIiDJkoHWAWRqTl31SdcVk/gnB5RkD0AprMhWhFq6i0F8und55R35R33QXiTQKQAZyJTWQGbLQxYcerBuUXFcLJbO1OlDwdidrHFIfR9UTEWeAvI6ri9y0BrIwmCdiWxQQ+2nQH7yXmynpeVbA3mVpt6+r4ep0uBNV+mTmr05aOdURWuv36km7r2vZcFF5H1IPvQUOkyKKTOIMbHEzdksFIkn+Rnkj5cUIaQ4kedJ/tRDjQCgutdXHQnuoUj5otIxNQeF+h5NDwCtBbFqtQ16YtgTAtXdeX9PdzxWx6t39MS2UApTPZCWFESkhALyA0jV5tyTTkCC7POgz9Edj5UvJilTyJKie3f+3FX3xkrtpB8beRgTSPleX2TlFP+xnfn4241IZkek45ycTRuQey5SFwt1S9B1KM9HvsgWVIS659Jzkb4rpQOxss+JVdEl+3Lr1lq6x3GncHO964aECHrHFqn15D4RmW/APRTkczOm6kiWLDruLj7GuY211+9U3UpA9h3WC47FfJITwWW3SPsTUqXRmKc5lJEzRUz3J6juMdT9v7ZLdgzZTXk9ugcliUw2cwDQGnRznXFer1AEPqlB9c4iILtn6xYw1FVGRFRrQaYS1AP3CF1jwKGVUmkJSJKBbBIGfxBj/GLRFpCo+zTrmSadVPn0jKHzQusGMpWn2cw+O7JJsCdMvH7rVqy4e1gSHFYClCOYJXlfilqWsgoy/JToB6R/sp1I32RCUx7brptuAYCsAJDaKJD6kjoQdN9/8oR+9UvSbqdNlRtmdmxE0h/O8uWyW4bVuKFThwJ5ctM5p+BjZ0K+1r07wdRiQwX0VvcAEyti9L0kZsXa4NLtw+p7rSuJSS0rO+Ak0eseCqTVrJ6dls6JE89HMu3B6HKl8AvI5pIEbTlx/gIEC3vVfO1kdOefq9i48rZcB9/kEgtWA+jZ5SmLP+oIJ5s8fZxOc1AdujgLkMICvbuv8k5DzfVobGC/O64+Y4I+79VRDOIEMsFLp5BOmnvona5FO0Qaw+mKdYKuTu/UzQpk97iwlHnO0/1O7+bVLXf09zgTmf3I6puH1Xr050gxOL1T9ooelK6PQwk0Tyl2jgJyjFp7K1Djd+pKJT91/Zjp+dOpEyu2ZRg7ALj7LXW+okqsSHd6jYriqqusDGXJUt6fjcPDUvaM0MNq9fcFPel8rhTLe3zThDtmorpbev1TQG5UjlHab+YsdSjrIagYOU/8QCsSyxeMTKGfWtLRXKa6G8rO6ND7BJwJoDkku/boOUxZNYAsQMQWUH4P6pzQZ07PcdoP/V5fDOjVrVBpLEFzdPo7kGWc1Rc5Wce29mymzhS9A4WeM12j2d/1nB8gbx1HcztdAFXMqplLIEX+Iy+snRVF/mfXPM+K/CLMdw/mCOqignw28eTrD+TWb/hS/W74QV51Tii8JsnodIKrqdXVaxS2Sqp+15lREa8r9tuOOVVHF4mt4rKdlPd6Z4Cuesgp+T2/bXmdoJ8Ruv1Oej6EL1UZqvXOC5WHrznp5VSEmKor4sLwIly1/n6lOg8qUv1pBhnxpgfwCD9uyxGIHaEKCTSw2Ljytpzyn1TD2XmYWcE7E4jEp31NXPOIdjdP7n9U/pvBJkQn8YFUve5Lxa7VyBcMigWETYu35MKAjxdF1bO6BtLiBhHsuhpDKrazFi0gq0br6oHYEYhqrlJt0D/hx7njYRL/5GLT8m2SiAtiaUVQ1kn2TIVOKCbc699F4YXqn35dG14Er8+WRKCfpNYd7WGqusIcQGYz5mWFUir60AC/k9KSJnidFDkAlA8nhWxSKLOudidE6SBI+KSOkAOW0miiBlqxnQ2O1fLkBdlqW2XufJKCR4fXJ9XsxdZgGmzHllSnU8eA9CTNCgqAFjibdj/kjydPMIjC5yBVPekgPVUZ+T15dSWQXdfquLTQMl29Ifc9UZMYvybJldhO0uNPVDttUMl8HAm6xYRUkc/0Ocnlpgfy55VUT7ryPtvn9Kf2mViNTFGlzoEN1VJMy4ggzgfnOtl9j74HuQBZjeDKd0gkiGzZwaIT9gDasnay98jvwnTa3RE58loklT11NSiC35MKSTOIVQsu/Y08aSPt8V6cOMuAuuw1uraL1mhAftxBXVWSUO089Asq6XXtU8fXsT+DGQwCFbgIesfYbOOlHVsR21kILXnU032jazT1qtcUh4Bczh2PUdsVYvxiS5FHdiN7dqp7gCNtzujZHJQzazJ1jFpRmDA9kHn0EokgC73pfbqcBthq1jH0kzx47UaCvpdNpRAE5P06qsQY+RmB3p/GuW372txVV/bpwY56MVgnhDNlYvrTkmrIaCBA1BMpL3/Y8tm7asswyvu1A26aiFoW4iCzVoitlDQh4j4l8Q1LG2vYsghw0Vfuw9JHdsKwYnTPa8IohRChgaAnRjAQqn0LemK0Lgjlc7EmiZlLtw+jsTjGdL9UU4Zlec6n+9PzQsWUwjOziJd2bMWPHt46o82QbnNAoPMvAikgkHYPGRFT2icwtjpSHQ0ngmIHglTQamOjQD6TgorIizkKNqxE4gNyXpGQZSugOqjjBfOlnc7SxQgW9sLrs3FoVQ/q57tM4s8Srll7F8KBCqKai9KIB6/XRHVvjPKBEMKP5ZikWwrdwrRzlcYGssM2LcrP0JEeDMjxi/Bj1aVBcN6dUgIi4YUqgzBxTUQ1N2c7TGOX4jp0uAenYQZxxzmBFO1kWRuNBTJHKkp945VlS2HsSd2KVBSVr6U/ta93bOfvd927aSxMwo32/dW7lHQSX+5volTXOWvO9BQHFSl28XqFGmvS/urrUPORghWPfI2eObGyVyQSnwQmJLryeo0sHLcmSXxSYsv7YKYi92vpeD4wYI9aOQW52RC580dZGqXRJO1kyjrC6LzSvVOO4Q1V6C3vz9sdWU05rzAbqeo+zYAJS4n6bOgZZzYFpi+ZVqp7GkcDUonfGooQVWIEC3xpC0TPD43EJ1BRQRUR0vUM/EP2PZ1aEabdX7KLzx2V/v1BT5wTelFxmOZd8lykwrLJ7LuXLxgnubF8V+rrr7K3tM9edpzYqahSzgWo8EDPaLJBpcKW8NMMGu3aCMoiJ1wDsiKE4RsovycLGMWQ3rmMKBGz8u9cwbGVPArkMYXcFEFVZTX4PUYvdQLZmmTrlIp0o7AfyVQdRndVKehIxZ2bhLoOMJX3q1fwNdJb+9mmmtfWVVTxi3pL+tKmmZD0d0P3ttcU9wTdQqj4e+LY0G9Thh/K7WmqipwaP1VZJI4NOLYM09Xa4klBAWTkg656T1xThRcZZJ8BSWToIb/SVqZA9DlGTulHRIH+oCfbDtePUyWHmWvzpAmT8GNZ+Z/XpZT8naCr8fVjIpzoAHNj32dUvgAA1W0ByMGO11dqm5hSoSOsmDCDWH1em4ZuwpP7Hz3uIKBvHvojZfdDwVPU5grPzxHudiNKVW9yokiTTr3NmkCDPyJS1bGm51LvmjjazAHGsWHT0E0qQNPrtZWqt3xAqgOBLLQzqGTKD93XPSoQe3pni95lQddL9rnT9yHz79ZDjIsKoNi1VPU3di3E1LXhzxxIS9+tq9fdm1P2RxUr1xEg/BitQbdNgUAD84x0jQFkvoDyvdlgOawA9oHMOqWovCEUvZMJzz/xeay9fqc657qqiKwEUJHeh6WGJH5JPWKmBLEZICV0E9jIbFVsxKrNH8iI8SKJH1YANIycry8p1p1J5IJqw7L8GymZRGCrQoMeSEv2Q6SoIX/QxgWk7Epgj8qTQWp2q0GDd5G1lzayAbLa3xIQ1zL/aCAd8AZ6AJeRK0iQ+geQv8uWUkPzSE2/5+PZsQEZaaZ3ani9pjp/pQNxWrjI8hPI0z92DKm4T/MT7GacBmlFudBvdVwDFQgvVNeTSK8fc9JD2O3APTgtn1VONnk0fVlA0b2xdY9sea5T1f0h2bbu9ZmwGqmFlG2gNBKiOWijPBKo7hgAOYUzqeOU0q5iwdXs/4RWbFPXXM2V3SPp94+8y+2GtNUJKi7EvC6Ud8lgw7iDQIHBOBpQ9oT+PZb3eEup7gi6TUNsi+NW6v/o4YyAuXLzg/B6TZRGMxu02Mk8ZAGktgPAxDIBZ1IocrY8EigiSxXK0iIzETcqSJa6xibzau+wLBVxAHL2BdSJFNtGPoA2oK4rQxU6RSAJHT2ssrpbTtoPrTBQfc1UnsDNQYHyPqliHb9YZJYSByK4h4Jcd+yhS0pyWwCGnhvHyEd75TGmXQVdY0LZ1yjLtQmBuOEoJacYdZQKPiwBraWxJPcDIcMNR22p2EyPP3ES5ZVMCk2jFCMJBQwrhrBjxJaASIma8pJJOHYIP7DglAOEdoyoZckiQU9K6KTbiiqyUCBCA62hGPaEiagSSz9jTZVL3RrHmgGgg5T6LiTplT13oWwNcp9nU1N2Ahj8rsDUYmm1893HP4dlOx7CG7ccu4f+ed/3VAbS2AdKEL58bgNZuHJ5JEblnYac52k5YwAQH8jSn5Npr7h6GN1VNJcPoPzjd5H0V9EaKuE7z2/HpuXbEFQGTlmg79kO4kvMsQnEFw2qsXZ1b/ZZBRUL4aALysAqjXiq65uW75TXQ1Ad9KkanwjioGLA8CL4C7tR/sEuNUf1PrAQ0FT/cSqG1NX/AGYc8z/9/Hasu/YBhBUTq28eVmNzXFJSfuFASqynZOz0QL7jlCw1AaTBsNn6cwpoP8tY6krJTq83U6zLsV0W2ms30tytAyG8XhPfffxzWHftA8qeir7XV25+UHZu2hmZqnumk6gG6KzKLqrzAWm7JV/TirGO6KDeF2jOF8reksaSrfnSzu3gpRa6RvM5MF1j6Vg7NJR/e3k/CV7MtvkPdY8RWR2WAd8GppYmKO0z0DVm5O7/FPiujlmN3TNLOz17hnz15fPMVMtMLNO23TJkgPtbXbIYkRY6KLsrthOVjeLPS58RgUCihcP3vCoDccc+YKsurdg3VLete0jmqpVGEzSHAAQGGit8TI/aKO83UN4HdO+WY4DWBSHc/VausE2d0EB2LkgRT6/R91PnV+i7W90bKEtMXbFv+nEuM4HmuJQjRusWftYlTl0Z9F2bWiyyMURDHnNlnzx/lX2yW9BuJCgdSACQcO/IttWMMwtHba2jE5CbFm9pV4Trwauu9JElhRgRS4cLOiRlNlnHxNVSbtlcUCqgWv0A5Il9x8l5yCvSOw3CpZDGnCVN+j59/wlF0j0XOnuEZXRbHuWzq9neFK18Otn10DqBTBEoxvImV8lUve0cxP3ybqtvN3FshAPy3FALPQXL6pY31C4ppjxlp0REBpAnzOk1apsuv11Xf9PJRF2hXwwPFlOeIkxmClk1vAjGrr3y9+4q4v4eRUqeDG/GTcu3Kcso9Z1Ivz9JWiQptizS9/XqdfeqkGT7rRG1zuMh8HP7NHSTIu/1rhQjzRygfaIJ53SvQHVvoHysAagQRwBt51pX8ws/PiWel1TgoI4DPWhY/7v6f1rMAOT3vrj8mQb9eCY/coEiW80gQWkkVZ45BoSfqMG3rramSVqkEYw6oprbNtBvpRMCvQhFgVlkcWO/O54rpOq4et298nvtOm3L6K2zAHJBncVWYFLjUycBEQxEUOvWLrrHPAW7kXqFSCEKkyJVQ3kkQGQLTF5kK7uX0oEYU4vzShQgC0iiVlm9/VH+PVIkcGQLFbhL7b80aCO7GTomskOh0KNiaJcewqfbLRCIxFf+jhOZWoNsHfSgLrshvze6hQVNmqj9l8KRyCu0eV4W/kRhke64bN8Ny6kqtJVXLZHtjfw9a/WlENpiYNnkEksN8Gl/ncmMDKPQ4mJIGAXTUlGF2qop/JjQiTCnz6QYYksFZQpyA4DSiKfum3p4uR6crorg6XNKb2NvXFDJtUarwk2jPcNCvw68PlN9p6l7Qh5PkgvK0q2Zis9f/bltTnoQYxOIFs7LFdZ12zx/YTcoCI+K+AByx2eO1XPjBu7AYhwrrtz8IEr7W3j6+e2qAOoeitC1r6GeS/Rso58EGrPQ+4ugDq/6+amtom20EYtrbhzG5FKo4E8ik+j5AMiW+543krSYlz03AKjranpBBV37GspKi549AFQOEQAV7O33yPu2Ti7rFjWkXNfv23RvJRu9Iug+qs5Peq+jCT89V7rG4xzJZ4028N7HBuCOx+j5ySSaF1YR20LZaQCya2L8Yi1PhvYpfeaQMlR/Xk33Q9kQ+DWpmrQnTBUcGduJst7RAw3p/6TET0IhbXNSUt7tbyEMTFh2hDAw0VtrYnyyjN5aE/WWC79pI2lp3b8toc6xKhJo2HXjb7e9diKgAFwg//wiUq9rLOtu0EN1yQYntoGeN7JQROHjuG12LrtlWBUIFn17CuPvq6K611cBnLp1pjXayFnSAsgytzpAKfSnPYj5/Sc8dzlabFx5G/Due23j+nXXPqAEFWuv34neHx5EY3kv7EY0I5l8JmDT0E3wLlusxhs0Z6axAYDceALIxqTueKDmcgCUrd70AjmIpHFGc9DOiQrI4qPvRxMY/VBvTnhRHolnLKJuWH07oprbcW5wzdq70BqS/ERx3Enj9uk0Y4k6nqZ7hSKFaVyoF0Upg0J1tmrjV3l82etAFgpKY2MiPdX50WwXCWRDUhTSUKFWHk92fop2XbTvNE6n14vrpPuzfrz0nu7dma0iPU/0jlt9HkSkvW71UtmX3U90z3p9G8VOAuoCplwuPbiWQm6rewwVyO5MGjkbUiArTsa2/JxUHkGh241s0HQ7tMEXZDGClgl6Ihi1AOWXu5RFqB4AG1aAiZWhtGMrRzkLHfq+xJZUngNQdnn0XSDrzKAiMLFMqIIEFSPIKifoiVHaJ9C4QNrIUYC8ftzqPBa+S1SgKo2ECCsmrEakRAs0fvf6TGXJR9dxc1AokZ5fy0JzqUhcHpGEv+zMSVBfZKtjovkQBawD0k6ZrEV1iz96dluN43/mnGyQtc6O7//crFjr3PKh/3dOWOsc9ZkqkvhkNaJ7v+uKc3qoEGJH4JkOJP6G1bdLFXaHbSryngh2DTqJnyP0NSV9jnAn4lNvG4SmatbbDYnwL4B8yM2xYMZuhE7QA3H17RtT2mso2O9MNZB0aOXX1bUAAN/PSPx0n3VLgBglGGlBQPfJBbK2eQrOoX2lNjq9rVja55iyJU6v/DuyAIBuB0g/xSw42IQ5mRJaOcuXjFhUNi4aOWKmhD/tk7IF6a5m3RMpihYBG1bfPiuq8Sdff0CRy4YjSXyZxwB1zqhIJcYmcvv0zHNfxDVr75KFkP6edn//40SRvAeQFaBSSMLGQuWdBkojWUYBhV4FFQsWUnsg5I8F0BQXXqiO4WSSOInny86HQmFwY99n1GBezzDQUXzPGQn67LqrcMcDTPdK/3RzPBuIm7qK3BZwD3mpPYeTXrseTK1NXF3X3bIgZ6ZFpXxHTkaemEGMONACjbwQiWO3FVEInQo8RKwUr0ev11YkeFiRJGnsGDADpPeSKD3GWBUAdCLDDBJ0jSc57/GwIokU4SdaYcNUyxMZTPcrGgiR8r6yL6+iI+U2IBRpSoQvEbNen4nqHi+3X3EgB9dR2lZL5LJIg2DlNRfl1OJ2IwEqcpBK3TLKK99pnyyozyTMDxrNVL1DqnpSbtD5EUGcK2qQFY0qpgb5dSMdFJOa1GoYqt2WwhtBVjatNNgpyPzwaQBPhLv+ndUnoUC+vVPviKACQxwYqL0VZmTeSAIMWh3tlvQBsgwZNlUrMrRRRRZ2G+XI9BBmzpLKSj93ezTbBuUC0bVjeBHibgd2I1RkOU2SqViQTZilFYdsoY2VGj6smOp7AwDuONKuATM9h7JQ0slXNXf8fgyv0LmWdFfaMjLoOW74ktyxRvOdiVS8z6HwrGUwjgXlt+tqLKaHTRt+KMeGjkBYsdUzYPIiG+WRNBA2vUY7kfjrrn0ArYu6cp1b7rgMN9UDE03IsD4iJ4CsuwiQ99CeNxKl0qRwwaBiwj0UqG5VuxHmCg/UQWP6UCGQ6nkaSj/a6X4gAmCnYX65lvz0Pk12OVlbfEZ8EUhRJ5V7AtW98hqlYjaRV2TpNn6xQHOwlNoU2HAmS6jsS1Dd48nQbT+Be0g+x6hTbt+VgNnIkxX682H8EluRNF2jsvDrTErrBb+WdUrFtvw/QZH2QEayp+MMc9SGM2lg+pJpJIEk87vPq0sFvmWhPtkFpxyg3srPWYQdI0aoCgCxlaDyjlSbtpaG0mM/3WbpHQsrb5UE+ks7pIf/q186MQJDt1OgvBa/RyO3Cnk1hFfuktsXgSwelfenJNx4Z2uSo8F532th7AMl1N4KZIGp10DvP/poDbgZGVZUZ+s5aimRT2I2IvaVV353FXBsPPnyPdhQ+jRibxrfir963Pt7OFy97l4EFQuld99DsmSRGnteuflBfOfrvw0ziLFh9e2YXlCBWTHhL5T7HNkC16y968y19+muKkFd4lion++i9kYD3gWVTPzhF8bEPhHYAuh24L4qK4PEDJip6p4y3AASNQg1jo5t4NCqHnSNx5iGUL7r4xcLrNoynOtsInSaV1+z9i40LqggWpYWD9J7W5QKOUhMQSS+XkQFpDCFukio2zQsZ4VCIO+Pj6amhHaMHDkJpCr0kRjNQaHGkyTSUddoJfPHz1nyaAprgh6Q3mlcrqv0c6+F2hjXR27sqvvIy7GwoXzwKbzUbkohB3VudY1mBVWp/qYwXDludiYKRQltHkGdQVQcoW3T60XIYqSB+vmSwHcCQx1TWAK6mtl6aTt6Z7F+XqyWVPkTRCiP+eClVq4IEPQAxkEHYTnrpogtQ6nKyRbNnjARlKPMDtQGLGTjgK4x+XvzPFlklpY10oe+Od9CWMnOg154oGdfWKJOjtRGLhCIbVNlBCjroAZU4Z+KKEpslBb6qcNjulega5y2lQkJ6JqIbaCxIOvWa82Xnyetrzko0owyKVojEn9qsaG6KYBsHurX5P7pwc9UEDLH210Z5iLixECctM/3jnUd5wqOXpG/fNuMCs1Ni7dkavKpOqIlQ2rwcDSqXgpRFWMTiPt7ZHFAC1sV9RaS0YNycKETl6SU1pX6WjhsG1IyFsj7AurIbUNT5xOJTwUKRc7PoKzXg28BLaS3uP/pPgN5ZT+QtfUDUOp4Us7TftC5on3UA/r0/dXVdjTxB5BT5dFPmtSTZ56ulqJKI0EPsaVQTHUuUwKewnXsRgivz1YkmXso3e+CUl8nHgCpFKfwwSdff0AVf2jwtmH17cra6FgHdMV1AflwW3UsacAxdSgEAyW1TxRuXCS8qRA1m2oWVVwoEPlJfx8AKFV+a9BVBCqQKfGLBbbpBRVFap1uZcumoZuya0K//grFN0ArwDkO4gNjeKr1J6dhj08cVBiNqyVENRd715VAfr4yjT5SKnn6TEtvT6jvITBzkDMVYsKBirruACiCm1TbNLh3xwMVFk2B1zPd83XoKnzy+Nb94XUShwhPCvIkKyEK6/F7MmU5rUcPjNWDY+keplsekCqR2mjdQ5EiTfXJkB4ipKu8KcSwfCBUgdG033QPpPM23ZtXj+vqa/1ckypIDzostlNSW7HexknKPgJNOkiRoxciCO54VqTQlyPSgYh58pAmJb48RhoQZ2oc+TpyLbhAXkVKYVQU/iTXkbVJ6+FLVHigUD6azNDfK/sy1azuXU+DVDquyr7MA5OIeyL0iUy3R1sIBkrquwFAdSsAUOGu8r1ZoDNlSOj3SXq+6M856n6iCTN9x4h4K4YF663W+iTT75HnjTo7qAsByCaApGKj4EL53coIGrLfobB1td86iZ8SkwR9jEJjBdVJ9u54bmxzNPcBBkPHFdftnFHdScSdbhtFgctHM2dYe/1O1RFEXVR6107RTo3Uc2Els96S25TroyJsccxEZDcFQVJBTviJ6vQqdoQBaTaIIrglWVE6kIXe6Sp+vd0eyP+dQGp/6paSOSfyvuf1mYrw15+hdH/u/7F8oAgvxDvXdOOCp6cQdjvY97MuWkMRRGjA8KWVAtmV6YGQqlhAxZDUQs3vyQghICO11e81GWSoB9qapRBRy4JhxTAOOohroVLmd8+TDJEfmqiWPIxPllEu+Wi2HPTWmvADSfADkEQ+kKn6myZ23XQLLt0ugylfv1USkct2PKSsH46FxF+1Zbgt5PayW4bRHErU+oDUaiJ9jpJCVLfqo/3Q1zvdf2z7ciRcs/YuAEBrqITK6+M48NEBVPcG0qd8VxZcoAuBOlrpdLlSLOU6SEYPnrZuV7KaxFQd8YL5AFIx3FRdddw3lvei8vq4mhM7706dcV1jm5ZvQ7CwVwXL0tx5clkF7qFIkbt0X6AxLQDVxdcpaBaQ914A6r7UKWiT/k7jErJddMeTo7JNIjs0fWxO6mL9nqiLcPQuSUCqhzNLMaTrk//3axnBSvcf6oIBMtKaMN0v70tKvFLObEt0i8rimNodzyw5gfz1q4PGzPp2aVys9t1q3y8guxcXiXOaC9A5K414Kkxdrj//mYkgViHBxWcIkAl29AIFndsi2U6dA/p+0/0+1EQ79Hf9WUoFDr2IodvwkNKdPks61/S6CIDa25kFHNnoAFJNr+8TgYo7UUXrTKNicRqETuunbUz3y2OY90o2J2zNF+ozjx3pw9/3qtx2ayDtQrhgGmK/i6gngrvfUgHmemgyzRH1z0afM1InMYkTqOOCPtNiJ58+Lyx2ZFCnVVHMRBwBkfzNQZHryrBacu5B1wLNp7/z9dntVJstkCL/ge9dOSuK/G0f/s45ocg/6jSAw03kFFHZKYT2KPDUi3dqYbIUpmvn1OeKuOygzgeQs6zpZE8Dz+8ckkvLdRjY6OsEJJlOSja13qJiTQvN1ZXxyv+e7Fr0bTt2jjROHEtOsokscPMhq2rC3aEjoBjIZ056bSp+Im7JA7SYJ5CRFMWbRnu4Ky1LYTvFsFd9vbEjlDWF/hqpByics1NQjywy2KrokyMr0vMgpjxcve5eNbA9WsSuhWvW3qXCd+X510h8PXRZ8/EHtAJPd3tR6MnXH5gVJb6Obx76IyTTXhZKVYDhSa9jqxGpz1kGm8rvjTXayH0m6rvgH78yaDaQC/Ola6oDiT/TcZ+J0G11CMp/0ZED66KaWan0x2QY9eG6T4rXYlAxc624RAjSIESSFvKa7xTeDaBjcLPs1hGqKEDIBqNyoB85Up0tNPJGBHG6ffK01ywQCsoB3WNcWvPk9zFSRGmsJkD6PUwRvoEkQUojIUQafiX8bF+KqiFS6FO4l92IQDYHpJ6WXucBKMhLh92UIUadwnYBjSjpcMpz5Hj6d/o/BcEC+QkChe3SwDq2ZMuoX0uy8Nj0fYZvKAJfhFDelrQ9GqR3jWX7Q4WBog0QKe31/SXvUnke88cBZIGDHdVXkJNVIrbouIqgMFlZYMkshVTxWgWJZVY6OvS8GHpGEcGvQtPTLkOdxNffS6DvrB48ZTcSVajS/y4C8ojNjjUXvKutgwJwhZ+o732noLmw21Gh0QTDD9PCXKjGFvoz3/Al2W9OerI47YVZTtBU47jHdYxzG8Wxog6drI8dA+7BaZT2t9ru6TOBsk/c8SS1GJPFS90Ln0K99fuG1cgIHjMNwCbSqb5IpKS4tHyTBUC5P1TAo2MitZ3Xm2WjUAcUBW0TyeNMAL2vBaAgbEAW5uT2Y1AeCKG6x4PfI7116R7rHopQGk0UATF5ocDIh2zEjoHqHg/lEUlUUMEvLMnnTt9rcl5jjTaw9+PduPAvZKvRex9yEdvA0q+F6hnQNZoFuKp7tfY8V51ZkMG9RMzoZI4k5eQ6usYM2BOmtNUJRBZqGwgkk3bOCsewYvihCT80EQYm/MCCZUfwQ2mzU2+5qE92QdgxnHIAsxTCLGksTznCksceRGupj/CCafWyCAwVtr7i7mMLmG0OJVi24yGsuHsYK28dTpX3BsJSotZJwZGxlSDoiRD0xIqQEmHeigeQGQ7V3ce0G0cFb14X3EMBwoFK+t3KPxuOROKrv03V8eTrD+Qy0k4l1ovr5BjfsREtGZJzLU0Ql0zVkTgy04XELPZoC3G3m59DnAFIHFvOz9OfNKao7vHSrkr5PZruFUrhbjdiNV4/EvSxeFAW6v2KuE9J/KBioLFAikmm+zN18JFQffkAgPy+6AIencTXCXxdHEMdVCLUrRgz0YkOKk7q5DOQ3ZOcyex+Rcr2sKRlNtH77MLYuGLkFPu0DIHeJ7NDsnEuCW2KhQG96CnHfvl9UGR3C0rkQefD65PCJvdQlIqrIvWZZdaNiZqnxI5UcFOQLinn3fF0rK89TvWiiDoPlrYvltyf0oFYBWbTeS4WL2g9uh2POgeF50Fx3kPPRnc8UH+T2zPU/dpqQD3vaF3V3WkX24SA2RCwJwQq76TjeVuG+hb3ibZFJD6NGyhrTvgZiU+fT1SJkUxK/3y3vwXvAl+dO9ltnKBrXBauqFvGSrtwiyIc+mzD1EZWnhPZbWEGCfweeW2WRhNMDwDVvWFaTItReytAzy4PtbempUhnPBtPUXBzlM533PEIlXca2TnX5nleb2alajeStvnpXEQMgegE/8VHT2+f8ThqRf7RYtPiLcq//Fg8tkm9TAowIkiLytCcahfIeb+TUr7oUa+sdlKPwE5EoK7Qp6JB0t/XFmob9VdhjtWzdace/OTLX/TIz3UGTNURT0xl20mtYkhNDUAp6XVPXgCw3xpR2/AXdqt2PBVglPriU2CtXFeqkk1JZt3CBoBS0tO6CHG3CzHloXWhlNfEjqEqfu64JIVJTUXEIPltkoUHAHUcuiK/OFHTFVmksKV9IyIyqrmwRhuqQ4HI9Kef3y79ulP1IB0/kNkhHK4ARWGedN7l55cF/wKyOKDnLNBnGvVXVWdDVtzJyJGTqQ7ZUPp0/ruafvb6vqsgRM1TuZiLIKY81YFxKvzwDwfl/58qgnKdLlrxS1fid/JoP1NA9zHKsiD/3YPvt9Xghixh7GaM2huZp6269g+jlL1q/f3q2qTOGoAIcDNnLxJUTFVgix0Dpf0tdf0U/bE3Ld+mMiK8eV147hvbVKgVDWCIGCHysuh5rhM8pGQGkPO+pOV1dTypDslOh0hZ8henbdKAh7zqdQuh5qCt9gOAUhIBWUcCWdMQSF1Pakz3UIDWoKvUlz27MqsC4YVoXFBR+0TKbHmejbw6pVEgStKBdVjOK4/IjkH3ACWVuz7IJosJua+GUtHIMELZJtu9O0FjgZF7jSBVlHIgW9on0FoQwx0Vbcp/UsXYE0J5Y073Z0UHUtcDWshfM7+/ercBva776ysroia1ECeoLxLq/UV1K1kikbVOMf9Bn0iqwsxoZiMHoO3ZSFZv8jsZ59S41ImmL0PfM9oeWTwVC1JFRS55ZpZHAuXfT99fAMofk/5PRVq6r+te/eRTq6uJdb9/892DiBbOU89Wse+Ayn0BsmfYmaZuZJy5uGr9/eoZdCxdgZff8BCATEmq309f/AOpeF61RRKp1PlSGs0HEgJZAKFeKC0fCFXnKD079JwXGgOPX2KrILrWfOlNW90rb2ykqPV6pSUOdcGRohJA3pYn3Q5lx5RGPNTPdxGUBXp2eXjvQy5EAPT+VI4xR9ZYKO/PVHbN+RamB6THbmu+UPdUvUNBL/haLXnf7t4tbTWIxAeykHR65oSlzAZjJq9oILOZ0Ukfb0A+KwD5zEmcRIXfUjcYAEQDAcxRG9bSes4nPw6ECsQlJb7cyZQYIf/9tDBAvvgr7h6GMyEJeRG0BwuTf30Rl90yrI6D1Kx+TT4r6Vno16Qyn4rWjcVZHoJ+TImToLRP7t9M25sNXHHdTtR++B5GPrYAfa+1EDsCzrtTMMYOSWL8MOQ9QVnsLJg/K/akx4MNpU/L/dC61eM9+xB70xBul+oaKM6FT9f+Hi+u3PygFFil81mak9H4ozWYzf2p0xTIvN8BzKiqXXv9TjX2oLEQ3b/07CSdyKexp98jr9HeV42cj7Z+jwZk9/bGlbdh6v3z1LqomNk1nimQ5f7nO1t10L40B2kMHuc6m0gdrtt+kcK4fECGgnaNx6gvEmrsq2dQUQ4UkKr8e/LjXvJKl0GreWFMUb1OKHYhAWhT4ZOqmroK9Ptvceyve/rrYiU6V8XXvF45RmwNGJj3kwAH32+rdVJ3J62btqePt4tZHjT+1juBgawzi84hLU8ZMDr0DmG9g6JI9Isg27YzAfS/JLvD6Nk2tSJE3w/lyjtl2uidB7qtkr6fgHytuSA7/vL+7LOgLAZnokNYeTq3mloRQrQEKksmEf99r7Iv1ecdxU5zUtvrYgI67tKBWAX4UjdxeSTA2Eo39/fYBmq7wtxnDsgML3LJCCumDLYfiXMFCuroEF6Iscvkvbz/pSk1Tz8TQIr8e7/7cXSdoCJ/uh7ii5d/+5xQ5J/YmeqAJ3c/jA2rbz9mYvBoCLmcl3ZqR6FDJ2U7qvI1W5tiYKgOFSiqrccYOwR0VyWJXLDAybbfbsdSVPXnkBLwxfdlx9LBtxaA8+5U2zHqx6/vT1wt5TzQDS8CNIW/7bXa9l1X8ppBDDOQ3sMyyEP668ZOd7YdL4IFH968rnSwIFuRFVGsTYCKIDIia68WmUJSC+IDkBv00MAtdkQuRDjzApaqwo0rbzsqUqJIXpDyX5H4vlSGG+l3yATQlRZb6NzJsMH2z+FkgAbmuk+8yqzwQ4i0S0JXjBJxBUAr9nQOFz7V0ANvCVRE6wi/3W7nTIF+H9OJRCKmyQYg8wA21DK6on4mXL3uXsARykZJH8TbjRiCBh9+pmoXvmZx4Fowvc5qyidffwAbV96m9ueq9fcDmtKAIAfuGWmiEyeEjDBPw7HK+TZRHZkqJYH0Ig9gjmf3DppImBqBm7dJCNV65DkVitD1erMuATOIgQbgHpzOFSdjJ7P0CSoW3PEAQSVrdaTrTC+a0LHp7ZCVfXFOEWoGGRFFqny9/VSpiDTCX/dT1iGCvBen1QLC9HUnMDJVPRHrgaEG2kBGtosJOaA0GyI3ONfJG8OXhQKyyKH1klWOsswpKJb0bgAgOz69hVYPCJPrTYOBc+sxYPqJ8pgnD1ip6soClulvuipM+IkMsvRDiHoLRrUk/aM1rsPwIlhTHoQnW/eDlJxXRSJHIHYcZREXVCw1YbZHQtTPd3MFKRr4y98z2x2p6Mna53XLK9Wqq103VEjX79l0OmPXUseuvrN6sPyUp45NISVM1DinkyUhg3ES8ey3voArNz94zNZ+R7J/uHLzg8CS1IvXgfKdLY8kaM3POpGAjJgQIZEqWSh2kcQHoDpeqnuzYjsFdnt9JsojAVoDBkRoKKJfWXqNRyi/Xcfoh3plN1dqh2W/NSJXvmII9UUmpi8pYfBv9iHqr2L8fVXMeyVEfZGF6ssHkDg2yosGEJaA2lvZvaBrVKo56VnZmq8Fu/uA0OxxgLRIHCTo/WmkCKLIlgVnJ70nkbKRnlGVfZJ0Gr/YgtWSKsKDl1qK7CALCgq8NRsiLSqnoYeQzx4EhgoEtidMoBTCWirvUdGkg7gUQtiSvDdLIcolH34o99Fv2oAVZ8r+wIBoCUWaA9pzqGXkusv04+8E8tMXAdC3O28zcvkND6E1IAlCrz9C0COJe8M3UBrNrN9IlQ90VqXONqo/nUR95XzYzRj18130/vCgnLs4UhRjdLkzkvnkiR8vmJ+bW50OPNX6E2wofRqALCyEe/bCvPQSWGOHlId/MlWHASmeM//6BZzeXuJjx1Xr7wcqJurnuyiPCNheC/7CbjjvTqlxtTseqJBaFRqbqn/JQnDT4i1ttq1XXLcTrTTsEpAFfefdKZUpIMcHEbxeW5F/ehekLEwZqC/O77P76n64ALwVQ6gvcrD2+p0w3z8vZycIZBaANIaxGhFs7ROi8Q2A3BinujdU9x+ZB5J2UMLIEcxUbJREfb4IQCIQ+Xd5vohgji15bI3FUpwCZONVKtgJjQ3LkfJBdm6mB/IZT/I42pelAkRsyzE4bd9Kj0MXq1CuF4mQiMTVydygYqTe8SLXxTC6ylaWL9QJRjZClHmlj991Vb6wMmIbSOcKYXYP1+0wKZhdL2Loz0wVnJu+t3iOpFo+ExcBkjB/b203YisrPvd/18L4Cllo8WsyaHZigUB5nyyuA0BpfwutoRK8XhPmuHx+xU5m0UPfFZqXlPcB4ysSdI1J25ygJ1ZdaFTk9mtA2J/ZJLn7LYSlBNZTvcpilMj2/5+9Pw2y7brOA8Hv7DPlHXN8iXzvAQ8TQZAAKRKkJUFF07AZxPDori5FdaCqwypGyN2UHUVHWJAoQQPbhAmZg0mRQCgsVlhidzmCoQi7GN22o6sEgGSpBatIU6IokBYHESBmvAH5crzzmfbpH2uvtfe+Nx+mN4K4KyIjM+9w5rPP2t/61vcB9l7k+QB1t8dyDXOnRf+YMsdXybZZY+MQjTNa5sftEyX23kTzCPYJYCnQohVhoZdJJ2C654P4gJnnGLNrlpdlQH8eP9lx3hn5FzpYjoIr8gxeMuucGfwHSqM4Mh1ikMsGqoAw04Tl7rQXika/w14ToNEA8sIgZvDRlQHKc9+U12xDsLbi7Z/nCzAN7jugcr26LBq3M9vA22/2qVql/eAJPIOH8ck9e1zMMXWPJ0v4AHCAwMpj8HN7Y9VNRSYHgDAGmS1fXLsuoKHLvHeDGY4uYM/rOEj7/o5b7/c+7xr2feWbHxOZHALYs9ecoArw2mmj3tqhY2muDT7e3A0gTOaLoDHJzHxOwjlczwPWkAQgABDfI8x6By5sB8ErCU7edTZBuEgsdelYccD8S6Xbeb5CPA5M50F2zYqABEUrxOBo5DE0mM3S/jFRDVzj5GkjWu4w8YpfUxrY07raHFE/FxA6Hpaed4arn+0WElzQ2mX6MIOIgUzfAMvu0zRrhxMSaq/VUjyk/30GI2+/yqkdlZN6dxnMXObj6zKSrNwKeUe4nUOs1cxAqGfEPcWEdlnYvEx3stK7JvIMGAEDTBtGEU/KiqYSGRrXpMidvHCwBjvrEVs5hNpji2RLoejv69jqhw4P+2wPN2HnJJwZ+8xkZAPHaW1QT/PeTBI4gXX1Mj1TscgC/cwOclk/0uYb+4aQvL+A7zMA0H61X8jknLnPomw5lMkmezNE/RzhyR0hBHD3H3cqlWstbxnudRNPSYZwgZTHWQAYrcfCtJ/W+udCTrpHLHw5D07nFDOBOdzrztXu52fO5HDLXBvWs4aL6SLr53QIeh2FroRZp03dbWe2ESykr/vxdh5v7Lj1Fz6HMIenHds4o2V85LGYn7fsZ9I+UXg+Um538OiGNRnvWZ4OoOcBd2ExW7RsEcOOw/V4AaiY3Xp+KKQXt6M0yEvsvXMF40MK7RMa7R/3sH9TV3xfomGF5vdOojqygvFGY+a5OLgyFcD9im+NEfYybP5XS8KGZKYjL58BNB6L42FtihEWGFr9fia+Ly6jFACWHx9j980NYe0TaFJ5LHUG9ulYuGB3gPKqCepxhHR1jHwUo92diJxO1UsQdmlFUVwh226QcW5cCwPfjbd+7AHLCHVY9U/+GoHyN/7OA6JvP61j/0rj+n9HOXPVS5CejjwPmf51FRDXiLfoemITz2h04Zj5N3zqAax+z3Zvsgkqy7m+FCs/uO4Y/ubXu7jxf/zeJfWbul3dPfNadOVR+bvuD1Dt718w090LGXfcej/GGw1h4jO7tvX80OuW5+c/g4I8RvH91j5RzrDxj99wL7bfsyEMZtd3g8cb1ugG4BFr2K+Hg5nJzHZe2NP4+pc/gts+8BkPhHdzGcDK6rj+HdP5NoBZuVBnfjDNaHa12pnlzsUHBv/Ha7OkloNMar1iovmd9HwJH9e4lYqclljFx5W7XXm7AHu8eD3T7/G46oLhXPhkdj53GjBxg48Dz6O4I3l4OJAcmVnzbGbLHjHTna/Mimc2fNm0EpiqdMD8KY8u9v7gz/G+uWN31dRQJctxWoNz6ZQynUrxvi0q8xyDt4m3t/tMKc8W3ibennTPdpcBvr/M8LCSbgTujmBZG+5OGx6jzjCWfqNlBzKPybtUeE63lDD5s9UK4Uhh9Xu204N92Nz5LOcTDOyPDkVoninF1JeP3coPCvSujcWTh5n1/JvJRs3NwsPSon6O4VUtpHuF+MrRefCLP3yfsYIGz8XZN4c7FS/XYEb+7/zF+84LI/+f/cyfvCEY+RdNROjV6pafNZgZbUDtqpt6+uSsb+4xy7LcsrYT+gk6basDaMB2aS/vtITJAADoDyyDP6N1i466o93Pr+nVRVqGaQHkv6cjMFItdRKjWjVFhLOwub39caWFeL/YpCiJaJ2ry7YwYQD8IC8xurqN4VUtAeiLI0uO2a4P4rugXzwk0KmKFYq1hhzzcHsgkw8GzOJhKYCfbjegVxcpSeEkwGj4hr2MtAEdTd9sOcbwqpb4CgR5IezxmWOSVfjao7+Nr3zzYzMgPkDg9COPfZwSo7UD7NlfYTy8+0UBTYM0IVA/p+P+8Pc/QdfjMyf8beu0L7hmo86sFmiQl6LnzFEnkecloBNlOkrMa2b7WXLqUsYj4y/hkfGX8FX9ZQseOYz7h3e/+LoFlbhIwb9FPsiJbMnIYJmkM90lk9vmZoFoWAl7mL93NhAfgPebvUbYOyHdmXgAftEKUcUK440G4mFJWn6JElmvqmvHgmwpRtlJSId7yseCzV+ZHSPLb1LCz6xoF+xndgEHJ64uQ4hBAtf8TyeBJDdWn5/YzdMyJoCRVpH12kmFymufsZxr0cAnhrXPfNZJIF4ggC1I6oQ0EklyxYK8xDSyy6+cyRXpM7IvgNFrdPQzpTW19E3O+PjEI20TcZNccvBx5u+wjq9MNGJ4oDgzBj2WUUSgi45rmdgww8WdJPHy3NZnmjza9/NFw9CM3ImAndBMVi3rB7BFAW8diVnO4lRRIDEMpDgQw2U61lSQIW1KZsIWXucJFa5j0Yivk4gm12v2+ejfK2ZSapbB907VJZkpmnzHci+zBjbg69UC9jrlZUnByBg3c2TL9tlK13okoD2P9XUaesVxl3FfJxGq1TZGN6whP9JBtdqGbjeQH+nY54CbGwH0PFuY9XyZxzwuRrCJIhs2nktk5pnkgvgcjc1Sxt6iqTA6FFHhrbBG6uwjRcA6kR+aT5DOvI4VGdBvDTG4MkXj2X00NjM0zxDAtLCn0ThDxQFXziLdLVC2QoSFRmMzI2+OTmqJK+bZyiza9gli1+3f1MXiD3poPrGFaFhh4RQV4YZXWRSOn4sqK6Xo3diq0bt2Afs3ddF9uiCAx4yZzc2CdPcT2/W1sGWfuwwYATRW7745xeBoZL5Pr/Mx231zA2FR07OgpGdO47QZo5Ia1WIFHdUCAlVN1oYO5LWwmyPrpUiafmeQC+InUUUM/DIQoHw6dEyGsgyYqQIC4gP0XtIDmi+e/dp5uXjyv/8o1FP0MOTiNECM/nQ7FCBrYRtSVNAx8O5fenVa/a80mi8CS98hohE/Q14JiM9x9f/yyrTRL2R8VX/Z+1HpAsoXTtB+5Dke3v3i6w7EZ/JhuD1A4zQV1IZXtRAPS7SeH2K80aDn/soCilYk+Um6VxkNbMvIX//G3gyIf+ct92H7PRuUWwp4Xzvf4zxTORr71myTAXtaJ0kBLj8+RrpHy6sSKoiWhlzgFgPikTaEBG303HksCTzpSx1bHy3+rvub86N4WMt4onICZpN9+zqDkyS1GKFoBZK7uhIuDM5Oy0HWCXlZ1EmNpOfnmSqn4+COGSq3Piwc6V7tacjzMQR8Qoz8JPb+d0O6d8y+Dw8r0/VUy7nk4HOVLVHxYbJKufBkDdIZyyA+YNj/5pxynu16nPCY5BYuAAuCA675cG06pyA+WtTNy95aAY3rUY2gWyBolGJuriMzrg+V+HSVDZvzs5wnSwONDkVY/es+VA6s/LA01w8d86IViPwTa8sXrQD9Y3acLZu0vNEGbXtozl/ZhBQSkh7JurnSaADtUzi0zHkdAeFIIRoHUixyO2w9P6ucit5ynSc0/+PrJN2r0TqlMV6PhKg2WVKWWZ9zbkDddKP1GGGhqWDfz6HTSMh87KUl93HLSm4WLWXmuLXcU2UL0jn3egldq/Py80aJi87IP37Dva9MRsdIooh2vqOTLQB8mnhscxcEP4iF74HpjhyLy0j3vstJEGt3wzKwsxs3hMnJrHhmZZedBOkzO7IqAusjYtNyGPabq2M/vQ/8mssGku3q0ITcgnbFDPN24dRw5riOrm5LdZ6ZAeH2QNjZzApS/Ywm/gYQcdk+UT8X9iFr37vmesyIBCxbMVtZEEY/QABi4zQ9KVwmY9EKCQB7gbS+wpM7M+2DB8Urva7ceKWyO7IONied7sDoD0ga5uaP2o6Mi6Tf7jK8607Lu2YAa9IGwNNLZimh4xsfngGF53H+gs9Ptb+PcHFxBsQvjizZItZSLKDD0uN+1td8YuvALg/xDHHGEy6y8XjCgJ1b5NFpJEx2Bhtd3fnGJk38+DPcDujqbbIWOCc0zOhL97THrAF83XuZYBQ10l3L3GE2JLOYpzX3mV1UtJToietYiT6my+RP9yqRPClboTCxR+uxt7/MYObjNbq6bdZZHcjGj7fGUjTkMc3V4mdJBl63GzOSKbmvU8rBIAon+MwscSWHmJXPWqAqt8eYGab0OZ+Zv7BFyT8A25JrNO6ZtQhYOQIdU0sq6ymzPnDzNL3GzBU2YQSsXqULXjAzcmHbFg3KBjA+zDJqgWgQs14nFw8WtuzxcCUh6JjYCQvr5PNzbXhVy2v9dt9jmRnXKwSAdJa5BR4+93xeDwruzqBt8jVN+f5hnX1myXBHhtvpVnVTWR8zb1xWnfus5c+Hvczb7mhrONORlS3FaGxmXleNm29wbqHbDclT3Jzr9VpEncfrO27+rQdeEYP53b/0ABafyagovR55Mgsc3OmW7laiX88MyGwpEKY+fbZGujMRpnvziS3J63S7ATUYo1ptS/7Pf7uM+qqbYryewtU65ueq6wHFwbl7tDVE/6YVNDYzZMuxdG11n6SBjseu/EhHnlHZygI2/1aM9b+k+5il4bKlWMBCZum5bNmipbD0nR3oToq9t7Q9gE/kv6YYoa4mr8sg3L+G8g5XViLv1gL4MLszGgPj63Jg5BiPxzXCbg5d2LGz3Z0giWl8urKzjxf6i2jEBc702shHMZJmgR/9t7Oduhc7bvydBzyZCX7WMdP/rR97QMCxC6mTD5CsYvyjF7zucn1m+yW/ow6t4qHnHsR7f/6zZ9Vdn8drj/fd/mkAlN9zHpqc7KNca1Eh0OSO6W6BbDnG6FAkeV26R3Ie69/Ym+kod1n47MXDy2Jwj3Pz9o97MvdnKS/u2AGAwdEIrseSC5hPSxPycqd9hwCb+7BWPueo6Z4BGR1CznTngDuXcNn+LjnHJbTwHGN0mP+n3JFBavo8eWRUTU1jzH4o3hyc13K+6ebdnE/zsXAZ0ICV8XHXIwCwW0Bw3vd8pmKfPe4y86fzf+5I5feYhCOGriNfH97tMOA83GXauzm5+3v6NdcziwH5eN8QS1oWqA9Hpki9WBGAXygg1gi3TDHR8ULhZ4FbBOF9cCWMOHgew+eau5bd/J8McWvxqOEO5LxbY+PPa5lT77+ZnnvhSMl28Hwk79ouZO4wYAkmMjMnSbkwB078vRpX/6/WxJZlsLIlYtWrgor3g2PA4pN+F4HbhT197TMLf3qe7frycLeOPXb+XIMJddzNwp13YQ70rqbjcKGfQecSzMj/+J+//7ww8u/72a+9IRj5l6W0zjQg6ppdAhAQFQDKtZZMXDk8uZlO237flc6ZYsQCDiNftMatSS7rB/J2FdeuywR62mw1W1lAujPxgDQ1MCOXU0Bg4B2wk2rXJJffl2IB/JZ4AZLN6wziskQEA0+8DgbvXB1dltBwj3dxZEn2jQEKBrb487qTyiRn4dRwZgLj6uSzMeZ0uIaBgDX4qRKg/UL2mg1Y2ZATOP+SMS74f/yGe71r0wXED9IvvFDB0j8st+R2J7hAPoBzkhiaxysLbg9W6ew1r648LEAAQEA+T8T54V60Aiw/ngngpvrZWa9jKeQ4psfThs9c7OT7bFp2xE3E3SIfvR97r+tYSStwthxLiy1gk/tsSUki7LYjAr7uOQAB5F2TUDYRioaV6A0zaA/4EwgAHpAPQCYgrqluujPxgHfgYNNQ9/PT5uA8pokPh5E0cRMvWo41BWPJIi6QcKHBBUNcKSJ38jbdqszLZ8Peg8yE3ddkIua0KnObr44NK8bJlVgih/92jWqZMV+1NOqVHAuPL0iyD1jtf5eZxFICXAQA6H+W0MkXqXUVgEwGVBF4YEg0JkkgTkx5wuHK8NC5tPqsjc1Mnl+9axe8ia4LpDGA70pI8Tl1n98MhjNoxs9YgMB0/psTbE7UXWNd1+ydQcRps6xpU2XXJI48GazczqN/fC/uuPV+DzzkCE/uUBeckedjwMAtBrjSWRy8/4889nExH+eYA/nzuFzjZ37x857UAmCfL6wRz8VQYugVQhgBfFPqaFhhcDTGoW9sSQ7O4RJ2AEBt76M6suKNDeFJIvDsvvcqdJ8cIltZkAk5h+u/Avh5OGtll2stIdlk16yIVI5LcGHiBq/jmf86xuKPiOXHhUMu9vEz3y08u+bvfAzaJ3JE/Rx7b6GcwX1uV3Egxu4AMDiaoLFZekbz2VLgs1INSGZBLtI/Hm9UiPdDsI6+bmikpyNkV+VIuxnajQyDcUrsewCjcUKSOr0U4VbssetfTdzwqQcQjYEf3n9+wYy3fuwB/PD+X/FAewbQGNB/pUWpc407b7lP5qGN//z4S7Lx1WJnTuS5AHF848MoN89g8n/+GcmleU7GhTiAsIbBm7oeWM6ml9GQ7rulvxkcKC176y98TvI9Bgg5R+QcgvMLBvJ1rAR4dMN2LZJXxsq3tjG+elE6AjlXEb1+M74y4caV8ZmW2AQoNxutKw8g52AiChMxyLcqFsNbzm9dIgv/z0xp12TbBaZ17OeY3P2zsM37MSuPowocmDeznAqfJ5bDBPwuUQZtOQd3Ge8e8N+k8bH9AswxnjViZ+kWwJqye2C7k8+7kkgAvO5X3sfRFYb9PgImq7Xk25yns2GuLK+k77hSOuJ7csBrxaLBloycWtXUwmp3TYZ5u+RcOWa7PN/gLl8+F0xAAmaNed3OMS5wcDeHS3AKixr71wcoFq3MTjQORHIo79L5cDsGkp7tCBhcCaz/lTbztErmvzyX612thNjUP0bnvv0CLXdhiyT70h1SUuC8gQmWjzz2cZHf4qI/42+ufA/r5rsSrnyN8Nybr8vusySLdesvfA771yskPeC7D17+QP7H/vz9WGjHL/+Fl4jJoMD9bxAg/7LrPTh+w730B08ip80uk8QD4V32Gf94kRn2NOvTT5m5sbQNvxfkhW1ZN4B6vbpMy+4PBbjlh3LYyzyJnSCjBJnBH2HDJrHfBQBIS/80M8caz7GeeSnLmDG5zXJ5HaDJOANT08aYrkyEgBLTk/kkFsafJB5GgsL9fpBVAjwEOYFdLqjggscADJMwkIHHXQ5L7AD0UA9zvGYQX5abFweCn3fd/FH5+/gN9+Kumz+KO2+5T1gTLxfuMuutHdRZLj/HNz4s710sEF+2Jcvlupg+z/waH2P3GMzj/Iar8RkspPIjkVnJKYDGL8CYShtpGGZk8LjwSopRLugWZJU3WVD9DKpvZaxc3W+OWKRhSmEt8+v0u7TMc8c8mxJvZtaYtl2WjnHaQ6eTd5J/cRn7Wpalcgtch7k1LbWsH1+CR8z8uBhR2O/Hw5K2PY2Q7kxoP826AH+cioelJ6Ui+yjj4KxxaGgmLvGwRBVbWRTPONhZH0veuMm627mgcpogcFLPYL67XXzseP/TvcqapTrLVLnVdVzY0wJmiawLazfGtT8RcWRyAJsY65gAF/dzbosxJczwYtrslicbADOSAplg8aTCZTdGIzuRKpvMmrHan4Cd8IqZbVZahrq5Bqs4MEwVkqfh57MajM1z3zJk42HpFdaDjNjyYS+Tz6hczzxnXU17l9nLy+TrSCaI5n6KhpUUyukYMeBuOgyMJBBfB4/+MeVIOo1EAgvw7/vpPIiln4TdMxiLPKEYpPdtkfeh018Q8H4O4s/jco07b7kPgAXq2RibJr0WxI+Hlm1PRo+2SMasv3SPJG/W/nJPCDV1GqJYM52v/QGQJnTvGCnF6dx9+33HoFcXSZv+LW2R6KFnD0nbDa9qEckl10hO9m1HTSdFvDUWaa/hVS2SvgTlCewBkq0soLh2HcH2LsJnTpsCYYjOUwrdp+1ge+YdKUZXtzFeT0nya5kKgYOj1LWQLcXSEQfQuLR9MxUtu09PsPQ3A8QjjbIF0d4G7HhXxYEAffy/Ksi40AJqjjzE4RyuwTBg5XVQBMg2SmJzAsiLCO1GhrwMMRon0IVCPorPCcS/+bce8OTr3Hj7r/lyNzf+zgO48XcewFs/5r9+/e9+/sBlc2Hgh/f/imf6mPSslM73P/UrM+u5EKFOnUG2skDPsQMkXafjQkuAviEjSaDecRMap8dQWSkkNcB0z3PXbF56XXeABTZ1grOC+AC8e9dl5gJWBpBlLfdvIiArMua3bnAuStIsRDLp37SCxrNEjeZxk/6e5X1yPlu0qKu2aFGuVbQMaz2BgPJli+RhXJA/HlKONlki6R3uRGSJnSoOkJnlVaZwwf+7Eo3yYzTfszUtuSSDyQB1m9qc1ikyJhZYLlqUN7sSYvxcAazUDefNqqA8lFn1tCxHHqhnSTGcty5sW38oXud0uCA+L79s0PWR7mmRG+LiAUvtlLb+LKQXVRgGugDlBGAzA36y6stvMvlmWkqH5dHcsTzIybg8HCmEIyVmsszgZ1lOV2KobNSyL64fgSvvw8eFt4sLLywVlPRsxy6fi85zNbLVCv0bS/Sug8gNNc+Upuhkl1WtFXRMhtQdzOeDt5ePHUBzkPW/Mub2wxqjQ5Hcs+ke5fFXfIskqVgrv/kinSc2Ic6WwxlZWgbxASLhtJ7YQ/vHPZKzNc9sKpgpVHGA3rXUJV8aclu2RARALiaULfJNi8bA17/8EQDAN//oI+e9eH0hYy6t8+rismLki3QJs/AZtO8PLBBvzGGZ1eqy6DkEdHc0tussF9Yqt4yzgamsiz/LhrGiHT+ruc9seJfhX622ZSLtsvr5O17kOfThQ9JOy4wcuw/+91z2vbzO+2c6FPgYFGsNr9IHQFiGsnwzASnWGsIyddfvMrt5+6aZ9swaYgCfDfb4fwb8mG3Mxn6uHA9vH7P/GaS4EMFMFU6MGNDmfY22hjMGxhyvFJi/s/FBPDL+kvy+WOEa8gIAshzVkRVPNmL6vpgzcc5vuEx8nU2g0gWoReMa7/pawI4x1ZEV6DTCeD2V9rqiFaL5LHlPhNuDl5Roul3dTZI9xsPDle7hscmVDKuTGMMbluT7jdNj6ayZlg8pWpE3ZvSubyHMfdkdZg7wRIXbCl1NSTYbYoY2syRET3OKaUP+AKWYDPL2MavdZcVMdxO40iMq1xivpx4QyoVft0vJHePcsAXUyJM8SZ/ZkeKpa3I6Xezk5fM6eTx1GZzMvpjWwXdNa91gRkbZskbAgO0uYMkjZnTLxMNpte5drdA6RUAXM084KZ6sMsjPYLM1vGUzKB3VSLdDNE/biZ1MqhwmPuCzMV3TJ1o2/XY/7zKWONxkerJKy2BJoMaWbTtunyhlnxkYH6+nHouMjwdf42Evs5J3RjbD61BznrFuPsHSdu45dVm37nXoGkmzSaXbNsvPar5Gv/bob+P9t30SRSuakX7ihJ8BTM6BpuUAZXvNuDNtxi75SJ7PnwPzeN0G6+gzQxKASOUwiO/KwIwPKTTOaJGKc6XOmpsF4q2xR25hPwp+Dqp+hvqp5wCYQn2aQB8+RNtg8mN+fnNOyTI5/Jxxpb1cAo77DJocbgmQxs8O13R3750rWPrOjpfbcXfy+OrFGZPJoqVES5hlCdhInWUJRAPZFFuZPcjAQ9GKcPrnYmEpusxQwI7dbOoIWNYpYIGWYlGL1AJgzRJZYxkAVlZpHGNJHQDYfWIFT/3Tj7yq6+OVxtt/7QH89e9aoOOGTz2AYtF2DbAxZtkEsqtIFuiZD//aOa3jQsbxG+7F6TsO44o/3UKwvUtkI8PMDxZST56Wnxnz58C5xe3qboRvfTN5jpnuWO6IZZmraFhJtx/P0wdXWpA/W1Ii86EK4Oij45cktbGZN+BL3yz+oIfddyxi+bv72H3HouQ+Kq/ReHZfOgG4Q5SDmfWsxz14U9e8PpuHVjEBrMxWZna4y7p3We2A/54rK8Lhyme6ZJdpqU6389PNMfm4ZWt2jGFDUx6LXD8oF9Tl/NQjiYxtfsx/c9eq993Sbs+0ie00a57lKAG/Y6mx5RjImsJpmFMRZLIGtE75nQmcc/M2cO7tdhnI9uX2HLi+Acm+fZ2D91eOddMe5+n37HdqKcq6nVaupI5rms6yndE4kG3n481zAVXOrof3R7wQhlPbkQC9a+k4cpeAKoHlv7HGtyzFo+MAw8Omo6Nri85Jjwocow2SxuHrbvftGut/btn31AWYS7c4n6cr/jLDs3cmOPSYPZ/f/KOP4D13f06ktXbfnJLvw7AWsP19t39apAHdjheA7pHhYfaXoOIFX1tUoCDZqrW/nJXgej0FM/L/H9+847ww8v/FrV+ZM/IvZrARJABh0U9HkCbCQAcgkhEAPGaaC+rzcoK1ldnJOIeb1GCWtc/Vc16vrHO1Te+xVE4aQXdSD8TX7YYY4CL1uwk4eKJeJ/R9WkZM32WzXCekAyAhORWkCX3H1cB2tHBdMzzVz0T+puqmBPx0EtRpiOENSyQjsNYiA7/lWBjzdRqKzIZOI5ILMgAGs/n4PT4XRSsSkMtqyynZPgYu+PMXEsQHgEce+7jHbnj4+58gHwADxvB1o1cXaXLmnKtXymK/mOC9G8KadKR+wpM7wjb1/BkA6H2flTGP8xeuCTEAa6bdaYlJMv/P+uvWbd4UJg3o9qrjgPHNNQMHfPYOrV8ZYDg07XpKWvrGGw0a19IIZMKjPFNRAN7265jaF6fNrDiJjcYQzcxoWCHdrZw20tozEKq6qQDdLojvBoHdlkmtstJnSxvNetofJQaCHC7L2o2zmY4D/nNAp9aczJPhYcZ3VsrYzOvibSs7iZULMma9bNrr7iezusnIiFiQ7vvpXmFaLbVhZwYe45STPG1Y6ck+RM+xecpPzJl5o2OfdUPnzzCoDMsm78IAZq6GqZXPYW1Ja5pl18NsRWYJua+54BAn7WxwBVgjr2hsOw54P+0+0zmP5NqoxQSYjqNjAm7M6avVtmfkLibynbaV6UvouYssp3FVWPb2ngoLLddhvDWWayEstEzkVa69ItmffPU38bVHf1sm7V979LeFPc/fD/ISd9x6P6ZDOgW56O8WIJzxQPUzqFNn5HMPPffgHLyZx+s23C5KtxgMQFry3Qhz8p5xi6M8sRZwZK2Bco0L36Ww6LlzNtjeRXDdMagrDwNHrgA6bXlWRFtDRP0czWcH9N2TewCA7p89iWhrKLlw2UlmiEey3YMx1GCM5hMGgDVzCe7c4zy7/QJ5ZrnzHs5hw0JjcJTBd2XMdgM7JsdWuqCKAymAMEjTPlGifcKfA7EkGB9bwNeE5tenpS2YlV+1tLBRdUQgT53Q8yUcKdFgXnicCp6DcYqVxgjbkyYAYPvp5QsG4h8UOq4Bs90M4hPgVJP2c7PCNV/43Yu2Pa82HnriMxhtkPRsceOVqCcZ1KFVTP7e2xGsraDuD6DPbMscev4cOD9RJxHlCWkCtb1P8/g0QtTP0f5xz+axXeq+oWK9FhNayZNNDvVynenT4177hQw6DgQLqLoEGC7+oIfWE3tYODXE8IYlTA630P3Oi2j/1QnJ36bla4KczHgBGkdUXkPHSrpKuQOTiRKhlwfWXm6mctuJ6QLy0/k8S/Nwd7K7j2FhTWeF1b7FoLCfN4ZDK9XI7wMWjOZxKhr5RQBmx+eLFsAGLMCvIzu+uea6vE1uUUHOkQFc073aY5zbjljKaYtWIJItzTOlyBaFRY3WKbfbs5aOW8mTc0twAZziqdMBq8wxJcZ47RUOZB/MZ3k7XRNcb1/LWaCdu2v5uMf7Cgvb5H3FAL10MJQwxsNkgBuN6XrnbgHvGE39uMdbOgicQhFAy473le0WNp3OqqA5C3W71vJM5OK2KgLbsTDyz+Hij5Tp8qPuEVXUVprOOU+7b05x5Z+U+OYffUR+AGLH/8lXfxPP3pnIdjY2M9z2ASLqMV7XfXqC5mZhMTNDduPOibJJnRdlg03raW737T/8ldc1iO9GVavz8vNGiXNzEziPwQDoXcsfQj3JrByFgzfWWQ66tFuO/I0FTJhdHm4PDIPdsg1c41qAgM/jGx+eZcrzZ5NETGXZDDaAYblOf8dMnMMejeDTcjXuxAAA7YML/icK6MA3tnDkK6ZDCg1pYsF/btdx2nZ0GkHBmsnqJEFs2PLMLi1bIbIkRGyqigyc8QSHjymxSGtUMTGOYsM8SncLYQIBlsVL+0UD5uAorb+KlWgHw1RSFTNjk0tz0wkbMiPwtEqtnniQl3LOgVene38pAP2HTn+BCmL7fajFDl3rfVMAAxBs59D7fehsgq/qL1/07XtDB4P3q8uGGR/JeMDsuTAn4Hnh1NCOIQeNT06odEGYVvUkowlbp03jFZvzpZEjuVF4DHYG5SmBJMawnmp/p21UhtUzuw3xsESBCConlmMVR8Im4aR5YWiBWGHZmP1m7UI26tJJgPBUhmKtYZjVhbCWrISMRpXQd1mTnsYQ+zywTHnWEqTx1QU/YMZZZkK6xuKuZJkc71x7sgu8//z90NFPV4bgL5r6Rm897GXCxuJ94Zq61fanZbPMETG66DXWz6/iACrhiVJtOxFcmRnzqIhHWo6zKmroIqAEMaH2Tw/ML4k1yUk5YBn7alt5ExhVGFMyh6nDkw5qLVbyfe84OmCPTLJGliXk6lwyQ8pl8NMkJJD94sTYNXIE6Hqe1ZT0peNkH9NIOsQ4DmS7A0CS0L3U94kDrv48+8OorARM4WDh1BCTwy0prP/JV38TZwvXlHY6QXe7Bur+ANU+Zfnsy8EdOgAQJCQHgv4Aer9/yYrN85jH+Yw/+epv4r0//1kZF9k8kUEOZuFPe6aIZvUOdUQBQGOzxO6bU7RPlGgaVn6QF56n0J233EfPb9OBy92NQZJITl92OkCH7t3w5BDY2kF14zFaX64RP71Jsjh5SUUB49sVbg+gkhjVqplvACTPwd5a/QFgPJCkSJDlVDAcjMXXCiAjzaZh/wIhwlxbaQsHmAIMEGDG3NXvZyI7lO6arruVBey92RB4HA3ivGu7olxAh8dqVdDzngDJAECA8WEyu433QzFLpO8G4FL6eKMCxhGyUmGn0UQjLpAX0atmv7/amGbKV4sV4q1IgLm8SyBd+wVikA6KBDqucd3vfQ66ofHML/36q17HhY4f/bNfwR3/2/2Uzyx2gDxH83snAZhc8R03IHzm9BzEP4+hv/sDqOuvlVwh2M4Rm/xhcPMhtH/ck7yR88TG6TGGV7WQ7hUYHE0FJJ2WKZyO4zfci+KOwx5rvWiR0Xfv+pbR9CZD28Gbumj/uEed+buFjB8AsPy/P4nee6/3Ojz3b+qi++TQkRvU4oUBWCNaDgKVazHL9WUzZ81qXcJONKxmukj5d5U4RBfHiFvY7Y70jZwDAe0Dr/vTZcNzbglQ/utqtZdNZ9tc9n7p/3Zj6fFCxkkxsE0cBnuDgG63e8k9v2zqy/JEZcsy+tkzK93TAu5z3svnK92roPe4E9kllfjHns+L+7db8C5a1pjV7azyjy/l3oA1vQ2HCmrszxu5C4ILuK4Ektki7/Nl05B0HOKPy9SX5Q6B5iZ3mhGRKEusP1ed1Ei3FMZXlVBjkvlh7XreLzZ35g4KOiaBJ5W0MDRzmKJGfEZbE2pz7RdQiEcae2+ii2zlB0Soap+ozprXv/uXHsChUY3mZj7zGdXPoDcaGLdSku8ZaWH5r323wOBojGgMDI9pNE9T506+CHz3wYtX4L5YUSOAxiwO8WqX8VrjU5/6FH77t38bv/zLv4wHH3yQllfX+PjHP44/+IM/wO7uLn72Z38Wv//7v4+bb775nLbzfMRlV7JgZrFr0MOTVMAC8UFGWs2iyW6AKlcb+mzLf3j3i1QwcJhrDz33IB564jM+UMtdAY5ev9WvL2a1qAfjGSYn/++CBh6j8wAAm2UXeP+mixbTyycTR6v/C9BEwmULiqHjWoOYoEkgWnTMVASo8h65er25NqzdkPSgDfjmMusBn/UrchWxBZZUQSBKeBZckpnIFzPuuPV+u/2p1U0GaL+4MwKwx/6umz+K48fu8fTwL6fQ2QQ6m3ia6e7fcxDn4oU6tGqP/Vk8OgALLFSJbeEXE86pbpyDgjsA1GKHpHwc2QwOzww8rxGb5DkeVoYRVJMGX8IVfvtDkwPLdtaxOnDckoIEt9VOs21KmHZCbXT9lAVX9lh7vIbKa8/rA5jV1OfXpsNlWgOQMYtld4BZAJfDldLxfqchgf1Oe/HZxmIZ73PtjSfud4K8FJCW958LGSy70tjMLCidRs54TMty/QeoGBl4rHBtmJbM5s+WKPnMlgIBu7QBvJjdzox4gCYdbrAuJevW0zaYdc02mXkRFrVMmkTjcprN4zJtHPaPy55yP5MtBWYSZ9laYQ7xRXDDNThWeQ1lPuON987zy5O46w+9Ypo7lrr5QFhouT7O1s3h6tzrRM1cH9PBvjPTIP5dyx8SfXvAz5V0NkGwkMp21pMMyHPUW2TCOR//5/GTFH/2H34dVRyg+/QE7RfsfRCPtDDZlOlwImJJKV4xOo2kmwuwY45bJHvksY/jruUP4fjGh+3raWLnCkb+szqyIrlicrKPcHtAr11zFOEzpxGe3CHwLE0QP71JBBwjyVMnkTCjGTiTOUKWS4dy0B9CDcYyVunVRYTbAw/Er9MQe+9cweCoJQVNlhwzXwZJmMUaEQARFjXOvINk6KRLIVFSEPXlI4jJyIAjAz8zHVf7LisfIrOwsE3AD7NmyaMloGdOXANFgLBRYme7jf1RA8NnLm5b/DvueQDhfjjDSGUtZQYDa1NER6xx/b/7BG78nQuvf/9qIzy5Q88K4xNX9wdUfFpIcepvz41uz2dE64cQXX8t+V9xl78h1VSrbcTDCoM3deW5X8UKC6eG1ClXaOxfk6JxRiMa+sSFs0Z/gOamZfOnexXG65F0xHIXYtEiiS3WyS9aEUY3kHNo3WmhXl1G98+fJw36xMqUjTcaIq0DEOFEukYPYNpz1ydL4rgSOhwHyQBlyyFc6R4uzLqdw+y5pRNbfEz3tM0np9naLF0Tu0C2r6/uMr+Zba9jX1t/smrfG13hM91dIsrWO2K7jCnpSOBgcJqXw9vtdjboyHhO5ZYoY+U2aQ7Fx4RAeeuHwMtwj7+aOhfuXKpywP14WJPZbeSD7y47nQ1rdVzLOO6eA/5hYF6OgTNvUIXxyCocFr5zzfM5kjlG5P92g691VQDtExrLf63Qea5G2M0R5AEWtskTYf/NlfUSWLUF2tGGAe63bSEh3dPQib1eR4ci6AQi45k7j6SVHxTO9aZekpzz7T/8FYT5LIHnrps/ivHVizIHX2BJwJFG61SNwdEYOqFtbZyykqgb//llqn3zeNXxrW99C3/wB3+An/qpn/Je/8xnPoPPf/7z+Ff/6l/hW9/6FjY2NnD77bej37/06haXlUY+x7TWNEAPScDRuu+0Ua22Rdvd1TkHKDlWp87Yz8O2D06z/g96n8F+fm9G6odb7QFfl9Zo5YfbA2HzuUk6byuzM7OVBUm4WTveDZa1kQTf6GbzsnW7gWKtIaxUBnNc7V2X6T8NmLs6zMxYdE3xWG4jWw69Sjm/xoY7riZwcrKPcq3lGfww2zY2UheABTCBcze3fa1x2wc+A50Ewnx1DXuFScu6wrATLDYgvevmj74iM9JLHXzNz9n4Fy5uV3dbRizrkLrjBIOAaSLXEXfTsB42T8ile8ew/lwm7e3qbu8csiyZjGdrK6i3dsQTZLqL5H23f1rGhqify/oBYHA0lvZVTmIam5kH3I/WySSPGTqLP+jJGATYBHyavcM6i81NAll4GQBNEng84O1iLXkew8brkUnYtIxV2VLo6bSrokZzsxCg3JW4Aag7icc0d6wVQ1vDog63B/J8YektV4KHx2/WNWbGc726LB1YgD9+CxBkOr14+cVaQ8b+8XpqzE9LZMuxaL2rrCTzQ9N+2z5hC6UMvFSxQrozES8DXs7umxvCDmJjWDrmflKfLQWiswn4STO37AK+Die37pYt+zczY7k4wx4APFHJu7Zg4LKgptk/LpsHgEwwWOaAQSQGqfhY8DWtEzJO43ZtLpLIOXc8Ddzzo9sNkiJ7CY8cN+pOyzvn7LXiFoH5GmBPhZdK9g+K4zcY2TnjF+Qy7l2iw/TYzmPSHMCfx09SvO/2T8s99J67Pyf+MoOjCdK96kDdZx4np4PzYx4/mRHP3jT8vIyf3pTv8DOVt4P9vcSPZntXuu94PKn7A2Lgd1pWt/yao7SN7FvB+YIzxlRHVqQrWK9SWxtr4nNHXeP0WDrJdLuByeEWtt4RY+WHJUaHIuSL1puGwQgpkub2dcB6DNCxs2x0lp0AgOZph91q5NNYh5k/50opTFZpWWv/pcTmuyP5TvMUaQ+HQ4WqpUliJ66B2BRFI42n/4ffejWXxnmJg0xtk14gz6tisQLiGkGjRD2OaHsLJcz8t37sgQPNBa/5w8++Ivb+hY47b7kPwTMnUE+y+bPhJWI61365z6p33ITgmRN0nzMucOQKkq01nhXsK8V5rUs02PopZUkPjqb4dx88uJvj+LF7MHjXUfFA4lj+ixeBLJ/J/W/7wGdQtkJMlpQx9TZdwZ0U22/vSC7lemtwLumy5l35R7fTk4O7Rt0cc9oT6yDjXFqnBZZZ0xywIGrZAEYbNbpPBxhtWOY3fYd+89gUjSzoyprsC9sEyrssb1c3nlnmbNjK4xL7eKgyEO11D7w2Yx3npLy9rj49j6XMtudwx2Bh25vfHMw4ZzCa82w+Ni6Ln/fJPXaAzf2Z/c/eBjzn03GA8Vrgdcq6x5P+Jj187thd2Lbymy4gzx1bksc7PgKuDBH/9iTaSqfry+n2jcYk/TY4Gok+vPusp85y6mBwt5u/PzxG3glJL/CebUkPGFxZY/V7wHgtEGJT+4T2jhN3Tmy/jTo+2s/RscuWFNonSvzZf3h1YzvnLq7nW5WQpv7Nv/UAkh7w2O/79/51v/e5iyozdzGDNfJ//Rt/H+k5auRngwKf/a/+t1elkT8YDPCud70LX/jCF/Av/sW/wDvf+U48+OCDqOsaR44cwT333IPf+I3foOVnGa644gr8y3/5L/GP//E/PqdtPde4LBj5t6u7BbwH7GSUQfyv6i+jzgjMqicZ/d7aoXbU7X0E/aGnIxnkBSXGSSJsNZd54EpRACC5EUcznLsCHt79Ih46/QX6bp77PwCx3BwjXgDU7trPnEk8tc3y5MBlcrL8DIcYap2FMcqyD/L9dgN1GhL7Pq+F8ZfuTDx2JkCgBYNbJEsx65IeD0s0To8F4BocTQz7NhDw3mXBMoif7kwECFS5Jp3OHjFKldEFDg34FvVzpLsFms8OqC34LPt6sWLh1BDpboFoa2hbmmGZUS6wjyw315qdEL4UiO/5PlzicFmb87iwwSZ4wohn/eo8t0bb5hpS/QzxyT3R1Q7y0vO6QJ7L+OJeTzxe3q7uxiPjL1EXhpHWQX9gx64DpKBYj1vl2mmdpfuQJXFIQ9Akd47fBgHOVn9e/pYxaJZ9w8ljNMZMMs/jA2DZ9AzExltj0R0OC410r5LJA09++DVmqlB7MYGlDOaGvYxYT+zjYca0bDkmff8pkB6AGJTVaXhg90GdRNJ5JGHkVgBjopqVqLqpw7KMhBmNLJfxRuXaGA1Hsm/ZcmwlIMw6iC1ZGQNHu00qt8apwvaS40QTAtHoNK83NkthcgGGqW8eTcyUmQ5OxBlIp2NJALvXJiy+CEpk2pRhFzF7i42eeFLCrByW1HGZOoDTllv6Cb9sW6EFqAuyynolsIyUYczTdWrBfD5eJH1kjvdgDH1mG/XWDhXE+sMZfxw6IVS4D3J6fkRbQyrcHNCtwcHFqVcdzMzl7Ta50MO7X5R86SDA4av6y7OeHfOYx+s4fuYXCWRlbdmvf/kjhnkaQhW1TKaZYWgNFEOvO1VkIoelJcBMgfjHb7iXQPyTe/Tsdp/rsMy6h557EA899yAV3k++SM+C7V1k16wgeOYE9Jlt0SZnEB+wXVz6hVPW94o9sEwwiI8897pzo60hGqfHAuLT6zHUYIyw0Fj5YSnP48aW1ZdmQMg1QRweDuT17tMTAtodGT1mR7psVg5hm5pNXtiyY/PS4wUVhxukD50thWJ0qGP6Tus5c+yHCo3TIWCk/YJIE0h+CULY9iAz3mqx8pi6AIBYoy6VgPhcfABwIIgPAGp8WUy56Xm3tkIdnPM4b6G/+wNU+/tUrEsTuueTCK0n9jBZYn+eAL1rF8ifzkja0vgUYPlvtNetyGCx643jdoM/9NyDaH//DLpPDlE0FZa+s4Nv/tFHZtUFTDz6x/fi61/+CBb2NLb+1hLqJEL/phUifziECDe/5G4m1svnCHP64XGFXwOIrDMt5WLlHmc7dj1PKAf8Z03zbMkpPpZA9+lAckkGij3GN8vbMOu+BEmnFJZIMp1HFotOXmh8PNziom5oeU/HtSc15oLNPA66sjac7wpxpXVwIYO7KaiY6nTYcoE0sssvmopk5IpaQHxm8U9WzXGdkjjiYztaVwJO87KmDYVdvxM+ntGIAGySCbIAvnsc+XNs2uwGy/VI0WPs/3bPnZB9TNGXi8WjQ5EUZ1wQv4qZ4ES/u08XyBeBxhmNZJ+OSecp0u3nwoEqSc6N1hFg8z0Vrd/MlyrDwi8bkKJMFQc49FiNhW0qJIwPKSw/nr1qEP/9t33S7IMyXcIao3UlmvqtU/UMiA8Ay399eTxDLmToOjgvPwAVB9yfLDs7FvZP/sk/wd//+38f73//+73Xn376aZw+fRp33HGHvJamKW677TZ84xvfuDAH4VXEZcnIPyiYWRYspAey6T3GvEm0z6YHziDY+WQm88O1znJh3dRJZJk2JvTqorDzqm7qMeYZLAPgsVEBIHZ0O+skRn6kQwCQ0ePt37SCdK8QuRzX0IvZp2Evw/5NXa/KC9CDmD/P4BGz6Zk5K9tv2OtFKxJGfjwsTWISoH2i8Nj8nKSovJZChQuaja5uQ8dKnLsvdtxx6/3CqmXtbJVZ815mWsY/esGaJXfa0O3GSxqL3LX8IQCOCe083hBxZ+ODAuTLZN38Lb+ZoZ/n3rhFvh4mGzL69gz8ciHmXNlT77/tkzKmRP3cK1SxXnC2RLribqcQAGEtul077JPhjmM8QZE2T6PryEkijzcuQ4nHCPEIcdjSAKRrgNctryeBdAmJVrKjh8wGuLyf2cqCbJvL0mRtdD4W/Ll0rxCmJm/H9FjBHVK6k0L1M2FK8rjLBWYAwMkX6Tpw2JrczeAy7FWuvS6NOg3lGHAXA3cgpLuVVxB2gzunmDXlMnCo6GGZJm6SzZMCZukzg4aWCQyO+cm2KqxupSpIN5ILN2cL0T11mPr829Wq5N/M8tQxgUVcdOJzxOdbi66q7XDjYpQFvCI5ptwFo7bNBLw/JMDNvYfXVqDbDXoG9/0JLZ00AuDcTi0+vwBkXcCr6z6749b7CchzPH7mz5R5zOPl49Zf+JzTdk9jk9u1CsAW97jI20nxlW9+TN6/s/FBqCsPo97aOS/33fGND/vEH8Bj7wpj30j7IE38DqA0QXFkCdHWELqTSrcok3rc5yRgu6Fo32uM1snk3GW9uh1z7rg72oDHDnbNbaeLuS4Tlj/PbEyXHUv/0zOBwfJ4X3mgkY6B7KocQaShYo0n//uPnvNxf7Vxw6ceINY9YOV+Rspj6DIjX8UaVS8BiuAltfz/9tfuxYnTy6hLhWd+8Tcu0p7M42LGXcsfIhNsEFknu2YF2zen6D5TCpPdlZFhJj0D4JMl0vpO92q0T+TeHPrVAoXTwd3nbock52dKmNqWJMI5Mgfn6i5zGLDEDTe/59cZzJ9ePi+Dc1h3PTw2Mcsc8Jnmk1U45tP0PzOoywYB8GJ267CxuYOUts0/NmS4anPoYtHpEmpoKS6y5KSOavH6YPmW6eIAs97dHJj3Kd2rZb9H69bjyQX/mZ3PALubK3POzjk3yyFxuGx/9tPi5U+z8905gHtspgu2PHYzAz8a2zGec3N+ze0mKRuUr7vbxR0IfHzcLjF3vTwfaZyxxyFftM+JaGSfUW4n+WidjkVzU4vefP+YwsIWpDsNoG6wtb8KMDwcoHWK5jvtE1qu7Xio0f7+GTz0xGdw/IZ7qTt3exe9915Px2BYYXA0xrf/8JX7n9z2gc+gd20s1/HS4wUe/eN7X/H3f5KDGfkf+fr/6bww8j/3nv915vX77rsP//yf//OZ1//tv/23+MQnPoFvfetbWFhYwN/9u39XGPnf+MY38J73vAcnTpzAkSNH5Dv/6B/9Izz77LN45JFHzmlbzzUuDd3hHIJBfPntGLoBsGz5LD+rjMiFkBZhxv/t6m6oSYagP0Bw5Aoxx3W1rhnIVlkJbba7ihUUG98CM7I4rJWvUzKW9ViFnVR07VWhMVmKoOMAjc3SVPzJ9E+ZNlwezPk3maawXE6MbCn0HhycfDDjls37mpsu4FQDdhfNPtQoWgBgzbN434u1BuKtMYqW8vTaLmbcdfNHgQ4VU2CKKgCgkwTp9oBaog2YKCZnxgQ5OIihaeJ2dTfCxUUEnTbuWv4Qqv39uZzN6yReTSvtQaGzCUIuMroTdGbb7fdFcqfOyCgPaULXmpFnkcgJ/H81BsXT8j4AgCNX2Bb/NJQxB4BIfUT9XGSv0r1qRuKLWfIq18AQopvfOD02RqwxXNNW929O1nlM4aQ9En1iZv4HCDnRNsa1PAbGw9JoizvdCoCMH9lS6LX2cgjozuz8QiNLQmRLBGhwwYCLqwy2uvsfFhrZyoL3Gm9XuZ6i7XTvcMTDCtlSjMaz+3Lsg7w0DK141qQc/gRPZSVSNrm9uu0Ytdo2Z54gxMMSulAyFvOxlG01EwIax63ZWLpbIjWFEDI4tt9Z2KNniSqUNyFjUEwnkaf1aSeEpjAjgBAxi8qGlXZI9yr6TGLNy+j7NKFIerbllSdrzLoC6H2rA+secyqa5Ec6cs2w1wwAMX3mYlnVTX3pOsOu16uLCPqDc9IPfvj7n8DxY/cgSGKUay2orMTXHv1t3HnLfa94Ge+7/dOUoGU2p2Ew8VzHqXnM4yc57rj1fqQr9BxkyTJl5Ca50ByZ510VLyA8i9zV+ZYd4THlzsYHoRY7KDfPgJ9o3FEX9AfA2gq96MjxccQn96hwnEYIswp1EmPwpq4H5iw+k4mMJksNVYZRSOw/9zkNYGRZuAyaLP9NjeFhKyHR2iOgI48JfGCpOwblBkd9c/Tusxo7b/X1k6nbKzDsdpKpKBs1VBQggv1cNgpRxwpV7+LPDa7/3c9DX5UhbRbIeil1BsQKFUCmvHENNVZoXdnHoLdAIH6socYRrv/dz+PJX/vVA5d7ptdG3YsRrmZnld6Zx6WPc3m2iiSvKfxnS7GYa8bDGst/cRp1EmPvnSvS+dp8dgA1GGP3Z65APNJYfIYkwlwZ3FcC4r/v9k9jcJTGCQaJufuV5uehJxOS7nFx04L3LEGYLYdnXY+7XJfB7QL4HC6I74L1vM50r5IuhYPy93Sv9tZRNigP7D5jJMM27Ouy7H1FY0oRCLAf5AFKBB7gNS274hYjw6GCjul7iMi7I9wPEY1pmWhoFIsV0u1QCpB51wesx2uBGe9sZ4JO7Prc7gUG6Pk7YVF70jks38LymAyIj9aVVzBwVRYYLHf18V1/A7cLV8U21+aiiHTIOobmC9uBBfDNMV//ywLZcugVdPJFcxwMmz5f9H0C7NzFzgs5/3c7fJN92lcmInFhh4vJzPpPekDZUrL93G3GgPz4EBWLdULvvxrgnYO79O66+aNo/7iHwZu6SHcmaDy7/zLftPHen/8sNn8uJi1+IxvKIP577v7cJSO0Xm5RQaE6R8EY/v7zzz/vSeukaTrz2eeffx6//Mu/jK985StYWFg46zKDwM9H6rqeee1SxOuqR0NnEzwy/tKMNA4AT/LGjWnZngsdnACIaW8SHWhY6TL0poNBfNdwFiCWPmCkg9jItuuYzAoQTYNpthyKvA3AUgeBVHrlAVvUAhR5LXVmYJ4szV4m8bCU7dRJYECf2mPxsiTPtOmlLL+bntX89mKGC4C5EeS+ISJLKTCL2m13dCNcXCTgNk0s+3oeb5ioJ5lnpM3x0HMP4pHxl6Tlla8RAB6IX2e5x9p7JSD+QWOcBQZYcqz0jFMBI0Pi/O9J4/Qy73PR1hAqI7CUTUXD7YHXSQRgpgggy3Nad3k9YqZnioQsd+B/T1uplNxP9t1uIYAnDlrMR70um9xOXNI9K7sixyudXW8V22LqQUa6B32P9oeWXyeRsCUBAFku0iuuNA9p4deeRJosh4+VkarJlkPPmMxqrVovlHhYiYQQRzSskO5WwmKnMdxM+OLAsmCmxmTWuk/3KlMwpvOY7NNEq3FGy7OCnx/RcHY5Zcs11mLj11qWne5pkQHiOEhGh8Mytyxoz+F2YrjSSHUSSSFF/CiMPr4c84EjnnqOEeQFvvbobwvL96W6uNyYfrbUWT6XR5vHPF5hfOWbH0Pj2X08+sf3IuxlZryzz4p0r5DOJvaTuvOW+15Voe1c4pHxl6D3+/iq/jJJcTj39oH3OUtrmbxAd1KR4gNobO8+OcShb2xRx9vWmMb7vQI6VmKQ2DxTOsCZC+AFZHo+ZFk90qd2QZH2iRysc0/+NAF6VysMDyvsvFXNjNGb75qdN3BRoHFKofV8iCAPEI2DGfBIlQHirUsnq6OMTE7apXMRNkoEXSO9NlbQDY3+ThNJs0C6OkYQaehuiTqpccOnZk1vr/u9zyHbtmhj3n1dNMLP41XGnY0Pypyv6qYoWgEWn9RonyjxF//mV/HQE5/x5Fjb3z+DIC9RHFmiDsmmwmg9hiqoq7T1/BCdr/3wJdfJuULhkDt0HMi8e/VPnkNjMzOfCQTgZWkcACJxyR2q/J7o4LeoE5aKn4GAtq6pKhvdApTnca7Hsi0cTODh8YcKGpbgUzmg93iNGOyLz2RI9zSiMRUIR4ciTNYsC5x17aNxYGTA7PpY657HGNd3iWW+XJkYS0Kh76kygBor1AnJ6VRNy9AvFrWRDjNjV8vK26iS/ifplFqWz3IzfGwZX2FfkrIF7xiTRBytJxrCy5FZ6sU9bixhqRNb0BE5o9h6VblSlQzM65iLvb4XFRdYozEVUVZ+UGDpxxpJD+hdGyNbUnLOy5bZ96ZfKMm7dtkc6V4lWJQrwcpySFwQkGPiFBXKBnmsuP5dUkgxsm2amf6R1eI/SK7m1YTupHjksY/j61/+CL7yzY+9Ko/EbCmk4k4JtE5pdJ+2B+NsONkbMc6ntE632/V+DgLyv/3tb2NzcxPvfve7EUURoijCo48+it/7vd9DFEW44grqsjp9+rT3vc3NTXnvUsbrRlrn5cLVjauzXAzgGAC7FAy248fuwUPPPYjjN9wrjFvXAA+AyOu4EhUcAuQbgCJzGEYqK8Uod9oYcrRO62i/QA/v8XpqTEAqSdzZtAaAsPdZtoKr8dxyC1D1vrlZYLQeY+k7O2LiW3aSGYNdt7V32kDXBf2ylQXPsDIaVkh3Jl5r84WMu27+KHQnlX1gWQaWLOJiC8tniE5plguzFiBjs4dOf4EMCU33BUsgsUzD3FTq8g1Xtut8tM+7oLpKF6AWOzPs3uPH7vGNcAFrdmfCNbh9Jetzxzo3pLBk1lUcWQJAppx1EqFYa2A64q0x1PY+9OqijFvMZK4NyxiA3C9FKxLgG4AYY+lYSWsjm2YBmCn4ucFjhgu8uPcnB7cdR8MK4/XIY/40Nkmj3tUkZ3b2tOZ9vDX2wHgu3k3r1LNRLnchMMDvyp65RraubItrms3sfN0xRQZjsMufd4u8rhnr5LAtCLvyOu0TuSd5BFiJmaifY3hVSyZormTReKMhMmmDo7Gwdw4yqmUmPp+T0Xp8INuKnzODo7T9zPpiNpEq7GvTExU2sCpbviGWyoHRYWuYJXI7uS0E8DFYOOXL3qjtfRTXrst1ytcA/2ZpOsAYS6eJMG8uVbzv9k9bP5t+Js+QuaTOPOZxfuI9d38OAOXB7e+fQbXaRnhyR4rsd9x6/8XLQ5c/5IH3wUKKYG3Fk9ZhyS+3ey+7ZkXk8VgWrE4ir3g93mhA5bU8L6oEor3MZoFFSwnjkbt4WZqAO6PKBrD23QJ7b47FuNaVqXDNDN1gubS1/1Ji66cisAniZNWwLadMFek7tcju6G5JjPheDMT1RTOKveYPPwvEGmHDEKYcrX7Vc3zOjG5254oBkpg+24gLnNpexMJ3mlj4O1toxAXGRYztF7sIt2JUTY14P4SO67Oy9+dxcYMlr4I0OadOPIDu5/773yr3WvfpWemM99/2SRStCAunhhi8qYtoWKHx7D6GNyxJ/tt8dvCyhf/bPvAZLJwa4pHHPo7jx+5B3R9g7wNvBQB0nxxieFULreeH0Gkk3facz6V7Fdp/dQKDdx31cm3uBHANb3UcYOlvBpKHcr7tAvfT5quAL6UCUKenKzfD/nk8b2BmN3/fzQXd4LFGRxbsdeW5uFDGDHoC5G1XJwcZc9vPiiZ84cuE8escLqDM62aGP2vEs0Ql69cDzrY6xrisvT7tXQLMSu3wZwHf7JbzcO7IKlt2m911u9vMEjbClI8s052PjRsrPyyl87m5WaBohRgdorFwsmaAf0eix+14kGJA7pN3ipZC90m6PsfrqXSVufvtygnxvrHPQdkgLfmiFWCyas+dKgjU5+snGgMbj+69YiLN+Q42tQWA4WFraP1aOgN+koOldf7p//HfnBdpnd/72//xFZnd9vt9PPvss95r//Af/kO85S1vwW/8xm/g5ptvxpEjR/Arv/IruPdeGsvzPMf6+vrc7PZ8Ru20nzOIf6mjfOEEjm98GA898Rk88tjHPUkFgBiyHiMzK8WML+rnBhBXyFYWBPQGCDwLskpY8SzpwCC+joMZpmo8JLYnGQ9aLTF+bxpM0051V8emOm+MLrkIwWzeeFiSrIHZZo5sKZQJRLYcCjhhjShZ35o7A/SM6eSFjIe//wliGhszzbCXITnZR7Q1tEynraG/TSxL0h8YE8QIdZaTNmJ/QNrKBsQHIIxrkTmZx2URZ2Own49wC4Y6mxw4MTjIiOp8rXO6YMmyPszmC3uZac+nST+POWwEKMa2R1bsMrZ3qZ2/3QBOvigAdRUr2x3kgPhuLOxZEF+Y8swENIU8t7WXAWm36MeMeNewMB5WnswMs4hI+sX6APA+swlq1M/lh7XxXXNrMZc1IH7Yy6STQeW1L4djigR1EtHxNSC+LC+3QPw0c981LueOB3fc4W3mAsDCqSHiYemBMgCkg4FBfNbzB6goEQ1pjEtO9qUgUXbYyNwUI0aafBFySrB5WWRobDWm+dhPy/TY99mEWAsLlH7I2JYMD5V0AdjjWCPd06aYAJFhkAmfYV6le7Usmxn+ZKSrke5MxDwS8Jn1UT/3ZHYAiKSS7qQH695fgnj/bZ+UazLcpmcJ0mQO4s9jHucxGpsZun/+PFpP7KE4soRweyDP5Dtvue+igfgAde+qxQ4eGX8Jj4y/ZH2/nKJ+sL0r/wd5CfQHSE72vfEsyAuvs0inEUaHIi+354Iqg1KjQ5HHls2WQ2GIlg1jCmmMbnduYoDP3/4DjdEL+h7rRpPOt31dFY6BuaONT0BMIBrXGIUE4gMIGgd3+l2IaD0VAYVCtZ2iGkdY/XpChraFIrPLhtPNF2sMerYdvxEVWOqOoH5uDwBJ6uxst6F6Ee3bSHks4Hlcmjh+7B77T6cNfeMx6P3+OS/34d0vovO1HyLdrbD+jb0D9a/ZN4lBfICIBNlSaDou1SsCHZt/9Yx87qHnHsTDu1+U/Io7+IdXsRyvz9nUsUJ244bVxDfdp977S6HgBNtv72B0dRu9a2PzviOhk1jzVdE7n9JcByDmodwRFEpnpv2bIyxqA7RbwJmLf4AF8YlNXou8DQH/xKZndn40tv5KrOnOjHHAgvh23/l37cnI8HqnPZxcEN/9PgPJZcsA9iXtQzSVbpYtX66Gj5/b2QD4QDhJiprj7XRDuEC6u/yDCq2yP1NeVMzOZ2A8GlNBp30iJ5WFWMn1VLaoyDtZpb9HGxBQnXN+7tBd2GMfrVq8zYZXtQyZlXCr5pkS8bDGeI32j5n8YVGbLgN/u8drgewrn2M+DulejdYpmlNcKhAfsB4GRVNhsmp84kb65b/4Bg0NdV5+Xml0Oh287W1v835arRZWV1fxtre9DUEQ4J577sEnP/lJ/Pt//+/xve99D7/4i7+IZrOJf/AP/sEFPBKvLH5iGPkuMOcCWWd7/WLFXcsfkir/nbfch0ce+zjuvOU+YbkyIxxw5WgqYQ+ONxrCOnVZqswiZVkANlhknWsOlddSPecqqsu6Z6PEbCmUCimb0AAWrImHWgbeeFgh3hpjcrgl2+RW8ZlRwFr7C3vaM8hxjS65ostsIGb1vxpDwPMRfE5cRn21Sgxm0VVmuROeYLm+DEki7GUAnkGZa5w4B2QufbjdOXc2PggAwsa/0OOFu+7jGx+211BK3gvuNTV9vZytq4g7Cpi9f1BHAABi5Dt+HS57D7Dsb9cQtOqmiH/0AurVZSngueZ6ADzjbmbnswZxWGiM1mNPF9+V8JosKZNw2eIif4+7lHhcA3xmvso1xuupGPhxtJ63WbLqZ2JsOi2hMm1Gyux9NruWgmVeyjKylQUsnBpaXXVAOhfc4PWcbd11EslyD3qdgw0NeRnMytdJgNGhCPFIi+E4ve5PxqZljsJeJuM2AM+0mI0g+fi63RI6VqLHOc3WByBSDMy6sZr8Wlg8/AxhxlXzjC1i8/ODtVdtS7D2nknTLDBeBu8HF1bEwHYwprZ1Z3/S3UI0s3Ws0P5xD0FevqoW2fMdx4/d492XYqrLXTv9gZAV5s+QeczjtQffa3x/caGdc3UkyUXvgLlr+UMIOm3q4OVOXgdorDstMkrnDj4G+6eMcJmtr9sNjK5uGyDfgilsYN44oz1mvtuN5TI/XUNEBkhcRj7rFDPgk/So+JotETDmAnHr36axevPdkRRmuVjgAmGTVVoPFxEmqySdEQ4VFraBv/7di8divO73PkegfawJyDe/g0YpBQYACLoFkiYhTO1GhryI0N9pWkZ/L0G4H0qnAYfulnPj20sQXh5uOqkBQJ/Zlnz5XJn5B4Xb6XPHrfcLQY/nw5wfxcPa08u+7QOfObAgcNfNH0XQH0oR8vgN92L7PRuiO+7mUZxnuUaz095G3Lnp6vMLYcQwpacNXOn7duxwPfhcKR/+HvtqMNnQ93NSHitbOaA1L4vNSkeHZ3XuXXa9LNMA79GIxiMeS1RJ0jjxvvK+z4bWQc65bTDDvnfDNfvm96e7jBgMT/esxA2Py7yNgN0XZmwzs36asT9toAtY6VI2TObgrgAej6e3nRn4vB0s/cOSNe5zALAmvtMGxpMlhckafb/9HM0B2i9k6F27IIoPfH65W4SIQnbuMlqP5brgrm4XR2JjYDa8nTbcLRs1mqcD7/iVDeD7n7r4zPf33f5p7L45NUQoe39wJwVfz6PDmPulmGBG/v/4Z//teWHk/0/v/f+8Ikb+QeGa3QKkh//xj38c//pf/2vs7u7iZ3/2Z/H7v//7eNvb3nZO23k+4ieCkX+5gviAo5cNAnw4SF6hEDDIZZ+STnTksW2YpcogTZ2GBmAuLcCW1wLia1MxJf36WpbLy2KjHQCOxI7ytPUqt8prtOy0U7VnjWVODma3NfAeALQcO5jrmB44kzV+sNmOg4sdAmimiego6zQiEC2Z0slPzA9Ppty/p+MA34Z5XNr4qv7ygd4ZDOpfyGAjWsCZKJzt2nkFcdA2f1V/GeHiIknqTHeCyPXtA8auvji/X6ch3YtT5rgueFB2EgH0xcujFTpjiJJxRhXasOfJt6NKKNkrG8wUpORGJ4H5Humb69j6hQB2fODuH54YVIllhvO9y9usUwOo54XZd5LBUYOxvO+OwUFeQG3ve8eIJ10uiF+n4QyI74a7bj627nEGCKznbZKigXmv7CResYVZSzpWwm4pW6HxKvFBfMCeV2b483ZQUdYm0fHQdiYB9nnktlxzFC01w+4qmkpYRqEB7VlPn0F8/o4SIy9/W6NhJR0B7K1CevzaMrkM60sZdg7pPSsB8VVWCtPeDfe4ZMuxLDsaUpHkUoL40yEgvuPHAlAuMQfx5zGPc49ge5dktKbBOmNQf7Hvs4d3v2gLeY6nVt0fQJ/Zpu3lyHPjtRLP5JduNxJJ6syuq3FGiwQDawlb75IakzX6XFhY0ImDQaZoRNIFLL3DutPtE6UUel1WZ2KnPo78hQWXyBTSyvQkPVMwKAlcC4cKVUuLNMXFCh3RMQgijfWvm2dKrFGPI4QjBVXSsWl3Lq92WAABAABJREFUJ8h6KZKowmCcIi9DBJHpUjNmuGy6qRsWJETxEzEFf90FzwHubHwQ9dYOvZgmUFceRvb2Y9CHD533dd55y31C2gOA8JnTkn/xfJj9Kab1sqc75jl2fnoV2+87Jv8/9MRnBCycnr+LBK4Q6mynJZEttHhUuf5RLvNeGbCYc7DpaJ8wXaymYHg2EB+g7h/uPihaxP53g5efLVl5x7CoqQDY4rGlFp17AEh6gbDr5YdleAzwy/eejuhvYvPXqFoaqghQLFbQUY2qqVE1tVcosMfEZ6xPx9m6lioHzKXjbz/DfiQAAdXM0p/2mlKmG1aAdMPuruIAo3UlrHXpduL/cwvaTxcauGDK4y9LEPHzQZniDHtzZUv22sqWQgHxAfru+p+ewvgQ4Vgs18YR5jSXUsZnjX3XRusx2i9kiIeldBWzFFRo7on2iVKugdap2nlG0D40TwcomwSOszb+pQDxadtngejdt2uRqZqD+Jd3/Omf/qmA+AAZ3f7zf/7PcerUKUwmEzz66KOXBYgP/AQw8l8OrL8U2vjTcdfyhwDQRFwtdgT4ZTZo1U1F8iBbiuUhOg2WuCxVAJ6+L2td8/ts9McMTgY6smU7uDDD3mVJhlJlrUXbGqCHOWvsq0ILU5aLAG51nbfbdTLn6iOHqwvHGngrPyhEdoP3VccKredJ3uZCtkbdcev9wkRmpi4DaNHW0LIjDbAijC7eHwPmqe190TUFiOEBQFgec1b+5RV3Nj4InU2g0gXozEqSnM8xQ/w7kmRGUuf4sXsOZtcdwMg/KA6SCIrW7SSEdT+96LRnxp5pxjgA0cR3WX4MTE8X2xhoZ78PHgN43OHPu4AqJ3ejdWr3b5zRwkYCSP6A2fjsAwLAk+iqYoWyFQpDJMwtI5/3ydWfFy17oz/M97lIBZnjwZ4Y3J0DQDp0mCHvdi7Q8aLOKG6bdjWNbeG18Loi3GPNPgR8bgDbKRD1c9HSZ68UliZzO6143CQAnBLkcq0lXQYAZBmuIWzVTY3cUixFHv4cM2lc9r3btcWTLAZ8mCXPTHoAwgJzvVm4+2K6O8AtONvrq8bgaCzPDe7yKpr0jGpuFnJthNsDkTdSgzGq1TbGGw3pOGCmD/9/ENPtYsXxG2jd7KfiBT9vzFhQ7e9f8lxmHvN4Pcedt9wH/M1Tr8hA/mLHnY0PAm+5jvSuzbiALBeWsN7vS2E+cIp8/CwJ8gLFkSWorBRt7PFGw4BkJk/f0573FesHu4DUNHCUL1qW/MI2RPt5dNgaIk5WfQ8TZu2XTYjR4Np/IT3+/jGrv69KoOn4x7FEAsvuHASWlQ1rbsnx1D/9CC5E3Pg7DwA3k9xKWYSklV8owJhgssROuB+iWqwQdnNEcYV8FKPdnaC/05TPN06HyNa0FAcAAHENFAGe+fCvXZDtn8fLx103f3SmczLIi/PmlcPd3sWRpZlO8+MbH8boXdcg3Zmgd73NCcMcHiP/oGDd7aKpRIe9bFEezeQZnq/z3xzMiM+WQ5m7u75VLhsagAfATwP7bjCe4Hb7uBrxtB4LQk8z74umEh39aTyiaAXSGcTjwWiDfmerlfhOJD3HuLbwxw73NZbXSfYtCz0aWR17l8nPn/PZ/1PjkiMVxn/TMcKBGvF0rIMZ7Xo+j/xdLoBw9zLnv5x/87nJlpSnUe/+7YY7xrr7weB965TG8LBCY6tG/1iAznPUhbv3pkgY/N2nC+gkQOP0GKf+dgfRmMbzY3/0LPTqIgZv6qL1/BC961syP4mHlZV+3nOM53cLxE9vQq8uznhGAsCZWxpQBdDcpJx/9y0K7efs/kzWgMkqMfHd58WlAvAB6qDZuSlGNIbIBB36bobB0QSqqJHuVti5KYaOL+12Xm7BjPx//J/+L+eFkf+v/87/+zUz8l9PEb38Ry6/mAavXiohvxyS9Yd3vyjMWbeNV4EMU6MtAy6hDZVrDK5MDWO+EAkdBm+mQ3dSAWhUrtFwTPIA+3B2Ga3M1G+/kDnsVjbBpUGGvufeSLUw6aNh7YH4Og5ESsM17I2HgRQJ0j3bTsRJf3IAWd3KORDrM92l/SjWGnjf7Z+m5W6NXzOof8et9x9YFBBzyX4m+vYW4CwOYD4VFrDPcwuC8udcfdOFVLoy5nH5hDuOXCgQ34s8l6IeA/QPPfcgtcdOXU+vpuAzXYRwwzPRM/JO9eGGTFqirSHJt5jJS7XaFoNNgBiBaB8l9joAjQZg7hUGjNOdCXQaoWhFSHcmqGJrys1McQBGdocnBhV0ERjA2STtuXndtPgWrciRCiOj2aKl0HYKA8xoGq3HSPeIYcRmpnUaesxsYuSXBJoCQJYjSGKojD4Xbg/8Y2fMAwFIMQAAon42U/So01AKf7qT0rLM+QyS2NNrR5p4xQQ32AiXAf0gq6BSLR0G4fYAKaiIERaWMc/AvcpKVDGZoOtEkSdLogBEMknlZbhdC2R8bA2N6XeKeFgiM+MhT6xoIkeTr6KpZJLFLaQs3cYybHTeQvMdeDJLvO0WzCePBp1GGLdST5qHJkBOy3ZRO9I6tL9lJ0G4DQHxkbERvC0saUeb+JKC+MacLkgTYHXZf9N5jrjPjsuBmDCPebye4s5b7qPx/ZnT0JtnLtv755HxlwTAZxDxzsYHhQSiFjsoN89Qod7I5NE40TK+W6kpfBP5pewkaJweozAAocotcLb8+EQk8CZLdgxnhj1gtJ2bJFfAUhUMfnEOryMCno4+OsaLP90gFr4jtcNgWNIDTv+sybHZENKsJ+/6wBezK6s1jbW/CrB7o2XQFmtmvB8rK3kzCnH9736ePrOR4en/4bde0/F/xz0P4LsP+qCKKoDJKIaKNbr/qYndn84RdnPoQgE7CVAEQLNC1QygxgrYbyBraoQjhf44Qro6Rj6KURcxxleVCPdDyqMaGmqsEIwUVr8H4MOvaZPncY5xu7ob0ZVHgU6LujO3ds6L4a0bxVoDURoi7GUC6vP9/dDpL+C9P/9ZD8QHXh7EB6xMbdFUJvetEY/s+5TzaC+/AohMQUztwJnr+8ESuS6AD1gzVQaI46H7nVo691n+RDla8TwW6CJA2SDdepUTuzsaBrJMlnAE4IH504SRyZoF16NRaMYuO04BplDp7FfZABIHxOfPTgP7ViOfQOJobAoIpd9dxPI408UClgXj77Ceu06AcJqt7+jtuxI6OuJlWJ18HZtibMu+Vi1Zhj8AxKNaCinxkCSLx+sRxmu2COIaBAOWqU+a9gFap0iyc7wWY7wWYOVbe4iHHWRLMQZHmbxJXz7yv+/J/Kk6soLxRgPRsDJkIRd3IsLNaD32SEdFK4I6sgLVzxD2AJXSfI/lL5ceL6Sw1NikeYkrAReNgfYLgXSAuft1KeLdv/QAdu8KEZvrKB7SOX7+fSnW/0pj701UzNYxcPg/Zzh+w73nrWj4kxJ1raDrc+tWq8/x+6+neOPs6SWOR8Zfgs4muLPxQQHzkOVGToFAHRrIMjQ3CwNkWSCKH8TMtnfZ+OUaJSHMunTNWQUYSRTCXobGacqeLQBE7HoGV8Lcgv/pXkHgvNHNY1YlmduS/AHpM/smi7xOlkVwAZ94WGPxSY3GVo2FPS0POFXCyG6w1ENppXYMgMZmPNOyCa8mzsbsZwkK3UmtGTGbCLcbVk7HDQdgCbZ3gZMvEujCusZGz9RlRAdpclEkXObx8nFRJ/Tm2nl494seQH/XzR/1PvbQcw/iodNfmGXRv0ywZI8r3SOMvUnmSXwFuWXg10nkjxfMGs9NgSpNqMvELIsBaTabjYelAOfxkJab7kyQ7kzotS37eVmHIxHGrPyyZbU4lWHxs4G2q6Ee5hB9fADGEDwQjX3A3svTwDzte2GNac3/bCgrBtVTwceIZVu85ZmCBx8DX6IolnV4r2W5A8L4n3U/z8at3C3ARQg23rXHU6Px7L58jl/j7wB0zLhAUG/tIHzmtDxD1GAsz6HpY6ATJVJIC3v+hI+fGVa6LZDnB0vpcFeVy9xiJpFdR2Dayktr7m46x6ioY541e5XTkmzleuJhJfseb41lH3S7gbrTInNeZ7JK122FP/nqb+JyCSnkuddElkPv9+X+vVwByHnM43KOOg2x95b2bP52GQZP6I9vfBjHb7iXGPhTuafe7wP9AXWBdtpSZGbyTrYUS86crSx4wJqARInCeJ0+w+aCrJ88be6oikDYmvS//XvpxyXKlmFNuqzSkZWyKBu1kW2ohUnvST+YR07eral40KhRXkVzia131SgWKxSLml4rAqAILIhvok5ICqPdPZjQ8EpiGsSXZY8jVOMIow1A9SLoQkHFGrpbAs0K8Sk6N/G+gjLAfp3UUGOFrJeiLhUQ0/8AyfU0no9ILqipsXtjgFt/4XOvebvn8dqDn6kkbxgj6LTPO+mKc7Gqm+KRxz7ugXbcrRvmpBv+zT/6CJa+s/Mqll1LThQPtSeZyx2b/DkADqvedj26XbJuruSC/+xdZI1W6XW3S9PtvndZ7a7+O2DHlnhYS0d+vkj/83IFuDayXxPDNq/iQMYwNr/l7XGlaWS7W1pY2qynz74d3nEsCMyORkBjy+4jLTfwxik2ohXmOzPvHUCeixYHGejy8WJ5yOmuAa+gaYqaOrGdDVxM4SCZoUCW6b6f7rG3Yi2FU+6WknWY8T7v0nroPAQYr0dI9oEr/+Mp8mA0ahGr38+MLJKRHzZzjOLIErKVBTSfHQgWxH6PrSf2DMnIdukCloCk0wjlWosY+UbmlJUfdBKgsZlJ4WDxBz1h9KvcyLsNbWdZNLq4PirTMVlzJZuA3RupyLD8IyqKLWzRTzQCzUHmJM95nGO8bqR1Lge9+/MVDOQ+Mv4S7mx8EMFCSsCdAX7rJPbMa1n7lyUtmLEIkN4vs+Bd9n66M4HqZ8iPdARMc/X0XTCcpSJc1j+zbC1jP8ToUISFPe0MsEpYshwsceDG4KgBAZ2HDMsh7F+Tyv9hDjGuZLamC8AwA9iV7+FtZQOh1xJ33nIfAEhbl6eV7RhNqsGYDEkBkUdi0KhOIjEwFpmM/tCX4HEkVC6FDus8ZoMZrgdJ1JyvccYF61mLm43sxNTOAHivlgkkjD3nevQkcU6dgd7vC2NfpQtQVx725FsA+CbNhklem2s96LRRd1pegcuVA2ODW2aE87iRnDQt6WstGSsAO4lI9wpkS7FMBtK9Sky33XFveFVLJiDM8ub2XwDSXgz4ptmANQXn7fb21YQrJwNYIJ3HYY6wl5EEzdObVnIny0VWy9XOFwkfPqZuR49rcGySONfolJfFhQg2RedigeudAtjOIV6/u78shcTbHv2Xp+yzpj9Avbos7H+1vS/nOdweyDVSrJnfBpR3zwW3bk+3cLuMIVdrmY2e6PukUe+eRzZfd68T1/yYvlfJNUfLp8KxKxfkFnGKI0vyWX6uXWwz9YOCTTf52eHeeyzJxsFG1vOYxzxePt5/2yepuPc3T71u753jGx9GvbqMh7//CWt868g7crAkgcpKAu4dWUpXA9uVcWA5Swaf0j1q/wcsg5QZqyxlE+SBZbxG9Fq8r7D4ZI3hYdImZgB/5Ye03s13KdGvZo14/puAb7Nb3RrVYiUMewCkQW+MJ1kjXze0yNhwqLGycjVxjXR1jLIIUb+4cE6SO9f84We9/9PVMZKoQl6GyE43ZRujcYBi0W6bKgLouEad1NANjXTV5Bvf7yBbrWb2TUc1Olf20X+hM5fYuQTBc4DjN9xL87skec35+EFxx633A4A3R73tAwTmP/rH9+L9t30SKitf9Rz2fbd/2pOxdE1zyR/Dat1Py92me9WMFCMvg7sopz2MOKdj41TAZ0CzJBez1A/SlefPisSNA+4vbJlioyNzwwB944wWbX9vm5qkzc7LZmZ53rVSMdMyXRxucZJBbnfc42D5Mf585Ewf3H3mv9mI1V02Swu5+a9reOsev7CoBahms/LJqjWf5e4pPqZsYs7LEzPanDwLylaIvTcpYeK78j+0f7bjShXA+l/Sd3bequQ4dZ/VSPcK411WenM/APLsWTg1FFlOdy7iYksupsPmtiypyWQewOJG3JXRfXriSUaP1yMhkRatANlScNZi7MWK48fuwXO/cDXKJsk9LT4eomwAKz8ssfPWSK7PeFjjL/7Nr17Sbb0cg6V1/u+P/ndIzlFaJx8U+H/e9r+8IaR1XheMfH7Qvt4BfID2RWcTTwrDZctyhD2qQFaxsuxEw0RlGQsAhvUYCVOdQR6Rism1ADGAZWgyC1VY51PGuq4Jr8oJqGFdYnedbNDj6uaxYQ7/5sE2zA1gb6r3RStEaCQTWHO5uakl+WB2Pj8ssqUQ4/VIzA3J5DFA2Unw/ts++ZrOB8malJ6hJEDSFe6xqdPQgvaOJIarj80hwNvqIgGBqQVZmSUamKLNPC5tvNSYchC4/1pCGNb9oc/Ad1j3D53+wmuaNKgrDxMomyaoVtvCLJJrdXV5RnZH3mPAd1omJolJ/iVN5DplvfSyk1iWt2GGMwudO4Lc7ha+PxiEBSDGtAAwWXLMS83EgUAHhfF6irKTYLKkPJYJM4iKFjF1AMNKOYBwWXVTr+PA3X/3b04+AcwUOWZC7v2YgFgj4cPm454OP4P4r4UNOvVMYBCfmf9hL5sB8TmkoJBVYnIrjP0k8ZbtHg8uGLB3gDsuWn+UStjwkWG3c7h/2/Zrd+IRgA3TWB+fTYqpa6uUdZF8jhafBcB0pJlrjuSDAqhcG6khLfus2w3vPtBJgLDQCLLqsgDxAYjxNOCfg3nMYx6vPd5/2ycRP72JRx77+Fkl5y73YKaua46uz2z7zPzVRVRHVryurYVTQwHm2AckHlZon8gRFjXpQRsQv/usRuMMjZnDw0bqogQ2Ht3D0Ye20DxF4JGOa6RbCs3TgZjSqpIY6DoixiFrLC9sEbi0+S6F3tUWxK+aBFjXSe0B+mUDGF9Vok5qINZkENusEHQLVGuFAH3FWkks/CJAtVYQM5+PQ0OT1jwgLPhqHCHIA9z8Ww+8puN/3e99DkGjFNZ/0CiRRBVG4wRZLyWGfWmLGuFQSYEhGlOhQndp47PTTWS9FMWiAb1Ku+3hkNj6/Z0p9HAeFy2Elc+d1ybqabm71xjqR88hyCrccev9Mk8NjdEnAMQn914TEY3IDMoDRhnEJzb+rEEud8hr8ZayIL5rSDrtz0c5Wm307Ok1F6xnNjeD2G5HD4PzZdPK17An3tLjBRpntBjYAr7ZKu0T6b/znIEZ3Yw5MLtZjFwdDXsGyXndB+nluyA+r486gxw9eQbzx3x8IBr0nOe6Hau8XFX4/gBuhEUNlVMRNe9auZvGpp2PtU8UwqDn/SETY7ucsuV3KlSx7VDee3MsvgLT/gC8vwvbdhxjyaXJEkm/LGzTsdt7ExEcF04NET+9ieFVLZLIyfxnD+Ek1MFcrDVIInPDXgycr7NqQ3PT+iJOBxG6arRPFKQzv+4XB9ismZ5z9VmP80WNNJHzfvT/FyDdq9E6VWNwlPwFetfWGFzpG8jPYzZ0Deg6OMefS70XFy8uW0Y+g2g/CeD9y4Ww8g0gx5N6ZoMy27VoRTLosSY9V9A5XNPD5GR/BmhmtrgANo5MBQM+Oo0QP72J7MYNMZksWiEGRyPRXAsLjdF6LOY2bFLDLFvANzIsWgrpbuWxBACqOLOhLgC4prr8fWYXjNZpsG+fKAX0s1p+JQZXknZa9+mJMID/7D/8+sHH/Jb7PF1wfvAA8KrMHGx+6YawV0/uCJAq+2EAt2mGLhuHulroAObs/IsQPKa4mvJnY+NznK/x5/jGh4FO27bO33AvkOUz5revNJiJz5MNNuuavu7U9j7q/gDV/j5UukDjzNqK1zkC+Cx0Xh4ztAEIyA1ATFddRgbr47sscNdIdbyeiqYnfV5J8c5lkrBkCmCBY9ZIZwY4d+vwWFK0FMaHLLvv0Lf7wkxkk1gXEPGLbpEHgrNZtXsczmYIzMdIry76XTsc/YE1G3ZYXtw94TKwAYgxrkge5bYgAlBxMd4ae9vgMl8OMiy2+1xIh4bbESAdHGZbuDsB8E3Yo34uCTmfO2bKu8+jhVNDDN5E7Ac252KTKtlmY2jc2MwwXk+t9mniG+IyAyseajSfHZDWrNONxsHdBi4riLuj2AQegCelc8et9yPcHlxSbUrX6BZwzJFfODXz2dcrq3ge87gYwTn0T3IexZKcPE9Af4Ds7cdmOna5aO52r/L8IVsOxRxTR8Bog0wCo7FvUFs27LRwYTsggD4hIIKB+EOP1Thzi2XpH/1PGU79XIq8W0MVAZIeMLyqIlPYqCawPdZQvUjY/Qxu66hGOFKo1gqEjRK6UCRJA6DxVAJV0LLC1QxRXKEsTHdfYQGgYCdBkAeyfbwNLBnEf+u4xpO/djAb8oZPPQB93QhVjx5YQaOEirUY2HLU4whqrKRTgAsT1WIFNVaI95Ww9NVYQXdLpN0MxQst6G4px0AVAcl9XDtBXSrEpxIUh3M884u/gXf/0gP49h/OjRDPZ9y1/CFLojIEi4eee9Drkr9r+UM2R+4PX3OO7sb7bv800h+dlmWxwe5r8Xq79Rc+Jxrh3MnOXZGAnROHhUa2FEu+zGNBthx6PkXMgibSYCj5NxvdAhCzVcDXu3eDDbE5GDBmzXkxxR4DzVNkls0hjPp9C/Qzk53Z5kwkZFLPZM1nuzO7nb09AL8gwB1DvOzRht1G/ty0frzbRZD0jIZ8QhgEQPiFa+bL3QrMrm+eKQXETfdqL8/l47mwp9G7Wsnx7D5TSlcELx+w45gLwic9u886JmZ98zSZ0WbLIYaHFfJFK0E0WfUlgDjyLn032SdpIe7OOvx/9DHeaCDdLcRPTacRsuVYniscLn7Ef/MckXPzdGci8wgdKzQ2M1GeqGJblOI8nzGYIKuwf1N3xph5cDRBY7P0vK7uuPV+jDcaZ8V+LnS8+5cewGQNGN6YY/E79Oxaftwa3WZLpDoxWld47Pfn47sbzMj/h3/63yFpn5sUYj7I8T//3Tkj/5LFTxID/5XEQZP0Oomk0hkW2gOVOfjBzNVMak062LzG1WkGIIOtC1rzwOvG9P9isGK0znSsZtj4BMQE0uoHsLZ14IH4xCawEwY9xcwFnMmIsPRrL8Hg4yOfN8tzNaSn4323f1qqugyiVN1Uug/cY+SFw6B2jTBfDsRnVmvNppcHaKLd2fjgeWOAz+Ps4WnIm+CxhsebA/Xmz0c45/2hJz7ziiYIx4/dg7uWP2R9NUyoQ6vQhw8JyOtKZXnXrQGPGcQHYOWhHJ14z+8hLwgINdf4tI7+9FiishILpw6mQ/C1rwot4wVLcVWJbS9l/UvvuwmNEdzR40ZYkPyWykmui5PSeFjT2OawuBmst/d8ZPfL8QtQ2/veceH7O+xlCLcHnpY8Bxc63BAd/CTxO28OYuVPjQWz3RF07PmcuuD+9Lnn7bPLKnwPFsfrgLfTPfcuiA/YQiZLjam89rRWXSaNKrToYkbDyvod5I6+as5APbdxK7kGCMzXMiHliSYz/+s0nGHt8Pa51366M5FiyvR1ymbpALW5Xy4GU+JP0GnZe3Me85jHK4q7lj8EnU1+okF8gMgewdqKFHzRaSPeGiM+uYdsZYGK5c4YKRJlSSBkIJIxsKza9guBAEFJzzI266RG0gvQfiFA5zmN0WEDyvUCNE6RnMzmz4JkZMwjY/+aFItPalSLFYrFCsMbc6BZWdkbAJ3vJWg9pzzdfR3VCLoFmqcDoFCoxhFUrJF2MwSRFrAq6BaIYtMpbH4nzUJ+h0NFzH4T/D2R72jSa0nvYDbkzb/1AOn4b6fExI816nEkxQIVayTNAvU4ou6BnCR0dET6/NE4QOdHkUgGxfvE0tcNjbBRIuulJLXzfIJ4n7ZVxzWKRVoPQGCc6kW47vc+h923a/zML37+tV4u83i56LQlP35k/CWZhwedNpne5oXIJp5rRP3cmz8+/P1PCIjPBf2D4r0//1m8527fP4Hla7mTnYF7ZidrBw9QpmvRDSZIcLcjAE8bv2gp8xMI0WaypIRwJ4x3Z5rBXT4cOjIs+X0f8FclsPikRvtE4QDQ5j3zfQbbAcvSZ5wgzAnAj0caC1skucPduAyeswxONPJlcqb/d7eRv+eGaOI7+0t69MDgKCkDiBeAObVuUaF5ppT5S7pHXakM4hctKkxocx6oeGqAduMtle4WcsxVQcUPGaNLI4HmaP/XSY32c9wpQOc82TfHgrsO4lo0/OWcFOQDwMeC9fR1TKQtUkJIUa61UHYSkb7RSUAF5ER5+JHKrMJB1M89HKvsJEh3CxQtyv11osz/lMMXrfBAsg5gpDzNfmVLMXbfnKKKA2TLId7781YG7Svf/NglA/E5ojGw/K0EjTPaGDrHVHgbahz6dh/RsML6N/Yu6TZezqGN2e25/rxRYvZuuQzijQLgu/Hw7hctM39tRdiy0ZaVfGBtsmplAa3nhwcOdq52sAvKADDaxwQaxCf3oNsNGWRZGiI2oFZ1ZAUAFwdKxADSPQuwhIVGKK1kMaoleuiT67k1NxSNvqnigqurzwzNeFh5up5S7R0S47f7dCHFC2YbELikMbgyFZYoB5ujHBTM0mUgTwHy260ouwBmncSAYWkwSKQGY2H0M6AUbVlQ0zKdjYb+1g6CNBGmrvy9kAKv0zbwyznc4sgrBebddvw7Gx+EzibnPCbVWY4AU9r4hqXPwcDi7epuhIuLMybJxzc+DCQJtdRfuw4AiJ/eBEAVWd1JEZ/cEyaRO3FgEJ/Z4ezbEPSHlime5wiSxOq/87Y7sjGyvKxCnI2hBmNhkXO48l5WS7EGYEHayRIV8aYNVAHb1pvmlvGtisDc65WMg8owEDlh5rGJQQveTjUYo85jHNR1ILr/eUn7vb1rtqJlzWHl8xb4Dphpz8fDPTZTx949vgKku9I2jt4+T7nEZ8OR/GGvEwb3ebwJtwcWAHakkHTasnI65hy5vh3B9q7IMvE6+bsiE9QfigYzs+4Bnoxw8q1kcll1U9+oPA5kfGcDd4C6KooWM8O0+ZydPLLEmo4V0t2MusSMKVbRiqSNlxioC2g+sXVgx1Sdhoi3xlSo3Rrizlvuk2IqF9JuV3dDpQsHFtSPH7vnvDDyDgwHtK+drgwA52XMmcc8fpLjruUPzZjH/6RHvbUDHLlCjM/5+ZvuTBAP2dOKOqQGRxWWHi+kqE3G5SXipwl82b8mFc1m1lSerJGcwtp/0RgdUvJ+02kSYgmGIA9QrJVAEUCVAXbfDmtCW4QAs+WblbDsJ6sRirUSy9+JiB1v2Ol6HKF/XYV0dUzSNSaSZoHBz2lU2ykCAGURQhcKSbOALhQyA4Dnoxj14RyqRyayOq6F2UtSGTWAwAMbp4OkMwIAClVcA0WA1vMhyp8eiyZ+1axEbqdOagRXTKBeXECQB1h8ssb+9QGy1Qqt50MkPWCyGqBaBKrtFIuPm/mBYfXqbZImyhcDlHmAOiHzWwBonA4xvi7H/vXnxkqcB8Vdyx+S+RYAysWcjmg3yhdOILryKMnzpSHef9snz1mOL8gqjG5Yw3t//rNoPjvAI499HO+7/dMYrcdYnJJyvOPW+zG8ihDsqkVEuVt/4XMCwIdLsWjclwbw1YmCTvj6smQ+nVhfOfrf+BblNs/OlmPP14gZ8IAFswEgS5SAxnKsGpZt7+nlH6ChXzZp7OgfU9i/Xgmg7AH4pV1W+4TG4KhCtkS4QgzqCkh6kA7cwuGiipF35ALX/jaIbr6RynH18/PYfibvwniJUJFOmzmIK0+TLSlZLgPq0djo84+Jre/6QzU3tcjcqIL2hXGPznMhdm8kz4ydm2Is/ZjG6PYLGeJhjN41xuNpr5bt4H3lbQqHln3PZMd4pBGeYhkz6oLKu7RN0baV3GFZtPYJwljKhsKx//kJnPy/3gAAaJ/IPb9EVoEYbzQQDyth7QMQ5j3/zZgNEztdT7TReiwETrSMR5aDa3GHLQA0TtNJLTsJsiQ0x67G4Cht18/84ufxF//mV7379a6bP4qdn16d0aO/9Rc+h2/+0Wv3T3mpaJ4psbcYQRVmf+JAiE2XusDwegmNABoHF9xfzTLeKHFZlCzeaEzk29Xd8uO+Bhi9/K0djy0bZBUxQg0DkQENDgFrAAHxOeo09EAmlzkOEPAyC1jTMlgTDTAV+9xW8Vn/np3MtdHQy5ZDYWAyg1MbLX0dK/uAGWqpTGdLgSe9kO4WHgivE9tyNd1xoJNAHjC8DFsxPvjyZokFy9wkbW/AYdMzwD8Yy6SJz4cHfGW5p0fNrwtQluW0fIeJX0//ntC6zzsDfB4vGQcBZQe9dt7OiyOvcvzYPUBiJVwAmmzc2fggovVDB3soOKArAZiRBxiH2wML4gN2DOHrNT1gUniACasLXgNw2OCWjc7jCoPN5VoLxVqDdBEPuO/IZEsJa4gBfE7q3IKfyyAiHw2elFCXT7Ycez4hpANMbbfp3uxMXcY8o1nv7gNg/EK4ONdpU6EjL8RvgI8HsfjdmY3fxeAVP1if3TDzcdCxP+g1+IUGGf+dMd4dz1U/s+sw28TAP3+Hdfvl+06hYXp/gryQsVC8HfJS2PNly7Zlu2N5FStrxpsoKrbmMAB+RSz9mNg30wa32RIVfquEtJp1bLsx6HpQstzpa0vlVmtWjmeaoDqyIgUJ1x9AxnLnug8XFxEspDNdLy91js5HiCdGp23vzdfipTCPebzB4nZ19088gH+7uhvHb7jXG5cC46sx/bwJsopIPkYeAzAgTxKIz5bKtYyDUT/H8uNjz3uGZSHyru2WLZoEvIRCzLFgmyoChPshAfVDp4u2FwHNCigCBI2SdO8B1KVC9ylAjRX2bzSA9VMJdFRDjRVaz4fIRzGCSEMXCvkoRj6K0fxWE+GIpHaiuCJmfFSR9M4ohOpFIsNTr9hxnUHCskGgOzNYzwbmf/fBXxGgr/F8hM5TIfIukHyjg9bzITpPmc6vgtaroxpL3REVLwDsX0+s1ng/xGTVdgbEWxFUSUWEdK9GvkjHmGR+/G1It0Nc9ZWatrMXIb92Tu45X1Fn+czc66Ax5Kv6y+QRlZcGiFTWbPocQ+U1Rle38Z67P4dsKUaYA/s3dXHHrffj+LF7cNsHPoPxRkO62vn+A2C0wH3WPcnPKgFXY0fukCMelgLas68R59nsc0efs6AzRzQkhrfLnH+pmJay4RAwvaTrns2wuWtGvmNqGsxgj4a0DcxMD4vaY/8T7jC7HTqy9z+/f7YCg6vpr2NgslqbThvy9ghHyvs+f36y6sjaOLALy/3oxB5LF9BXxiOQMZPB0QRVHIjGf+sUSUvuX5PKHIcBe9bHj4Z0jJJ9K11EckE1RoeB8RoVZahbmdbdfVYL+z7pBaL5z7JBPCfLlkJ0n9XkrxZRQSVbig1xUvs+WLFCthQj3S2w++aGzNfKTuKB+G5URhaKvm8LS1Z2laR7eN+LNSqoZSsLJOuzRJLO2VKAwVGF9gnCktgguHctzdcZxFfFbEf3hQLxaZ8Ukn2SNxqvRyKnM495XKi4ZIx8F8R+ozHPWJfb3e+v6i+LTh8A1P0B0GkJ0FIcWZKBLd2ZEAvTRLXa9tqdPBCcQbgsgupnGF+9iNR5j74XAWmE+Ol91KaVcFoHjYEc2/JGjB96YJExStFUTsJfC1jDWskqp4cFs/GbmwVUQQAfg/BFK4Aymmn0v9X8JyDPMgzIDFF5esplK0S4p88K4stx6aRQfYiGMjOWWFObJ0rTmtUC6G/vol5dRpDlUIMxiiNLiLaGs9IY5jzqdgPKBf4ME1/v96kLwwA5b+T74kKGC8Yz4969B/lvZudOm+Qx++/lgu/hYCFFPcmgDpFwZH3NUSAvARBthItApHEeSVFJHVp15FqIqR10zHZPMd/TnYmweoOcgdnIgoJ8vSUJAleXHVYSxn7PFgAOMt5kJjevwwV7iyNL8rmiFaJxeixAeyiTDI3RoQgLe/540DzDxckKRct26oSxbRnm97MlMm5qn8iFRUTMDC2scHcCU7Qiqx2cRlDMNO8PAbOPzCiJ0lDGVGbIB1klEjyAI+HS8c9h0B9YADbPPd8CGPa7gO2Gle92PQTbuwL2y7HvDxCYYgBfG9MmvPIMyHNb5MlyhCd3pKOKGf3SmdAfkDwDyMyNQaE6iRGwOe+U5A7gGwxzwhwPlXgW9K6N0dwMoQoau6lwE8zIIkVbQ6gsRdlqGbZ9JeeNASiAGFfUlkrfD7IKxYY1ZuPWXfZ4keNmrmO+/hr9jLwFsrEUMOokBjptaWnnsbieZGIyiU6bOq1ezvj4XIONh5ME9X4fQZq8bg065zGPCxnHNz6McvPMG0Z286v6ywfmHWowJv+V1WWTpxqvp7QtRc2yFWLlB4UUvzmfdovXCsDqX5OfTHFtLGCWKmwuz5IR2RIZ93GRXTSoxwGSpxKMN0gLX40N6NUzAFQvFkkcXShs31IBzQqL3yHZgdPvqdF5KhQG7dAA8kGkBajv30isfxhwHwD64yZ9pgmSvhkZeblRjKqlxYh3fFiLtE+2WmFhO/SMOA8KVRBrNRoZALUE+tdVpjihgFgj7JZoNnJsv9iFGhNblyU6WKs677rgoULeBUYb5AvQOKXkOBLgGKBKaiw+WeP0z0ZiJlzmKa7/d5+ALhSi5xfwxG/NNZVfS9STzPOhC0C/72x8UDrx+O87Gx8E3nKddBeqrDxQQvFswYW3+pqjMncEgPF6ZJjNNs+pEmLtZisLKK+6ymjWV4YgZzXVdUzz+rCXoVhrYHA0NPrxLI1TiwRi2UmkY1HllAOHiSLw08zpteRz1jwWwIwOvejOO90tXOxjJjfryjPrHvA15zmikWXIb/0ULT9bI4mqhZFlh9N2kWErFzEKKBRNlquJ6L0mzSOmuwRUaWRwmj7bnyNftOa40lFQuuA+MeNRBEi3Q5Hk4eXJ7wYAs25h+sPe08m+OX4J7QtJydC+xCONeEh5Lmv6J/vA4o9oP+ORRljU2Lkpls6BznM1siXbVcTdE61TNUojL8p+JTqm/ew+y6RHuo46z9XoH3M+06XjsPx4Jhr12VKA8VqA3tVrAIzR7Zi0+4tWNCPVpAqjiFDUGB2K0Ha088frpGEfD0sMlkk1gTGi0SEjXWpIPNGwliKUWyzg65o92CLjFbn6/QpRP8eJv9fBwhaw+EyB9/78Z5GCJKmKd65AFTWamwXe+rEHcNVX+vjKNz+Gn/nFz6OKAyw+k3m+Wecrun/2JCb/9Q3muUv72tw8u9TzPGajqgNU9bkx6s/1+6+nuGRlomld6jdaHGSyyQlFtb9Picf2roA90dYQ8ZBMZoOsokTeYe4DNOC5IH6QlyLzwoZ//OBnBk/Uz63zeJqQFnE39YBwlZWmEkvfZe09gFg86Z72quZFKzCtb9rTtl/Y0yLNQEyD0NPQL1pKjG55PQBrfFoQJ3QAPrssumlJN5uMflmK4q6bPzqjQ1h2EgHnWUs76ucC3gEQNr1r9FknkQECE5ElIZC+FFBMIqFWTmL7lj772ZxnwDLy+fc8zl/w+KKzifyc7XMsaaOziQD/oisPAhLcYttBESykMmFQh1atRj3rr8PInhiAkLs46iQmbU7He8FlgNdJTCx4A7bHW2OviwawQK+wwd3rLc+tlEea+Iy+LPcldpzt5LFAry4SmM8SUQbg5mu/aEU0LuS16CiKLA6D8SObmCuT0GnzPidv8dCyjtx7nA20OTFiTVAeNwjMD70kk5khzOTOVhbo2JpCB0v+MJtctxvC3udOAy6cqMHYys2wprmAx6ZIkiYErvSHCPpkuCrdEXwOcLCuPgctN5LxhY55PFNckYLOdGt4TlqszEQHIIbDut2gIk+Wy7XCprAz0R9An9mGPrMNnHwRjWf3EQ+1gPjMlucOLR0Do3WF0aFIJHOIfaRpAlpY5jybXfF3460x4mGJ5mYhGqBkDEa6+1E/JxkdT//Zskxd/xh3/G08u486iRD1cwL+XY+TJLaFkSRBPcmgs4nXaj99f13QyHOoxQ4eOv2FN3ReNI95nC343ngjxcO7X8RdN39U/n/o9Bfw0BOfmZUEMQVcgBi43JnGXbFFKxQikMpK6pxLLcCY7mlhozKrM1tiSQb6Ga8FmKwaEC8CisM5so0S4+tyhCOFIA9INz6qEQ7JCBZNYtAf6g6QNAt0ruwDoPG9f0xh9bEQ/bcZoGZPY/1PY49hLxHTc78uFd505SZuuOY06lIhbJToXDFAOFJQZYCF7QCt55Q10W1oICYNflUG2H9njuFVFW77AMkY3voLvv44hyoCMebcf6fzTGiUouM/6C1It0HzRTKJjMbkO+CZZxopC2bcBnmAyWqNbE2TIW5MDOB0S2H/etbdh3gVVNspVKxnzEXn8crjkfGXiEwDzHhEuZ85fsO9wFuuAwDEJ/dk/sxzwJfSswdojlBfcxT6xmOUs3RSySPTPSajKENC0wKi6ySQTsXRekzSk7ll4ad7FYqWJZ11n56QH1CupXNepyS5qHJN+Z4h6uk0EqKauy7Wa1eFAe+NhnvmEG04PCC8a8Dq2Gq1u4a2iZ3qSBGAxhYL9DNjPhxSEYyXm3drAfT3r1ceuM/zhXRPI1tS0tkCWFY8M+NlPTFJxuSLs9I/fI8l+36RQsdkll21NLKNEjoGso0SebfG8KoKxaJG2QCqFt2T2Wol63S7C1g/Px7WGB5W6B8j0F4nVk6YpHLsMcu7QO864MwtAYaH6biMNuj4MwBfNmjZkzV6bXxIofNcjaQH0sgvaJ9VSSA85eCVdMiu/FBLESPpAavfJ6/EshXixb+VYnSFf7w6z2mRTKY8njAa8gkIMDoUQccE/odFjcHRGOP1lKTbhla+iaWP+bWFPS2YEevf8xyO5o0a+9ekGG80MN5ooOwkGF3dJoB8a4zReoztt3fkGmCMaHA0wt6bIgwPKxRNhdF6DFUAZ95NjDj2Zdu/xs7tz2c8dPoLWNij+Wu6Rx3IX//yR/D1L1+4LoCfNFWTuUb+q4s3zp6+ToKBRhdUYPCIzWldUBAgeQUGoSXxMA9tVyqBQQ2dRp5BIEBMneLI0ozuPoNhZwtVmLaoEQNwtTBRWE6HzLVqaedLdyvEI9+gh5Ma2wLoGNiayci0iS8Z3/pa+/wZBkPff9sn8fD3PzFjbMggPwABgsLtgSRddRLPyCq45rbub5bhmT6m058DfHkTlyUuOvnzuGhxEChQT7IZKR1h8rxEsCwOAF+H010OM7AZvGeGexp64L1si5kI6HbDsuBNy69IPmWGje2MFbyuad1twHSIZLmAwwLiTm0rB7fru4A2/2ZWNICZe7OKFQHkSSCFNx4fAAjTj8cEBv0ZrJ1uxwSsDA8zR9zgggAnm7zdnnl1ElCbJhtcG/8P73g74593LpLYK+jJMh0zNNHQT5OzHk8ARrInmh1juFuCx5HUl+QRYN6VTjKeB9MR9Id+UdIJt7PCk2KCb+LN41E9IT8Rbt2W/TDnq4oVsTVj+3p1wCODJMss0M7dF7xfdL7sBFLHStpp+RlUmtZdt/OC99MtkE0b4epE2eKZIxkkHVYLqb3vzfF0DZIvWLjn9wC93nnMYx5v7PCKwfyaIYhMj9/R1hBhj+YD8bAUrWIea/n5xgXQ8UYDS38zQDwkcCcak47y+KpS5BzyRQKp8kUL6gNAfCoxevjGw6YIhBFaGMPbsEHj8JleG0lUIS9DBJHG5s9oMsMFgMIAXEZyQXcJLEdB4DwM0IciAEYhxmWM072ugOijcQK9kUFHNPcYHtPQDY1irUS8Fcn3XdmdF95Hx2FaYoFMHkmGh2UnMAqlkJA0CwSNEmGjRN2LyQy3S/vIshfM8mUQM+kF6D4FDK4k/wGACgVBbvKZpvZ0r6NxQEWSNU3FkLhGNY48+Y55vLq4Xd19IJlq2heHOyCDvES12pZcqOwkeP9tn0SdxF5hzQ32sJr2kqqTCOVaC/GwQrpXeIQIVWhky7brPBqSpnY80kj3CjROj03uXDk690RMcY1H+XVeN0tvsmce/83B3fLkScRFA5578/J82RiWlWHAOxoZ5nvDf/2gSHqWKb/4pCmymQKW+FmUdK/wMgELzk/W7LKKppL3XYNavn/c+88F1t3OAvd1ZtQfKB9U0FiIWIuRto5qFIuV3L/hSJEcj6NXb3NhOy5I4cM51vGQ5HHyRSs7RPsVSBfAwjYB/c1T9lxIQdWMN1VMrP94pNE6RZ1Uk1Xalt41kdftyrl50iPZHADYfXMDo3XlmwOPSeYnHmrpnFY5+a2M1qmgoooazTNUpFIlFX8XTCdFPKLPcUeYKqhYQBKoJLfJhJ/B0UjmcG60Txjd/aXQ6OmTPPPo6jbiocbiMxkWtiF4Et1L1v9AHzAPkeLB6MKy5MNCe9KwFzLeaASHefgxTw0uYbyURvft6m5iaG/tEIiY51CwQFqd5fJ6sJ0jzC2YFyYRVBo6gEWB9JkdYmQ6hq46UWIEqDJqIbSAdAR+pnEyEBudY4CkLqJhhHhEyUc0pNanNI0QD600Di+fJRAYYEl3zDYUylsHYFj1TjugNczUaPRzMVPRScPot4XSZla0QjS3WNee2goPMit65LGPk+5hmiDcLhACntmkq1PNUjvC4GTApT+g89AfEng7cFaQJmJsK/IbgEjpAPCY38zOn8f5jYMq1QfddyypA9himkoXpEuC5TfOFp6RFgOrDP4z4AqSURHOeKdN9yhfN6Yjho2YxbfBSKPIsgwAL5ruIABWxgZ+f6r4IPqgnRZNLIwxbu2YbgYAgu0c+vAhmfSnO5MZ8LhOYoS9TMB8niRUMclTVSsLRg6LfDS4E4cnKboI0Ni0pqhsnErLqj2DPpVrNDYzVFemoptZCXAPkdViZo/KtZijAjQGFWtGQqefo04iVN0UjWf3ySAYcLSDrQk2jYtGcifLETgyOyzPI0XV/oDOa6dNjK8kgX7hlJiXi3yKU7xR2/uzGuxZbiV+EmvQG/SHZMi9vUtjSH8ApAn0mW2oxQ4th8cjc0G5bPtoqxSmPwAxsgUgzxC+Hvl1d0yKBmPEvN15hHjIHikhtSIbrcuyBVQjahdPd60xcbSViVxPulsgWybDNj43AJyJKhCPajF0p2cTnfN0ZwKdRqK3r7LSGi4bo3buSODCCz8vZmTPzHkGzP3tdkSZ83Bgt8J5jIee+Ayx+OYg/jzmMY8D4iCz7YdOf4E6CN/6ZlRHViQ/cH2fAAvcczct+Y3QMrgjTf3oOTSzo1B5Czs3xejfWKLxfCQsWleqplg0ZucjhWgcIH0+IS3plunGZbPbUYigW4gxbT6KkXTpu0mzAMxr27eQwe3gnTEaX0uhE9LNH29U9H2nYBvux6iTGidOL5NOfrNAWYRoNnIMigUgJoCNJXCCRoli0YD448ga6TYrVACu/93P48lf800Qv/vgr+CaP/wsqmbgLSfYSaBjjayXItyKEY0D1IsajedDATAnaxDd6UnTyo6okoC65oswLH+S19FRTYUKQIw1Acpj4lMJojFIsmisgLHyQMt5vPJg3yls71J+lCYH3lN3LX8IwdqKLe6bubDqZ4gAmQdOk8IAAvGrazbke9PdfJzDAIDKI8lrdaIkH+J7lI1sq1gBnQTx0MjJGFNbVwbWXU+8NZY5LxCJJ8Z4PUU0rERWhwBGI6FlzHQZcAZM5yyUmMcCFqCOxvA16l1AnGV3m7OvMai8sE1sc6Ams+icin8sX+MudxqMz5YCMYsFuOjmf4aNZgFTBIhr7L6d1pMUgadz767HXR7PI6qE7s9gpFAtwhp5g6TD6qRGCaBaK6jYN1LIY7q/3aLG6LCV8gGIiT5aJ6PbohV4XQW8Dcm+370QjzSamwXOvINyWh5L3OOd7lYC2MfDGotP0jnNF8lguGwCzdPU+aQjYOnxQjpAWELp6H+ii7RohehdE5lrQ0n3Bks7NTdpH3i9ANA4Q50SE0OuZDm2bMma49I8kLaxbIUC+BegdVRJiOYmHTg2Z8+S2Po3JLRvLlkoGlMXSZgbZYemPZ6TVWD58QL9YynKBhE72wCKZkO2+0JE9zsvEjF2KcaffPXXL9h6flJDI4A+R2mcudntPC6bqCeZBdp4sp/nBA4xG5MZhP0B6v4AajAmMIjZt1vUcstsc5bVUbnG5HBLgHKAtIdVP0PYyxBvjRH1c08XjSUS4q0xFva00TzTYsAbbQ1F3sdlAHAwOOlG1M8R9jJvHWUnQXKyT6+nkXwmyCqkOxPSPR5SwtPYLNE+UUAVNYE7ZjJTdVPZ1ztvuc9b5103f9QzfPTYsVOgijBXWWqDmbJJQomf42WAzEiY9AckleKaKyWJZbnOgZtLEmcD8TmmpXemz9c0gwcwmpjJFIjvXkusy8066cZQlZnxHPw3t+Myc5snFLqTisSNaJinvBxfGgYwzOspoDhIE1qO07Ejn59kMp7UaSjFPZ1GPjvcrK9Ya8yYa7vsA5bDmTGwbVISS62UlknPeusLp4Yi+cWhshLpboXGZjmzHgBGkqeyBQPHGJXAZ22LDab4wMWSsJcJcJ8f6ZAB+AFMdhk/pxjsZ2PFq8WOBYdZeieJpAVary7a4mCeW7ZYRn+7hVjvt3NNBgupLwfDxRuniCPXC6iDQOR7eLv4mnSeL+4yVboAmOcKAIzXU6icJHMam9ZILTKHJd0lw7V0Z0Ka+GYCzNe3ykpPs5kYPrEH2sRD7bWGA5D2cdf8XCSRjGl7nUQekw6ga0WnkQD73OEiYNfqoi1wHNBFdaGD9fnnxdx5zGMerzS+qr8MnHxR/E/wN09RQdM8nxjk4464shVKkZufrWUrRP633oSqm6JskVa9GisrQ1HCyOXw/6QbnfTs85ykYGoCuoyWPUvqrKwO0G7QM3DQW0BZhDi2smt3Iq6R9VLUvRjjNQK1mqfo9bokVj4A+a2jGkmTNPezXopqHKG/Y5FDYvArhN2cvh/XQLNC0ChRFqEw/Tne+rEHvGN6w6ec/43ufj2OoBuaOgBGoQB1y3+tBKwTyT9Hk1sVxhAzcrXwTRezYw7MZppJLyApnZYWQC8cKcT79PPD++f6+K8l3Hyp2t+3JvNOHD92D83Xktgxky5lvso5DBzSixv68CH6zBSAX6chzbHNeywrCECkbQGgcdp0upq8ihnzbFQNwCPDcWc95z2ANQV1mfqjq9vmu4EwlkWyViRsA8/Q2g2WzuG/mXXObHEXEAcsWD2zHKMpP7iylu6dIA8s+caRuJGiwcgH2l2WPrPXX8qEl0y5aT11UttllxYwnzbk1ZHpxJFxzxyTIgBiLV1AbHBdJzUwChGOFKqm9vbV3WZeft4Fdt5KHQUM4kdjKnBEYwP473N3Ar2uY9LSz5ZiLP24nJEwap6266B5kDXWDYsah76bUbfVyEia5iQDBgCDowrjQwrdpwu0T2iceUeKE38nRdEijyrq2GDTXI3Bm7pE1hpW1AEg0jmh56sAGKPkokYVB5Lfu/NAko2qjZJCLTJThXPt01yjls8XTSUyUNkSzRnjYY3JKnmvDY4qKUpwpwVL6JRNCKGzbM3OIc9n1ElMhbOLwMb/SYwaAYH55/BTv4GA/Dkj/zIN1/xWWMHuBxjEM6BLkK7475mo+wNiGzqA4bQGPoP4mWHRlmstY9xKBlplK6RB1AywMYDicIvaAI2eWbYUo/W8lfVh0KxOrTYns2GZOTkt49M4PcZ4o0Fszd2KWMNPbwJYFNZlnYaULHV8iY3RumU0FEeWyJw3VgJEFivEtn7/bZ8EAKhOivDkUKQkqq51iGcmLwN8AASIcnXFPcmcKW18ALbg0h/M6N+zhMs0cOx2ZEwbIs/j1ccrOX7TnzlIB7+eZMR8norjN9xrwVMHxOcJAcw1q9MIsXuNGAa17qwgyOx9IJPyLAc6qb3e+f2cjLd0J7VsZac4ptNIGP20XnMvd9oIOmSMXXYSkrFpN6iN2GXum21X/QzlGlFyoq0hkOWojqzIOlmLM1uKCQBwJFfQSWQiQoxtStYAm1wCTrt/EpAmaFGjSkKEhW8+na0sEGveSYqqWMk6ACPnEls9RlcCZngVjVX0/UjGvshtge4PESYRisOGhsRdSlOFR88w1USdxKgdU1QeWfXqIrDf97p7uEDC10TYyyzoblj2gBm3OwQ6u6x/Atx37Lr5uuT3ACoImPGJTYpdWaCiS8bccp3ytptrNQQQJDk8UZkkkaJDYzPzxsqiFYl8WjyipL775MS/Lg3YjrWWVxgerbeo1Xy3wnidZR/42oiFhRZtEcM+7GWI8hLlWksYZgAZG8fm2BNonwjb33qtJACcQpe5t+o0JBb/lYeBLBe23vEb7kWQF7jzlvvwyGMfx4WMgwqE85jHPObxUvHw7hdx5y33kTH3C0DwzAnUALQxO8+WY/GQYVZuulug7CTSKVe0QoyuSbH8+BidHwzR3FzB5rsIWGK26MI2MNqojayEFiYtAV8BonGIbKOEKgPU3QIq1sSUH6dIokrY81Fc4akX17DUHSGPKkyeX0LzRQL4hscYCFMi2UMAGhUXFrYDjJMA5VNtAs3iGkGjRF0q1OMIiDW0YcxWY5NTxRqdlRH6O016rQgI3I9rVGsFJhsaP/OLn8df/JtfxfW/+3lUa5X9TBE4n9eoezEZ+hYEsrEGtioJWFrYIoCItafZhFPHVJwYHbbnrWrR9mvQM0uZwgiDmzoGrvraWICn993+adxx6/34yjc/diEvp5/ImDaLPiimGfqshc/zumq1jXC7gN7v+5/b+DD04UOiXS8FMtNBrrKSCAgm/2qcHotmPQCbA8J2gxZrDclXec5N8iTUtV6up0j3CisvaPKpeEimuQAkJ6f8iNY1Xo+EdQ9AGMyARrhHQKhOgHCPinMlAilCJT0L4k9rzZPECxk8M8gshavYAvLRGMCYjKSrppYClnStdA9m+LO8TrNnxyO3gEBgvikQlL75rSqBqkWM/LI5K6GjI2v4ygA6vx+NA9RJgGqRumJ0ocClDjVWBPKbcYL3JxoHcv83tmqM12i8GG3U5r7mQgaQx+RJsvo9CDtfFSQXvPH/fRabd16N9okCC6eG2PpbS2hsZuhdu4BoTLr5DObHQwLLy1aI7p89iXp1GfmRDkbrMbIlhe2bUylQAHSe80UiWjXOaNK3X4+k24GWqY3UDYHxzILna1HHCuluJbKoOo6QL9I+M8u+++QQZSfB7ptTYATDuDfFo8R8PwYam6XM5VzjZcDONRgQZ6mdvTfTtvO8MRpBOkjyLnkERGZaM1kj0/On/inJqEVbQ5SNBk793IWTMh7esIR0t5hRgpjHPC5EzIH810HobCLg0FlrTGdheLMkCAM6HJxIFK1QKv7pbjWjKw1ATHg8sA62yh8WJJVRdhIk/Uy+zyA6A3CuVj8zJt11EThYI4whOtdIE08iQmRHckpyOLmZDpVrMbFkmZ7bPvAZoBVh4dRQwJtp5i1LQTB46jJJPbD+oHA1yc9iqCT7upB6YL4LJjNDfA7iX9xwAXxX9ohjuovi+A33UnFnSos+u2ZFkvggq6RgVScxgu1d20GTEauGwcewRwaldR4jAEQexNXploKSkcg6qIUXwIy2txQWYO8Nfh1coOpD5KVc9nSdRECnRetKI4w3GjQhSazpNUvhiKFeoVG0lDE8ra3+pgH1uVVzOsgnwzHVZk1f0y4MwCtCusspWyEamxkGy6mw+1WuZVLEuv3TTAw+VnU6q2co3gXthhRRpoMBeuDgjqPpMUZkEPgF97riDo5JhtoA6xJJMsMI4+JSneUIEmLy6/2+V3QinxR/m9yxjGXIuGjpXdMcRvYJMOP6cozG6bHpjCpRDkO5FlRee2M9M/l10rATWMcwnXQvA2Hv5IvAwh6MLqz/POJtBWA6srRsD4Y0gaZuDnN8cl9Pn98H7P2l00ik1Q4K3v55zGMe87jcQm3vozqygvodNwDffQLBdccQfPcJqCsPI+4k0LFC75oIhx4bo4Al1QAE5rR/3EO2tGie3S2kewUWtk33UkwSGJNVArQQa4IFRyHqhHXeCUATLfqSgPjROIEuFHIj0slgvi4UBmNafnE4x/5iiHg/RJUQq7+xFWAQadSjEKoMoA0zXhUQPfog0mh+fwGT1RB6I4NqlKjGkWjyV+MIQaTR7k6QxEbfmcE3E2GjRLORY/u4xvX/7hOoFo3mP5T8Xr1yD9tPL4Of1umWEpBetikykjkGsFzYNmD+vjWNZIC/WCu97QhXM+hCYdw1kqWnKDc8+p8yDwTKlmLvOTaPCxNiZpvlCLIcdadF/nRG7lAdWvU+n739GIpWKIx6zvWncwwmxrhdrm5njCWMEds+AuUqnMfqJBDigiqogxEgwFXl1InOuXdYaGAIAfd1EgpphnXBi6ZCmJPJrY4DZEuBYVcHAujryJrYeszyyMptAUbapFUj2g6Epc+seRco94oAJY0n9VhBlcpqwxtT3WnjWMDX4gf87aqTGspIVoVDJTJVVVOLRBZAMpB5tzZ+HnbZXExgCSDez3RLIVujTiA1VohXx8hHMYIrJsB2SmNes5LuHdcUOFsKbAEDdO83no9k26kgSDJDgJU2OvTtPgbvImPmshWiWGsgLGrD8KaxONknLxBsKezeGGD5R8YMfHUZupPKWJHu0fkeHiZpNBmPmsDikzWWvrODnZ9eRbpXId0D9hoRln5cYuunSFotGgHxc4QB7b2ZTGPTPSunw0bqVUzbVMVUyGif0MhWFrBzU4xkH8LWZy9FDjZlD/eIFEYSqb6MpuvnwB0A0ZDkgiarNZZ+FEhRFaDxN180XRem+LT813bsfPj7n8C7f+kB7zvnO/7sP8zldM4ldH0epHXO8fuvp5gD+Zdp3Nn4oAC8t6u7obMJQiOjwO3/9daOZeu/jBlnbeRe6muOeq9zlZUHV2IBUELPsjZhoRHu+YAIg/hUkbWM2PxIR9r+OKk5yFQyyCrRW9NJApVaNgMXDFQ/s+CKA6Yzu4HWb3TUlkNPi40dzIWpmWth9zIbVrHppdOhULQihIlChNwYFcUvC+DL+0YXHwY0C9yOiYUU1f4+wsXZp8ccxL/0wRr5zIy9a/lDZ2XyHD92DwAI01nBgrUuA1hlxkBVukNS62WRk5wGScAYJn+XGMe6kyLcttecB/I7THAxzXWA5CCrrISImSi4QDK/tmC6TXiSUSexvV4NWB2f3COmn5lkiJdGTl01KtWIAdlfnmgULTtxYPa9jm0SZhk91qAoHhEzxG1F5DGDDfvIwCv0Wi2rRAmThbeBintkwKcLAu5dmZ/QJIqid59VqAyDMern0qHkHt9irSGapGw+7hZHeKzj4y9g/ZWHwXskLPysEnmfMKtostgfiu9JncQIrjuGmrfByCe5UU+yGVkd7r6SyI0uv2uImCbSAcJjW53EKNYaSE72PekgKQKvrci+8XXGID7ARZZUirrJyb4H4ANAudbyisRSFG5Z3cuiFaBsEaunSuxzQ2Wld0yloDBVcObrLwJE3z7s2YKyO4EuWhFipyOMGHeDA/VvL1Rwx9UrYQzOYx7zmMd03HnLfZR//MVfI3zrm1G/5TphjaI/QHIyRnISaD2fknF4Qs/E8XoLyphrVt0Ujc0Sg6MxFvZCYWaONog5q0oyX027GWnMG/NXDQBRjQosAROiWCMjWNbGz7ZTYbTno5heG0d2Oc0KiGss/6jGmffnQEmAGzHsaR3pdohiUaN/YynfUbHG6OYJ6e2biOJKNPPzuEI+omf+9gtLUGNFbHcAKMlQVxcKaND3+LMMyAUNDdUosf30MlrPhyibQLGoEY0I7CsbNdovGF+YhpHAMOzlvEs/7C+goxrjDSDeDxHuG+bpFRNEcYUkqtAfN7F6RQ97vSaSXoIr/jLDn3z1N2W/3nP35zBaV3js931j3nmc3zh+7B7U/cHLPo+PH7vH+kz1MkR92zUbOQQGDgbzoy3TsW46CwHKqUNjiAsA6tQZBMkhyrlNfsUAavuE8XwSpj3rjFvQHrBzX+5m1DHrh9dCsFnYsyB+PKytHMtSMGMQGo0JOJ2sWZ18VSpP+oZBfdalpwgEwAcIFM4XCbwuGwHCoTKyXK6Wfo2F7UA04pltz2x/d1muLA57eACzxTIer6q1AuMmy7bUwFaEqqXROGVNXg8y7I33qTCgigDFCy2oKybUbdRVIv9FnToBJqs1kl5A8mCwprRJL4DajoRFv3ejGT/GBPgDkHOy/XYi4bRPFGh+7yT5I+ZXCuGSde67zwJFq0a6VwmOM756EeP1CN2nJyhbITo/IKA+2ae52O6NAZovAoe/MUa2HKN/04ow4otWgMYWMe95+8sWsH+9QtJTaJ/QJldnv5VArjOexxVNhaUf23nb0o/JyFblJLlTQCFbUmhuajSf7cncsn8TzTHaL2TWB8LIaLaeHyJbWfBIYjpRWPlhidGhCL3rTDFpTWPxRwpX/OkWTt2+hnSPzv/wsA/o3vaBzwBHY5EXOt9x/IZ7L+o84icxdK2g63MrXJ/r919P8cbZ09dZMKB4kFknt/e5ci21kW/xNPXhGFw6nxVWgAGvXWasBSFLDzBh0CQelub/ekbvjD/LoFbYI/1pZteT7mAhbE0exF1AJt2ZCLt3GkBnIHOa9Uqay9qAQaEkMmUrpImL2U82wCw7iQCcrgFiPCyFucuAHevje3rm07rnHEbr+KXCfT9YSOeSCpdBHHSPvWQyb8BSV66k6qaYHG4J47uKFTFq0kjaY4OssproSTIj1cPJPeAbndK9U1qdTifc65evWdH1NB0B7mdc3XkGR90OGVp3RJ0DGQPXVlOdwVvAMuOZxZ7uFvI3t+26TPwqgdFWrIRJJMtyWn55uSorafzYHiDIKjmOlqFhH1/EMDJM75wLBkpkv3jd8l4SeAUKnUYWmHbGIxeM1qktmHhGtLk/nk6HW2Rx/xcN/yTymP5SYDCa/J5/hwnRfeUx34wrXDSUYN39s2i+e4Uh99oy3wvWVoymfCzHgPcl3hrL31QgseO2K0kGGOkbliwznxVzW9OhUcVkZBwPa/FekWvYFBFE65/H9IQNtwr6MSwe9nFQg7EUjYOsmrlmAeeemPuWzGMe83gdhTp1hozu33ETFYPTkMbJ647JZ+qEuuh4/B2txyhaAUaHIozXCSwZHKXxvXe1QrrndPkZ/XvVM8b33QxBt0DYzQmgBxB0C1RrBRnNxo5HznYDqgwQb0WeLn3YKElrulnR71ijfyxA9Dx1QG69y+QMYyXrYP391cdC0qmPKw/ET6IK5VNtRHGFjW4PSVSh3Z1gsTlG2M09Jr6OaoRbMepSYTROSKO/9DXrVawRxRVUSTrWOiLZGzaYXNgORP/eZQ5bne9aQPzW8yE6T4XoPgV0nw6wsB0Azzegf9RB/4UO0ucT7PVI+mfpx9oD8QEqdD/2+3N9/AsZx4/dg/KFE6/6e0zOoNzEycVN7lautUROll4vTB5v5r4mt5flrS4TmL+9S0znhExEm5tawFrqovc7brXJcwEIoYLD7aRnmS2Zr5u8nEgxBNy6THeWKylbJFei7KaKzjwtx/5NevRG5uYAHX3Xf4M18gEg71rAXpj9BsTn77mMfbvvtdxz8ppzv6syoLEEAOKaJH2KAFVLm3u69tj+LqhP7H2Y7aoRDhXqFxc8Xw4UVJQQOZ+CQGudWJNbHdvf8UhLEZA/b0lO9vXm904KlhP/6AXjJUaMdyIrEYFpcJSkZ5TxpQKA3rULGBxV2PlpGrDCosbwMDH3ywb5XGVLdH3pJMDWTynpypgskdFx2aIiBMsnRcPKdEwb0tRSiLIVYrxO/ipW416JfFs8rNDc1AiL2p538zm325iZ+UXLyk5xXs64TTykazVbCtHc1BgcJTmfhW2SLus8RQUC3UmlGFMZI+fdt9v74dE/vhcLexdGu/6u5Q/NQfx5XPQI6rq+MGWpeZyXcEHGaamPs0WwkAozk0F/lxHO7H29uoiJ0YR2ZXIAWMkCp/2PQRzXdEenERmSGHZtWGgL8BjGL+CzOT2JHfNatrIg7EsB+o0MiV5dFHkdkbowpj68rQzQkDkQPVSiYUUmvIYRzctneQVOrphpzMsjZuoBxkbc9eCYjErk+YyJ0vEb7gX6gwPNlc4WzNKc6+NfnnF848MijaNXF6W7ZHK4JdddYzMTffeykxgJqIquq23H6M1c2wCsLn6eo15d9k1omVHN15yjwc/scA7taLXzcpltPLOs/gDVNRv0uX7mmbgCmAGXuXPFvd9cXVAO1uBnOS7WVKwSiK4ifdcvBvJr8ZAA/KpLLCYeQ9jDo2iFnva++5uNVj3PDAfwT3cr8fyIh5XtHnLGNN4HHseYjc+6p2Evk/PFx2h89aIA2YBNQsPtgZwTntgNrkzR3CwcebOICpgnd6TLQ4Br45nAskzckTWt1eqGKwulFjue8S0dSLvdItXUHxJ4zx0BeUHGiQ4gLzr3gHSIAPa54EqSAZDtzo90RHaJx2Ped1fDmc8VGxcnJ/ueJBwfFymwOj4Do6vbcu2Ih4MriePcW+61zOdYDcaot3a8At7xY/dIQePVjOHzmMc85nEx445b75e/v/LNj+Gumz8q+QF3yQL0DB2vR8LinCwpNM+QYfl4PcJ4jSQnlh/PcOrnUow3KqBZIXSka3RBQLcuLCOVjSAVa9T3Ek9rXhkWPGAlbfIyRFmEstxqHFlGfLcgVn4RELBu9KVZKiNslKi2UwRdU0zfSdB5iiQ69DvtszGJKozGCeoX7dyJzS91t5Rtt3r8tUgEAdaItmpqpNuhZ8bpsndZ45vfZ53uH/2zWQD+fbd/egasP1u89+c/Cx0rdL/zIgY3H5pLNlziOH7sHsn7XcIaQHNSdQAj3yVyuDKG7m83KtOZq06dEb3z3TenaG46ALwzV3eJa6ydf9A8nhndHLwMJrqw/EnZslJRZdOaqrJW/ugKa8JaNn0Qn//WkfGJaELY7NYs1/7vfofvJU/jfood736OP1u1LCiro9pK3YikDkXnigEGvQUEO4kUBlVpvSnovNXSXXDQ9gBAtlqRue2i6bodK4RDhWhsvQSSfQLy2ydK6JhY5XtvaQtQHhbEpOd5DOMVOglQtJQA+qtfPy3ztDPv7sgxiIYEzltwW4lxbrpHy2YmfNkCVr+fYXA0wfbbqAi59t1iRrJmtE4mvK1TWuSWAFoXQB0CYsJsujnaJ3Ihf/K1xKA8Yy5UKE5QtGh56Z5Gc7Pw5KfqJBIsiolw6c5E5s8sMTVej9DYLIX9H49oWfvXpFjYs+a86Z7G6ffUWHzczFEi4K9/147Ft/yTB6Sg8O0/nBdJL5fo9XpYXFzEf/OV/xvi1sHks1caxTDHf7zj/4X9/X10u93ztIWXZ8yldS7zcM1POVz5DzcOYoMz61fv92cKAWowRlg0vIEYwIw0DsASDxbwYgkadjCn1j4atCeHWwLoM0Cvp8BzwILxKtcC3gn4kuWortkQGYSwaHig28x+GnAxLDRSg5WGpgWLExsG16pYAR2S8wGs9AI/WCQc01r5G7BsfIeVy4CsG1yZ5fNU7e+/JDjPGu18rqeZ4nNg/+IGT4YfeezjVJTJzHWQJmIayyA9JzjpXmFNOE1hiFjihZHMcVZgim2iTc6Fo5Mv0ntJYsF0t3BkdOx1J7UFAPMZd4KgOynp7TudAEFeyvUbJIk15epnlrWd5d71zOAt3YfaA73LToKwV019zmcLxcMKRcsaHYnsjiOxEw+rGf36sGd1RVmLXSdKWjl718ZklnSGtNWZ1TJaj1E0lYD6nBhXcUA+IMZ0KVsKASTGzEkbJd9IzFhVnnpFCt7nOg3FMJaPNW8bF3AAArj1kSUr6ZI0UBjmStEKASNBFA9JTzJO1731uWB00B8CSULn3QHx2WvD/ZvHeWHtux4f/YHoaNriToR6dVFMdd1OAwa92fhbZTSBZSDclVtrntzzOhX47yomSaR0187AGNSPh7YtOB5WnmQPAGQ3bpCpsmNsm+5MSDond6TRYgVAo0CE1C0sGQCfixlBf4jA3CdSZM5Luqemuxb4e/3BS0ptzWMe85jHpQwG7/MjHbz/tk/ia9//BACS3om3xlIUpjyd5BNG60qMxftvVcKwHawCeTfF4pMaOg6RG7AcoxAVy1SMgfR0hLJRo1okZn3SLEQ+J1odIzvdRNAokawWONQdYFzEoo0/6C2g3Z0gH8VSHAgbJS0fIBAfBKQnvQDZmskL4hooFCpEQLNCXSoEkUZ85RD5VgeqAFa79FzbHzXQf7FNwHxUQ5UBGqcUxoc1AXmsvT+OBNyHAfZcqRAAiLZDMox05ERUQTrV8b4SA1yWIFkYESB2UPzJV38T77v90zjzjhTJ/tmBpDtvuQ/xWgNFCxjcfAgAFWy2395BWNT4i3/zq6/pWpnHK4+7bv4ocPJFPLz7Rdxx6/3Q164DcLraU1/WchqUBygPZEKKyLpm4YGfD/IS0RblXcWNVyI+uYeiFaJ9okS2FGLlW3sY3rCEbDnE4g+GKNYor2dySrYUQxUaC6fGRPLZ3qV8L41EeseNKlZo/7gHgAgrg6MJMAzQdMB5NonlwhUbw5YtX4fc22cjM8WgN4P4Vcvce/sh2PGvbPhGuRxuUYDZ8wAQIRANfG+dXSvrVcc0LiDSqMcRgkaJvAxJ2qsXzxQIAYiBdtbQIsUVjdlA12izjwNr0mvke3RUI4hrwJh/87FRBTA6FGHtL/ewf1OX5iioCVj/5gDjjQbaJ3IMjiYIjTTNtG/Yyb9/GI0z2jDhuTigsfkuBSBA9ymSQuKOjcGVNfJuACDEoW/3ZX6nE4X2iRxAgt0b4YH4RSsQ5nr3WS3/p3s16fwnVNjlXN8t+nCBKd0rqKBkiFZC0hoSnqSKGMuP5xitx7KPLklUDcZoPEs5+XijgaKlEBa07TCyPyytky2H0HGAvRtrLP1IiV/EZInnEUTs2vg60D8GLP3YH4dv+8BnkL8jxhV/af0c53F5hUYAfXZH0Fe8jDdKzKV1XodxkBSIGzOAfpLMyi3kOZDls+C1CU5UAHjyHFE/R9jLkO5MyEzWAPhu8EOC9MGDGcCHJXYAmGWYByODkpkDhJn3kpN9ZCsL8h33t7fdObWXxcNS2JbuZ13zXY5we4BoawjVzzzZHleiCHluWNCzUhQPPfEZPPLYxwEQaM8/HA/vfnEOAr0O4+HvfwJqMBZNfDd0GtG1a0BKwEiExAQ0swQVYGWngqxCnZFngmiXM6PeXPPif8H/b++e1aOBPRyQ505RwBSWOgzizjKD3OD7390GwJeUcccCN/ERmZXckeHKLDjLLb2VI3cTFr7ZETE7HPNaZzxgfwFORqdDHTx0GVkWNpByWuYLvwMg/v+z969BklzndSi6cuer3lX9nO6ewTwwGIDgEARBUhBIChcyTRAY+jjEOMc4dgRNh+IeME4Ezw0HJEoIkYxDhmiL5AFFDe+Jc/hHClvXNOPahuWQrmyDIGhaDIoURPFN4jkA5oGZ6UZ3V3e9q/K18/749rdzZ3X1vDAgZ4BaERPdU12VlZWVuXPv9a1vrT6F8EYl2r/EFRgu+no8i8oqkMxQ2Wvv+yAjua0wUtkBMjfm8PP4J09wzZBX/snjpBUkuvVa2+owVJDtOHJju/n4GDGdeq4OPh+3JzPbuyc9nvp2lk2iLI8YbJWTzFUyKzKo4kMQUvFn7DvWxyeUKK4HqtiTnZ9ON8x8Y4Od+2aGn4sght+KMtskP784ToOQskugci0qRaSeY7TEq+vLm6AAUR1V0/F7iimmuJbxtaf+AN75LkQQ4333fBYAIH/yNERvCNGlriVW4bMKMy4D228SKGwCjecjiIjUtgA9XlojtXv6SoG86WOLfN5diWApRjKviraxQNDxUamNEEc2go6PuUOkqAkHLoaRi33VNjyH7p+V2ghhrNSdQwfp0CFFPttjRBbgSsz9PNsfbZdh2PfYxViH6I5uHkG6wLm1GZw9O4fu2ara15QsgooSw2Wpt+83bfhNG9JJtRLX7gsdlhkXU03ySYdISw7lZIK/fCZT74oIGCwD1TMSP/vD38KTXyVP+7s+9EXc+qnjOPrx43q/v/nE7+Fnf/hbqJ/a3YpT9IYIGi7cPil3o7LAy++vorcf6O5/45AUv0zE82XIW/brjhe7ExAp76ucKEXmA5Pn19p20bDh5PkMP7/95lrutTzvsTsBgoPkHR6VBWonR+gfaaj1hSRBiSEg8rcjPbdkgt/cHlvkUjhptm7ZfGcDvZtqJLxrWDoQFSA7Ha+j9jsCevsy6xizG8Uk8tkS58B/6errmYlw6eQ7XljprlX/arejukRYS/V1Rp+DlPxxka5X/qfJdEfqbA67piyFh4621fGcBEGT3sBt29rWR/9UY5vdpjEhKUn9/iIiSyzy86ffi6sCM0/ZKL9sI/VSBPOSOhDKQO1UrNcnvZtqKK1HmHl+CL8VoXYqxuqvVfXa0W8lGCyS8GiwSB7yjLgIDBcERCR1YHbngEDpFaX+V/lSo4aA3yJ/fhEBxfUYzduqaB71Ecy4aB/06feGhdpL1DUOAJVzIeIirY1ElJHhjNopsrTZvtmHHUmMGrR/vL6iNRR3QKsOAzUPj8oCwYxLndRKvMQ5aLwGyKxd3dxaVboWNm73ldUOCbWK63HOqnXu59QlAKjuhIGE9LLQYOlSd1nrJoHvPJrli3QO0cn6zSd+LxcoPsUU1yumivzrBKzGvq/4YQi/gPuKH96VwAGggxMZlu9RQKIKMAQAy/MgugGF/qn2KekJXSllewkm2B0Y/s1BZpkRlR39M6v02nC6HMwj9aQh9W1IkGWDSaqLIM7Uk0qJTL7THr1P1ddBvN/6rw/nPuv77vmsJv9Y+cA/TX9/CqL0shwAbjtUFhKaBK0UtXKTyXzL9wwrID8XjHhs6aP6mHMRRSzM4dj+h/DYmS/t+A4ngdX4wi9ABqNdnzfFawM+/gB1vBzb/1BeBc9FHc+DrBQRlZ2cgoJ8JtNcF4jbj+Gd78JhUt23IVRwKGB6oUdAGOauTQCZv3m3R8pg7gwxCFpZ9WF3M8sd2l6slT+RYVllvicA/XwipfMdJghCWGzfY9hiAXkrK4YVJLoqrO1KQg5FYjseKxeE6/QTJB6HTwltmwMIuIDOFxBhqt8zKtsQrsBwkT5HcYPegz0PtW1PlLUau31LE8kiTGG70KFf3MLKdgNOP9HjmduPtMLe7CSC2jdbea9rUln5nep2ad/RbaPRfFGrVPjzU0Ej2y99LI1g2kng8cFZJJWe6YvPqnyr4FMX1sJctt0wym1Th92yokzZLfE5xrY75ndM28mKuslsQY/tInQgQAp593wr915R2YJvFHR195cap6VHfppcOGEbJRFKVcjJCkFx1YNrWA/pFne1QNBFBnU/saoVGsfDEKmXdZpwlwFZC/UmEvlTS50pppjiesHXlBL//qOfxPvv+oyec77ngS+qwrpEaUNqK46gYWkSbf2drhFmmZHWblsgqsucTYW2rlAKfQCwHJkp7V26V8zO9dDqlNDqkKf0Uq2DE6eWECsrHcuRWYiusrkRQ4cIv4GN9TtJJetuOig3SQEvAdi1UIfbBh0fouNg4YcWvveneXX7wT/+Av0SWXDbtibm3X72Wdy2rfy66f8iAmJkSl0RE9HoDInIDOYS+E0bs8/E2LrV0YUGPl5PfvVjuPuDX8DmW+m+5CxnZP8t/+J4zm5nN4ud+49+EvFKA34rQm+vp8k6Z0D7MZqb+LIpXgWOLX0UcnkBqW/j609+CseOPAyhOm95Dshzu1yGnCLzcxlXvp23GZxgJ8uovdjX80lZ9XUXOqAy6VwBlAH3fAvBDM352INchKm2IGm+pYjaSfYat+F6DqxqBVYYw+5kHbNEuNK8brBA9iRR2cLmOxvasiVxLSJGXQt2C9q+snY6s3JhBT3b8Jj2Ol5k4fn/paiKboYXugquTr0UiZciUvZWfY/U7W7bVp1BqkMmyrzpk7LcYaMjYrLD4vGAkTR9Za1j0VgydNCNSxBDgfIZoa8f6RL5HZSz+Tdb5vDf6XNaGC5TMC6QBQBLj36f+ZlAbz9Qf1EiKpHAq7QR68Jp54CvtkeFPnp9ou1o5n4+xHDRR+VcrLuNRZgd39GcGktUZ4S2LioCgKWem2L+pwmiskDnkAu3nyJ0aO1jRyliWGg8H0F6FoaLPhKPupdnn450RkpcBtBXKv+NRHdx+C0gaLgotIjMT1xLP3ew4MCOUtWdnuruENNGlbugKVg50YKtSLk3MBfD1wwHMLdudlE5p3LXIgk7zApXAK0x7Uhi+2YfruawoLgp5ApBjM4hKgBNce1CphZk+ioV+a/y9dcTpor86wyPD7+irXUuqhIM85LV8XBNhCGsMCJLG6WydDeHmTJUEXFa9YuMxGFiClChhCq8kENXgLynvnQFgtlCTi0pgjinzkyrZaBa0bYeVpBoxXBc9fDNJ35vB4nP23G6IdzNoREmlIWn5J6rbHx4v9i+gj2g9b50e3lSVUEHLyqC6/6jn9zxHD62Jol/OdgtC+FinRhTXB3cP/Og9pDfgTBUllQy1wZph9BKc6cbaqsoU02fs5XSavzJSmgAmXqfwUSjEbyst8l2T8jIejMQlIN3gXyo6biFlg5WVUQuXRuUW5EruinwGJHUfMRVsurhBYO5D8NFXxHyqT5eehvjHTKR1Gr8LLRaKBURdwGlhipE5sYdysYwJvyqO0B3CKguAPrOUhRaUgXwZt+PoyabfIx1OFlvqI+XqXoS3SALs53QXu10QzVhJR9/OnasXLEgPYtU6L6tjz9gZB4YpLhdr8Ou13Pq/FyYeb2aqfHNok+lqM+hXNHSDET2PBrru71cgYJeE+cWodwhRd70iX5MeoLsmSpFJHMV6pIyAhTNDi5Z9SG6AZxuvjussNqnltwg62wxrd+ACZktamzX15WypzLBnSaiN4RotnPXwvh4PWn8n2KKKaa41vG1p/4A1k9OAMiLFNiWLlZBmo3nI+3nzGGMABEgtZey/1uhBauo7oHsLT2wtc2E6Y8fxjb2z25jX7WN2SKlU8pIoDf0MYzdzA9fFQbCgatDb/1aQGG0AwG/SdsXQ4GonqB7YwJZi2Ep+wwAcNwEc3s6eOmff2yy1YxS2/J+OsPMLkMHIpalUuBD/zTBzwtrROrbA4FCk0IXOQjX6dPzDvzZJu75wCM4/2s24iJQPZNCxNnPmWcvzcrBam5rYrhyLoTfilBoSdROU/ApQP75U1w9yOUF7dN9zwceQbTSAEDClHEhBwCtymcrQHNuxN1+WgijRTsZWak7ApUghMVtZNFowY4khos0ly6tk6ii8tQGAM4Woo73YLYAEUrUTmYe5gD0Z2GY1rJR2SJP9DKR8sN5Im8BaNUzz6HZwx3I5tZMMosw89KPS8Ce7wdwBiArrMgCIrKvYQsb6QC2KqJZIY0hbFHDfvUcLuu2ye5LGMG03JVj9wXctp1ZYEUCcWSjUgwQDlwjSDvVhUYO7DaLYF7Hyl3vXDzgjqBMrQ9toWWS+G4/6xqov0jHSXr5Nc3CdzfpNUOgf0OC7n4qJLRudtE86ut1id+KMFgggRir+Z0hfyfZP+mq/elztwO953BBYLDgUMHlZKT/PuLv1yG3hMGCo2yYhLbIkR5th0lzAMp6FEqkmdnq2FGqFfzSYzV/iqBh59ZZJrr7BfrLIpfhwOKuxBWaxE9qtE40t9PbS4UIDmk3Ff2dQwW0D/qUFeBm3yWfn0A+GBkADv3lCIt/u2MXp7iGwET+q/33RsFUkX8dgtX4pn2LSeSYYbc5Ml+RNDnLhW6PlLe+rdUGTjdUfsn13GuzcE2DXGlJTbDZIQ30AE08GOyjz0RM6tvZBIYHdKVeBfI2D9J3ct7Kk/D1Jz8FIAsitYDMnsezEHgu/O1IKxMA5FoimSzjbgEAwMqenXYjzXYu/PDY0kd3uHBZBf+ybRiYoL/UMOMprj4eH35FX1eWQeKn3R79f4wQdLphLmSKfd5ZjW6b5K8qLKWbW4DvQS4v6O2wP3c65tFtvmfa7cGCUVTwPOoYgbIKmavrQFbAzxHzpROb+vwmGxhWIFOIKOdSmMGmGkYoKn9m/jwOoFVIpKhm/3sbxW4IEUCrq6WX5Wj427TYoAmZpUltO5Jq+172PiGNLdy6ycUS9pX3W5w/kGqFPgA0nu2pwF3la2mMPVGZQpKiEuAOyOaHt6HblLcjXTjgfUk9R3vIcxAvQGS+f2rL+D4jHcrKx4aLfw5CfcMtrFJAMncAsBodAORKQy/srDDWKvmc8r5ayZ8vhhKfx3mxb1nnKWhlve9lHUjdPuQKdYjkgmGNz5J6ru7I4M/C5Lu/RZ0BvPi0O4E+NhwIxyiuZQUQKhonOvyXYXrjQx1f7oiwvcxnP2dv5Ns6s6WwSpIcHdzLqFZgQanygy1Y3p5cp42FqfJ+iimmeP3g/qOfxPY/vgN3/G/Hsafgo/a3L+sx2fYEYtiovdhHMFvQytHeXoHZZyTKL/dx8jeq2PvYJuL5sg42f/n9VU2UWKGF4qZAWEsBVyKNBRLlV+85CbaGJQzdCHOFAW7cswkAGMZksdOoDYAa0Bv6iCNbh+cmQ4fU9bGF0pqFuATs+5sY6+909fsmsYV0NtR+/GnHxdJ/LgDHJh+HUx/9HQDAOz5yHINleozVw+z97QwMq7fI0gGeozki+ky1sdcGSmuqi2+eCgJsRTL7DN3P1t7lAkj1c6QLLD/R1N0Sl4Lk4BLsZg9+s63nYIlbp/VMw8bi9yOUfnjqkrc3xcXx+I9+H++757N6HhKVKW+HQ2w5NNrsAkx9OzdPZERlB6XzLQQHZ/VrWI3Pint/a4ThUhHSFSiuBxgu1rD5VgGvTfkKbMNIpD4QrlThbg6pi9EjUd5g0QXKtM4trg0BFLB5u4vCJjDz/BC9owtaAQ1AFQecHOkZF+lakC4V8+wWYKv1PYeZkkhPIJihOV1pgzz7ORybO3iChovRHI0PdmghKZGKnol6r0nXQ1KGVkVLh8h2ayAg3RT9GxOyxAL54SdlyqGIi6nuquFCnHQBRBZSl8afFkqUr6HGJLbQiuq0DYfqijrnIi4CUZ0sw6zQ0sS+iIEothDNxzoLpNC0NCkcF+n1Yc3ShHahlQXGBg0bxfWYnrNSxdKfnUBw235I19cFkPqpAO2DPoqn23oeXD9FYsrt2+sQUYrSqQiVczZKp3vYfGeDii1DIvGH8xZqpyUSj9ZFgwUHhZak7JMZG8OFbFxb+EmguzAKLak6jlOtoC+t0+sAUuVXzkm97qqcDXRGVVR2dGjteKaB2yeff387McKYqTsgLpFFGgfXysiCGasQGJ3jcsal3Jb9KnukDR3OzoIhPoelR8eSOwT4+3FAobqDJbEjcHxqpzPF6w1TRf7rBFbB1/+uBEw2ajUte3UrD+G0Wkbq2whXquQbaBB3ALRFhduXqmJv+FiOKW5NiwZNfCrSaxx2J8A3vvWJSx98lR2KnKtrxWhUVvY/Y9s32yPNVkhWUshKkboDxoshAIWfYrJq89j+hyb6ql8IT8hHdacF/3+KXyzM4w9AB2SmbPkE6EUVdazQZCXnBa8U7NpbnO1quCCgWl0B5Oyc+H1y+RZhmM9pMB4HoFT4mf8lE8Ycupq4Iu+xjkyJnVbLKqtCBX0aJD5nQSQrs8q/UL0HF9qUx7omm4Ps8wM0KePF0Li/eTDjqoknqbjdfpwr5iUuWXvFVU8rkxjU0mtrpZBWgc/YenIJmAUEK2ejlRjKEpmvy9BjLgXgBjNublu558zVdwS9pp6rfdfZ0xSAXrSZBR1W7qe+rT+726ciwnAxK4hoex4gU8nDIPA5iNXzKLzV9/JKfC488TjusULMzQh238t3GAXqfOMCkir4cEdGXPX0Z+IWcP3duEIXaPm8AJCpzZh8V98zFwa4W4RVZe7mUCt0+BizxZK/Td1jZieEFSQIZlxIz9LF6B1KfGOMttgyyChQTTHFFFO8npC+dAa1kyPMPB8gfuuN+vHO4TIGiy6K60F2j1YKSL+lbDNmC6QePdJAMONicKBC964oU4imXoqwRhYF9qZL6npFyIexjTBy0B4UMYhdbA2JXSk6EZonZ3TgbaUYwHETCFdqhT2r9EVMJPvm7a62k6HAzBRpx0XQLGLPYx5OffR3JnbpXghMAjKpR6pf6LBftq+onCWSTsT0N6+TeXpLVz3Wzp7/7T//Xbz0P/k5couJpVd+fR53/uYfXfI+Wj85gcdOPAK50aR7cHMbpRObqDy1gdrJEb71Xx9G5+7DOTHXFK8e3/jWJ+B9/wUSwBhzz+GBurb54/mTOa8ZR2G1j2SuAu+80TXp2+jfUEZvn0/2JktF9PY6GCwKrL67iM4BAekAxU3KbaJ5LXWzU86UxOBABf0jDSTqMX870WKUzuEy2Xl2FFnrZa+NyzapsRczCxVWdgPZteC3KLiUrUt4fc82lGSpk/e4ZwuT+osSWyo0GzA6d0D+89JJdcEAyDIv7AER7kkp4wlSjzzqibwX2pteukSoe211PRrXmm106gCkwOf3JzX/mP1PO/v8vL9czPDaQPUloQsKADCay7p14hKR+TwmSBcYLAqENQqMBWjsYvW4XF6gYOFz1FFTaNGap34qwMa75xVRnnU3106OyE8+zOdLuf1Ud+SIGNh8q1BBuJn6XrpAf1kds5iKLs2jPqKyhc4Bgc4BQVY3rqW/a85MYTJfH9MQiryn8zFxycZnNEeFG7ObIfHyndZBw9UWN0TGs7+9+pwuFw5sJe7K1hPcKTCaywoPJHqiNVziZlkOYV0FL/dpf0KlP127N8biD3Z2vB/88h/ueGyKawtTRf7lYarIvw4hgxEE8iGHpjrzgpYA1Yr2DmYffdMXm9U3slLUClS2utHvz17VYeZ3JqI0p3xlJaX0PP1cIO8jLau+9h/UhLrnku93szdRwfLeez+/q68kqhUin0CTJvIrp+3GZRt25AFVapXkAE2TdCK7IKkJfuk7cDb7OVLssROPkPI/ICLN8kJNqllQdjymt/olwCTtdyPzp7Y6vxiY3RS8SGKPbUt3pRABzgoC4TsIPJcsYCpFrXDPqZwVGastcUz1u+/BQgXx2XNZV8ak7hmD0OVzzBrzOWc43ZB8xFUXjfb1NIn9IISlzld+HgCtvDYtqhh2k0hQvja5oOV0QwjfQQRHe5UnrgDKjiKrYwzLqo20THYyTj/LEgBoYeSeb+lOACq8eTuKhQB0OK1J4PNkNPMXTbSaKALld0QlDmqy9AKIuwM458D0q4/KNAaknqPHwUh9pvECJR8Hhh4/YCjegxBQRVEKEYZRbEj0gs383iwm8Q3LHa0uHyfu+fwIs3FJVoq6UKltl6o+RBdGN0aUP9/UuZ7O1XOdWgAVY9y+yGUg8KJX+g4clQsgffLM55ZZvifw8+xOAFRpws8LR0Atgmv5fJPS6R4GBypwPQH/1BailQZtD6EuqHGru9WkkEWdBaM+DxfSGNxts5sa3/I93Ff88M4C3xRTTDHFNYzHh1/BfXd8OutsUgVo7pRlhSVAVmdR2UHlXKg76Jb/JsC5/4ePxR+o8Pqqj9lnYk0qrd5NxFdUT4AiAFeiOktsYK9TAEpAHNl4aTgPACgqdf6+m9cxjFz0hj48hzzu8XIRlpciLUqIoYC/KbRdhXSB5e8Oce6eIinjHVLkzv0cePKreSud237nOH72h3n1JaPQkojLIkf8MakXFzPfec4LYDKy3EppfhBCq12BvMWFMwSWvr6KI3PHIeupIgMtFJp51erMT9qX9f2ZPxn3zzyIb6hsLgBID+695G1OcWngNcB77/28FisUVvuI5otwN4d67gbQOpM96s117HCpiNLpXiZ4UNvp7RVw+kD7sLKVqhFhPfOUjcq5GHiB5rasfPe3E8RlW3mmu3AHbOmZzV3ZQqXx4y3IKvmsU4GAfmeVNACMGi6R+Cq8WTpEUANAoWmhtE6ZDOyJ77cS9PaSN3rtxZ7ufr/9oeNwlCc5q9NZQQ0ASUkijTMrHM65YHJZ1mJYjkQ6dJB6KYprNkQEDJelDqcFFLnukFe9M7S0kl5EirStkdJfRgIoAmnHBdwUouPACi39emfIQbV58l9E5Ntv5mPw79KhgoJU1kAA2XBF9RR+01bfH/1LyhJ2X0DEoGLGgB7v7XXg9lNsvbkB6QLl1WxtUXvuLOTyAiqugL81Qv8GEpc4/YSKdt4shos+/FaE7dvrsKMU/WXal7BOxZfSGlD725fR+dUbID2gdjLCcNFBcZ2+d/brL26Qd3/ttFRkPynY2wd9bVFqrqVM6Dyy9ZiKBpGEO6BtDOctiChV4s0Ubj/OiZxaNznw2kSuu/1Ud7CrI0zd0KqbnbOx/O0Im2919LgMUJGAuwFESN3UYV3s8MAvvUKEflgHFv/Kxbf/fKfdWv15G0c+dxwnPj75XjHFLx9Tj/zLw1SRfx1iXK2tbTjUvxz5NwlmqKapNmfCSPnGM/j3YLaQ87RnxSsTWpOU90TGpDl1g4mccr/Zy4gmZQfy/rs+o/9+zwdoAvveez8/cVuPnXiEugrmKlqVC0Bb/jBJxopOEcS6A4FbJLWvuLKL0ESmOqb3H/1kptRmP/GxUGHz+bvhcon5qUL/Fw9Wx2tVvO8ZavpIT+ZFQItdobzdk7lMdY9J15n5HgaxbtfzBTOtjB4rCqXKI1/O1XP2T1wgM8lkvnZN5TwVIozZrFLkm0HW/DzzOQBdY0zi33fHp3c8L+d/zkFHrtBKfJ7Euf1U+4ASoU37/tiJR/DYmS9p1f83n/i9nCIl0Z0/sfbKJ/Id2lfS3A9bTRJ5X3jSakepnkSyJyhAxQLpWTpEKS7bOfsXLhDmvg+jCKIV7kZhZbwYYnX7OSUXFwWkR+/N3rg5Rb76N95hMSmg1XxN6rm5zAIgs7AZtw7LbWts/NLdBUE+S4CIe+N8C7LziK8PU0HPr5Ge0GMukN0HWNU/HqYMZMHpDFbr6yKCJy6YOWF+PiuMcmHwu2FHrswUU0wxxXUAK4x19tVouYzhoo+g4eaENTx2Flb7uiuMCuQ26i8qazptdZeiuB7A6SeoP0ekFftJ28UYg6FS+Ls7C9ztQRHNUQlFh+6F4cDFYOghafpEljkpeWUXJcJaqtWyXgdovqWYI9i8joXv/elv4x0fOa63f/tDxxGXkHvMxHce/Rj5Whu3z3HSjlXJIoaeT0RlK/eacTh9oLQuceYfLavX7k4ebL6zAQB43z2fnfj39zzwxd3fSIFJ5vtnHkTtb1/G4z/6/Yu+ZoorB89DWFjA86C46iGaL+aypwBoz/zS6R6Smo/hUhHuyXXYnQC9fT7iItC5kQjouEjkeXHNRm8fWToOFmg+w8pm6Vlw+gnZ3yg/e8548luRmv+SHRYLcIprQyI7+6n2OY/LNoIZG3HZ8A5XBHxSIi/40Rz5kHNhICpbiMoClXMRvvPoxzSJ/46PHM+CXvvZ9rizhclxK7Ry10NSlpBuqoOz044Lu23jpX/+MTzzmd/C/E8ilM8I2H2Rey2HTsdFNWa52T9naMHuCxRfdpC+kremNQNN42Jmx8OdN0DWTcMdOlygY+stK7T0Z3OGwN5vStSfJ6segMj60iuZ77/O06jT49LN7LW8DtBfthA0lPr97QchekMUVinsuLgeKA96idRT47QKck1cC1HZgtcxOoGG9P5r//CAVuKXfn4ec99Z0+N6aSNG9ekt+NsJShu8JiI/ebYEChqWVtpzYPdgUWgVPOdbuf0YTp860aVLr/HayHUEmCQ+d6pLj8bUUUPkMhxc5YOfZYWRQCoqO7rjicdkM/MMIMW+M6TjXNxMdVGJznX6OTEzBUD3RomZ59JpxsgUrxtMFfnXOSaS9mPqTK1M9Dztt5x7brdHZHS1kleOhmHuuRkZL4zKKqneaWAXWo2ryf1OAOkJrQAyTzgrSGCz5UKzrVVD7Hd87MjDsCpF3HfHp4lAU6oH6Tt4/12fyYU0assQ5ekM5UNIAZuJrqizN6Hd7CGZq+hAUitQqfBq+6yWZYU/gFwYrhWE+v0AUrjafMzGjvH9Mw/mlJ/3zzy4k7S9BEzJ/F8sTN98E2yXY5KxDkK4m4n2HtddGWP2OFZXzTiUD386N7PjfbmAoAt0gboOlaWKVa0ghSI9Qzo/zX3RNia9IYWNdjPbqtS3YTcNYjkMs/NSBTeP2wI9ZijAGEzi6+cFia4KS8/TYwVP3GjxYcE21O5m9oUVJLkOHDN4VEQSiUeejihDEfNZ+JK/nVAbapQpDHlC6W+NtMVW4pHXYtCwdQcRFQPYM5J/ZsfSb0UYLvooAppgZ89TvX/Kx5bV7UnNJ794fg53PWxu6e9U9IY6j0P4NFYWuyGGS0XdGcQhrkBd53NYoSLhqxV9bpmEdKo88fX5ovZbj5PdPlywdY8LeG7WQWIUrDiMWVZ9XQSSVQ9SkfLjx4A9/qUn4HW7SD3H8Jq1IdQ9gZ/jdEPEVQ9uP9ZhxtoeKox1BgOp/xPYgJFX4EIEMQrq+yiqvBMqBhnnlDpG2ZeZtwwCdvfGv3/mwRxpcrm5J1NMMcUUv2wMl4r6Puu3IkXkC0CRHVFJwN8mS83i2hCiG6D1tlmt4JWuQOtNFVTOhbo47m+NMBNJhDUfwRxg1SLtc9/dKsGvBVptn3Q8CsktEpnfRhGDoUee+kNHW24w7LYNr2NpewQm3QqbijhUy5Nb/sVxxLekOPyHfwQRWfCUzcVoHjjyueOonGUPayLXqmckUBKonYpVICRb9WThlfyemtz3lLVDk8gvVoOyLzMH3fb2kwK3chYYzWWEnt+SmUXEPD123x2fxjd+9Pu4+4NfgNtPMFh08eRXP4b33/UZtP7epReNp/ej1x7ffOL3cOzIwzr0FoDKXsrWuXxNsP+4gxDe+S6sbh9n7z+Avf+9i2RlFq03VTCctzTx2z6aoPKUo8+ToEH2r3M/61KRoAwAKrzUI7Iyca2celpEtrYp4es8mi0oQQgQ1i0UN1PVyUo/+Tz32sAP/pgUyUc/TkUwr0PPE8rb/Ef/907F8js+chzSy3eaMEFe3JC600BE5G8flCRQSmBvuki4eyeyYLdtHPnX+dwI0yLr8B/+EWRRIp0NkQ4dWMUYYs1HMh8h7TiI6hQ+O/OsVPZC1FV0/m5XFxQAUvgDgL+Z98cHdoagMrg7R0R0TPb/ZQuiN8T5f7CM879mI6nHuOnfRjqgFQBO/Y8N/Z7zP41RPtHCK78+r99rNEcdBSICaqdiPSZz5zbzHpWzAUSQZUeJMM2FGHMHhogk1t+hvPs3LYyo8Qm9t1OHTuWpDd3Z3Hob2X1ycUiocFoMoH30R/MUxFt+2cZojoJ7i+s0v47g5Dqdzf0A6L7idEO9ziIhFPFD2q6srwoIY/Y7DCb/E5c89QtNGl+Lm3y+Z90nUdnSnQeFpqW6FLLv1OtkY/kkFFcFvvenUzX+tYwUgNyRQHn523ijYErkX6dgcpF9tcXCnCYMdxAYIHJwPEwzp/TlQMVqOSMb2cpDvc7tJ5nNhSLqONSFW7ncfkb2s5AlKpOvNYcjpp5DXuIqcBMAkpVZ8uEMbPhKnauV9Yqo0cogdQNlT+TdQqTed89nIT2hrXhMJQxPzgSAxKf3KZ5uw+r2YRskKxND5r6YFiRsPyK6mXKbLTCOHXkY6ebWxEn3RbsmprhmkI4CUuYySaomSOxxLytFTUBa3T6dB90J1xiQFce4uKauNZPsZ+ss/b4mFGlL56WvPexZyUznY6ZK5nBSUyWuiUyDxAeQu47YMmcSia+3bfrqs3WLz4r7RCn7aOJmEu0m3POtC74HQGSCHZKig9QkrOJO4YLU7MX1WAd+6cKFUkuRsp5GIybx7ZDV+lIV/KiFmXz4Xd1m6vaZ8BeAIuizQoeTebIDOkTWPT8EgpAyBnwbdrdP5061ArnRhFiYA4IQotuDXF7QAbFk95WSTVE30EGDVhhn4/mEDg+50YSoV7PAZC4i6qDbLOfA8qmIkFk8kSpfANqaDMjGNh7frDCCC+gFh1Dt4jwWi1DqNmAzQ8XphhChoxcBpNInkt/dHFJIs1Lam5klAJQtUZmKqkbon3nOAdCFW/b6t4yOKStUhWp1H+OFk2kPNQnmmD0lTaaYYorrDannUNdZEMMPYgyXaKx1+lRgFxGRYMGMq5W73f1VzP801vP72t++DPgekjkaU4PZAmxtkebDb9oISgksh8Jq/VqAcOAihEuhkyqIEgAGQw+Om6BUDDEAkMAB6yzZi1pEKmxSqWTDGhFrg2UiaDh4lu1rmFDUVjirKbyOhdK6RHE9mJit9b57PotgxsW3//x3ARCRyYS/+Z6s0iUfaEsTUkzm83uW1rJuQK+TFQ+ka6HQkugcUF2+LrD+7gbe8ZHj+IF6b8bGO6povLCzk2GKXy4eO/EI3nvv5w1bQQqnDZRla/F0G8MDdTj9ROe9WWGElz5yADf+m1X0ji6g8uRJuDccRuVciOZRH0vfaqFyrobaj1ezubjvYXBknvKlynwtSLgDQEbj9pHUmSpdUucD0PNYt08+8SJ00DgXa2sTDgZlT/PKuUzw8NTnMlLzPQ98EW4/wTefyJ+fDFY7s985AKBvYbAHaL5FaPV8DgOb/O/V5/CbNgWQ/s7kY3743/8BknkHdjFG0vGoUwcObWNgw23T9cS2X/S9uNh8qwNnqD5jEYjmY7ibju7sYU97VscDmb8/e/dzRgZbthz6dxTU3Tu6gPbNSrgSWXjhH3uwBwXdTeQ3s/Hj5Q9K3PL/zlNrCz9KsXEHMPdzWoP42xHZiILmqXaHCPxgtoDS+RaE58LZBHD+FT2f7b19L4KGg/6yhdHbRlj4/wk03yIQ/sMWhqdqkE6K5e9GNG9WIjKrGaL2orJXM7iUqExWo34rVfY4lFUQl1R2QJRmGVWeBRFJFFZprUodvi6CBr1usOjC1Up7Enn6WyPYkYfeXh/SIVsy6m7iMTtFb68Hv5Up8hkcwjvqi9w6jAsaxfUYnUOuLtTydzmaAypngOadMU59ZPL5C+TP9ymuTUytdS4PU2ud6xym/QeHHo4HZOYCNFmpWa3QDcKwhmFf6hxhosgdInDszI9Ye0tntjnc/hSVSbGQ+jZEbwh/O8oN1hy6qDsGPCZh6OYXzBaIDFI3nGC2oIkg7YMcxvj6k5/KkTHjLavf+NYndtg+8DY4EHTiMfVcsigKIx38SZ/L0UGPyUoWagmzgGIcMybd7it+GMf2P4T7Zx7E/TMPIh0FF84xmOKagQ6QNshR/TcmQZttFXIb7Wqhw5Dt7o7nPHbmSzmyUPgFWAU/R+Kn1XLuXJSVomGRktm6pJ6TFeL4PX0H0XzRuHaiHSS+iWP7H6JihedqlX7u70fy4XJ83TKxyt7mTJQ7/UST54zEozbMi5H4AC1oojKpkUSU5vzpRUhBsXHZ1hY84UpVtzuz0jsLWLJUgJOFoOGic6iAYMbWY9hwIVN+JK6l9jPr5uEgbG17AxBhrkJhU8/RCnwrSGA3eztttsIsVFYH4QZ5SyQg6wCwuiqng8eXsTBXq+DvIPHTalmfM7kA5iBUVkpZBxOP9+O2PamnQm0reWscPq4A8mG+UeZpH5VtbX2jv0cVdMvj8OBARavbTHUTF4Vk1c8C5fzMDogLU+NBczpAt1JEMlfJzsu5GcjlBX0sdtgTXUVMs0ymmGKKawHbt5MskecJQGZJx77EhdU+yidacPspmm8BSqvA+jscbN1KPstyrk7jpgo7d/uxzpgqbBLpYzkSwpVwVz1EZ8tIYwGx5sNu23DbNhAJdLdI/rpQ62lC3y7GQGRpT2zumuXwSCbX4iK053QWpEmPee1MeR8XoVXz33n0YzkS37Tc+ca3PpGz66uekUp9m9n5sAe3iDOrHUCFhKrDKR3oAM3SRqy9x0VE+564lrKooOeXV1P86P/+LcRl2p+7PvRF3P3BL+CeDzyChR90Uf3GM1fvy5/iqoG7D+Oqp8nzoEHiknClirV3ubAjSVZWqxvoHV3Awc/+EGvvX4bbT5DOzaD8ch/+c2tY+BGJFyovEPtodft47MyXEK000DnkqoBbOm84YBZQFk9KCc+/A9RR018WCBo21t9JJ9rG7T7mv99SryclNBPw0gUaL8QTA6Lv+cAj2HyrwCvv9HHXh3baPN35m3+EuEgkPltccpdAoUnWOcl8hNRL9T9trVNK4Ddt3PqZl4jEvwDMwFqrGGt7G5QSiNhCXExROaM+f9lG0FDd/gOyLKLPmWoSX0TZdWn665NIJxtDmMQPa/R6tvKxwggv/wOyzRq3ziquCgrrBXUNFTdTzH3Hw5l/2EBcBBrPR2i8ECMqCZTWLLQPE2cSlZ2cmCap+VpMCLBIyLB/DENEZfK6n30mxuHjCa1VlkN4f9lQxQQbwYybdV8HKgcxYIsboeffpgUqnxeFplEwKgklwIyVVVOK0TJlezmbfZTWpS7mlNaJ3xks5C2mgoZLRU31Vn4r0SS925dkr+ru5GCoY0CicyN9T2QDRDlrlRc6KJ5uw29JDPbQ3wd7suLpYBm49ZGNC55fV4Jj+x+66tucYoqrhaki/zqGSdCno0AreNNRkFkvBCFEvUoEIoOtX8xgRBVuqLdXLedsCpzNPqRXVYr8/ODrb0cIZjJyhIJPpFpAVDQJr1XLiiBHtaJvOlaQYLRchtuPiajrBBQuZNhkBLMFIn3Ggj0BIvFFEO9Q4X/9yU/hffd8Ft/41if073YnAFT4IkOT/BzuWC3nvK9FNwBUQaGgVLKsaoYKDE67vRwhe2z/Qzt81tNRMA1PvB6hvmetdFAWJ7oLg/8fhDs6XxhcvJHtLpGvxrlwX/HDO99TkbIWADS3Ed2yL/NP922IUCKp+XA2s+AtIDuHGUxma3X3RYpIj535Ep276vzf0VkShIAid9mCxYQAdEaFcIUO7iJCXsDfTiYuJBj3FT8MsW8ZvaML1AVk+HZS6FH++qciIRHImZ0LB97S+MHWOfQ38ptMXFPplLUEJ64F4aW0cIryE3fpO7BVhsg4IWyFUTYmhCGszS1gXhX81BgrFuZy464VqoJh6CL1yPaLOwp40m2Oxfp3X3VPGcGupq2Otndi2zSM2Tqp/eUgXLsZ6XGZrcasMCarNdWBAqg8CKhzisfMqk+qz21o2xwROvp74KwBOzLvC2aHl4BQwbg5ex51Pic1P5fhwIG6TOiPwwop+8Q2/ma+HsAF1fgAKNC8WrmkQtO94gFteza1P5tiiimuBfA9090cYv3dDYiQwhcr52JEZYHWTQ4aL9gorg3htyKU1ny4A4n5n2bb4PmFrPrwT23Rg90e/FVg8WdAcnAJp+tVVM4Avf2AtyqAVQ+jOSLyJAAxFEiLMUrFEO1BEY3aAK1OiX4CSDoe4Fjg0bq4Ziv/7jSnutfkuuHJzT9L61KT5uOWIHd96IuQDYHbHzqO2qkY3/7z38V3Hv2Y/vuTX/0Y3vPAFzFqZMp5EWUElNPPwhW9dpazExctTRRuvtWhcFsn882Oy0Tk+VujXEgoW5CISCAuCdz4b1Yv6T4zxS8Hw6WiFrD5LTr5opKv1fA3fGNIc8yqj+GRQyid7qH3P7wNS392Qou6rCBBcMtSZsHTDYFmqC0kpUdWNnd/8AvoHHRUnkPWxcqEvhnuGZXJUsUZ0px18fsRorKD2mmJ3k1kdt54QZIYxbG0Ip3nuuP41n99GDf+n1+EdATahwXu+cAjiMs2vvMoXR/dW4UuJPgtCelacAf002sDznMCYY2u/aSe5BT4sm3jhm8MdxUPHfzT/0N38whXIokFkqYPey6AXAqAWACRgHRSVM8IlDZiHa4alSlXoPFCDOk6yjJHFUDqEv4mKc0LzawjgY8Z+8UXmvn9CWsWkrLEi/90Hjf9q1X9WQAApQSIBJJ6gnjooHaSOoAACjMOa/RefisTM7GVjrku0fPtbh/OZh+v/Po83H6B1OgNgZnnfQQzZIXW+PGWtt0JZgtY/bUqRnNURHUH5NtP7+/A7XuwwxDxW2+E+9xZWL0h0tCFUFaVxTVDeBMJOEMLI2UzxN1N7iDrDurfUIbTTzJrTN+B00+QKEvlwaISl3lZp9douQy/FaHQ9CFCaJuecZU/gyxOifxni1MOri1tUGdJcdPG7F+8BKtagR3O6u4L6aaoPgds32JRgG0WqzgRt/yL4xctJgFUbGX7KdPqdYrXHlNF/uVhSuS/jiCDEaxA+XkrEn+HhYt6XFt7mCpP5L22mahi6w4Ki1WK2JZE4rm5EBJ/OzJ8nanlqqKUuWyHIas+7PN9ZfmgbgCKxAGoRc7fjjL7GrU9fj23L5ohT/fd8emJ5D7DVOawfQP78DOSmk/qWeTDK7Nj4ejPsSNQUR3LcRLfVF6bHvlTXH9IgxCWF+bV1ZyToIpoTM5rSxxVLGP7KxmMIPwskMn03h8n9M1iHMPZ7OcDaf2LD99M+DPpmnrOpTnPGWTvpEWmaLZ1DsC45QlnXyQ1X5P4UrUC2yF2qEF2bLteJQsU1cUz7qmo/Re1x30M9LNJMo8VrNrXdmAT1B/0fGtHx0BUEkaQbqonn+gr5bfyt9djgUHOp8Z5YY0XTcaslVi9P0llzt/ZBWEWZHf7e7cHzM1k566xTyIIER1ahK0e18ZoqlBBi1BS8FvNbVK3jwXcmvsrPdWJYEzSidjPMlOg7HmAfEiWCIxtqGKC6A11FwSgbNm0F76vw+cAKuLk7NdU0SpVlkeMi5H4+rhdAu4rfnhK3k8xxRTXHAaLgkh7lWsiPSKZO66jfZDJUofsQrw2tN9051ABIrIwLPsom/chs9vXI+s6j0SkKK0RCU7+0hYkKEjTHgikyKx1PJfsP3pDH46bALUQMhKwtjy47UzBDmSkOitmtS93lP97VM7ItPfe+3kt5LnnA49ALjoQoSoChJOdc/1WhKjsIS5nfstkQZQR916b/l95PsZw0ck9xxmogFwV0igdUueagoXbHzqO0RwQFwXiIrD0Uyoq4H+/vO91il8saN4oYUfQvvh2RJ7z7YM+KuciEitUPRTXaH3KinsWSrBlDnfCDJeKqDSzOYb/M5KYizDV5x/ZiqhchglTfVIuW/ocZGtIM/NJhCkSZQPkdYC5nw8n2k3pz+qkSG8YYek/Orlzl7pqhbYxAbJ5s4hIZd3bKxQRbMEZOlrRDlBhy33u7K7vu29fExudCpH4HQ9wJaxaRL8DRKS7KXX4ILuORRDD9oS2Fmq8QFZW3M0DFULLSntz//kYAiTYiYuqOKgKHnEsIB3gpX+2DHuQkrUPAEQC/pqavyorrtI6EeN+y0JcpEKHv53A/m8/QHr3Hfr9eO0jgjiX1RTPl3Mhw6UNEiB1DjqonYqx9Stz6u9kX8ljpHeygO5+2l+3n8JvkTgmuusQyida6Nx9GJUXOjq3S5QdnfMAcFBtZjvkDOn/wwWhOpcdXbziOTwfczu0UdygHJBCS9L4p85vgPgfEWY2TiyctFUGA/MpTOInroCIJFkPtRL4LQu1k6OcSJT5rM4BOte8CAAsROWd3+2FcOzIwxcsnr7ngS/iB0axd4pfLKZE/uVhSuS/jiD8giYUgbwaOGe/wI+xWgCZB7zdCTSRnSk0iRRxjaBCK0jgMznvUWAWB8mS17Oy1djs6+AWUzHMyNp+HU3IAUrlGWaWC2YauhXGuO+OT2sy3yRznM2+Vvkz3n/XZzTJw97Tbj8eU9X6OhiUvffH4XRDfcGY3Qrj1VoOSJ2q718f0CS9UkOn3V6mwFcdFzIYAcFIv0auZ6S9VfDp7xO2OQ4O2JXBCJayy+Lrlr3KAVVYYusVzmjwxobzIMz5nOvw2ktQF1xoksOvP7b0UXr/rtK/qJBUgCamUdmBHRKhwItsvxVdcCFx7MjDkMsLSGo+3H6M4aKvLFvYwisj43lhxMU+tx9DBDESDrd1szHD6SeG92gKEWbtydTiaek2fhShyQlqAaWxYFimLh67Yyq9I8iNJn2X6nsyv1v2rwewO+EehLCbPUWcO9obP8s0cDKFvYK2u6mWYTVDfZ5QwcnLAmvV+1rNbUMdlg+AnbjACo3tdHuwUCGlf3MbLndUKZjnnYNQj51mGBx/ntSnYFs7kjrwljNU+F7gdKnQLFSRQ3QDXUy2goQ6FipF3aHF78W/x/Pkqy+rPmVNsJf+BfJUdkAd64tN+Kfj+xRTTHEtwm9JFNeGkL6jQ1u9jiKca0B/2VIEkIDTT1CKJDqHXNROApVzdI/o7aXcHZx/BSmyNUUahOjefRhR2dIq9fqpENs35+c0xTUbw6UE6LhIACSlfAcVK3ABIhHjIpGTUT0hz+ZiCk+pYZ2BadOQImhY2jIjcS24oDwbJvEBoHOIuvk4MNQsMAOkugzrgHOzj9K61F16hRYpmQstZQOo1Md2ZMHfGmG4WNGfm7v22Fqn0JzcFRAeps/z3P/+21f2hU7xS0HiAU6fsovcIEE0X0RxPYa/NUKgwmXdPmUEbdzuo7wqUX+6A3geovki/OfWUHyuh/itN2LjjiKKG2SZI47M6/dgkVfpxCaCmT1EsEYSnYM7KRruShkuCJRXSRFfOpVgsODAjlJFitJ8OS7bGC4ITdBeaO4NAKc+qozr/2n+8fGCVPuwQGmV/s8CGPZb584UwEJUl5ARXae7CdmOfO44ovkF+HNDstWJLIihQyHYbgq4EnABe5PmnGHd6LRVnb8AXeusuGfveyZ3RUx2VzoLQ9llBUYXDqAsukp8nCmglgKxLThDWxdZOIyV/fb9VoTtm31dDGi+RaDQFCjP3AV/O0Hp5+c172HO61P1mAhiVM6R4MXZ7GN4gB6nzgyhM8AAmuvOPhPj3HsFZGghqqcobAplWUOq9uJ6gO6bZ2nttLoBK5xBuFLNCgmhRAQK/Y7LGYkPUMG3uKHGZM+CHY2R+M0erIAOdPOoT1ZLHinn+X4TzLiY+d4rSD3XCO6VukOX/2+G3LLoy28lmsx/5VfofZwhFTg6dx+m76ZENkrO0EJpjb6LS/W+L60BZ39jGbd+6jie+Uz+NazW/86UxJ/iOsLUI/86xLgP7zhJmLTbeU9lz8uU9wqW7ylrB7ozsRKUSXut/OW/hxHsTqBJ/NS39U3B3Rxqcsas9gLKZ9nwUwaQCzTkGwSQeULr5xvWN043hL81olDI+bLexn13fDr3uVLPoYXHBEy2YVBBjudbev/MY5ELitSPkzf6Y2e+tGNywiTslMR/fSBptyGDEZJ2m8hQpUiT7W5mlTN2/TFkMIIMRvja9p/gCfkonpCPEkHPvvu7wNyebHezTIVuj9TU3Z62D9H++GGU+aAjX2hiTHrs1WDHxFx7xUc5H0a/Rde4o1QX773387tv88Qj+jPYnQDll/uZatslwiGYIeURLbCJxDetXszFutuPdVur008UMS+1yg7IW+2IWHlmelBeltlY5PQzD/fcZza+Sz4n+LwBQGOxlxHtORghtvwdikBZ2iiw1Zd+D6O4Ov6+ABUPtA++8bgZcqx9+tnya3zfWJHOCkyzCKH3NdLZACZSz0FUptwBuxPAbvYgekM9LrNCn8dbVrFxt5X0Hfq8vhEKHcZUlOoNafvzed9+tx/n7iWiS+9rdftE/nOGxaVCZUQA+UwILl5NMcUUU1zLiEpCi2C8DjBYIsKj0JIoqHDG2sn8mChCwN8aURB52cbs3zURrlRJSFCt6HuZ5XuofftFzP5dE4WW1GrSsEaEuzMk8qu0SiGKflMVUx2JcGAUgYcOHDdBOnRgD8jmAaDXiMhCUpI5qxsm6jhokYl9O0pzeTYAcP/RT9LnaSV6DmKS/O+/6zMotKQu2g8WBewohR2liMoWai/2UX65Tx7QSoEdlS193yq0JIbzliYNnT597nESn7+L6hmyCpri+oIdkmiE84Ccboji6TasgLpXyidaGC76JBYpUVeLaLbx/D/fD3dzqDOw3OfOYs+TXdgh0N1voXNoZ1YPiwacfoKoLFA7FcNvSZRX8wUo7f2uVPFBw4YdUXEraLiIyzaiMuU9kf3I1TselXMScREYzVMxgbpZVDj2aaMTcwAdTNt9S4j3PLDTdx8A2aG4+c9nhcqPPrIAwzM/qidZV84Yd8DEunRpDs+B1XEpy9ng7p64qApvrvH/UtbpA9D4JSLosZJzOThw2xkSmTxYArZv9jFYUrkeqvYymgO6+wXiso21f3gAa/c0IFY39Dw4qfl6DccFCWeT1k/F021twzRYFOjtVe4FLm2vuDZE9SUaI8tnBFq30PgnQonaj1/RXIoIU0S37IMVRjTvDmKyLVYdsb291B0U1mh/R3PqOJeyoFkgs9LUgiPfhtMNsfCjIY2v23S+kjDHQdCgHES23eRMQtOdgQN3afuWLgjxeRuVhc4vAMg+bdSgjIrhjSHdG1RGyd7/blhHXwL4uxvHpVjuTPHagxX5r/bfGwVTRf51COEXcsp6AbKjYCLGZjVopQjLCFSx/FkiKJYXgDDWxIasFJHUfNXu5eRIIm4NtALVSqbUvVGtAemR4jKaLyJxRZZqvlxGb58Pty+xfXsdxXXyvZeeQFQmtayppJSeBRfQvvUUlEitiEHDpZa1Mdse9pyM5otEGqm2LFd1DNx/9JNafSm6ARz1XK4K+1sjIraa20SyVcuQniC1vkqTRxAinatnIZ5d8hi/mELzvuKHpyT+NYr7Zx7MWSBdLvga444LJmuFX9hB6O9muWFmW3Dhx3wu/84FO+EXkLTbcBYXtDc6QN0nGkEIqGudSWB+Xo7AvMohy4+tfZnITcOKhNXiUdlRLbnK39OzKJSqG+Y6aiaBLbAAaOWTiCSCGVvbeZEtQKq7cOKqB3dzCOGT2lsaHUQFlblhR9TyyaF4vGjnybyIicR3+6m2GbA7AWwAQrWncog35yWY4O+WA4vTUbCrEj8NQuqKUp0XAGAFIanIPVdPmpmQl3N13UVkdliMwyr4mYrefFyFHOsOD7PbY342b5vA++x5pMw3wX/zPZ3HYIVxlncSxpCu0C259GWRbY99vo/o0CIAOn/DlSoR7dhpA5XM0f6bAblxNQuABqAD2Pm+YAUJnG6Q62Cwwhjo9i7b2szq9vUxP3bk4fzxmWKKKaa4hlFokVdx62YXxQ2yfYjKFpx+gso5qW0yA8/GqOFS8ToEgtkCiqfbcPsJ+kcaCBo2gsZh9PYSATP3VAD/uTXA99B986z2T3a6IRovuBg1hA7mBIDKWQthjdT54YC8pQEgdiX8uSGCjq89qJ0BkWFRXQIDocMtRWRlBQLu2vWy4M3EIDQZsuprWwcXZPnAZOJ3Hv2Y9nougEQBM997JTt4xjxp+Pa9cPts+UBZQ36LLEATz0dUEqiciy6Y+8Ney1P88sGZaZeCuz/4BUDNZbhbnUGiCxtWcxu1H1Pe0A1ft3HyN6o4fLqMF3/nt4HfybbFc2WxdAgAEah3feiLmPn2y7ku2Se/+jHcd8enEczUIF2B2ot99G8oo7wq0d1P1lP+KpH2w3kivJnQdIZA6yahO29KGzEAGyJKUVq/OkIeVivf+Zt/BEBZqESpsreh4gPbWPb2CnRvlMDARuumC+hGI4Fw4OqCXlKSELGlg2QBW4fnighYfXcR0gXmf0rzwq1354Udcckg3A3i3elDd+IOloikr5yTet/iUtaNG9ahvfP59dKhvxdalJfQeF5om8/F7/a15WjnbXtw7v0SztBB6yaB+Z+Q/VJycAnDpSL87Ui7FZz8J/OY/6lE+eW+7sh1T66juF5G9em+nssOjsyj8sOX0Xv7Xmy8o6oLmd1b6Bg03+Kgu7+IPd8XcDcp94RFTjyeSd9B7zCtC9uH6TMPb4hhFZX16tDBzLNkq8MZEGa3azJXMXLI1Ppsm4RbxdOBtgAqrsd6TQZA7wd13yZ6u2yPyjmLxfUIvX20jhguCF2IoW1QNsLmWx3MfcdDbz/dJ1b+yyuXnDHyvns+C3lHEctPbKK3bx5HPncc0qX7y4mPT8foawVpaiF9lUT8q3399QQrTdPJpoFTXLNg6xaG5Sv1PYfYgkg8tmjQz1PkfXBwNtcqJX0HUZkS09nCgO0M+DVMzllhDKu5jeTgkiZYTFub1HOQ1Hz09vlawcJe0/52ssMXjYmYuGyryr69q48lhyVG5bx/33se+KL2BuQbJHt7c2hhtNLQbV38HqZHPhNRlvL2djb7mshJanSs3ZPr09CT6xT3igcg/ALZnBjdKVzEck+uI+32qJtlFziLCzsU1eNFASbfL+SbzfsC5NX3u72Gn28VfCJcgZy1CV+f42r81CjiAbgiMvNScWz/Q/p3DormAh9f2wByRC0X4yZu78jDuogIQF+XrCQBoNUc5Zf7egwSQZwLi5We0Epvfn1ctjFqCB3UxaolVvcVN8jfkoNneSKdI9C7fR10PA4m85nIzyn2jf/rLAUgXwhR5LE8u0rhuEYWwQ7bMyPslmH5Xra93ex82Fuff7LtzpiFj86BqJazsFwTY/sG0FjKrcGF1X5W9FDbNe8lTP7z98eFEku1sJv3Ke72Mj01gXzmgt0J8PiPfj93Pl7OmH3syMMZicMdAWPZAtN7wBRTTHEt417xALb+l3ejtBGjt9eB35KaaONCOHeqdQ4VUFyPUVjtY3AgX/wVYYrhooOobKFyLrNOcM+39Ni4fWdmBQKQanTUEOTbXdzpcy8dIFoOYRfJKx8A0ljAf9lDsBSj+LKD4Q0xqXQHNty2nQXbKjKf1xRsjVFaJyucoCFyivj33vv5HBEFEAH17T//XbzjI8cBULAjk/Gs6I/KApWzgV4XMSmVuAL+1kjfn4KGi8Qj8nWKaxvvu+ezAIDePh/9ZYHiZorGsz1YQYLt2+tIXAuDZSJvpUukrx2l2mYKgCYivfNdWN3+xLnAxcRC7/jIcZQ2YgQNW1s57VboObb0UQS37cdg0UXtxT6at1X1vLW7n+atM8+lOWGKiFJEJbr+KuekunbDXDfK1cJ7Hvgitm4VpFoP6VrisWDrVgdeJ7OzKW6m+N6f7m4rdejffg7p0IEYUqitPRC5DhZnQIpxr0PbY7uwwRIRsSVVh2NFPJP5gBLoONkcn73tmZyvnZbo7RUY7Mm6Hfh9zG6Gyjki8NkWEgC886QGZztRgMRHPKeVnqCg8CBEfPYc7Hod3ffdqgWK7vkWtu/co4VDbCPMNsVMmJdO9zQ3MzxQz2cPeqRgDxoCcz8fkip+xtbfhdtPtJuC6A0xODKP9XdmVkRJmcZHty0w82z2HUpX6PWVqaDn4q27OaT1iFob9N6+lz7/mPDS9LnnAjLDdHDge40ZSixC6p5Y+Xcn8Njal/GOjxxHXKbvZlL302648zf/CLWTI3QOFeC3EhTXhmjeVsXM80OIIL7genSKXww6nQ7q9Tre8xf/Lzjl3V0LLgVxP8B3fuP/QrvdRq1Wu0p7eG1iaq1znSNH2ihPY4DUKNITFFJbY6WkspgwggrjqkctU5HMSKIg0YT+hWAWCaKykwuJjUoCQSO7CU8KrDQHcHqMbjik3jfbujJvONNuR7/OWEDw50w9l2x3VLCkua+5bapjY/rqS0/klBciILuLHME1xXUHTaiybUYQIvVtOjcu8t0Kv5ALMd0NbKFztaEJ/4so6vOKoYzQTz33kgM8rwSPnfmSJo35fYUKumZLGm7tnGRxtWN7SmExyY7LHBtElFm08PP5GIiA7FbYm918bbbgSCHCzB+SW2vtSFL4LBdBjHBaVrZPgtkpxefJbj8B7PhOtIVOEBLJz57EiijXx4H3Q1n25N7fIPHTINR2CBrVSv58VyQ+gF2vAyuMdoQa837w3+knh5RbCGbsnEUQYBaXqPsrmC1Qt4Vq+QXUd6g+Jy+MpO/suF+4fSKf+LUiiLMuj5BIpssm3c3ry/j9sROPkJXalMSfYooprnEIvwDpAYMFR3knE4nPofMAja12J9BkIuXSJBAhKdujcmbp4LdIkR5XPQwXfSrGqkKn25fKti67r9tRminn3cxPmkk2JvGFKyFcCcuRCJZiHSKJyILlZGQPFwGY2GGrGxESqR+VLU3q544DF4JDqT2Zo7LQJD5Aa5WZ54fwt0bqvQTZowQxSic29XzC3RwiLtvaWpRJ/CmuD/T2+VrtK2LKVQhmCxgtl1Fcj1HaiLXve+WcROVcBL9F57T/3JpeN4tQon+ksetc6WIdv4t/eQKDBQciSlFQlk+7WfY9tvZl6i51LQyXinAH6nxW1pCOMb2SHgfk0vy2uEFWJCJKc2v+q4nvPPoxVM+k6ByiHAp/m45XVBaonpEIL4M/O/lPP47F79iQDinvU08F2kaZtZYzVP7oKmavv1/C65AvP5O/7IfPFjteO7O90s8JFUmvhpvBIo0dXoeeX39RKn/6bP8Ge+j4crevuzkkgh7Q9rz+1gjFv3kedrNH46QnYP+3HyB+8WQ2lx8FqPznH1MnaRAjODir+REzCxCAIVZJNDcDQI9VcdlGMGPrMQsg0rx1s6vHQ+5Y5Xm1rBQRzNg6cyQpS7htgeKqQGkN6vujwkBxPdAFC+48KK4H8LdGVMwynB0YbEfqdENtqcOPS5WblbNFiqTmfPheFJeyosvM80PUTsVahLb4lydQOScvi8S//+gn4fZTFeKeYutWR2/rG9/6xJTEv8YgYV2Vf28UTK11rnOwPUMOvkf+fQHd5R2lUE1DUpSyUpUnt/ScMOeNDyhLgy4HasaZ57LnadsHALCDRPs682M04SBVAHtQ104murrMKnwm4anFSmjFPav1/e0I9iqpNLk6zUoihttPtJUDkfCuLiqYStK4bAN9uqHYIbTPsjCsc8YhekN93KbWCtcvnpCP4v6ZB/X/J6qLgYlK+XGYiupLwbhKf9w6x3zepCKA+XwbgBUadicmcayu3XHrlYuRtFcLj619GffPPAgr9HSFWPI1piaS2raqdwlBoj/6fdx/9JMA1GfzKRA78FxSdKivkBX+AHKkPv8tC9SmcYcn54nHBUapA+vcfqpbUnPe72EIqwvtLy/bmSejqFezIupYoUUGIx1CzrAKvg7FBdQYrv9azt7XyyvYWY2jz10m0Q2LHAA5q56JYEsg7t4yujv4/URvqK3ZeOyzxj/jmGJd9IZAt4d0bgauIna0/Y8i1q1uH6iWjY4JIpZ8Wg9lBRe1UBKqi6J4ug3pVbWqCMiKBvzTtGq6ks6TY0cezhH1pqp/iimmmOJ6gQxGWnHqbqQof+s5dN93K/ztWIUKCgAS7TfXUDkXaetLAJRBozrV2Fu+tB6RFUI3hNMNMVouo7AKoFJE+UQL4UpVZZ84+p7LwbdcHJcOeVzDTcFl+UZtgDByMICHZEgBk8JR/thbHtJaDNHMQiaFuvVwYYKIS0vbAsVjtWa7E8DuBLr7K170YYfAcIEUnhrVCjpv2wMAKK6rNU+Q5OzdotmC7iyUvoPieqA7j6e49vHkVz+Gd3zkOAotico5icEiqZ7tJq3ropUG3H6C3l6az7j9GOgTMRq9fS9Kp3uoPHkS6dwMhouzCA7OXtL73j/zIM79L0fxsz8k4vGxtS/jXvEA2v/sXQBSzDw/xPl/cmTX13/9yU/h2NJHEd2yDyATWkRlCpslZXIKv0Uq/NJGrLtugoat//9aEpXf+9Pfxm2/Q4Wx4aKD4nqswlkFSuvA6fvoeIZ166Jz/u/96W/j0L/9HLBFr2GrLQCIkbfKiYsp7H5mieMMVAZIEyitUmHDjsh6i+0ypUs2RHE5y9xwhhlh33iBbHY27rAApFj56wSVpzaQzFV05wbnL6Hbg1xeoHn5c68gPbgXcdWDr/iY6jeeobn5rTeTU4FvAy9ma0vva38HUa/DHQXw9y0DIOsaN8iyuOyIOqmkJxCuUPeuCMney0GYU7wPFx3ERaB1E4XYOoDKEqPRljtXkxqNgUyUu22Byhno3DDTulR6At75LuL5Morrgb5HjIux0m4P1vwsSqd7+j2Yr+HOEztKUVoPtcWOCNOsIFH1qFBcBro3SlihheGShNu2EReL+toBrmxuzzbLjHs+8Ag6h8t48snXpkN9ileHq+Fx/0byyJ8q8q9zWL63g2DmMEQgIzl4sgJkSlX+HaCBmYMLRbNN4YRBbCgto13VwEy+JHMV3Qlgh9mNgQKnMpU9K3c4yNLtZ8GYVMG11KIgs9gh7+OQiH1DXX9s/0P0uGp3c7phLqjXam6TMlXtI7eGsXJBhJJCFJX3P0BFDVMBbIUR5NnVnUGVU1yfMMI+OcAq9dx87oRf0KS+iXQUaAL2QmS/iaul0H9CPpoF347vl6E6p4Bm17DcybIwXmtoNVKXAk7959Y0SSCCOBfYeyl+/Ryea8K0VQGgiXouUPIkkh93uiESN1O65Lzb9TazsSZxhR5jNMntedpKxyTxrYJP30eoPtNuVjZj0EHJG039/5TDgjmQFlDK+1jbzehj4Xs7CjPmeZE7RzjY1vi/CT7GmrBX9wzRbOete8zXKash3sfxYgDbGQHIukFMex1dTKaQrrjqZVkkqgMqUZkEdiQhqz4R+6rYykp/3vfxifqVYtyS57EzX7pk/80ppphiimsBT8hHMftMjLhIxEz/nluoe82zUH+6o20TAFJ3slodoOK2O5ConYyIRHJpPt7b62oCh+frPGZ757s0j1ZWm0431PdUM0DSHgjYbRtJ00caC7Q6JfQ6ap4VWfA6FpwhhV1aoQXRcXKBh0C2rmBFvq266uJy5p8P7CzEMvnu9BOs/LsT+p6bzs1gcGRedw5G5WweASCnSBWhRFLzMVykf3aYrSWmuPZR2ogxapDoa/G7Lf04z1+iso3Gsz2yqlEhnf52hMoPz5FV5MElKlr1E7QPXpr1w9e2/0QryBlPyEdRXI9RORtguOijck5q659JeGztywhmXJRO9xCVBbbfJFBoSdROxWgfpvU25VII1Q1P5Kl0qQvnvjs+fdnH6nJQOy0hQijS3ELnUAG9vR5EKHHoL7N1Uu/owiVvUzqpDl8FsjGAu3MAZZljjA1M8gNktwVAdzFEZcrqCOtknymdbGwKa1DBrRFmn4lx5F83cdNX2yiu0TzTPrWG9Xc3kLgW2Uaq+XVS8zNbz94Q3vdfoA0qm9Y0CGE1tyF/8jTS7/0MzuIChF+Ac/gQrS9X9iD6taNIN0nJMi4mZGEj7b+NxBWas+E5dFR26HsvW7pbIS6pPADXUlyM1N0ojMo5idIaMP9T6j4prseonAuVgp/G2MQldwK+FkwlPfMsslIky9cghGi2MVouaysdVucXWlJ3kfB9JpixEcwW9OdkNb6sxUjmI9gDgdIryJH4V4q7P/iF3P8vlGcyxRTXG6aK/OsU7K+slZiGPz4ArXi0O9BhtaJJ/t9mCKQVJBCrG7TNuRmkngO5MptVnRlMBKlgWG3b4dt6ewxOWxdRiuIGKQXsMPNGS1R7FZB5yfHNinzwU8RVD4XVPgVU8mdSnvypb+O+Oz5NBNdcHfb5LVjKy156AqhmLbWW5yKeV+Gg/YRuHg1BHpuqsg3QTcm017GCRKv55UaTSNtgtKtqeorrBEaGhKxmAc+aGOSAUoVJZD5A19+rPQ+ekI9OVOWbfx/H48OvUGeBUlSnnpuFjKqWb863MD8XQEU9MwR6Eo7tf0jbuJiBrpeqgji2/yFaHI8CqhJXK9pPUvoO7GpFd/XIuTref9dnLqwWYvK4UtRtp24/zmVpJK5AMlvIOnzMnI2qpyy7lOVXmSxaOMyJMzycfoLEs5WfZKwLI6KbD6tNgzDneQ8o3/sJCvjdCj1mIYjPL/bOZ2JfLMxp73ogm+DLSpGOKxP1rKyfVNxR30PO7mfMOsaqVozAWrLq2RGg2+0hPbgXKVRnFrKFL98LdGj43AwAWuA43TC7D3G3iOqsMn2LSV1pw+kSaeJ0QwSzBbJlCmMq6nazcZrB+3nViPbXMENiiimmmOIXibVfdVBokkKz8UKsu2CBLKBQ+g7s81uQhxb1XLy4HmhVvb8VorhGRFa96qF3U017O3Ohlf2a3c2hVmFGZR8iShHWlOf8fAy7bevgewwEZC1C0vSBUoIkVsGLSwnctg2vQz7JXtMiSw32xlf+4NIVSvVLFhB+KwE2iMi85wOPkH3DyqyeE/HaICrbKJ9oAdUKhm+fV7YUlrZQYTJ/sOiqzC3kRACmTzRAc4g9f7WJY0sfnd47rgP09jo54ld0AwyOzOt1aXFtiGC2gMazPQSzBRRWSdwm5+pwuiE6h8uQroXieoz5f/tD4I8v7X3lBKblW//1YdwrHkDl9jdTHlAQa//8b//57+54/rf//Hdx/8yDmOkNYYd7sPlWgcoZ5U9v+Jl3DlRR3GTyVKK4nl7UJvfWTx1H9UyK/rKlfe33fa2V63K8EKKyBXcgUX+6Q/PmkObjvX0+2ocFklKCxnM2tm51cPcHvzDx8zGsLQ9WaAFFiaieQMQ2vDaR9mENCGspCk3qxBFjU1XpKqV9GeiVhe5UECER3Gwn018WcIbQ1j/1FyXc586ic/dhJB5w7tg89v3FKiSK6vyYReVcjMqTJ3X3bdrtwfnpS5C37Kdup1aE4G17ICIOEt+PBFBrlYNw+zGSIEZc3Q8AsF88CfHSGfjdOWB+FunmFqxqBelcXQt3nG4Au6Msi5Ui3woSWKfOwfU9JAeXIHwHW292dYdBVE9Qftmmzzuk9U1vrwcRpXj5/VXdhbD4/QgLP+jr/DGAhJRkJ+aieBo689DuBBC+1LwRAOKNqiTeHCxn19DWm11lgeZgNE92RazIHywqx4Y+nSuj5TKsIEGgbKPCuspKmUsglwL85Hc+fknn38Vg2r4xprkm1y6mYbeXh6ki/zrE48OvTP7DmLVDMOPqGwJAIYpyjqQBIpQ5ywkAOQ9mrcBntWW1okklVvqmnqPJdYYIafIgIvKgjkoC0oMKo41VWFCMSeAwWzuSWhUvQqktcEwkNT/z5Pc9w1M581ZOfVsTP719PuKyDbdPyoGobOWKD1YYTzwe8D0dSPla+Z9P8YuB5XualDWLNhrjFlUKkwjZXa/BXbDbefNqzic5VyfCvRvoBWtc9XJkJ2CQrp6z42+MY0cepoBZtU3uUtB/38XDcxLSUUDHzMvU11qhbYanhvEOK5yJMK7viX9W7Zk8gTYJC1NBApB3u/Qs7W1LoXnSeH5Kk1bVpTP+uSbZKY0T+yaYqOfnyGC043zibSbtNkS9uiMAl1X6Owj2MCPzta2OIu/1+y/MZftuWPHon6FhqWbkAMBU4Kv9SGo+4vny5M4OXtyogiiPrVzkNTtGTNjGdwYQaRJXPcRKfcRFWLKIovOSFx1XG0zEHDsyVetMMcUU1zeSskRYp1DIoGFjuOgg8aC7bQHA2SQJO//fPbmuCX4gKyDH6xvwT21pK8xgxkVUdjBaLusOWiALfgwaFLwo3RTSTYHIgogsbeeQeimsLQ8iJtU9Bur+G9NzgnlluWlk11DwpEW5NuyrbHhDM+geT/cf7s4TQaxtHjbePY/me5bQOeSqkFva9+LaUIVNWtpewlwjOP2E7ksedRNXXuhg5tsv42tP/cGUxL9O4Lck4iKJzUzrxEh5jYtugOLpNuxmj4hXY64hugH87QSzf9dE6YenLmsNcOLjk1XFT8hHIX/yNNzNIfo3lFE/FSAqUzFqIlb2IFppIPFISe0OJCrnKNC6ck4imC1g4ScBaidHuiglPcoCYJvKcbzvns9CurQmLq+mak4MrN3TuGCXAOP9d30Gm29P9XVoBQl5xSuLKukC5ZdtSA8or6YYLDh4772f33V70iFLGwBw2zakQ4G2vC0RWTpA2+vQPx1qa0yRRQRtqyMnOE2yXz756VvY/vuHARDJDwBn/tEyRLONwn//Gfzn1lB6/Ke5NaLle7B8j9YKkdTcAwDKblLWxW4/0VlOAKvPBaw7b0P0a0eRrMwiWmmQRbKac5NDQBYiG8+X9Vom9W3IW/YjnZtRFmb0QfxWSgR6bOlj5bconJe7P+ovStReAuZ/Ghs5YLEWUopQ6vwt3cntibzNqImARDe8BgOoO6O0LjGap2MbF6HzJqSbZZmIZpvm/72htkuWLjDzrATcFN7JySK6K8E3n/i9Xc//Ka49sLXOq/33RsFUkX8d4r7ihwFgp8UGEzXdPizPoeRwn7ylTQsdALqyKnpDImEUoSOabSoIGDYSVjUjb5KVBuxOoAsEZistt0kB1FLlbyewlYcltaA6WgkkuoEmadhOB8h8+7lKTBPwAoT6nboMAtjqBmRa/rBVA5C1/lphDOkVYYfAqCFQaFErbqFl2PYoH3FqXStAehZKp3takTydpL9+wF0nAPS5ZE5SNCE6psrnjowrJd7HffJNXMgzf9JreN/0tQoi6a0ggfBlTkVz7MjD+vPmHl/6aL5wYdie6O0ZxyUNwlzGAJB5s5v/z4G901UXjbbEUn7zabUMEcQXVOU/tvZlHDvyMOxmD3F1loKROgFcIxRK+o4KTFJEsFLmS8/SPvoMPT6ASADK5rDg9BNUXsiebGYMmLY6QKaet3yPxke211Fgot6u13Ov4cfNLo9xUl+2u5kaH8p70lw87DahRv774I4tIN9FkCPxzUIBW/UoAl93eimCXvSGuvsqqflwNmNS4asOC+7i4DGbFx12JwCYTAm5xZk9O0nhQwXerCMLQM6Pc/yzO5t9w/Iob+nzajH1xZ9iiileD5C1GIGTCVzYX54VyO7mkDpO5+o68ypZmaX5/GYf8Xw5C473C5BnV4GjC9rabvN2F3v/e1eLCEbLZZRObGrLHukCpTUi3UYg5TAH1g72EMnvDJViv646aEMLwVwCeyCIoOsbFp3qJwdDRmUbfou8+6UrlFiItpO4AtFSkdYbSrTE++UOyHfa7QtdmCiuDWltNJ6xE0rtEc3WFI0fb8EKo6nl2nWI4YLA/E8iuP1Yrz/ZC790mvKHaC7jZhYmRnf7lVpyHP34cTz1ud3JfIAI8VfuqsJvpRguOrjjfzuOxX/1w1zBwGpu45Vj8/DatN9+i65FvyVRXA/wjW99AgCFe0blOtx+Au98N9eFyzYjfD2IGReLP4iz/0cSfovmyp1DBbzngS9qUt7Z7KP1tlnUXuxrz3j3hjLsvkDx9Bbi+TLNz3xS47t9iaW/SVA83cbqvfPYvoUKdc337E6yWbUI53/NB5Bo/3rp0ljgOZl1DpPEPE4wpEePSwcQLhcA6fleRz0eZ0S+16Eixp6/amLrV+b0GOW1SSxlqbm/WJjLLHXmKhCei3CliqDhwuknSpGuBCk1X+eBaZtTqLwwAIVOQM/ZHFJh1XN1Zyw7J+jjEcawO/S7o+bA4UoVyWxBFS2B4mYKEaXwOhZERN0GxQ2J0noE/zmVYOt7aGy6aptZxWP7zj2QroW4b6vvOD+X5+Kse76Vyx/k9WPxdBup58BBCFQ92C2JoOHSsVaBw6UfnkLvrkPoL1sobJJCPq1ScaJ3dAGdg+Tv378xRv8GC2KYBe9eDRxb+igsz5t2Tk3xusSUyL8OwZYMJhmzwy/ZUD+KIEs7H1dFpp4LKwh1i5QAlCfamK+yeq0IYmoDDKVu52Bin0kYE9xSNQncvitCCWHY7ejKtfppbld6ArbaF01q+Z5WEOUKAspiBKCOgLgMRNHFq3RM9k0n6q8zGLYhWeeJ8npl0haXHmJ7qRgn6HfDJKsdfj1P9rmItxvM7hiAzuH7j35yp5pb2fKMP54dD2fna8znXSQ4167XdXGAF/oAMpW3z9/FhdXV9x/9JGDsZ+IKOByI6lm5HI1J0KHeQV79z6G3vA23H2tlepYvkn1+M5xWb9vwymfoIotB1k967a77G4xoDFZEes4Wh4/DmF+9qbQ33ydlZf0k8H3D+D4mPtd4f9NCLfUcCr9V+yKrs9kYrArH0ndgq/sOKzYBwO2LnHqJF58A8N57P6+/L56exFUPdpOPQb7AdLW88YGpEn+KKaZ4/cDedOEMKdyxtC4xUpaSAGWYJDUfokmkk85FUd19wwN1FFb7uni78b++HU6fPMadbgi/2cP+E2T1xoRPYbUPBCFqP34F0XuWkLgWOjcSaZaUJKSrcqqMhi4m2azQQlJSawo3ReqliEuK5C+TF76IUrLoNNYDXMznDju27xShhIyELhDzcxKXrCaislDiInq904VWX3Ohwu3HSugRqcclKj88lwtEn+L6wvITmwhXqhBBjEARoW4/yWX6ADs7dqUn4Jw6d0Xvecu/OH5JRMvXn/wU3nfPZ9Hb5yNoCMz9fIje//A23D/zoM6eSg4u6a6WoGFTuOh8EVHJzc2jeF503x2fzs2R7rvj03Dni2ge9dF4PkIwY8NvEdkvqz46h8tw+lRIEBGp8xMP2vM8mGmg/nQHVhjTcYxSbL5VoPYS9JjRP9JA+UQL9acT9G6qIWhYiMuzGOyhsUBEgLu6+/ohVTZb7iaRuyImi5jRPP2dxwz+CUCHXdtRiricKfalk9kacSERIEsdttnhca1/pIH+csYPSNW9BD+zE2YBSTBbAGYLKJ3YhFhpaMtOht0JyJKShTUARKAEOSxwMgh7C5i43kqr3JEa647q1Fj/SFeo8cyC21efuQYUz0j420lu3r1j22o9EZWEUSyVmsQ3PydZTJFKX1Z9Peab9lNsp2kFXFwCwprAD/44K2Dd/tBx1XViw1Xe+729Reom6FsYzdlIvRRuW+ig9auBdG4Gr/z6PJb+7MTFnzzFLx1Ta53Lw5TIv95h2Cuwfz0A7a8GkOKSlZ3JymzOHx9QFh1GUCYAItpQUe1ekVbupL6tK7Sy6uttWEECB+SF7faTXMgJh0FlE+OsO0D4NFizH74O4e0NkYbk/83vl3oO3ECFzzTzRQZWELmAJoL4piNCqkzboZtN+NVkP/VtJD4l0rOPmgjljqr4FNc37p95MCNFPVer8QHkJmgXwi/CVmmczDfV+k/IR/H48CsZma8CR61uH49foOjEgaXHlj6aKa2rlfzEcUyNb+JCIc+sAh8PARbIyH4BAE3DpsXPigj2+a0LHQ7dWoowhHc+swhKZgXcfkILdqXO5zBtc6EflW3Qq+gzuf0Yw0VfP0+6AqXTnVzAKyuy9PFhhbqRn5C0aXwQfoEsccayFEy7nTQILzkYGQDis+f0tnPb6vby39PY9zJeWOB9Hd8XfR2Y4bVmx8GYjz4AwPeoE0o9zJZm/DcrSOAqVSdA9wZSzpvXWayVOyKkSfw3vpV1Yhxb+ih81R2GKime6HVZd4S+l83PXvVCa7q5letkmGKKKaa4XpGUJACB2kkLo4ZA50ag8ENSUCbPPA/599+BtFqGe3JdZwaRMt9BMGMDKCMu23D6CRZ+NERUps63uOohmJ3X7+P2Y7TeVEFUtrD0l20MjtDfOOAzLqbwmzaRZ0Pl4zyv2EgVZusMLPTrKfjOLR2y9xgsZ7Y6NJOQEBGRmCJK4SLLWQEy0Y80OvbsiBSipfVIh0eKyNLdwdz9a3cCiN4Q0Uoj84HuDZHMVTBc9JF4mJL41zHuFQ8gvfsObN/sY/G7Q60kxrMvAW+6EYCyfGxuw+5ShpPoDZF6LvxmD48pMv1KIC++vABAoob33/UZDJeKOWKe8fUnP4VbP3UcvuooP//3GzoM9L33fh7ffOL3cs/fvr2O9zzwRZRf7qN/QxnnPlLFgf8ssefJLuxmD6UghJyrY3igjrhsIyoJuH2J4nqs7SYp8Fpg1BBYfPw05TgVfO3ZfvA/tbJunLOrKOFGtN42i6AhsPjdFoUEuwKFpsBgKYUXWaic3f0YFF/yNIEfF6lrh0l4VtMz2EqHC5SJa2kPeP47B+YyaW9HKYKGpX+f+04m/fa3G1lunm8D3R7k8oJeF4QrVfintvQ6YnBkXhPqlK9FaxIrjHd0K6fdXmbvWq1kXE23n1mOqnm4nrsb83KmJUW1Atv34MxVSDQz46K4Tp/f9yzMPJ9kHEhg2I4FIW1PKenDlSoGiy5KG2TNRJZlQO+mmrZl4nPAtJgKZgsIZmy4fZ6fx7nCF3NJ9ac7ePKrWRf4PR94BM5ecj6QLtn1jJbLKK1TN8nGHUUc/o89xFVvx3n8ahGuVDH38yE6dx++qtud4rVBehWscaZE/hTXNJ6Qj+aVuYa60grzhJxotulxNXjbzR6sQLV49YZaUQNA38B0yCXoxpJuELlBVjaxJlZY8W6FWZsiW+y4ffKwdNdjiBl3onKW7TbGbwTSdzISJ0hogXF+C3JllgK4TinyT01C+MYRqPdJXAHbExBdTk53SHkbSVXFJwueYMaFv63eVNkD8Y1vOmF//SENsuvA2eznSGJLEczAZM/zJyb4Yb5WwceTlPkT36fbo/0GLr9lcMxKByCFRjxf1hPA1HNJKeLPZmHaitQex3hIMKCO99jzePKaU/xfQN3/2Jkvkd2J+t7i+TJ15ahgJYBtA1IEDTub0GsPfHpeZHjgJx5ld7gDFbQ6X9TXvoV88cC0qmGYpDz/bgbXTgpI1vZMxnP5MfNvJsxt6uNnEPGW7yFe36DurII/8TuYhNz3wrY9rPKfFJzLav1KMSvCqhZ0zkvhx/k+YIZIm0Uy0RsCzRBfHxtfudCWdntafab/xh0lqkts/O9XC2bOwDTUfIoppriecevnz+L5f74fYY3sI2aeSzFqCCRvm0Vp5R3wznf1vc4KI9jNSP1OfsrOZh+y6qsAW0cr3d3zLfSOLqB0uqdzeRrP9rDxDiL2/K0R4nIZIkoxmhPwOpYOoQxrKZJ6Ri4F8xIBiLhHZMGqRRBrvg7FNT2vpQcEnkBUEii0pAqrV2R9SB72prVe9rrMgodJJL8V5Qg7Xof0ji5ov2aeAwHkid+8bVrgvZ7hHD6E7X0+KucyexKnGyL4e7chLtuoPr1F4jSPiFuxuoHk4BKsIJnY+Xf048ex/6unL7pWnHlWat/1S8HXn/zUBT3kb/h6F/0byhCRRO1khPfd81l841uf2EF+HjvyMGqGFa7finDD123EZRuF1QTbd+4BALLAjSQCz0blHJ37wYwNf1t5u/eGCA7OorgudWacbHfhff8FuMpmstSsIDq0CMdzwSv92skIojdE7/Y6goaF2mkKM/U6GfE+Cc985rdw14e+iPVfBey+gHShx7BxUKhq1vlvK3sZDrF1QMr7sE7bkA7gtYnsX/kvq3R9szXvXJ3scIIQcqOJNBhB+gUqH7a7GLx9L2304KxeT/BYU365n8sLtMKI5s0sTAEoyFatf4BMMCVVKLfoDYFuJhICshBL7cJQ8KkDdqMJ6yzgLszBfS4kEc+bbsTgQAVR2UaxG0J0KYi8ZPA5PN/vvI2+ey6A+q0sRNxvZYOuNAqegwMVw7o4syRj7oYdFhKX1memles9H3gEvb0u5n7WzdmoHlv6KKJb9qG3z4fTx2tC4gMkznQ2+yiPdaxPMcXrAdOw2+sUVsHPCPwxpF5WKdUIibiTlaKhvs8Cf9jHOvXtbNAPJxB2hjqSb0Splw+81crYkNUyFH7DwVpA5juY+naexDd8kbU/ZzfQZJ+7OVQ+ba4OzASI/I/KNImXnoXEFTllsVQ+mgC0f7YIU0RlRxH900vh9Q5LEZKaqB1HEO64pi5mIXM5uBxi8ELPzYVsqesayv9vEkyCP/d5mKTm68nLrEx2gI+LZ4Sq8j+DPLYKviamdcCqGkeSlVn9PG21cxnHV08YQ5lrYwV4Qk0kPS/ieWIaq8W7NFT7AFTwtQrR8p0d4+Uk65wLKetNov5SsRuJfyGYx35S0WA3sFWPtmTzvCy41r/4eW8eHw5N5/tJ6jmQlSKpGoOYlJ1mcLrxc9J3zgW2SSS9XkRPuB9dbVxtW60ppphiil8K1Hg5mksR1oDKuRDSI493PT/2PVLYdntAECKZM4QOIWVs8Tyeut4EZKWI8okWCYGUAKb1pgpqJyMEtxDxGZUtTV6WVsknmZT15H8M1yDaixIitmAPBMSaCoV3U+1VzWS+CDP7jFHDsLEYs9sxYYao8//NblwrzBT540hqPqzmNpFs3QAL39284q9iil8+goOzWb6C6v4mu0BLW4pwBpDZ2T5uR8t46nO/dUmCr+5+ccmKfIYI5a6Bt/apNfitSBecRBBPtAV87MQj+Ma3PqH3390cQoQpqk9vQfSGqJwNIF2aD5OVVNbV4vYlSic2kdR8yEoR7uaQSO5uD7LdRXLnrTSXLPjAyh4kK7NUDOv2IVY3UH+6g8JqH7JSROPZHvY82UXnAOVkFDfkBYl8fcwcFZSNTGEPZNZcbK0jlW1u0LAQNLL5fdbJk4XhAvT82WfibC3IRPupc1rQIupVOIsL9Px2FzIY6Y59OlYJnH5CQbJrQ20rGVc9IrPVOJqbs/oenWMG3xHNFxHMFmj82UUgpfdbrani9Q3IYKRJfXgerBv3Q6xu6PEurnqI58taUZ9Wyxn/45GnP3cQRGWhOjGUvU6YH0ulJxBXPRTXhkqJH+v1lOgG+rNbAVk0uf0Y/s/O5LZRPN1GoSV3ZKE9tvZlbdv0WsI9ua73cYprHymANH2V/37ZH+IXiKki/zpFOgp2euSH5ImcU8GyylLbWcQ5D2hZKeZIeNENJqpuc21i7NOslJg6yMV3tEWNnjgHMZzNIEfmmArN4VJRt6OZ7WBmajpXze3zW1oFyo+nnkP7DMDtu8ozLhus46oHf2sEO/JyrbZAFrrob0f4xrc+QcqGXUI3p7h+ocOhDdsMS1m9xOsbsOt1umaqFXWNKIJbkaWmQsLEpRLzr4Wy92vbf5IR90ZA6a4wlCE5FbaCLpopb3IdJM3P28VD3QwHFvVqzkbGtNhJq2Xy31UWXQAQrTTgnly/6GLosTNfwrEjD6vuHHo/O5KIyjbispsj7jkQT7oWEtcCytA+nwDg9LN2fPbTTVyxY/J6MSX+bmDlDAfijm9j/HmXAnNb5vbM/bE5zNZQ5XMgr1mcYos1bhtnAsMKY3q8UoTg88QsaqlFCHdPxVUPTjfURZ9kVsDfGmnSA1D2Z6prSvSGF7TCudA5YAbQWv5rF1jFhZt0FEzV+FNMMcV1jXh9A17nCAU/ujTfrZyj7ll/S907gpBCHAFS23Zprh6tNMi/eJ+P2ot92J7A9s0+lr6+iuDgrPaQZ8x97QXI5QVYp84hPbgXtZMj9JeLWPwhWWt6bQtem6xyonkJRETmp8UYFkhoY3r6A0S++a1Uq20Tl4IdycoCCOsC5VWp7/9sA8SWeX6LrHTQz7JyuGuXhDtOLoS9f6SB4hoxhpwH89jal5XiOVOXTnF9IirblBMxgP6erSBBqROQ/UvN1+eJFUZk79cbonPTHtx3x6dzCuPLwW4htxfCJFsdxmNrX8b9Mw9i+K6bya72/NYFRQ6mjai/NVId7n04m33MdAKMlqlo4W9H2uvd7Sd6fs4EMIIQcnkBWF6Ae76F5OASFfJ++hLseRLpxGfP0fz34BIAWt+XT7QwPFBHcZOuYX87uWho8FOf+y0c/fhxDJclMCQF/eypGIMFB06fFPZM7muffIPNMj302YrHtOEpPf5TSFCAbRqESNY3iLhnG03V7WrC/9kZ+NUKgoP0WSlfQeYyoXSX8FIRbnU/nG6oiW7teKDmx9u315G4FgotSXkk1TJQLQPGenN87clzfjrGe2E124DvYetX5tB4lubyW7c6ABw0XqBxrfmeJURlS+eksB++30owWHS1Rz4T+2xL5vZjuIDOjxC9IepBgsGBCorrJNiJ58s5J4fd5vgXyrKKygJBg4pdbKN8tREdWoR7ch3SEJNNce1CwoK1o5//8rfxRsFUhnyd4vEJVh8mNFluWIYwrG7fINYzHzUm2sY9r4GdCs18i1im7E99W9/MpCf0wgCAVn8yachBVNTyuosqPghzvv369zFSUX+GaKda11QVmcG5k+x+3nfPZ3fuwxTXNR4ffkVPgOL1DU3SMnGnJ0sTiOrdSPxrAeNkpuV7uH/mwd1f4Hk7u3iM68vszpkI05+dC4nqfWUw2qHOHwe3m/KYwxPAq4WMxBdE4gP6J0AtxG4/nnjd67HH+EzjapjLUb8D0GMo297Y9fplb2PSNmUw2lFUGD/umsQfAxdVTHU9k/m5ewZ3XmgrJFcr77l91gwP1vvh21nHC4fwhvElZVBcFMa5u1v3yZXigtfNFFNMMcV1Bi5GJmVJwY5hCn87wnDR18pjLqqnSpE/Lu4prUdovamCwaKL2kmaxzvdkGx2AvKJtps9rP1PR3JrgKjsoLzKNgxkeSF5+FZqfMuR8EpKVdxRitZiqsItgcImvdYdSAq6VeGbcTHzym4fJmVoVBZIPOjuu/F1gEniMzgrjH+X6p5mBcmOtchdH/ri1flSpvilww5ViCeguzI4aylouERmz1V0p2rlhU5uvvSLwN0f/MIF//617T+B248RzLhYv+8AUK3gvjs+PfG5w0Vff07pO7rDndfldiQRl20EMy7sSOZyJgAA3R5Es43o0CJ1K/g2ekcXSMyx2YfFJP6LJwEQOS59B+K5M/C3qXPf3xrBb9Eaff2dbt4aeBdIF5C1GHExhdcBWjc5KLQk7ChFcTOFUMs16RjqfDcfpm0iLtG40ni2Rwr2fcs0F65WYNfren6525pPLi+Q9dbPzijxDxUEgxlX248xTDHh+HoqXKmShakaE0UkIVY3YDW3kTzzPJx9e/Vzec0g/ALtI+9LMKL5eLUMWSli5idtnPt7VfhbI1TPSIzmUrRuEqi80EF3v6UKuRbiMnRmoXQFhgtM4tO9wemGCBqZJTFA83fODkl9Clh2Nvs75/+Gn/+l4tj+h6j7Y12iuCERz5dx9OPHL3s7F8L9Rz9JBalfQEfvFFP8MjAl8q938OBkhBIymDzJrHYylTuDHlMqeNVmxmQRk0HsiWe+1lRn8v+lRxPhwmofhdU+eXCOvR+T+Zp4VxNrO5I5j3oEof5MojfUNyzRbBsEESvz6YZSXBvmWmmzdHeRew+nG2ahulqdQxXzCykhprh+8YR8VJOfSbut2xMBZW/S7pJaWSlxTCX+a63ONf3w7xUP6H+X8r6p8g1/bO3L9BlGwcRJctrt5ccK9X/6zFmXjt3sZcU3vgZVpw+6PWrDV5Dtrv4HXGAC3O5mgU7qGOv3vAxrHSuM9cIb2FmIc/vUEpx4gDugCb87kHD6CUrrkbbV8bdGqJwN4PZjvdgfL/5xsccq+DnSnCfVu2H8bzIYIWm3kY4CJO32Dn/9y7HV4XH5Qn83f5/YoaG6MVLPQbTSyC0+rJA8Tfm84OuB2nGVjZrRZs7qrahsw45kbpEIIPfdWt0+ji19FPcf/eQlf179WXiBEIY5W6GrAb5W+Ny1Cv5Fi+RTTDHFFNcDnvnMb6G4Ssr11s0upEehle7JdTg/fYmCPn2P7i0bTbLXUYVdsqu04bcS7aO9/uvLePEfVeCdp7DM2t++DABY+voq+YvPz8Ju9uD2YxTXY4hIonWTQFQm3+q4CFLjA0g7LoJmEekwuwc5QwvOgOx43EEWZOv2JSrnQm2dwZY7BTUd8bcTbZtCr1FF+yATJ/jbkbINIeLW3RxCdAO451twN4cov9yHCGIkNV//HSCboSe/+rHX7Dua4heDb//57+rfpWehf0NZZ7CJINbngNuPMVwqIp4vo3+kAeDCiuJXC3NOdOzIwzh25GFtm3Mh2N97Bm4/wQ/++LeQbm6hd1NtosVOcT2A3eyREl/Z36SeSwT96gYSV6D8ch/+dqQKGTacbgjvPK2JZLsLOVeH89OXyDbx1BrKJ1paPZ3MVZDMVWDdeZue/7rnW7CqFVjf/hFEj66z0uke5r/fQv1FOTGHbBzSBexN4i44sHbUEKicCynoeiAR1qigJ13y0OdxgYl99sUHgPmfxlRUbPbQP9JAMleBrPpIVmapGMHuBcBEW03r1DmUT7TQu+sQAKCwSoIVk8MwxxdzreKeJysysboB/9QW7O89g8aPt7DnrzZR+eE5pEGoOwDkRjNH2lsFH6Je3bG+Es+doXXVsy8hmi9i39daaL2pgvVfBfZ9M8b+/7iK3k01zP801t0I0qEx2O2nyhqIiqN2CF2Q0Pvcp2tCVn0EB2f1WiGaL5I1sicgghjRfBGDAxUEt+2/bIFNdGhRdYJQd8P2zUXMPhNf0TphN8iqT8UuYIe1zxTXJtLUuir/3iiYEvnXMR5b+3Ke0PA8g7x3DKVtlBH95s+cXU6styHqVQpWYQsOTA4A1WEtVR9Jzd9BhuWsOYKQlJm+jWiefJXdfqxvfqa1hRXGmfe3tgSibZk+27xNfo3oEjnHPvkAdthmsPWDs9nX7cUilLjvjk8TiTXFGxvdnlYWvFr19KWASXwm7wEqHFxu8YAJyceHX8Hjw6/sIPO/tv0nuliRdns5MtQMvDN/arsu0OTStB4BJo8Ju0KRw+PQHu0Xg+ocsIIkdz2zuiQXbudaiEpEHtghtAUAq2R0EVEt8k0VEu+rqWbn82Cc0B/HJBJ/0u9XAj7mFzsnJ5L5Y0oUMzsEMJRXY/cEeq6ryfu46iGYLejjLz0LcdnWgYO516h/uUJNtQIrjCYuNi+Ksc9wtbIrXu33MsUUU0xxLWPl//guNu6w0NuXarVlWi3TveJNN5K9Tr1K1njVMnlhK4gw1fdN/9QWShsxDv/HHt1D+N7S7UGeXYX1kxMA6J7ubPaV/Z2AM4S299FwJey5gH62bVhhtug2/bDZ7kGEKZxuiMo5ieJmCr/FJD9ZQthRZrHj9PM+yOOKWO7+5fm+rJCtynCJ/KqZoBocqJClX3P7yg/+FNcU4jIwWBRo3eSgt1dg+/Y64qpHRav5IuxTa5TzowRebj95TdX4d33oi2i9bRZHP34ctz90HOu/vqy97S+G9PYjaB/0tZd+9ektPHbikR3KfGezj7O/sQzRpdDbzq/eAFn19fyf18GmqIPtXyzfQ/RrRyFWN9C/5xYEswX07joEq7kNWfUxPFDPrGNOrcEq+IjPnqON+B5ZwHgucP4VpL6N0XIZ/val+ZRTroaF0pqFQpPGhbAO9PZ6KK1H2tOfFfj8c9xyhzFYoP3sHSXv++ZtVQyXilj9tSzEWu/7BFi+B6u5jfKJFko/P687OWyj+8ck760gyVlNcr6APLsKsW+ZvoOXzkBuNHMkPYt/TOyWh5V2e+Tn3w2x+c4GAGDvNyX8rRGSuQpqf/syKk9twG9RV5PXpuMzaggEMzaChqVtRwF2R6B5PY+bcdWD9/0XANB5IUKpu3KHS0Wy5ylTN0tw2/4LBjWP4xvf+gTs7z2Dua+9gMGCg9E8We3E8+WLv/gScOzIw+gcLmPxr1YzS9kprnnI1Loq/94omHrkX+fQpNr8rCbxmRwjZU2dJiJMhrPXNf8c99QHyBuwWsnCP5nYUq9jcsf0hmObDOkJCFbCQynoAfLZU97KWcgQB1BNCKryPCJUqxWl/icVb1LzYSnPZQ5apImErxcgPPnn6rL0SDVaXBsqm4csnMXtx7QfNf+KPRCneH1AX0sGSfhaq/F5+6Yq/3Lwte0/wb3igR2TvAupisfDaUl5He70zleBr6atDHuwM4nP3Trm9uwxP3er4GvfSXhebsxJPQf33fFpui5fOnPh/TbGnKhcUB6VqQpsso0wa1bIAIkH7fkIqKDcmq/Hq8JqH9F8UYVoO1TUMPMEFOx6fYd9zTjBfyX2OxeDDEa5974c4nlHocX3EK00EMy4FNbVDeGbIeVzddUp4cECjb0II0i/DNsIiQpmXGVnQDkE7kAiaFCAVlSu6zHVzDxJlYXDeLE0p+DxvIle+WYArn6+5+HY/ocuKWzuQnhCPpq79qZht1NMMcXrCU/IR3HLvzgOrw10DliYfVoV7G/cj+QnT0Miu78JAOncjM6jYZGN/9yaFtFI38kUYOpeyT776eYWBGaBbg9+GGGwuAeDPfRUZ0ghtnbbRlKyIB0JDGz1NwsiIlUt++ID5NstPQE7kghmC/BbEcovUzaLHVI+jr8dKdLJA8CdvjJn3adtRQylLK8fACL7RUjBp9KzEZXZBtTF116DPJYpfjno7UtRWrOw5++G5PGtsn7sZg/BwVnI5QWaH0Z0zr/a+cXF8ORXP4b33/UZDBeqEBHwgz++dD/9rz/5Kdz5m3+k/89dA+Pr2PSlM6idniU7FzXfk74De34WyVwFohvo3Ax/C+S5D6D39r3w58sQoUR0yz5V1IuBPtC76xCKa0P4WyMqEHgO0rkZJM88T2pyJq2DEcIDdRSUCIfCUiWG77oZ77vns7C/98xFOyClC8iYxoXKOSrqRWUbIkxR2KTiDKvudbjtEBAdei2PJ9IDCq1UrxNmnh8imHGx8t9axJmcXZ0o2mFwnlq4UoX/s23gfA/OeQArezA8UM/sezsBzaO7fc2XQImneNvyxZOwN+tI1PvY9frEjma9fjKEPLl9W9kD6Tmwmz0s/uUagtv2kxNCc5vWZfUq5EYTjc0tbPyjo9reLC4DdmSp4GHOGBNw+xH8Fh1jLkCIUKJ/zy0one4hXKnm9k+EKWw3E1INFt1coebWTx2HdIGZZyX6ywI/+8Od5zd//++757PYBo27nUMFlU1yeQ4Jx448rH36OUeicjZA6rnY+pW5y9rWFFNcL5gq8q9z8CBo2ucw+IbCRDiUD6aGUrybtjxptazDZRHuVHOyj6YVJJmitRNkE2JF0u8GnkSLIM556QOqgm2GbCrSTytnVAukFca6WEHtv8rWR3l7SqMzgJW2bj+B9KlLIalRB4EVxlkxYTdf8CleFzDJuouR8+z1fjUtNkzF/SRcacGAtymD0RXtby4Lg8cHpZ43CXpz8jhOEGtSX4W8jv/NUq37OX9+VUQUvaG+5i+o8A9DUoMoYtjfGsHfjlBc58kmKfNEJBE0Mo98Cr3N3+Z4DOEOoYmFxAmYtH+/CEX3br74l4xqJbMmU+Nj0HARzBa0Gm1cpW9+V9qeIKS2YdP/k4OzdOCwZ2kSfxyaxA9CHNv/EI4tfTQLFb5cqxx1X3q13vaX4tU6xRRTTHE9I1iKMViisTouU44J22Lat94Mq1rRYfV6jqzuEyKIdVZK6bTqVmQLNbY7U1Z9lrGeSD0XQYMU+Wx/oeGqYvtAIClJRHUJr5MRceSHn7+HsGUFd+U5/YTU+mpOwJaZXEBmmOId/ViQ787jNQuvHaTywNZ5L1Nc97hXPICb//AFLP91F9/41icgnjsDQAUbc36bb2P13UWIUE7sIL1SHNv/kFbOj+PrT34KK//pNPb81Sbe8ZHL8wcvrsdYf6ebEzuM4/HhV+C3qCAWVz1UXujA2eyjd3QBwWwB4UpVX0M5a0SQJQz/syNJ3uiqU4E7WOL5Mnnnew6cw4d0J79YmINz+BCkZ+lO/KgkMFhw0LqZBoPkzlt33e/lv+7qrIzG8zQwFNeGek0fl20UWuStzmDffEddtiKCDpT1WxLF9QDll/sov0xP4LmsaLZzgpwLwf/ZGeouVZ8zeeZ5lE5sAqAiiCbxAeJL1O/pKMiCxXl/DatOZ3EhZ6nD+8L2xqJeJZsd9fyk3YbV3IZ1iroI0rkZON2QVP5j1kCW76G0wfN4oHJO6o7loJHliribQ/jbke5itsIo55XP1sTmmoo7oHjsDGZsvP+uz+DuD35BZRakCBoCjRcuzLGIIIY7kCitRyiux2i+5RK7tQ2km1v69+G7bgag+CnPwezfNXd72RTXGNL06vx7o2CqyH8dIB0FOVV96tvUDqU87Dhs0GJyJswUtzrU0AgjlFUfAoAVGup9IBdmIoJQB2Vpy5yyo30prSAhNX6YFQl40szqzsJqXxcA9MTatPUY3y+ebBudAAC0ikaEyrdtzKqHiSXpCbDDswhocq+98rtTJebrGeNE+bgS93JJcPO1l6LCZiWFaZ9zsX28FFzOa8zPOKmwcf/Mg9kifEIh417xAKAU4gBoIjtueTKm2OdQXK38N9sbVaHQMhTw9xU/DKvg42vbf6J/B7IuCek7cLqBzvVIfRt2J4HDXUBqTAgatm67J+V+krvWU8+B6A1hNyPEB2d1F1FaLQPnX0HSbpO9mAqq3Q3jChlW5V9oMXCxv5vP421eCsaPPaDCbT1XZ5qw/zFACyG7dZEiRrcHmzuxuCNCkSiArb0tqRXdUkHDqZ7o+4EqlnSDrDhsngPK4ulCC1HGsf0P5R+4wvCq8Q4Wc/E0VeRPMcUUrzcc+V+/hxP/6p3wnvPQOSAA3IDKCx3Yiwt49uMVHPm/svuC3expVXLhhYzIDmYLKKz2YXdIwets9nPCIN11p8Z4q7mNyrkG3L6N7Vss8rAeWOjfkACRBWvoIfVS2AMBEdEKhu7ZqbLEI5Le7iSZb7/qnnU2+xCBr9cNprKeBUGp5+iQT/6bfWqN7j9BiOCWJe2TL32H7CRUN2/i0v2s86s3vKbfyxS/OIzPlb+2/Sd4/12fQfO2KuyogO/96W9f1vbuFQ8gvP9X8PL9dO7d+GcBNu4ooveuAfByEYWmRV0oDhD/5gGEtRTvvffzE5X+V6r8/9Z/vTSbwm8+8XsAyI8/ni/jhX9cxamP/g4A6nJMDi7BCmPE8+UdKuj33/UZiG6gM+8SV5B1i1ugbCRPkJ++RwWRdK6CuOrBP7WFZK6C4hoJONy/fgrzmzdi7Z4GpEPXsrs5xD0feASln5/HY2e+RMKKN92I3k01JIfLcAbA4l+tYvvOPRBRiv4NVFAsv9xH87Yq6qcCsoMpCcRlUpoDRFb7Lannpm4/ht0JMFouw1biPXdzCBvk+Y75Inxc2FoHyLKUbJWhZtfrcPbtzXiKMATO94i/YFcDJZCU6xuQxvZ5W87ign5skmWkXF6AWN2gMRWqkIoxYVG3B8vzYHf7SAu+3rbwqHAg2124/QSldWUB1E8AUF5KQa0BaM1U1N0O0qvC+/4L8FXXBqvxE1dAehaisoAdQnXiZt9BcUOi9aYKgoaFuJji0F+OLqqsv6/4YQR/7zbKLjvfIlugC75iF6zswbH9DyHt9lBQayHL95DOzbymORdTXF1cDY/7N5JHvpWmb6S6xesX9888CEspLzNvfKoMs5qGHosyQoXheZDKrkZD2doAyJ7PhJuXTdaZJALohpgVD8beh9/DsNoBMqJeVn3YzV6uO8AkfmSlmPMqZDWRFSQYLZchPUtPGLhd0gpoASA9kfOuYysgLng43RD2+a3XvI1yiusb9xU/fFGf9ItBBqPX3K7n1eC+4ocnFjXGCxc8QQKo5XTcemcc44R8zr7Gy5R9/BxToa0teXxPjwMcwgoA4x6m8XwZvX0+7JCsdbjV0ywymhgtl+H2YyImQJkBPKE3Pxcwmeh9LVX5l0v6m8c5DcLcPYHDyeOqR0pL7T9MSisz0yRXdOHvSY3DTOhHZUeroxJX5HIGNJG/NdpZ1DW+76TdvuTrwVTwA9ALqUspAjBMBf+k73IadDvFFFO8HnHrp47DGZD3dFwmVabfirQNzan/sYED/4VCbFPPRbhCRI5VrdD9wPeQHFyieXq3l4mAur3M+mHfMgBAnl1FevsRdA6XIV0Lw3kL0gVGcymSUnafWPyeQNCw4LdoGcq/J66F+e+39PMyC00Cz9+5mK8tOxU5OC4Q0usOkIUc3/PZfif1bQSzBT1HkL6D4aKP2o9f0VYNU7yxcezIwzj/D5ZR3JAYLgjdPQIApXWJUUNAekDnUIrUS2GFFkREZH71TIrmWyiE9FLJ96uJi9mU3H/0k8D5V3bMpdiexN8a6bWyeR2aFormNchzynClmrseg9kCNm930XhBYvOtAvUXU0RlC0t/dgJpECJ8501IXKFFfmyPm7hirNAmtO3XcJHmvHz83T5t029JHdLN63/+DADxAMGMi823Otj3L78L5/AhxC+ehLO4oINngWy9syNsdmxu7hw+pC2F8KYbyf737OqO+TvP1UW9ShzLBK5Ftrv6PYVfgFiYo5yyCWsBvb2FOT0Wi33L+r2dxQXa3o37sfHuecw8P8T2zUXUTwUIGi7Zj7pZIbX8ch/Sd+CebyFaaSAqO7nvP5gtoLfXhTuQ+nUiSvWxTlyB4aKDoGFh+f/z1CXPz+/+4BewdauD2Wdibd15OcW1Y/sfInHpsy8Bb7pRC4g23j0PdyCngeXXATqdDur1Ot787x6GXbqMDL4JSAYBnv4nj6DdbqNWu6Ky0HWDqbXO6wTpKCB1a7dP6egGKW91+8pjXpFfXC02wHY12laHMW7FA+RIN34tQLY5VhjtGg4lekMildi+R0FWfaWSNara/H4eh91mrV5WGFE7pAookp4Ff1v5fhots6lv77DMiauettbgiUfus00xxRjGbXHMdkgAF1Vtm8+71rEbkakni2pSC5DKQ7a7l1TQYAsfPW7wGOJNUKCMtYUCRBawFQ8FebvaHofHBD02eKQUIf9c1QUU0WJDh3ip1/LfgJ0hsEBG0v+ylNpX4omfy3rwPZ0vAmQdC9wOS+oaYxpgtpOH+UIsQGM4Wxxx+63Z/WQWTO2IbNZyBWKjgJOOgssqaj025lU83oZ8NTC12pliiilej7jh612ImEh8ERHxtfouH1HZQe+mGm78N6sAiIRnoUz4zpuQrMzCqlYQ3Laf/l4pqvwUZcPHyseCT+uFbg9i37Im4dw+hSwC0Mp7eyBQXLOJAFLEvYhSOH0ihWaez+4Zptre7gQ6C0v6To7EN5/PQZNWGOfvP76HpObrMEeeB4huQH7fRqev00+QzE0DEqcgNN+zhOKGxPabBHr7UrRvkTpgtbdXqbz7KQpNC25boNCkkFavA0RlIvU7h9wLvMNrh4spor/21B9MJFytagXF0xmBbZ9ao3m0+gdk1rjm3I9FMQAJZXje7fZjVM+Qxc3MsxTAuvCDLgZvPwis7IEIJQqrxGGwV793vktCm35CvvzPraGw2tfvV1wPUFwPUDkX6RBsVuO7/Rje+S7iKjkC+D87Q903igcQYYrhjRQkG794EgByJD6g5uAre3YcG56b8/onfvGkfq0VxhNJfH6dXguaa6AuKfnTINSCKGdxgXLINpraVseu1/U/cz/Mgqr53ryeSj0Hi4+fhghiFFpEuBfXA0QlobLGUjh9slcaLvpIPRfbNxdprFQht5kLApH/dF5TB5X+fB491ng+uiyRjQhT9G+M0dvrwG9FcPuXrzEWvSHS24+gd1MNpx8G+kcacAeXZp06xbUDVuS/2n9vFEytdV4neHz4lcwao7qHyJtuP2efAxg2O2FEoVZhhHRzCxbG2rqU2t4y1Pip55JKU6lzYKg2ZdUn0sZzyeYnyBNAmQI/T+zo13WDvDc+gGSuQmrO3lDvM4DM69l34HRDuJuJnuwzkpqv1bduQO/HftimIld6AnYnr9Cd4o2D3RToDCbwebJmBo9O8oo3Cd9xP0T4HuxLeM9Xg3vFA9o26NUo/yft4zhhP0l9fzHCO+fJz9upVqht1Au1L+mkFlO9H+bC3LD+4kKgCGmhEMxki6aobMPpZq/nBTopy20IV8A936JtjFm26An7BT/ZhP3cRU1vHseroeY3iysAdLgwAFhemCtS2p0AUP7HADQZDyAXcqwV/eb3wNsEAND4Kj1PZZSQvRmgFE+KxBFBnBvHzcLw5V4Dk/zwd1somKG4/H2yysnEeEDxVJE/xRRTvB7x9Sc/hXvFA2j/s3chKlP44+wzEnHZRnGdhDT2qTVIKKvJqkd+0B5ZQ/inthCtNACfurt4mWxaulH3bxlWcxvuZhHDo75W21PYLXkpF5oUbhuVBEobpMAkz3uJqJzdac2Ae+k7sINE308YIpS57jB+nka3p9c6yVwFw0UflRc6EKsbZFvRbCvrTydX8JaeRd0HU7yu8Y6PHL9gyOzdH/wCBgsOwnkLIrZQfzFVHSacw0Se7IUWZTQ1nh3i5fdXUT0jNcHZ2ytQaJLly10f+uJrog4++vHjeOpzv4W7P/gFfPvPf/eKtrFj3RCG6L75BvgtWntHt+wDQER9PJ91+rOCW640SNCnuAen6iO4oUw+/Krzp/ZijOFSEaX1SCv82WPePblO25urQwTkx85FRbOgwB021lwm5iDvfkuPJXHZpn06uwr7mREkAAnAWt+AV6+jf88tqPzwHG6MlnKkvNi3rEl9Pbc+/8qux2x8Di+DEfDM8/r1k+b4ussYZOdphZG24rHmKVRc05BBqPNLxl9vA7pjCsiLefi9+f3tU+cgD+6lomXLQ/ugj4XvtiHfUsRgUShbMwvhShXVp7dgdfsobTRQXBuif6QBEdI4Plx0IF3qnpIO4PYtRCUL9VaEwSLloogQl32Odw658NfUR264Wmw0Cfcf/STty4F6dl50ewhvuQn+qS0UfQc3PrSVdTfcuP+y9mWKXy5kasF6lUS8nBL5U1yP0P5tAKBuBgDyCndGEOYI97Tbg4ULqE/CkDzzAd0OlgYhMJeRZew7j7kZsso5v0U3KSP4ZZwMs4IkP+keQ+rbQC/zzmcl7jhxz77XQF4hCsBQ88e5iTm3AQKYts++AcFe2eMhtDyRnRROe6nKbFGvZv/h606F6L6WMCfhF/Lj3w2XokjWi/bX6LNYBV+TrjmbnTDMHcsd45l6jBf9HGQVNFwK+1IFQ7MbCAD8bQp0Gn/cxJXYKO2GS/HRv1Kkhi8k2xEBO7sNiPQYG419Qy1/gfDZ1HNhN3tUUPU55NZW7bDQBZPEFXqCoQvISoF0JTZm4wU0q3rpasnxz6OtINT3+vjwK1M1/hRTTPG6xhPyUdz2O8cpgDYEBosC0gUSz4c746LkOYBScPb2evDOz+jXykqRiLFKkQRAhhWeLvh2+7n7MocqAuQVLl3AGWYLbOlBey1zxgqH3DKJH8y48LfzKt+kRp0E7HctPQsA2W2wXY4OnfSyOYPoBqg+bawVFImvw049B1aQIJql+8J0XfD6xrGlj6L5+QO48zf/CPV/8zfkV27MT+6749MIbq9jsAzERaDQJHW9MwREG9pffNSgbLbS6R5Eb4gbvk7bz2wM6fwHkFMvX0089TkqRmy+1cGN/+cXMf/DS7cmef9dn0HrTRXMHT6U/4O6dtg33d0camFdrpMT0NcQAD0G2M0eKkGWcWGu29lXH2zVo8YTOVcnRftcXSvAo7KDqKxIW2N8SWq+9lQHoPzwiSsIPBvp5hbZfY2p49NRABGmiM+egw8gvfVm4PwrWqCoP1MwAq5wnq6LAGOv53OM7YNz3EYQatEi24imlSLE6gas+VlYbGmm1kKWP0tCTOUDz59hor1ptQJrdQPp3Ay8810UGq4uxkiXLYnoO00O1OH2y/C3ad3kb1Onc2+vpzqnLNhRppi3I8rFso1sgsvBfcUPA//Pt6NyBqici1A83c6EnePPvePTEMq6uXjasGX2VWdWEML56UuQ6hhMxTlTXKt4+eWXcezYMfz85z+HlBLnzp3DDTdcfi7PlMh/HYGVuEm7TZXa+dmJgYBWGGUe9OMIQ7ohQE1q+XFvTJnpeYD5PB1WSz7MVpAgWZmF6AZIVqiowN6beh+Qkeyp52QDsnoPreIE8j5yyAoASc2Hy56d3GFgeGfytnk7fNOD5+kgrcd/9PuXfpCneN3ArtdpERoQKc0TvUkEvqnYMBXaTNibROE4ia+7ScJQB7m+1rhSNf6lTnpeDYk/3pJqFhGZENBWPOPvE2zl1CwAMr9eDs+tFCG5rX9zmIXcGjZbPF45KsTJjmQW4Gfg1RD4FyLqr5YS37T+MS2e0iDU4eaZDVFEXVQhFVq9bqA7onT3FnYn8Vk5pPNPKkXthwrlXxqVBXwViMvHPRdkrt7j2NJHd1jlXAxaWXSBa4jJeF3M8I1FefHDE0OcGdMJ/xRTTPF6R3+/hN1XCuEYCGtAXBSQrsBiWIY9fxQA0Hg2I7RSz0H7zTXUn0YWvGgWi7mwzkSUR+HoiUdWOUBG4Ov3LNG2RSgg3RRuXyg7vEh30woApdNjXX9qXm96XwN5co/J/BxZZhCAotlGOjejs2M4HJfXL/7WCF9/8lNX65BPcY3i/D85AncV2Hy7xPYt74aIgcoZ4M7f/COIKEXzf25AuimSUoLimrJ4CqkAVdqg+aS/HaFzoIi47CAq1wDUEJUEZp4fwjvfReLW4bcAgLpPrlQtf6l45jO7dxfsht3O9bTbI5sTReAjCJFWSWFves3z9caFPi3aCEKMjsyjsNpHUvMxXCqi8sNz8P1FPfeMyg4cfj5ofEkOLiGYzebew0UHbj/F8EBd5y4lKvSa3kt13s8X0dvrwe2naPx4C1jZA/nSmdxnchYXsP33D8PfTtD+Z+9C+7CFG74xhP1SgPCdpOge3XUI0hWofftFOg4qz+lSwXNzgYy4Z3uceH0DzuFDurOIi5LclcAkfvvNNTR+vEXuAj1aH/Fxcfux7oR1+7O6KCKMMW48zy0+ew62Klj077kFlRc62L69jsESFZnCmkBpFegvCyz8hCzMOm8jS6HEA0rrERLXQuJaGM3TeF7coDk+Bd3aumjb23v51OKev9qE1e3vKvI5tv8hBLcswfFtpCE5P3CA7X13fBoCF7eQmuL6QJrSv1e7jWsV//7f/3vcc889iKIIp0+fBgCcPXsWt99+O7a3J1uTXwhTj/zXGZ6Qj+IJ+SgRYEzIVCuaUNQYb9MCtIVOrhI6yeJCPSarvm57S32b/ilSfzyAUvqOrpozETSugGUfPQ58yVloILPOMCffIoh3FCS0D7ZRXACgK+2p2r7d7E1J/CkuC+MEbBqQ17tJOGvvd3WdMIGaBuEvhMR/rTHJUuhK/P93kNkTio6ToIlmM0xbee6nQagttJhItjsBhbmq8SD1HDU5pvGFn0uLgvwE1GxNvaTPcAm4Wup+Vvabx36iEieM6HOxgjKMtP8ogCzwLwh3V+KP2RcBmVVZ7mnbiS6Y5DMJdqprtP3NZeAJ+WjuGjq2/yH9+3gB7rG1LyPd3MI4psr7KaaY4o2Kl/75x3Di47+F8qpE+2is7G6Ag396GsGMTRY6ZfKeHx6oayHMzPdeIdLpln2Zd3wY6vtwurmlc7oQhoirHuwQcPvkhc1+4lqZP6D/uwP6e1S2tH0DAO1dD+SVvGR7I7RnszQKx2wZx2sRgBS+mlzs9mn/VHZM6tuI54mYNG11piT+GwciBqovCVTOZo8FDQvd/QJehwhLeyB0UHShJbH43RbcfoLBgoPVd9OJLSJS20vXQqFFIaytt81CehaGCwKldfmak/hXG/KW/UQSsyiuWqb5sytIABIkcM+3IJptiN4Q8YsndVFMGrY3rMivPLWBwVtWtJpfBDFKPz+vC21ptUxFwiDLtqIAVfJjtyOJYLYA0RvCPd9CPF+GrPpUNKz5iMo23H5K1jDNbZ3XZ86R4/UNVP+/TyKYsVE5F+Lgf2rRH950I9zNIaIVspERkURw237E6xtXROLb9bruLpYbTYiFOW2bw91B0XwRwYyb2cOoefbgQAXStdB6Gz1fVoqk0A8S+FsjSE8oEj+B/9wa5Qw221rgxH76+ntU6xQrjICVPag8Sd9TVLZw8D+14HWo46RzI1mgbdzu46V/tozBokDlhQ7tcsNFXKYiFkDjeNAQiEr0XY4aFFweNCyM5oCDf/yFSz5mjw+/gq899QcX7NRNVmZJ9X9qDV976g8gz67m/p567kT7zSmuPxCR/2o98n/Zn2J3fPnLX8ahQ4fw3ve+F1EU4T/8h/+A9mWMMeOw0vRa/rhTvBrcV/xwXh2svC4ZVnM7U7aOhRrmvPWNIoDZBhbPl2F3An2TBjCRDGO/eg6lYuJI9IY0weYwq26g9yllH/4xj31W/vCkHGYr3Fjy+3iQJvvIsXr19UCqTnFlGCcRZbt72aTsOIkK5IlUsW85Z10FkKf3/TMPXlfnnqlyNjFudXIpKv3dPOMnkdHjyv3cawzPyHQU6P/rFlMFLqIAyHlSctcQPSfrIhK9YW6CeCGP+9fCGsd8j922fymFAKvgk/WM2RFiBtmqQpOsFLXSSm40d3pxjtvXaAsF2pZcXtALN3Mc19YFaozXNgfAjrD0q3EtmN6u9xU/vOOcZOscGYxeVXbEFFNMMcXrBfeKB2DdeRtO/kYVN3wzwKl/6OLgX9Ic3+mGmbgGgNXtayJvtFzWoZQ83+ZQRevG/bC6fSQrs4irHqKyjags0F8WylqHSE/pZj/ZY9xvZb7ZrMrX76/uM6xg9bdUmKOy3+C1CL8u9SmkkZW/difQ2wDyWTla4fvTl66rudkUV447f/OP0HwL0HjOwszzQ/T2+ZCuBb+VoHWTA2dI5KaI6TytnczECNKz0DnoIKwBJTVddAdkKcIe7XYkETRcRGVSMbMa/3qZ/99/9JMIV6pIXKGzlHgdD0Cv5c0xIF7fgLO4gOiWfZoLiOaLiMo2imtKOKPy8JhDcDb7tO4fm2vKShHRfBGJK4h0PxtABOSvXz7RApDxEdFKQ48JVpBQ1xDzCGq7/LvcaNJrfu0o/OfW0PnVG1D78StAt6fV8vz+ePYlWAX/kol8Z3EhF5bLXd+cOQgA8Xx5xxgF0Pga3LIE/9SWtimK5otwuqF2M+Cxi9X68XxZ5wpoGN+Dua7VXQJqvcXH5ez/fABhHZh5VqK7XyAuUVfKYDnbpIigyX4u/DK8Dv0dIFud7n5ld+YCB/5sU6vmXw2O7X8Ij535ks5u43PT3Rzi8R/9Pt577+fhff+F6+K6mmJ3dDod1Ot1HPm3vwe79OoEb8lghBP/9PNot9uo1WpXaQ+vHqIowl/8xV/gQx/6EO6880783d/9HdI0xW//9m/j3e9+N971rndhfn7+krY1VeS/jvH48Ct6cs3IKSNZNcyEuTdBfW8g9RytbOEbCpP4VCEWWqFP75W/+bN6U/vlseVDkCCuerT95YVcsUEXGFjBb3YIhGFmq6HCeHNhlROyAZjYmQ74b1yYQZjp3MxFz/vdsEOZPta9otXAykPW8r3rZhK/G3J+uFcI4Rd2JaPHSfzx3/XzVBcEF+Vy+8j2L0CevObXeqTii+azIqLuIhoLjfpl4dUWCSyjqGl1+7lupHRuJj/Gckvzwhx1ZBnna65LgtWXY8fU6lLbNBMqO/ZF2frwe+4I0b0KsOt13D/zIO6feRCPD78ysag0JfGnmGKKKTI8IR9F+r2fIVoO8co7fRz51x1lByIwXCrqrltZ9fU8WvSG8LdGWccsP16vQuxbJlIuJGtMVsizL7iI1D/1fybz3QGtDdiuw+4EkL6TV+KrtYXdCWBHUt9vuAOMCX4AOzK07E6gVfqZ5aarrTz5set5bjbFpeOeDzyC9mELXocIdukJVM4GmPvmGZ2txEUngEj80s/Po3RiE8XTbUhXoLghMfuMhB2liNV0SroCiQelIqff3T5pJXt7Hdz1oS9eN+cYBZxKHSJtdwJN4pvQa27PIxsZJs69nfNBU+TB20w9h4juza2su179dLqhUp5Tnp3oBiid7ultRCuN3Pb1HLRaoTHIzziO+K03kognGCG9/QjczSHSahm1b7+Y6zTV3UYgMZY1P3vJXbQmiS/8Alm2coFTrUtEkM/qY1vh4JYlBA0X6PYgf/I0rFPnIEKJuEqCm3CliqTmwwpj+Nt0jrrnWzv2QQuceF5vCI/sel2vLZKVWQS3LGHhJwGcATBcENjzffrdjlKUVomkZ/gtqa8HJvKdQdZhBZDFzp7vB5r4Hx7IujKuFPcf/SSa792v5/bHlj6qSXzr1DkAlLdwvVxXU1wcr16NT/+uVfz1X/810jTF29/+dnieh29/+9v4/ve/D8dxEAQB/uW//JdYWVm55O1NPfJf52DfX01eBiGgiHiTTMmF0jLCUN+UWdXCHtKpb+cUM3K+uMNmwST1WWVjgi1yAMB/bi2v9lQ3YlQrmWoU0Er8tFLM/PtDtozYxfef328afvKGxr3iAZpoGrCa20iD8IqI03ESOQ3CnGc+K6JzNlbzs9oO5EoCP3+ZsCYUxGQwgv0qSW/2kryYhY05mR4nanOWMKq4x8GqWpUz9l3sCMU2xj/OTJikjH8tlfhXDQYBb3YuWAU/K3IEIazxgN8JgbcWDPI9zKykrIIPocKzpCfgdENVEIlyizXqdlBjve9RHkJ49cj8e8UDsOs7FwzjE/spiT/FFFNMkQePi0c+dxzbt9dR/zd/A3f+Djin6X6oO3dDlbsShrCVVSAAJO02nH17M3sdA51DLkrrEqOGgNcmgshvkSWJiIgcikoC0rVQWt85d4+rHoQvtRjIDYba0k16AnYnyZH2rNL//7P37vFxnfWd/+c85zajmdHobslSFDuO7di5AwkhEAIBxw7bUratYQu/tOySXWhK2QTacNtNgDYJpOQCy2WhWbZsKN1db4GyC07ilOIGghsgiZM4V+JbbEnWfTQzmjn33x/PeZ4558yMNCONpJH0vF+veUkzc85zbs+c8zyf5/t8vkEqWX1yGx0/8tXoiOHgj29Z6CkUrBKu670RU2/bgomraLtHmaV2L2zWoLG9F8R00XrChZJ3qNXUFLUzYTM5C720zrDBKTXvwVGlwPuSxZOrSpBND7LlcYud8z95Lwbue6Lp+6EtDz0N603nw2hT6QyDmcBsY7OUkBoAzYmRzZWsY0CjydVx2m/XpyzYKQ1alg6ouYhTodoPIuSBJaYJa3MPiGHD6IhBnyxCn/KT17arUPw8ep6mwk3pUI+N0lx8hg3dsJE/KwHSrkKf0qEeM0PBfuqLp2huPD0GMpELWQ+zGQFKKgmw75JxGJv849nUAf2Zk/PO3FZ6uvmMYGliCsaFgyCmi9l2FclDx2gfcXwSHgAk++m5zBVgdHXgzOt0xMaBVoC3Z9nx5c5tReLVPAq9ccgzClqeHYKXSsDpTIK8eBLYuKFkI6RrVQcegjML5KFJyKDaT2xcR2zaRa6ftsk7fklnLWR3dsAZo5aZdkJG6zELdkLGzNkkNGMFoGJ+yyjNW0JsFuC5ODH1jXvvRgpAZouEtu2DAACvsx0/OfCJ0HKNiPoXNA+e/1psGc3KBz7wAZw6dQo7d+6Ebdv4+c9/jr6+PmiahnvuuQcAUCzWrjMIIX+dwKZa8YcMTzIbEHKiwoquhaLvAYQSQjIR32nVQw1rgD7gWRQ+MWw+VZaJ+Z4u81HpUNb2bD4UIc2i9tlyJYsfu9wGqEryXqBkbdLsjSfB0rCL7A03brSSKFmP/2ElJF0rCffsMy0wKBXcJsAF5T3tN5Rtux6xMeoJvpRCZXTAgtEIv/e5bGTqJSg+I5Usnf/ALB2SK3DLFyAQOcRyhMRo8mN2bI3cv0YQHdSouEwmWzargA+6+AnLJBat78M6U1y4D9RnL5MtHzzxZ0QQTQOQgqsrNPF4cJnA/ZrfvzU1NOi62FkqB9x9Zb734j4vEAgEtUNsIDsogfzBFTRRJADv6EneIZZiOn82YOMGeEdPci9mZoUpdXXwfECSaYOY8L2tPRDLg2wCxPRoFLQfsZw8TcWhYLCP1RGDq0lwVQJ92oKraRHErA8AAQAASURBVHBUAuJb5zDbDja7l0XcBwla50mmFZktTPscbkoHyRo4KDzx1zxXveuvMPNvtoJYgJNwoWZo9LA3PglpHJh+xw7oUw6UrAl9mgYmxIYdWF1xahHVG+d1FqBCfnzUQG6A1qtiGxXvY9OlCGVieSi2Ebh+ZL6a95DrJ3jx6xfgnC/fjdTRkinC4ftqT1J73dZbYGzqgNGmIvXc5JIImdI5VDjVpy3k+jW4WhLxkULZwBgXkFNJwDBhnzoNa+tlcDUJViLJf8Nsts30eUl0/HIC5uvOhfqzIwAAYppwN/VDmsjAaFcBqCCmF8qH0XIiB0+XYW1sgzKep/qBrnHbrGJfAkre8ZOuKlDhz0Dd1E+TWxsmJND7GBtw5BH7msYHcwCgsLUL8RMZzPaoPPqdH+/lF8J7/JmK58weHYNsmDBfdy6MnR08+SsAtPhtcqmrgwbRTGSoLtFFr2NsHLATgHHhIE9e671wFNLYBFJZaleWHAK1MevrxuzZSehTFqSiAS+lQzaTvG1PAsl1K/VvWWCTsamDDjT0AS1jLpKnHah5Fa++swtKAYiPuXBVCa4m8YEt2aS5IgAg7g9imX4cTbGNoNiWQnzMRWYLwWy3guu23oL9L99Vc70L8vN9HwNABX2W10uI9oLVzosvvoiRkRF8//vfx3/8j/8R//bf/lucOXMGhmHg7rvvxlVXXYXXvva1NZcnrHXWEZ4v3ISsJ6IwkS7ki08j7+UZw/eZtELelQD4w7Ysya1GeONcMmgiRD5tVlPD0cp+kqzQ/gaiR8uWZQQSiwa9/nkkajYHr2gIcWedI8X0MgupWnzdKxGKDg9ahUStSKrhW5dEBdlak/VERfxqny0Wtj9simg0se9CiCaQrVUkr3U5Pp01kLyVJbgGwO8lJFcIDBL69y3T5NH4zUy9+8eu2VzXjj0b+DoVbImq7YOSNelArT84QnI0cpLlHnBTut9RCtzPgZoTHNdKs183gUAgaEaUWRZVSWdUMYEuhKbB3T4I5/mXAFAhzDWKZc8VJ5OBlM1zAR+gkcrMO1yfsqDkHehTDlxNgqPR6Ht5hvpgMxEfKEX/cp/uQAJcYtjcWochGU5ppnBQvDcckKwR8v0HhDC0Xpg+l3raFzsBNUMQm6CWHF7RADZugJp3ERvOl/VtAcBKyNCnLBCrNIuTWC6MdhWuWhJr1VmXC/3Bz/RpF2reg5J34CqA/qoGyaRJQYkFmK3AxTfdi6veNX+C0OsGb0Lu/G5YCTpwld/aVpbza7Hsjl8PN6XDUemAhpr3uLBOJjJcQ+DtuUAfXNmyGbLlwkrQ36+VkDDbo8JOaTA3ppA8bSK7swP6cV9M9/tlTqsOmCbiIwXugc9megKg2zUc5AZ06r3v2+oQw0axLwHZcmH758TVJBjbe1F4wzbq0b+5h4rXqSSNXk8leZ/NTcZ5O9TcmEJ+axvshIz8Vlq+0S7T8i4chPWm87mgXAkWSU/zgkhoeyGHthdyaD1WROZ3L4GUSsLpTGLm9WfRGU5dHXA6kyi2EdgJWheshAxzY4re3wb6QAb6aLCRafLgMzKRgT5lwUooIN2dfJZCMBiTBSRVguUJ0IaykGcMpF+h92T9mZNQ8g46nrd9yxwJat6D6+dJaBml1zs27fIk5eqsi/i4x8V9V6MWO2c9nIWdAGYu2TBPbZuf6XNJeaCpYM2y1q11AKC3txe7d++Grut46aWX8OMf/xiEEPz617/G3r17ka4wy7waQshfJ7BoXZ7wNZK8VjKtsD+dYdIRYf/FRC9mccPes4gYNpWQlkU94NTxQukhbNjcR9lp1fmAACcqgPpCpzdOs8972Rz9fOhM2POeiU1BoY7tB4uU1jUh4q9jyqLxA9Yh9Qh/1aKgQxYhfqQ/tyAxwok9Wa4HGpmsgaRTkNNpED3GbX+i0cXV9qXSa3f8euxpv6GmMhZCtGHIGou1ivuLjeCv6Jcf2TZJp+h++QN47OVmsvQ1NgF3bILeW0zLv5dZ9DoFBnmC22rEzINGU+lcsEESJq4Erw07Bi+bo/dRoJQjxb/nAuH8A+7YREVBP7RtkyZFDOUZMMyQaBKM4uIzsFjkpp87ohEI+xyBQCCon41feAyuQtvyvJ2fTnG7QIDes+XjI1ywCnpCu5ks3FPDcDNZ+qzRNejTDqwWAjXvwUoQuJoEYrrcy576XztoGbW4DYerK1zEj48aPEiIifbBGcJMtCe5QplAz/fZXz4YZORpKpzOJB4Wkfjrhux2myfq3PS9aWz8ny/Def4lLpTqUxY8XeYzzI2OGE82mnh5Gsp4HvqUBVeVkH5uBvGRAma7FTi+kC9bHk2WO+XA0ajQz4RPfcrh0eLxcQ8tI36S3RfowABLGDrbPb9JgrG9FwD4b8RVCYwLB3HtFZ/DnvM/jeu2NsAi6rxzaKJoTaIWN9MWZMsNJ1Zl+ZKCgVGpRCjgLng8mU06Mpt0GG0qiOXC2tgG7+KtcDIZuGMTUJ4+Cmga5IkcpGwe8V+8BCsh05meQ9NwO9PwdBlq3kVmZyuIYXMxX58s0kGHvMMHWxyV8FwFxLDhbOwo5YwKaAVkgirQxb4EH7Bh55Xn9jA9GqxiujC295ZZtDKcTAZSis5c6Pz5CL03vXgS6tA02h99ldqSHR9B67+8CuPCQXiaiunzkohNu1DyQPK0jeShY/xeyPqL7H5sj47RCHtdg9GuotCjwO1MY/QtfTj2b7pgv3IM3tGTgElnmlfqI8jpNB08MUw+0Jl+bgZGu4qpt23ByBtUWAmCjf84jXwfrdtK3uEzT4hFk5InTxn0vp13oU87NNnzrMtzQgy/KYViJ9D6L6/iml2fr1bT5uWqd/0VXBULjuoXrEK8Br2aHFVVsWnTJgDAWWedhVgshu9+97s4ceIEXnjhhZrLEUL+esQwQ1EoXMSPCOHc/860fYsbKxQZH4x20SeLZZExJFfgkfzMWidadjDpopdKlCKmg+KnpoXFumBkfkSEYssDAQuQBSYzFawtglYhtUQCVxJvg4mDKiZEjUQNsKShwYhwPpvEn9Ip6RpNNJpKhvexDqSYzl/sfSOJRtGvJLXsRy3+617RKFnvBMRqZhcQJThg0iwsZGYDF/eDMxSCtlCpZKguzQWvb9m8/5ygCcvZ76DizK9sjg+yLLS+R2mm+ikQCASrESfhYvR1NMjHHh2DPTpWsqvz2zLOJl9IrHK/DT47iEkjNpnFBDE9uFqp20lMD1aCet6zPoE8Y4BYLuKjtM3PgoFcXaEDxpX87v3Zu5JBPfPZi2QNbqPHgpIY1ZKzC9Yeu8hewJJALKBlBMALR2GPjpWCG3TZt3QBnxUiWy6fDWJ3Jfh3Hb+c4HWL4TLXzGkq1utTDohJlSQm5qt5G8RyucUOS/BMTECJpKebC3W8AGJ60KfpDAHii9Us4p37ui8CFqDHjoGYLhWXAzmUWLASPfBAe1vXoGRNyCYd3GAUuwAzDcz2EB6tD4AnYPWKBg0aMUwaQFI0EB8p5cYjExkYHaW2NxP4GS0vj5e+U+mgIRPz7ZRWNtOC77tp8gFJtl+OhtDMCleTuJZBTJd77VfCy+ZAXjxJ93l4jAbEJOPwsjk6U9jP/6dkTeS3tqH9cMZPkOzRRMuaVnFg0uts5/0Pb3wS+pSFQpeEYl8CE5fb6Pm1n/fDKIaDxyrt46Z+uJ2liF9m05N+bgZnPVJA8pSB8de1ITYOzJxN+EwHRyVQ8zSJudGuYranZM2cPOUHDFk0J8TGf6TXZuS3z4b+zMk592cuWk7kcNbD2QWvLxA0K2eddRaeeYbadCWTSbz3ve/l3w0MDNRcjmjJrEf8BzEb4WTJN/l3vvDNHnwsIj+0jGmCsKh+v/EsGQ5vKLNEtmy9YOPb1RXaKGeDA0Ap4Uxgih7zeAtGhIYEOr8hUVEMMksJGVdbUlFB45FiOm+4SKYdmjYebZAFBUyC8imKcwq5LKo7mMwzMDDFEq9yj1Z/n3gndiIH0t1Jp7b6HeVqUcYknaINwyqwKOegR2KwrEpWPAfcffzzYAJR5hM/X9LZ5aLSfkSF50rJeaNQ38xcqFEv6XTgMJpANZjgd7moxZ+/2vfRz8vqLRvwTCX4/VoyLTobytTm7AxU+w2w+z2z2JGyeRDmyc/qvF9npZhemh2zyHokIvEFAoFg4Rxw92FP+w144fbzYL9yLHRP3dN+A420T6dockWf6PMp9AzO5qDm22C007aN1ULQMkq9shVQKx1HJb6Yr0A3bN6PaDmRg9Oqw0oocNupX3ZsOM897alo7z+zsvnAwHE4WCgo3vMEtymd5+8SrA9eue8KnpRzlo5D0cjkVJK3VVyV2sAS0D6qNkTbKSxgrXA2bQ/qk0UUeuNwz0ogfdyAlZBhtMncgoTZR7FZJAAVWoyOmC+CeiAWHdiyEgSy5cFKSNCnqR/5pX9yLzqfLUAdmq4ahczKV0FFdqNdhavJfPtvv/oOGO0q1LwDbSgL5/mXQr/n3ZfehtmzqX998v89hYcKD5RmLp93DohespYBAHnYKAX0BQLjWE4MDpttDDqbBj06HI1atBALUArwZ0VImNkcQ9sLOTiZDOR0mvZTjCIUFtika8BEjiZk1VQ4GztQ6ClJVrkBHXLPBih5B2reBsuQwfIY6NNUv2C/c6dVB5lg+xkIFtQ0yOk0YsN5GO2t9HhN8Ovo+IMCbHaGq1GbFzLQB/eVY6Vz5B8D628pusbvmZjIwNk+CHloErNbu9DyrAl5IodE1sD0JR1oGbXobIDjk9TW2Pfw9wB4YxM8uJjda8l55/AB0dhwHufdZ8M7ehLV7mhs3+R0GlJXB1z/PsvOS+LlaZ7DSj1G97/nGDB7wUbY0zKKbbSeGu0yWkZdxE9kUDg7DaOfwGqhtkBJlcBoIyD+AI7TqmPTHU8A552DoX+ztcqezc9DT3624dZRgianEdY4da7/9a9/HV//+tdx/PhxAMD555+PW2+9Fddddx0tzvPw2c9+Ft/85jcxNTWF17/+9fjqV7+K888/f3H76dPR0YGvfOUrC1pXROSvQ+YbrQ3CxfjIOl4gAqZe5BkjFJVTkcD2ypIssojOgDhalujWT1opEAALFwprrkPBPA3sfeAvG2xiSYa8QIM3mKSNW14FtltJcCfpFP0NsohoP1ouSCXLm11kL39VIvp5zQMYK4CIwK6PsvMVnF6cK0U+8cEon1p/O1I2z+/DXFDxI7j4LJRsrjzaX9yrBQKBYMVxMhn0/5MEc89loc+9okHFNX+ZSoPawXu4pGtw+7qhvngK6edmuE8+E9XKc2xJ/POgGN/yxHGovlAXDBZyOpOhWb2s3QSAR+OH9j8g6ktGKaJUsD5Iv0igZgiUWWDzPUfgXL6Dt8Ul00b+rASI5fKcbsrTR3mCZMlw6ICSJvF6SkyPzxghJs0DwWxdmPgL0MEqgNbr2DBtA1ERnor++pTDI/RdVYKVkEBMYGpbHCPX9uHy998TDrRDyQqGbtvfZ5W+iO8TnxvQketXkNmkI7+1DfKObdxyZ/eltyF3bitGX6tg/CKC2d0XYfelt0G6/EJI5wzy2Qa8TLMUVc9ntFSYyUr7NSWhnRg2FcNNGqWdGKa/fSUPGG0SCl0SHVC7eGco2MjNZEtt0yz1fpeyNLltxy+pEs9m+Dganekgzxglz3zLhZov2evQnBuE7yOfGR2YKe1t6odk2r6gXjoGJWtSS6G8w2cGKVmTCu3ZHJSebihbNtNzEwn+sUfH4BpFOrPp1GnIQ5Pwsjk6c8DvqxXOTtP7o+kieWQMnqbygaXgfRaIWH0Oj0H+x1+j+zAdYGE5Sxh8MKGnm4v3AI3ED94rg7DtQtcwe8FG/jlL4swsc3jdTlBRv2XMRutx2x+wobNTjDYJhR4dzuU7kNnZir5vH6m4zVrZP/K1Ra0vWF14XmNe9TAwMIDPf/7z+NWvfoVf/epXuOaaa/A7v/M7OHKE1t277roL99xzD77yla/gl7/8JXp7e7Fr1y5ksys/W0QI+euIB6fur/j5/pP3VbQaYd7R0Yc1t2EwTD+K0+ZTXvn7YAQ/SlENLHqfJsYtWfWwEWiOSUVKKZUE6e6kEdW+x/WDU/fDKxr8L7OJCPmR+8JmLRYbgrWPFNMD9dOqardUTVAsi/autFxwMInNbNE12tFMJejvhov4ip8syi4fDPPrbFA4D4rve9pv4N7i0Uh0Vt9rEV+DVjFyOs29+gEawVGpDKLHahJdg17ty00wN8F8/v08iS/zk2dCdIVjXKv2Lew+TCNySkm1gp2rueC2UYFnCLdd8wdcWU6CSoPI+0/eV/XZJBAIBILl4YC7D4lX88j1h8Ue1yhyawhly2ZuP8eEq+hz0TNMSMdPA6D9CH3KQftLJQ985kMu+8JnfKRARb1cAdLEFMhEhkYzp5JUTJspJbgNCv3SxBSkbB7O8y/BPTWMB4/cDnloEg8fuhXS4Zcxe3YSVlccdkoLWe7Ilss9xgVrn66vP4bYBBAf9+BuH6QfmrTvaXclEB81uFgrzxhc8JQnciC5Ahffmagt+6I/QIVkNe+W1SmW2wEAzydHTNdPHmtDn7ZgJ2QoeQfxUbui5Y7RJmF099nYfeltAPzZ8751DQAe8c8sdtj/LDI6Nu0i16/gxO91IXd+N95+9R1wWnUoeQdahia4Bujvyk5psLsSMDpi/Jwo+XDfhOQKlW1JTRNuMl6age/nrtAni3SAJJAQ2E6AC7sT5+vI7GwNec67RpHn20AqST3fAS7oJ0+bKHYChW7qYW+0q7C64jDaVX6dAMBoo++jFlpeZzuszT088S1SSUimDTelU09+TeIDMgB4rj+WLFsyHNgXnQNr+wBmX7MJM5ds4PZAldrM3I51bIIL6sjmgGyOnp+JDM094Pv3k1wBUlcHL7NSv4PlIVGyJs3zEJkZRfQYpMsv5J769ivHoPR08+OUDIfnLHQ1wgdgmIVUbDgPa3MPcv0q9753NDpTwU7IkEwLrU+d8WdD0DpitbCcDXSwRsk7UIemcehvPyba94Km57d/+7fxjne8A9u2bcO2bdtw++23I5lM4tChQ/A8D/fddx8+/elP43d/93dxwQUX4Nvf/jZmZ2fx3e9+d6V3XQj56w02yltTMsyAHz5r9LCXxKeyWjzaMpTFPkLQdodkqQdhqGwERuJZpL0vwDE/5YcKD/CktcG/ZYlsg2UYZsMSKQpWL5KulaKCfSoJvGWzPyIJQyvhGWaZN37N+8WSrfoN39D++p3loKDP6nJwgKrSYNV8YnuwTCmmh8qoJuLXSr1i92JsUYLbqrbPtQrw7JxVEpuDCWOXc2bCkg8cBO/xCNgP+PY31c5dKB9DcHDXR57IgQyPla1XCTZtttosEYFAIBAsD/LxEUxvrx7O5p4aLmtzzGc3KFtuKDKWC5ABexslS8XA6OxGeSIHMpEpCWnZPBfUPMOEl83hgLuP9wOYleZDhQeQOPgiL1s+PsLLZIkxBesHmshZwsyWBJ2N4QfW8DppulzgBKio6SbjcDpLbRtXk+hAlC/Yc0Hd9Gj0ty/+MhGYGDTIzdyYgjxjUI91v/9LTDdUB6nnPY3MV2ddyJaH+JiL5GkLTqvORXxPU+lvIfAbIib1V2ciNhsQUPIOXBVInaSDEMz/X83b6HjOQttvXJ7clUX3M9ShaX/AoiTC86jtICyvnY+nKaFZMWreoclQ8zQ/wMbvnQAADHznZfR8+THk+wjNqxS8VpGZPvap05AmpuCOTUB/5iSIRZMDs2hxZtHFPPFZDgFqi0Noolr/fEmmBfXYaCkyPUuT60qGw8+hqxIu3rPjIBMZbkGpDk3z8loffQWSrkEZ6KfLBe6FcjrNk4W7RhHuqeFSQIumUR98sxQI4/kCf5nDQATWLvcef6Zi4l3XKGLstanwh1p4xgRA6yezkALAB0zHX9eGV98eh5kGT/gLgCdxdpPxUqLhF0dgJQiKXUCxk14XAJjZrGLijb3Yc/6nAaA2zUkgAOD51jqLfQHAzMxM6GUY82sbjuPgf/7P/4l8Po83vOENOHbsGEZGRnDttdfyZXRdx9VXX43HHntsyc5DrQiP/HVG0AM7hO/rTT2jUXowmyVBHMyPXi81tD1N9X3xFB7Z6SXjsLsSkGeol6WbjIc8wL3xSRBQ/zdJ17B/5GvYHb+eN8T3tN+AB6fupz7hYxOohejUqz3nfxp2Vw9NhhOcUSBYV3DfRx/ujc/sPOr0fa8qkLM6pmnhiBX2e4q857NRWPR9rhCe8qhpofXkyHaZ2Ey6OytGyAQ72gQoi9Zg0+SD60q6hgen7i8NFgS2GT0n0bwB7BxWEn25r2OF75mIz/4uVswNzlCI7nNwPyodA/s/eo1ZlE2wjtTiXd+MBOu6Z5glv9NgctpUEpJhQo6cnyBliaODOSDMygNLfCpzAPZ+d/x64XMvEAgEK8z+ka/h6nfcheu+eCNvVx9w94WEmGhuHtcoAoFnC3+GppLUd3m8QCOBfeFTMhzAj5Qlpss962Wel0stJXvM5vh+7I5fjwf9fsLuS2+Dt6l/zmOJRoLujl8P7+Kt0CeL3PZEsPaZ/b0rANCEq7kWgpYRAiuxAQDQ+kopwMfTZahD0/A0FUZ7EnFfrFXHC0BXHGqeit12QoY87fJ6rOZtOlClh61lSNaApynU+xzgs3HZcmreDlm5tIxa3JOdCezKeL4UIGeYQCA3HQC+fVcjUPM2kKcDC2wwofMITdCqjOf5TEl5xoDRrlI7IMPGw4duxduvvgNWQkZ8pOAH3qnQhrIgfpQ2F4GDs5mZCM2i2gNCvxv4fcf9333y0EhZX/263hsx9bYtaDtOfdy5MK1pVGTv6gApGrBHx2iQUWc7EsMeCl0SNBN8No9+fBKepsLuStCBuqwJBH7jkuHwGaLMSsfTFLibeiFP5DB7Nm3T6lMWt0ECaG4DfbJIB1F8HYOfR/8cu5ksim+9EC2gbWD5nEF4R0/CyWT4PZG3u/0+ChPt3UC/wysa1JZsbIIPAMyH19kOd7Q8aKbr62GB0Usl4LTqkGcMOjvEsEMBlsW+BFpeHoenqWh/qYD0cYLMJh36tAWjTfVnVtBExeOva0PyNK2TM68/CwCQGPZgtEl8ZkmxjYBYHsau7MKlf3IvnowGXAoE1fCkuj3uK5YBmlA2yG233YbPfOYzFVd55pln8IY3vAHFYhHJZBLf//73sXPnTi7Wb9iwIbT8hg0bcOLEicXtZwMQEfnrkLlEM0nXSmKkGbaokJi/HBNtNJVObfUtQtjnJFfgI7s86aHhUI+4gIWOVzR4oyAYVc8a3yzavmLU/Tw8eOR2AKDRFFVsVATrAy7sBgd0fAF7vuhqFnlc5usdIWTrFIVFWWRzlaelsm35jXVPU6mwqmk0MW4F73sgEokfiIrhs2WCYn4kAr/Mz99fN5hUKGhfNRfRgZDgNoMR7LUI340Wc+caWFhsgtWosN9sOQSqETr+QH3keRtqyaHC6g9b3yzVfzeTLf0WNI1bQIUsjCIvgUAgEDQHB39M/bSvveJzVZch3Z2hSFSg8vOWtWuMdpVHiXq6TIVOP0qfmC7vM7B1mK1nUPgL9gMeevKz/FUrDxUewMOHbqX7L5LdrimqRfxe/v57MHM2gd0CFPpcuAq1/9CnHCRP+RHy/qARE7DdlM4tQ1iUftAjPfFqHtpQFlZXnEexu7oCYtg88l6eoJHeQU97JpqyyHha/yXYCdmPKnehTxYRHynwcjg8eK5y/CXbP/XYKPTJIk0qzV7jeX4sLMpcn7KgTxbh6gp2kb1QxvOwEgTT5yXx0JOfDfvdT2RQ7EvQSHu/H+OOTZT6PYHcSOx4g79vV6eDF7krNpft9/6Rr0HNu8hfvT0s4jN7Uj+vEuCL4BNTsBIStAy16ZnZkoD+zElYG9t4QmJmqRP9jXuGCfuic/x9pbOh5eMjMDZRyxtXJVDGqb0NmchAMm3ET2QgT9AoeWbRxQZRlKwJZ1MvSDqFlieOh7YVFOKVnm44l+8If75xAyQ/aS7OO6e0ouZ/5ifhnQuix8r88SuhDPTD3Jji9YCJ+AynVUf8RIYGXWoKnzHiaoCVCOcbmTqPJr59dQ+1IWp96gwtQ5Wg5Onf1HOTUGddFLrpb6PnW0/Mu48CwVLw6quvIpPJ8NcnP/nJqstu374dTz31FA4dOoQ//uM/xh/90R/hueee499LUnhwwfO8ss/qJZvNLtpnXwj565SKYn4kCj9K0H/e09SS17jvrxyE5Arcz5K9AHBRB6CCIpsGu1TQiAlNZD1fh7C6HfQ+B0CnGM7hhb4oor+dyPtgo7ceWL4HSdd4B5oTsTWpRFkHmw3GdbaHRH3mvc8IReGx6Zw1+u+vFJUS8UUJek/OtVytPvGM1SLmM+pJfB6ihvWCZdcyGCYQCASC5sAeHaMClk9ZMA0TFivMeJVSSeoH7X/n6TJaTuTQMlounjOxjVma8PZIRMRvNMSwufe4YPVTKdjrusGb4KgSZns9Kt6PEyiB9G1WQglZvjIPccCPwgd49DLD1RUuglJbGz/hrEb4LA8+w5bV5ajY7dtp0n0gvte4HRLc+fZSeqi9RXIFP39daZ+YMEsMG14qAZKlAwnsbxBPl/mgQ5AHj9yOQjeBlZCwO3499VBP6XygIjZM7WdYUEYI0+TWpV4qwQcMgjMUWFLeShhtMma7FRgXDtL+mR85z8R8KZWkSVtjOty+bnQ+W+C5BKwWQqPSNcJtgJSsCVcjfLZDoTfOc3YoTx+l17UzGbZNUglanzpDj8OfLc2dBgBAp7OG2DGxY5QMB9b2AVjbB0oOBkdPwh4d4/0BZ1MvpEef5P7/XtHg+ol7apjvG0Dvp/Yrx2oKNqslOMp522thbO+F+rMjkEyL32e5ZVCuAOXpo6GBGzulodCjI3na5tfMaJMxfS5Bi+9Q1v4MgZr3B758OyhXA5KnLWolZQJ2HFBnXUjnDM67nwIBo5HJbltbW0MvXa/eB9U0Deeeey5e97rX4c4778TFF1+ML33pS+jt7QUAjIyMhJYfHR0ti9Kv7fg8fOlLX8LAwADS6TTS6TQGBgZw7733wqs3Sy+EkL/uYQ+J/Sfvw/6T94UTRfqinhQR+kLCvW+zw21BAhH7rAHBomvYw5mJgUudAEWeMWjyHd+PTrD6qTSLpNpnwWRsoWSmc0XF+2IjSacWLzqaZtnviRPo/PJIaIB6NUZ+WwBKUfPV6jHrVEcEVknXyhp7/Pesa+Ft+ewf+VrFYw9GnVcS84PbqfZ/lEb4olcS4+sV4Nn6bHqrVzTqLmM1ETpfJk02Lk1MUesp0wwNuFaE/Yb8+hiMtgci+U2idbJC3ap3xpVAIBAIlo4D7j7YrxwLBcG4RpG3jdhsV57AEX6SxcCMv+C939NlOBpCljZ2SqPJKn3BjbXX979815KK+MxvPxgtLVg9XPWuv5p3mV1kL0Z3nw2bOsPAVaiwqMzSZJxq3oY+WSwFmfltYRY9HhW8mYBrJXwPeE0pec77oj8xXS7ic/tMhq7xZLBOZ5KXnzxlIH6CJnf2NDpIEMwvJBkOvFQiZMXJZg0AtJ/LhH/JcGB3JahlTDJO+91+3yIayR88HnPPZQCA2Q1A78PDcC7fgeEr43B1hR6brlErGj0cnc1n6rN99XPmsUA+Ytjcp54N2F3xvrvLrlWhS8LEG028eo0OY3sv8ldv5wllje29MLb3wtvUD3f7IEauboMynkfLqAV92qNJtIfOQB0voOVEjiZvffwZWAm5lLA2TxPUBmc4T1yYgtERw+xrNsFRCZK/mSmdq1TCv4Z2aJYqmyHhtOrwdBlWF7UNprMZFLh93fA29YOkU6GZSt7jz4BcvDN8/k8N0wS4gT5HMFCKtamjtqjBcoMoPd28fxaM5Fd/dgTar35DxXTD5AMzkuHQ+sjsi/y6aXVRFwV92oKrEuT66avQJYFYNP8CALSM2ZjtUTF9SQfUvIeWUQvtL9F9H7tYh6MB2gxNSswcEgSCmvAa9FrsbngeDMPA5s2b0dvbiwMHDvDvTNPEwYMHceWVV9Zd7u23347PfOYz+PCHP4x//ud/xsGDB/Gnf/qn+NznPoe/+Iu/qLs8IeQLqk5JlAIiIkmnSr7IZjiqmDdaakj4yR5SyybcLDTiVNDUBAXgqB1L1Bc/SKXEsNFlKy0zH2XrVBHdJV2jjXKtFKkTnEYO0ywlO8rmSlZUkYRIvIMcTEJdYT8qJm4NWGNVW7Zeu5OokL7aItOD1Joct9I6q8k3n3UaeH1gA56Bejvn8VQYEGPLz5WEONo5EQgEAkFzYlxYiqY84O7j4r08kYPbGbZ+4IO0hlkSxcYnIQ9NQjIc6FMOF/Qkw4GVkGG0UYsGJjDZp05jOZCy+Zr6LILmw0rMLV3sab8B8o5tMP3qqc34kdoFaqsjWyWVhwv4vg0sT4rqi+Pc6923iimtR2eak6yB2bOT1E/esMva1UHcZBxuSgfJGrBTNNGuPGPA7krwGQGSaQOaBqdV50IxgFBdtbsSoWj34D4BKBPcGWzwgO+PrnBrn7dffQfO/dYw7FeOQX3xFAp9LnIDOveO50mmA4EYZUEZgT4EGxBR83Zp1o0GuGq5FcXGrz4BMqOg9SiQ2URtjQo9Ok1KjJJtkJ3S4CrgFjpq3qN58Pxjc1p1alEU6X8w6y5rcw/dj1YdrlbyuGcDOpJpwe1MhyLxQ5anQMhKie1T2SBJXzfNFxXTQbo7qYj/wtFKlyTUPp4v9xbp7gR0jVsQBY/TzWRL7e/tgxXzvnnZHE9uy/3++7rpwFAyDqsrDkclcFQCo03FbE/pd+aq9MV88K0EgWzSZLhKnt3LVeiTRbSecGG1ELgqkDwtLMwEzc+nPvUpPProozh+/DieeeYZfPrTn8ZPf/pTvO9974MkSbjppptwxx134Pvf/z6effZZvP/970dLSwve+9731r2tb37zm/jGN76BT3ziE3jTm96Eq666Ch//+MfxzW9+E3/9139dd3ki2e06JSiEBh/GLEp+T/sN1LIjEAUABEbgTTNssQOUHuJselkqATelQzL8qWjaBpCJKTw0sjwivmTSaYZsyp9g9RNNjhqECfg8KqwC1axEGmX54bGE0KzcCgJ/xQ5kdL+C3uUBuxsuuka8xUk6VXHgwCsavHEYPS/SxBRdR/ftsfxt7Gm/ITTQVm2gr1qDM+qJX29i2OC1rSdif7HiMEvYN9f3q3mAYj6CMzUA2mlgzfgy+4RIXWP1KppYmX0XTYwc/CuS3AoEAkFzsYvshZxOw1QJdpG9/D69/+R92B2/HmSgD8W+BGL/VBKovKJBxaYAUlcHYJggExmorTrUoWkumupTFk+gqE/RYIbleB6w6FNkc6FjE6wODv3txyp+vovsRfGdl4O8YRuMdhnEBvRpD8Si4jExqdVH8pRBo8QN0LavYcLe3APAb8cYdsi+hkW/u7pCvdD9Nj6zZkm8PB3aj1A0vq7x5ZgXv6cp0Iay1I98IgMy4VvSRKL4HZWERRrDpIFAEdh+2l2J0GADi9xnvviS4fCE0sxiRc07yPXLmLksjme++Cm+7nVbb0Hu/G4kj4zBTcZBDBMYOlPaZqTPFNx/T1N5UlWGlVCg5l3MbFKwp/2G0Iz8YH/jwj+7F8Nv8K+DRaAUFLQel2ElCLKDBLFx4NQ1CpSChP5/NrjALg9Nwt5OLTBmd18EVyUw2qhtETFdvi/Opl4UenS0jLpQsiZUFpkeOJfsOCTW7tU0f3aDAiVr8rwJjkogWy48XUb8RIbPgGB9PM8w6cCkPzgpp9OQdA12IDltSIyvMpNZ3rENUjbP9Qyvsx2yYVacNaz0dGPktSn0HC5dJ6rZWEBXBzyU8j5IgeTEVlccxHRhtKn+uXdR7CRoGQZy/liu5m/O0aiAz/dVk0BMD2reQv6sBIpt1EdfngZ+vq/yb1UgqIbnSfAWmey23vXPnDmD66+/HsPDw0in07jooovw4IMPYteuXQCAW265BYVCATfeeCOmpqbw+te/Hg8//DBSqdqSUgcZHR3FJZdcUvb5JZdcgrGx8sTV8yEi8tcpB9x9IZuMPe03hL73ikZ5ZIFZitzkHuPR6YMRgl5/AJbV4iY0Si4ib9YNJJ0KecpH/bnnijZfSDR+XTCBvg6v/ODMmJrKDsCmwYeS3bKBOLbOPPtRbfZMraL2XII/0WMNsddZDhYq4jdzItxqOQ+8VCJk7RS0T6gFosfCU679356IxBcIBILmR9myGVJXB1peHod0+YWh7+igt4n4L15C8a3h77xsLiQ2uqeGeXtDPTbKRXyACqaKn1TU1Ui59/ZS4Vssupls0z6bBfWjDPSDmB5y/SqsFsKTb7qqH70966JllAaeEdOFPJErtXVQSkLLrWoCQWAkG0g+68+aDXrQS6blR9UH8sWx9hPzjE+V/Ml5/5TN0o2sA1D7H0bQIqd8ZoBV9jn/3nAgmTbkocnA8jafYUBMF2rew2xv2Iti/8t3YbZbwcwlG6jVT6B/ERTxy4KjzJL1LjtfLIodoBZH+au3l+0ng/iHoM0AZiv9//Q1BK2v5EEsmuCWWBJcBTDaVNhdCdo+Nc2KCaxli0bj04Ebem2LbQTEcqm9lm+FxO1NA3ajZZao8HMk+OePzTZgUflBz322npxOl7zyM5mye1xNubqef4na8JgWjO29tF5upN7cypbNvJzsH1wBoGR/Q/QYnEwG9ugYZi7ZwAcZSK7A7cwk04a5MQVHLeUU0KctTJ+rQJsBZvvoPthxWqbZSkV8R6Mvuj0H+mTRL4P65ROrAd4mgvXLMtvq/Lf/9t9w/PhxGIaB0dFRPPLII1zEB2ii28985jMYHh5GsVjEwYMHccEFFyzo0Hbu3IlvfetbFfdhx44ddZcnhPx1TFCgi4o5DxUeKDVigtPljCKcTIYuXyHJFRcb9dJ0s9A0v2UU1B968rOhaXGrRTAU1A+PxmeR6alkKKntXASF/4Uy13ZCHvlRMZ4J+nP49vP1WeK4agMRQR/9ufz0a6BaFH4UJlIHX0B9gu1cYn61SLkD7r5VF0XXzII+n3qbSsDpTPLIIp6wzTDDYr5ZijZjsEEz/jv0Ex6yGSqVZr2stmsoEAgE64H9L9+F/S/fBffUMPJnJbDn/E/z7w64++COTQAAYv/0DM1HtGMbAD8I6OhJmnMlMDvRY9aB8IVMP0LYTsiQTcBKyMtmuWmfOg2kknSW3UDfsmxTsPRMXDMIo13miTdly0OxCyAWswRxudjraoT7yAOlKHx5aJLmTgi06SXDKQnvfv/C7UzDTemwNraVlpuY4v9TixZqWcI845mozmx0yESGepT76wU92tmgQhBmZSUZTmlQIQBLMMsi8O2u8AABzweQzZcS9vrbaBmRytr9PQ+dwPS5dIAtOhtY6urg/SbPMOEdPUmj8TvbeQ4A5pMPlGxs4uMecv0K3n71HRWv4eH7bsbAXz6GDYeo4N37jSew5aZDePjQrdj41ScQH3OhzQDJU75Vjz9IMHPVFi5EA9TuhUXje7oMbSgLyXAwe3YyZK0E0BkXbJAFoHZg3NYU4Rmp8ozB6wIbHGB2NQAdaPFSiVB/kqRTkNNpKur7/vnKQD+8qy4FuXgnlC2b6Wc93VB6uvmycjrNlyUDfYBhQn9xhG9H3rGN11Oix5D+3lM0GfDPR3g+E0bquUm4KR2zF2yEm4zz62F3JaCOF6DmbbiaBEcDcv0aug8bUPJ0QAUA2l6UQGz6nlnuMJskKyFj+rwkTzYMAK2v5PH433y04jUWCNYzX/jCF3Dffffh9a9/PW6++WZ89KMfxetf/3rce++9+PznP193ecJaZ53DGs6749djd/z6UEN6/8n7cN3WW+gbwywbSfYME5IWiDAO2oGwBknUq28FPOv5lD/BmqTqAI2uAbUEeDHBew4xvRbm85UPDRQEtxUU3c2w2B+cHDbfYIHEypqP4DJsnwI+6ZWO46HCAzWL+wuNuq42xb1ZxN6otU40CVWl464k3NdrNbTUuEYRcjpNoxM1DbJp8ahJluxLAmiHM5XkORp43UwlAWMS9ugY9+7kZSfjIAAk3bdXCPjjN8t1FQgEAkFlHio8gF1kL8Y+cGXFzwFq5+ANneHPEibusXaFm8nywV2SK8AzVW4rovQlMLNZRftLVpnlxlJxwN2H6wZv4tGsgtXPG/feDRKw/FDzHvRpB/FRKtrKlkv90w2bR86zYAUWTc8sZNzONE+EHPRKNzZ1QAW1pbESCmLDeciGA3NjCvozJ3mf2O1MgwyPwe3r5olRSdYIzRJn1pbOpl4u8HNLF7aMacNN6eH1TDv03tMUKkQHvPwBcBsdVoY8UeoDe6lE6HcYHzUA6MB554TO6f6T9+GNe++Gd/FWkOMj4T5IMLcS/EAN04RkanD1BN8XyXCgwISd0kBMD8TyoE97mNkcK9McGKG24SdL/7pGEaOvB+Q8YLcAZiuBPkUw8cZe6NMOjHY2KCjBStCZGPExGa4aQ9sL9JyoefqyElSbcDqT1Mt/aHrOoCpPU0FyBbjJOLfpYd79wfMPXYE8A6CzPTSwI6WSdOaF375mUf2sLAIAugY3GeeDPtzyh91LdQ3WxjbkBnS4qoS2F3KQTQvKls1wTw1TWzM/UbKcTsPrbAd8Gx/n+Zdg7rmMWgBl89CHx4BUErNnJ5Ecmkbu3FY6OyoBxEdpIluAJoZusQBXowNixARi0y6fSSVb1I5HzXs0ij8DZAclHPrbWyueR4FgPlbCWmc52bVrF44cOYIvfelLePbZZ+F5Hi6//HJ897vfxZYtW+ouT0TkCwDMkXw2EjFclkAlkISzEpUS8iwn+1++i84sqDR7QLDqYR1JXi/nEbKjIvVcUfgLidAPzVipVNYcvxUA5fuvhSOeqxHaXqT8MmE+GE0d+H0HG+kLFZoXI1AfcPfVPGtmpWbXNHNS28VE/PM6Epw+bZZP0w7OCvHYcyGb4+u7mSytp6lk2JqNCTpNeN4EAoFAUJ0D7j50/58jFZ+7RI/R+34qWbLr9AMCvKLBbQ1Dwn5K50Ip9Vemoli9Fm6Lwcvm6DNqBYKLBI3lusGbfOG2JN6oeQ/6lAU1b/PoYwCQJ3J8trlkWiW7G03hwmm07cP6kCzyWhnPQ58s8mWJ6XLffJgmtaIBQIbHoA5Nc298VhYXeHWNzwDgAwsRD3wm8rMI92owAT/a5+b+/v7sA/bix+Wj5J2Kbb7UI89j7LUpeJ3toRk20T4DI9juC+4LE731KQdqnl6P4GBgLRxw90EfJ3BVOjhjtwCjr1NR6JIws4luy9GokD/bS21gMlsIiOUhf1aCH5/RpoKYHgpnp0siPpsxpIVnZ5f15QLniB2fZDgghs1nB3i6TM+7PzMcmhayHGLIEzko43nfaknlgwVstgQ/l77N5cwlG/DKv6d1vOOXEyBZA8Ymes+Uzhmk16Sznba//ZlRAPXYV3q6adQ9m3mg0RyHLSdomz7xah6FHprHgEXWq7MuzSlx2ubJbl2N1hU7IfPBMYB+1vYbf3bHcM2XVCAoZ7G2Ogu011lOtmzZgi9/+cs4cOAAHnnkEfyX//JfFiTiA0LIF8wDF24Co+5yOl36voKHHFLUmsHqipeiA0ybNhoWGfW8EPafvA9uJisiQNcocjod8sDnVGhkSjE9bKUTFM4XaEXDOqxBkTLox89Ez3ltfkyzsvWU3xAM/gYrHW/QfocNGAS3yZMeMVgi6yq/yWgDu9JgX1DYrlekja7HIvLna9gHI/dX8jddj5VQxfrZ4H2p9H+tuEaxtH/ZnO8bqpRNOWZIMZ1GGAXqNbPU8QwT3vgkjXJjEUUiR4lAIBCsWh6cuh/k4p1ln5N0ikaC6hrIQF9ZIAP7n7U9PE2FPDRJ2yr+Z+0vUUuToJ3FUvPg1P2QJqaozY5gVTO6+2wQi0Z7M+/u5G9mIM9QX3tiUkud2HBJuEY2B298EuTFk7TNM5HhVoIsWSlbLthGtrrobEV5gq6DoTNQnj7K664XiVSHQQVcLpoHRWJmXRiACfpRSNYoeff7PvdM3A9G40fteEjWCCTZjQRX+IMO6tA0YsN5mBtTZTNvH5y6H/q0C7srAWdjaaCNzdDn9jqb+uF1tlPLl4AtkGTaPEeAmrehTxb9qHgP117xORxw92H3pbeVHW+Q1/77e/n/z3/uZmz74m9w9o+ySJ6kVi/xcQ92HJg6jyCzhaDYCcQmgNRJD6mTHqwWAn2aiuhK1kTrU2fQ8vI44icy1KLIMEsDMSyvga6F+nXBgEArofBzzWdTGA60oSzkGYPOPsiW7Cq9VIKXz8V6nhhYgZ3S6MyLoydhbOoAGR5DZmcrzrylC24yjtmtXTj1O31wNOC8TwUSDmfzULIm7FeOwXn+JdijY/COnoT9yrFQn8Q7ehJuJgtlPE9zJfh9TTZ45WkqJMNB++GMf3wEyVMGZBNU2FcJXAVoPW6jZdSFmqe5TViyX2pxJMFoowNNdnk+ZoFAMA+jo6MgpH5ZXljrCEJEp7o9OHV/WSLcIGViKOiDyu5KwFEJr2CepkCqMoK/HIhI0LXJnKKlaZamePs0Opktj0SO1K9K9jRVtx2002FCfIVBBd4RNsqPi22TR74F16skILNtMt/+CueqEkv5O1poNHlUzK8lwie4zmKj++u1ymnmexGrW8jmIAXt0fx6ImnhgR9J10KWa55hwslkQoO9fMAIpXMlBlUFAoFgdTF7djL0ng28M2sHZq0TbP/woAbDBDrbAfhe351peAD0KYtHsi6HrU6QleqPCBpLbNrliTeTpwzkBny7Ej+QwGnVqehaIeKcY5rwtDQVN4GKNitSNg9iJkpie4WBJ9Ym4u1uP6jG2dQbisyHpoXE/UrifdBCh5cfEfpdvXKSWwB8ZgA0DV5nmpcnTUxRYZkdXzYHYphw+hIo3wsq5o5dGkfnEYN/7xpFyIG+BTvXtK/v++IHcgvQz0qWNLl+DXZKC3xXnem3z4be7x/5Gv9/d/x6OhP6A1fCTANKgc7GaP9fT/JrwO4ru8heyDu2welMQh6ahOTvb2gwJZujVmADfQAbrPAtJdmMBH2yyK2SnFYdyjgdVGEDLErWpLOOsuXXUApY60j+sTsqgWo48C7eitkeFWomi7YfP4/pd+zA1MVpJE+bGPjfJzC6+2yeJ6Fwdhr6ZOD8VwgqYnagUkwPz7r1j4MH2qBk2RQfKUDXS0lvjTYVxTaCxLDLP5vaFkf6uIHZHhX6FGC0EcgmQCwPrceKUJ4+Ctw35yUVCOZAQthYeKFlNCevec1r4HnlUwZs24YkSbjsssuwZcsWfPazn8X27dUTgzOEkC/gRD2gGQ9O3V82Ss8jLyt4c3sabVjIGuGNDE+X4RnmsjfUGUI4WkeYNDJdCkRWAEvXaaslGrsmtOrR8UBJZA0OCIQaaCiJ+RX3IzIQwKkQlc8E16hvfT32Nwuhlmh89neuRLjLQfB+WU3M5581sXgPRCzTWD3zkxW6iJevUKGuBuuik8lA0TU6Hdvw7Xfm+P3NdT0FAoFAsLLsjl+P01+4BOd/8l4cufNm/jkX83u6IXUOwnn+Jf4d0WPwigaN2DdNuL7VQzAJo9M6QC1LVmC2bqX+yNuvvgOPHPzUsu+LYOE4GtAyWkpam37OKInD2RzUIYQS2wYDWSQ/cS0VZPN85nhZO9lfT33xFBdCeaLX4MCVroX6xwz5+Ai1PQkEzyAVHhiLivTM314ybdhdCeqpridDAwJRS53QgAXrlwcS3YY+1zQuUFube2AnZMzuvqgsoC/2w8eBd16OXL+Gzu5OeNkcF/F5/otsDtA0nmMAoEEg8kSOH5MynufCtj7tINev4brBm+BurGyptYvsxeQHrkSr1gK8p+Ii1W2B/6b8I3avkndsg9uZ5gmHvWwOTibDl5PTaSroG0UoA/30WIoGpFSSWiMdPQnEdGBTP9RjoyE7JE9T+DEHbYx4QIthgjCng852uCmdDgzkCrAPH0Pa2AnpnEFIpoXkKXqdxy6NI95zFtRZF7lzW/m28mclkHrkeUg93TyIJgjvlzBBP5uHceEgtKFsYBCiZDPF6pirEShZE4WeBIjlQrYkP/cAgasSqLPMF9/F9DYVrcdt5PrpdW378dGy+2r0mSEQzEkjrHGa2FrnXe96V8XPc7kcjhw5gt/6rd/Cz372M7z//e/HL37xi3nLE0K+YMFUi+BlU/0clXBfPDYlsJkQ4tHqJxoVspydwfmS2y4XlcT8Ssvw/yOdh6AFEZtO2ows1QDCYgYnqg1+riQNjfg3TB6ZH8If/AnZPfl1J5ivIujBWo2VyncgEAgEgtp4qPAAtt55L+yWyt/bo2NQAgE9ocTwYxOl/40i3NEin7XlaoRGrw41R3Q8E7YEq4M97TdAfvsOENOFqxEYHTHEhvPcugQAjThnKwQD0ABYm3ugjOehHsuEZsdKwYj1KIYJyQ9OsC86h0YgIzzrNuSzXimIoWwmuxL2rveFfsmIRHT7Ue7cssYs+Z4HI/Ojfuxzfu4fp6MBSr6yAjbyegWb/yELd2yi1N6Lzgr2BwW4XYvJ7HUq2wU5qoSJawbR8cuJsu8AoPjOywEAs70Vv14QB9x92HP+p+G06pBnAClwjYN9ATeThbxjGzAxRetLTA8FiNHjsrlFDeDnPwD8gZMK59kf7ODrZ/Mg/t/oYIBkWpjZHEPbCzm4CmC1ED7zpNBNa7NsAubrzgUAqD87UhZQJMV0HkQkxXSahNl0/eTHOd+bn9YlmuiZXi9iutQeyHJhtMkgFq0Tat71ExZL/ufUcocK/EDPlx9DVOl54967MfjUGeDO2q+RQLCWufXWyomgR0dHcffdd+O2227DqVOnsHXr1prKE0K+gMNEbfYgC4rcDxUewO749WX2Hdz/MvhwMhzIhkN98nIF2nAKJERsFoSIv7rZHb+eR3yFpm+j5E0PlETsRtvqAJVF0wUJu8EOQ1Bor3EWQdCTf060SCQ+24YfmROkWpT5UkXlV9rWXL75SzEQF7wHRu+H1Qjud62e+Y1mMduL1tfo74R3KgNRXO6pcDarYCQQPwd+hy9I1egpgUAgEDQ1L3/yZrxx7924bust2P/yXfzz4LNSGegPRbhWaw+xdpt+fBJOZ7Jp+gcPHrl9pXdBUCO7yF5k/vANiI+WooidjnB98/yoe9aWZn1RSdcgpZI0ojqQr4G3dSqI+DxKP/AdE/GBQHR6cP1UEhKogMuT3Aa+Z5Hhni4DOZT8+X27HU+XfdHZCCW79TQFZCJDxVk/Qr+UJFUJzz4wqa0VD6yI5uPSNBqJrcZgtMvAWy8MHTf7fV/+4j3onOij+QDYjIaYXvLLZ+09f6DETZZmcwYtduyuBBV/NcBMSzjxe12ha8ra/Lk/vhKzvYAd93DF++7Gob/9WNk1WRBDZ/DIkbndAYJtV560OzB44RUNkIkpeu4AeKY/UMHOt6bBPnWaR/QDKOtnSZov+JsmACrke7oMyXBgbWwDAIy9NgWlALSM2VB9X3oWqS/PGCDDY3Az2bJ+iGsU4WQy3FqHDkzZIAYNtJQB6pcfqGeS4cDTZT8qXwMxPSRPl+q60aYCcGElCBxVgqNKIDbgqhKUfGVNZeh3TLT8/bF5LohAEGCNR+RXI5lM4rbbaL6QRCKBHTt21LSeSHYrqJmHCg/ANYqlBJ5M1A9GA6cSdDTe94vzNLVMIBQIFkvU6ilItEMYTThbU+LZBrHoBKd6YGpsDQMR824v2jlpUo/YXWRvyEZnruUawQF337oc2GMiC+uk1JInIUil+hZMYBwcUKtkY1Bp0FggEAgEzcnP930ML32weohs7jX9/J4fHdguG3DeuAHe+CTslLakyeAFa5PiOy+Ho0qwEzKUrAnJcBA/kaFJaLO5UJQza0t7RaNk7eTbcAbxjMqfRYkGs4W+86P1Pd9WMCrsh/IM+d7knNB3JbugoIjPvNiDljnyRK40IFBhX/kgAhCOCvcHDSTDgT7twFUl5PorOeUD7f/rSXjjk2WDGaGy2DEYZikiP5vn++ymdDpzoo1GcVMhGNhz/qex5/xPY/yPr8QV77sbkx+4EnYccBXA0zxMnUew5/xPV9yvepnP4pcNQrIEsrw9G5y97Ac0smTZwVkU0DS4nemSiM9msAZFfFYfxyd5uUSPwdUV6mqgEah5D64KmK00l4iVkCFbLox2FcSwUexLwB4dgxTT+QwnOZ3m9Vu6/EJ6X924gW9XnsjRQSFNDSUvDrom2CmN+vbnbVgJGY5KQEzqke+qBGrehZ0AXA2w4zQnQdevpsvO47VXfA6AaN8L6sSTGvNaZbS0tPBo/fb2djzxxBM1rSci8gVlzBVxy75jDXQeDe2PQLMpdPJEoCHkJ/9p5iSPgtVNpUGlIK5RpFMYg1EWht/YrJCwecWotB96KRK62lTf+aLZ+OyE4GBAsHNSJdlttWi6pfbKr4dGisHBY1rI8TWj1U7NsCnllWZtsP8jCeDY746g8swExkrlRhEIBAJBY3nlzz6KrXfei5c/GfY9PuDu40EW5OKdcA8/x7+Ltv+pr3YebtGAfnxyNQbQCVaY6XMVJIZLiW4l04bkW6EAgeh21mYxTZB0KhRBztv/kbZ1mW1M5L3U1UEj01EaHPCKBk90Gyo3WHY23Dfm+x30sM/m+MxceWgSzsYOnlw1mKCU+bB7msqj4EMJVgP2h6F8doEAIegatx7Sp3TMditwq3SHHio8gOt6bwQAfg6DhGYksPMUsZhhCW7tOBXwXRUwem288v/RqHxiA2Yr4d9pM0BRlUAsYOzKLpz/yXtBLOCZLy7ecz3axg/2IaJ+89VmGMnpNNxTw6W+ZacKKZuj18lvM7MZrKGo/lSS1x9J1+BqCqw3nQ/1Z0eA886B00Gg5B0oeQJ9unR3JKYL3RfVW54dgu3vGw/K6eoADBPKls3wsgbNV9XVAfvUabpMTIc0Dnib+sM6TQTZciHPGNABFHp0yJYLJU/F/pnNKsxWoGUYSJ108fN9lWdKvPSBOOSR8oElgUDQOISQL6jIXKJYJTEfoDmi+Ygzswcxly/6OchcAxGC1U21aPyomF1JWKyUDJYL+lHv+Hlo+MCUVkVkr7AM+51Fj3muwYxKNlhRz8dKVLOwaSYxH2iM1U7wmBZ6fM04YBnyK/b3j0255QQ7m9UGtgLLRActqlkxCTsdgUAgWFtERXzGQ4UHsKf9BkzvbEX6hXBEfug5lMnCuXwHVNOkFhynlt5a56p3/RVclaDYRv2mT7/VQ+eTMnr+78vYP/K1Jd++oHFc8b67YW8hyPcRKAWa7JUJk5IfPBYK0jHNkPhcNgPEt99hcZzV+q2eYcLb1A+8ULLUCdrNhmw+KyXMDeJvj/vHGxHB3xfdmXUOmciEgiuYVY7E1vPLk0yLi8RAuJ/A41R1jfqi+9YsJJVEbkBH8rQFo12u2p72DBOFN2xD/Bc0qbWUSnJvfHdsIiTmc4sff58LZ6d5OXYLQCwq1usjJSnKVWgEOrEBZZZ+FpuQYLYCdoIKx7KJhljtsDY++ztfez84w0hmke5DZ2hSXD8JsPP8S1B6uukK/swMMtBH3xsmvFSCXje/z+mlEvAAOK069a83isDh59Ay3I2Zq7ZAtjwQy4PRriI+UoCd0qA/cxL26Bgw0E+j7g+/DJJOQeochDd0hor5oPVD6ekGsjnI6XRohqzTqtNEv6kE8lvboE+VBlxYvglG4tU8ps9LwlEldD6TRfdkEd7jz/BzWBVLgtNVOVeDQFANz6OvxZaxXhDWOoIFE7RQqMgKi/iV7DKaSXgUNJZgfZyrXlYVupfYAqpShE/I5scsNcbng9mgSDGdv0g6VVseALPkFVq2P1XOzUr9bogeW/YId3bfWKv3CnZO560v0e+McHLb6EAuUJ5XRYj4AoFAsL5wMhlktpR3L0N9hvPOoX/rDKBYKK/99/diZpOClr8/hF//9c2Y3EH3r9gFWNsHlmUfBI1j7FKJR227zAkmEH3O8S1NohHkzCc/mjeqlj6rdPx0mYf6guAWNFbAKz3yfZRsrvSqQlDEnw83kwUZ6IObjMNoIyj0UFFdTqcrtoGdTAbxEzQ63SsaoUTW0X1nsww8TQ3bB4GK+EqBivVahv51FSrg833zr6tSAGITNIrfaqEDcXKDpIV6gn+iA5KSaXHbGhYURfQYnE293OPeKxq0XjIRPzJDQTIt2F0lCyhWtj06hsSreSRPm1DzNALf6IhBf+YkX9Y+dZpa4vj3Uuf5l0rbA2gb3r+/BmcYSDEd6tA0b+OreQeFHlqfXY2AGDaUrG/3Y9hwdQWtx4pwNcB7/Bk8fOjWmuxIiS0BlpAZBXXiNei1Tli1v7C1KrKsVsp8yQONDK9oLFuUKhtdDz5gKon5ov6sTqpF4wfrV9kU7gpCcFUxf5EDT8FtVfJ8rebRzz/P5kpTcaNTcissH8TNZOe1sGJTf0O/T4NGKlU6J8GyVuo3U8+9oxH72Mz3h4XMOJDT6dBgD3sBoHZoqSSf7huqh9kc74CwzjCvP3N0XA+4+2oW8MUMKYFAsNQ06/18LTPwl49xgYn5NweRjp+GemyU2noE7EKWil//9c04fN/N/Jnz/OduxnmffgEdz9sgho23X30H93QWNDdv3Hs3nC4LRq9NBeE8eNJa1j5xjSL1N5+jvcLFfdMMCeMsqKXSesHgh2gbv+y9P1BQ1q8IDh6wbRvmnBafIQFYK7cD5X2HaN8imMMueDyGCbxwFNI5g9zPXp92oU87mLiAYPodO0Au3lmxz5Xf2lYxCCQ0GyFgteumdBT7EjDaZUzuVDF+scq9381WKtjT6HyPi/ktI1TcJ/5huyqQGPZg+5q3lZCw9c57q56vWtnTfgP2tN8Q6rtVa5cGI/K9ogH31DCc5+nMBG6rdM4gyIsnob54iq503jnhfpwv6DsbO2Bt7qHWO370uzxD6y3TMIyOGJSsCTXvID5SgJqnoxys3hI9BjKRobkRDBPk4p0g3Z2lYC0200PTSrMEAvthbOrA5GWdmDhfh6NR0R6gs1vYLBDmqa8OTaPr64/V1WY/+pGPYcd/FoluBYKlZNVa6wgBYGWZK2I1mtkdqG67sBT7Ve3z6P42wopDsLxU8iBfaL2qZLMD+F6S80S2zyVk8qiNwGcNSeQWSI40H/N5tS84gmiZqffaruXfMzu2hc4WKKvT8+SF8AwzbMMUqDOVrBIWGn2/lq+ZQCBYecQ9ZnlhXvkkVwDSqfKgA6MI+RxqAwEA6FRL9hNLzLVXfA4PH6IJ5Vjulmt2fR4AYCViePvVd+CRg59aln0RLIzxiwhgEcgZGa4KyJZHgw38Nko0sGe+WZ18pqFWOXCGJyatM9An2obin9VTBvPBZ0lmGX5euujMd7czDWm+2cWBdaSJKRqVDyB5KoFCjw6lAEydR+CqacT7Lixb3UoQuH3dkNiAx6Z+SBOZ0nkqGtQ2xt93V6fqu6vSIycWFfCVAn0Ri4r3xJK4iE9MQDNpQlWzlXrlG20S9GkPjiohs0Wqau9VD04mQwXw4TFIhl7mjT8X0XqmDPTDPVqKmJdSSXoPTCWpjVGuQGcqZAFJU6BkDew/eR+u23oLYJjYf/K+UPmy5Ufit6kgpgsroSCYhpiJ9lIWNGHx8BitX10d/NzzgZ1UkuayymS5bz5LYGvHgZZRC/LQJOztvTS5MptBYZggAPa/fFfN5yWIsCwT1E0jktU2cbLba665Bl6N3j//9E//NO8yq1bIDyIE2eaAJfkJJteJsthrtaf9htCDtp6y5orMF/VndTKf0DtvA76Cxzwwd4O9FhG/Upm1Ety2xBJ1aaVEo9GktMH31TowC5kG3Ixe78tBNaF8uex2GnEvCs0MqTYoZZYiwKLTzvnvwJ8uHG2Mi2euQCAQCKrhGkW4r1SPxnSefwlEj2HqPZei8+cj1Cd/Eewie6H0dFPvaFR/jjIRP8hPDnyC/3/Nrs9j96W3wT38nHjGNSlGpwNYErQZCXYLkDxtwrhwEOrPjlTMjTUXbKYhfx/0kw/0ByRdo97jkdnmweX4er5vPADeZuffzWd/GUi863W2l60X8t6PiPieYUI6frrisYSO2V/f29QP1/f697I5EKMDgA5lFsgPusj3EWQH1dC6B9x9uGbX56m3ftGAc/kOEMOGtbkHyjj17MfRk/4xJKiAbdiwe3QUuqhQ7ypUmCcW9cpn9kjEphY6xATUWRdWCw2Hio3T94VuAitB/fKttDv3eayRA+4+7L70Nky9bQvanpoE5hDy55r5LafTpYSyAJ/RwetQ5yDcF4ZpsuXONB568rN83WoiuZWQYSXimO0hiI8C8ROZUDQ+dA3u2ARNtNzZDmliCgBgv3KMRuBrGtzONDxdhnx8pOTXf2qYzpTQCNpeyCH9P54J3ev2tN9Qsd0vECwHkkdfiy2jWbnkkktC7y3LwtNPP42nn34af/RHfwRC6jPLWRNCvmhsNR/Vop0Xyi6ylydrWQoqCVNCrFp/VGuYR7+vBdcoVpxSXs+2edRMlXW4JUq1qcORaKTF/n6a+TfRyP2KivbNeszzIcX0ULK3EH4itdCyPuz+vVpmbggEAoGguZAuvxDkxZNVo1zJQB86f3KSilELjMh/4967AQCtWzbDG5+EnE7XFVUbJdevwdqmo7XvMrxx7934+b5wQs3d8etF7pcmQJ4lsONU+FWyJq1ndYr4wBzWMwGqie9V+wkRm56ac1cFovdZlHywHETe11RudN+M8CABa+exsuKjBnL9cbgKVcJYwtkg+nE6K9g1ilBfPAVr+wDkGb//YlqQujtpvgE/qttOabASUsj/Hgha6gQ88n0rHdmkVjuyBRCL7os+7cFok5A/y8HWD/8L8JG6D78i7uHnkGy9FIWz09Cen3vZoL1OEHbPiQ4kSakkjO29ULImpHMG4WoKPF2uab+MNhnxURvdv6bivacpdCCAWaieGqYL+jZGbiYL0t0JGdRjXxnoh6fL1Ec/lYSkmfA0lQr/AByVQDUcPBzp37jbByEdfrmmfRQIBPVxzz33VPz8L/7iL5DL5fCFL3yhrvJWrUe+oHlgCayCD7CoCLQYUX93/Hrq85xKhpIsLlZci3rpR72xV6t4t5Y54O6rOVJ8MUlSWTRF9NWo8ittr9r/3JecNeQ1jSe7rXWq73wDFFFqPceNih6f67Vc+1GpzFoSOq0EC9on5quaSpYSDBqlhn0QVk8eKjzA7QeCLHcCYoFAIBCsLlxdgbt9kL8negzKls38vf3KMRqx7D9vrtt6S13l7yJ7QSwXrU+dgTc+Ca9owMlkFvXMfvxvPoonv3ozhq5SYSUkXNd7I7b/RcmLW4j4K8/xG/8Mbq9BbVls6uPtZDKQ0+mqQutCkfRAm8nPIcREb9YOn9eKs0JOq4oE8mKRgT4qtqeSVdet9Hm1/krwe0nXIGXz4eh9gw6GyDMGWo/bOOthj1veRLFfOQZr+wCkyy+korJGkDu3FW5Kx+zWLlibe2Bs6gAAZHa2IrNJh6NKUPI0n4Hmj7PZLfSvNkPF/JYzgJr3EJsuRdsTy4Oad6HmXTiqhGIncN5XpxoeuPPIwU/h4I9vCVlYVqJavSJ6jAduyel06T6na1CyJoyOGLw6RHyA3ov4dnUFxb4ErX8xHXI6TQO10ikakJPNgXR3wh2b4IMKXioB+fgITTqczcHa3ANzYwoTe86Fm9Kh5u3QzACGPDTZ0EBMgaAu1mmy2/e+9724//7y/vZ8CCFfsCBqtZhgD71go6IR9hRLKSSJxGirg2a3fllIRFAtn1dbrtr5YIlOVyO1XONmFNqbHU9TacRUKrHSuyIQCASCNcQushfFd14OZTxPo0F92IBxcKYiT07q2z3US3ykALBE7A1sE/Y84aLQJeH5v9gMe9us6Bc0GcnWIuw4jdJmeaMWOoMw2D4uayuzKHk2O5aJ+H4wRL2++TWTzXGrlEbOjOTHF/SzDx6/aSPx8jRclcBVgdbj5Ur+AXcf1BdPQTr8MlyjCCshQ8k7MDpikC3q5W60qcid24pCt5/I1fKo330aPGGtG/CEIBZ7lRQ4NV/631UJZMtD+wsuvIAP/VIx1++9al9L95PKbtwApzMJ1yjSv7oCV6PzqoP3w1pg6xntKlxNCg0aET1GB1JODdPBokhuBJaIlyVKVoemoY4XQCwPJGtAefpoxW3uP3kftZESCFYC5pG/2Ncq47HHHoM2T+66SqwJa50ozWz/sFao5hftZDJliW2jU81co1j3NfKKBqSuDkhI8u00gvn2I/i9qFfNQ7OL+LVSj4jPPvMifubA3Oej3pkxC0kw24hO7lq5pnMxX9LvheT8qOvcBzoBIdGE5WAIUCkSP7g9cT8UCASrGSY4P/qDP1/pXVlTHHD34brBm+ClEjzqV06nqd0DSu334POQ6DFIpoU97TdUffZUQjKcUI6XRjyTdpG9+Hm0nPeEvw+2e8RzcPkhP2kD6QTiozakVBIySv3P+dpZQaKzx5mwXTbj1Y96BkoJa+fKBxctj68Xid6fzyKnntwRtQj+3Ls9mFfLt+CUYjowdAZSKglH60Dbb1wkXp6uWM7+ka9hT/sNgFFE4uCLmPydnYiP2rASNOK82EYF/PiYC6ONwE5IcBVgtteDUpBgpV3o44R65ZslcV82AWK5IKYHo12GmnfhqgTFNgJXA5786kcr7s9Kwu28MjQBrfP8S9QKWI+h2EEDulpO5OAefg5KT3dd3vPs2XTd4E0wtvcCoAMG9uhYmW0qC9oiKPWncldsRvIIzRtibWyjYn4+Ccm0sL/CfXYX2QtloJ9vSyAQNJZ//a//dei953kYHh7Gr371K9x6a3kOn/lYk0K+YPkJNpzmakCRdAoEKZ6Qqha4z3c2B2haQ6MT5muAR0VK0XBfeWqZOrtWrT+CdZ/9Luaa6slotKVOlMWI+etBwGdUOtaluJdEcyMEiUY9smgdKZUETBNuJlvVPkBYjwkEgrWEmq8vQlJQG/tP3ofd8et524OJ98G2fzTgZ67kuJWY/MCV6HnoBBqT9rJELf2CTX/zBUj/4zUY/K6Mc758N7Z/8VXsP3lfg/dEUI3ZDYBSoBHL7thEWdsq2P4JDhYFmcsCluWeklJJuL4XeaX8VXzdKlaXoWh3f5lg4tqgDU5oWT/in0xkgO7Osmhrvh8LnYUQGTxwjSJkNuCQSiB5ygAx7Dmj3x+cup/+xrs6kDxtItev8Sj62LQLK0GjYtW8ByshITfgwdM8WJqHxEnCbXtcjVruyJYHxb8fu5qE5CkDRrsKR6NCv5Jf0KEuOczWSUol4Y5N8M8YriYhd24rfv7kItrMugZ1vAC3rxueLoP4PvnBnCCyX5+D9b3loafhxXRIXR1Qnj6K3NXb4aqkaoLdyQ9cCXWWWhkJBCtCI6xxmthap729PfSeEIKdO3fijjvuwNve9ra6yxNCvmDBBMW7WsS4YCOqVqE1KBx5hlkWNbpSiGjUlaeeqJuVINgwZoSicxYxIFXLoFm9djrNfC4FC4N1RDl+JBlABX3JtMruqVG/fIFAIFir/OTAJ1Z6F9YsrlEEAaD0dMPZ1Avv8WdqWq+W9vWe9huQft25DdjLhZF4UQN5wzROXZPGWQ/asDb3iH7BMpI85f89MjbnQE41Eb8aUauZ+QgK4tVyUTEBf74I/lD/IJsrtd3Mpen3VvPYlwCevLYm/HKI5cHRSlH1+jT9OtevwPXjRyRTglKQ+HtXoQMybH3AH5xRCVyNwFWJ/x3Q89Pheg9x2ZB0DdbmHqgA3FOlWUhq3oahqUg9Mk8W3XnwNBWeLkMemgR0jdd5VueIHuMivpxOlz4f6KMDUeOTmH7HDrQ/fmbOWR7FLsAuCNdtwQqyxoX8b33rWw0tb03+WkVDavlYSDJI1niIJpcNEv3cNYpwMhl4RQMPFR5Y8mtcS3TxXPsvWDoeKjxQmkJYR0LUlYDVWZ601ijOmYgqmDh6rtd81HtOGiHiL/d9t1kT0S43c52DUARZKkFfmhoW8YOdRJYQdxHbFAgEgtWAuI8tLQfcfXio8ADs0bGaRXwAkHdsw3W9N1ZsX++OXw8AMF93LohZknBdo7is15O8YRqaauPyN70Ao12GPGPAedtr607YK1gYT371ZrS/ZHC7G0YlW9fgLF72GYvGj+aQiorwwUj4ipaXzKKmguVlcJlK9jnzBfN42Rx9RQT3aELbhbTf3Uy2zKLWyWRK9jomDZcn3Z3z+sVbm3ugDWV5UlorIWG2W4GVIFzEz55Df6vEkniyW4AmvtWnXciWB6uFQLZcqHkHxHJhtFG132gj6PnWE1WjyJeCeu8l9ugY1GOjsE+dhjLQD3nHNnhFA/KMAX3KqssurBIPHrmdi/je+CTIQB+AUn0N1gEnkwFJp+BdvBUTb+ylwTkbN6D1lfmnNMyeX0T2HBeH/vZji9pfgUAwN4888gjuuusufPGLX8RPfvKTBZezJoV8weoial3DGuqVGg+NjBqeT4if6/tKme2FsN88NHN0+WIE+nq2sRTLAiIZdCNZFuHBNEPe+AAgZfNhET8S8cXuwctB0HNfIBAIBGsbpad73mXcvu5QQMIushfXbb0FJJ3CLrIX2hAVTpnQ2qiAjl1kL6694nMVv9sdv573UdItBezpfx5jH9+E/Htm8NCTn8VPDnwCdsAe6LrBm7D70tvEs22JULLlEeWVrDeZ2Bn1FGd/o/9HPfMrwZPeVrHUiRK10VnMjNzo4AObnVypH1Fv38IrGpB0jVsuMva031Bxed6GHTpDt6cSZAclxKZdyCZ45D0AeJoHV/Vgt9AofGJTWx2G7EfkOyoBMen/VkKCPu1WtXtsFqTLLwRMk16LznQpUbEuQ3r0ycZsJNiO9+tcyMIncJ3t0TG4OjXdcPu64R09CTulwdhEk9he13tj5eOY1HD0I40T8bf8r9sBAHvO/3TDyhSscbwGvZqUfD6Pq6++Gu94xzvwla98BZ/4xCfwe7/3e3jTm96EmZmZusuTPM9r4sMVrEaqNVpZMp3FRBEAjRW/gkmrRHTW6oF5r85Vl5YjUr+ZBwwAOrUzSKXOQ6N/h0vdaV3J32kjj63R97Eo7H4bigTTNJ60jXU++fcsEt80uY/xcpxr4bsvEAgE64NqzyoePX3xTkimzWeMMc9p/iwLzBhzNnZAHpqkUcv+bN1GsDt+PR4qPDBvv+DaKz6Hhw/Vn5xO0BiuveJzkA6/HGrDRi03WTuIJcJdCMG+RjCSP/h3ruWB2oX7+Wx9Km2zWv8nmEcreuzBzyqdL0nX4HW2w03pkA6/DOtN58NRCQ7+uHzGCUuQap86DXPPZRh9nYr0KzTJrdkKFPpcqBkCo9cGKRDEhwmUAvW8txOAPu1xwR6g1jxWQuK++4//zcokuH371XfUJcLL6TSwcQM8TaH3sGy+oXkzdpG9IBfvBBkeg9vXzZPn2qNj1KM/kATXNYpQtmwGAHjjkyUf/R3bIE1MIXfFZqh5Z8mt5bbeeS96nnDR+ugrdSX5Faw/ZmZmkE6ncdZf/SVIfHH6jVso4tU//0/IZDJobW1t0B42hptuugn//M//jB/84AdwHAcXXXQRJicn8e53vxvd3d345je/WVd5IiJf0HDmavg2MlFtI6gUWS9ofqINVzmdbmqLHcHaoFH3iaW83zC7qTIRH6CR975XK48+C0aTLZEXazVEpKJAIBCsb0J2KIefg/P8S9TH2TR5zhYnk6HPKjbDzDQhGQ68VAJA/TmB5oINCMz3nBYifnMR7QPI6XSZbc5c9YR9V09dmtceZw4rzcXgGsU5jyeYR6uSiD9XuV7RADQNnqZQOxcAVkJGy7NDFdc54O6Dl0pA6emGbLkgFuCqNBsTsQA5T6UmdVyBZFJ/fDsOmGnqkW8lJBCTCvhq3oWjAfk+CUabumIiPgAo4/Vl15W6aLS7ZNo0Ir+CnVJDSCVBcjSxALN0qhSZ741Pwn7lWOg7T1OAVBJq3uGzmpaKXWQvzn6wACXv1DRrRSBYD/z93/89Pv/5z2NwcBAsll5VVdx66634h3/4h7rLE0K+YEmo1ACu5F0oWH8sVrxj67PGyXwN2fVM1KM/ymLO0Xy2U4LKLNf5cTIZuJksT7LGX74VgRTTeafNzWThjk3AM8yQ1+tanl0hEAgEguWlltw2RI+B5Ar8WcTaKU4mA3t0DPYrx+AZJo1MTenhhO6CdcHl778HkuFUTWbL3ku6BknXymanMpgYLsVoParUn6gUcT8XixXuq60f/JwlNI363Fci2vcOnqtqfQB3bAJkeIwHd+hTVihfQBTn+ZfgGTSC3m4B1LwH28+p2nIGUGaplQ6xJBCLRunPXjZLxXzffmfmbILpcxUUugkG//vL0KetqttbDjxNqXlZoseAbA6SacHTFNijY0vq6e+N0wEWltwWAJ9Jy6hUN9zDz2F2axdy/RrclI7dl962ZPt4wN2HMx8z0PLyOI599Pwl245gbSF5jXk1K2NjY9i+fXvZ562trSgW69dkhJAvWDKESCOoxHLWCyHmV2c1nRvW+Rf3lNpgEYW1XOOgtypLyCwQCAQCwVJR7VlO9BhN1Dg+CdcololTQEnEBACSNTB7wcYl3VdB82ElJJCJ6nY51cT2uUR2d2yi5gj6pZpdXs1Dn7XNWDttMduvtY3Hgj8AgBh21W2ygA9J1zD+Gg8tI/T6KDRoHHYcsFtKyxMLSB0lwKtxaBnAbKXR+UqBJr/t+/YR7B/52pLbvjQc3/aL5ApL0ldRerp5EmKgdA+dazCn0u8j/ouXoOaXR+k0bRluMo7kyWXZnGAtsMY98nt7e3H69Omyz7/xjW/gsssuq7u82ocbBYIFEE0GC6wuAVGw+on6Py5Fuc1MvVNrm4m1Jtwvx/EEbQF2kb1l3q5Bon6ylerFUuYPEdY6AoFAsD6J9g+Y37M7WnoOsc+CMOGKIAVpYgqxoyfhrJI2jaAxtL9kcOuSatH4QYLJadlMj6jYX6mNFGU57WGrBVYspP1ezzp8Wb/vIMV0kKFJ2EaxYnuQvX/71XdAMqmljj7toNCl0Ch8G4iNA8UuGn3PXkpBogL+LLDxH6fhHn6OlvXXdR/ekiAdP13WRp4TXQv50Tcat89PEj50Bg9O3V/bOlX2PfXcJOyuBAhoItoHj9zeoL0ssaf9Bpj/ZQvGX5dC13eeaJrrKhCsJG9+85uxf/9+XHnllQCAYrGIrVu3IpPJ4JFHHqm7PCHkC5YN9rCvltywFlGnkqDE1ltrop9gflyjuCLTilaLEM5YbfsLrK3f81IfSy0JuxdjrbQUYr5IcisQCAQCoLx/EH0msM+DwlpQ4Bd9g/WFkqWR4pUCVYDqke1AuYAfTUzbDMzXNqtLYF7gNvgyRhGoQZyWHn0S217shpvJYnb3RZjt9eCkHUB1kXqWDqQYXTShbeoogd0CWGkX6VckeLrcdL9TJ5OBdPmFwOPP1LS8/cqxJT2Gh578bFlb/IC7D7vj19dVX5xMBvLGDbASCmIzBs68pQtvv/oOPHLwUw3b111kL4rvvBwdBxX8+q9vFiK+QOBz55134syZMwCAtrY2/Nmf/Rm2bNmC3//930dbW1vd5QkhX7DsVHvQMTFqLub6XjTa1ze1NkpFUtzGIX5z87Nc56bW7bDfwEoP7tRyvxcIBALB+mG+51i151Ywov/oXW9A57NA+8U74R5+bklnlQlWBpI1gDk82+eiFg/6laRmgX2ZkdNpHm1e7Tdlj45B2bIZLQ89DedfXQRYEqS4C7sFSL/iotAHJE4S6NMe4mMesoMEnT85AftUudXESnPA3Yfdl95Wk0uHaxSX5R6z0G1E64t39CRaJlKwtg+g+9dZ5M9KNGL3OAfcfXj71Xdg/CIhMwrqQ8LiPe6lhuzJ0tDf34/+/n4AQEdHB+68885FlSc88gVNRSMehEIcWrtUurbMN3K5WGkBtNlodOO12b3wm3nfamUhdVjcVwUCgUCwEgSfuywYg+gxeFddyj9n1hNbb38O7f/rSbiHn+Pf7SJ7xTOsSbn8/ffUtfzFN91Lk4r6/u21IsV0kHSKR96HEt02OBq/maL7GwUT8fe03zBvO3j8/3sNpLgNfUKG8moMPb+y0PbUJNqfIUgMu+j8yUmkv/cUNn7hMew/eV/ztqtfOEqj8udhJfef1TVloL/mdVj+EWU8DzulIfXI87j6HY1NzntiTxwdz7sNLVMgWO2cOHECv/u7v4uLLroIN954I2ZnZwEATz/9NI4ePVp3eULIFzQdTftAFwgEZVTqIC/0Nyx++0uLGIQSCAQCwWqEtQ/Yc8w1ipAefZJ/n9nZCoBGVq9FIXWt8vjffLTmZXfHrwcAuMl4XdsI1gdJ15a0fkQHCoL/r4V66RUNXDd4U/UF/JkSZESHlXYRm6AJVjF0Bj0PnUDq7w7BPnV62aLYF0MtbeaVnuUt6RqIHqtrVoPSQwc9PU3BbI8Kb1M/XK2xccxnP1iAozW0SMF6wJMa82pSPvCBD+DEiRN4z3vegwMHDuAzn/kMAOBf/uVf8NGP1v4sZAghX9CUNPvDXbA+EUJodRYa7cYi8FfTb3617OsBdx+fsdKIutvoiMZKeVMEAoFAIKhEpWcvE9LaHz8DZctm4LxzmsYmRdBYHio8wP93Mpl5RVQmnnPPfMOcM5J/sUJ7LevPJ+ivtDA8H65RhLG9F2+/+o6KbTevsx3tLxXQ+Sz1wh/4zsuQdA1OJgN3bAJA88+8ZRxw90Eempx3uZVsw0aTgVeD1Ss5neYWSCRXgGwCVlccLScWZlVVjUcOfgqpvzuEPe03NLRcgWA1c+jQIXzrW9/Cpz/9adx999340Y9+BAB44xvfiEOHDtVdnhDyBQKBQCAQrDhC0BcIBAJBLcjpNJSe7lLy21eOAdkc3MPP8c+aXRQVLAxPl+u6tlJMh6TT8GBJ1/iLlzdHctzFMpdov9zWoI1CPz4JV6ssIRXOToMYNojlofOIUSY0rwYBP4Rphuy8gn+bBSmmg+ixefeL6DF4RYPmyTo1DPfUMIptBLM9KsjE/AmN6+XUf7oSUlcHAAhBX1AbXoNeTUpXVxf/f8uWLRgaGgIA6LqOfD5fd3lCyBc0LasxUlewtCxVXQhGLUdfQZqt8dZs1CrEit+2gBGsByIBrkAgEAjmgj0zHpy6H/boGIge41YRSCX5ezmdBkmnQusJVj+H77sZ8kQOpLuT+94DAOnuBEmnQAb6QAb6IJ0zyAV7r2jAzWRDQr1nmPCKRsPEexb5H3wFmeu71Yb9yjFoQ1k4b3stb7MdcPdB3rENLU8ch3x8BPqUA/3FEbr86BgOuPtCMypWC/tHvgbS3Rn6rJkGXw64+3j+gvlmhATzRJCBPhTfeiFi0y7Sz83A2N7b8H17/nM3Y//L1HvfyWSw6WtfbPg2BGuMNS7kf/zjH8ett96KXC6HeDwO27YBAN/+9rexY8eOussT6aQFq4JKDXAh+Kw/Gn3Na2mMNVODbTWwi+yt+HsVnejGUu08z0UzWtlEj4OJ+aK+CAQCgWAuos+JXWQvTfpomlzcEqwtrnrXX8G6fANcVYI+7UCfskAMG0ZKgzaUhacpkEwbkmkBqSTcZBzepl6QrAFpYooL+I1mvjKDFj9RmnkGCdFjFftBnqZAf+YkZvdcxtts3tGT8ECPR3twDPvXWDuuWn9wqa5bPW1hJuJHA2KUgX64YxN0340i5HSaRskbJuK/eAn2RefA02Vov/pNw/f/ivfdjUN/+7HQfu36sGjfC9Yv+/btwxNPPIGzzjoLmzZtQrFYxAUXXIBjx47hhz/8Yd3lCSFfIBCsK4Qwv/SwxmcwUkcgEAgEAoFgqZB3bENuaxuSh46t9K4IlojZbgV2AiAWYCUUWAmCllECJWvCTemQDAduSoc8YVERX5cBAFI2D6+zHRg6s8JHsLqo1meSjp/GyHvPR+sxK7SsnE4DqyCRbV3olbO2LvXAi5xO17ys1NUB99Rw2edeNlfxGrJ8Bcp4HnZXArKuNTyIpv3x8G9NzLoVzIfk0ddiy2hWLrnkElxyySX8/e7duzE4OIh3vvOdGBgYqLs8IeQLBAKBYEloRIOwWQcDVnODtJki84PXlXUixCCQQCAQCOrlwSO347reG2tOALkYxMyxlaFlzMbooALjLBOpZzXYcQKrRUdsWkXyNzMAAHmCJu50WnUo43l4mgLoGo3I98sh6RTcTJaXG4yYZ9HN1SLoo+vOx3zR+s0YiR+E7V9QEHYyGXR9/TGQi3cCeqxhv4ddZC+IHmsqGx43GeczEyrNUFiqfc1fvb2u5YNR+QA9l04mA2XLZppDBPS6KakkAH/gZegMVLMDnmE2/H7GbHUYrI7sjl8PMtBX9r1A0BBrnCYW8u+5556Glic88gWrlmoPnKVoWAcFr2YQv9YrotO0emjU70R46VdmLZ6TYOejmQYbBAKBQLA62D/ytSXfhngurRyP/uDPEZsA0k9pKHYCxAZcDSi2EeCFo3BafZ9ww4Q84wvzpg2nM0kj8hH2Eg/mUWDM5WMvxXRAqxyhXamcuaiUoLRZZg0H96taUl5y8c5QculG0Ixe+u7h53g9Wc7r8+gP/rwh5binhsPXc2wCOO8cAICUSsI9NQz7onMasq352EX2wjWKMDZ1LMv2BILVwNTUFN761rfWvZ4Q8gWrmuUQs6IN9rUooK0mhLDb/Cz0Gq22zvF8x9gM9XSufWim31Lw2jfLPgkEAoFg9bEczxDxnFo5Dt93M3q+/BiUAuAqgNkKtL9UgGsUoTx9FN74JF/WTemwuxKwUxoKZ6fhbh8ENm6A19kO7+KtcPu6eWJckk7Rl584NwhPFJpKwtnYATLQV/a9FNO56M0E39Wa2LamHGKHn+P/r+U2/wF3H5+BwRNrNxHs3D84dX/Z5wfcfWU5GFyjGLp2ZKAP0qNPLtn+BWfYshdLhCwQhFjjyW7/5V/+Bbt378b27duxefNm/rr44otx8OBB/r5WhLWOQDAHlewdhOAkEMxNvbYoq6Uxv5ppxL1qqe93wXoj6oRAIBAImo1KzyZhBbcyEAuwW4BCr8M/k7o6gGzJWocYNlyNgJguAN92xzBhbO+FkjXpOqYFaBrcsQkq4Osa3M40ELTeSSUBXYPTmYRk0O2Rgb6QL7mka5DT6VWfaJl5s9dyHEwcrsdaZzW275gYzgT9prND8ut8NYJifnCQxsvmIOkd8K66dMl2Td6xrax+ePPsr2B9stY98j/0oQ9h06ZN+NCHPgRZlvnnuVwO//k//2fcfPPNdZUnhHzBqqfRos9cjfRKn4uG+8ogxL7Vi7huy0ct53q+31Kj73G13DfZPon7q0AgEAhWkrn6AESPcfH2ut4bl8XaR1BqI5z87JVQMzKshILYxTsx25eAq3VDzVOxXR3KwdXboIznYW5McSGemC7k4zQq2DNMeJv6gc40rFYd6rFREABewCvfHZsA6e7kIr61sQ3yjBGy6QGomK8M9AMAcq/pR8uJHPDC0YrHEI2UjrKctjusDgf/zkdQFJbT6apttrXQ5j/g7sN1gzfBPnV6pXeljPnO7wF3H/a03wAnkwnVIaLH4BUNPLgMXvXRNn109oBAsB544YUX8KMf/QgbN24MfT46Oor/9J/+Ez7ykY/UVZ6w1hGsORbTYFiKdXeRvcJjX7Auidb76G9B0Bw02zVptv0RCAQCwfpkPhHfNYo8cjmaZLdaYFCwLSSedwvngLsPPb+2EZug74t9CcSG82h56GkQ04WSNeFpKuQZA25Kh6MS2CkNTqsOK6Fwz3x3+yCAQAR/ZxqepgIbN9BIfIZOvfEl0+YfeUUDkv+5Z5j0lc0Buob4SAEkVyiz4YkK8lFxlf2NDhIsRRQ48+lnFkDRv3MJ+tHkt0HWYpvfSyXKPmuWnAbzBb0Er0/IYmcZ9l/K5vn/4r4nmBNPasyrSTFNE7quV/xOkurfbyHkCwQ1MNcDMtogr/R/cFlB4xDRus3PWmvIR1nOpNtLRdC3stLnS7G9avvA/l/LdUYgEAgESwuLig5afywGosdC/thB7+kg1YT6aFtIPOcaw6M/+HO0/caGnZDR8uwQyPAYSHcn5BkD8kSOCvitOo+kd1SCQo8OV5MgZfNw+7pBsgYV3A0bdkqDp8uQsnlIE1OhCGxvfBJkIgM3pUMdmqbLxXQgIPZLXR1U/DdMyEOTcE8Nw9rYFtpnosfgXby1TCQn6RSkmA45nQ6J+JUE/aDgXw9sXTaTJLhtgIq75OKdpbq9cQOULbV7Nq/lNr/z/Ev8vgLQ67Ja2vrBNrZrFEH02JK08fe031D22f6T9/FofNHOF8zJGvfIdxwHnZ2dZZ/39PTAcZwKa8yNEPIFa4Log2gpHg71POyEh+byIc6nQLB6mOveHBU5xG9bIBAIBAth/8n7uNjeCDHfNYplEfeL8QQXfYLGEfvh44iPGpi4ZpAmsU0lQHKFkpiuEZCJDGTLhZq3oeQDnvqmDXNjCsamDkiGAyVrwtUVGNt74WayUAb6afLb7k4apW7SMlnZ2LgBTmcS3qZ+SKkkPE2l/vo69dx3jWIokSgT5aXDL8MrGlxMJ90lcccrGnwmAF/eT7YbFPmDUftMmK/VpgcoRWkH6zbRY8ALRyGn01AG+uE8/1IoD8B6xz51GvKObSADffz8rUZBeiki8a/besucljmr8TwJBEvJs88+i6985Sv4/d//ffT09NS9vhDyBWuGqPBTy5TW6HfVWGoPfoFAsDZZrb/3pRAX5vO8F4KGQCAQCBpJtch5Rq39gqVKbrla2wjNxAF3H3IDOojl0Uj6bB4wTMCkyWy1oSzcsQmo4wVYCQVq3gYxPUDXIGXzgaS3NoyOGFyNyiMkneI2OTw5ZyoJd2yClw0AkuGg2Jfg5ZHh8IBPJZgAzy1P/PIkXePfBW1u2P9sGRZB7xUNLugHl6ll26xOBwcApJhOX10d/JibxT6mWSicnYabjIc+W8nfcS35DKIsRe6r/fN47Ys2vmA+WLLbxb6alSNHjnDhfsOGDbjkkkvw13/91+jv78c3vvGNussTyW4FaxomHEUjX1ijPfi+lrIEzYmYorc2WAuNvGY9hnoSx66EiF9p29EIfYFAIBAI6iXYRqzUVmTfz9UvkGI6EBA0RZuzuUj93SEU33k5vFQCUjZPI6fTaUgApCzgGEUow2NQW6mIHT+RgXtqmEbbZw0qiAydgb2zA/K0CwCYfc0mtLw8DmtjG5TxSQDUXofb6RgmtefZ2IHYcB7Gpg5oQ1k4z5+GomllyWylmM4TyUq6RgV5rZN6r09MAakkLT84cICS8O4ZJv8r6RqfbRIst5qYHxTjKy1D0im4ozTfA9FjkAyzzPe+0ay2dt0Bdx92x6+HbLl46MnPhr4L2m4tN17RqHmGj7Jl87yC+0KYb7vL4ZwgWAM0whqniYX8iy66CIQQvPe978XXv/51vOUtb0FHR8eCyxMR+YI1T7VGe7XvBAKBoB7ma8CupvvMUnWsVluHTSAQCATrh/n6BUstagoWh7xjG9S8AzcV8JbXNUCjiWiVnm64fd2QZwyox0aBoTPULiebg5TN00h8P+mtlZDhqASyRQV9YtihSHmpq4NG/AfwdBlWQubbd8cmSnY3vvd9MMLe2j4QPoBUEsjm+D5LXR086j50PP5fJupHy50rer7SrBLXKNL1MtnwZ4GBBEEJ1ygi16+Vf6FpK9bWr2fGxFKI+LUe92rqCwkES8Gf//mf4zWveQ3+9//+37jjjjtw++2344c//CGmp6cXVJ7keV4Tj1sIBIun2ih18POVfLgIgasxiAbC6mYt/g6aJaK8WfajFqr9jpt9vwUCgUCwOrhu8Ca4YxN4qPBA6PP5+gVyOi2ilJuYPe03UG9504RnmFzgJt2dpQh9X4T3Ugl4R09SGxl/HTeThXP5DlgJalggWy7kf/w1/T8Q7U4G+gCARvQP9HEbH88w4W4fhJ3SQEwXyngeGDoTisIHEPKjZ9H0RI+BdHfSAQDfL9/L5rhXPkyTJuZltj2aRrfZ2c63ESwvCtFjoXwRjKAIrPR0h/JAsHWWgrVUz3fHr6eDPBs34MEjt6/IPjR7zo25+ujNus+C5WNmZgbpdBrn/Oc7IMcWZ2PnFIs4+hefQiaTQWtra4P2sLHkcjk8+uij+OlPf4qf/vSneOqpp7Bjxw489dRTdZUjIvIF6x4hAAsEAsHKI+7FAoFAIFhq9p+8DySdqvrMEVH5q5dgJDmLhHfHJgD41y+bo6J4SuciNVuHpFNQh6YRG85DzduhyGuvaICkU9SCJhmH05mEaxRhbWyj3/sR8q6uQH/mJJSnj0KamKLl6jF4RQP26BhfDqAiOhfgzxkETDPsy180AF2jiXP7uiGZNt1WZ3tJxAcgpZI88r+ibU5AvJ9LmA9G5c+3rKAEO0/B2SCCMOaey1Z6FwSrAa9BryYnmUxiYGAAg4ODGBwcRDKZxMjISN3lCCFfsOZp9pFeIV41hma/zoL1jZj1MzfMmziatFwgEAgEgkYTjDxmNMOzR/QJFo6TycDJZKiHfFdHmZc8ACCVhLOpF+TFkyXvej9S3jNMam9j2nA1An3agTLQD8AXazUNXmc7JNOGPDRJI9Y1Qn35dQ3YuAHyjAGkkpBSSbiZbEhYJ3qs4mCQaxSBoTNUSNeodz6yuVJk/vgkSK4AT1PgbOql6/RRT3Ypm4ezsYNG7vs2QkHhnkXVB0V59j4q1LtGcUGJU9c7Sk83nEwGdqqC5Y4Au+PX4+CPb6nYvhf1TbCe+NKXvoTf/d3fRVdXF6699lr87Gc/w9ve9jb8/Oc/F0K+QFCNSo3zZmiwCxqLuKarE3Hdlh5xjgUCgUAgoCz3oPFKJsNcL7BrKnXR5IFe0ShFyvsitaepcHUF7vbBUkR+xO+e+9yr5TKJ3ZWg3+sacN450J85CSmbp+J9Ng+ntTwqOyqaVxIvvaJB7VnMUkJbmP7AQlcHvPFJeLoMyXAAgAv7XioBecKfhRDw8Wf+/Ayix/hrLpZj1slabY8S012xbTdz7r+5ZnaIWU6CEGs8Iv+jH/0o/u///b/4rd/6LXz/+9/Hd77zHXzoQx/Ceeedt6DyhJAvEDQBu8jepnz4rkbWagNRsPpoxrq4EveahW6vlk6nQCAQCATNjJxOV5wBUA3RH1gc+1++C974JE/kynAyGUimBXVoGvLxET64Iukatb3xk756jz8D/cURxEcN2KdOAwC8qy6Ffeo0pEefhPf4M7BfOQb38HP0uprhgQAEEtFGI+GZzY4y0A+lp5ta4gS86Jm9DfPG9wyTivhFgwr2LxyFd/Qk3GScLu8POhjbezG7tQtSVwekmE4T+UaS39ZjlcPaXvKObTWvU0uZa7FNx66Z0a6u6H4Exfzluofsab9hwdsSM3AFUSSvMa9m5f/9v/+Hj33sY3jhhRfw5je/Ge3t7dizZw8+//nP4xe/+EXd5SlLsI8CgUCwoixVZMJcDQ7R8VoY66ER1yzHGEzgx6xslppat1fpO9bpbJbzJxAIBAJBPUQTiNbKcj2j1yoPTt2PXWRvuXjt++Ez8ZWkU2Xe8ExsVl88BRtUzJZePIX9Va7HLrIXGB2D0tMNdWgabmca7uHn4F11KYx2FYmDL0JKJWGfOg3n8h1Qnj5KxX9Ng5RKQjJMwPfxD+4b35/uTki6BqczCaINAvADT3UZrq6AaCrU8QLQFQeYndDYBBX0WZlsoKBGMV+K6YBRhPP8SzUtPx9EjwHnnQP38HMNKa+ZcI0ixv/4Sjz51ZtXelcALG2S4iAsye989jjV7mPiHidYb1x33XW47rrrAAD5fB4/+9nPcPDgQfzwhz/ErbfeCjM6KDwPQsgXrGuCwlYzEMw6H9wv8aATCFYnzfzbbeZGdDNPExYIBALB2qTR/YKFiPiMSvvRrM/sZiR6LYkeoz732RykmE4TzWqdpe8CeNkcjZzv6YZdg5hN9BiNnu+jkfLyjm3wZgzoAKSuDtivHAMAKON5KrT3dcPTZZCsAWgqpECSXqAkuEctmSTTgqepkEybevnrVMpxWnU4KqGWP+wYfLuexdqXLJcwvFpptt8km/mx1G181yhCjuk8x0StNNv5EghWgkQigd27d2P37t0AgNnZ2brLENY6gnVNs4pE0f0S1jsLoxGNhVoTcIqGiWClWcg9YinvK424j4nflUAgEAiWi0Y9E1mS1EYj+gP1EWxDuEaRRqqnklx8tE+dLkv+StIpmqzWKGL/yNfm7QMccPfRdTdugNOqgwyPIb+1DZJpY2ZzDDBMbisjZfPwDBNkIgPJcDB9SQekLBX3mZ0OSae49Q4AOBs7YG0f4NuzuxLwNAXmxhRmNsdgbkwBAPTJIma3dgG6BpKmnwWtheYiOpARFP9DyYIXiHTOIPDCUdGmWyS1/vZdowilp3vJ7hW7yF4oA/2QdA3W9gHsab8Bu+PXi3uTYHGscY98ADh8+DC+973v4eTJk6HPW1pa6i5LROQLBKuIZo6gbVbmiq6qdC7FTIjlQ5zfxsOmujqZjDi/AoFAIBCsAMxbfakQ/YH6YFHlUkzH7AUb0fLsUMXztzt+PabetgWpvztU9/mVJqaArgSQSkLN06S0VkKCOzZBhdWBfpqQ1tR45LxsAm5nGiRX4N76HI0uIxkOiP8XoFH9bkqHkjVBLBXEdEEMG0ZHDPpk5QS+1ZDT6TIv/ShEj0GK6VDSqQXPMJEmpvBg4YEFrSsIE5y9X4nlmkHhZXOQUkmoL56CO08dEggEwJe+9CV89KMfhaIokGUZP/rRj/DWt74VX/7yl+E4Dm6+uT57LsnzvCYftxAIlpbVOHosGu8LY77GT6PKX26CkTKrqSEl6nFj2UX2QunpptO7/UZ19Bwvx1T9uX4H4poLBAKBoJlZTf0C8Uytnd3x6yu2ixrBXHUm2EaXzhmEZFpANgfjwkFYCRkAkHh5mn5vWjA2dVDPe1AffMlwIJk2zI0paEPUP9/TaCxmZmcrWkYtAIDRpkKftkBMF+qxUbgB330g3D9YiNi7WIFY1NXFE61n1dr4cjpdmnUyOtawcy/a94KlYGZmBul0Gud+4g7IscXN/nGKRfzm859CJpNBa2trg/awMQwMDOCWW27BRz7yEfzZn/0Znn76aTz88MM4ePAg/vRP/xRPP/10XeUJax3BumY1NdYFjWEpGxrBsmu15GkUwWnBqwHR4Gs8B9x9PAprpeqCuKcKBAKBYLXSqGdY9g+uAEC90oMs1qJEsHAeKjywZG3Pudr/UkznbXQpm4c3PgloGvTjkwBKIr65MYXZrV1Qsib3wLdTVIxlwn3h7HBiUVeVAACOSmAlJP+vAi/guV+pPegaxXmTlFZaZ6GINv/SUO1+xayRoomTl4J661EU0W8QhFjDtjrT09P47d/+bQDAu9/9bjz3HE3+vWnTJhw9erTu8oSQL1jXrNaGhfDIXBjLcb0rifdLvd3VJOALlhYnkwl5mzbiPlFrGfMtt1rvtwKBQCBYHzTqOZX6u0MAACeSKLXR7TXRH2geqrX/Q37zYxNwMhn6tzMJfcqCpylcqAeAQm8cY1d2wdMUqOMF5M5tRe7cVijZkl3O1MVpjL+uDcTyMLVNh9Euw1ElyJYLADwaW4rpfPBoLh98weqgFktYlo/BzWQhxfR5y9wdv76mbc81aLCY+6boGwjWC29+85vxs5/9DADQ0dGBmZkZAMCxY8fQ0dFRd3lCyBcIBIIlZKntfFYj4lwsHbUkZVtImQKBQCAQCASC2qgkfLKBnKjA6ukyt9Mhpgc7ART7EsidS60hZnsI7JQGOyHD7kqAWB6Spy2oeRdqnoahxqZdzPaotLzOdrodP4GuFNPLtilmh6xO5mvns9kfLOHxfDxUQ+4CMVgoWBbWeLLb973vffjUpz6Fv/zLv8Sjjz4K27bxf/7P/8GNN97II/XrQQj5gnWNeDAJlhohgoYR52N5kdNp7Gm/YcnvdSIaXyAQCASrHdEvEDQK1u4Jtn+8qy6FvGMbpK4OyBM5EMOG01oS2I12Ga4mQZ/24GoSxi8iIJYLVy2VayUUtIxakC0XrkpALA+FboLEq3m0jFpQ8zY8TYF0ziBgmiADfXAyGXhFg5eh9HQv22xe0f5beipF5dujY6FrvhjYoI+8Yxv+9fPjDSlTIIgieY15NSt/+Id/iKGhIdx222244YYbYBgGbrzxRlxzzTW466676i5PCPmCdYtorAsEgrUK92b1p1cD1WeHLPReyKb017K+uN8KBAKBoJlhzylloL/su8kfbSv7TCCoBVaviB6D8vRRmuzWMAHDhKsrKPToIFkDni4j30dATA/ZQQnT5yo465ECiOmh7SWLW+uoeRsA9cXXpy20jFpoPW5j7LUp6C+OQD02CpIrQJqYgmeY1JMfYV/85fBOB4SI32iign2171iU/WIGa3aRvdjTfgP2tN/Ay3Gefwnf39G14DIFgvXM1NRU6JXL5TA6OoqvfOUrSCQSdZcnhHyBQCAQLAuiQb/0RAVzlvw2ymq+FmJQQCAQCARLhX3qdNlnHf/qpQpLCgS14xpFGiFtmPCyOXipBNShaSR/M4PC2WkYHTFoGcDVJBALiI97OHNZHDObVRjtMgBAn7Ygzxhc1DfaVOgvjiA+UkDLqAsvlYCXSsDp9C11/GAOFlHNk6AuQzT+am5nNisH3H3L2gZ2Mhlg44Zl255o369z1ri1Tmtra+gVj8f5d8wvvx6EkC8QrGLEA0+wGpjPz1HQOILnmSVZiya/rRSZ36iEtsuBqEsCgUAgEJRohmezYH5cowj71Gl4RQNuyrfUeeEoZjaXvHNGXq/AVQErIUEpAPo0TWA7cWEKU9t0ZHa2gmQNyJaL1CPPw0slIE/kkPzNDIZ3daFwdhqurlBrFT+YQ4rpkNNpKD3dS3ZsQc990U5bOqLt/CDBmbL1tvGrJrN9fvkGMUW9Wd+sdWudKJZl4Qc/+AH27t2L3t7eutcXQr5gXSIavILlRtQ5wUowX6N4IY3mxVjxLHZ58TsSCAQCQaNZqmeLdPmFS1KuYPVDXjwJZHMg6RS6f52FmrdhpgFiA8osYMeBYicgm4DVQtAyZqPz2QL0KQduSof+4gicTIYOCGRzkEwbydNU9CeGDXPPZZB0DZKuca/0pbLUIXqMJ9MVYuzyMtf5rudaED1Wl2VmkHqXf/vVd9S1vECwljh48CD+w3/4D9iwYQP+6I/+CC0tLfjBD35QdzlCyBesO4QQJBAsH6JBvzLMd5+LRu3Ucp2CZTZKzK9Wzlzli3u4QCAQCBrFUj5TpMMvL1nZQYLR0ILmhl2rqLhuJRQoBcBVAFelgv7AXz4GAFBnXVgJgkKPDjVvQzIcQNcgp9PUX7+zHZ6mIPFqHvETdBZmy8vjQMq32InpkHSNW+oQPcYj9BtVd7yiIdr8y0it7fyaZ0Wfd05D9+eK991dcbnf+dmH8cjBT5V9vjt+Pfa037CofRCsclbAWufOO+/EZZddhlQqhZ6eHrzrXe/Ciy++GN4tz8NnPvMZbNy4EfF4HG95y1tw5MiRug/v4x//OAYHB7F7926Mjo7iv/7X/4ozZ87g29/+Nq699tq6yxNCvmBdIQQggWD5EA36lWMhPppLfX+sVh+CgwpzJfKa73OBQCAQCJoJ1ygui8i+HJ7ngsbBotfZ/3ZKQ65fBTGB2AT9XMkDcjoNRwNcVYLVQqDkHVgJBZJp0yh8X6gHADI8BnkiBzelQ57IwelMwtNKlj1eZztdTo9xv37PMEP7shBY/RZ1cHkhF++sa/n52vhkIjPn93NRqV2ePGXglyc34breG7E7fj3f/qbERMUyjv/tVjw4df+C90GwBlgBIf/gwYP4kz/5Exw6dAgHDhyAbdu49tprkc/n+TJ33XUX7rnnHnzlK1/BL3/5S/T29mLXrl3IZuub4fTFL34RnZ2deOKJJ/CDH/wA7373uxGLLbx9IHmet4qchASCxbEWhXwhaq0O1mLdmwtRL5uLuepfrddqMXW4nvoQ9fYUCAQCgWApWKq2WVDcZMLpUiOem81JtI6xukG6O+GlEgAAc2MKRpsKKyFBzXuY7SE0Kt8CiAnYCfq/Pu3CVSW0H85AMm1IE1NwNvVCMhwqxOoakM0BoJH+pLsTXjYXypXE6mOj66WofyvHfPexWq7N7ktvg3v4uQXVi1rKP+fLd2PLTYfmXFa0/9cnMzMzSKfT2PbROyAvcuDbMYp46Z5PIZPJoLW1te71x8bG0NPTg4MHD+LNb34zPM/Dxo0bcdNNN+HjH/84AMAwDGzYsAFf+MIX8MEPfrDmsj/3uc/hO9/5Do4dO4a3vvWt+IM/+AP8/u//PlKpVN37CYiIfIFg1bPeBGKBQNBYar2HNLJx3YiBBYFAIBAImpnFRuPXuv5CZuEJlgdmY8P+An5EvmnC3JiCm9KhjhdALOpvX2wjKHYCZit92QlAn/ZATD8yPyHBadUhmRYty3BAcgU4GzvgaSo8w4Q9OgYpppeJ+EBjB5fY8Yh228rSkPP/wtGG1Itq96GjH/nYkuTtEqwdGpnsdmZmJvQyDKOmfcj498uOjg4AwLFjxzAyMhKyvtF1HVdffTUee+yxuo7v1ltvxUsvvYTHHnsMO3bswCc/+Uls2LABe/fuxfe+9726ygKEkC9YR6zlBu5CEtMIBEuFaIg1H424Jit9j6l2n1vp/RIIBALB6mMpnx2uUeSC2HJE47NjEf2B5oOkU5B0DQDgbeqHd/FWSLoGZ1MvtCFqzVDsS0DNO2h7IQfZ8kAs6o+vFGgkvqNKsBOAmqeCPgB4mgpr+wCsrjhy53dDMhx4mgJs3EAteTKZMhGfUU+drDaYRPQYnExGtPmbhMVeB9cozmmzxAZtloJa8mWJ+9o6oIHWOmeddRbS6TR/3XnnnfNv3vPw0Y9+FG9605twwQUXAABGRkYAABs2bAgtu2HDBv5dvVx22WX40pe+hKGhIXz/+9+Hruv4wz/8w7rLURa0dYFgGWA3bNFAqJ3d8ev5/w8VHljBPREEWU+ND/F7bV6qRezVes2WKuKPTaWd754/334u5tgEAoFAsDpoZvsFosdoJDRLZLpCvuG15JsRLD3sOig93XCNIpRcAZ6pwu3rpn72yThI1kA8a6Bwdhqq4aD1WBHp//EkpMsvhB0HEtMe1LwHTAP6tAViySCGjcLZVFi1EzISr+b9wQAbgA41m4QMVBXy60F4368fnEwmFJUf/J/d06LUYpWzi+yFvGMbHjxye91l7I5fz/dBaEOCWnn11VdD1jq6Pn8ukA9/+MN4+umn8bOf/azsO0mSQu89zyv7rF4IIdi9ezd2796N2dnZ+tdf1NYFgiWk5izrNbCehFTGejxmgUBQP0sdwTdXktvo/wu559c6wCDuiQKBQLD6aeYZZkERvxFUS5Zbj2WPePatLMpAP5BK0ohmg4bTS6YNT1NBcgUaRQ9Anywid24rpEefhHfVpRh7bQqxcVArHQ0glgsrIQMACr1xyJYL23/v6rQMK0H/TlwzCCmVhNLTvej6U4mljM4WNJ5a7gHsvlrpnlOv5Q7b3uQHruRifjURfz7mS8Ys7m9riAZG5Le2toZe8wn5f/qnf4of/vCH+Kd/+icMDAzwz3t7ewGgLPp+dHS0LEq/FgqFAu6//37ceOON+PCHP4xvfetbKBQKaGlpqbssIeQL1gXrceSW6DEu0ImH3MqyXurfejnO1Ua9v/+l9q+vJuDXUna1fatl/eD34p4oEAgE65elaK8QPVYm4tcqmM61nGsUoQz0Q9myOZREtx5EX2BlOODug7W5B05nElJXB7xsDp6mwNMUFM5OI3d+NzxdhqcpkIcmAdC6kBvQQUyg6ztP8AS3rkqg5h3ERwogpgejTQWxXCh5B7kB3Y/Gp3T8cgLu2ATs0bGKdaXSZ/WI+96mfrhGUbT7m4zFtKOD6wdtwXhyZj1WVkfmi8bv+G+PLaqOHHD34cGp++ddJrhNweqlkR75teJ5Hj784Q/je9/7Hn7yk59g8+bNoe83b96M3t5eHDhwgH9mmiYOHjyIK6+8sq5tjY6O4tJLL8UnPvEJPPnkk/jGN76BL37xi7jkkkswNDRU345DCPkCwZpCTH8UCARRVmNHq9ogZPRYFtJoD3oJCwQCgUCwGCoJXNHvg38rMZ+wap86DW98cskSUQqWDlcjkCdyAKg9CckVQHIF6JNFENODZDh0QV1D4tU8pHMGYbUQFLsA603nA6Ae+Y4G5Po1GB0xyL6Az1DzLlyNwNUkGO0qsjs76q4r9SwvHT9dV9mC5kHp6Z53meA9i+X7qLV+KAP9c35/7RWfm3dgcSEDj6JtL1gIf/Inf4LvfOc7+O53v4tUKoWRkRGMjIygUCgAoJY6N910E+644w58//vfx7PPPov3v//9aGlpwXvf+966tvXxj38c/f39OH78OL773e8iFovhueeew9VXX42bb7657n0XHvkCgUAgWDSrUSxej8xlQ9NMjd96fPurva8lMa7wERYIBALBQogK89VscILL1hNRH12mEX7nguVHf+YkoGlwO9OQzhmEe/QkpHMGAQCy5YJM0OvqpRLwHn8G+Xdejti0C3UW0F8cQWbT2ZAtD2rehT5lodCjQ552AQDELIWfOiqNz3RVguRvZkB6uuEZ5pLUm/mipAXNR71t/Ep2OuweN9f9yz419yDPw4dunXfbjWrbi3b9KiNgjbOoMurg61//OgDgLW95S+jz//7f/zve//73AwBuueUWFAoF3HjjjZiamsLrX/96PPzww0ilUnVt68c//jH+/u//HslkEqOjo/zzm266CW9605vq23GIiHyBYM0x18NVTK1dOdZyY2ItH9taotbf/lIltV1OFhKZI+6PAoFAIKiVaHs7KOLPFcFai4hP9BjkdHpJvMiF7ebysn/ka4Bp8vekuxMAYKe00kKmCWliCuTindCnLDgaYLUQ5F5Tim7O9Ssw2n07nawJfZLWIzVvQ807MNplqHmHeul3xQEtUP48VPJEF6xOarGZrOW3P9fAZDWW+p5Sb9u+Efc5cZ9cPlbKWqfSi4n4AI3K/8xnPoPh4WEUi0UcPHgQF1xwQd3Hl81mQ/77DFmWQUj9srzked5ixz0EglWDuBnPjRBkl561WAdFvVl9zFcPo9Ev8yWsrdYxqLReNFKmlsiZ4D7Ua7dTbb25EHVaIBAI1j4LbZOxqNSFCp4sKW5Q1K9U1nyif71JKCsh79gG7+hJjHzwNej58uI8rQXVuWbX56FkS4I+s8gBACvhi/CmCyuhwNUkENNDoUeBmvdQbCOQLSrZJE+bICa10nFUaqcTHykgf1YC+rQFRyVoeXkc9ivHFl0/5HQ6FNGv9HTDHh0TdaTJqbWNP1/7u96cWfW276N9iKGPX4nYONDzf1+Gm8niocIDFfeF6DH+nWjbr35mZmaQTqex48N3QF7kIKJjFPH8Vz6FTCaD1tbWBu1hY9i6dSvuv/9+XH311Th69CguvvhiTExM4AMf+ACy2Sx+8IMf1FWeEPIF64a1KKAuBeIht/Sspboo6svqZa7EsY0qt54BgPmE/GrLRAcaGv37EnVcIBAI1h6LeVYsNmJZiukAyu1y5HQaXtGoKPRX2od6RdrgfpN0Cs6mXsxsSSD9vafKyhLPvsaz5/xPw03pMDpiUPM2F+PjJ2g9sLsSKPToSP5mBlZXHI5KUOhRQCwPrirBUSW4GtD+kgF1vIDZs5NQfa98KyGDmB5iw3kAABkeg7V9ANKjTzb0GES9WB0sRRu/0e37XWQvjt9+JV7+5M0V2/KNyItVCVGHmwsu5P9Jg4T8rzankP+hD30IsVgM9913H44ePYpt27ZB13UMDg7iwQcfxNlnn11XecJaRyAQhFhLIrNAIKifRtwDDrj7apre24jy6v28XsQ9USAQCNYeixHjFxsFD/iJTwOJcuu10QnuQ63rBhNXegaNDlfzbsWZAeLZ13g8TeGWOsSwAQCuJsHuSkAyLb6c06pDyZqQLRdqnvrjE8uDOuui89kCiOnCadVhJQiISa12mIjPkum6fd2QH3++4n4spO4Lu521QaPa+NWQ0+nQ93PVmwPuPrz8yZsrlrmUbfvFWO6I++IS4jXo1aR88YtfxC233AIA6O7uxle/+lX8wz/8A5555pm6RXxACPmCdYK46VaGdSCiD1lxvpYWEQkgaAaWqpFc6/pzJZ5d7PbZPjRSzK93/8R9VCAQCJqTy99/z6LE+IXY4ASXkfSwfznRY/CKBv3Oj8afa1vRz2tZPoqTycB7/BkkDx2ruI+CxuMefg5GmwrZcjGzJQFHJdCnLBjtKgBAnjGg5B1YCQVGR4wK9n5V0acctIxafDmjXUXyFL3uJGsgfiIDT5eBbA7uqWHghaPcjz+KFNPrFuZdoyj6L6uIpWjj1xKkAyxt+z74d7HUu1/X7Pq8+A0IFszs7CxMP19KKpXCBz/4Qbz2ta+FJEkLKk8I+QKBoCJChBLMh2jMrH7m8rhc7v1YqiS7rGxRXwUCgUAAAB3/8Ny8y9QjdNbil8/EU5JOlX0OUKuboCBfS5ksKe5isEfHqn4n+gKN5YC7D/q0hdkeKtyredv/62Dmkg2QTBt2QvZtdyQQw0bLqIX4SAEAtc9xNeL/T0AMm0f2A1TQD+Jlc2E7JT94i9k3zcVSJFoWLC/N0MYP+tw3EtG2X3tIDXo1Kx/60IfwzW9+k7//d//u36GrqwtdXV346U9/Wnd5QsgXCARVo29YFKpoyDce0fAQNAu1Tmddqu0Gk2It9bYX2uiv12qg2nLiXioQCAQrT9SbvhJzRaaz79hf9oyIiqPB917RKIn4qSRIOhX+3re6Yd74zAM/KOgz4T4oskq6tqRR9Kwf8Ma9dy/ZNtYT8j/+Gq4qwVUlHonvqAStT52Bm9IRHzXgagSJl6dBsgb0Z05CHpqEPlmElaCe+k6rTtfviMFOaZAmpoChM3CefwluJsvrQ6jOBWD1Tk6nQ3WLfcbWDSL6LauT5W7jv3D7eWXt+6W2ZVqMoF9Pu/4nBz6xoG0IamSNW+s8/vjjeOc73wkAOHz4MP7u7/4OP/3pT/HBD34QH//4x+suTwj5AoGgJoQAJRAIGgG7l1S6pzTzfaYRHRHRERYIBIK1QaWI+aD4ycTS6F/PMAHD5MI9X9632wkOEkSjqYPbkWI6teGJlFNLJH+9KD3daH3qTFM/o1cLrB2g5j24KvH/t+FpKiTDgXpsFOp4AVI2Dymbh5vJwsvm/OVc2AmZ2uqcNhEbzkMdL/A6EE2AHMyFEMQrGmVCPVuPDXJFB6kEglro3Dwl7hMCQQUmJiawceNGAMCDDz6IXbt24aqrrsKHPvQhHDlypO7ylEbvoEAgWD0IH0zBQhGC5NqC2dosx3Vd6uS0QaodU702PsF7JVsvWG60LPH7EAgEgrVHJaG0ktDJRfuA772ka/AMkwv27D37PhhJHSw/CiuTiflRf3wWxd9I7NExYA4LHkF9EMuDPm3BUQmshILYcB6epsDqikM+/BwU04SbyQLw64BRhDI0iRaDRstbXXHoxyfhjU9CSiUBXQvVn2CUfTAfQ7C+zmetE1xHsLpZzjb+r6+7HXDDnzXaXmdP+w14cOr+ss8XatFZrV0vXX4hXr02hbMezlY9dy++uhHbzxqqe5uCciSPvhZbRrPS19eHF154AYODg/jhD3+I97znPQAAwzCgqmrd5YmIfIFAIBAsCBFxsbYIWtwIW635qXZu5usoiXMqEAgEq5OgqMkE0ahwzsR1Sdd41LyUSoYjo/2Ed9Gkt7XCo/wDtjpRi5RaERHXK0OuX4NsuZAtF54uw2nV4ahhaSY0aDQ2Acm0QYbHoI4XAD9KH77oH62Dc1GriA+I+rFWqNTGX6242weXpNzoOfEefwZn//04Hj50a9V1hIjfQNa4tc773/9+vPe978WVV16JZ599Fu9+97sBUMudCy64oO7yhJAvWBcsd3SkaPQI1jrLFdkhWHlWmwVOrTSy/tabdGstnD+BQCBYrTQySSLzrOdWN4FEopKu8YhpKZWk/1eA+eLXCo/C1zQoA/3880p+6PMR3a6yZXPdZQjqI/V3h6BPOwBoAlt5gory+iS9FvboWOX6MHQGSCUhHT8NaBqtN5kspJgeypvgZDJ8gMnNZCv2S6PWOoxoklu2H6LdsvbYRfZid/z6ip83M+TFk1W/a9R9nT0jHjxy+7zLbv7OnQ3ZpmBtc+utt+KOO+7A5ZdfjgMHDqC3txcA8Na3vhXf/e536y5P8jyvicctBILG0uwPpmZHCLeNZ7XXSVEn1i4LqZurrT4s5vfXiGMVA2ICgUCwsiy2HSan03AymYqWJZKuAVok6t6PxoemwcvmQiJ+1LqHERRig7Y9wf9JOsXtWIDaLVGqbbPad+KZ1Rguf/89AAB92kHi5WnYXQkQw4Y8NFlWL4DwDJDoZ9HP2XesTkTXCdXRVJJvL0hwHWXLZtivHBPXfg1R6b4np9PIX70drkqQeDUPgEalyzu21SRoNwsLvaeL+r0yzMzMIJ1O4/wP3gFZW1wwrGMWceQbn0Imk0Fra2uD9rA5ERH5gnWFuEELBI1D/J4EjEZGNy6U1TgottLnTCAQCATVqRTJHE1AK+laKIqZ2+ow2xwznGzU62wHNA3u2AQXT4NlRiOiKyXUDfnk+9vxDJPPCmDl1DJDeC7BX/ijLx1GmwRieTDaZEimBQBwdQUwzYozNIIWTvOJ+nI6XTXRLUAj9p1MBlJXBxCwd2L1h3np8zKrlCNYG7Dr7BUNWAmC1qfOwNUVFHrjNUelLxX1tu1Xui+w0ttfzTCP/MW+1gsi2a1AIBAIFoSIJl7bVLu281ntNLpO1FLP6q2L9TS0qyW1FfVfIBAI1jaVhGwmcrLv3EwWJJ3iEfJOJgOiddKFTZMK7ACNzDdNSBNhUZRFTTMxLRjdX01IDya55QJ+IHmuaxQh+4JsJeaKwq+0HJt1IGgcsxuA5GlANj04nUkoTx+Fu32QJhb2CV6nUJ2rUi+B0kAQ0WNwMhkoPd1wR4tlyzG88clSUuZIYlz+/9jEoo5V0HxUa79u+V+3A9iAQjdBsRPYeue96P0XG8T0cPDHtzR0Hy79k3vx5FdvXtB+VmIX2VvzvSqYMyC4/mLb9aJfIFguRES+YN0hbrCCZkLUR8FqY7nrbC3bW8w+1bNudNlGRN5EOxECgUAgWD6qPQOUnu7Q3yBlYqgvpgN+dKsfhV+W4FbTqNWJb4HDPMwBhNdHacCgEkEbFBaVH42+lnQtHFU9x/5Xgy1XzU9dsHA2Pmqh2EalmJktCTqzY2gyJMSHxPRolHyFZYgeC83YIHoMnmFWTISsbNlcSpgLP7+CppUNJAAA6e5s2HELmptX3vNpnLnOxOc+8m1YaRdOwsXoaxW8ukcG0Nh26nwifr2Qi3fy/w+4+6rOSgre8xvdrt/TfkPDylp3rPFkt41GROQLBAKBYEGIQYj1S63R+tFIfRbtUq1xO1eDutHJaaPva21w17NsPeVF7YlExL9AIBCsHEzQ9DrbQQLCO1ASOINe4wwppvMo/GCEM7PTYctIXR3AqeF592MuQT9YtgR/QEHX+ODDQn3yq0WCCxrHwR/fgotvuheYpu+DMzuA8pkf7LMg0Qj9SrMnSIXlAADZHN1mQKT3srnQQBJb3j51evEHLPj/27v3IMeu+z7w3/sGBkCj39PTMxxySA1HfImWaFOUslpZtkczk6wVr5Up19pm7KrQtV6mNkvSMVePtfVYW0oYW+SmLLkSKRXGjJNyzSarvESORtYuLYtSKNOUQlEUSYlDUfNiv9EAGrgPnLt/nHsuLl7dQDe60d34fqpQ043nxfTFxbm/8zu/355x8Vc/DODD+Nv/oPN9TvyfjyL/wxB+RsPzn30Qx/71p3HxVz+Mu3/9M3jX//YtPHXxFnhrFrIjVbzwgU+0PP49v/BPMHeXiQPX+hfQP/984+s8tfwFnDn6AHTHBlwPYbHUNlu/n+P6p5a/0HZMf3rsPjy1/IW+vMZ+1Y/SOCytQ0REtAEGGqnZRvuDuj25pHW7M+671e8Afa+vTUT7E78r9y5zegrhlTfjkjlKXMYkCuRruay8ISqlo7KikyVvtETT27DqIuwiiA90ztDX87n4tdTrAvVgvnpsN0H4TgHidrdRf9zzK38IcUjH2rSOkYs+9KkJhMVSy2RRr9RKjHYTAclSScHcvCy7M78YX5dceaGa4rKkEiWp77KjH3sGr/6zu3HnLT8CoIL/wLOPPwQAOHlX5++9e37lD3HtbwETzwLPfb6/WfnNgkuXN/1Z2qx27/vqr922o9tA+58WhuEQzVsQ1XG5U294Erp9tnNf3KjO6lZxv6Beqf19vX2nm/sMWvPntl/byqAfEdHOW28spt95K8R3vtd4XZusfBVAV+VygKhkSeI6df+4LnlU7z5Z934jaoJAZXHDthFGZVKSz6vus9kxYDK7W3dSOF95YlPPQ63ufOBR6D5glUM4KzVk//oy4HkI5uYb9q12jW876TTmV39H3UlBz+cQzM1Du/sOGFeWAM+L95HmSSO176rJoWBunuMTWtdGY9i7fuNRTP+nV/Hktc/t4FZ1p924fqtj8lNv/1jLSgFqtLq6inw+jzv+3qdg2FubdKl5VbzwLz6CQqGAkZGRPm3h7sQa+URERLRr7NVJVrXd/a6bT0REg6V5AQC0rTWuObbMuk80nwVkEDZZd1y41ZZSPA1Na3uoQx9W3Zaa+KpWfrIkylYla60zM7+/spcFvBHAHdVw4EclhLkMEK3sUH/DhtJMXVCPa85ADqtunGGvGisbiyXAsWXJp8TfVks58X1VTwdtcrxlfyNqdvevfwbVD9zd8fZTb/8YrDWxK4P47WxUDrQb55//BE78n4/2cav2L1VaZ6uXYcFAPhFtiNkXe9dWl+gS9ZuqG7nRwHi3H3ea618C/cmmb/e8REQ0QFfehHnTMWg3HgWQCLRG9fCTtMlxADJ4KgrFuC5+fHsy6J+oh96JCv43/wvUs/3DYineFjXeqxUK8QTCZqmgrj41we+lPvv6ud+C/q4VeCPA3LtHIXIOUCzBPHK43uMgsbKjV2o/MI8cBoDWMjnFElAswT0xEzfY1VIOwhsOy7r5swdloB+APzuK8IbDm94WGg7PPv4QvvbF38ZtH24fuC69ZQTf/NPf2uGt6p4af6um0upzsdVj38u/s73lg2g4MZBPQ4sD0u7w/2n77eX/Y2YO02Z12u/3WiBbbe92bTM/Y0RE22+9Y3itUEC4sARceRMAGoI8tUJBlh5RJXMWlhrrkudzcVBVBfeTVLB8I6r8Tvw4x44zuNvW74+2r1fm9BTM6amGsjpPvvHYpp6L1nf41y4j90aIA3MCmluT+4YqmaQy6LcwEaM7qXiSR9XOj/dT14M4NIXS4frEkpbLQr86D3gecOVNhLYF/cghmAtlhI4Bc3oKZ2bu78t7p/3rxU+3Bq5P6mfx9XO7N4ifdL7yBM5XnpDNco8/3NfnPn3bR/v6fPtK2KfLkGAgn4g62kvBNFofl0QTdW+zwfPtOGbyOExENHja5HhD+RsV5Danp+rldaLms81B9HblTnp67ZQTl+EJq26ciY9iqWViQGWTbrZJaejKxrlqZQHHj9unVijAWakBAPRSRTYwjiaChFvtqdxSUru/WXLlSBzMdwz4GU1m4AMQ84tw75CrTjB7UE5cuR5EzoE7npITR6qxM1GX9nLvpydffaSvz/fUi7/f1+fbVxjI7wkD+UT7FEupkMKTMNrPTqXv7Wt9eiIioma//KW/iEvrqCx7lY3fkmXv2HE2dUvpnWRWfRcNbpvL8CQfH7peHNRXJXuSJRU7ZeWvd46gJgvEpasAOJm8E2o2ZMC8UIyb0gLdr9ZQkvdNjv3DqiufN58DZg/G/RQqM2l5e9QoWbhVOC+8IR8UrT5Rt6WulhHalizJQ9SDzRxDTupn+957iucItJ8wkE9DjYNTou3BwRLtJHXyutWmVERENLzWOy/4kxPXAYjKlbgehFuFeeRwQ5Nb1Zw0GbxXjUYBdMyybm6C23xbc1kdNXmQbHqr/u2mMe16r6fnc31tmEvrc0cNHJjzUZsdj/8uyRUc6/2t2mloxJx4rDk9Bdg2NM+Xmf8TYwAAZ0U0PoFt1/epaFInyNkIHSO+nWgncGw/XNjstjcM5BNRW5zkoK3g/kM7RdWyTFKZN5vJ5mF2PxHRcOuUBV176RVU33cHaoVC3ERUn5qAPjUBLSo7ot14FJg9GJe2STbGbc6Qb862b9mOfC4O4ifvozL+VaA2GfTtJvCrOXbcULXlvUaBWiOf51hum+lOCiMXq3BeX4JxZUnuQxE16bOZEklqNYbaZ/Qjh+LgfG0ii9D1EExm4I4aGPlhOX4N3UkhzGXiCSk9n5MXT0A4JoLJjKyfT7TNLohzLWP702P3bXpsb9xyM8ybjnFsv5uxtE5PGMinocdBKg3aMA8qhvm9U/+o8jrt9qfkddzfiIhoPRfEuXWz0e2nvhX/LCaiwLzKxLcthLYJrViGedMxmEcONzS6TVLB/XbimviJzGh1fXwf9ZodJgGSJXZa34QNcWgK5pHDDffT77wVSAT5aXuFdx7H8s1puDeMy33Iq6+qUJM+65XWSd5m5PPxftOweqPqIlyoTxIYr19DrVCAseqiZmnQi/UVI3o+J5vcJleXTIxBdwMYqy50N2BGPu0oNbZPNt82p6dwKn1vfJzqZmwf2qYsDUW0TzCQT7RPbXZJ7AVxjpMbO2jQgUXVFG2QBv1/QHvbqfS9Xd1vM822uG8SERHQGlANLl0Gvv9aPUPZsaEVy/U7FEvyPgkqu15l56tgqZJscqoC9Go831xaRzXWbZ4MaNeQV22/Cg4Hly5DvzqP2ux4YwmX77+GcGEJwdz8ppvlUnfu+o1H8cpvOli+Q8BaqMgmt1GvheQKjI3O55qz79W+k9zXtFwWYS4DODZEoSgbNHsBJl4oQvP8eB8K5ublk84ejAP22uIyNLeG2ogDza3FNfM36/TYfVt6PA2Hk/pZnErfGx+zksfKYG4e/n93G2o3zOD0bR/tamyveQEA9hDczbQw7MtlWDCQT0Q0xFgHlYiIiGh97cZKwq3KWvVNmZ5iIg/YMrNdNSxVGfjJQGtzk9xmyfr67W5rV3Kn03Y3N8ENXQ+aW4uvD2843DApwKSe7bX4NzykX7Mh0gL6YiH+O3ZqULwR4VYb/v7qb6ky8bXFZUA1R7ZtlI+PQnNrABonf7RcFiKXmByybeilCozV9Zsyd4PJEbQZRj4f93QA5DHMLMrjl2rKvBHN86EVyz33nKAdxNI6PdnWQD4P1rRXcLBKgzDsx8hhf/+0dWof6mYyisd5ot2L3we0m/TyfSHcKmovvYJwYQnwPISOAfGd78kbo6zmOFjepkRO8nna/awks/Sb/9WnJuL76UcONTwuufKyVig0Zvx//7X6/RYL0BwbYdXl9+U2Oz12H5wf2/BGQhgFoyHLvVYoNGTTr0ftJ7VCIW7CnBQH9j25ggOeB+Sy8I9NI/PqipxAWFgCkMhUdmwYiyX4x6brzxdtn+YF0CbHN/WeT+pnZekmog0kxwNh1YXm2Ki99AoAuZ9qKQfGlSXoV+fx1PIXunpOkU3HJdCI9oNtDeRzEEBERN1gEIc6aW5cu9XnIqLdh+cMtNv0Wie+ViggmJuH/vIb0O6+Q2blR4Ejc3oqfr7m4GyniWg9n9uwhr66HxAF9XNZhAtLcVa3+rehDn4iw1+41fp1UbBXPR9tnzd/+TbYBSC0Q8z+pcyKV5MxyZ4KnfofrCdZTieuZ5/LyqB+Lgt/dhTWlRV5vWNDnDja8HiRTSO0LRirLrRcFrXZcblfOQYq129utQAA2Rw6mjg6M3P/pp+H9o/1xvdqFROQKPmEaOK0UEBYLG24oqlZaFub+kzRztDC/lyGBUvrEBHtQbupxt9mgqMMqNJmtNtv2gVBkp+PZOCCwUIiIuqGe8fRje/UgXBMhI4BICptEpU3AdBV7XPzyOH452QwX2XTN7DtekZ3sSQzWFU5lVy25fHtftZSDoK5eQa5dpjmaXCWffn38pqy6bssAdJcOqlB8jltOw7QI8q0r01kUZlJx3cxp6egLxYQTGagLxYamjjrRRepq2Vshhq71e6+Jd43iTr1aUsG8TtRq4u6fq3FQkMPE56H7kIsrdMTBvKJIgzwEO0MDp6oW532lW73IXWCcL7yxJa2oV8rArbDbt0uIqK97KsXPrSpx4VVF9bFOegvvyF/z2Xi21TWtWokm6yfr76vjHxeBmBtG5pjx+VRGgLvUQkcADKTXk0ORBmqYn4xvq25aa1wq9Dzufj1hFtF8LYbYeTz0PO5lvIs1H+FEwKZqwIHrmkoHXEAx0boenHfKi3lNNS775S8kwyEqubJcaA82odUMF5M5KF5vpxgigL8mluDs+zXyzHlshATeZgLZYiJPELbgubWoHk+gskMaiMO/NnRnt9v9QN3o/SOw7CurGy5WS7tDyf1sw192pLj7OTxcL1gfS+xm7BYAjwPWsrBqfS9WPvgPbty/HzsX3960JtAewQD+URERLRnqIH3egPw5ky2U+l7t3WbBomT0ERE22ftg/f0dH/hVmXAKJdFbSKL0DYR2hb8E0fqt0e0XBZ6PiczoRPBdQCA58lGulGAt51kbfxkUEx9B6rAfrK0DyBLVSTL7ZgLZWi5LMKJMWZMb7OT+lkIM0T5kA6zIq/zZ0cbAve1QgGiUNwwKz8ur+SkGiZ2NMeWGfi5jKxv73rQSxWIbBp6UZZg0jwfAGCsuhDZtHwu15N1820TmhfETW/Xjk/K7cyYm3q/fkaHn9FlnXKAk0VDbr3xey+9r3oJxKvm4uqYq/ui5/JpO+Hir3540JswMCyt0xsG8okSGBChvaKX5YTbrZfPzW7MfqDdqXlf6bQEt5k6oTXy+YaT4F6C+eq1dlMJq/Xwc0VE1H8XxDkc+Hff7KlJp+6kMPfzx7H4M0dhXFmSzW9zDtwxC7XZ8YayOarOswps6vmcbCaay0IUijJDPlHuJv5OioLtYbHUEhRtLr8TB6tsuzHrXz1nPidLTnhe/C9tn7UP3oOJ5w3YP7uA1WMyoK809y9QTWw7aS7TFLpRFn5UG18F68NcBnA9aF6A2kuvIPjhRQQ/vBg3Za6NONAmx1F6x2G5imPEQTApV5L4k2kYvoCfMeGOGT0F80/qZ6HdfQcOzPk4MOejeijTskKEhstJ/Wxfx9bdjn/VRKeYXwRsG+6o0VDybDc5PXbfoDdhMFhapycM5BM1YTCfdsJOBN52UxByN5cmod0tGVDf6gRWr5n5u2nCbD383iIi2h4XxDmU3jIC/c5buxpXCbeK8X/xDPJ/8g2I+UUIRwY+dS+EO55qCJTHJXYcW2bPq+akrgd9akI2n42y7lVAXs/n4hrnynqZ28HcPMKJsZaSJrqTkpMKUY19946jcE/M1LeBtsXcO3QYfojFS6MAAGFFN9h2279jcqUF0H5srzspaCmntceB68ns+2I5LrGTnMQxjxyG5gUoHXEgsmlY5RqWf/YmuGMW/IyJIGejZumoWTqErSF7yYX91Le6ep8n9bPQ77wVxmIJZtGDnzFw4NUF6E6Kwfwhl1xJtNOEW4WYyCM9F2yqTNROeGr5C4PeBNoDGMgnauOCOMfACO0L2x3M3+hz0m0An583UjY76dO8r4dVF5pjyyW0+ZysOZty9m2my3ZMlHHyjYgI+Pq538L55z/R8+SucKswVl1UZtIoHbbgjhlYe8cNqH7g7oYJalEoAm+9EWu3z8K9YRxwbIiJPDB7EHBkJn3oetDzOYhCMa6BH1bdOHjb/B2YrL1fe+mVhuvDqiuz/aO60bVCAdZfvgjnhTe28t9EXRh5DUjPBci8ZsJe1eqB/Kgkzkbj9uaGxVrKiVdhxBMBnhdP3IQLSzKIXywBV96Uf3snFfdiEDkHB+Z8Wf8+Y8BZrsEdNaLse/kvAAhLh7lQ3nC8/v57PolTb/8YtLvvgD+ZRum2KVnOJ6KlHI75h5TKxg8uXe7r855K39tVuR5Fe/0yDF9A2MMTCj0zc/+gN2FDLK3Tm+HZe4k2YdgC+sP0XveibsuKNN93u4L53F+on9oF8JuXmXej4X6JJebtXqv59TYKXO/mwHa/P48n9bP8jBMRJWzqmPj915D968uYeKEIqywQZGRgVEs5ssFs9D2neQHSP5KZyu4N4wgdA5Xr80CxBD2fi+umq8cC9WztWqHQUPNeUZna8WtEj9NSDkLXa5kEEIUiS+tss7FXKjjw3SsY/YGANxIiSAPmf3tN9i2I/r6dJFcoqn9VYB6QKzvgeXG5peDSZZn97nr1RshNYyTNrUH3BCrTjqxjb2tIzwWwygLC0iEsDe6Ygex//jaeevH3192+k/pZuepEba8n4Cz70BaXkX1xHnBbmy/T/vfev/lI/LOez23Laxj5/IYBfaVWKMB5fQlm0dvV4/p+OamfxZPXPjfozdgYS+v0hIF8oiGzl+o+U6v1/nbNg/uNmmRtRT8DfAwWUjc2c9yKSwk0BfO7yXhLBkWG8ZjJzyURUatej42qLrNxZQkAYJZrMmB64mjc4FS4VWjFMoLJDHRPyEzo8RSsctDw/aXGdZ2y8NtRzR01x45XqQEymBU3S02sWmMj0u2luwEAwFnxkb2kwV6t37ZRwkLz7ckyOfHkTGKCBpDlc6D+7rMH6/fPZeN6+IDcLwHEwXxh6ajZQM3SMPrtJZyvPLHxe7vzVrnPAtCLLvyMCevinKxF7spVAhxbDB81eQlgw8mqzWhu8t1NcF5cugrhmDBuubnv27Pb8DO3Pw19IH8YZuFo6/bLAXAYg1H7Ra9/u2TWVT8N2yoVGqzmk9b1PgfNy83j3zfILlTjgHbjgZ1Y2bLbsJ8FUSN+HqjZZoL5waXLEJYOwxewygLl6zKo3TAD/cghWe6mWIKw9biZqLA1CFuXjUpzWdnA3bFbnrfdazX8Pr8oy/FEAbSWQH1ioiCsusyY3maaW5OBdU9AmEBwAA2Bd1UOqTk5R63eULcnmxqr+vjJv1+tUKg3Vo6a4GrFcvwacGyIQ1MwVuVzqAC8ysQ3yzXk//238dznH9wwE18p3DqCyrSD6qEMvNko8zoq61ObHd/C/xrtZWa5hjPHH6433t4Gav9Xk1vrje2BqOzZsy/Fn4ndqNe+Xs1u+oPP7Llyoiyr072hD+QzIEXd4r5Cu0UvAcWw6saD/q3iZ4AGQQXlmxu+dSN5ctzcBC75mWCgjog64XcftbOZ/WLk22/CLHrQvRDOio8gZ0NcuhpnzNtXovInlg5n2YevMlldryWI363k96YK4odVF+b0lMzKRpvgPm2b0DGAYgnGqguzAhy41nqf5HhH/Zssn6Qkk3UaVhJOTcggfjKRIdp/4kmCYgn6YgF6qQIA9QmkKIjvjhldZeEnWWUB3Rc48N0r8DMG0j8qQFy6KhvuurV4f6PhU5vIyv1gG1eLA2iYiOxmbN/cBHw36fXz10zMuAjedmOftmYHhGF/LkNi6AP5RL3YyZO57cj+3GwwjPpvO/clLeW0zdoaloxi2nvWq43fLdW8TZ2kJmv+JhsDNj+mmyz/YTpuctUNEdH28GdHYVxZgrMkv0/Moge89Ub4J47AveMoQtuE4Qt534wJq1yDN5uT2cxtgqDm9FScgWrk8w2lVpLl4dR3WHJsGEalTsJiqeF6Hv+3V5CTmfD+ZBpBWl7Xa3AzbmIclUfSctmGsYxqJqr+xmJ+UTa79Ty5AuTIoXh/8mdH5XPaGoSloWbLn3P/9ps9vzerXIMVlehJX6vE7y20LTmBwf4LQ+f02H048N0rsrRYsdQyDu9F8vjWzmbG6drk+L5N5rn4qx/GV57+yKA3g7YJA/lEO4RBVNoJaqmtKBQbaqiqhmebxRM72km9DsaTx9fmDLXm52s+iei1Ji0RERHQ29jIvOkYlm9Ox5nRSvVQBu6YBT9jYO36LNamLVRH5Sm6nzHqWfkAYNuNzSJzWWiT423PMeLJ7OYsbsduSPjQHJsZ+Tvoqxc+hNCRf1dhAUG6dVzSi7Dqts0qVtdpiSxocWgKoW1BZNOoTWThH5uGsPVo/9NhlUMISwOw+XH/2rSF2uw43PEUysdHEd4gy/voxc2/R9q7NMeOj3lbOc700iOu622LJpk2miCgnbHVsjrDVl6HgXyiHdTLF8xOBI+GtYnjftDu79acPawal6mLelyvf/ftDOJzgoD6kY2vqBqZSf0+lu7XzB0iIupdt0Gg4IcXcWA+wOpPHERlRqZiBzkZ4Fp5iyxrsjZlwo2C+JVpE35Gx9qUCeGYMqM6oh85BH1qQtY+d73GZrYdvkONfD6uh6+C92HVbQiuNUwS0LYRjlxtMfoDgeDA5v/f1d86rLrQUk7DykQtmuSB58kmt7ksNC+A5vnQFwsIcjb8jJko56TBz2jI/8k38LUv/vamtsf48+cgLA3GYglWOYA7akBfLCC0TdnMeW5+U89Le9NJ/axc+RGtBukHtfJoK+cKDZ+bxWWWfNotwj5dhgQD+UQ7oNuGietl1ND+020Qeyv7wGZrqioMtNNO20zgvZvH9DOgz2A+EREBwJu/fFvX93WWfWR/sAph1TPuAcCsAKXDJgw/RJAGrDWBmqXFQX3dDepNaW0boW01ZvYnAlHrBYWTmdtaLht/L6pJAGbm74yvPP0RmEUP6TkX7qRoaDjcrfXKpWopRwZOXa++b7iebOyZ+BsHGQPz756EsGQ2fs3StjTuvyDOwSqHcG8Yh+4GyF72ZDmfUoVldYZQfP66if17I2riSpUO60W7+3NcT3uNOegNIBoGyfrkej4HHTlZtznxRWLk822XVm53Zr56fgZs95aN9gvdSW152TT3CdpO/R40r/eZSNYI7lRuoFdq+/k5ISIaXmOvuF0Hk3Q3gD+ZhlmuoXCDA8OXwVNVK11YGoQFFI/q0H15XbocpRg6tgzCOjY0z2984mJJBsuiYKmezwG2DTG/CHN6St4nuj1UjXM9D0Y+j1qhEK8qSDaKpO218tYsspc9pK/q8I9NQ4vq2m+GcKuA2v+icU5cXjOfg6bumMtCZNPQr86jdNhGei6AmJaTRWvTOp7/7INbeEfSylt0jP7AgrVQgV0syv0tB9RumMGFa5/b8vPT7ndSPyuD7PmcPGZFxx0lmaDW1XGzQ0JbvNq86b5qrN/puZPnBIgOecYtN+PMzP0I5uY5rh8QTcjLVp9jWDAjn2iH6PlcQ5aMPjURN6lSA+jk7PJOYO3nwdvMYKGbIL7a15IDp+bs/L2+2oPZE3vPSf1sfNlpDQ1wN/gMJZvmtnuepJ1+L9zviYh2j6vvcoC33tjVfY0rSwCA0mELXh5wRzVUJ2VGPgCYZfmzsIDMVQGzAvgZLS7Bo7Lw/dnROCs/uHS5HsS3bVm+JJdFmMvI8jt2IpkjmdUfldZRgX7NsRnA2kHFoxpKh23oPvDmT6X7OiZXAU4t5ci/vfq7ux40T67u0H05QTRy0UfNBia+W9ny655K3wt7FajZQG3Egba4DHHiKELbgubWtvz8tHud1M/izMz9OD12X32sXShCzC/Gxx81ubTeahKgseZ9L58LVUp2o8ckXzf+rBTLcO84irUP3oPTY/d1/ZpbdfzTj+7Ya+16LK3TEwbyiXZAw9Iy264vc7TtLZc+6QcO3Pe/3bCf9Rv3272lXQB6JyYum58/2Qy3+bbk9mylOfR2YzCfiGh3GH+puxTAZC39ICOD9boP2KvyOrMir9d9eTGi2LtVTkQmXA8im4a5UIbIJb6jnPq5hZHPQ2TTMms/ytBvqQGdyNxvCfLTjjj0DRfLJzRUJ4Dy0f6mkaqVFfFKb1XWxvMQ2ibcEzOwyvXXFJYmyzdt0Wu/+w5Y5RAH5nwYq7L/gl6Udcjx/de2/Py0O50euw/mkcMQhSLCqts2QJ8M4m9EuNWW3iNxwN3pHDtp7pPVazljADDLtS01n+7VW/6vVzmmp01hIJ9om6iGQ0Y+L7987MZsGjj1JbDJL57dHDyiwUhmLXS7iiJ0G5cxhq4HUSi2fc5Otjqw4MCE2mXgq2C5OT0ll3zvwDGvXdNnoLHsWcP9c1lojr1htpCyk/u6msDi54uIaPDMcg2hY2x4PxVcdUctBOl6AF/3ZFDfWRFwVmTQPrUgM/GnnisiPRfALEbnC7kMACCYzEA4JlZ/4iCMW26uv4gny+ZoXoDaRLahdn7ydiBK8EgkFD35xmOb/S+gTfjqhQ8BALKXAGFuXxppHNRP1MuvWTrS1ypIXS1D2BqscojKTBpnZu7f0mtNfFf2dgAAfzKN8ntPILRNhBNjPa8CP5W+d0vbQtvrzNEHcPq2j+LMzP1yvDy/2HK+qn7uJTCuzhGaJwSSz6HOb7tJUuuUMKTG/+rzIeYX4bx8DYYvUH3fHTs2xn7y2uew8L+8G2eOP7wjr7ebaWF/LsOCgXyiHnWbBbxhcCrRcGqQmNU8eN3+DXoZBK83aNotJZW47+1v6w2Ck8dHzbF3vMzTesfnvTCZys8OEdHukP5RAe54d99hq++8DtVRXWbfp2W2veGHECbgjurwMzIIaq0JWOUQQc5GEDXEFdk0Qlu2t/Mz8t/Mj2Vmfm1CBmjDiTFZVsc2oRfbjAPVymB13yiYz9r4g3HdV12s/vdrmPm6ti1jcy3lwJyeissoqXNPZ6kKzZUTUO6oAT+jwR015D6xSafH7oPhAakVgZqlwyx68DO6LOWD3sct5ytPbHpbaHup8b1WLMeJYp3233aB/Xa6PQ9oTlLbyorzliQ5z4N9pQh3zGhZEbCdnv/sg/j+xzb/2ds3wrA/lyHBQD5RjzqVh+j0u8q2D4slhMWSHEQ1BfFV4Ggnl3LR/pXMgFD7VHLfUitFjHw+7tPQ70Aqs4WH16n0vTiVvrdjFkx8vItWjYSu11VNy61Ifg6al94mTyyEW0WtUEBYLDWsYEnaTRNh/JwREQ1WMJlBZdrcsIyDut1aExAyDo+apaFmaUgvyODDgTkB3QMqUzqqozoWb3OQnnMR5GyU3jKCteuzqI04cMcMzL89jfJ1GQQ5G5pbk+V0imWEtgV9sQCtWIbIRl10E6VV4nI7UcPc2uz4nu+ZtFd99cKHMPtvbfgH9L4HDrWUAy2XRTA3H2c3i0JR7htuDWvXZyEcE85KDVY5hLNSgzeb2/iJO7j8926TtfGjuGplJg0RZee3NGemPevM8Yeh33krxPwigkuXUSsUNhwXd1tOZ714SqfSOuocYiPqGNzpWKc+H1qxDMMDgrd11/ekXy7+6odZL596wkA+0Ra1a8jSLjDf/KWTtN5s8k42v6XB6XeGbcPyxqaAZPP+th/r59PuNYgJSz2fk5n/+e5OUrs5MdkNGMwnIhos6+Ic5n9u/e819X1ilmtx7Xs9AIQtL6ocSS36XZhRHX1TZt+vTVtwVnxY5Rr8jAl3VIfuy+fTPYHQMaB5AcJcRgZNHRtwbOilqIFpssSOysqPEouEYzL7eYDS1yoQdv/H4rVCAcGly9CdVMt4xp9Mw1mWwXXdC+V+Z+lYm7Y2/Xp2QdbaNzzA8AV0L0R6LgCuvLml90G7w0n9LE7f9lGIbBr61fmux9Nbpc5nNceW5w92+3PYXkp1rlduBwBy31vqS8+IXr364Qdx24eHN5jP0jq9YSCfqM9UXbd2wSotakal5bINy1uBRA1nx46zU5NfMtuxxIvlGXa/fk/iaCmnbe38nQ5act/bn1RN004NZdfbn/uZlZ/MvGke2PejdE67z0tzL4Cdws8SEdHgrN0+i7BiYu3U29a9n37kEAxfoGYjzsAXliyvY60JrM3ITHzdk41vlcq0CcMD/KjEzsrNVlxXv3TYko1vHTMuuxPaFkLbikrxWBATecD1EOYyslb5RB7+sem4DM9Xnv7I9vzHUFe+/M3fRZDGtjYbTp5ThsUSnNfrgUpnqQpnuQbdF/APbD00pPsCfsaAsDUYvgBmD+LJVx/Z8vPSYIXveTuCyQz8yXS8r253oqGez8Urx9Xv8KKVvFEvK9XnQ5XZSfbE2mi833b7PQ+a50Nzazg9dt+O92p48dMP7ujr7Sphny5DgoF8oi3o+Qus3SCt6bq4gUuyhvQeqNlM/dcuiyZ522Y0TzBtV3Y0g4vDSbjV+vLXxL/N5ZvW2++2cmLQPAEal5lqWgW11dchIiICZDAdvgarXGv7vdIuEadmaUjPC6TnZXNQYWkyo9kEqpNAdULW0BdRgnTNlpnTAKD7wIH5AGYZMPwQmufDHbPiWuRJwaRsjqua5JaPj2Lt+ixKR6KVwwtLffk/oK0Z/55fL3/UZ8nzCFVuJ0lzaxC2XBFi+JuPglUn6ytLAKB02IS1UIFWLG/6OWn3MJ59CcLWoXsCQH2193rlcDZLuFXo+Zx8DbW/qniJCuBHyZFINO9uN9bfSPP2ikIRKJbk8XT2IPQjh7b0Xoi2iznoDSDa7+IgvG3HXzZhLlMf2Dh2x8FbMoAfVt11A7sbYWB179koiL/Z/aFTfXCifgirbkswX/280cSRuo/ax3vZP1sG4031NpMD/OTrbPYzsJXHEhHR3ndSP4ulP3kHEOi4+i4HN7x+COKHF+Pb9TtvRfj91wDITHmVVS9soJLR4ayE8PJAekFm4QtLXoI0oFuyXEnN0mCVQwhbQ5CxcGBOwB01IGzAWgvhz44ifa2C0DZliR23Jl+7VIHmBfBmc7AWKrj23lF857EhzvbcxVQgfavjiubHJ38XbhVmPgc4tpzAUQ2SHSOeJEoG4nv14qcfxJ0PPArXN+Ln0a/Ob+tKA9o5wq3CeX0J4cISgkIBRj7fdky/1XGxPjUBcelyvFpcL5bqZadsG3C9esNu25KlxHJZhHY065ko5dRtslrz5yZ0PWiLy3LV0iYmB2hz+lEah6V1iKgn6y3fir9EomB9bSILkXPi7Jh1nzeahd5s1rQK3jOIvzfpTqqhMW0/+iWoWoPJGvpE/XBSPyv30age/WbrvSbrXHa7v/f6uUguv91s2TLhVuPPZtJOL8MlIqLBuectF2FdtXHoGy7geo2rwr7zPRlAvekYtGJZ1riPypfoUf9PFawHZEa+ut6dCeDlgbVEQmjuKy/BWfHhrNSQvRzAKgsYq/IcQfMC6EUX/mQa1UMZuDeMY+UnxmH/1Q9w/vlPYPqfPrP9/xm0KWtT/cmtVOP6dqsTdSclExqKJQCIJ3yUIJpk2qriUQ1BBlibAeZ+/jj8Y9N9eV4arGsPvbseLAfqDZT7eC4p3GpLXwdVAjYslmTsxKknRmqeLwPtblQOJ2qq3KnE8XrUeD7ucxgF8+F5ODNzf9/eI60jDPtzGRIM5BNtUbv6y+2C+iobVDgmgpwdf9kAaJutoK2Tqd8NBvH3n3b7VS8BTAbuaTvF++I62VfNq4xabk8skd1qSbH1Phv9WH4LdJ5kZTCfiGgIfPUIvv/ELcheAuwrRcDzWlaD6U4KIpsGPA81S4e1FpWmsAA/U8+AVrXx9aBeIz9IhzDXgOqoPGUPbzgc3TeE7oUQlrxeBWXVuYWwNVgLFQhLw1PLXwDA84HdLNg4t2tTmsf92uR4vTQJAGPVjUvr+BkNYovJ88UbBcw1OSFlF+T7UmWcaG8LDkCu+kmMe5OJZt1Y734qeS256lx3UvG+ql43OZnQKVs+GYvZzLmESkYSh6bi8wWO62m3YSCfaJOSX0bqgK9PTdSvSzZbUYMm14O5UIa1UJFfRI4tMyOigL3m2PX7YnPBJoCD9f2sm+Y97QwiiN9pP+T+uX+1TGw2ZeW3NKJK3N7pvs2rUjZ6fT2fa9iWsOrGx+hkbdjk6230vM1BmU71/tX1WsrhoJ+IaJ8LPzYFb0SWwsGVNwHbhnHLzfH3ECC/D6qHMvEkt7A06B7grISyaa0tL15eBvd1HzDXAKNg4MC1eqDfHTVQG3Gge0IG6ssBct+TNe5Dx4Dm+Vg7PgndE9C9EP5kGs8+/tCO/n/QFuSyDeeRW9VcYkfP5+qBT9tG6MgM/NpItAJyC/XxFe1gFV5eTkZVJ4DCzTWMfpt9GPaD6b/yETpGQ6kmRUs5bcfRarysLuudiybPCeKVJfkcYNvQ87mGz4bIpjs/T/K8oouSnko8UVB16818Fwvy9QpFaCkHJ/WzXT0XbY4qrbPVy7BgIJ+oDzYMuEcd1uE0ZeInHqs6r3fSbfCWQdL9QXdSLYHO9e7byUbLHtcr18N9iXpxvvLEuvtrv27rtM8mPy/NmTjxMbpplVO3JYA2OxHGYD4R0f71g1+1kFoAMleFLDUxkZfj/Gg8r919BwDgwHevxI/R/RDWmmxy6yUqs+kBYJYBqxzCLgBmRYsz9IUtH+dnTOhuIAP1GRMiVz83UMEtd8xCkDHw1Qsf2oH/AeoHYTZlGm/1+ZpWhQByHBQWSwhtS+6nbg3+ZBp+xoQ7aiB7ycXzn916DwV3JoA3Aogb15A7UkTtpVe2/Jw0eIYvoLntG3oDG4+TuxlHB3PzDRMFDfEVz4tjKA2NvbsYwzf369roPkDi8xIF+DXH7ksjX1pH2KfLkGCzW6ItCqtuQ+ZNkhZ1VA8XooyZhSWZcW9bstltIvM+7sC+waTAejPaDLzuHw1ByTYrNJqzDDbTIKvdgKTf+9AFcS7OYOD+OUTsxtJg62be57KtZcRsG2FUxzX5OM2x48+BkRyYrzOQbzg+2za0xM/xaqiUAyPloFYodGy02/y7+sxtNLA/qZ/lvk9EtA+d+Af/DakLeRQ/cQSArImv3XIzalHDW/3lN+SqsFy2oTeWf0CXwflAltRRpVVkYF9+S6UW5XXOSgirHCLz4zJWb8ogyGRglmswfAHjSnR+kctAW1xGCrLB6JPXPrcTb5/6xMsDSz81gYmv+1sazydr5Df/bOZzEIemoJcqEDkHwjGhewLGnz+Hp/s0RvnhL30Up9L34uU/vBOv/9JH5ZWiL09NA/bVCx/Cz5z8R0hON6k6+UDrPtiseZ9sWDUb/ax6TtUKMhM+Pj9Q4/ViScZJZg/KJ1VxE8+r38+2ERaK8vGJVez61EQ85t8wS7/D/fSpCZyZuR/B3DzH9TRwDOQT9aDTkqo4q95uE6yKgvRxsN7zoBWjx0UB/uR9AdQz8zsE9TczyKM9LJeNm/nsRRzsUNfUsc/zGoL28YqlpuvX0zDJqj5DSU79tdT9kzodZ7sJ3gP1yTbu/0RE+9PyL70dN5nfh3ulCO3IIeiuB/HaG/HtWi7b8N0iS+IICEuD4aMhK9+syHIkMhu/McCv+wKVmTSEpcGKgvgAEBZL9ZJxtg29VJHfd7SnCBMofKAEYAYTT5WguU4czOyFGrckxy5xhnOhCG1iTJ6XurW4LMOX+zxGOV95oq/PR7uH7gnoRw4Bl65CuNWGJJj4PomAfjJY305yVWw83p8ch5nLymx41Zi5qWJBc3WD2HoJkVF1hPUSf8KqC/3IIYQLS/EEg0rwCV1PTrHmsrjAidJt0Y/SOCytQ0QbalmCVXUbMkhD1+tcKsfzIOYXG+rhA6h3Yk92ZM9lW16LQfz9qSXgZ8sVHVADmQ1Oznpd8teuziHRVsRZgG0y7DfUqel3m/uEVbfhxKBdYL/huBmVNoOaELDrWTyh68UDdpUNpKy3hLj588Mlt0REw8VZqeGv/t9bgCtvQly6CjG/2BhEnVdp9TaCyUzcoNYqh/AzGtYOyeC9sOpBfECW1zH8MC61k2xsm75WgbVQge4JYPagzMYvllGbHYc/OxonCdHeMfNfA5w+9hKKRzW5ctCxYR453PXjNxrPG/m8TC6wTdRmx6F5AYRjInz2hb5sPw0HYesNJaDUGL1TffxkgL953wyrrhy757JxA2YtkWEf97ZyEit8Ez0H4UYZ+uo8wa4H8ZMrceNzBbs+aaDnc43Z+sneWsVS3KMLaFwlELpeX0tgURMR9ucyJBjIJ9qETvWZ2/LqM8yh68UXLeXUv5hUYKn5OdvMGjc3L+q0PbSPJEuAJJt1bqLprdLcvJNou3RTg75rTRMEzcH8nhuERwP79T5LvTTC7bRtRES0/2ReXYFZqR/v2wVS9XwOIpuGsHUYvkAt+krUo68rsxL97suAPgD4GQ3uqAZhI75/zZYTB3pRvpa5UIbm+XGpTs2twbo4t2HSB+0+zrLMMK7c6CHMZRBOjK17/+ZxR/J8MHlRVHknAHDH69eb01N92X7a307qZ3FSPysnDyNGPr/umFsdC2uFQtuEl2QJ2dC26rEQLzGWTx7L7ETAPllKRyVONvfT6lD2GEA9gadp/L9ev0LdScnj/JU3Oz4v0U5iIJ9oC5oP/vEll21Y6opcFqFtNd7HafpC6kSVkmgTFGoX1Kf9I1S1AJuofUtz7HUHKhthMJ/67fTYffHPcWC9m2z8JK9DQD5ZZ7+LSayGAbkns2hC22pY8ZScIEs2ym2+GPl8S7Y+0HjynDweJ7OQ2PCWiGh/mv8D4MjPvAEt5bQN4r/6j38CAFAbSTSltTToUWmc/A8FDlyVwXx10QPAG5GNbw/MCfgHdLhjBgwPMjM/57Rt9qgvFgDPw9rts9v3hmlbfOXpj+B7hRlMHFzF5TOTCG0TYS6z7tg8eZtaJZhcLajnczCnp2BOTzXUBxe2Vn/cIQbyaWMXxDl4p38KlWm5qkM/cii+rVPWfadkw4YJJter9xEslhDmMqjdMAPMHpT7ZrLkcHPZHDW+T5YndhoD+slAfVgsNZTrjLPwo3MFLZdtmUhIJiKpUkHa5HjHUsu0RWx22xPWyCfaBHXwbxtsSgatErPFWvNt69Vosy1Z/y1q+Nic6dM8o83Mz/1H/U3jYGRzfcBEg9BkDcKt9E9gMJ+2Ks76SixxXXeiMro9rj0JxI9tqY+vluAm7rte3c2G7B3Hhub5cTA/tE3oQFySQN1PSzxHu+O77qTqk2fRgF9ETbWAxvr56meWriIi2p+m/+cy3BMz0KsLDdfrTgprp96Gmx74JhBlPeuegDsmU+6FpWPsFZmK745ZWIMJYcsyOgAw8noNVrkGAKjZFqyygDtqwCwDxuvX4u/C2uw4jMWSPG8olgDbbgjU0t5RCSysrB4AZkJUD2Vw4LtXUHOrMI8cRnDpcsN91xtXqKSD5BhGnYOGjgGrXIPm+TAXyswupq49/aWH8d6/+YicREyMz418vqWfQ7seDUBjzCI5fteuvCnPYReXYRRtWf7JrckxuhedE9gWtOS4PFFiJ4zK4Wx4vpHcxmjsrudzLTEZTcVfosx9ICpPlcvCnx2F9sOuX4Z6oKEPNfL7siV7AzPyiXZKuy+f5PWJLx+tWJZ135q+kIx8vreyPrTnqDr5auATD8STGcTqEklmEgMMyNPgnK88Ee+fmy6pk3jsepOU7Z6/oWlW0+cErhc3yNK8oF7nss3zbNQQq2GSgIiIhpJ/bBpX3+W0rI4UbhWp//gsdCeFYG4exmqUkGPp0P0QzooPYTeehqsgvlKzdOiegFUW8DM6nJUarHIA5LIQ2TTg2NCLbvxdFk6M9RTIot2l8meHUKuYqOVrKB2WqwdV6ZvmEjidxvlx+Y8mYRTsBOSEElwPIsdEMNqkpqx3FZ9YL/u+paxOU+xCSzkQhWK8n4aOIf+1LYiJfGOD22SyUEQUih3H5KoSQlyXH2hMyomEtoUwl4nfX0P5zqoLMb8I6+Icz7NpV2Agn6hLyWVUHWsxq0aMuYz8Imhe9hUt+YoDSM3B+qiUSjwL3KGBY7vAPbM+97nEviAKxZZ9ozno2K5epqKydZL7kXCrMghLtM2SvULiniFNNX0bBtpqSa3TdDxFPbun+WRUc+zGz4jrQUzk42Ov5vlRhr7ZWG7HrjcZbw7mdyplpY7JyUx8hcdlIqL96aR+Fn7GxPhLomFllqJWZJlHDkMvVaC7AXRfBuYVd8yCn5Gn41Y5bAjmu2NG/LMqq6O7QbRqV2bFasVyvKpM5By4dxzFpb+TKLtDe8Zzn38Q+W/byL1swssDa8cnG5IGmkvpJMf2upOKG9o2a1jhG3FPzEAvuhz3U09Khy0EkxmIbLqxRDAAfWoibiLbLoDfLhtfSzVOgsYNZq8swVgsQVtclpfXLzeWzvG8eqwFiRI6zX20kqV5bLuxioEtx/RhsSTjL8VSfG6A6Lyk3QRt8+oY6qMw7M9lSDCQT9RvceMWM/5dzfAmg0gNVAkeIJ6JbtYp675dEIv2NpWVH2uTYdWxpEhioqddZoSRzzcGJ7mag3ZI8+RT87Gr4+SUV1+9FNqWzERU5XvQYR9W9S6bJwhsMw7eq2BIHMxPPDZ+/eTPHSQnIdpl6TBzh4ho/1qb1teftE18f+heCGHpMIsedE9A90L4B3QYfoi16cbTcsODDP57IXRfwPDrEwAi58ggVhTQ0jwfwjFROmxj9Bv8ztmrvvPYg3Hz4+TfG4gCpW2ScwCZ9KDGU83BRzVGEoemIBx5bqp7ovVclKgXth2vAkoG9bVcNg7mdzouNiSSFYotyTxifhHhwlLcZys5Bm9OyImfs8Mq3eZzCS3lIJibj2Mv6rVFoSjr9as4TJt+XfHnbwv96agzLezPZVgwkE+0Sckvh5ZsUM+XAaIoeB8H9dejvmCam+Gutw1Rcy3hVluDv7SnXRDnINxqy74Vul5Dj4aGGpgbBOjj7OXmgGnK4f5DfdNuJZG6TmW5J7NxWu5ntz/+yYx6s77cNpeBNjkuM+WnJuqPyWUBR9bY9GdH42WyqjmgenzyJKAhM7+JGuQ3fN681kmH5ARap5NtIiLaH5b+y8048OoCJv/4GZg3HUP4nrc3NEUXbrX+u+vBWCzB8IUsq+OY0N0AVjmAtSZglUM4KzJwm73swVn2kf3BKoRjwioHOPCjEsxi9D0anVOInIPln70JwWQG/uwoKtMOJr5+Dc9/9sGd/Y+gvtI9oDohSyupsUYYreDW87mW4KjupOTYKuW0HTup+uVqDGSsutDdAE+++sg2vxPab577/INYPZZC6BgQE9GxTQXhE+Us1QpWc3oKej4Xl3xSGfiaEwXQZw/KxrmOLcfzuWzDeBqImtROjMXjc83z66/ZrjrCOtT5Rzw2by7BCcTlfVR9/OYa/3jrjfBPHOnpdWn3+ou/+Av8/M//PGZnZ6FpGr74xS823B6GIT7+8Y9jdnYW6XQaP/3TP40XX3xxMBvbhIF8oh51G5hpznTQPF8uf40as3SsYxkt/1JfIOtlXisMwu5fDQN2LxEMTQ5y1hnIqIkeAPEgqnmfemr5C33cYhp2yaZXLSVuOkkeD5MNnts1enZrMisfaJtJrzL3FZFz4vurxzdPrqoTXFV3OFlmZ8Nt3mwvACIi2rM830RtIgsjn0fww4tYvjkNbXI8vl13Ui2ZptaCTLfW3eg7x9ZxYM6H7gsIS4Oz4sMsevAzJmojTtwcN3QM6EUXxuvXoC8WoLk1aG4NB+Z8LN8sv990XzA4uw9M/6dXMfIaZD8ERIHMqgtRKEIUim3PQ2uFAsKqi2BuXgYio/NHNR4Lqy60xWVYF+ewdn0WxmL71d9EG/EzWryyA4jG4Spu0SGRR8/n6qtGmsb1Ipuuj+mjssRaLttwLBW5Nitvm3vIbSB0vbgEWrskoobz6ujzo86fk+fStRFHNoqm/gv7dOlBuVzGnXfeiT/6oz9qe/sjjzyCz3zmM/ijP/ojfOtb38LMzAxOnjyJYrG1nN5OYyCfqAfrNZqNmyu69YuqwayXKi2PWze4lQhqqS+PTgF9BvH3v7Bp4qc542a91RsqKzg5CFErOYDGoCtRP1wQ5xpXiuSy8aBYrQhRdTSBRLPmyfH6wF31E4lqYNYmsggdA6FjoDbioDbiQOQcBJOZemZONGkQRnUugXqwpJ6F31o7WB2f1YlCw+SA+twlVgk0HLvVMb/DKgIiItqf9K+O4pW/eyA+9o//i2fkRPJ73g4A9ZrN0RiuNiG/q8yiB3c8hSBno2bpcEfld46zUoOfMRDkbBi+gLB1WOVa3Cg3tE34J47EmbD+ZBpr0xaEDSzfnMbXvvjbO/1fQNvgyWufQ+kosHosqi0eZTerSzx2UtnNiZrknZLNhFuFODQF/9g0sn99mRM+tCW6GyRKUzYmxsTNapsD+1HJneTYHoCcmPSCuIKBui20LRlMP3EUetGFPztaT8pJro51vY6JN516Dba7TU2GKZ3KAhmrrjz3oL7TwrAvl16cOXMGv/d7v4df/MVfbLktDEM89thj+OhHP4pf/MVfxO23345/9a/+FdbW1vBv/s2/6dfb3jQG8on6pG2g3fWgLyYCpRsEelQQSmXjJzUs7WLAaKgky+F0+7fvNPGTXOVRKxQ4EUTbz2vMdGmXpZ/8XWTTceNvQAYvVPZhMgsoyNlx478wV2++peWysv69W5PPFz1GldLRS5W2AX11f61Yjmtkdiql09UqAyIi2rem/+kzuOXRuTiIZN50TJY/cQOZja8mf4ulOBNUL1UQ5GwIW4PuiXqpHUuekuteKEuqQNYxb6a7QTyprXuyca5VDpG9zHrn+4nuA+6oJkuKAA0rFJtLj3RzXmAeOYzQMeCOWR17sRF1Q1hoGIurZJiGksPtxvhRA1mgPh7XPF+W1YkadsclMKPJAf3IIQjHhFYsx5MHcdNbQH4mujwvVrX7w6rbsJ0N5x+JDPy2Zg/KY6/LhuK73erqasPFdXvvJ3nx4kVcu3YN73//++PrHMfBe9/7XjzzzDP93NxNYSCfqEvJruudqLpqAOp119RsMRAHnBB92akvkE4zxi1LvxIZrU8tf4FNbve55iC7qh8eD+SbeykkGnOq/ae58W0yM59oOzX3b2jOwk/uv3EdetuSJwVtsmtCx4CwW4ctoW0imMzIrPtcNq6lr3lBHJwPcjZENo3aRFZm99smRDYdN72N768C/InXD5uD+on3F18XvY/ke1TOV57o7j+MiIj2hJP6WVz6P94ts+yjiV7ViD189gVZRiL6jtAcG/qRQ9CLLkQ2HQfo1fdZzdLhrPjQvRBG1NRW3UfVxVelUIzFEoKcjdWbMnDHLFjlGp59/CHYT31rp/8LaBtd/+8WoPuAN5tD7YaZxmClKj2SKNvUMubP56BPTcA8chjGLTfDPTEDY7EEZ9lnOU3aEjOqKqMVyzJZsWliKDm+bzvJlKhcANRjIyInV9qqIL4ap+tuAP/YNIwrS/USO1EwX2XuA5DH3okxOX7PZeNxfJgM/EeS4/m4SXQXpZNrL70Cza3hy9/83Q3vS5sg+nQBcN111yGfz8eXT3/60z1vzrVr1wAABw8ebLj+4MGD8W2DxEA+UZfaBtZVlnRTXTUxv9i+/ELzcya+5FS2TvPtyYaJyVrnAANEQymaHEoG9ZMDFs2xG/al9SZ7mI1P26ndAF5NYDYc7xJBc61Yrjed9Tx5ohBl0GtuLQ5u6G4As+jJhoGlCsyFMvRiNBhPlDLTSxUYqy7sK8WWLPzQMeIThpYM/aYJhvWEavVA4jNIRET72//6K/8Rl98nA/ZrH7xHfvcUSzBuuTmuUx6XL1TnC14A49mXkHn65TjzXnGWqm2z8IFEybcoaJa95MJZ9uOa+7S/PPXi78NZETCLsklyQ8m/pDZJD1rKiVd4i/lFiJwT7yfWy5e2c7NpCDz3+QflyqBcBvCi8bzXWN6mOZEHQGNfqcQ4Oc7Oj1bexs8RrTwC5KRnbXYcwjHhH5uul96xTVnGOPrdm83J5y6W4iQczbHrkwZVVybcRCU/4ySjxCqX9ZLdtLvvwPKd+Y6309b0s7TOj3/8YxQKhfjy4Q9/ePPbpWkNv4dh2HLdIDCQT7SNGoL5jt3YALdNI0cVdE0u+2rGjOrhkgy2M0BIe0XHCaROteaBeqBDNQW37XgSVAXcrSsrcdBec2uwrqzIMjpea1kBdZ3mBfGy3Y20e54NH8PPJRHR0CnU0jj6L1+F5thYukVHuLAEUSii9tIr0PM5CLcaJ+KExVJDuYjKu26On8cqBw1B/ZqlQ9g6/IwpA1eT6bgsHHJZ2FeKMFZd2XDx+68BYGLGfjT27JsIctF4qakOeYN2KxijMZh241EEOVsGRF0Pwdz8tmwrDRfNrTXsk2riKL69zQqS5v1U1chvuM4xGpJ3VElNP2NAOCaErcvyUFEAv6F8cfM2tlkRoOdzrduhqiN0UeVAL7qwyj12U6WBGBkZabg4TueKGp3MzMwAQEv2/dzcXEuW/iAwkE+0SWq5bFeavzSaMivirHy3ilqhIAP162SCcsA+XM5XnmgcYKhgqMpuKJbqZZwiyVr47XAfou3UslooOWlp1zNg4qWv0T4cJrJo4pMCx4ZeqtSX8F55E9riMvTFAp589RE89eLv48lXH6kH610vUWfTip8DQEO2j+bW4vvFtTrV5IJqMB19ppqX4bb9fCXuu14JNiIi2tsuiHP4vx89CXFoCmvvuAGT/y2QSTiJxqPm9FScHa0auXuzOfizo/HzqAx8qxytOnMDGL68TjW8jak6056P0DEQTGa4Mncfe/LVR+LSSvrVNgH4RGaz6g+kLvqRQxAnjiK0zTgb/8k3HuPYn/ri/POfAACEE2MyOJ6UTFTMZRuy71Wj7qTQtlCbyKJ6KCMnrlwPT734+zj//Cdw/vlPwFiVq4/k5KYBq1yLVtRaUSlNK24+ay1UGmIsodu4UkAlCIXFUnxsBtonHzU3kNadFIq3jqM6yvDptgn7dOmTY8eOYWZmBhcuXIiv8zwPTz/9NN797nf374U2aZ3pXSLaLC3lNAb5HTv+YmkIFiUCPypzJ862T8xsJzPwOQgbXqJQlAFClbmcmOwJoyZCnZpYcR+inbbRZGfoemhemNiyBFdxGyeqnrz2uZbne/KNx3B67D55Qqsq9ySy9bViGRrqWUChbULknLgkTwOvcVlwp+a2cdZb+7dIRET7VHVSrviyn/oWaj97F4DWgFCcqJNNAwD8jAEnanLrjlqwyoEsG2HpMFbduImk7gn4Gfmz4Qu58gyIVqjJ8wk2XNz/4uSDNln3cD2EuQy0ZLAyKiNSm8giyNlYu8mCVRbI/vXlndtoGgqhY8hkGDtRusb1oCX31WgfDWZHYV2cg+YFDYF2NampjnVfvfChltc5//wn8P57PgnAhOOJ+LgXTGZgLpTjMb4K5psLQX1buky41PO5lhLHyfNm3UlBn5qAn9Ew8UJrKWTqkzCUl60+Rw9KpRJ+8IMfxL9fvHgR3/72tzE+Po6jR4/igQcewKc+9SkcP34cx48fx6c+9SkcOHAAv/zLv7y17ewDBvKJuqQybRp+z2Xll5QK5iQaOcJWTViiQflioe0yMnV/88hhhMUSjKijuvoCkoFbltIZdmpAoSOqf6n2ucnxOHgv5hfjXg5qf20+qWQQn3ZSPJBuqp+ZvB3oXE8fto0nX32k69dLNnE7PXZfQ+BeA4BiCZoXBVZyDoRjxifKmucnJl0z0BaXW7ZFzC+2vgc2HSciGjpHnloBIDPv9UStetXoFqj3LdImxuJAkztmQVg6dF+gMi3PG5wVmWUvg1RmHNgC6g1vVTBf83wYV7orF0d7W/VQBs6SIVcQvn45TuBR55eaF8SNQvWX30A4cRhhFMQv3OAgyAAH5nw8+cZjg30jtO8EORuWW5OxCs+OE8rg2BDZNEJHlsPRXTlZ6R+bhrHqNvSk+srTH+nqtZLNZU/qZ+Gd/ik5CZpzIBx5XBW2DrMoS3Fq0eRCqFYxqcQ3r35cblhpG/2cTKhUP+tTE/G5ge6HbHS7z/zVX/0V3ve+98W/P/TQQwCAX/u1X8Pjjz+Ohx9+GJVKBffffz+Wl5fxzne+E1/+8peRy+U6PeWO4doQoh60lFRozhpFIvtmIh+Va6h/YcX1l5tqx8W3qyWRUdmJbmu20XBJ9lIQl652LKPTPPlENAidstmBjYPgWzn5fGr5C22P0Wq1k8rEV820QtuKsyZD22wtiVYstS4hbkNzbPnZdKsse0BEtE8tfCrAjz8wiWBuHuI73wNQbzSqzgWCuXkZ2LdlQMsdNeBndNRswM/oMMs11GxZF1/VgwZkFr5VDpD+UQHhsy8gmMzE5xChbSG4dJnB2SHgLFVhXFmqlwvMZRDmMvBmc6iNOPBmc6hcn4c7nkLlXTdj7XoZxLcWKggywNpBwPrLFwf8Lmg/UhOMcL2GbHaRTcf7qztm1WvcR2XCNM8HrryJp178/U297gVxDqmrZQhbj3tICFuH7gnoL78BfzId31eVnALQmFDUJrGouQeh+lnML0Jk0wgmMxj90kub2mbqjhb259KLn/7pn0YYhi2Xxx9/XG6TpuHjH/84rl69imq1iqeffhq33357/9/8JjCQT9Sl5gazarCeDESFVTeuCZcM4MeKJYQLS41lIjr92wazqYfTSf1s/LMaaCQvSc1BfRVQBLj/0M5qybKP6lLCa20s1Rzsf/La59qWz+mVKBTr9e8TZadUlr+5UIaxWJI1h6PVUyrLDWpllcrqQaK8lXqP0c/J9xLMzUO4VX7eiIj2qZP6Wbx96jIOPSMz8c3pKQCJRIvoO0NdXxtxsHpTBn6msRCbsDUcmPOxcrOF2oj8PtFd2fzWz5gIbRPhe94Oc6EMf3YUIptG7aVX4uel/e3Ne3IoveOwnMjJZeHN5qB5flz3vnTYxsrNFpZutbByswWrXEPN0rHwk6MYeT3Aqx9+kAkFtG00L4CYyMus9dmDgGND8wJUrs+jMpOG7oVYvD0NZ9nH2rQFvVSRva0Sq2c3Q3zne3BHLaxNW6hMO7J2/pUVPLX8BeieQG12XG5PVB0Bjo1wYqxx26MAv2qKa05Pwci31vDXpybgT6ZhrLpb3m7agCqts9XLkGBpHaIeJJdbqcF6S4C/WIKGLGBbCBeWZJZ9dFscDIpKoAD1rOmG8hOqdj6z8QkyAJ8M5jdr3gfbPZ5oJ50euw9AYzA/TNTQbD62hVU3vm8/AvjK+coTOKmfhZHPx6ucnlr+As7M3C+X3ia2Ty/JE2OVlQ9A3p4oh5ksW9Us+Z74mSMi2t+e+5d3YubijxBATuAa+XycTKGlHFn6cGEJ4sRRlI448A/ocFYEDA+o2YDhyax8ABh5PcDqsRTGvlNA6BhwluS4rjbiyNIUOQfmQhmhbcKcnurr9yTtXul5AT+jI/NqGe6JGZhFD6XbpuAs+1i+OY0gA1QnAN0HDlyVj0ldLSP9jcsMOtK2OJW+F2un3oYDcVnKAP6xaQCy1r3hCwQZI560dFZk825haT2VylzPBXEOd//6Z1CzNLijQPaywJOvPiLH+3feKsv65BxoKjEH9fKZScnecmoMr5rbxr0LJ/Io3ODguTb1+4kGiYF8ok2KAzlNQdRaoQADkNn3HQLxKhik53OoFQrx0hjNsVu+UBQGhqhX3GdoN2q3SuRU+t6eGlP1Qk2EqcF5C9eLG8SFuYzMMMo50IuyQe5GJaraZeUTEdH+pd19B5Z/yoNVPorx/1CKa+EDqCfnRON5za3BKouGxxseoPsCNVuHn9FxYM6HVa6heigDqxzAWJXfJ/54ChYAY9WV2fmOwSD+EMlecrF6LIXy8VHoXojlu3IYueijdMTBgfkAS5MmzDWgOhHCXtXgvPAG9w/aVtX33YHSYRPpa0bUvDaqg+/IIL7uCeS+txSXznnPL/wTWBfnMLbamu2+Fc8+/hDe/vcfhbCAr33xtwEAtZ+9C/pCRfaUUGP5UiVusNtQ4nidsp9AokY+gPzrHN/vBE3Iy1afY1gwkE/UhXZBIBWIVxk4yWx9FYyK6+UXinFt5WSwKnQ96E4K5ytPyEBWm4DRRtnWNBw6ZeUzWE+7kcp6T1ovY30nln4ny92EridXSjmJrHzPAyAbyKn6+QCgHzkkg/yJ0jwNK6masGYhEdH+9uY9OVz3xQCZp7+HWqEAoJ7JGX8v2DY020YQlcxRwXxh6fAzGnS/8dvCLHowIRs7nnr7xwDI7Gp/Mg0xmYbuiTjAT8PhK09/BGeOPiDLl1ydR/obHoK33Yinv/Rw+wc8tqObR0Po6S89jDsfeBSVmTSsXOMY2Cx6Lc1gVZB9u8z++x/F+73uCZTeMoLsD1YR2iaMxVJcsz+0TYicA2OxFDcOR7FUbyDdJhlHd1IIHQP2lWLLbbQN+lEaZ4hK6/B8k6hPdCclg/gqO1PN9OayjTWVVdMV1L80Tupncb7yBM5XnmjbuJTBWgLq+8EFcS6+EO1WydryyRr4g6rXmvy8hFW3MWutWIq3sW1/E8/r2FS6uWkW69ESEe1/a1NRY9p8vrG2cvI7IQrq614YXwCgZmkQlgb/gC7/zRhxo1sAOP/8J4Dvv4bQMWAWvTiIf/75T2z/G6Nd5ck3HoP2+mU8ee1zeGr5C/jK0x8Z9CbRkPvOYw9GjbsNALJZt/Hnz7UE8bebsyIamn4bz74EZ8WHP5lGbcRBaFsIHQPBZCa+T0P5TFVi07HjhMtmwjE33ZiXaDsxI5+oSw0Z9ylHZuAU6jXU9HwOolBsaeCooXHJrZ7PyS8OVS8/et6T+llcEOcYBKJ1MXhPe8Vuqs+a/NyoYy2Ahga4gCylA8eOB/oqYydMHK9V1qU61mtobda7m6mVPTyWEBH17ufe+ynot6cxff5HCAqF+BxAy2Uh5hfjPleK7gZAJgr6+wLC12D4sn60tSZr5qsAPwC8/55PwriyxPMBiu2m8RQRIEvbDNo3//S34p/V2P7993wSQc6GsHUEkxnobiCPwZBlzkLHiB+jAXF5zXbjeC3lQNi7N+/5zNEHcO3nr8fzn31w0JvSH2F02epzDIndu2cS7RLrNRlNCl1PllpoLrfQlK0Zul6c3ble3WUiIuq/5rr86pJcLQXUM/OT5dDalVhTzXvDqhuXWCAiov3ptQ86EFbjdWFT+bXk2D/I2TB8AcMXcEflA3U/hFUOYZUFdF/AKgcy8JSzIRwTYqK/9aSJiPYzNbZfeWsWX73wIdSsepgzyNnwJ9MN9w9tEyKbRpjLoJOw6sJ5fWl7NrgPnnzjMXgjg96K/tHCsC+XYcFAPlEXVNkcJay6cRMUQGZptmTiO7YM/jTN8oZVF6JQhHCrDUGfjo0YiYioL07qZ+PJ2fOVJxqz3KIsynBhCdrrl2V2fiKzUk3UAvKYry57rcmtOtnpdpKaiIjqxl7Qkb0ssPye6wDUm9tqjt0xQUcF8J0VP86+N8s1WNFFZX3WLB3umNUSdCIiovbu+IeP4rYPPwqgvlLAHTPgZ0wIx4yD+rURB8KRTcNrIw5Cx4DIOXGVBC3lQD9yCHo+h/DO4wjvPI4nX31kMG+qSy9++kG8/55PDnozaABYWoeoR8kSO+0kgzpa1BVdc+yGhrjtMDufiGh7tSsno1ZHxQ1wI2J+seNxuXkid6/p1DybiIjWJ2wZkLevFFFTV9o24HltG6ADgO4L1CwdwtbgLPtwxwwEGQMoy3I7gGwU6c+kISwd1kKp7fMQEVGjF/6gtbRM/nurKL1lBFY5iFc8GauuDN47ZlxuB0CctKPiNrIc8gz04t5I1Aly7b939hw2u+0JM/KJ1nFSP9s2YG/k83GtZNXkSmXk6Pkc9KkJaJPjCCfGZBMVu/UAq7L8k02yTo/dt+3viYiI6lQdYi2XrTfnjYL7qtxOcpWVysw38vn4OK4urDtPRLR/qaxP+0oRWrEMc3oK2uS4vDGXlRcgLo0T2hZ0T8BZ9mH4AroXwh2z4CzXooz8ANZCBbonZHDJC6H7AqW3jODn3vupgbxHIqK97vzzn4Cf0eCO1eugaV4AY7EEc6EMza1BOCaMxRKQy9b7GXoetBuPQjgmKtfvjRJnxp8/N+hN6I8QgNjiZXji+MzIJ+qWlnKgA3FJHNX0FkBrBo5jI7Stht+BxizOdlhfmYho59UKBegqMz9aVaXq3iudMi2BvZ+VzwkIIqKNCUteVn5iHNlLGRjPvgQtmgAOjt0oMz4nshCOCSCP0DGgu0EUpBdxiYcgYyA9V/9+0d0A7ngKwtbgjhqyhv7FuUG8RSKifcEd1WCVZbkyVdJMZNNxw1tj1YU/OwrdDaBl08ChKSzemUd6LoDhC1Sm90ao9II4h9Nj97Ep9pBhRj5RB+3KDiTLLCR/Vs0SATRk32ueL39I1F5rpoJFe63OMhHRftPuOKylnD0ZqCciov45M3M/3EkB3Qec5VocaG/okRUFiJJlG/SiC2M1uqgyOuVafD/VWN3wBYSlo2bJIm9PvvHYtr8nIqL9ylkJ4Wfk8TTIyHr48TG6GJXZsXUIx0TpLSMo3DqCmqVB2BrWpq34sXuBNjmOM0cfGPRmbAmb3fZmb0wzEQ1Ic4Pb5us1VTbH8+IAfpjLQPN8aJ4PkU1Dvzof1VprzLhPZn4CMqOTWZFERDsvmZ3eXE5NHbdVeZ1mqjTPXpbMzGeWPhFRq2BuHpr3FjgrAs5SFbXZcRierKccVmWgXvMCVK7Pw1mqT/6KnAO96CKYzERldJy4ua3m1iByDiozsrltdVRe7x9grh0R0VY8+/hDuOs3HkXpsIns5SBaKQVZbmcmjexfX8bqe66D4QG1aHg/8UIRX/7m7w5wqzcn+OFFAMCZow8guHQZF8Q53P3rn0HxqIaXPtnaQ2BXCtGHGvl92ZI9gaMEok1oyaxvroEfZeDrpUrH+vhERLR7XBDncEGcg3Cr8SV5W61QqK+8iuyHIH4Sg/hERJ1lL2nIXnJlbeXXryF0PehTE7I3lhcgtE2ZWe+Ycaa9XnQhcvK8wZ9Mx9n67piF2ogjS+pYOvyMPC0vHQUm/2plIO+PiGg/ee7zD0JPDN11N4DuhXCWfTz5xmMwPGBtWoewNDjLtT0ZxFeMfB5wbOh33opT6XtRmdxDQXzqGTPyiXqgpRyY+Zz8RQXoow7nAGSDFM9uuU7P5xDMzcfPI9xqPIvGTHwiot0jeTw+qZ+Nf1fZ6qo/yn6oRakmldWkxUZ9XIiIhtnBbxZhvH4Na++4AUahCOFWYUarc2svvQLt7juge7J8TjCZge4GCCYzqEw70KNmt2s3ZeCO6nBWBNzRFPyMhiANjPxI4Jt/GgVdfmeAb5KIaB957vP1YPaZow/gwJV66bLsf/42zPfdgfQ3Xtnz43otl0W4sATdzaJ253GM/iDY+EG7SRj2ISN/eFLyGcgn6qA5aAM0NjsMiyX5u7oAssROM1V6p8l+y+QkItpvmidZ1ffCBR6/iYiGygVxDj/33k9BnxhD6moZQGKFredBu/sOAICfMWGV6wEUYeswyzUEGQO6V4PhARPfrcDPmFHT2wBPf+nhHX8/RETDprn3yH6Jx5g3HQMA1C4VEL7tRizensbEdysD3qoeCQBbbUsg+rEhewMD+UQbUNnzWsqJyypok+PQbE8G6IslIJeVd85lEdqWvA8gs/ITQXxm3hMR7W374TiebOaeLPW2X05oiIi2gztmwbriy1I5dx6XNe4hm9waV5YQ5jJwgLgWs/pXEbaGmi2f52tf/O2dfwNERLSvnB67D+LEURivX4Nxy81YOeLg+c+ypM5+xxr5RD3QHLtts8OOoiB+c11lIiKiQdkPkxFERDvNWfZRum0KwjFRvi4DvVSBP5mG8fq1tvf3MyZ0T0DYGnRfwB01UJnSUTrMXDoiItq6WqEAveginBhD8dbxPdssXQvDvlyGBUcRRB0kMxaFW4WRcuplclRgXv1eLMX3DQ9NySa3ieC95tgMnBAR0a6hvpOS33VERNTe3zj7hzAzJtLXKghyNrI/WAUAOK8vwT9xBNaVFQCAcWUJmB2X2fq2DmHLRrbuqI7qBKD7wNH/cnWA74SIiPYLNZ4/lb4XWduEf2d+wFu0SayR35O9OV1DNACaKp+jgveOjTCXkWV1oks4MYbQMSCyacDzmIlPRES7xnpBe042ExF1pvsCB757Be54CjVLhz+ZjstpGs++BBRL0IplwLGhuTWZ1ANA90ScIRmkAW8EuPK3Dg3sfRAR0d7Wbjwv3CpqIw6effyhAWwR7TQG8om6kKwhHFMDdkAO5F0PmufHg3dRKKJWKEAUigjm5nd4i4mIqJ/aDZpPpe8dwJZsTnL7mYVPRNS9k/pZCEtHcOkyDF/AfupbcF6+htA2IbJpaDcelXd0bMD14pW51kIFxrMv4bnPPwjdA/QA8PM1ZC8PUUc+IqJd6NTbP9Zy3emx+wawJb0r/k/3tFy39sF7UJl2BrA1faIy8rd6GRIsrUPULc+rZ+PbNsT8IrSUAw1ZIMrIQbEEvViCKBTZNJCIaJ/p1CR2L2kX0Gc2PhFRZxfEOZw5+gACAGbRg3v6p2D8qAB9sQAAcE/MwAageT7CYgmaZwO5LKqHMkh9Xz7Hc59PNB+8f8ffAhERJVx77yje/vcfhbMiV01ZawL+37lt0JvVFcOTyUSl/+En8PVzv4WT+lms/O/vxouf3sNNbllapyfMyCdaRzK4IQrFOIgfFksyiO/IwL5WLMeNbQG5tImIiGg3uyDOMYhPRNQFMb+IC+IcjMUSUlflitzl91wHMZGH8/qSDOLbljw3ACCyaQhbQ+3uWwa52URE1MZ3HnsQQRoQlobsZX/Qm9O1k/pZ5L63hOr77kB6zgUgx/N7OohPPWMgn6iDhiC+W4WWcmSZnEuXUSsUEFZdiEIRoeshLJYQuh5EoSgD/hGWLyAi2h/2csCb30VERJv3/ns+Ga+09WdHoS8W4M3mAAC1EQdrxycRLixBK5ax9o4bsPaOG7C8VxsOEhENieAAsHxCw5X3yOoKQWbAG7SBk/pZ6E4KoS0Lq/z459ID3qI+En26DAkG8ona6BT00FK91R3bq6UXiIho/9rLkxJERDtt5a3Z+Gdj1YV7YgbO60vIXnLhjlkwfBk98I9Nw1mqYuVmGRRausXE6rEUTqXv5YQqEdEuo/tALSOgB0BlSoezsrtLsxj5aIL4+6/hR/+jhrHv75/ItRaGfbkMC9bIJ+pBWHWhO6m4dI5wq9CBepmd6D4K6+QTEe1fe6GMWnPwiEF8IqLeOCu1+Ge9VIHpGIDrwR2zkL5WgXBMhDcchp8xEUw7ECZQPqRBj6o18HyAiGj30X1g+r8Ci7cDEy+6sBYqg96kjtR43sjnoTk28i+a+OafspzOsGJGPtE6kgEQFaDvFLgJXS++DzPxiYj2n2QQfC8EZpgBSkS0dc6yjMg3HFOjBB4AMBfK8CejmvjR1fYqICygeFTbyU0lIqIuvfAHD2L+7RrMCvDVCx9C6S0jg96kdelOCtrkONw7juI7j+2zIL5qdrvVy5BgRj5RG+tlLBr5PGqFArSUAyPlNGTgAzLQz4xHIqL9KXl8383HegbxiYj64ytPfwQAYE5PAQD0ohz7W+UaNLeGYDIDP2PAHTVglWUgwRsBqhMhfvgPHxrMRhMR0YaSx+ivn/utAW5Je6fH7oM2OQ5AVoEIbQs1ax/mY4sQ0LYYiBcM5BMNtZP62Y4BmrDqwsjnGwL4zcF8IiKiQUgG8NXqME4wExFtXe2GGRhXlqC5HsREHtZCBXqpguqhDJxlH7oXIsgYyFwVcEd1BAeYjU9ERL07PXYfxImjMCbHEfzwIsybjqE2kcWXv/m7g9402gX24VQO0c5KNsDttRkuERFRv3TKwmcQn4ho887M3A8A0F9+A/A8AIDmBQgdA2vHJ2GVg/i+ui9glQWENZBNJSKifeD7v/9W+YPrySa3xdL+DuKztE5PmJFP1IVkzXvV4FYJq269bj6zHomIaABUED+ZhZ/8l4iINsmWhe81xwZsG2GxBDE7jiBnwyoH0N0AQU7eR/dCVKZNVCcA9zpvkFtNRER70A2P/2Pc+P+EcMdTOHAFCG84jGBkvyeM9iMQz0A+0dDbTH1hBvGJiGinrfd9xe8lIqKt8Y9N41T6Xmg3HkVom8BEHsIxoXsCwtahRxU2DV8AANxRDS//zj5rREhERNvu9G0fxXXHR+G8cBGh6yEoFKDPL8I6cmjQm0a7CEvrEPWgU4aj7qQYLCEioh3HprZERNvLujgHLeVA83xoniyjo7syE1/3BMrXZWD8+XNwXl+CtVDBdx5jEJ+IiHpz1288ih99cBJ+RkcwN4+lv30r9DtvhXCrePLVRwa9eduLpXV6wkA+UZN2QRHhVtctT3C+8sR2bhIREVHXWFaHiKg/zhx/GGIiDy1qOBja9QXtmluD7gZwVnyYNx1DaFvQXr88wK0lIqK9Kv1LVyEsYO6dgHnkMMb+7HnMvXsUr/6zuwe9adtPhP25DAmW1iFK6DWzUUs5CKvuNm0NERHR+pKrwU7qZ+PgPVeJERFtzemx+yBOHEX47AsQ0XX6YgHBpcswbrkZwWQGfkaeTq8dn4ThCzieP7gNJiKiPesvf+4R4OeAU+l7Ed54FAunrsf0Myt4/rOfGPSm0S7DQD5Rggp8dBPQTza9PZW+l1n5REQ0UAzeExH1z1PLXwAgzwtee+RduPHhbyAslqDfeStCAMaqC2PVRW3EgZ8xUTpso3R4ZrAbTUREe1r1fXfg6S89POjN2FmhkJetPseQYGkdoi1Ili04qZ9lrWIiIhoIfv8QEW2fGx/+BsybjkFzbOiLBeilCjQvgOYFsC7OoTIt8+OscoifOfmPcCp9L4/LRETUM3fMGPQm7DzWyO8JM/KJtog1iImIaNCYjU9EtD2MfB5h1YW4dBV6Pgc4NgAgtE1ZEz/6XfdD+BkNgAX/1NsGuMVERLRXffNPf2vQm0C7HAP5RAnMnCEiIiIiopP6WehOCsKtwjxyGGJ+EaHrQUMJAKDZFrRcFmGxBKscYm1aj/9dm9Ex/Vww4HdARES0B4gQwBYz6tnslog2ojspAI0Z+cyIJCIiIiLa+4x8HlouC8wvIrh0GbqTQlh1EVZd6PkctGIZYS4DDcDq9TrSCzKIoHvAy7/z4GA3noiIaK/oR2mcISqtwxr5RH3CID4RERER0f6gTY4DaEzaEW4VWsqRv3geQtsEHBsjPxLQfRlEeO7zDOITERHR9mAgn2iThFuNB/YM4hPtD6q8FstsERERDbdwYQliIg8AWPvgPRBuFbqTghbVxIdtQ786D7gezHINznINVnl4MgKJ9qKT+tn4QkS7RIg+NLsd9JvYOSytQ0REFNGdFE6l7x30ZhAREdEuoJcqEACWbtFxAJDZ+HbU7DaXQWjnoS8WAABWOcDTX3p4cBtLRF1jIh7RLsLSOj1hIJ+IiChyvvLEoDeBiIiIdoFaoQAzlwUAHPm9ZwBAZuM7NlAsQVv0oAGAbePAX7+O5Z+9aXAbS0RdYQCfiPY6BvKJNomDACIiIiKi/Ul3UgguXW74PXQ9hIWrMjN/9iAAQFtcxpPXPjeozSQiItrbhAAg+vAcw4E18okSGJwnIiIiIqLmVXrJpreaY0NbXIbm+UCUtU9ERLSeiAF6AAAGWElEQVQZQ9+zYcv18ftQmmcPYUY+ERERERERURMjn0dYdRuC+Ho+BwDwTxyBseoOatOIiGifYEIp9YKBfKKEnZwJbX4tHryJiIiIiHaHk/pZGPl8HMQ38nkAgCgUoaUcGKsu9FIFoW1t+XUUng8QEdHQYbPbnrC0DlFCL4PnzQb9k4/TndSmnoOIiIiIiLbPBXEOtUIh/r1WKCCsygz8sOpCe/0ywoUlaIvLm3p+dU5Q/cDdqH7gbhT+7ru2vtFERER7jQj7cxkSDOQT7bAL4hxO6mfjSYML4hyzb4iIiIiIdiGVeJNMwNFSjqyT79gQhSJOpe/t+XnVOcHXvvjbmLvLxLOPP9S3bSYiIqL9iYF8oiYbBdb7EXRXz9HcRIuIiIiIiHaHC+IctJQTB/GFW41L7YSuhyevfQ7CrW56TK/OCV7+nQf7s8FERER7TBiKvlyGBQP5RD1QmTPK0HcXJyIiIiLax55a/kL8s+6koDsp1AoFPLX8BZzUz0J3Ujgzc/8At5CIiGgPC/tQVoc18oloPSyFQ0REREQ0HFQmvsrG151UnNAj3CpC12Mwn4iIiLYdA/lEHTQH65PZ+MzKJyIiIiIaDsnzAlVK54I4F2foh1UXyGVx5vjDA9xKIiKiPSgM+3MZEgzkE60jOWhXAft22fj7NZi/X98XEREREVEv1DmAysY/qZ+FcKvQUo68g+vBvWF8gFvYf1xlQERE206I/lyGhBaGQzRtQbRJvQS0WXaHiIiIiGh/OpW+Ny6xo+hOCvrUBMJcBldPTmL0FR/2U9/ieQEREVEHq6uryOfz+Nncr8DU7C09VxB6+PPin6JQKGBkZKRPW7g7MSOfqAu9DMKZxU5EREREtD+drzzRcp1wqwguXYZWLGP2v1xFZdrE2gfvGcDWERER7TEsrdMTc9AbQLRXtCuz03w9ERERERHtb8nx/6n0vQDaB/iJiIhofaEQCLWtlcYJw+EprcNAPtEmMHhPREREREQqgH8qfS+D+URERLStGMgnIiIiIiIi2gIG8YmIiDYhDAFssTQOS+sQEREREREREREREW0TEQIaA/ndYrNbIiIiIiIiIiIiIqJdjBn5RERERERERERERLSzwhDAFpvVDlFGPgP5RERERERERERERLSjQhEi3GJpnXCIAvksrUNEREREREREREREtIsxI5+IiIiIiIiIiIiIdlYosPXSOlt8/B7CjHwiIiIiIiIiIiIi2lGhCPty2YzPfe5zOHbsGFKpFO666y587Wtf6/O76z8G8omIiIiIiIiIiIhoKPzZn/0ZHnjgAXz0ox/F888/j/e85z04c+YM3njjjUFv2rq0cJg6AhARERERERERERHRwKyuriKfz+On8bdhataWnisIffx/+A8oFAoYGRnp6jHvfOc78Y53vAN//Md/HF93yy234Bd+4Rfw6U9/ekvbs51YI5+IiIiIiIiIiIiIdlQAH9hiinkAH4CcHEhyHAeO47Tc3/M8PPfcc/jQhz7UcP373/9+PPPMM1vbmG3GQD4RERERERERERER7QjbtjEzM4O/vPalvjxfNpvFdddd13Ddxz72MXz84x9vue/CwgJqtRoOHjzYcP3Bgwdx7dq1vmzPdmEgn4iIiIiIiIiIiIh2RCqVwsWLF+F5Xl+eLwxDaJrWcF27bPyk5vu3e47dhoF8IiIiIiIiIiIiItoxqVQKqVRqx193cnIShmG0ZN/Pzc21ZOnvNvqgN4CIiIiIiIiIiIiIaLvZto277roLFy5caLj+woULePe73z2greoOM/KJiIiIiIiIiIiIaCg89NBDuPfee/GTP/mTeNe73oV//s//Od544w385m/+5qA3bV0M5BMRERERERERERHRUPilX/olLC4u4pOf/CSuXr2K22+/HV/60pdw/fXXD3rT1qWFYRgOeiOIiIiIiIiIiIiIiKg91sgnIiIiIiIiIiIiItrFGMgnIiIiIiIiIiIiItrFGMgnIiIiIiIiIiIiItrFGMgnIiIiIiIiIiIiItrFGMgnIiIiIiIiIiIiItrFGMgnIiIiIiIiIiIiItrFGMgnIiIiIiIiIiIiItrFGMgnIiIiIiIiIiIiItrFGMgnIiIiIiIiIiIiItrFGMgnIiIiIiIiIiIiItrFGMgnIiIiIiIiIiIiItrF/n8Neil7p9u2uwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(\n", + " 1,\n", + " 2,\n", + " sharex=True,\n", + " sharey=True,\n", + " figsize=(20, 5),\n", + " gridspec_kw={\"width_ratios\": [1, 1.2]},\n", + ")\n", + "\n", + "im = ds_1948[\"heat_waves_per_time_period\"].plot(ax=ax[0], vmin=0, vmax=50)\n", + "im2 = ds_2021[\"heat_waves_per_time_period\"].plot(ax=ax[1], vmin=0, vmax=50)\n", + "# cbar_ax = fig.add_axes([0, 10, 20, 40])\n", + "# fig.colorbar(im, cax=cbar_ax)\n", + "# ax.axis('off')\n", + "\n", + "ax[0].set_title(\"1948\")\n", + "ax[1].set_title(\"2021\")\n", + "\n", + "# ax[0].get_legend().remove()\n", + "\n", + "for i in [0, 1]:\n", + " ax[i].spines[\"top\"].set_visible(False)\n", + " ax[i].spines[\"right\"].set_visible(False)\n", + " ax[i].spines[\"bottom\"].set_visible(False)\n", + " ax[i].spines[\"left\"].set_visible(False)\n", + " ax[i].axis(\"off\")\n", + "\n", + "handles, labels = ax[1].get_legend_handles_labels()\n", + "# print(labels)\n", + "\n", + "cb = im.colorbar\n", + "cb.remove()\n", + "\n", + "cb = im2.colorbar\n", + "cb.ax.get_yaxis().labelpad = 15\n", + "cb.ax.set_ylabel(\"# of heatwaves\", rotation=270)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "78791f93-0818-4087-a9e2-05128ab49f34", + "metadata": {}, + "source": [ + "Exploring the data, " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4c255b45", + "metadata": {}, + "outputs": [], + "source": [ + "# time_bnds = [(np.datetime64(\"1948-01-01\"), np.datetime64(\"2022-04-30\"))]\n", + "# time_var = ds_tasmax.variables[\"time\"]\n", + "# start_date = np.datetime64(\"2022-02-01\")\n", + "# end_date = np.datetime64(\"2022-04-30\")\n", + "\n", + "# start_index = np.where(time_var[:] == start_date)[0]\n", + "# end_index = np.where(time_var[:] == end_date)[0]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "6cf41cdf-9152-4a6f-b2f3-b3adf1ca7798", + "metadata": {}, + "source": [ + "### Boundaries of the region of interest\n", + "\n", + "In this part, we get the shapefiles of the country we're interested in looking at" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "c96e8a24-1f29-4e8f-92f4-92b9c8f39dbc", + "metadata": {}, + "outputs": [], + "source": [ + "INDIA = geopandas.read_file(\"../../data/shapefiles/india_district/sh819zz8121.shp\").to_crs(\"EPSG:4326\")\n", + "CHENNAI = INDIA[INDIA[\"laa\"] == \"CHENNAI\"]\n", + "DELHI = INDIA[INDIA['laa']=='DELHI']\n", + "HYDERABAD = INDIA[INDIA['laa']=='HYDERABAD']\n", + "MUMBAI = INDIA[INDIA['laa'].str.contains('MUMBAI')]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "2114c019-02ee-4333-b36e-4033cdb33123", + "metadata": {}, + "source": [ + "Taking a quick visual inspection," + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "891cfb5e-ca97-4076-8b25-c5aae3674dac", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPoAAAGdCAYAAAA7am5rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYWUlEQVR4nO2deVyU1f7HPzPDLKzDvgy7qOwioqKomUoIGkFZLpWg5S2zReXXLUktr1Zambe6pqXdrpll5jW1bqZiiUuKBoK5A4KyDSAIDMMyA8zz+4McHZmVeYbZzvv1el4v5lnO851hPnPOc853YVAURYFAIFg0TGMbQCAQDA8ROoFgBRChEwhWABE6gWAFEKETCFYAETqBYAUQoRMIVgAROoFgBdgY24CBRCaToaamBo6OjmAwGMY2h0DQC4qi0NraCoFAACZTfZ9tVUKvqamBv7+/sc0gEGilsrISfn5+as+xKqE7OjoC6P1gnJycjGwNgaAfIpEI/v7+8u+1OqxK6HeG605OTkToBItBm8dQMhlHIFgBROgEghVAhE4gWAFE6ASCFUCETiBYAUToBIIVQIROIFgBROgEghVAhE4gWAFE6ASCFUCETiBYAUToBIIVQIROIFgBROiEPrR2duHQpVr0yEgRH0vBqsJUCdphz7HBsj1/wo5jg7ljAzF7lD+c7TjGNougB6RHJ/SByWRgVJArqps7sO6Xq4h/91cs2/MnrghFxjaN0E+I0AlKGR3sKv9b0i3Dd39UIuXjE5j5+WkcuCBEd4/MiNYRdIUM3QlKGTPITen+s+W3cbb8NgR8Hj6aHavwg0AwXUiPTsC5iiY8svEkyhva5PvCfZzgyFXdD9S0dOKpL/Lw3dmKgTCRoCdE6BrYV1iNnMt16LLgoWr+jdv4s6oFs7ecVngO93Tiqr2uq4fCsh8uYNWPl8hQ3sQhQ3cNVNxux4acYrjac/BIjAAzRvghytdJY0K+pjYpnO3YZpE/3s/FDgBQJ5Ig/dPf8cRIP3RIZbh+q03Dlb1sO3UD12+JsXHOCPDt2IY0ldBPiNA1YP/X8PV2mxTbTt3AtlM3MNTLAWnDfRHoZgdXe458axRL8euVOhy5Uo/zVc3IGBOIt1IjwWSattg7u3rkf0u6ZdiRp/tw/ERJA9I+PYkvMkdisKfm9MOEgYUIXQMOXFaffcV1Ynxw6JrGa786fRNN7V1Y/0QMODam+5R0rqKJlnZuNLbj4X+dxMuTh+BvEwaZ9Hu2Nsh/QgP2aiaktOHH8zVYsD0f7dJumiyin8KKZtra6uyS4YND1zDtkxPIK2ukrV2CfhCha4Bn07dH15Xjxbfw1BdnIOrsosEiemkQS3DZAI4wpfVizN6Sh6zvi9AgltDePkE3iNA10NxBjziv14thY2LP6hRF4c39F0EZ0KX9h3PVmPLhMXx7pgIy4jtvNIjQNUBXbzR9mAB2HNOaEtn1RyUOXKg1+H1aOrrwxt4LmPHZKVyuIW60xkBnoR8/fhypqakQCARgMBjYt2+fwvG6ujrMmzcPAoEAdnZ2SE5ORklJido2t27digkTJsDFxQUuLi5ITEzE2bNnFc5ZtWoVGAyGwubt7a2r+TrTSJPQxwwyLQ8ysaQb7/x8ZUDvWVjRjNSNJ7Hmf5chlpjunIUlorPQ29raEBMTg40bN/Y5RlEU0tPTUVZWhv3796OwsBCBgYFITExEW5vqNdnc3FzMmTMHR48exenTpxEQEICkpCRUV1crnBcZGQmhUCjfLly4oKv5OtMoltLSjqm5iv43vxKtRhBbj4zCv0+WI/HDY/jlghCUIZ8bCHJ0HkumpKQgJSVF6bGSkhLk5eXh4sWLiIyMBABs2rQJnp6e2LlzJxYsWKD0um+++Ubh9datW/Hf//4Xv/76KzIyMu4aa2MzIL34vTS06S90Pxdb+PBtabCGHiiKwva8m0a1oVbUiRe+OYcHQz2wcGIIRge5mry/gTlD6zO6RNI7zOXxePJ9LBYLHA4HJ0+e1Lqd9vZ2dHV1wdVVsRcsKSmBQCBAcHAwZs+ejbKyMo32iEQihU1X6Bi6m1pvfq6iGWVaer0ZmtxrtzB7Sx4mrj+KDTnFKK0Xk17eANAq9LCwMAQGBiI7OxtNTU2QSqVYt24damtrIRQKtW5n2bJl8PX1RWJionxffHw8tm/fjkOHDmHr1q2ora1FQkICGhtVr9WuXbsWfD5fvvn7++v8nvQdujMYwOQwT73aoBtTDESpvN2BT34tQeKGY4hdk4O5/z6D9Yeu4fClWtSJOo1tntnDoPT4+WQwGNi7dy/S09Pl+woKCvDss8/i/PnzYLFYSExMBJPZ+3ty4MABjW2+//77WLduHXJzczFs2DCV57W1tSEkJASvvfYasrKylJ4jkUjkowwAEIlE8Pf3R0tLC5ycnDTaQlEUhq74BV09/e9h3kqNwPxxwf2+nm6a26WIf/dXSLrNKwjFy4mLYX7OiPHjY5ifM4b58a0+641IJAKfz9fq+0z7ek9cXByKiorQ0tICqVQKDw8PxMfHY+TIkRqvXb9+Pd59910cOXJErcgBwN7eHtHR0Wpn9LlcLrhc9RFY6mjp6NJL5AAQ5q35B2Ug+W9BldmJHOgNuMm5XIecy3XyfYFudkgIccPax9R/VwgGXEfn8/nw8PBASUkJ8vPzkZaWpvb8Dz74AGvWrMHBgwe1+lGQSCS4cuUKfHx86DK5D2UN+j/HFlU2628IjfzvT+0foUydm43tuCJsNbYZZoHOQheLxSgqKkJRUREAoLy8HEVFRaio6H3u2717N3Jzc+VLbA899BDS09ORlJQkbyMjIwPZ2dny1++//z5WrFiBL7/8EkFBQaitrUVtbS3EYrH8nFdffRXHjh1DeXk5zpw5g8cffxwikQiZmZn9fe8auUrDl2jT0VKTcQFtl3bjYnWLsc2glSGeDsY2wSzQWej5+fmIjY1FbGwsACArKwuxsbF48803AQBCoRBz585FWFgYXnnlFcydOxc7d+5UaKOiokJhcm7Tpk2QSqV4/PHH4ePjI9/Wr18vP6eqqgpz5sxBaGgoHnvsMXA4HOTl5SEwMLBfb1wbrtbq78XVKunG/31/HpLuHs0nG5AeGYV3fr6CbgtzQx3qRUJitUGvyThzQ5fJCwB44rNT+OOG6hDOKWGeSIzwApvFRLu0G5eqRThecgvClr6zxNOivbHpqTi97NeVM2WNqLjdDrGkGzmX63DquuVFk23NGImHIryMbYZRMOpknKXQ3C7FBTXD3LThAnw0a3ifDDIUReFqbSt+uViLX6/U4VptK7plFCpvd9Bu4+bc6/jjxm18+EQMXOwVZ6CPXK7Dgu35tN/T1PjpfI3VCl0XiNBV8NWpm+jsUj07/UiMQGmaKAaDgXAfJ4T7OCHroaHo7OpBc3sXPB37P/uvim/O3ERVUwc+O3Yd2dPCFY5990cl7fczRX48X4PMhEDEBZqWU5KpQaLXlNAu7ca2U+Vqz6lq0q6H5rFZ8ObzaHfvpChKPsl3vKRB4ViPjLKqpA//+OkyCYHVABG6EvYUVKGpXX0c+geHrhk1kYRY0i0fcQzysFc4drOxzaqiw/6sasEPhdWaT7RiiNCVcLVW87KaWNKNQxcNH8utCkceGxOHeoDNYuClSYMVjlmTyO/w/sGraLPC960tROhK0Hbde1+RcXuRLRlx2LtoHMJ9FGdcNY1GLJH6Vgk25143thkmCxG6Ehq0DGQ5db0RwhbtntX/rGrGc9vzaQ3Q4NqwEOXL77P/Uo1lOcVoy5YTZbhBgzejJUKEroTbWsagUxS0To20fO9FHL5ch//7/rw+pmnkUk0LPvlVfUYfS0XaLcOib84p5Kkn9EKEroTWTu2e9bycuPIqJ5rgsXs/6pOlDTh1vUHD2f2jprkDz27LV7ssaOlcForw1v5LxjbD5CBCV4JYovkZd2qkFw4vmYhQb+1cMGMDXOR/f3yE/h6Xoig893U+aknsNnblV2LXH6YXc29MiNDvo7tHprZHZDCArIeGYvNTcTrVGRs/2F3+95ny2yi7JVZztu6U1ItxsZpkWL3Dyv2XLC6ARx+I0O+jTaL6+c6RZ4N/Z47EK1OG6O0Ac6KE3uF7Ew257SyJO8/rLVa4AqEMIvT7qGpuV7qfwQA+ezoOk8P651d9/xovm0XvRz8i0IX4fN9Hxe12/N/uIuI1ByL0PqjqaReMD8a4e4bfutJzT5CguwMH6bGCfrelDDaLiU+fHIGZI/1obdfcOXKlHp8dJ+vrROj3caLkltL9w/1dlO7XlkmhnnB36I0wc7Jlw5atf023++HYMPHejGF48+EI+Sw/AVh/6JrBVjrMBfJtuId2aTf+KFcef67vSNuea4O306PAYABlt9pwstQwXzwGg4Fnxgfjl8UPkLLFfyGjgFd2FqJWSZ4Aa4F8E+6hub0L0h7lM+50JFRMjvLBtvmjMX2Yj8Hzqge72+OxWF+D3sOcaBBL8eK359Cl4v9r6RCh34MPnwc3e+UphKub6UkcMXGoBz59cgQyE4JoaU8dCyaYTpppU6DgZhPWHrhqbDOMAhH6PTAYDAzz6+s7DgC786uwYt8FfJ130yAuljvPVmDuv8/gDI1x5IM9HTEiwJm29iyBL38vx+8GemwyZYjQ7+OhCOW13cob2rAjrwIr913ElA+PYefZCpTWt6KbhqHgFyfKkP3DBZwoacCHh4v1bu9eVqdFgUue1RVY9sOfaJdaV0grSSV1H3NG+6Pidjs+O6Z6Saa6uQPZP/RWcuXYMDHYwwFeTlywmEw8MNQdGWODtL7fzcY2vHfw7nCSRXMmmihfPnKWTsQ7By7j0KU6zRdYAZW3O/Dh4WKsfDjC2KYMGOSn/j4YDAZeTw7V2vlE2i3DZaEIR6/dwpErdVj902W06pB5pkEsUagG83AM/QUpAtzs8HZ6NO3tmjNf/l6OcxWqM/xaGkToSmAwGFiTFgVHru4Dnm4ZBV0csYb7uyB9uAAudmysmB6OJ0cH6HxPTTSKJdhXWA1SlfguFAW8/t8/jZ5vf6AgQ3cVePN5eD0lDCv2XdT5WjZLe0WxmAx8OHM4KIqCjZ6L9RTVm1b6srAFl2pEuFQjQmm9GBW3lbv1Wjsl9WJ8evQ6sh4aamxTDA4RuhqeHB2Ab85U4IpQ+6gwAZ8HO45uH2vvc3n/u9vbbVJsOV6GnWcr0NJBgjh0YdPRUqREefdJx2VpkKG7GmQUhXod47uHahmfTgcyGYXfrtYh+aPj+OzYdSLyftAto/DyzkKtU4KZK6RHV8PpskY06hj+qW0aKl2hKAplDW2QdMnQ0tGFnMt1OHBBSBJN0EBpvRiPbTqFbfNHa51IxNwgQlfD/87rXmK4UcvEkqr48mQ5Dl6qxTPjgpAc1TsD/8eN23jxm3OobzWNqqyWiLClE49/dgqfz41DQkj/oxRNFSJ0FXR29eDgJd3ytrNZDL1jwjfkFEMs6UZFYzuc7Tg4db0Rnx27DikNvvYE9bR2dmPel39g/cwYPBJDbxixsSFCV8H3+ZVqn3nnjgnEtGgfOHBt4MCzgT2XBVc7jt4z53ccZmpFnZi9JU+vtgi6I+2R4ZWdhahr6cSCCcFK6+uZI0ToSpB2y/CZmmIALnZsrEmPMsi9YwOckXtNeUw8YeB458AV1LR0YMX0CNq9FY0BmXVXwqFLtahRE7vs5cQz2L2XpYTBVUUEHWFg+c/vN/DSt5aRJ5706ErYXVCl9vi1ulYU17ViqBf9M7Rh3k44uGQCTl9vRGFFM4oqm3G5RqQyTp5gWH65WAtJ9zl8OW+UsU3RCyL0+6AoCnEBLuiQduOPG8p9oSmqNzf7p0+NMIgNno48pA33Rdrw3sQR0m4Z8soa8X1+JX65WIsekuxwQCmtpzc1tzHQeeh+/PhxpKamQiAQgMFgYN++fQrH6+rqMG/ePAgEAtjZ2SE5ORklJeoLFmzduhUTJkyAi4sLXFxckJiYiLNnz/Y5b9OmTQgODgaPx0NcXBxOnDihq/kaYTAYWJw4BLueG4uEEDeV5/18QaiTx5wqqprase33cnx8pATfnqlQWpuNY8PEA0M9sPHJETi4eAIeDPVQ2Z6fiy0ejyMJIumEgvn/sOos9La2NsTExGDjxo19jlEUhfT0dJSVlWH//v0oLCxEYGAgEhMT0damOnVSbm4u5syZg6NHj+L06dMICAhAUlISqqvvVivdtWsXlixZguXLl6OwsBATJkxASkoKKioMU5GDyWTggydiYM9RncSxv9U7O7t68Pmx65j+yQmMf+8oVv10Gf88Uow39l7AtI9P4Hix6sm4IV6O2DZ/NH5+ZTyeig9AsPvd2uihXo7Y80IC1qT15qYj0ANl/joHg6L6/zYYDAb27t2L9PR0AEBxcTFCQ0Nx8eJFREZGAgB6enrg6emJ9957DwsWLNCq3Z6eHri4uGDjxo3IyMgAAMTHx2PEiBHYvHmz/Lzw8HCkp6dj7dq1WrUrEonA5/PR0tICJyftfJtf+vYc/vencscZFpOB3FcfhL+rdvXX7vDd2Qos+yueXRkMBvDPmcORrmXOtwaxBOduNiE+2A18OzZuNrZh4ge5OtlEUI2vsy1+XzbZ2Gb0QZfvM62z7hJJr+cWj3d3VprFYoHD4eDkyZNat9Pe3o6uri64uroCAKRSKQoKCpCUlKRwXlJSEk6dOqXWHpFIpLDpygNDVQ+Te2QU/n2yXGFfm6QbhRVNqFQTMbbjzE2196Qo4NXd59X27Pfi7sBFUqS3vETUzxd09+gjqEaPvtBkoFXoYWFhCAwMRHZ2NpqamiCVSrFu3TrU1tZCKNT+y7ds2TL4+voiMTERANDQ0ICenh54eSl6nXl5eaG2VrX32tq1a8Hn8+Wbv7+/zu8pUENv/fMFofyLIJZ0I/PLs3h00ylM/jAXv11VntGl8rbmAIpuGYUXvz2Hch3rfbdLu/Hd2UqdriGox/xlTrPQ2Ww29uzZg+LiYri6usLOzg65ublISUkBi6VdwYL3338fO3fuxA8//KAwMgDQx0uJoii1nkvZ2dloaWmRb5WVugugXap+DfVWqwTX/0rd/P7Bq8i/2TtT39VDIfuHC316A4qi+pRnUkVrZzee/eoPpRN0yqAoCs9/XUDiz2nGAjp0+h1m4uLiUFRUhObmZgiFQhw8eBCNjY0IDtacenj9+vV49913cfjwYQwbNky+393dHSwWq0/vXV9f36eXvxculwsnJyeFTVc6tHCWuCPE+3O114kkfZZmJN0ydOuwPFZ2qw2PbTqlVfXV4jox7cUbCVY6664tfD4fHh4eKCkpQX5+PtLS0tSe/8EHH2DNmjU4ePAgRo4cqXCMw+EgLi4OOTk5CvtzcnKQkJBAu+0K99bgu27DZGC4vzMAYPyQvlFPV2tbFV43iHWPQKtu7sDzXxdo9NC60WjYohDWilX26GKxGEVFRSgqKgIAlJeXo6ioSL7MtXv3buTm5sqX2B566CGkp6crTKRlZGQgOztb/vr999/HihUr8OWXXyIoKAi1tbWora2FWHy3F8vKysIXX3yBL7/8EleuXMHSpUtRUVGBhQsX9ve9a4W9hrxx06J95OeoW9++g7bD8PspqRfjh3PVas8J8XDoV9sE9ViCf5LOnnH5+fmYNGmS/HVWVhYAIDMzE9u2bYNQKERWVhbq6urg4+ODjIwMrFy5UqGNiooKMJl3f2M2bdoEqVSKxx9/XOG8t956C6tWrQIAzJo1C42NjVi9ejWEQiGioqJw4MABBAYG6voWdMKee3duwdfZFmMGucGBy4I91wb2XBukRN3NA8+16TsPcf8UQlVT/zOZ/O/PGjwZrzp55GBPB0wc6oFjWs7WE7TF/JWu1zq6udGfdXSZjMK1ulYU3GzCtGgftQEnOZfr8Lft+Qr7vsgYicS/YtR7ZBTSPj2Ji9X986hjMoDT2VPUBtUUVjTh0U2qlxwJuuNmz0HByoeMbUYfjLaObokwmQyE+zjh6TGBGqPKyhv6Tpg58O4Omr4+faPfIgd6h5A/FtWoPSc2wAVRvpad6HCgsYSekAidRqqVDMsd/np+v9HQhvcOXtP7HrvyKzU6cEwYonmugKA9ze1SPLc9H9//UYlbZprOi0Sv0Uh1c9+Jtsrb7Yjy5WNDTrFWS3WaKK0X43hJAyaq8dibMNi93374hL7IKODw5TocvtzrABXj74zEME9MCfdCuI+jWWShIUKnEUde34/zZGkDxg9xxyEd88+p45cLQrVCdyGJKwzK+cpmnK9sxoc5xRDweZgc7okpYV5IGOymdELWFCBCpxFlwS1lt9rwe2kDJDQmd9Q0c2+olNOEvtS0dGJHXgV25FXA3YGLeQmBeHpMIJztTOvHlgidRpT5xVOgUKsmLdUdbJgMLJ4yBHGBLrha24p/nyxHdbNyQWtynKlqIi6wxqBBLMH6w8XYlHsdM0f649nxwTpHNhoKInQa8eb3XfaiqF6fdU0smjQYL08ZAgBIGOyOJ+MDkHvtFn690vtseG9G2lHBrmrbutFIhG5M2qU92HbqBr7Ou4lp0T6YPy4Iw/2cwTRikkkidBpRNmTmslkIvCc5hCqS7ssHz2OzkBzljeQob6zp6sGJkgbUijoR7u2IuEAXle30yCgcvEjffACh//TIKPx0vgY/na+Bix0bCSHuGDfYHeMGuyHA1W5AJ/GI0GlE2RB9kLs9wrQo86Muoo3HZmldGOLnC0KdQ1sJhqepvQs/XxDKcwX4udhi/GB3PPfAIAwaANdlso5OI0IlQg/zdsQQTwc8qiFbTCcNk3U9MgofHSnWux2C4alq6sB3f1Qi+eMT2Jx7Hd0GzvJLhE4jda2KQmcwgMnhnmAwGFg3Ixoj1Qy5uTb6/yt+uSjsEypLMG2k3TK8d/AqHt10Cpdr9E82qgoidBoR3VfCaUywGzwdeyfouDYsLEkcqvJaT0eu3vfPV5GemmD6XKhuwSMbT+LDw9cg6aa/YAQROo3cP7v+9+RQhdejgl1gpySrrKcjVyGba38Z7EnCVM2ZbhmFf/1Wioc/OYmSulbNF+gAETpNyGSUgiPL6CBXjAhQHKpzbViI9uX3uXZsiBstM7CzRvlj/GDLK/lrbZTUi7F870Vak1ISodPEZaFIIXuMr4ut0vOUebU9QFMQCpvFxKdPjdC7dDPB+Jy9cRtHr9XT1h4ROk38dlXxn6LMeaarR9bH243FZGDCUPp6Yb4tG1vmxmHDzBh55BzBPPn0KH2BSUToNNDa2YV9hYppnsYO6lvOic1iwu++nj51mI98wo4uGAwGHhvhh59eHg8PGib5CMahqLIZYi0zBmuCCF1PJN09eP7rApTd46TCZACjgpS7qd5bgZXBAF54cDCt9ghbOvDb1TrUtnQi2N0eX2aOAptl+mGUBEXcHbj44YUE2kZlZGynJ2/uu4RT1xsV9vm52MFWRc22e91kHx/hh1AtvOa0haIozNh0CjUtnWAwgGfHBSNtuC/GDHIjaaDNjPVPDEPMX9mF6YAIXQ/2FFRhV37fohCqlspuNLShqLIZQO8v9t+nhio9r79QFHDrrwlBigK+OFmOL+4rGUUwfeaPC8KDoZ60tkmG7v2ktL4VK/ZdVHpMVS+982xvSmwHrg22zR8FTzVJHvsDgwHYMMm/1JwJ9XLE68lhtLdLvhX9oLOrBy99W6gyNdSsUX1rvLVLu+VC3/hkLKKUrKfri6izm5Z0VQTjwLFh4uM5w8Fj05+lhgzdtaS7R4ayhjb8WFSD/eerVRZKTAz3VFpIYX9RDUSd3YgPdqV9WHaH/lSBIZgOL00ajDBvw2TwJULXwPVbYkz7+IRWqaCSIrzwz1nDlR77+a8a64YMQW4UkxRS5oq/qy2ee2CQwdonQ3cN/LegSiuRz0sIwmdPxykt4dTcLsXpst6Z+cs1IjQZKKdbI+nRzZaV0yMMMmS/AxG6GiiKwl4N9c4A4JUpQ/BWaoTKVEFHr9Wj568CXqLObvzf7vMa8771h8tCw4U5EgzHA0M9DO62TISuhuI6MWrVFEVkMIBVqRHIemio2qAUZ1vFjKC/Xa3HtI9PoODmbdpsBYDjZK3c7GCzGHgrNcLgaaWI0NVw6rpq4bBZDPxrTizmjdNc931UsCtY9/X2ZQ1tmPflHyitpy8cUagiayzBdHlmfPCAVMElQlfDmTLVPe5bqZF4eJhAq3YcuDZKw1NbJd3YnV/Vb/vuR2rgdEQEevF05OLlyUMG5F5E6Gq4eVt12uTUGO1EfoexIX2DXADQVtihq0eG5vYuzScSTIZlKWEDFmFIhK6GOjXP54UVuqVtuj+d8x0ej/PTqR1VGGJyj2A4QjzskTZcfcJQOiFCV4FMRqFLTW/76xXdkgLEBrggOdJbYd+UME/aPOQ4Nky4O5hWGSCCal6ZMqTPvI0hIUJXAZPJwKpHIlUe/z6/UqtSS/eyfHo4XpwUgr9NCMZbqRH4ZE6svmbK4dqw8O3fxhCxmwGDPOy1nt+hC52Ffvz4caSmpkIgEIDBYGDfvn0Kx+vq6jBv3jwIBALY2dkhOTkZJSUlatu8dOkSZsyYgaCgIDAYDHz00Ud9zlm1ahUYDIbC5u3t3bcxGnlshC/eSo1QmtBR0i3D+4eu6tSev6sd/j41DMunR2D+uGClzjX6MNTLEftfGo+Hh/nQ2i6BXl6ePHhAe3OgH0Jva2tDTEwMNm7c2OcYRVFIT09HWVkZ9u/fj8LCQgQGBiIxMRFtbarzjbe3t2PQoEFYt26dWvFGRkZCKBTKtwsXLuhqvk4wGAzMHxeMg4sfgEBJaqgfzlXjRMktg9qgK77Ottj45AisTos0qLstoX8Eu9sjdYB7c6Afvu4pKSlISUlReqykpAR5eXm4ePEiIiN7h72bNm2Cp6cndu7ciQULFii9btSoURg1ahQAYNmyZaqNtbExeC+ujAA3O3y9IB4zPzuNxvvcV/+++098+7f4ASmrowsZY4MAAG/uv2RcQwgKvDRpMGxYA//ETOsdJZJeX2se727vx2KxwOFwcPLkSb3bLykpgUAgQHBwMGbPno2ysjKN9ohEIoWtv4R4OGDTUyP67K8VdeLxz07jvwVVqLzdTmuKXn2ZFk2G8KZEkJsd0oYPfG8O0Cz0sLAwBAYGIjs7G01NTZBKpVi3bh1qa2shFAr1ajs+Ph7bt2/HoUOHsHXrVtTW1iIhIQGNjY0qr1m7di34fL588/fvGyeukw2D3JAxNrDP/tttUry6+zwmvH8UY9b+ikXfFOCLE2VGLXbY2dWDN34w7KMNQTeyp4UbpTcHaBY6m83Gnj17UFxcDFdXV9jZ2SE3NxcpKSlgsfSLzElJScGMGTMQHR2NxMRE/PzzzwCAr776SuU12dnZaGlpkW+VlX3TPunKa8lhajOr1okkOHChFm//fAVTPszF/31/HpVqHG8MwbXaVjy26RQOX64b0PsSVPNgqIdKX4qBgHa3nLi4OBQVFaGlpQVSqRQeHh6Ij4/HyJEjab2Pvb09oqOj1c7oc7lccLn0pjt24Nog2N0et1o1h4TKKGDPuSocuVKHbxbEGySrzL3kXqvHl7/fwKnSBnTLTOcRwtrhsJhYlRo5oPXQ78dg4wg+nw8PDw+UlJQgPz8faWlptLYvkUhw5coV+PgM/HOorm6LLR1dOHix1kDW3OWtHy/hePEtInIT4/mJgxBEQ209fdC5RxeLxSgtLZW/Li8vR1FREVxdXREQEIDdu3fDw8MDAQEBuHDhAhYvXoz09HQkJSXJr8nIyICvry/Wrl0LAJBKpbh8+bL87+rqahQVFcHBwQGDB/fmPX/11VeRmpqKgIAA1NfX4+2334ZIJEJmZqZeH0B/6M/69/2x6tJuGdgsBm2/8l09MtxsHNhHBIJmgt3tsYjm3P39QedvbH5+PiZNmiR/nZWVBQDIzMzEtm3bIBQKkZWVhbq6Ovj4+CAjIwMrV65UaKOiogLMe7KV1tTUIDb2rpfY+vXrsX79ekycOBG5ubkAgKqqKsyZMwcNDQ3w8PDAmDFjkJeXh8DAvpNjhqZBi2H7vXBtmPJJvKLKZmzIKcbx4t71dw6LCQeeDd5KjdDL95ksmZseTAbw4cwYlTn+BxIGZUrrQQZGJBKBz+ejpaUFTk79S8LX0t6FEW/nyDPGaCLQzQ4fPB6D0cGu+PZMBd7Yq3om/PmJg5CdEt4vu9ql3Rj19hG0SUlwi6nw0qTBeJXm3P33osv3mfi668i9aaHUwbVh4m8TgvHL4gkYHewKiqKw/fQNtdd8fqwMpfXiftllx7HBshT684ET+sdQLwe8MmVgYs21gQhdR44Va3Z5nRbtjROvT8Ly6RGw4/Q+HV2ra8XVWs3ZZL78vf+VVeaMDiAVVE2Et9OjwbExHXmZjiVmwtlyzXnennsgpE+F1EHuDhjsqdlNdk9BlUJ9Nl2wYTG1ugfBsDwe54fRwcqLbBoLInQdqGpq71Pf/H44LCaiBH2flzg2TLz7aLTGe0i6ZdiRd7Nf9nV29eAKyQRrVPi2bGSb4CMUEboObD+tWYDSHpnKdezRwa6YOVJzRpntp29qPdl3L6fLGmlLTUXoH68lh8LNwfRq0hOha0mDWKJxMu0O6hJSLEsJh7MdW+O9rmnxPH8/eWWq/f4JhifGj485owKMbYZSiNDV0NUjw8GLQiz5rhBJ/zyOzi7tektRp+okja72HK2qZf5xQ/ec7+qy1hIMC4MBrEmPUlnEw9iQKVoVbM69jm2nylEn0r3MkabZ1lkj/fHrlXocuaI66ORs+W1kJgRpfc/K2+3y2uuEgWf2qAAM83M2thkqIT26Ejq7evDPnOJ+idzbiYcAVzu15zCZvcUfhvs7qzzn7I3bOsW2k0g14+HEs8GrSUONbYZaiNCVwGOzsOv5MRjkoXsgQva0MPnauTpsOSz8O3MkAt2U/yjcapVoHc8u6e7Ran2fYBiWJA41yQm4eyFDdxXEBrjgt/97EE1tUly/JcYfN5qw8bcStS6mKVHeeESHwg5uDlx8NX80Htt8SunaeV7ZbaUpqqqbO/B7aQNOX2/E5RoRhC0dEHV2a31fAn08EeeHuUqSkZgaxNddB6qa2vH5sTL8WdWMK7Wt4Now4etsi0gBHxOGuCMp0kur3vx+Cm7exuwteejqUfxXPBIj6JMSekfeTazYd1HnexD0h2vDhL+rHTwdufDh2+KhCE8kRxkvXZcu32fSo+uAn4sd1qRHAegt8EDXDGtcoCveTo/C63sUA17yyhpBUZRCKOuPRTW03JOgGk9HLp6KD4QDzwYcGyYcuCwMcndAuI+TSbm16gIRej+hexll1qgAXK4R4at7nHLqWyWQdMvAY98Nc2TbmObyjSXxVmokpltYbnzz/HmyUFY8HIExg+76SCdHeoN7Xw+SEOI+0GZZFW72HDxkxNxuhoL06CYEm8XE50+PxDdnb8LX2VZpIorp0T744NA1I1hnHSRFepnt8FwdROgmBt+OrTb1UJC7PUYEOONcRfPAGWVFlNT1Lx+AqUOEboYM9XIkQjcQ5yqa8OnRUgS42qFO1Inq5g7UNHegUSwFk8lA+nBfPBlvmv7s6iBCN0PunZwj0IuMgtpHo/OVzZg9yt9kfdpVYXkPIwSCARni5WB2IgeI0M2C7h4ZKhp767q1SbqNWurJmmEygFWpkcY2o1+QobuJI5Z048EPctEglsDLiYuWji6tw2UJ9PLMuGCMDDKtFFHaQoRu4pwpa0SDuDeKrj/RdAR6YDKAZycEG9uMfkOG7iaOk636bDSEgcGGxYTXfQk/zQkidBNnqKcj2Czzm/yxNKTdMtTrWKHHlCBCN3H4dmwkRXob2wwCgJuN5jsJSoRuBphqwkFro0Hcv3z7pgARuhmQEOKmMT0VwfCMCnIxtgn9hgjdDGAyGZg1yt/YZlg1w/2d4elEJuMIBiY5ijynGxNzD10lQjcTvMy4N7EEppr5hCgRuplgz2H1KystQX9GBDibffFKInQzgcFg4LkJg4xthlViCfMjOgv9+PHjSE1NhUAgAIPBwL59+xSO19XVYd68eRAIBLCzs0NycjJKSkrUtnnp0iXMmDEDQUFBYDAY+Oijj5Set2nTJgQHB4PH4yEuLg4nTpzQ1XyzJiXahzjPDDB2HBamD9M+hbeporPQ29raEBMTg40bN/Y5RlEU0tPTUVZWhv3796OwsBCBgYFITExEW5tqZ4P29nYMGjQI69atg7e38mehXbt2YcmSJVi+fDkKCwsxYcIEpKSkoKKiQte3YLbwbdkmV3fb0pke7QMHrvmHhOiV153BYGDv3r1IT08HABQXFyM0NBQXL15EZGRvOF9PTw88PT3x3nvvYcGCBRrbDAoKwpIlS7BkyRKF/fHx8RgxYgQ2b94s3xceHo709HSsXbtWK3v1zetuCnx6tJTkjBtA9i5KQGyAaa6f6/J9pvUZXSLp9QXm8e7OELNYLHA4HJw8ebLf7UqlUhQUFCApKUlhf1JSEk6dOtXvds2RCUNIFtiBIsaPb7Ii1xVahR4WFobAwEBkZ2ejqakJUqkU69atQ21tLYRCYb/bbWhoQE9PD7y8FNcyvby8UFtbq/I6iUQCkUiksJk7UQK+RQwlzQFdqtmaOrQKnc1mY8+ePSguLoarqyvs7OyQm5uLlJQUsFj65zm7t2IJgD5VTO5n7dq14PP58s3f3wJmT5kMssw2APg621pUEQfal9fi4uJQVFSE5uZmCIVCHDx4EI2NjQgO7n/Qvru7O1gsVp/eu76+vk8vfy/Z2dloaWmRb5WVlf22wZQIdCNCNzSvTBkMro3lJOE02Do6n8+Hh4cHSkpKkJ+fj7S0tH63xeFwEBcXh5ycHIX9OTk5SEhIUHkdl8uFk5OTwmYJ8G3J0N2QBLnZYcYIP2ObQSs6f2PEYjFKS0vlr8vLy1FUVARXV1cEBARg9+7d8PDwQEBAAC5cuIDFixcjPT1dYSItIyMDvr6+8tlyqVSKy5cvy/+urq5GUVERHBwcMHhwbzGDrKwszJ07FyNHjsTYsWOxZcsWVFRUYOHChXp9AOaILUn3bFCWPjQUNizL8iXTWej5+fmYNGmS/HVWVhYAIDMzE9u2bYNQKERWVhbq6urg4+ODjIwMrFy5UqGNiooKMJl3P8iamhrExt4tD7x+/XqsX78eEydORG5uLgBg1qxZaGxsxOrVqyEUChEVFYUDBw4gMND0a1PTTWm9ZVYTMQVGBDjjYQtwkLkfUh/dDIledQitnd3GNsPicOTa4MDiCfA3k9h/o62jEwaG7h6r+W0eUNakR5mNyHWFCN0MsSfr6LTz8DAfpA23vCH7HYjQzZD7a6YT9MPbiYd30qPV+mSYO+QbY4Y0t5tvkkJTZO2MaPDtLDt/PhG6GdIlI8/odDE5zBOTQj2NbYbBIUI3Q4ivOz3YMBl4Y1q4sc0YEIjQzRBPR66xTbAIMsYGmX2KKG0hQjcT1v1yVf73f+aPQubYQIR5OxrRIvNGwOchK2mosc0YMIjQzYTyBjEuVLUAAHz4tvhHWhQOLnkAcYGWES890KxJj7KqRyAidDPhwVBP/FBYpbCv8nY7zlc2G8cgM+bhYT6YEm7eedp1hQjdTBjkbo+fzgsh6e6R7/viRBm6yQy8TvBt2XgrNdLYZgw4ROhmgrRHhgaxBMv3XkRrZxfOlDXimzPWkxiTLl6ZMgQeVjiZaT0PKWZMZ1cP1h8uBgD8t6AK/y2o0nAFQRWRAvMNZtIH0qObATvybpJncZrwdbY1tglGgQjdDLhUY/ikljw2E5PDPDHEgteVGQzAm2+dNezI0N0MaDKwb/sgD3v8O3MUgt3t0dnVg+SPjuNGY7tB72kM2Ewm2BaWOUZbrPNdmxlN7V0Ga3uQuz32LhqHYPfehJM8NguTwizf99vaID26GWDIaLW/Tw0F31YxcsvPRfvkC272HGRPC8e4wW5gMhhI2/g7akWddJtJD5YbhaoRInQzoKnNcEIXdfYdLWhbxzHY3R4/vJAAF3uOfB+PbbqDRCvWORm6mzoURUFkwPxwZ8ub+uwL89G8BMVmMbD56REKIq8TdVrks70lQIRu4nQZOD/cT3/WoEEsUdh3/1BeGTNG+CHMW/EH4di1W7TaRjd35iGsESJ0K0faLcM/c4oV9slUJAZeODEE0b58AMAz4/tW3jl4SXUdPGMzdpAbdj031thmGA3yjG7icGyYcHfgoEFsuOf0b89WYM7oAET9JWJ7Tt+vxZhBrliWEob1h66hTtTZZ739RkMbcq/VG8zG/uLItcHSh4YiY2wgbokl+OrXGyitF8uXLEO9HDHY0wFcNhMt7V34s7oF12+1YVVqhMVUUgWI0M0CnoErs1AU8NGREnyRORIA4OdiCweuDcSS3rmBSaEe2DBzOACgurkD0b78PokUPz9+HaYUX8NmMfBUfCBemjwY7g5c1Is6MXn9MXR09Sicd6KkQen1c/99Ft8/PxYRFuIyS4Ru4rRJulHV1GHw+xwvvgVRZxeceGzYsJjY80ICSuvFsOOw8GCoh1zYqTE+uN2mOFNf09yBPQXVBrdRW0YFuWDtY8MUssf859SNPiJXh1jSjfnbzmLvonEQWIDbLBG6iaPqeZlupD0y/HalHumxvgCAUG9HhCrJYDM5rG8c9/pD1yDtkRncRm3wdbbFtvmjFXLfVzd3YOdZ3SP96kQSvPbfP/H1s6PNPhU0mYwzcRx5bDgOUCaUAxeEOl/zZ1Uzfig0nd5c0t0DSbcMFEWhXdqNs+W38fQXZ9DcT+/Ck6UNOF3WSLOVAw/p0c2AaD8+Tl03/JdNV482iqLw9v+uGMia/tEglmLEmhwwGaBtzsASluVIj24GPBjqMSD34dnoNul34EItzt64bSBr9IMukT89JgA+fPN/RidCNwPGDx4YodtytBd6bUsnlu+7YEBrjM/SxKFYkxZlbDNogQzdzYAwb0fw2Ex0dhluwovHZiLrIe3SH8tkFLK+L+r3c6+pE+Jhj388EoXxQ9yNbQptEKGbAUwmAywDz/pumDkcMf7OWp275UTZgMwZGIMIHyfse3EcOBZWyNKy3o2F0tnVYzCfdwYDWJMWiWnRPlqd/8sFIT44dM0gtpgCj43wtTiRA6RHNwu+z680yDo1h8XEP2cNx/Rh2on8t6t1eHlnIXpMyQWOZgormkFRlNmvm9+Pzj9dx48fR2pqKgQCARgMBvbt26dwvK6uDvPmzYNAIICdnR2Sk5NRUlKisd09e/YgIiICXC4XERER2Lt3r8LxVatWgcFgKGze3t66mm92dHb14NOjpbS3y7dlY9szo7QW+cmSBqz75SpGBDjD1Y6j+QIz5ecLQuw5Zzp+AXShs9Db2toQExODjRs39jlGURTS09NRVlaG/fv3o7CwEIGBgUhMTERbW5vKNk+fPo1Zs2Zh7ty5OH/+PObOnYuZM2fizJkzCudFRkZCKBTKtwsXLHvWFwC2n76BOpFE7TlDvRyweMoQLJ8WrlU64/hgVxxcMgEJIdpNNn17pgLzt51FcZ0YZ280oblDikiBE+ICXcDWNkuFGfHG3gt45+fLaBSr/9zNCQZF9d/HksFgYO/evUhPTwcAFBcXIzQ0FBcvXkRkZG81jJ6eHnh6euK9997DggULlLYza9YsiEQi/PLLL/J9ycnJcHFxwc6dOwH09uj79u1DUVFRf82FSCQCn89HS0sLnJxMP1ih8nY7HvrnMbWz7a8mDcULDw4Gi9kruK4eGT7LvY4tJ8rQel/CCo4NE0sSh+D5B0Lk56tD2i3DP366pLZQRJCbHXpkFCoHwB9/oLHjsPDipMFYMCEYXB19DAYCXb7PtM46SCS9v4A83t2UuiwWCxwOBydPnlR53enTp5GUlKSwb+rUqTh16pTCvpKSEggEAgQHB2P27NkoKyvTaI9IJFLYzIm9hdVqRT4iwBmL7hE5ALBZTLw8ZQj+WJ6ITU+NwN+nhuLZ8cF4Mj4Ah5Y80Od8VdxqleDpL85orAZzo7EdDWKpRRZ7bJf24IND15D80QkcKzbtpBqaoHUyLiwsDIGBgcjOzsbnn38Oe3t7bNiwAbW1tRAKVftR19bWwstLMVjCy8sLtbV3ExnEx8dj+/btGDp0KOrq6vD2228jISEBly5dgpubm9J2165di3/84x/0vDkjcFzNl4vDYuLdx6LBVCFaHpul9Uz6/eSVNSJrVxFqWrRzie3o6kHBzSbEBbjgsrAFHQZc7zcG5Q1tyPzyLJIivLDy4Qj4u2qfPNNUoLVHZ7PZ2LNnD4qLi+Hq6go7Ozvk5uYiJSUFLJb6oc/9s5z3z3ympKRgxowZiI6ORmJiIn7++WcAwFdffaWyzezsbLS0tMi3yspKPd7dwCLq7EKhmuos/0iL7JPKSV/apd1Y9eMlzN6Sp7XI76WgogluDlwEuZmfELTh8OU6JG44hn/mFKNTh5BXU4D25bW4uDgUFRWhpaUFUqkUHh4eiI+Px8iRI1Ve4+3trdB7A0B9fX2fXv5e7O3tER0drXZGn8vlgss1z4J6t8VSlctYc0b7Y/Yof63akXbLIGzpAJPBAI/NAo/NhB3HRmH4XtvSiSNX6rD1RBlu6pncsaqpAxwbJkYFueCPG30TT5o7km4ZPv61BD+dr8FHs4djmJ+zsU3SCoOto/P5vWmJSkpKkJ+fjzVr1qg8d+zYscjJycHSpUvl+w4fPoyEhASV10gkEly5cgUTJkygz2gTwl5FaOrTYwKw+pEojeu8PTIK7x+6im2/34CkW3EozWIy4OXIhY+zLSTdPbhYTe/chbRbhj9uNCHM2xFXa1tpbdtUKGtow2ObTmFJ4hCFyVBTRWehi8VilJbeXdctLy9HUVERXF1dERAQgN27d8PDwwMBAQG4cOECFi9ejPT0dIXJtoyMDPj6+mLt2rUAgMWLF+OBBx7Ae++9h7S0NOzfvx9HjhxRmMB79dVXkZqaioCAANTX1+Ptt9+GSCRCZmamPu/fZHHk9f3XLHowBH+fGqqVM8eHh6/h82PKJyt7ZBRqWjr7NTzXhZYOy/SFv0O3jML6w8U4XtyAj2YPN+lMNDoLPT8/H5MmTZK/zsrKAgBkZmZi27ZtEAqFyMrKQl1dHXx8fJCRkYGVK1cqtFFRUQEm8+70QEJCAr777jusWLECK1euREhICHbt2oX4+Hj5OVVVVZgzZw4aGhrg4eGBMWPGIC8vD4GBgTq/aXOAx2bBzZ6DxjYpbNksrJsRjbThvlpfv7+oxoDWacaGyUCtgX9ITIWzN24j5eMTeG9GNJKj+jcBamj0Wkc3N8xtHX1z7nUU3GzCspRQDPbsm9ZJHWPe/dWopZF8nW1R3Wx5a+uaWDE9HAsmDBqQe+nyfSa+7ibMCw+G9PvaEE97owrd1Z5jlUJ/98AVRPg4IWGwaYW4Wl6YDgEA5DnajYWtCddgMyQyCnhpZyFqTOxHzjr/G1ZAnJGLD1jN86ASbrdJsf6waYXyEqFbKEFGTmjYqqRKqzVxuca03K2J0C0UppHjqYVWMuOuiqqmDpjSPDcRuoViTJ0727LR0mG4Us/mQGqMj0klryBCt1AkRgws8eLzNJ9kwbjac/DcA/1fMTEEZHnNQmluN1z1VU0MVGUZU2TCEHd8+EQMPJ1M68fOev8jFk6TEVMxG3t+wBgEutlh0YMheCLOX2XosDEhQrdQmozYo7d3Wc/zeaTACQsnhmBatI9JB7YQoVsowhbjOGzw2EzcuKU6P6ClMNzfGa8mhWLcYDeTmnRTBRG6BVLR2I7//H7DKPeO9uVbZBz6HfxcbPF6chgeHmZas+qaIEK3MHpkFF7dfR7tUuNkQGkQG++RwZCwmAwsnDgIL08eAh7b9BJFaoII3YSQySj8+2Q5kqO8+52XbMvxMqNVOB3q5YDiOrFR7m1Iwrwdsf6JGKPHD+gDEboJcbqsEe8cuII/btzGlgzVqbdUcammBRtyjOdj7chjG+3ehoDJAF6ePAQvThps9mWaiNBNiDv+4b9erUdtSye8dXA8EUu6sXRXkcFqtGmCb8vGn2qSWZob3k48fDInFqODXY1tCi2Y98+UhTHY0wFA73P2x79qLmN1hzpRJ2Z+dtqow+ZQLwd0WUhNttgAZxxYPMFiRA4QoZsUgz0dMXGoBwBg1x8VuFqrOQKquK4Vj376Oy4LjRstdf1WG7wczTPj7r3YcVj4ZHYsXO0tq74cEbqJ8XicH4DeBAZLvitCm0S188nJkgbM2HzK4EketaGxTQobGyb4tqqfBuMCXRDhY9opvJYmDjXLAg2aIM/oJkbwPXHkV2tb8eK357AqNVIeX94jo/B7aQN+vVKHr/NuwpRGy9VNHRjs6QBJVzs670kxHePvjLfTohDt1ztrfbb8NpbvvYCSetOboQ838R+i/kKEbmLcnzI499otTCrORbi3E/i2bNxsbDOJHlwVpfViRPs64XKNCD0UMG6wG/6dOUph7Xl0sCt+enk8Vv/vMr7VUNttoHFQkmbbErDMd2XGuNixwWExIe252yNSFIz+DK4LF6pF8He1xVBPR3w0e7hSBxMem4V3H42Gix0bnx69bgQrlaMsn74lQJ7RTQwGg2ERNcfbJD1YnR6lcW19SeJQk6nVxrdlw8vEwkvpggjdxJB09/QpoWRuMBnAv+bEwleLyiVsFhNTI70HwCrNrJgeDgcLjaUnQjcxrghb0W1KM2z94I1p4RinQ17z+eOCYWPEEE8GA1iVGoEnRmpXuNIcscyfLzPmz6pmY5ugF89PHKRzpRJbNstoP272HBb+OWs4kkxkVGEoiNBNjAtVLcY2od88EeeHZclhOl/3Z3Uz/cZoQaCbHbZmjMRQL93KXZkjROgmxkUTyweuLYnhXlj7WHS/YrRPX280gEXqGR3sis+fjoOLhXnAqYII3YRo6ehCSZ151RP3dOTimfHBmJcQBBtW/6Z8LlQP7Cjm0VhfrJsRDa6N+cWV9xcidBPiyOU6s5mIc+TZ4IUHQzA/IRi2HP0EUzaAqademTIESxOHmFV2GDogQjcRpN0yfHX6hrHN0Ir/e2goMscFwYmm+POBSmQ5PdoHWQ8NHZB7mRpE6CbCul+u4k8zmIh7NNYXL08ZQmubzrZsg6e+crFj4x9pkQa9hylD1tGNTLu0G5/8WoIvfy83tilaMdzfmfY2MxKCYOhl9FWPRMLdwfzDaPuLzkI/fvw4UlNTIRAIwGAwsG/fPoXjdXV1mDdvHgQCAezs7JCcnIySEs1JFPbs2YOIiAhwuVxERERg7969fc7ZtGkTgoODwePxEBcXhxMnTuhqvknRJulGyscnsCGn2NimaE21Aep+L5wYgoIVD2HDzBhMi/amvdLLwokhSBvuS2ub5obOQm9ra0NMTAw2btzY5xhFUUhPT0dZWRn279+PwsJCBAYGIjExEW1tqidcTp8+jVmzZmHu3Lk4f/485s6di5kzZ+LMmTPyc3bt2oUlS5Zg+fLlKCwsxIQJE5CSkoKKCtOKftKFK0IRbja2G9sMnbhuoNBSF3sOHhvhh01PxeHcmw/hu+fG4PE4P739/h+P88PryaE0WWm+MCg9arsyGAzs3bsX6enpAIDi4mKEhobi4sWLiIzsfR7q6emBp6cn3nvvPSxYsEBpO7NmzYJIJMIvv/wi35ecnAwXFxfs3LkTABAfH48RI0Zg8+bN8nPCw8ORnp6OtWvXamWvSCQCn89HS0sLnJyMH3d8uUaEaZ+Y16hk9ih/rJsxbMDud6OhDW/9eAnHim/pdJ2/qy2WT4vA1Egvi51h1+X7TOszukQiAQDweHcjgFgsFjgcDk6ePKnyutOnTyMpKUlh39SpU3Hq1CkAgFQqRUFBQZ9zkpKS5OeYIyGe9mYXFmmIZ3R1BLnb44vMkRg32E3juUO9HPDCgyH4d+ZI5CydiOQob4sVua7QKvSwsDAEBgYiOzsbTU1NkEqlWLduHWprayEUClVeV1tbCy8vL4V9Xl5eqK2tBQA0NDSgp6dH7TnKkEgkEIlECpspwbVhITVGYGwzdEKsJrWVoWCzmPjXnBFwsVO9nDcp1AO/LH4AryeHYUq4l1kWWTAktAqdzWZjz549KC4uhqurK+zs7JCbm4uUlBSwWOo/+Pt/eSmK6rNPm3PuZe3ateDz+fLN39/0opMWTxkCWzP6Uh66pPqH1ZC42nOw8uEIlcfjAl1MusihsaF9eS0uLg5FRUVobm6GUCjEwYMH0djYiODgYJXXeHt79+mZ6+vr5T24u7s7WCyW2nOUkZ2djZaWFvlWWVmpxzszDF5OPGSMDTS2GSq5fzKs1Ih53h6N9cUb08KUTtAN93cxgkXmg8HW0fl8Pjw8PFBSUoL8/HykpaWpPHfs2LHIyclR2Hf48GEkJCQAADgcDuLi4vqck5OTIz9HGVwuF05OTgqbKfLwMNMdvm+ZOxLvPBoF7l+VSrz5mpNJGAoGg4HnHgjBDy+MU8gm68izQfwgy8nBbgh0ngkSi8UoLS2Vvy4vL0dRURFcXV0REBCA3bt3w8PDAwEBAbhw4QIWL16M9PR0hYm0jIwM+Pr6ymfLFy9ejAceeADvvfce0tLSsH//fhw5ckRhAi8rKwtz587FyJEjMXbsWGzZsgUVFRVYuHChPu/fJDDlCTm+HRuTwjyRFOGNI1fqMCXc09gmIdqPjwOLJ6CqqR37CqsxIsAF7H4G1FgLOn/D8vPzMWnSJPnrrKwsAEBmZia2bdsGoVCIrKws1NXVwcfHBxkZGVi5cqVCGxUVFWAy7/5jEhIS8N1332HFihVYuXIlQkJCsGvXLsTHx8vPmTVrFhobG7F69WoIhUJERUXhwIEDCAw03WGvtnR0GafyqTbU/pVx1sORizmjA4xsjSJ+LnZ4aTK97riWil7r6OaGqa2j3+HrvJtYue+isc1QygNDPbD9mdHGNoOgBKOtoxP6R5cJJ4M8XnzLrLPeEHohQjcBTD3z6KdHSzWfRDBpiNBNAFMv6HfwUi1K680r8w1BESJ0E8DTyfTDJ7ceN48wWoJyiNBNAA8zKDe8t7AajWKJsc0g9BMidBPA1J/RAUDaI0N5w8DldiPQCxG6CWAuzh6tRghoIdCD6XclFgpFUahu7sClGhF2njWP5BlRAr6xTSD0EyL0ASb3Wj1+PF+D30sbUCcyn2feGD++WcwlEJRDhD6AbMgpxie/as6fZ2o48WzwZqrqEFGC6UOEPkCcKm0wG5FPGOKOoV6OkHbL4O7AxcxRfvAxYtQaQX+I0AcAiqKw7uBVY5uhFQwGsP6JGHg58TSfTDAbzGO618y5VtdqFsUZAICigC3Hy4xtBoFmiNAHgF+v1BvbBJ34vbTB2CYQaIYIfQD448ZtY5ugE1VNHbCi6GWrgAh9ACipM16etf6QNlxA0iRbGEToBkYs6TZIGSND4WLHxsska4vFQYRuYErqzCe8k8EAPpkTC28+mXG3NIjQDUyJEdMj68oz44IxYYiHsc0gGAAidAPT1CY1tglaM8jD3tgmEAwEEbqBaTOjiK8zZea1OkDQHiJ0A9MmNd1UzvdDFtQsFyJ0A2NOPbqfC/Fnt1SI0A1MS0eXsU3QmkiB6eS6J9ALCWoxIF09MpyraDK2GVoT7Wt6iSU6u3rw6dFSHLgghLsDF2+lRiKC/CDpDOnRDcivV+rNJrnE6GBXBLqZ3qz78r0X8a/fSnH9VhvOlN9G+qbfjVa62ZwhQjcg35pJiqgJQ9zx4RMxxjajDxRFIeeyoqil3TIs3FGADYevobvHdCvcmBpk6G4gKm+340TJLWOboZHPnh6B5CgfY5uhFAaDAakSMVMU8MlvpbDn2uD5iSFGsMz8ID26gdhyvAzmEAB2u820Jwtd7VRXsdl4tBQymRl8yCYAEboBqG/txK78SmOboRWf/FoCSbfprvW7OahOSElRAJNJouy0gQjdAOzIq4DUhCuk3kutqBONYtN1031ipJ/KY+4Opl2zzpQgQqeZNkk3vj1z09hmaI0tm2XSRR5njwpQ6cjztwcGDbA15gsROo1UNLZjxuZTaDDhHvJ+Jod5gsdmGdsMlXBsmFiaOLTP/pcnD8aTowOMYJF5QmbdaeJEyS289G2h1p5wo4Nc8XCMD3z4tiiua8Xm3OsQG8Fddkq454DfU1fSY33xy0UhjvyVe2/O6AD8X1Koka0yL3Tu0Y8fP47U1FQIBL3phvbt26dwXCwW46WXXoKfnx9sbW0RHh6OzZs3q22zq6sLq1evRkhICHg8HmJiYnDw4EGFc1atWgUGg6GweXt762q+Qfj2TAUyvzyrlcjdHTj4ct5IfL9wLDLGBuGhCC+8OGkw3nk0agAs7cuYQW5Gua8usJgMbJk7En+bEAxPRy5WPhxubJPMDp179La2NsTExGD+/PmYMWNGn+NLly7F0aNHsWPHDgQFBeHw4cNYtGgRBAIB0tLSlLa5YsUK7NixA1u3bkVYWBgOHTqERx99FKdOnUJsbKz8vMjISBw5ckT+msUy/pBzc+51vKdlznZXew6+e24MBns69jmWEuWDj91LUDaAFUtd7TnwMZNsMkwmA68nh+GxEX6w45CBqK7o3KOnpKTg7bffxmOPPab0+OnTp5GZmYkHH3wQQUFBeO655xATE4P8/HyVbX799dd44403MG3aNAwaNAgvvPACpk6dig8//FDhPBsbG3h7e8s3Dw/jZkPZ9nu51iL3duJhlwqRA73Poh88EQObAVwuGuLpYFZJIG1YTIT7ED/3/kD7ZNz48ePx448/orq6GhRF4ejRoyguLsbUqVNVXiORSMDjKfYstra2OHnypMK+kpISCAQCBAcHY/bs2SgrU19oQCKRQCQSKWx0IWzpwPuHrml17jA/PvYsSsAQL+Uiv0NcoAuWpYTRYZ5WTI00jUcfguGhXeiffPIJIiIi4OfnBw6Hg+TkZGzatAnjx49Xec3UqVOxYcMGlJSUQCaTIScnB/v374dQKJSfEx8fj+3bt+PQoUPYunUramtrkZCQgMbGRpXtrl27Fnw+X775+/vT9j5/L21EuxZJJeICXfD982Ph66xdrPez44PxSIxAX/M08mrSUDwzPtjg9yGYBgYRel5eHn788UcUFBTgww8/xKJFixSere/n448/xpAhQxAWFgYOh4OXXnoJ8+fPV3gGT0lJwYwZMxAdHY3ExET8/PPPAICvvvpKZbvZ2dloaWmRb5WV9HmrtXZqnnizZbOw+ekROi1fMRgMvDdjGIb7O+thnXoWPRiCl0hKZ6uC1lmNjo4OvPHGG9i7dy+mT58OABg2bBiKioqwfv16JCYmKr3Ow8MD+/btQ2dnJxobGyEQCLBs2TIEB6vucezt7REdHY2SEtUVSrlcLrhcw9T0DnC103jOlHBPeDrqPtlly2Hh++fHYkNOMT4/fp12n/lp0aYZxEIwHLT26F1dXejq6gKTqdgsi8WCTKbZJZTH48HX1xfd3d3Ys2ePyll6oPf5+8qVK/DxMc6XdvwQd43D8YeH9d82jg0Ty1LC8GXmKLBZ9E6YtXaaT3orAj3oLHSxWIyioiIUFRUBAMrLy1FUVISKigo4OTlh4sSJ+Pvf/47c3FyUl5dj27Zt2L59Ox599FF5GxkZGcjOzpa/PnPmDH744QeUlZXhxIkTSE5Ohkwmw2uvvSY/59VXX8WxY8dQXl6OM2fO4PHHH4dIJEJmZqYeb7//cG1YmDs2UOVxew4LD4bq74wyKcwT8xKC9G7nXo6bQfgsgV50Fnp+fj5iY2Pl69tZWVmIjY3Fm2++CQD47rvvMGrUKDz11FOIiIjAunXr8M4772DhwoXyNioqKhQm2jo7O7FixQpERETg0Ucfha+vL06ePAlnZ2f5OVVVVZgzZw5CQ0Px2GOPgcPhIC8vD4GBqsVmaFKiVM9aJ0Z40eZa+mR8IK3Lbpdq6Ft9IJgHDMqKymaKRCLw+Xy0tLTAyYme9dh5/zmL3Gt9e8itGSPxUIQXLfcAgDf3X8T20/QEy4wKcsHuhQm0tEUwHrp8n0lQi57MH9d3wjA+2BVTwuj1IX9p8mDY0jRCmESzbQTThwhdTyYO9cC7j0aDb8sGj81EUoQXPp4dS3tCBE9HHp4ZH6R3O8P9nfHcBBLeaW0Qp2EaeDI+AE/GGz5k8plxwfj06HW92ng8zg82LPL7bm2Q/7gZ4ebAhZueSSJuDGDQDMF0IEI3I1o7u9DUrl9Si5OlDTRZQzAniNDNiBMlDdA36WlpvRhdJB+61UGEbkbsKajSuw0mg6FVMA7BsiBCNxPKG9rw27V6vdpgMHqX6fi2bJqsIpgLZNbdTPjq1A29glvGD3ZH9rQwRApMr5AiwfAQoZsBrZ1d2K1HQQhnOzY2PhkLZzVVTwiWDRm6mwF7C6vRpsdz9eQwTyJyK4cI3cShKAo78vTzcR8X4k6TNQRzhQjdxDl0qQ7FdWK92kgYbPopnQmGhQjdhGlul2LFvot6tTHIwx4+fO3y1REsFyJ0E2bN/66gQSzRq435NCetIJgnROgmSsHNJuw5p5+DjK+zLWaOoi/zLcF8IUI3QWQyCv/46ZLe7Sx8MARcG+NXsyEYHyJ0E2TPuSr8WdWidztJNGa4IZg3ROgmhljSrXUFGHWEeNjDy8k86qoRDA8Ruomx6WgpbrXqNwEHAAlk7ZxwD8QF1oQ4V9GELcfV15PTBJMBPDxMgFenkvrhhLsQoZsAFEXht6v1eGPvBXTrEXDOYzPxzYIxiAt0odE6giVAhG5k6ls7sXzvReRcrtO7rUdj/YjICUohQjcSFEVhz7lqrPnfZbR0aC7YqA0JIcTVlaAcInQjcKtVgjf3X8QvF2tpa9PdgUuETlAJEfoAU3DzNp7/ugANYv2SPN7LIHd7bHxyBNwcDFM5lmD+EKEPIJW32zFn6xlIu+lLzpgxNhCvJ4fBnkv+lQTVkG/HAPLp0VK9Rc61YULyVxuDPOzxj0ciwWDQWxWGYHkQh5kBok3SjX1F1Xq1MX2YD868MQWfzImFr7Mt3kgJJyInaAXp0QeI367Wo7Or/7352+lReCo+AAwGA4/ECJA6zIeInKA1pEcfIC7W9D9IJdTLUS7yOxCRE3SBCH2AEHd29/vaWaP8ibAJekGEPkCw+1nB1I7DwmMjfGm2hmBt6PztO378OFJTUyEQCMBgMLBv3z6F42KxGC+99BL8/Pxga2uL8PBwbN68WW2bXV1dWL16NUJCQsDj8RATE4ODBw/2OW/Tpk0IDg4Gj8dDXFwcTpw4oav5RsOR17/pkJkj/UmqZoLe6Cz0trY2xMTEYOPGjUqPL126FAcPHsSOHTtw5coVLF26FC+//DL279+vss0VK1bg888/x7/+9S9cvnwZCxcuxKOPPorCwkL5Obt27cKSJUuwfPlyFBYWYsKECUhJSUFFRYWub8EouPRTrE+M9KPZEoI1wqCo/hf6YTAY2Lt3L9LT0+X7oqKiMGvWLKxcuVK+Ly4uDtOmTcOaNWuUtiMQCLB8+XK8+OKL8n3p6elwcHDAjh07AADx8fEYMWKEwuggPDwc6enpWLt2rVb2ikQi8Pl8tLS0wMnJSZe3qjf7i6qx+Lsina4J83bEL4snkOdzglJ0+T7T/ow+fvx4/Pjjj6iurgZFUTh69CiKi4sxdepUlddIJBLweIrZUGxtbXHy5EkAgFQqRUFBAZKSkhTOSUpKwqlTp9S2KxKJFDZj4Wqve48+f1wQETmBFmgX+ieffIKIiAj4+fmBw+EgOTkZmzZtwvjx41VeM3XqVGzYsAElJSWQyWTIycnB/v37IRQKAQANDQ3o6emBl5diDjQvLy/U1qoODFm7di34fL588/c3XkZUdx390F3tOUgbTibhCPRgEKHn5eXhxx9/REFBAT788EMsWrQIR44cUXnNxx9/jCFDhiAsLAwcDgcvvfQS5s+fDxZLMYPp/b0bRVFqe7zs7Gy0tLTIt8rK/hcq1BeBjkUUnh4TCB6bZHAl0AOtnnEdHR144403sHfvXkyfPh0AMGzYMBQVFWH9+vVITExUep2Hhwf27duHzs5ONDY2QiAQYNmyZQgODgYAuLu7g8Vi9em96+vr+/Ty98LlcsHlmkZEl5OtDZx4NhBpsZ7uyLPBs+OCB8AqgrVAa4/e1dWFrq4uMJmKzbJYLMhkmt0/eTwefH190d3djT179iAtLQ0AwOFwEBcXh5ycHIXzc3JykJCQQN8bMCAMBgMx/s5anbvowcHg27ENaxDBqtC5RxeLxSgtLZW/Li8vR1FREVxdXREQEICJEyfi73//O2xtbREYGIhjx45h+/bt2LBhg/yajIwM+Pr6ymfLz5w5g+rqagwfPhzV1dVYtWoVZDIZXnvtNfk1WVlZmDt3LkaOHImxY8diy5YtqKiowMKFC/V5/wNKUoQXTpQ0qD1nXkIQFk4cNEAWEawFnYWen5+PSZMmyV9nZWUBADIzM7Ft2zZ89913yM7OxlNPPYXbt28jMDAQ77zzjoIgKyoqFHr9zs5OrFixAmVlZXBwcMC0adPw9ddfw9nZWX7OrFmz0NjYiNWrV0MoFCIqKgoHDhxAYGBgf963UXgyPhD/LajCeSXFGWyYDCxLCcOz44PJTDuBdvRaRzc3jLmOfofiulY8/K+TCnHpYwa54vXkMMQGkMSOBO3R5ftMwlQHmKFejvjhhQQU3GyCn4sthvk5w8PRNCYMCZYLEboRiPLlI8qXb2wzCFYEiV4jEKwAInQCwQogQicQrAAidALBCiBCJxCsACJ0AsEKIEInEKwAInQCwQogQicQrAAidALBCiBCJxCsACJ0AsEKIEInEKwAInQCwQqwqjDVOzk2jJnfnUCgizvfY21yx1iV0FtbWwHAqPndCQS6aW1tBZ+vPr+BVaWSkslkqKmpgaOjo8HzsolEIvj7+6OystJoaassCfJ59oWiKLS2tkIgEPTJvHw/VtWjM5lM+PkNbNFCJycn8sWkEfJ5KqKpJ78DmYwjEKwAInQCwQogQjcQXC4Xb731lsmUhDJ3yOepH1Y1GUcgWCukRycQrAAidALBCiBCJxCsACJ0AsEKIELXgqCgIDAYjD7biy++iK6uLrz++uuIjo6Gvb09BAIBMjIyUFNTo7Hdjz76CKGhobC1tYW/vz+WLl2Kzs7OAXhHxsUQn2dXVxdWr16NkJAQ8Hg8xMTE4ODBgwP0jswAiqCR+vp6SigUyrecnBwKAHX06FGqubmZSkxMpHbt2kVdvXqVOn36NBUfH0/FxcWpbXPHjh0Ul8ulvvnmG6q8vJw6dOgQ5ePjQy1ZsmSA3pXxMMTn+dprr1ECgYD6+eefqevXr1ObNm2ieDwede7cuQF6V6YNEXo/WLx4MRUSEkLJZDKlx8+ePUsBoG7evKmyjRdffJGaPHmywr6srCxq/PjxtNpqDtDxefr4+FAbN25U2JeWlkY99dRTtNpqrpChu45IpVLs2LEDzzzzjMrAmJaWFjAYDDg7O6tsZ/z48SgoKMDZs2cBAGVlZThw4ACmT59uCLNNFro+T4lEAh6Pp7DP1tYWJ0+epNNc88XYvzTmxq5duygWi0VVV1crPd7R0UHFxcVp1ZN88sknFJvNpmxsbCgA1AsvvEC3uSYPXZ/nnDlzqIiICKq4uJjq6emhDh8+TNna2lIcDscQZpsdROg6kpSURD388MNKj0mlUiotLY2KjY2lWlpa1LZz9OhRysvLi9q6dSv1559/Uj/88APl7+9PrV692hBmmyx0fZ719fVUWloaxWQyKRaLRQ0dOpRatGgRZWtrawizzQ4idB24ceMGxWQyqX379vU5JpVKqfT0dGrYsGFUQ0ODxrbGjx9Pvfrqqwr7vv76a8rW1pbq6emhzWZThs7P8w4dHR1UVVUVJZPJqNdee42KiIig02SzhTyj68B//vMfeHp69nmO7urqwsyZM1FSUoIjR47Azc1NY1vt7e19kgWwWCxQvT++tNptqtD5ed6Bx+PB19cX3d3d2LNnD9LS0ug22zwx9i+NudDT00MFBARQr7/+usL+rq4u6pFHHqH8/PyooqIihWUjiUQiP2/u3LnUsmXL5K/feustytHRkdq5cydVVlZGHT58mAoJCaFmzpw5YO/JmND9eebl5VF79uyhrl+/Th0/fpyaPHkyFRwcTDU1NQ3UWzJpiNC15NChQxQA6tq1awr7y8vLKQBKt6NHj8rPmzhxIpWZmSl/3dXVRa1atYoKCQmheDwe5e/vTy1atMhqvph0f565ublUeHg4xeVyKTc3N2ru3LkqJ/isERKmSiBYAeQZnUCwAojQCQQrgAidQLACiNAJBCuACJ1AsAKI0AkEK4AInUCwAojQCQQrgAidQLACiNAJBCuACJ1AsAKI0AkEK+D/AWGBep12iPrjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "MUMBAI.plot()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "b5c33844-b089-4e46-9c8f-71eb1555faaa", + "metadata": {}, + "source": [ + "## Clipping\n", + "\n", + "In this step, our intention is to clip the heatwaves incident data using boundaries." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "5475d7c6", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\sahit\\anaconda3\\envs\\heatwaves\\lib\\site-packages\\geopandas\\geodataframe.py:1443: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " super().__setitem__(key, value)\n" + ] + } + ], + "source": [ + "import shapely\n", + "CHENNAI['geometry'] = CHENNAI['geometry'].apply(lambda x: shapely.wkb.loads(\n", + " shapely.wkb.dumps(x, output_dimension=2)))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "26279742", + "metadata": {}, + "outputs": [], + "source": [ + "def clip_area(ds, area):\n", + "\n", + " ds.rio.write_crs(\"EPSG:4326\", inplace=True)\n", + " clipped_area = ds.rio.clip(area.geometry.values,all_touched=True, drop=True)\n", + "\n", + " return clipped_area\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "a0718b3c", + "metadata": {}, + "outputs": [], + "source": [ + "clipped_hyd = clip_area(ds_mean2, HYDERABAD)\n", + "clipped_chennai = clip_area(ds_mean2, CHENNAI)\n", + "clipped_delhi = clip_area(ds_mean2, DELHI)\n", + "clipped_mumbai = clip_area(ds_mean2, MUMBAI)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "2384b422-4022-4aaa-8a99-abfa8802c4d6", + "metadata": {}, + "source": [ + "Now, converting to a dataframe and `geopandas.GeoDataFrame`" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "48966b4d", + "metadata": {}, + "outputs": [], + "source": [ + "def convert_to_gdf(clipped_area):\n", + " clipped_area = clipped_area.to_dataframe().reset_index()\n", + "\n", + " clipped_area = geopandas.GeoDataFrame(\n", + " clipped_area.reset_index(), geometry=geopandas.points_from_xy(clipped_area[\"lon\"],clipped_area[\"lat\"])\n", + " )\n", + "\n", + " return clipped_area" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "0de1d8a7", + "metadata": {}, + "outputs": [], + "source": [ + "clipped_hyd = convert_to_gdf(clipped_hyd)\n", + "clipped_chennai = convert_to_gdf(clipped_chennai)\n", + "clipped_delhi = convert_to_gdf(clipped_delhi)\n", + "clipped_mumbai = convert_to_gdf(clipped_mumbai)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "c283d828", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGVCAYAAADdWqrJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZIklEQVR4nO3deXxTVdoH8F/Sla1FkG5S9l0UytqCZRmhCMqAgtQRq4wsIqgg48DbUWTREZ3XgYJsOsNQECjglMUFheILLQwVBQFnRGWxWgZbCygta5s0z/tHubdJ9yQ3TdL7+34++Whubk7PaYA+Pec5zzGIiICIiIjIgxnd3QEiIiKi6jBgISIiIo/HgIWIiIg8HgMWIiIi8ngMWIiIiMjjMWAhIiIij8eAhYiIiDyer7s7oBWLxYKffvoJjRo1gsFgcHd3iIiIqAZEBFeuXEFERASMxsrnUepMwPLTTz8hMjLS3d0gIiIiB5w7dw7Nmzev9PU6E7A0atQIQMmAg4KC3NwbIiIiqomCggJERkaqP8crU2cCFmUZKCgoiAELERGRl6kunYNJt0REROTxGLAQERGRx2PAQkRERB6vzuSw1ITFYkFRUZG7u0FELuLn5wcfHx93d4OIXEA3AUtRURGysrJgsVjc3RUicqHGjRsjLCyM9ZiI6hhdBCwigpycHPj4+CAyMrLKwjRE5J1EBNevX0deXh4AIDw83M09IiIt6SJgMZvNuH79OiIiIlC/fn13d4eIXKRevXoAgLy8PISEhHB5iKgO0cVUQ3FxMQDA39/fzT0hIldTfikxmUxu7gkRacmugGXRokXo3bs3GjVqhJCQEIwePRrfffddte9LT09Hz549ERgYiDZt2mD16tXl7klNTUWXLl0QEBCALl26YPv27fZ0rUa4pk1U9/HvOVHdZFfAkp6ejunTp+Ozzz5DWloazGYz4uLicO3atUrfk5WVhREjRiA2NhbHjh3Dn/70Jzz33HNITU1V78nMzER8fDwSEhJw4sQJJCQkYNy4cTh8+LDjIyMiIqI6wyAi4uibL1y4gJCQEKSnp2PAgAEV3jNnzhy8//77+Oabb9RrU6dOxYkTJ5CZmQkAiI+PR0FBAT7++GP1nvvuuw+33XYbUlJSatSXgoICBAcHIz8/v1xp/ps3byIrKwutW7dGYGCgvcMkIi/Cv+9E3qWqn9/WnEq6zc/PBwA0adKk0nsyMzMRFxdnc23YsGFYs2YNTCYT/Pz8kJmZieeff77cPUlJSZW2W1hYiMLCQvV5QUGBAyPwbIMGDUL37t2r/D5Q3dGqVSvMnDkTM2fOdHdXXEKL8c2fPx87duzA8ePHNesXkaf45D+5SD6UBXuqbwT4GTF7WCfc1TzYJX3aeuQcjmVfxquju8LH6N7lVocDFhHBrFmzcM8996Br166V3pebm4vQ0FCba6GhoTCbzbh48SLCw8MrvSc3N7fSdhctWoQFCxY42n26pa7/kPREycnJmDlzJi5fvmxz/YsvvkCDBg3c06laUNfHR+Ss1elncfzcZbvfF9kkG3c1v0v7DgFYuvc0zl++gceiW+DOCNcERTXlcMDyzDPP4KuvvsLBgwervbdsEpyyCmV9vaJ7qkqeS0xMxKxZs9TnyvHURO6mzBzaq1mzZi7ojfsVFRXB39+/zo6PSCs3TSU7Wp+7tz06hzWq9v60kz9j27HzKDS5riCq0idzscPZI5pxaFvzs88+i/fffx/79u1D8+bNq7w3LCys3ExJXl4efH190bRp0yrvKTvrYi0gIABBQUE2j5oSEVwvMrvlYW/KkMViwezZs9GkSROEhYVh/vz56mv5+fmYMmUKQkJCEBQUhN/85jc4ceKE+vrZs2cxatQohIaGomHDhujduzf27t2rvj5o0CD8+OOPeP7552EwGKrdXSEiaNasmU3CdPfu3RESEqI+z8zMhJ+fH65evQoAWLx4Me666y40aNAAkZGRmDZtmvpafn4+6tWrh08++cTm62zbtg0NGjRQ7zt//jzi4+Nx2223oWnTphg1ahR++OEH9f79+/ejT58+aNCgARo3boz+/fvjxx9/rPZ7O3/+fHTv3h1vv/02IiMjUb9+fTz88MPlZj7Wrl2Lzp07IzAwEJ06dcLKlSvV13744QcYDAZs3boVgwYNQmBgIDZs2FDp19y/fz9+//vfIz8/X/2eK59pq1atbJb/DAYD3n77bTzwwAOoX78+OnfujMzMTJw5cwaDBg1CgwYNEBMTg7Nnz9p8jQ8++MBmV96CBQtgNpur/X4oX3PVqlUYPnw46tWrh9atW+O9996zuae6z2PChAkYPXo0Fi1ahIiICHTo0KHC8WVnZ2PUqFFo2LAhgoKCMG7cOPz88882X+v1119HaGgoGjVqhIkTJ+LmzZs1GgeRNzIVlwQeMW2aYvhd4dU+ukQE2bzPFYputW1xPN1VM3bNsIgInn32WWzfvh379+9H69atq31PTEwMPvjgA5tre/bsQa9evdTfQmNiYpCWlmaTx7Jnzx7069fPnu7V2A1TMbq8vNslbVfn5MJhqO9f82/7unXrMGvWLBw+fBiZmZmYMGEC+vfvjyFDhuD+++9HkyZNsGvXLgQHB+Ptt9/Gvffei1OnTqFJkya4evUqRowYgVdffRWBgYFYt24dRo4cie+++w4tWrTAtm3b0K1bN0yZMgWTJ0+uti8GgwEDBgzA/v37MWbMGPz66684efIkGjRogJMnT6JLly7Yv38/evbsiYYNGwIAjEYjli1bhlatWiErKwvTpk3D7NmzsXLlSgQHB+P+++/Hxo0bcd9996lfZ9OmTeoPsuvXr2Pw4MGIjY1FRkYGfH198eqrr+K+++7DV199BaPRiNGjR2Py5MlISUlBUVERPv/88xpvbT1z5gy2bt2KDz74AAUFBZg4cSKmT5+OjRs3AgD+9re/Yd68eVi+fDmioqJw7NgxTJ48GQ0aNMATTzyhtjNnzhz89a9/xdq1axEQEFDp1+vXrx+SkpLw8ssvqyUBlO9VRV555RUsXrwYixcvxpw5c/Doo4+iTZs2SExMRIsWLfDkk0/imWeeURPWd+/ejcceewzLli1DbGwszp49iylTpgAA5s2bV6Pvydy5c/H6669j6dKlePfdd/G73/0OXbt2RefOnav9PJRaR59++imCgoKQlpZWYZAuIhg9ejQaNGiA9PR0mM1mTJs2DfHx8di/fz8AYOvWrZg3bx5WrFiB2NhYvPvuu1i2bBnatGlTo3EQeRuzpeTvir9vzf798vc13nqf6wIWZWbF/eEKALHD008/LcHBwbJ//37JyclRH9evX1fv+Z//+R9JSEhQn3///fdSv359ef755+XkyZOyZs0a8fPzk3/+85/qPf/617/Ex8dHXn/9dfnmm2/k9ddfF19fX/nss89q3Lf8/HwBIPn5+eVeu3Hjhpw8eVJu3LghIiLXCk3Scs6HbnlcKzTVeEwDBw6Ue+65x+Za7969Zc6cOfLpp59KUFCQ3Lx50+b1tm3byttvv11pm126dJG33npLfd6yZUtZsmRJjfu0bNky6dq1q4iI7NixQ3r16iUPPfSQrFixQkRE4uLiZM6cOZW+f+vWrdK0aVP1+bZt26Rhw4Zy7do1ESn5HAMDA+Wjjz4SEZE1a9ZIx44dxWKxqO8pLCyUevXqye7du+XSpUsCQPbv31/jMSjmzZsnPj4+cu7cOfXaxx9/LEajUXJyckREJDIyUjZt2mTzvldeeUViYmJERCQrK0sASFJSUo2/7tq1ayU4OLjc9bKfBQB56aWX1OeZmZkCQNasWaNeS0lJkcDAQPV5bGysvPbaazbtvvvuuxIeHl6jvgGQqVOn2lzr27evPP300yJS/echIvLEE09IaGioFBYWVjq+PXv2iI+Pj2RnZ6uvf/311wJAPv/8cxERiYmJqbAv3bp1q3IMZf++E3mLfos+lZZzPpTj2b/W6P6Nn/0oLed8KJPWfeGyPrX700fScs6HcuSHSy77GlX9/LZm1wzLqlWrAJQsJVhbu3YtJkyYAADIyclBdna2+lrr1q2xa9cuPP/881ixYgUiIiKwbNkyjBkzRr2nX79+2Lx5M1566SXMnTsXbdu2xZYtW9C3b187w6+aqefng5MLh7mk7Zp8bXvcfffdNs/Dw8ORl5eHo0eP4urVq+qymuLGjRvqEsG1a9ewYMECfPjhh/jpp59gNptx48YNm8/HXoMGDcKMGTNw8eJFpKenY9CgQWjRogXS09MxZcoUHDp0yCaBd9++fXjttddw8uRJFBQUwGw24+bNm7h27RoaNGiA+++/H76+vnj//ffxyCOPIDU1FY0aNVJ3lh09ehRnzpxBo0a267k3b97E2bNnERcXhwkTJmDYsGEYOnQohgwZgnHjxtX4HJkWLVrYLGvGxMTAYrHgu+++g4+PD86dO4eJEyfazECZzWYEB9smn/Xq1cveb2WNWH/+yhLpXXfdZXPt5s2bKCgoQFBQEI4ePYovvvgCf/7zn9V7iouLcfPmTVy/fr1GR1PExMSUe67syqnu81DcddddVVaW/uabbxAZGWmTd9alSxc0btwY33zzDXr37o1vvvkGU6dOLdeXffv2VTsGIm+kLL/4+tRshkW5z1VLQiIC060ZFosHTLHYvSRUneTk5HLXBg4ciC+//LLK940dOxZjx461pzsOMxgMdi3LuFPZ5E2DwQCLxQKLxYLw8HB1+txa48aNAQB//OMfsXv3brz55pto164d6tWrh7Fjx6KoqMjh/nTt2hVNmzZFeno60tPTsXDhQkRGRuLPf/4zvvjiC9y4cQP33HMPAODHH3/EiBEjMHXqVLzyyito0qQJDh48iIkTJ6pl0/39/TF27Fhs2rQJjzzyCDZt2oT4+Hj4+pZ8PhaLBT179lSXaKwpSZxr167Fc889h08++QRbtmzBSy+9hLS0NERHR9s9PmUpSfk+AyXLQmWD57Jn1Lhq94v156/0raJrSl8tFgsWLFiAhx56qFxbztQksf461X0eQPXfD6kkqb6y60R6YL4VePj71Cy9VLnPVQmxZqsoxQNSWPRx+GFd1KNHD+Tm5sLX1xetWrWq8J4DBw5gwoQJePDBBwEAV69etUmOBEoCBuWspZpQ8lh27tyJ//znP4iNjUWjRo1gMpmwevVq9OjRQ/3t+8iRIzCbzfjrX/+qnpC9devWcm2OHz8ecXFx+Prrr7Fv3z688sorNuPcsmWLmlhcmaioKERFRSExMRExMTHYtGlTjQKW7Oxs/PTTT4iIiABQkjRsNBrRoUMHhIaG4o477sD333+P8ePH1/h7VB17v+f26NGjB7777ju0a9fO4TY+++wzPP744zbPo6Ki1PZr8nlUp0uXLsjOzsa5c+fUWZaTJ08iPz8fnTt3BgB07ty5wr4Q1VVK4OFbw4DF1TMs1oGQJyTd6uLww7poyJAhiImJwejRo7F792788MMPOHToEF566SUcOXIEANCuXTts27YNx48fx4kTJ/Doo4+qv4krWrVqhYyMDJw/fx4XL16s0dceNGgQNm3ahLvvvhtBQUFqELNx40ab5cK2bdvCbDbjrbfewvfff4933323wnOkBg4ciNDQUIwfPx6tWrWyCTTGjx+P22+/HaNGjcKBAweQlZWF9PR0zJgxA//973+RlZWFxMREZGZm4scff8SePXtw6tQp9YdedQIDA/HEE0/gxIkTOHDgAJ577jmMGzcOYWFhAEp2Ei1atAhLly7FqVOn8O9//xtr167F4sWLa9R+RVq1aoWrV6/i008/xcWLF3H9+nWH2yrr5Zdfxvr16zF//nx8/fXX+Oabb9RZp5p677338I9//AOnTp3CvHnz8Pnnn+OZZ54BUP3nUVNDhgzB3XffjfHjx+PLL7/E559/jscffxwDBw5Ul9dmzJiBf/zjHzZ9+frrr+37hhB5EXVJqIYF2nxv/SLoqoClyKpdBizkMIPBgF27dmHAgAF48skn0aFDBzzyyCP44Ycf1FyHJUuW4LbbbkO/fv0wcuRIDBs2DD169LBpZ+HChfjhhx/Qtm3bGtfJGDx4MIqLi22Ck4EDB6K4uBgDBw5Ur3Xv3h2LFy/GG2+8ga5du2Ljxo1YtGhRhWP53e9+hxMnTpSbyahfvz4yMjLQokULPPTQQ+jcuTOefPJJ3LhxA0FBQahfvz6+/fZbjBkzBh06dMCUKVPwzDPP4KmnnqrRWNq1a4eHHnoII0aMQFxcHLp27WqzbXnSpEn4+9//juTkZNx1110YOHAgkpOTa7RDrjL9+vXD1KlTER8fj2bNmuEvf/mLw22VNWzYMHz44YdIS0tD7969ER0djcWLF6Nly5Y1bmPBggXYvHkz7r77bqxbtw4bN25Ely5dAFT/edSUwWDAjh07cNttt2HAgAEYMmQI2rRpgy1btqj3xMfH4+WXX8acOXPQs2dP/Pjjj3j66adr/s0g8jKlu4RquCR0azeR2UUJJmargMUD4hXnzhLyJDxLiOzFMu/lGQwGbN++HaNHj3Z3VxzGv+/kjUQErRN3AQCOvjQETRtWXh5BkXHqAh7/x+foHB6Ej2fEat6nnwtuou9rnwIANkzsi3va36751wBqfpYQZ1iIiIjczGSVL2JvDovZRUtCJi4JkScbPnw4GjZsWOHjtddec3f37HLnnXdWOpaKdrloxVO/hxs3bqy0X3feeafb+kVEtsGBXw23Nfv5uDaHxeRhSbfcJUQ2/v73v+PGjRsVvlbVqdyeaNeuXer26bKUcu/WRx1oxVO/h7/97W8rrW2kbJWuIyvERF7HekeOXw1nWEoDFn3ksDBgIRt33HGHu7ugGXsSTbXkqd/DRo0alSv4RkSewWS1g7Pmu4SUpFvXz7CIBxTn19WSEH97JKr7+PecvJHJaktzTYsnunqGxSaHxXXHFdWYLgIWpSqpMxVeicg7KHVtylaJJvJkypJQTZeDSu51ceE4i2cl3epiScjX1xf169fHhQsX4Ofnp1ZdJaK6Q0Rw/fp15OXloXHjxuWOTyDyZCY7zxECSoMbV5Xmt026dcmXsIsuAhaDwYDw8HBkZWXhxx9/dHd3iMiFGjdurFYqJvIWJgdmWGqzND88IIdFFwELUHJ+S/v27bksRFSH+fn5cWaFvJISdNR0S3PJvbdmWCzikoNDbeuwaNq0Q3QTsACA0Whk5UsiIvI4Snl9XztSFvys7jVbxK5gpyZYOI6IiIhsmB2YYbHOd3FFHov1GUWeMMPCgIWIiMjN1JOaHchhsX6/lkw2hePcH7EwYCEiInIzh7Y1Wy8JuSRgsSoc5/54hQELERGRuyk1T+xZEjIaDfBRq926YEmIOSxERERkrcisJN3alzir3F9kdu2SEHNYiIiIyGqGxb4fy/5WW5u1Zrsk5P6IhQELERGRmzmSwwKUJt66IofFujS/B8QrDFiIiIjcrciB0vwl9xtt3q8l29L87o9YGLAQERG5maMzLP4uPE+IOSxERERkw5FdQoDVkpDFBUtC1jksHnCWEAMWIiIiN1OWX+wpzV9yv3IAogtmWCycYSEiIiIrJgdzWJQlJFec2Gwye/kuoYyMDIwcORIREREwGAzYsWNHlfdPmDABBoOh3OPOO+9U70lOTq7wnps3b9o9ICIiIm+j7PLxtzOHxc+FOSzWy0wWD5hisTtguXbtGrp164bly5fX6P6lS5ciJydHfZw7dw5NmjTBww8/bHNfUFCQzX05OTk8WZmIiHRBXRJyMIfFJTMsNjks7udr7xuGDx+O4cOH1/j+4OBgBAcHq8937NiBX3/9Fb///e9t7jMYDAgLC7O3O0RERF5PXRKyM4dFOU/IJTkset8ltGbNGgwZMgQtW7a0uX716lW0bNkSzZs3xwMPPIBjx45V2U5hYSEKCgpsHkRERN5IqVTr72tnwOLryl1COj6tOScnBx9//DEmTZpkc71Tp05ITk7G+++/j5SUFAQGBqJ///44ffp0pW0tWrRInb0JDg5GZGSkq7tPRETkEqUzLPaeJeTCGRaLjgvHJScno3Hjxhg9erTN9ejoaDz22GPo1q0bYmNjsXXrVnTo0AFvvfVWpW0lJiYiPz9ffZw7d87FvSciInKN0l1C9ibdui6HxXaGRfPm7WZ3DoujRAT/+Mc/kJCQAH9//yrvNRqN6N27d5UzLAEBAQgICNC6m0RERLVO2eXj7+C2ZlecJWRbml/z5u1WazMs6enpOHPmDCZOnFjtvSKC48ePIzw8vBZ6RkRE5F6lu4TsPfywtpJu3R+x2D3DcvXqVZw5c0Z9npWVhePHj6NJkyZo0aIFEhMTcf78eaxfv97mfWvWrEHfvn3RtWvXcm0uWLAA0dHRaN++PQoKCrBs2TIcP34cK1ascGBIRERE3sXRHBY/oyuXhNwfpFizO2A5cuQIBg8erD6fNWsWAOCJJ55AcnIycnJykJ2dbfOe/Px8pKamYunSpRW2efnyZUyZMgW5ubkIDg5GVFQUMjIy0KdPH3u7R0RE5HVKzxKyd4ZF2SXk4hkWD1gTsjtgGTRoUJXbm5KTk8tdCw4OxvXr1yt9z5IlS7BkyRJ7u0JERFQnmBw8rdmlpfktOs1hISIiooqZnTxLyCWl+T0sh4UBCxERkZuVzrDYW4fFlaX5rbY1a966/RiwEBERuZkSHNi9JOTrul1C1rM2uqt0S0REROUpSbP2nyXkutL8JguXhIiIiMhK6QyLvac1uy7p1qzXwnFERERUMed3Cbl2W7MHTLAwYCEiInI3x3cJGWzeryUTc1iIiIjImqNJt6W7hLitmYiIiFzM4SUhXxcWjmMOCxEREVlTdvnYf5bQrcJxrijNb2EOCxEREVkxOzjDouS8aD3DUmwRmyCFS0JERESEIgeTbl21rblse0y6JSIiInWGxd/OGRZ/dZeQtgFF2YCFOSxERERUmsNi91lCt2ZYNI4oygZA4gGnCTFgISIiciMRUXfk2FuaX81hMWu8JGThDAsRERFZsd7hY/+SkLJLSOscljIzLMxhISIi0jfr5RdHk261zmEpWznXBWcr2o0BCxERkRsVWQUH9gcshnJtaKHcDAtzWIiIiPTNejbDz84cFn8XzbBwlxARERHZUHJYfIwGGO2sdKvMsGidw1I2AGLhOCIiIp1TZjPsLctf8h6lcJzGMyyWsoXjNG3eIQxYiIiI3MjRgw9L3uOa0vxlt0lzlxAREZHOKTksfnYm3Ja8x0W7hCxll4Q0bd4hDFiIiIjcSC0a58AMi1o4zmLRdBakfNKt+yMWBixERERupAQHfg7ksCi7ikRKTljWSrnS/O6PVxiwEBERuZOyw8fP14EcFqv3lF3GcUa505pZh4WIiEjfSs8RcmSXUOl7tEy8LXuYoldWus3IyMDIkSMREREBg8GAHTt2VHn//v37YTAYyj2+/fZbm/tSU1PRpUsXBAQEoEuXLti+fbu9XSMiIvI66pKQQ7uESt+j5dbmcqX5PWBNyO7vzrVr19CtWzcsX77crvd99913yMnJUR/t27dXX8vMzER8fDwSEhJw4sQJJCQkYNy4cTh8+LC93SMiIvIqZie2NfsYDVAmWcoGGc7wxEq3vva+Yfjw4Rg+fLjdXygkJASNGzeu8LWkpCQMHToUiYmJAIDExESkp6cjKSkJKSkpFb6nsLAQhYWF6vOCggK7+0RERORuauE4B7Y1l7zPiCKzpdwyjnN9KtuW+yOWWsthiYqKQnh4OO69917s27fP5rXMzEzExcXZXBs2bBgOHTpUaXuLFi1CcHCw+oiMjHRJv4mIiFxJLRxn5zlCCmV3Udlib84ovySkWdMOc3nAEh4ejnfeeQepqanYtm0bOnbsiHvvvRcZGRnqPbm5uQgNDbV5X2hoKHJzcyttNzExEfn5+erj3LlzLhsDERGRqyi7hJyZYbFuRwtlZ1g8IYfF7iUhe3Xs2BEdO3ZUn8fExODcuXN48803MWDAAPW6wWD7QYlIuWvWAgICEBAQoH2HiYiIapEzpfmt36dl0q1ylpDRUDK74gHxinu2NUdHR+P06dPq87CwsHKzKXl5eeVmXYiIiOoaZ0rzW79Py/L8Slv+t+q8eMIMi1sClmPHjiE8PFx9HhMTg7S0NJt79uzZg379+tV214iIiGpV6WnNjv1IVpaSijTcJaQEUf4+pZV03c3uJaGrV6/izJkz6vOsrCwcP34cTZo0QYsWLZCYmIjz589j/fr1AEp2ALVq1Qp33nknioqKsGHDBqSmpiI1NVVtY8aMGRgwYADeeOMNjBo1Cjt37sTevXtx8OBBDYZIRETkudQlIQcq3QLWByBqF7AUqTMsPgDMHjHDYnfAcuTIEQwePFh9PmvWLADAE088geTkZOTk5CA7O1t9vaioCC+88ALOnz+PevXq4c4778RHH32EESNGqPf069cPmzdvxksvvYS5c+eibdu22LJlC/r27evM2IiIiDyeWprfgUq3Je9Tkm61LxwX4OvFMyyDBg2q8kTI5ORkm+ezZ8/G7Nmzq2137NixGDt2rL3dISIi8mqlpzU7ukvIBUtCFuawEBERkRVnSvNbv0/LpNsiD5xhYcBCRETkRs6U5i95n7JLyAVJt5xhISIiIsB6l5CDS0K3cli03SVkG0S5P1xhwEJERORWpTkszm1rdsWSkLKtmTMsREREOqfsEvJ3MOnW3wWl+ZXgJ8BPCVg0a9phDFiIiIjcSKsZFi1L85cGUUrSrfsjFgYsREREbqTmsDh5+KFJwxyWssXsPCBeYcBCRETkTmXL4NvL3wXbmk1ltjUzh4WIiEjnTLcSRBzfJXRrScgVOSy+zGEhIiIiACazsiTkaA7LrSUhs4YzLMxhISIiImtqGXyHl4RubWvWcIbFVKZwnAfEKwxYiIiI3Em7pFstDz/kWUJERERkpTRgcXZbswtmWHx8ADBgISIi0j11NsPZwnEu2NbMJSEiIiICYL1LyMEZllvvM2m4lafs4YceEK8wYCEiInIns9M5LNqf1qwEP8xhISIiIgCl+SJ+Duaw+LmiNL9SOI6HHxIRERFQmsPieMDiutL86gyLdk07jAELERGRGylF2pzd1uyK0vxKwOIJPKcnREREOqRUqPVzMOnWz6j9tuayxey4JERERKRzSoVaP1/HZljUJSGNdglZLILiW20F+DFgISIiIpTmizi8rVnjXULWhyiWzrBo0rRTGLAQERG5UekuISdnWDQKWKxzYfxYOI6IiIgALXcJaRNVWAc+PK2ZiIiIAGixS0jb05qtAx8WjiMiIiIUW0RdbnF8l5C225rVJGAfA25tQPLOHJaMjAyMHDkSERERMBgM2LFjR5X3b9u2DUOHDkWzZs0QFBSEmJgY7N692+ae5ORkGAyGco+bN2/a2z0iIiKvYb384uwMS5HGOSy+RiMMhpK2vXJJ6Nq1a+jWrRuWL19eo/szMjIwdOhQ7Nq1C0ePHsXgwYMxcuRIHDt2zOa+oKAg5OTk2DwCAwPt7R4REZHXsA5YnM1h0WqGpajYeoZFCVg0adopvva+Yfjw4Rg+fHiN709KSrJ5/tprr2Hnzp344IMPEBUVpV43GAwICwuztztERERey2ZHjpNnCWm1rdk6CViZ89FlDovFYsGVK1fQpEkTm+tXr15Fy5Yt0bx5czzwwAPlZmDKKiwsREFBgc2DiIjImygzLAYD4GN0cEnoVg5Lkca7hHytZ1g0adk5tR6w/PWvf8W1a9cwbtw49VqnTp2QnJyM999/HykpKQgMDET//v1x+vTpSttZtGgRgoOD1UdkZGRtdJ+IiEgzSnVaR2dXAMDfV+tdQqWnRxvUpFv3hyy1GrCkpKRg/vz52LJlC0JCQtTr0dHReOyxx9CtWzfExsZi69at6NChA956661K20pMTER+fr76OHfuXG0MgYiISDPKMo6fg7MrQOkMi3a7hEqDKOOtfnnCLiG7c1gctWXLFkycOBHvvfcehgwZUuW9RqMRvXv3rnKGJSAgAAEBAVp3k4iIqNaULr84Pn+g9S4htU9Gg5rD4pW7hByRkpKCCRMmYNOmTbj//vurvV9EcPz4cYSHh9dC74iIiNzD5GSVW6C0Gq1mZwkp25p9jN69S+jq1as4c+aM+jwrKwvHjx9HkyZN0KJFCyQmJuL8+fNYv349gJJg5fHHH8fSpUsRHR2N3NxcAEC9evUQHBwMAFiwYAGio6PRvn17FBQUYNmyZTh+/DhWrFihxRiJiIg8UumOHCeWhKwOKCy2iMPJu6V9Kgl8/G0Kx7k/YrE7pDty5AiioqLULcmzZs1CVFQUXn75ZQBATk4OsrOz1fvffvttmM1mTJ8+HeHh4epjxowZ6j2XL1/GlClT0LlzZ8TFxeH8+fPIyMhAnz59nB0fERGRxyoqdq4sf9n3anEAovUMi1I4zitzWAYNGlTlWlZycrLN8/3791fb5pIlS7BkyRJ7u0JEROTVSpNuHV8Ssn6vWYPIQtlt5Gs0qLuEgJJ0DYPBudkbZ/AsISIiIjcxa7Ct2Xo5SYs8FmWWxt+3NIcFcH8eCwMWIiIiNzFpsCRknbNi0mBrs7okZCzNYQHcn8fCgIWIiMhNrPNFHGUwGNRZFi1yWMwV5LAA7s9jYcBCRETkJtY7cpyh5QGI6pKQVaVbgDMsREREuqWU5vd1Ium25P23Zlg0KM9f0VlCnoABCxERkZuYzM7nsAClMyyaLAlZBVHMYSEiIiJ1C7G/EzksgMZLQmbl8EPbGRbmsBAREelUadKtczMsvhom3VZ2gjRnWIiIiHRKi8MPAeslIQ0Kx1WSw8I6LERERDqlLOE4vyRkuNWedjksfj62OSzuPrGZAQsREZGbmKzK4DtD2WVk0iDRpIg5LERERGTNrEHhOEDrGRYliGIdFiIiIkJpDouf00m3Gm5rLlaWhAw2lW6Zw0JERKRTpmLnDz8seb+yS0iDJaEyicDKahVzWIiIiHTKrMHhh4BVHRYNKt2aywRRSh4Lc1iIiIh0Sl0S0qo0v1mDbc0W22UqZVWIOSxEREQ6VVmRNnupdVg0mGEpMtueb6Tksbh5goUBCxERkbtoviSkReG4MjMsSg6Lxc1rQgxYiIiI3MRktSPHGVqW5q8sh4W7hIiIiHSqdFuz55TmN5WZ9VFCKeawEBER6ZQnFo4rG0QZmcNCRESkb2q+iAeV5i89S4i7hIiIiAhAkUYzLFrmsCjLSkoQZDQqOSwMWIiIiHTJrFFpfn91l5B2S0Llc1icbtopDFiIiIjcpOyOHEf5aliaXwl6/LlLiIiIiACrc3u0ymHRcknIx7ZwnNflsGRkZGDkyJGIiIiAwWDAjh07qn1Peno6evbsicDAQLRp0warV68ud09qaiq6dOmCgIAAdOnSBdu3b7e3a0RERF5FTbr1dW7+wN9X+8JxShDltUm3165dQ7du3bB8+fIa3Z+VlYURI0YgNjYWx44dw5/+9Cc899xzSE1NVe/JzMxEfHw8EhIScOLECSQkJGDcuHE4fPiwvd0jIiLyGuqSkFZnCWlQml+ZYVGCoNLTmp1u2im+9r5h+PDhGD58eI3vX716NVq0aIGkpCQAQOfOnXHkyBG8+eabGDNmDAAgKSkJQ4cORWJiIgAgMTER6enpSEpKQkpKir1dJCIi8gpFGpXm93VF4TijUppfJzksmZmZiIuLs7k2bNgwHDlyBCaTqcp7Dh06VGm7hYWFKCgosHkQERF5E62Sbv01LBxXWWl+r1sSsldubi5CQ0NtroWGhsJsNuPixYtV3pObm1tpu4sWLUJwcLD6iIyM1L7zRERELqTVtmZXzLCUDaLqfMAClGYYK5TiM9bXK7qn7DVriYmJyM/PVx/nzp3TsMdERESup1Sm9dUoh8XsZA6LiKiVbpVlKqVr7i7Nb3cOi73CwsLKzZTk5eXB19cXTZs2rfKesrMu1gICAhAQEKB9h4mIiGqJSaMZltLDD50LWMxW1eGURODSHJY6PsMSExODtLQ0m2t79uxBr1694OfnV+U9/fr1c3X3iIiI3EarHBatTmu2DnjUGRY1h8Wppp1m9wzL1atXcebMGfV5VlYWjh8/jiZNmqBFixZITEzE+fPnsX79egDA1KlTsXz5csyaNQuTJ09GZmYm1qxZY7P7Z8aMGRgwYADeeOMNjBo1Cjt37sTevXtx8OBBDYZIRETkmcqWwXeUr0ZJt9YBjxIEqaX53Ryx2B3SHTlyBFFRUYiKigIAzJo1C1FRUXj55ZcBADk5OcjOzlbvb926NXbt2oX9+/eje/fueOWVV7Bs2TJ1SzMA9OvXD5s3b8batWtx9913Izk5GVu2bEHfvn2dHR8REZHHqizB1V5+GpXmtw54yp7W7HU5LIMGDapyHSs5ObnctYEDB+LLL7+sst2xY8di7Nix9naHiIjIK1ksoi6zaLckpE0Oi4/RoG580c22ZiIiIirPuiqt00tCtxJkzU4u2xSZyycB66ZwHBEREZVnky/i5Lbm0iUhbWZYrPvjtWcJERERkfMqyhdxlLIk5Ozhh+YKkoANnGEhIiLSL+sZFh+jNruEnJ1hKaogCdjIGRYiIiL9si4aV1Vl95rQLOm2growzGEhIiLSMSU4cLYsf0kbSh0WJ5eELBUtCZX8lzMsREREOqTsEnI2f6WkDaNNm44qMitBFHNYiIiICNqV5bduQ6sZFuawEBEREQDtyvJbt2G2iFOHFFaVw+Lus4QYsBAREbmBVmX5y7bhTHn+ioIo5f/q/GnNREREVJ5apE2TgKU0wDA7kcdiqmqXkMOtaoMBCxERkRuYbpXB93WyBktJG1YzLGYnloQqSATmLiEiIiIdM7lohsWZnUKmCrZaM4eFiIhIx8zF2m1rNhgMmtRiqSivRplhYQ4LERGRDpUmuGrzo1iL8vwVBVGsdEtERKRjpQmuzs+wlLTjfHl+dUmoghkW5rAQERHpUEVF2pyhFo9zItlEXRIylp9hYQ4LERGRDpUmuGozw6K049SSUAWJwJxhISIi0jGtc1hKl4S0LRxnVLNuHe+bFhiwEBERuYGym8dfs4BF2SXkTNJtRYXjSv7LGRYiIiId0vIsoZJ2tJthsS0cxxwWIiIi3aqoSJsztMhhqXCX0K3/coaFiIhIh5SlG39fbWZY/H2VXULOJN1WvkuIZwkRERHpkFKaX/sZFi2Sbq1yWG79LyvdEhER6ZDrcli0Pa3ZcGtRyOLmJBYGLERERG6gLglptEtIaceZs4QqKs3vIbuaHQtYVq5cidatWyMwMBA9e/bEgQMHKr13woQJMBgM5R533nmnek9ycnKF99y8edOR7hEREXm80gRXrWZYNEy6rQuVbrds2YKZM2fixRdfxLFjxxAbG4vhw4cjOzu7wvuXLl2KnJwc9XHu3Dk0adIEDz/8sM19QUFBNvfl5OQgMDDQsVERERF5OCXBVbscFg1L8/uWr8PidTksixcvxsSJEzFp0iR07twZSUlJiIyMxKpVqyq8Pzg4GGFhYerjyJEj+PXXX/H73//e5j6DwWBzX1hYmGMjIiIi8gIms9aHH2pYmt9oXZpfmWHxooClqKgIR48eRVxcnM31uLg4HDp0qEZtrFmzBkOGDEHLli1trl+9ehUtW7ZE8+bN8cADD+DYsWNVtlNYWIiCggKbBxERkbcwuejwQ61L86s5LN60JHTx4kUUFxcjNDTU5npoaChyc3OrfX9OTg4+/vhjTJo0yeZ6p06dkJycjPfffx8pKSkIDAxE//79cfr06UrbWrRoEYKDg9VHZGSkPUMhIiJyK3MFRdqc4atBaf7SSrfWS0JemsMClE4PKUSk3LWKJCcno3Hjxhg9erTN9ejoaDz22GPo1q0bYmNjsXXrVnTo0AFvvfVWpW0lJiYiPz9ffZw7d86RoRAREblFRWXwnaEs4zi1JFRcfpnKU84S8rXn5ttvvx0+Pj7lZlPy8vLKzbqUJSL4xz/+gYSEBPj7+1d5r9FoRO/evaucYQkICEBAQEDNO09ERORBKqp54gw/Xw0Kx1VQzE6pw+JVSbf+/v7o2bMn0tLSbK6npaWhX79+Vb43PT0dZ86cwcSJE6v9OiKC48ePIzw83J7uEREReY3SXUIabWs2Ol+a32Qun8NSWunW8b5pwa4ZFgCYNWsWEhIS0KtXL8TExOCdd95BdnY2pk6dCqBkqeb8+fNYv369zfvWrFmDvn37omvXruXaXLBgAaKjo9G+fXsUFBRg2bJlOH78OFasWOHgsIiIiDxbRfkizijdJeRE4ThL+WJ2nnJas90BS3x8PC5duoSFCxciJycHXbt2xa5du9RdPzk5OeVqsuTn5yM1NRVLly6tsM3Lly9jypQpyM3NRXBwMKKiopCRkYE+ffo4MCQiIiLPp/mSkAal+StKBPbKHBbFtGnTMG3atApfS05OLnctODgY169fr7S9JUuWYMmSJY50hYiIyCuZXXSWkDOl+Ysq2tbsjTksREREpA1TBTtynOFn1KBw3K0++Vcww+KVZwkRERGRc9QibVqV5tegcJyaCGxTOM4LK90SERGRNtQy+Bon3Tq1S6i4/LZmry4cR0RERM4xa104ToMcFmXWx3aXUMl/OcNCRESkQyYXleYv0mSXUPlKt+5OYmHAQkRE5Aaal+ZXZ1gcC1hERD2Q0TZgYQ4LERGRbrkuh8WxwKLYImo1Wz+j5xWOY8BCRETkBmoZfI1L8xeZHZthsQ50/HyZw0JERESAuvyidaVbR2dYrOu3WAdRah0WzrAQERHpj1nz0vy3loQczGGxrt/i51N+WzMr3RIREemMiKgzIVqX5i9ycFuzEugYDYCPsaLCcU520EkMWIiIiGpZZbMZznB6hsVS8TZrJXRhDgsREZHOWFej1Xxbs4NTIWohuzJJwOqSkBN90wIDFiIiolpmPcOi2VlCTh5+qNaF8bXtT2nSLWdYiIiIdMU6qNB6hsXxgKX8OUIAYLwVsThxRJEmGLAQERHVMrUEvtGgJrU6y9mzhEp3LVXcH+awEBER6YwyC6LVDiHrthydYSmqpE/MYSEiItIpNV9Eo/wV67ZMTm5rLrtrychKt0RERPqkniPkq2HA4qucJeRcaf6yQVRp4TgnOqcBBixERES1TF0S0ugcoZK2SmdYHNnRU9mSEM8SIiIi0imTxmX5S9oqDTQcqcVS2VEBBs6wEBER6VNpvoh2MyzWgYYjO4Uq6xNzWIiIiHRKrXmi4QyL9VKOyYE8FrU0v7Hi0vycYSEiItIZJTFWyxwW62RZR2ZYTOZKKt0alW3NnGEhIiLSFVMlW4idYTQa1OUbR2qxKEFU2bOE1NOaWemWiIhIX0zVVJV1lDPl+UuXqepQDsvKlSvRunVrBAYGomfPnjhw4ECl9+7fvx8Gg6Hc49tvv7W5LzU1FV26dEFAQAC6dOmC7du3O9I1IiIij2d2QQ4L4Fx5/tLqu2VzWG7NsHhbDsuWLVswc+ZMvPjiizh27BhiY2MxfPhwZGdnV/m+7777Djk5Oeqjffv26muZmZmIj49HQkICTpw4gYSEBIwbNw6HDx+2f0REREQezuSCXUKAc+X5lSDHv5JKt+4uzm93wLJ48WJMnDgRkyZNQufOnZGUlITIyEisWrWqyveFhIQgLCxMffj4+KivJSUlYejQoUhMTESnTp2QmJiIe++9F0lJSXYPiIiIyNO5IofFuj1HyvObKkkEVirdetUMS1FREY4ePYq4uDib63FxcTh06FCV742KikJ4eDjuvfde7Nu3z+a1zMzMcm0OGzasyjYLCwtRUFBg8yAiIvIG5kq2EDtLSZh1pDy/yVzxMpVXVrq9ePEiiouLERoaanM9NDQUubm5Fb4nPDwc77zzDlJTU7Ft2zZ07NgR9957LzIyMtR7cnNz7WoTABYtWoTg4GD1ERkZac9QiIiI3MZ1S0KOJ90qQY5/udL8njHD4uvIm5TOK0Sk3DVFx44d0bFjR/V5TEwMzp07hzfffBMDBgxwqE0ASExMxKxZs9TnBQUFDFqIiMgruKI0f0l7Sg6LI0m3Fc+wKCtEjpxPpCW7vlO33347fHx8ys185OXllZshqUp0dDROnz6tPg8LC7O7zYCAAAQFBdk8iIiIvIG5koMGneXMLqHK+uSVpzX7+/ujZ8+eSEtLs7melpaGfv361bidY8eOITw8XH0eExNTrs09e/bY1SYREZG3UHJY/DTOYVF3CTmSw6IsU5Utze8hOSx2LwnNmjULCQkJ6NWrF2JiYvDOO+8gOzsbU6dOBVCyVHP+/HmsX78eQMkOoFatWuHOO+9EUVERNmzYgNTUVKSmpqptzpgxAwMGDMAbb7yBUaNGYefOndi7dy8OHjyo0TCJiIg8R5HZNTMsShKvUmbfHspZQpWd1ux1AUt8fDwuXbqEhQsXIicnB127dsWuXbvQsmVLAEBOTo5NTZaioiK88MILOH/+POrVq4c777wTH330EUaMGKHe069fP2zevBkvvfQS5s6di7Zt22LLli3o27evBkMkIiLyLGoZfI1zWJQaKmYHMmQrXxIq+a+7l4QcSrqdNm0apk2bVuFrycnJNs9nz56N2bNnV9vm2LFjMXbsWEe6Q0RE5FXMLirN70zhuMqOC/DKHBYiIiJyXlElZfCd5etM4bhKitl59VlCRERE5Dizi7Y1KzVUzE6U5i8fRHlGDgsDFiIiolqm5rAYXZR060AOS+kuoUpyWJzrmtMYsBAREdWyokrK4DtLzWHRcJeQV54lRERERM4r3SWk7QxL6S4hR5aEKtkldCtS8KpKt0REROQ8V+Ww+DpRmr+yPhmYw0JERKRPRS4qze/M4Ydqn8rksBg8pA4LAxYiIqJaZq6kDL6zlIRZh84SUpapfJnDQkRERLA6S8jXNYcfOnKWkLokZKw4YGEOCxERkc6Y1OUX1xSOc2SGpbJlKk85/JABCxERUS2rrAy+s/ycKM1fadItc1iIiIj0yVxJGXxn+TlRmr+0TxWfJcQZFiIiIp0xVVoG3zm+TpTmL1L6VGkOi5OdcxIDFiIiolpWWRl8ZykJsw4tCd1K1PX3ZQ4LERERwXqXkNZLQrdyWBzYg2yudIal5L88S4iIiEhnTJUUaXNW6S4hB84SqnSXEHNYiIiIdMnksqRbx0vzV9YnNenW/hhIUwxYiIiIapmrzhLyc7A0v8UiaiXb8mcJlWDhOCIiIp2pbPnFWY4WjrOujFvutGZll5CTfXMWAxYiIqJapibduuosITvXb6yXkMr2ibuEiIiIdMrVMyxFds6wWCfpli0cVxqwONc3ZzFgISIiqkUiYlWa3zVJt/buErKeYfExVrIkxICFiIhIP4qtpiq0P0vIwRwWq7L8yjZmBU9rJiIi0iHr2QzNS/MbHTv8sKpdS0bmsBAREemP9Y4czWdYblXONdmbdGupvJAdc1iIiIh0yFzFjhxnKe3ZuyRU1QyLwZuXhFauXInWrVsjMDAQPXv2xIEDByq9d9u2bRg6dCiaNWuGoKAgxMTEYPfu3Tb3JCcnw2AwlHvcvHnTke4RERF5LGW5xmgAjJqX5ndsSaiqXUtem3S7ZcsWzJw5Ey+++CKOHTuG2NhYDB8+HNnZ2RXen5GRgaFDh2LXrl04evQoBg8ejJEjR+LYsWM29wUFBSEnJ8fmERgY6NioiIiIPJSryvJbt2lvaf6q+uQpOSy+9r5h8eLFmDhxIiZNmgQASEpKwu7du7Fq1SosWrSo3P1JSUk2z1977TXs3LkTH3zwAaKiotTrBoMBYWFh9naHiIjIq7iqLH9Jm45ta1YL2VW0JATl8EMnO+cku75bRUVFOHr0KOLi4myux8XF4dChQzVqw2Kx4MqVK2jSpInN9atXr6Jly5Zo3rw5HnjggXIzMGUVFhaioKDA5kFEROTplCq0WheNK2lTSbq1c4bFXH3Srbi5OL9dAcvFixdRXFyM0NBQm+uhoaHIzc2tURt//etfce3aNYwbN0691qlTJyQnJ+P9999HSkoKAgMD0b9/f5w+fbrSdhYtWoTg4GD1ERkZac9QiIiI3KLIXPKD31fjhFugtDS/3TksVcywKHk2XjXDoihbVEZEyl2rSEpKCubPn48tW7YgJCREvR4dHY3HHnsM3bp1Q2xsLLZu3YoOHTrgrbfeqrStxMRE5Ofnq49z5845MhQiIqJapcyw+LtghkUJOERsC9RV2yerwnFlKZMu7t4lZFcOy+233w4fH59ysyl5eXnlZl3K2rJlCyZOnIj33nsPQ4YMqfJeo9GI3r17VznDEhAQgICAgJp3noiIyAMoCbFaF40rabM04DAVW+Bj9HG6T16Zw+Lv74+ePXsiLS3N5npaWhr69etX6ftSUlIwYcIEbNq0Cffff3+1X0dEcPz4cYSHh9vTPSIiIo/nqoMPAdslHXuWhUx1bYYFAGbNmoWEhAT06tULMTExeOedd5CdnY2pU6cCKFmqOX/+PNavXw+gJFh5/PHHsXTpUkRHR6uzM/Xq1UNwcDAAYMGCBYiOjkb79u1RUFCAZcuW4fjx41ixYoVW4yQiIvIIyi4hfxdua7b+OjXqk6Xybc1Kyoe7Z1jsDlji4+Nx6dIlLFy4EDk5OejatSt27dqFli1bAgBycnJsarK8/fbbMJvNmD59OqZPn65ef+KJJ5CcnAwAuHz5MqZMmYLc3FwEBwcjKioKGRkZ6NOnj5PDIyIi8iwmF+4S8jEaYDCU5LDYU55fXRKqYJeQ9aWa5qy6gt0BCwBMmzYN06ZNq/A1JQhR7N+/v9r2lixZgiVLljjSFSIiIq9SuoXYNafj+BmNKCq22FU8rnSZqvIZFqBklsUFcVaN8CwhIiKiWqQUaXPFkhDgWPG4qpapys6wuAsDFiIiolrkyqTbknbtL89fVZ/KzrC4CwMWIiKiWmR24bZmwGqGxaEclqpnWNx5nhADFiIiolqkbiHW+KRmhRJ0mMz2F47z9616hsWdO5sZsBAREdWiqsrga8HvVtBh1y4hS81mWNx5nhADFiIiolpkdnEOi9+toMOuOixV9MnIHBYiIiL9Ka0q65ofwUrQ4Vil24q2NZf+P3NYiIiIdEJJcK2oDL4W/NRdQvYn3VbUJ+UsIQAQ+w6B1hQDFiIiolrk6l1CSruOlOZnDgsREREBcP0uIaVdu2ZYzJXPsDCHhYiISIdMVRw0qAV1SciO6KKqPjGHhYiISIdcvyTkeGn+6s8SYsBCRESkC6U7cjwp6bbqPqmrV1wSIiIi0oeqyuBrwVfNYbHnLKGqi9kpeSzMYSEiItIJZanGr4Iy+Frw81V2CdmxJKTuEqpshkUJWLgkREREpAtmpTS/i2ZYlF1CZjumQ8zVzLAopVgYsBAREelEkYtL8yuJs0V2zLBU1ydl4oWHHxIREemE2cWl+f0cKRxXTZ+UJSEGLERERDphdnlpfge2NVuq7pNylUtCREREOqEuv7hsl5CyJFTz4KLIXHWfmHRLRESkM+oMi6+LloR8nZlhqbhPSu04N64IMWAhIiKqTcoWYtedJXQrh8WuXULVFI4zKjksnGEhIiLShaJaKs1vzy4hUzV9Ks1hcaprTmHAQkREVIuqm81wVukuIS1L83OXEBERka5UW6TNSaW7hOxYEqo2h4VJt0RERLpiqqYMvrOUnT4mO9ZvTMXVleYv+a/XBSwrV65E69atERgYiJ49e+LAgQNV3p+eno6ePXsiMDAQbdq0werVq8vdk5qaii5duiAgIABdunTB9u3bHekaERGRR1ODAxfPsJjMjiwJVbNLyJuWhLZs2YKZM2fixRdfxLFjxxAbG4vhw4cjOzu7wvuzsrIwYsQIxMbG4tixY/jTn/6E5557Dqmpqeo9mZmZiI+PR0JCAk6cOIGEhASMGzcOhw8fdnxkREREHkhZqvF3daVbix3bmmt4WrM7AxZfe9+wePFiTJw4EZMmTQIAJCUlYffu3Vi1ahUWLVpU7v7Vq1ejRYsWSEpKAgB07twZR44cwZtvvokxY8aobQwdOhSJiYkAgMTERKSnpyMpKQkpKSmOjk0TheZit35ARERUt5hq6SyhQrMFN03FNXqPksNS+VlC7s9hsStgKSoqwtGjR/E///M/Ntfj4uJw6NChCt+TmZmJuLg4m2vDhg3DmjVrYDKZ4Ofnh8zMTDz//PPl7lGCnIoUFhaisLBQfV5QUGDPUGrsd+98hi+zL7ukbSIi0i9Xl+Y/cPoiOs39xL73VlLp1uBtOSwXL15EcXExQkNDba6HhoYiNze3wvfk5uZWeL/ZbMbFixervKeyNgFg0aJFCA4OVh+RkZH2DIWIiMhtWjWtj+a31XdJ292aN0ZQoN0LKOjWPBiNKnlfacDiTM+cY/+IULq9SSEi5a5Vd3/Z6/a2mZiYiFmzZqnPCwoKXBK0bJjUF8Xu/ISIiKjOqe/vCx8X7RJqdXsDHHlpKArNNVsOUjTw91Ur2pb18YwBAIB6fj5O989RdgUst99+O3x8fMrNfOTl5ZWbIVGEhYVVeL+vry+aNm1a5T2VtQkAAQEBCAgIsKf7Dqnv71BMR0RE5Db+vkb4a3hWUcMA9/8stGs0/v7+6NmzJ9LS0myup6WloV+/fhW+JyYmptz9e/bsQa9eveDn51flPZW1SURERPpid8g0a9YsJCQkoFevXoiJicE777yD7OxsTJ06FUDJUs358+exfv16AMDUqVOxfPlyzJo1C5MnT0ZmZibWrFljs/tnxowZGDBgAN544w2MGjUKO3fuxN69e3Hw4EGNhklERETezO6AJT4+HpcuXcLChQuRk5ODrl27YteuXWjZsiUAICcnx6YmS+vWrbFr1y48//zzWLFiBSIiIrBs2TJ1SzMA9OvXD5s3b8ZLL72EuXPnom3bttiyZQv69u2rwRCJiIjI2xnEnWdFa6igoADBwcHIz89HUFCQu7tDRERENVDTn988S4iIiIg8HgMWIiIi8ngMWIiIiMjjMWAhIiIij8eAhYiIiDweAxYiIiLyeAxYiIiIyOO5/3AAjSjlZAoKCtzcEyIiIqop5ed2dWXh6kzAcuXKFQBwyYnNRERE5FpXrlxBcHBwpa/XmUq3FosFP/30Exo1agSDwTVHdlsrKChAZGQkzp07p6vKunoctx7HDOhz3HocM6DPcetxzIBnjltEcOXKFURERMBorDxTpc7MsBiNRjRv3rzWv25QUJDHfOi1SY/j1uOYAX2OW49jBvQ5bj2OGfC8cVc1s6Jg0i0RERF5PAYsRERE5PEYsDgoICAA8+bNQ0BAgLu7Uqv0OG49jhnQ57j1OGZAn+PW45gB7x53nUm6JSIiorqLMyxERETk8RiwEBERkcdjwEJEREQejwELEREReTwGLEREdZwe91boccxA3R43A5YaqMt/ACqjxzED+hy3HscM6GfceXl56llrgD7GrccxA3V/3NzWXEZRURGWLFmCBg0a4K677sLAgQPd3SWX0+OYAX2OW49jBvQ5brPZjKeeegqffvopQkJC0L59eyxduhS33367u7vmMnocM6CjcQupdu3aJU2bNpXo6Gjp0aOH3HbbbfLiiy/KjRs33N01l9HjmEX0OW49jllEn+M2mUwyfvx4iY6Olv3798vixYula9euEhsbKydPnnR391xCj2MW0de4GbBYefjhh+Wpp54SEZFffvlF3nvvPQkICJAlS5bI9evX3dw719DjmEX0OW49jllEn+POzs6W9u3by7vvvqtey8nJkTvuuEOeffZZyc3NdWPvXEOPYxbR17h1HbBYLBb1v99//73ccccdsmHDBpt7nn32WenZs6fs2bPHHV3UnNlsVv9fL2MWEbly5Ypcu3ZNRETOnj2rm3Er9DhmEX39Gbd27NgxqVevnpw+fVpERG7evCkiIsuXL5eOHTvK1q1b3dk9l9DjmEX0NW7dJt0mJibirbfeAgAYDAa0atUKZrMZBQUFAIAbN24AAObNm4dr167h448/xtWrV93WXy3MnTsXc+fOVZ/rYcwA8Mc//hExMTG4ePEiAH2Me8+ePThx4gSKi4sBAK1bt4bJZKrTYwaAs2fP2iQatmzZss6P+7XXXsO8efOwefNm9Vrnzp0REhKCDRs2AACMxpJ/6qdPn45GjRrh448/RmFhoVv6q4Vdu3YBsE0q7dixI8LCwursmAHgnXfewd/+9jdkZGSo19q3b1/nx61yd8RU21atWiUNGzaUqKgom/U9s9ksU6dOlbvvvlu9VlRUJCIir7/+ukRGRsqvv/5a293VxI4dOyQ0NFT69u0ry5cvl19++UVE6vaYRUo+66CgIGnevLkYDAbZt2+fiJSMsa6Oe+3atRIWFiZ33XWXNGrUSKZNmybnz58XEZGnnnqqTo5ZRGTNmjXSokUL6dmzp/Tt21feffdddTZxypQpdXLchw8flhYtWkiPHj1k+PDh0qhRIxkzZoycPXtWREReeOEF6dChg/z8888iImrOzrp166Rx48ZemcPz4Ycfyh133CEGg0H+9a9/iYhIcXGxiIhcv35dZs+eXefGLCKyadMmCQkJkZiYGOnevbs0a9ZM/vznP4uISH5+fp0dd1m6CVhOnz4tffr0kaCgIElJSanwnn/+85/SqVMnSUpKEpHSqbULFy5IvXr15MCBA7XWX61cvXpVRo4cKQsXLqzw9dTUVOnYsWOdGvOBAwekdevWEh4eLps2bZKzZ89Kjx495J133lHvSU1NrXOf9d///ndp166dpKSkyIULF2Tjxo3SoEEDOX78uIjUzTGLiCQlJanjPnjwoLz88stiMBhk5cqVYrFY5IMPPpAOHTrUuXHPmjVL7r//fhEp+aH973//W1q2bClTp06Vy5cvy2effSY9evSQadOmiUjpEvi+ffskJCRETpw44ba+O+LAgQNy3333yTPPPCPDhw+XXr16lbtn79690rt37zozZhGRjRs3Srdu3WT16tUiInL+/HlZvny5NGjQQPLz80VEJC0trc6NuyK6CVg2bdokTZo0kaVLl4qIyK+//iobNmyQjIwM+e6770REJDc3V5577jmJjIxUfysVEdmzZ4+0aNFC/Yffm3z44YfSrFkzKS4ull9++UXmzJkjr7/+urqmf/nyZXn22Wfr1Jj/+Mc/yvTp09UfTCIiLVu2lPnz56vP8/LyZMaMGXVi3BaLRcxmszz66KOSkJBg81qHDh3kyy+/FJG6+ef72rVrMnToUJk3b56IlP5DHRsbK82bN5dPPvlEbt68Waf+jFssFrl8+bLcc8898sILL4hI6SzDypUrJSoqSv3htmTJEqlfv75s27ZNCgsLRUTk1VdflUGDBqnfK0+n9PPUqVOyePFi+f777+XIkSNSv359+fvf/y4iJTtlREpmFpYsWSINGjTw6jGLlI47OTlZpkyZYpMgfvDgQenQoYNkZmaKSN0ad1V0E7CIiDz66KPywAMPyOTJkyUyMlKio6OlWbNmEh4eLnv37hURkZMnT0r//v2le/fusmHDBjl9+rQ88sgjMmTIEDVp0xsof0DXrFkjo0ePlr1790rr1q1l2LBh8tvf/lZ8fHzkmWeekV9++UWysrLUqUZvHrNC+cdbpPQfsieeeEKGDBlic99XX30lsbGxdWbc3bt3l0mTJqm7Ap599lnp2LGjzJ8/Xw4dOiQiJcm3demzLiwslCZNmsimTZtEpHQqfMyYMRIRESEJCQly5coVOXXqlFf/vT569KhcvnzZ5lqvXr3U3U9KcF5UVCQPPfSQ/Pa3v5Xz589LUVGR/PGPf5RGjRrJwIED5eGHH5Z69erJihUrREQ8+gdZRWNWlvlMJpP84Q9/kGbNmqljV14rKCiQ2bNne+WYRUrGbb1MefnyZZvNEiIix48fl7CwMHV5X8T7x10TdTJg2bp1q0yaNEmSkpLkq6++Uq/v27dP2rRpI/369ZPt27fLTz/9JGfOnJHf/e530q5dO/nmm29EpOQ30fvuu086d+4sd9xxh/Tv31+ysrLcNJqaqWzMKSkpEhwcLNOmTZOXX35ZXb9PTk6Wvn37yptvviki3jlmkcrHbR20iJTkbwwePFjy8/NtXvPGcVc25s2bN0vLli0lLi5OmjZtKp06dZKFCxfK4MGD5e6775bXX39dRLxzzCKVj/t3v/uddOrUSf773/+KiMiGDRtk8ODBMmnSJGnXrp06He6N4/7nP/8pzZs3l7Zt20qLFi3k5ZdfVse5dOlSadiwoRpwKb9Vp6amSvPmzdUcDxGR9957T+bNmydTp05V/53zVBWNOScnR0RKfugqP3i///57iYyMlD/84Q8iUv7v/NatW71mzCLlxz137lybLcnW41u8eLH0799fREo/d4U3fdb2qlMBy8WLF2Xs2LESFhYmU6dOlXvuuUciIiIkOTlZvWf16tXyf//3fzbvKywslAYNGsjf/vY39drNmzclJydH/v3vf9da/x1R3ZgtFot07dpVDAaDrF27Vn2fxWKRMWPGyMSJE9U/8N4yZpHKx71u3Tr1HovFov4lT05OlqCgIJvfVJTXvGXclY3Z+nPNy8uT//3f/5WBAwdKQUGBen3y5Mny4IMP2iTlecOYRSoed3h4uKxfv15ESpYK2rRpI23atJGIiAipX7++pKamioiIr6+vfPTRR2pb3vJZi4h88cUXas7RiRMnZOXKldKsWTN5+umn5fLly/Ljjz9K27Zt1VkW5ZcREZGmTZvKmjVr3NV1h1U15kuXLolI6UyKxWKRlStXiq+vr3z//fciUvJvuZLX4U1qMu7i4mJ1xvjBBx+U6dOnu7PLblGnApb33ntP+vTpo/4GIiIyatQoad26tfzzn/8UESlXKMpisYjJZJJ27drJzJkza7W/WqhqzNu3bxeRknVtg8EgK1asUP/Ai4hMmDBBYmJi1OfeNGVYk3Fb/0ayd+9eiYyMlE8//bS2u6qZqsa8bds2ESmZKn/kkUfk1VdfFZHS375mzZolbdu2latXr4pI3fisW7VqpX7W586dk927d8u6devUH9x5eXnSpk0bee+999zRbYcpn82qVaukefPmNj+Aly9fLn369JFFixaJiMiKFSvEx8dH0tPT1XvOnj0rbdu2VYM2b1DdmKOjo+WVV14p975Lly5Jv379ZNSoUXL06FGJi4uTd99912v+fNs77uLiYrFYLNK2bVv58MMPRUTku+++k0ceeUSys7Nrt/NuUKfqsGzatAnNmzfHHXfcodZWePDBB/HDDz9g1apVuHjxIurVq2ezd99gMCA9PR1+fn5ISEhwV9cdVtWYly9fjkuXLuGpp57C0KFD8dZbb+H//u//AAC5ubn46aef8OSTT6ptGQwGt4zBEdWN++LFizAajWodkiZNmqCoqEh97o2qGvOKFSuQl5cHX19fXLp0CUeOHAEA+Pv74+eff8apU6fwyCOPoEGDBgDqxmf9448/Yvny5bhw4QKaN2+OIUOG4PHHH4efnx8AYN++ffD398c999zjzu7bTflssrKy0KFDB/j6+qqvTZgwAb1798bOnTtx6tQpPP3003jkkUcQHx+PhQsX4vjx4/jLX/6C+vXrIzo62l1DsFt1Y+7Zsyc+/vhjfP311wBg8/d68uTJeP/999G7d2/4+/tjzJgxXvPn295xG41GfPHFF6hfvz569OiBmTNn4u6778alS5cQEhLiljHUJq8NWDIyMrB7926YzWb1Wvv27dUPtmHDhgCAb7/9Fr/5zW9w8+ZNbN++HUDJH5KcnBycPn0aq1evxpNPPonf/OY36Nixo0efbmnvmG/cuIFt27bBaDRi48aNCAkJwaOPPooRI0age/fuMJlMuP/++90yFns481n7+PgAAKKiomCxWPCvf/2rlnvvGEfGvGPHDgAlRRE/+ugj9O/fH9OmTUOvXr1QUFCAKVOm1Po47OXMuI1GIy5cuIBvv/0Wy5cvx/PPP4+HHnoIt99+u0f/vU5LS8Nzzz2HpUuX4vPPP1ev9+/fH4cOHUJubi6Akh/SDRo0wKhRo2A0GvHRRx/BYDBgw4YNePjhh7F9+3Y8/PDD+OKLL7Bx40ZERES4a0jVcmTMBoMBe/bsAVDy97qoqAgrV67ExIkTMWDAAHz11Vf44IMPUK9ePbeMqSacHTdQUjTvP//5Dzp27Ii0tDT861//wp49exAQEFDr46l1bp7hsduFCxfk8ccfF4PBIN26dbNJmjt79qw0a9ZMBg4cKG+88YbExMRI69at5dNPP5Vu3brJ3LlzRaRk/X7dunXSvn17ad26tc0ZDJ7ImTG/9NJL6prvzz//LHv27JH//d//VafSPZkWn7Uy5XrhwgV5+umny+UveRpnP2vF9u3bZc6cOfLoo496RWluLT5rkZIdFqNHj/aKv9c//fSTPPDAAxISEiLjx4+Xu+66S4KDg+Xw4cMiUvLvVKdOnWTKlCkiYrvEGRsbK08//bT6vLi4WK5duybffvtt7Q7CTs6OWakzIlKSRD1jxgybvDVPpeW4X331VWnWrJlXLflpxasCFpPJJCtXrpRhw4bJ5s2bpX79+rJo0SKbehsHDx6UyZMnS48ePeSZZ56RCxcuiIhIQkKCjBkzRr0vLy9Pdu7cWetjsJeWY/Ymehy3Hscsov24lboznuzatWvyxBNPSHx8vJowKiLSu3dvmTBhgoiUJJeuX79ejEajzY4fEZHx48fL4MGD1efekLOh9Zi9hRbjHjRokPo8Ly+vdjrugbwqYBER+eyzz+SDDz4QEZEFCxZIs2bN5NixY+Xus97q9fPPP0vXrl3VRMSy2988nR7HLKLPcetxzCLajNs6odwbTJkyRT7++GMRKe37ggULpG/fvuo9N2/elAcffFA6d+4s+/fvF4vFIjk5OdKnTx+1aJo30eOYRfQ7bq15XcBS9jeJiIgImTJlirqF0/r1GzduSFFRkVr90bp2gzfR45hF9DluPY5ZRJ/jtt6GrIzvsccek8mTJ9tcu3HjhgwaNEhCQkIkLi5OIiIiJDo62it3hehxzCL6HbfWvC5gUSi/aW3dulV8fX3LHRP/3//+V1auXCm9evWyqYTpzfQ4ZhF9jluPYxbR77gVsbGxal0d5cgFkZJ8jT179sif//xn2bhxoxt7qD09jllEv+N2htcGLNZiYmJkyJAhalEsZY1v06ZNaiXXukaPYxbR57j1OGYR/Y377NmzEhoaKkeOHFGvla1iWtfoccwi+h23s7w6YFHWAv/zn/+Ij4+PLF26VJ577jnp0aOHV1SydIQexyyiz3Hrccwi+hu3shywbt06adu2rXp9/vz5MnXqVDVgq0v0OGYR/Y5bK14dsFjr3bu3GAwGadmypXzyySfu7k6t0OOYRfQ5bj2OWURf454+fbrMnj1b9uzZI61atZKQkBDZvXu3u7vlUnocs4h+x+0srw9Yzpw5I127drU5aryu0+OYRfQ5bj2OWUR/475x44a0a9dODAaDBAQEqAdV1mV6HLOIfsetBd/qS8t5Nh8fH4wZMwZz5szx6AqHWtLjmAF9jluPYwb0N+7AwEC0atUKQ4cOxeLFixEYGOjuLrmcHscM6HfcWjCIeHDNaiIinSguLlaPktALPY4Z0O+4ncWAhYiIiDye1x5+SERERPrBgIWIiIg8HgMWIiIi8ngMWIiIiMjjMWAhIiIij8eAhYiIiDweAxYiIiLyeAxYiMht9u/fD4PBgMuXL7u7K0Tk4Vg4johqzaBBg9C9e3ckJSUBAIqKivDLL78gNDQUBoPBvZ0jIo/m9WcJEZH38vf3R1hYmLu7QURegEtCRFQrJkyYgPT0dCxduhQGgwEGgwHJyck2S0LJyclo3LgxPvzwQ3Ts2BH169fH2LFjce3aNaxbtw6tWrXCbbfdhmeffRbFxcVq20VFRZg9ezbuuOMONGjQAH379sX+/fvdM1AicgnOsBBRrVi6dClOnTqFrl27YuHChQCAr7/+utx9169fx7Jly7B582ZcuXIFDz30EB566CE0btwYu3btwvfff48xY8bgnnvuQXx8PADg97//PX744Qds3rwZERER2L59O+677z78+9//Rvv27Wt1nETkGgxYiKhWBAcHw9/fH/Xr11eXgb799tty95lMJqxatQpt27YFAIwdOxbvvvsufv75ZzRs2BBdunTB4MGDsW/fPsTHx+Ps2bNISUnBf//7X0RERAAAXnjhBXzyySdYu3YtXnvttdobJBG5DAMWIvIo9evXV4MVAAgNDUWrVq3QsGFDm2t5eXkAgC+//BIigg4dOti0U1hYiKZNm9ZOp4nI5RiwEJFH8fPzs3luMBgqvGaxWAAAFosFPj4+OHr0KHx8fGzusw5yiMi7MWAholrj7+9vkyyrhaioKBQXFyMvLw+xsbGatk1EnoO7hIio1rRq1QqHDx/GDz/8gIsXL6qzJM7o0KEDxo8fj8cffxzbtm1DVlYWvvjiC7zxxhvYtWuXBr0mIk/AgIWIas0LL7wAHx8fdOnSBc2aNUN2drYm7a5duxaPP/44/vCHP6Bjx4747W9/i8OHDyMyMlKT9onI/VjploiIiDweZ1iIiIjI4zFgISIiIo/HgIWIiIg8HgMWIiIi8ngMWIiIiMjjMWAhIiIij8eAhYiIiDweAxYiIiLyeAxYiIiIyOMxYCEiIiKPx4CFiIiIPN7/AwLdtoFvlkq7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "clipped_chennai.groupby(['time']).sum().reset_index().plot(x='time',y='heat_waves_per_time_period')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "edbb7722", + "metadata": {}, + "source": [ + "Write to file so it can be plotted on foursquare" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "b85b7632", + "metadata": {}, + "outputs": [], + "source": [ + "clipped_india.to_file('../../data/gldas/india_mean2.geojson', driver='GeoJSON')" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "7260750d", + "metadata": {}, + "outputs": [], + "source": [ + "clipped_india = clip_area(ds_mean2, INDIA)\n", + "clipped_india = convert_to_gdf(clipped_india)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "8bcd5859", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlg0lEQVR4nO3deXhTVfoH8O9NmqZNVwpt0tICBUplF0QruFAXOjDuuOO4jDMOCi6IDv4YdKwzY1FGERUHxw1xFBEUUFERXKggi2UvawsUKNBQ6N6mTdrk/P5I721D17TZaL6f58kjJDc3N8fSvHnP+54jCSEEiIiIiLxE5e0LICIiIv/GYISIiIi8isEIEREReRWDESIiIvIqBiNERETkVQxGiIiIyKsYjBAREZFXMRghIiIir2IwQkRERF7FYISIiIi8KsCZg+vq6pCeno5PPvkERqMRsbGxeOCBB/Dss89CpbLHNUIIvPDCC3jnnXdQUlKClJQUvPXWWxg8eHC7XsNms+HUqVMICwuDJEnOvyMiIiLyOCEEKioqEBcXp8QEzjy53f71r3+J7t27i1WrVom8vDyxbNkyERoaKubNm6cc89JLL4mwsDDxxRdfiOzsbHHnnXeK2NhYUV5e3q7XyM/PFwB444033njjjbfz8Jafn+9MaCGEEEISov0b5V1//fXQ6/V4//33lftuvfVW6HQ6/O9//4MQAnFxcZg2bRqeeeYZAIDZbIZer8fLL7+MyZMnt/kaZWVliIyMRH5+PsLDw9t7aURERORF5eXlSEhIQGlpKSIiIpx6rlPTNJdffjnefvtt5OTkYMCAAdi1axc2bNiAefPmAQDy8vJgNBqRlpamPEer1WLs2LHYuHFjs8GI2WyG2WxW/l5RUQEACA8PZzBCRER0nulIiYVTwcgzzzyDsrIyXHDBBVCr1bBarXjxxRdx9913AwCMRiMAQK/XOzxPr9fj2LFjzZ5z9uzZeOGFF5y+cCIiIuoanKow+eyzz/Dxxx9j8eLF2L59OxYtWoRXXnkFixYtcjju3KhICNFipDRz5kyUlZUpt/z8fCffAhEREZ3PnMqM/PWvf8X//d//4a677gIADB06FMeOHcPs2bNx//33w2AwAIDSaSMrLCxski2RabVaaLXajl4/ERERneecCkZMJlOTdh21Wg2bzQYASExMhMFgwNq1azFixAgAgMViQWZmJl5++WUXXTIREZHzrFYramtrvX0Z5zWNRgO1Wu3y8zoVjNxwww148cUX0atXLwwePBg7duzA3Llz8eCDDwKwT89MmzYNGRkZSEpKQlJSEjIyMqDT6TBp0iSXXzwREVFbhBAwGo0oLS319qV0CZGRkTAYDC5dC8ypYOTNN9/Ec889hylTpqCwsBBxcXGYPHky/v73vyvHzJgxA9XV1ZgyZYqy6NmaNWsQFhbmsosmIiJqLzkQiYmJgU6n44KaHSSEgMlkQmFhIQA4lGN0llPrjHhCeXk5IiIiUFZWxtZeIiLqFKvVipycHMTExKB79+7evpwuoaioCIWFhRgwYIDDlE1nPr+5Nw0REXVZco2ITqfz8pV0HfJYurL+hsEIERF1eZyacR13jCWDESIiIvIqBiNERERdlCRJWLlyJQDg6NGjkCQJO3fu9Oo1NcepbhoiIiLyjAceeAClpaVKMNFZCQkJKCgoQI8ePVxyPldiMEJEROQH1Gq1slK6O5ytMLd9UAs4TUNEROTjUlNT8fjjj2PGjBmIioqCwWBAenq6wzG5ubm48sorERQUhEGDBmHt2rUOj587TWO1WvGnP/0JiYmJCA4ORnJyMl5//fUOX+PCjXkdfi4zI0RE5FeEEKiutXrltYM16g53oyxatAjTp0/Hli1bsGnTJjzwwAO47LLLMG7cONhsNkycOBE9evTA5s2bUV5ejmnTprV6PpvNhvj4eCxduhQ9evTAxo0b8Ze//AWxsbG44447nL6+8uqOt/oyGCEiIr9SXWvFoL9/75XX3veP30EX2LGP3mHDhuH5558HACQlJWH+/Pn48ccfMW7cOPzwww/Yv38/jh49ivj4eABARkYGJkyY0OL5NBoNXnjhBeXviYmJ2LhxI5YuXdqhYKSMwQgREVHXNmzYMIe/x8bGKkuz79+/H7169VICEQAYPXp0m+d8++238d577+HYsWOorq6GxWLBhRde2KHrK6uu69DzAAYjRETkZ4I1auz7x++89todpdFoHP4uSRJsNhsA+9TTudqaDlq6dCmefPJJvPrqqxg9ejTCwsLw73//G1u2bOnQ9VXUMDNCRETULpIkdXiqxFcNGjQIx48fx6lTpxAXFwcA2LRpU6vPWb9+PcaMGYMpU6Yo9x0+fLjD11Bq6ngwwm4aIiKi89y1116L5ORk3Hfffdi1axfWr1+PWbNmtfqc/v37Y+vWrfj++++Rk5OD5557DllZWR2+hvJOZEYYjBAREZ3nVCoVVqxYAbPZjEsuuQR//vOf8eKLL7b6nIcffhgTJ07EnXfeiZSUFBQVFTlkSZxRU2tFTa2tQ88FAEk0N9HkRZ3ZgpiIiKixmpoa5OXlITExEUFBQd6+nC6huTEtLK/BqOe/Rv68Ozr0+c3MCBEREXVKZ9p6AQYjRERE1EmlDEaIiIjIm8o60UkDMBghIiKiTmJmhIiIqA0+1qtxXmtuLEtNlk6dk8EIERF1WfKqpSaTyctX0nXIY9l4RdjObJIHcAVWIiLqwtRqNSIjI5U9XHQ6XYd3zfV3QgiYTCYUFhYiMjISanXD0vadnaZhMEJERF2awWAAACUgoc6JjIxUxlTW2dZeBiNERNSlSZKE2NhYxMTEoLa2cx+a/k6j0ThkRGSd2ZcGYDBCRER+Qq1WN/tBSp3HbhoiIiLyqs4WsDIYISIiok5hay8RERF5jc0muDcNEREReU+lpQ62Tq4px2CEiIiIOkzel0ar6XhIwWCEiIiIOkyeookI6niDLoMRIiIi6jB5jZGI4MAOn4PBCBEREXWYnBkJD9K0cWTLnApG+vTpA0mSmtymTp0KwL5ufXp6OuLi4hAcHIzU1FTs3bu3wxdHREREvq202t7WG67z0DRNVlYWCgoKlNvatWsBALfffjsAYM6cOZg7dy7mz5+PrKwsGAwGjBs3DhUVFR2+QCIiIvJdyjSNpzIj0dHRMBgMym3VqlXo168fxo4dCyEE5s2bh1mzZmHixIkYMmQIFi1aBJPJhMWLF3f4AomIiMh3yauvhgd7KBhpzGKx4OOPP8aDDz4ISZKQl5cHo9GItLQ05RitVouxY8di48aNLZ7HbDajvLzc4UZERETtV1Zdi5paq1deu6GA1QvByMqVK1FaWooHHngAAGA0GgEAer3e4Ti9Xq881pzZs2cjIiJCuSUkJHT0koiIiPzOmQozrnk1E9e/uQFCdHL1sQ5QWnuDvdDa+/7772PChAmIi4tzuF+SJIe/CyGa3NfYzJkzUVZWptzy8/M7eklERER+Z8G6wzhbacahwkqY62wef32lgLUTrb0dCmOOHTuGH374AcuXL1fuMxgMAOwZktjYWOX+wsLCJtmSxrRaLbRabUcug4iIyK8VlFXj4y3HlL+bLFYEadQevQavTdMsXLgQMTExuO6665T7EhMTYTAYlA4bwF5XkpmZiTFjxnT4AomIiKh5b/x4CJZG2RCTpc7j16AUsHZiBVann2mz2bBw4ULcf//9CAhoeLokSZg2bRoyMjKQlJSEpKQkZGRkQKfTYdKkSR2+QCIiImrqWFEVlm21lzaoJMAm7JkRTyuVa0Z0Hc+MOB2M/PDDDzh+/DgefPDBJo/NmDED1dXVmDJlCkpKSpCSkoI1a9YgLCyswxdIRERETc37IRd1NoGxA6JxqLASJ0urPR6MWOpsymt6bAVWAEhLS4MQAgMGDGjymCRJSE9PR0FBAWpqapCZmYkhQ4Z0+OKIiIioqZzTFVi58yQA4Om0ZOgC7XUiJrNnp2nkThpJAsI8GYwQERGRd722NgdCAOMHGzA0PgI6rX2io8rDmZEyuZMmSAO1quXO2bYwGCEiIjqP7DlZhu/2GCFJwPQ0+yxFiJwZ8XABa8MaIx3PigAMRoiIiM4rr6w5CAC4aXgcBujtNZnKNI2HMyNyW29kJ4pXAQYjRERE542tR4ux7uAZqFUSpl3bULupC7RP03g6GGFmhIiIyI8IIfDv7+1ZkTtGxaNPjxDlMW8VsLpiwTOAwQgREdF5YcOhs9iSV4xAtQqPXZ3k8JicGfF0Aau8xginaYiIiPzA+xvyAAD3XNoLcZHBDo+FaO2ZkWoPF7CWc5qGiIjIfxjLagAAVyXHNHksuH6axuOZEZO9tTeyE5vkAQxGiIiIzgs1tfZAQ64PaSykfpqm2lsFrJymISIi6vqq64OR5nblbciMeLiAldM0RERE/kPOegS3khkxmT2cGZHXGWEwQkRE1PXV1NoAAMHNZEZ09QWsplovrcDKaRoiIqKurc5qg8XaSjCikdcZ8VxmRAjR0NrLAlYiIqKurabOpvy52WkaredXYK2yWGG1CQBcZ4SIiKjLa9wlow1o+tHtjQJWua03MEDVbFGtMxiMEBER+Ti5rTdYo4YkSU0eD2m0N40QwiPXVOqi4lWAwQgREZHPk9t6m5uiARoKWK02odSWuJurVl8FGIwQERH5PKWtt4XpEF2j+z1VxOqqfWkABiNEREQ+T86MaDXNf2wHqFUIrK8lMdV6JhhR2no72UkDMBghIiLyedW1rWdGACAkUG7v9UwRq1wzwmkaIiIiP1DTxjQNAOjqi1g9tVleaXX9JnmcpiEiIur6aupaL2AFGjbQM3movZcFrERERH6k2mLvkGltPQ8lGPFUAauJBaxERER+oz01I/I0jecLWBmMEBERdXk17Slg1bKAlYiIiNxEWWeklZqRYA8XsJYp64ywtZeIiKjLk6dpWqsZkVt7qz1UwMppGiIiIj/SnpqRhs3y3J8ZqbXaUFk/HcS9aYiIiPyAss5IYMsf2/JmedUeCEbktl4ACGcwQkRE1PW1q5umvoC1ygMFrPK+NGFBAVCrmu4i7CwGI0RERD6uPTUj8mZ5Jg9kRly5xgjAYISIiMjntaebRqetX2fEAwWs8jRNpAs2yQMYjBAREfm89qwzovNgAau8L40rOmmADgQjJ0+exB/+8Ad0794dOp0OF154IbZt26Y8LoRAeno64uLiEBwcjNTUVOzdu9clF0tEROSP2rdrr+cKWMvkBc+8MU1TUlKCyy67DBqNBt999x327duHV199FZGRkcoxc+bMwdy5czF//nxkZWXBYDBg3LhxqKiocMkFExER+RulZqQdG+VVeWCaptSFa4wAQIAzB7/88stISEjAwoULlfv69Omj/FkIgXnz5mHWrFmYOHEiAGDRokXQ6/VYvHgxJk+e7JKLJiIi8ifKRnkB7dibxgMb5SkFrN6Ypvnqq68watQo3H777YiJicGIESPw7rvvKo/n5eXBaDQiLS1NuU+r1WLs2LHYuHFjs+c0m80oLy93uBEREVEDpWak1QJWuZvGgwWs3pimOXLkCBYsWICkpCR8//33ePjhh/H444/jo48+AgAYjUYAgF6vd3ieXq9XHjvX7NmzERERodwSEhI68j6IiIi6rPbt2uvB1l4XT9M4FYzYbDaMHDkSGRkZGDFiBCZPnoyHHnoICxYscDhOkhwXQBFCNLlPNnPmTJSVlSm3/Px8J98CERFR11VrtcFqEwDaCkbs0zR1NgFLnc2t19SwL40XWntjY2MxaNAgh/sGDhyI48ePAwAMBgMANMmCFBYWNsmWyLRaLcLDwx1uREREZCdnRQAgqJXl4HWNpnDcPVVTavJia+9ll12GgwcPOtyXk5OD3r17AwASExNhMBiwdu1a5XGLxYLMzEyMGTPGBZdLRETkX+R9aVQSEKhu+WNbo1Ypj7t7rZEyF9eMONVN8+STT2LMmDHIyMjAHXfcgd9++w3vvPMO3nnnHQD26Zlp06YhIyMDSUlJSEpKQkZGBnQ6HSZNmuSSCyYiIvInjetFWip5kOm0alhMNlS7MTMihPBuMHLxxRdjxYoVmDlzJv7xj38gMTER8+bNwz333KMcM2PGDFRXV2PKlCkoKSlBSkoK1qxZg7CwMJdcMBERkT+pbkcnjUynUaMUtahyY3uvyWJFrdVew+KVdUYA4Prrr8f111/f4uOSJCE9PR3p6emduS4iIiJCw4qqrW2SJ2vYn8Z9wYicFQlUq1otqHUG96YhIiLyYe1p65WFBLp/rRF5wbPwYE2b00btxWCEiIjIh7VnwTNZsAc2y5M3yXNVvQjAYISIiMinKUvBtyszIm+W577MiLL6qovqRQAGI0RERD7NmWkauWbEnQWs8jSNq4pXAQYjREREPs2pYKT+mMYLpbmasvoqp2mIiIj8g7zoWbtae+s3y6syu7GA1cX70gAMRoiIiHyanOVoV2uvBzbLk6dpIl20Lw3AYISIiMinOTVNEyivM+KBAlZO0xAREfmHhkXP2v7IDvFgay+naYiIiPxETQcyI9UeWIGVBaxERER+wplFzzxSwMrWXiIiIv/iawWsZSYuekZERORXqmvtK7D6QgFrndWGivqsS6SO3TRERER+wZl1RkIC3btrb3lNQ5ATHhTgsvMyGCEiIvJhzrT2Brt5mkYuXg3TBiBA7boQgsEIERGRD3OmZiREKwcj7pmmKTXVt/W6sJMGYDBCRETk06qdWQ5eY586qbUKWOpsLr8WOTMSHsRghIiIyG84s85I44DFHWuNyNM/oVrX1YsADEaIiIh8mjM1I4EBKgTW13JUuWGqRl6/RF7PxFUYjBAREfkoIURDzUhg+z6y3VnEKp9T7tpxFQYjREREPspcZ4MQ9j+3JzMCNOxP444iVjnbEsLMCBERkX+Q60WA9nXTAA2ZkSqzGzIj9efUMTNCRETkH+QpGo1agqad63qE1BeXVte6PjNSaWZmhIiIyK/IHTHtzYoADfvTuCUzUj9Nw8wIERGRn3Cmk0YmBwruaO2tUgpYmRkhIiLyCzVOrL4qUzIjbihgNSnTNMyMEBER+YVqS/t37JXp3Njaq2RGGIwQERH5ByUz4sS0iE7ZudcNmRGlZoTTNERERH6hoWak/R/XcqeLOwpY5XMyM0JEROQnfK6A1czMCBERkV9RNslzaprGjQWsXA6eiIjIv3RmnRFXF7AKIRotB89ghIiIyC90ZprG1QWsNbUN++R4dQXW9PR0SJLkcDMYDMrjQgikp6cjLi4OwcHBSE1Nxd69e116wURERP6iI8GIHCi4OjMiZ0UkCQgK8HLNyODBg1FQUKDcsrOzlcfmzJmDuXPnYv78+cjKyoLBYMC4ceNQUVHh0osmIiLyBzUW52tGgjX2zIhcbOoqSvGqRg2VSnLpuZ0ORgICAmAwGJRbdHQ0AHtWZN68eZg1axYmTpyIIUOGYNGiRTCZTFi8eLFLL5qIiMgfVHdgBVY5M+Lqbhq5rVfn4noRoAPBSG5uLuLi4pCYmIi77roLR44cAQDk5eXBaDQiLS1NOVar1WLs2LHYuHFji+czm80oLy93uBERERFQXduRFVjrMyMuDkbkGhRX70sDOBmMpKSk4KOPPsL333+Pd999F0ajEWPGjEFRURGMRiMAQK/XOzxHr9crjzVn9uzZiIiIUG4JCQkdeBtERERdT3UHpmnkbhqXZ0bctBQ84GQwMmHCBNx6660YOnQorr32WnzzzTcAgEWLFinHSJLjPJIQosl9jc2cORNlZWXKLT8/35lLIiIi6rJqOlLAWp8ZsVhtsNTZXHYtyiZ5Ll5jBOhka29ISAiGDh2K3Nxcpavm3CxIYWFhk2xJY1qtFuHh4Q43IiIi6ljNSOMsiiuzI5VyAauL23qBTgYjZrMZ+/fvR2xsLBITE2EwGLB27VrlcYvFgszMTIwZM6bTF0pERORvOjJNExiggkZtn5Ew1bquo8Zdq68CTgYjTz/9NDIzM5GXl4ctW7bgtttuQ3l5Oe6//35IkoRp06YhIyMDK1aswJ49e/DAAw9Ap9Nh0qRJLr9wIiKirq4j0zRAoyJWF26WV+WmHXsBwKnw5sSJE7j77rtx9uxZREdH49JLL8XmzZvRu3dvAMCMGTNQXV2NKVOmoKSkBCkpKVizZg3CwsJcfuFERERdXcM0jXMTGbpANcqqa106TWNy0469gJPByJIlS1p9XJIkpKenIz09vTPXREREROjYCqyAezbLa9iXxsdqRoiIiMh9ajpQwAq4Z38aOTOi83bNCBEREXmGzSZQIy965mSdhjt27q30lUXPiIiIyDPMjdYIcXaaRq7rMLmwgNWktPYyM0JEROQX5HoRwPlpmmAlM+LKmhEfae0lIiIiz5CDkcAAFdRO7pIbohSwujAzYvHRRc+IiIjIPZQFz5zMigDuLWAN5TQNERGRf+jogmeAewpY3bnoGYMRIiIiH6SsMdKBD393FLDKq7myZoSIiMhPyNM0zhavAg3ZFFOta4IRIURDZoQ1I0RERP6hYfVV5z+q5VVS5XbczqqptUGI+nMzM0JEROQfajoxTRMsb5TnogLWxufpSA1LWxiMEBER+aDOdNPIrb2u2ihP2SQvUA2Vk23G7cFghIiIyAdVd3BfGqChtbe1dUZyTldg7tocVNTUtnm+hnoR10/RAE7u2ktERESe0dEde4GG9tvWMiNzVh/ED/tPo2dkEO68uFer56syu29fGoCZESIiIp9U04luGrmAtbWakf0F5QCAs5WWNs8nZ1jcsWMvwGCEiIjIJ3VmnRG5gLWldUaqzHU4WVoNACg1tR2MyF05IW5o6wUYjBAREfmkmlr7rr0dyozUBzAWqw21VluTxw8VVip/LqtuT80IMyNERER+p3M1Iw1BQ3NLwuc6GYzIe9y4Y18agMEIERGRT+rMomeBASoE1LfgNlfEmnu6QvlzuzIjZjkzwmkaIiIivyEXsHakZgRoCByaK2LNcQhG2l4YTemmYWaEiIjIf3RmnRGg9c3yGk/TlLerZsR9O/YCDEaIiIh8UmdqRoCGjIrpnMxIlbkOJ0qqlb+3r5umfgVWZkaIiIj8R3Unp2nkDe3OLWCVO2m0AfYQoMpibbbjpjE5M8JFz4iIiPxIjcsyI47BiDxFMzwhUrmvraka+RzuWg6ewQgREZEP6nTNSAsFrHInzUBDGMLqg4u2OmoaloNnMEJEROQ3OjtNo1MKWB2DEbmTpr8+DOHBGgDtCEaUjfI4TUNEROQ35BVYOzpNo6t/nqm2+WmaATGhiGhnMKIUsDIzQkRE5B/qrDZYrJ0LRppr7W3cSZOkD2t3MMLWXiIiIj9TU9fQ3dLRaZrmClgPn7FnRXqEBiIqJNDpzAiXgyciIvITjZdwl1twnRXSzDojOaftwUhSTBgAIFJXH4yYWg5GhBCsGSEiIvI3jdt6JUnq0DnkzfKqGgU2cidNkj4UANqVGTHX2WAT9j+zZoSIiMhPNLT1dvxjWq7vqG6UGZGLV5P09sxIe7ppKht143S0fqUtDEaIiIh8jNLW24kPf7m1t6pRAavc1jsgxjEzUtpKMGJqtGOvStWxLE1bOhWMzJ49G5IkYdq0acp9Qgikp6cjLi4OwcHBSE1Nxd69ezt7nURERH5DnqYJ6kT3yrmtved20gDtm6Zp6KRxzxQN0IlgJCsrC++88w6GDRvmcP+cOXMwd+5czJ8/H1lZWTAYDBg3bhwqKipaOBMRERE11tlN8oCGYlN50bNzO2mAhmCkteXg5QLYUDcVrwIdDEYqKytxzz334N1330W3bt2U+4UQmDdvHmbNmoWJEydiyJAhWLRoEUwmExYvXuyyiyYiIurKOrsvDdB0ozy5k6Z//RQN0KibprXMiDJN42OZkalTp+K6667Dtdde63B/Xl4ejEYj0tLSlPu0Wi3Gjh2LjRs3Nnsus9mM8vJyhxsREZE/UzIjnZmmOae1N7ewvl6kfooGaN80jfz8EDdmRpwOc5YsWYLt27cjKyuryWNGoxEAoNfrHe7X6/U4duxYs+ebPXs2XnjhBWcvg4iIqMuqttgXPevoJnlAowLW+sxI7mnHThqgIRgxWayw1NkQ2MyaJpW+lhnJz8/HE088gY8//hhBQUEtHnduT7QQosU+6ZkzZ6KsrEy55efnO3NJREREXY5Lakbqn2ups6HOalM6aZIaTdOEBWmUP7eUHfFEZsSpYGTbtm0oLCzERRddhICAAAQEBCAzMxNvvPEGAgIClIyInCGRFRYWNsmWyLRaLcLDwx1uRERE/swVNSONV0stqrIonTSNp2nUKglhQfaMR0vBiM/VjFxzzTXIzs7Gzp07lduoUaNwzz33YOfOnejbty8MBgPWrl2rPMdisSAzMxNjxoxx+cUTERF1Rco6I52oGQlUqxBQvy7I7hNlABw7aWRt1Y00dNO4Lxhx6sxhYWEYMmSIw30hISHo3r27cv+0adOQkZGBpKQkJCUlISMjAzqdDpMmTXLdVRMREXVhDSuwdjwYkSQJwYFqVNTUYWd+CQDHThpZpE6DEyXVLbb3VjVa9MxdXB7mzJgxA9XV1ZgyZQpKSkqQkpKCNWvWICwsrO0nExERkUtqRgB7e29FTR125dszI42naGTtzYyE+EpmpDnr1q1z+LskSUhPT0d6enpnT01EROSXapRpms7t2iJnM3adKAXgWLwqaysYkfemcWdmhHvTEBER+RhXZUbkItaKGntAkdRKZqTU1FJmxH4t7tqxF2AwQkRE5HNcUTMCNO2AaW6apq2de6vkzIivtPYSERGR+7mimwZwnFrpHtK0kwZoT81IfWbEjTUjDEaIiIh8jCvWGQEcp1aS9E3rRQAgMtgeoLSYGZELWDlNQ0RE5D9cN03T8PzmpmiAtnfuNXmgtZfBCBERkY9xRzDSXCcN0PY0jVwzwmkaIiIiP1JTa98or/PdNI2naVrPjJRWW5o8JoRoNE3DzAgREZHfqHFVAaumc5kRc50NNlF/LmZGiIiI/Ifr1hmxBxDdQwLRPVTb7DFyMFJTa4O5zurwmDxFAzgGNq7GYISIiMiH1FptqKtPR3Q2GJF35G2pk0Y+RrLvp9ckOyK39eoC1VDVb7rnDgxGiIiIfIicFQGAoE4uB3/tQD1uHRmPJ64Z0OIxKpWE8KDmO2rkepFzF09zNfeenYiIiJwi14uoJCBQ3blgJCokEK/eMbzN4yKCNSirrm2SGWnopHHfFA3AzAgREZFPaVwvIknumxpprKX9aaqUNUbcm7tgMEJERORDlGDEja2052qpo8bkgbZegMEIERGRT5H3pensgmfOaCkYkTMj7lzwDGAwQkRE5FNc1dbrjAhdG5kR1owQERH5jxofmqapsrBmhIiIyO9UW+xLwfvGNA1rRoiIiPyOV6Zp5GCkpW4a1owQERH5D68GIy3UjIQyGCEiIvIfrtokzxlt14xwmoaIiMhvyJmRII3nPqJbzIwoNSPMjBAREfmNhmDEFzIj9XvTsLWXiIjIf9R4cZ0Rc51NeX2g0aJnzIwQERH5D28EI6GBAVDVb4PTODvSsGsvMyNERER+o9oLBawqlYTwZqZqTFwOnoiIyP94o2YEaL5upEpZDp7BCBERkd+orrWvwOrJaRoAiDxn4TMhBEwWuWaE0zRERER+wxvrjABoMk1jrrPBahMAuAIrERGRX/HGCqxAwzRNaX0wIu9L44lrYTBCRETkQ3ylZkSeognWqKGWW23chMEIERGRD/FGNw3QEIyUy5kRDxWvAk4GIwsWLMCwYcMQHh6O8PBwjB49Gt99953yuBAC6enpiIuLQ3BwMFJTU7F3716XXzQREVFX5Y11RoCmmRFlwTM3r74KOBmMxMfH46WXXsLWrVuxdetWXH311bjpppuUgGPOnDmYO3cu5s+fj6ysLBgMBowbNw4VFRVuuXgiIqKuxls1I5G6c6dp5AXPfCwzcsMNN+D3v/89BgwYgAEDBuDFF19EaGgoNm/eDCEE5s2bh1mzZmHixIkYMmQIFi1aBJPJhMWLF7vr+omIiLoMIURDzUigZyspmmZG5E3yfCwz0pjVasWSJUtQVVWF0aNHIy8vD0ajEWlpacoxWq0WY8eOxcaNG1s8j9lsRnl5ucONiIjIH5nrbBD2blqPZ0bk1t5SkwVAwzSNu9t6gQ4EI9nZ2QgNDYVWq8XDDz+MFStWYNCgQTAajQAAvV7vcLxer1cea87s2bMRERGh3BISEpy9JCIioi6h8SZ13uumsWdE5Gkan8yMJCcnY+fOndi8eTMeeeQR3H///di3b5/yuCQ5tv8IIZrc19jMmTNRVlam3PLz8529JCIioi5BnqLRqCVo1N6ZpimvroUQAlUWz+xLAwBOv0JgYCD69+8PABg1ahSysrLw+uuv45lnngEAGI1GxMbGKscXFhY2yZY0ptVqodVqnb0MIiKiLkdu6w0K8GxWBGgIRixWG2pqbTCdDzUjMiEEzGYzEhMTYTAYsHbtWuUxi8WCzMxMjBkzprMvQ0RE1OXV1O9LE+ThNUYAIFQboCxuVlZdq2RGPFEz4tQr/O1vf8OECROQkJCAiooKLFmyBOvWrcPq1ashSRKmTZuGjIwMJCUlISkpCRkZGdDpdJg0aZK7rp+IiKjL8FZbL2Avs4gI1qC4ymIPRjyYGXEqGDl9+jTuvfdeFBQUICIiAsOGDcPq1asxbtw4AMCMGTNQXV2NKVOmoKSkBCkpKVizZg3CwsLccvFERERdibcWPJPJwUipydKQGfHAOiNOvcL777/f6uOSJCE9PR3p6emduSYiIiK/pNSMeGGaBnDcuVepGfG1FViJiIjIfRqmabzz8dx44TOf3ZuGiIiI3MebNSOAYzAi79ob4mvLwRMREZH7KDUjXpqmiWy01ohcwKo7H1p7iYiIyDWUmhEfyIw07NrLzAgREZHfkKdGvD1NU9qoZoSZESIiIj9SUWMPAEKD3J+NaE6zNSPMjBAREfmPSnMtACA8SOOV15dbewvLzbDa7NsHMxghIiLyI3JmJMzLmZGCsmrlPk9MGTEYISIi8hGV9R0soR7IRjQnUmcPRkpM9gxNsEat7FfjTgxGiIiIfES5khnxzjSNnBmReWL1VYDBCBERkc+oqLFnJLw9TSPzxL40AIMRIiIin1FZ491pGl2gGgGNpmU80dYLMBghIiLyGXIBq7e6aSRJcsiOeCooYjBCRETkA2qtNmVvGm+tMwI4TtXoGIwQERH5D3kvGMB7NSMAEKFrCEZCOE1DRETkP+QpmiCNChq19z6eHTIjLGAlIiLyH8pS8Frv1IvIGgcjbO0lIiLyI3Jbb7gXp2gAZkaIiIj8lrc3yZM5dtMwM0JEROQ35KXgvVm8CjAzQkRE5LeU1VdZM0JERETeUGH2vWkaZkaIiIj8SEWN703TMDNCRETkRxo2yfPyNI3DomfMjBAREfkNeZO8MC9tkidzzIwwGCEiIvIbvjhNw117iYiI/IivrDMSrFGje0ggAlQSuodoPfKa3n3HREREBKChm8bbNSOSJGHRg5egoqbOoX7EnRiMEBER+YCGAlbvfzQP6Rnh0dfjNA0REZEPUFZg9XIBqzcwGCEiIvIyIUSjAlbvTtN4A4MRIiIiL6uutcJqEwC8X8DqDQxGiIiIvExeY0QlASEeaqf1JU4FI7Nnz8bFF1+MsLAwxMTE4Oabb8bBgwcdjhFCID09HXFxcQgODkZqair27t3r0osmIiLqSsrltl5tACRJ8vLVeJ5TwUhmZiamTp2KzZs3Y+3atairq0NaWhqqqqqUY+bMmYO5c+di/vz5yMrKgsFgwLhx41BRUeHyiyciIuoKKn2krddbnJqYWr16tcPfFy5ciJiYGGzbtg1XXnklhBCYN28eZs2ahYkTJwIAFi1aBL1ej8WLF2Py5Mmuu3IiIqIuwpfaer2hUzUjZWVlAICoqCgAQF5eHoxGI9LS0pRjtFotxo4di40bNzZ7DrPZjPLycocbERGRP/GVpeC9pcPBiBAC06dPx+WXX44hQ4YAAIxGIwBAr9c7HKvX65XHzjV79mxEREQot4SEhI5eEhER0XmpslHNiD/qcDDy6KOPYvfu3fj000+bPHZu8Y0QosWCnJkzZ6KsrEy55efnd/SSiIiIzkvlyjQNa0ba7bHHHsNXX32FX375BfHx8cr9BoMBgD1DEhsbq9xfWFjYJFsi02q10Go9sxEPERGRL/KVTfK8xanMiBACjz76KJYvX46ffvoJiYmJDo8nJibCYDBg7dq1yn0WiwWZmZkYM2aMa66YiIioi2nopvHPYMSpdz116lQsXrwYX375JcLCwpQ6kIiICAQHB0OSJEybNg0ZGRlISkpCUlISMjIyoNPpMGnSJLe8ASIiovOd3E0Tzmmati1YsAAAkJqa6nD/woUL8cADDwAAZsyYgerqakyZMgUlJSVISUnBmjVrEBYW5pILJiIi6mrkzIi/FrA69a6FEG0eI0kS0tPTkZ6e3tFrIiIi8its7SUiIiKvKmdrLxEREXlTpZ+39jIYISIi8jJO0xAREZFX+XtrL4MRIiIiL6qz2mCyWAFwmoaIiIi8QM6KACxgJSIiIi+Q60W0ASoEBvjnx7J/vmsiIiIf0VC86p9TNACDESIiIq+qUNp6/XOKBmAwQkRE5FX+3kkDMBghIiLyKn9fYwRgMEJERORVFX6+SR7AYISIiMirKvx8KXiAwQgREZFXVfj5JnkAgxEiIiKvqqwPRsJZM0JERETewGkaBiNEREReJbf2hjIzQkRERN5QztZeBiNERETexOXgGYwQERF5VaXZXjPCbhoiIiLyigp20zAYISIi8hYhRMM6IwxGiIiIyNNqam2w2gQA1owQERGRF8hrjEgSEBKo9vLVeA+DESIiIi9pvEmeJElevhrvYTBCRETkJQ3Fq/47RQMwGCEiIvIaeZrGn9t6AQYjREREAIBTpdU4XmTy6GtWcvVVAAxGiIiIYLUJ3PTWr/j9G+uVvWI8oYLBCAAGI0RERDhWVIUzFWZUmutw0FjhsddVClhZM0JEROTfck5XNvqzB4OR+poRZkaIiIj83KHChgDEs8EIp2kABiNERERey4woBazspnHOL7/8ghtuuAFxcXGQJAkrV650eFwIgfT0dMTFxSE4OBipqanYu3evq66XiIjI5RoHII0DE3erMMvTNKwZcUpVVRWGDx+O+fPnN/v4nDlzMHfuXMyfPx9ZWVkwGAwYN24cKio8F2kSERG1V53VhiNnqpS/n6kwo6TK4pHXVjbJ8/PMiNPvfsKECZgwYUKzjwkhMG/ePMyaNQsTJ04EACxatAh6vR6LFy/G5MmTO3e1RERELnas2ASL1YZgjRrddBqcKqtBzukKpPTt7vbXZs2InUtrRvLy8mA0GpGWlqbcp9VqMXbsWGzcuLHZ55jNZpSXlzvciIiIPCW3flqmf0woLogNBwDkFHpmqqahm4bTNC5jNBoBAHq93uF+vV6vPHau2bNnIyIiQrklJCS48pKIiIhalVtfL5KkD0WSPhQAkOOhtUbkBdaYGXGDc3ceFEK0uBvhzJkzUVZWptzy8/PdcUlERETNkrMgSTFhSNaH2e/zUEcNp2nsXPruDQYDAHuGJDY2Vrm/sLCwSbZEptVqodVqXXkZRERE7SZnRgboQ6EPDwJgD0Za+yLtCnVWG0wWKwAWsLo0M5KYmAiDwYC1a9cq91ksFmRmZmLMmDGufCkiIqJOa9xJM0Afhn7RoZAkoMRUi7OV7u2oqTJblT/7e82I06FYZWUlDh06pPw9Ly8PO3fuRFRUFHr16oVp06YhIyMDSUlJSEpKQkZGBnQ6HSZNmuTSCyciIuqsxp00PSODoVJJ6B2lw9EiE3JPVyA6zH2Z+/L64lVtgAqBAf69BqnTwcjWrVtx1VVXKX+fPn06AOD+++/Hhx9+iBkzZqC6uhpTpkxBSUkJUlJSsGbNGoSFhbnuqomIiFygcfGqSiXV/zkMR4tMOHi6AmP693Dba7NepIHTI5CamgohRIuPS5KE9PR0pKend+a6iIiI3E5ebTUppuELc7I+DGv3nXb7SqwNnTT+PUUDcG8aIiLyYzmNMiMypb3XzR013LG3AYORFtRZbaiz2rx9GU4TQuDNH3OxfPsJb18KEZHPkxc8G9AoGEk2NLT3tjYT0FlyZsTfO2kAF7f2dhWWOhsmvP4LNGoVVj12OQLU50/MtiO/FK+uzUGgWoXrhsVCG6D29iUREfmkOqsNR842naZJ7BECtUpCRU0djOU1iI0Idsvrl7NmRHH+fMp60N5TZTh8pgoHjBU46MGtpF1h0+EiAIDFasOBgvPr2omIPOlokQm1VgFdoL2TRqYNUKNPdx0A9+7gK0/ThGpZM8JgpBnbj5c2++fzwa+Hzip/3n2yzItXQkTk25ROmpiGThqZPFWT68YvpJXMjCgYjDRj+/GShj8fK2nlSN9SU2vF1kbXm32i1HsXQ0Tk45ROGn3TpSfkaZuDbtyjRm7tDWcwwmCkOTsafaA3Dkx83fbjJbDUNRTd7j7BzAgRUUtyChsyI+dSiljduHuvUsDKYITByLmMZTU4VVYDlQRIEnCsyISzlWZvX1a7bDxkrxe5tG8UACC3sBLVFmtrTyEi8luHlE6appkRubsm93QFbDb3dNQ0tPayZoTByDl21GdCkg3h6B9t/2E8X6ZqNh6214tMHBGP6DAtrDaBfQXMjhARnau2cSeNvmlmpHf3EGjUEkwWK06WVrvlGuRuGrb2MhhpQp6WGdkrEhf17lZ/X6kXr6h9Ks112FU/LTOmf3cMj48A4JtTNQVl1ThgLPf2ZRC5zN5TZcqXATo/HCuqQq1VIOScThqZRq1Cv2j3Ln7GAtYGDEbOIQceI3p1w8he9cHIeZAZ+S2vCFabQK8oHeK76TC0ZyQA3wtGzHVW3PqfjbjujQ3Yw24f6gLW557BLW9txD3vbcEhN9YXdAVZR4txosTk7csA0FC82l8fBkmSmj1GLmx1V3tvhZnTNDIGI41Y6mzIrv+AHNkrEiPrMyO7TpSi1sdXY5XrRcb06w4AGKZkRkq9dUnN+mZ3AU6V1cBqE5j3Q463L4eoU7YeLcZfPtoGi9UGIYAvd5709iX5rJ35pbj97U2474Pf3LqqaXvlnG65eFWW7OZl4blRXgMGI43sPVUGS50N3XQaJPYIQd8eIYgI1sBcZ8O+U749rbCxfrEzeYfJofXByJGzVUqRlLcJIfD+hjzl7z/sL8Su/FLvXRBRJ+w5WYY/LsxCda1VSfN/ufOUT3zQ+qKVO+yB2pEzVdjrA79PcwubLgN/robMiOuDESEEp2kaYTDSyI5GUzSSJEGlkjCyVyQA327xLa6yYF+B/R/36L72zEiPUC16RgZDCPjEP3wAyDpagr2nyhGkUeHagXoAwGvMjtB56FBhBe774DdUmOtwSWIUvnr0MgRr1DhebMJOBthN2GwC32YXKH9fvcfY7ueeLK3GzwcKXR7kKQueNdNJI0uuf+xQYSWsLu6oqam1oa7+nJymYTDioHHxqkyuG9nmw3Ujm4/YsyID9KGIDtMq9w/t6VtTNR/UZ0UmjozHs9cNhFolYd3BMz49tkTnyi824Z73tqC4yoJh8RF4//5R6B6qRdpge4D95c5TXr5C37P1WAkKKxqWSFi9t33BiBACf/owC3/8MAtPL9vtsunyWqsNeWerADTf1itLiNJBG6CCuc6G48WurXWR60UkCdBpuIcYg5FGGmdGZHJHzQ4f7qiRq/jH9OvhcP9QH+qoyS82Yc0++y+gP47pgz49QnDryJ4AwNoR8ric0xXYX+B8xtBYVoNJ723G6XIzBuhDseiPlyjfam+6MA4AsGp3wXm547c7rdptD9DSBumhUUs4VFiJQ4VtT33sPlGGA/UroH6x/QT+tGirslBYZxw9a++kCdUGIC4iqMXj1CoJ/WPcUzdS0ait99yl6P0Rg5F6p8trcLK0GioJGJ4Qqdw/PCESKsmeKjSW1XjvAltxbvGqbHh8JAAoRbnetGjjUdgEcEVSDyUt+tjVSQhQSVifexa/5RV7+QqpObVWG44X+Ub3g6sUVtTgpvm/YsLr6zFz+W6Ut7OmqrCiBn94fwvyi6vRu7sOH/8pBd1CApXHr0iKRjedBmcrzdhUn60kwGoT+Dbb/kXk7pReuKy+ru37vafbfO7n204AsGd5gzVq/JJzBne9swmFFZ37Xax00sSEtthJI5OnanJcvCy8UrzKNUYAMBhRyO27A/RhDgvQhGgDkGwItx/jg3UjBWXVOHK2CioJSOnrGIzI0zTHikwoNVm8cXkA7GugfJaVDwB48PJE5f6EKB3uuDgBAPDaWmZHfNE/V+3Dlf/+2ak5flertdrw7MpsvLf+iEvOt2L7SVTX2lcm/vS3fKTN/QU/7m/5g7G4yoKXVx9A6r/X4VBhJWIjgvDxn1IQE+74jVqjVuH3Q2MBcKqmsd/yinG20oyIYA0u69cD4wcbALRdN1JTa8VXu+zj+Mz4C/DpXy5FVEgg9pwsx60LNuLImY632+a2sgz8uZQiVhe3bTcUr7JeBGAwothRX3Qmt/M2dlHvSAC+ud7IpvoumqE9IxAR7PhDHaHToHf9NtjezI58vjUfFeY69I0OwdikaIfHpl7VH4FqFTYdKeKiUT6m0lyHZVvt30w/aNQF5Wnf7zXi483H8a9v9nc6gyaEwGdb7YHxvZf2Rp/uOhjLa/CnRVsxbckOlFQ1BO1FlWa89N0BXP7yT1iw7jBMFiuG9AzHJ39OQUKUrtnz33Shfepx9R4jamq5FQMAfJNtDyh+N1iPwAAVxg3SQyXZfyflt1KH8cP+0yirrkVcRBBG9+uOCxMisfyRMejdXYf84mrcumBjh78g5rayDPy5kg310zQuz4zIa4wwMwIwGFHIgcbIXk2DEaWI1QczI7/WT9GMPqdeRDasfqrGW3UjNpvAwo1HAQB/vCyxydxoz8hg3HWJPTsyb21uhyrmj5ypxDe7C9hS6WLfZhcoGYTfjha3a47fHZb8lq/8+e9f7ulUPca2YyU4cqYKwRo1ZoxPxndPXIm/XNkXKglYufMUxr2WieXbT+Cl7w7gijk/4+3MhiDkvftG4etHL0ff6Ja/TY/q3Q1xEUGoNNfh5wOFHb7OrqLOalMyINcNs9fUdA/V4pJE+/5Z37dSyCpP0UwcGQ91/e+NPj1C8MUjYzAsPgIlplpMenczPt92wuk9uJQ1Rlpp65XJu/ceOVvp0vWmKrhJngMGI7Avdra7PnMwolEnjUwuYt17stynvu0IIbBJKV7t3uwxw+qnarK9FIz8dKAQx4pMCA8KUApWzzUltT8CA1T47WixEly1V5W5DpPe3YKpi7c7rGHSGWcrzfg2u8BhB2R/9EX9h0Gg2v5ronFQ4CnHi0zYcOgsJMm+zfoBYwU+rA9uO2JpfVbkumGxCAvSIDhQjb/9fiC+eGQMkmJCcbbSgulLdzUbhFw7SN9mfYFKJeGG+kLWrjxVc+RMJV5efQBFbWwiap+isSBSp3H4HSVP1bQUjJwur8EvOWcAALdeFO/wWI9QLT596FKkJkejptaGp5ftwsh/rsXD/9uGlTtOoqy69RogS137OmlkPSODoQtUo9YqcKyoqs3j26uC0zQOGIwA2FdQDkudDZE6Dfr2CGnyeK8oHbqHBMJitWHvKe8Xg8qOFZlwqqwGGrWEi/tENXvMUC+vxLpwoz1AuDulF3SBzX8DMEQE4Z6UXgCAuWsPOpXhmP/zIRjL7cVsc74/iIOdTKVWmetwx9ubMOWT7fjToiyYLJ2v3O8ob2Z68otN2JJXDEkC/n7DIAD2bgZznWeD8c+2HgcAXN6/B/72+4EAgHk/5OJ0ufMFjJXmOqzabV/r4s76WiXZiF7dsOrxy/HY1f2hUUsY2tPestveIKSxm4bbg+6fDha2+cF4PrLZBB5fsgML1h3G9KW7Wv05XVW/tsj4wQZo1A0fN2n1wYi95bfp/8sVO07CJuyZpsRmfieHaAPw7n2j8MQ1SegZGYzqWitW7zVi2mc7cdE/1+Le97fgky3Hmj330aIq1NkEwrQBiG2lk0amUklK3chBo+vqRuRpGm6SZ8dgBA1TNCMSIpv9pSNJklJLsv1YqScvrVW/1mdFRvTqhuDA5vvUh/SMgCQBp8pqcKai9W8xrnbAWI5fDxVBrZJw3+g+rR77SGo/BGlU2H68FJn134jacuRMpVLU2Dc6BJY6G55YsqNTH5jPfbkHR+q/Na3PPYt73//NKx8oh89UIvWVdXjk421OLbb0wYY83PPeZhSUdW6X0eXb7atljunXHXdf0guxEUEoMdW2qwPCVeqsNqVm5e5LeuGOUQm4MCESleY6vPjNfqfP983uUzBZrOjbIwSjmqkN0wao8VRaMva88Dt89ehluGagc0GIbGBsGJJiQmGps7U6DXG+WpVdgD0n7W3RmTlnlOmUczlO0cQ6PBYXGYzhCZEQAlhzzs+UEEI5523nZEUa06hVeHLcAGx45iqsesweSA7Qh6LOJrA+9yxmrdiDS178Ebf851f8Z90hZd+gXGVPmrY7aWQD3NDeKxewhnOaBgCDEQCNilebqReRKZvm+VDdiLIEfAtTNIA96pZ3nvT0xnQLNxwFAIwfYmh2V8zGYsKCcO+lvQEAGd/uR1UbawkIIfCPVftQaxUYOyAaS+or7Q8YKzB3Tcc6c77YdgLLt5+ESgKevW4gwoMCsO1YCe5+ZzPOtpGOdqXymlo89NFWHCsy4bs9Rry/oX1dJL/lFeOf3+zDr4eKMOPz3R3OrAghsHyH/cPg1vr5+jtG2TMJn2453qFzdsRPBwpRWGFG95BAXDtQD5VKwr9uHgKVBHy16xQ2HnKu4HlpfWBz+6iEVj+EtAHqDgUhMkmSlDVHvupiUzWWOhteXXMQQEPL6z9X7Ws2U7X5SDGKqyzoptMoK0M3NmFI81M1u06U4VBhJYI0Kvz+nCCmOZIkYUjPCDyVlow1T47FT0+NxTPjL1CWaNhxvBRzVh/EtXMzcfUr6/BO/ReY9nTSyJINcmbEdcEI96VxxGAEjYpXm/m2JJPrRrYdK/GJQkmbTWBzfTAi9+23RK4b2eXBqZqiSjNW1G8a9uBliW0cbffw2H7oERqInNOVePKznbC1khH4cX8h1h08A41awvM3DEJMWBBmTxwKAHhn/RFlVdr2OnymEs99uQcAMO3aAfjzFX2x5C+j0SM0EPsKynHH25twsrRz2Yb2sNkEpi3ZiSNnqqCrz3a9siZHWbq6JZXmOjy1bCfkH831uWfx8eZjHbqGbcdKcKzIBF2gGr+rT6ffcXECJAnYdKRImW93tyX17eC3XRSPwAD7r6ohPSPwh/qg9bkv97S7rudQYQW2HSuBWiW1WLvkSjfWT9VsPHwWhR2YUvJVS7KO41iRCT1CtVj2yGgMj49AeU0d/rY8u8nvRXmhs/FDYhGgbvpRI/9sbTpc5LD0wOfb7P/fxw82ILwD9RR9o0PxSGo/fDn1Mmz52zV48ZYhGDsgGhq1hCNnq5T9sNpTLyKTGwF+PHDaZdkReQVWTtPY+X0wUli/2Jl0zmJn5xoWH4EAlYTCCrNHPpTacvB0BYqqLAjWqJXFzVoi1414soj17czDsNTZMDwh0mF5/dZ0D9Xiv/eOQqBahTX7TuPVtQebPa6m1op/rNoHAPjT5X2V7obfDTbgjlHxEAJ4aumudi9mVVNrxdRPtsNksWJMv+6YelV/AMCguHAse3gMekYG48jZKtzeybUN2mPu2hz8dKAQ2gAVlvzFXqRnqbPhqWW7Wu0i+efX+5BfXI2ekcF4atwAAEDGtwdwtAOBwxfb7RmECUNiEVL/i7JnZDBSB9jbspdkuT87cqq0GusO2rtRzq3veGpcMrqHBOLwmap2Fy3LWZGrkqObrA/iDr266zCiVyRsAkqdyvmuylyHN37MBQA8cU1/hAdpMOe24dCoJfx4oBArG+1YXGu1KUu+X99CdiOxRwguMIShzibw4377/+uaWquSTbrtooRmn+cMfXgQ7knpjUUPXoLtz43D/EkjcOPwOFzaNwo31mev2uPiPt1wzQUxqLUKzPh8t0v2qWEBqyO/D0bkaZfkcxY7O1eQRo1BcfbFz3xhLxV5iubixCjlW2NLlPbek2Ueyeos+e043l1v/5CYktrPqZT3Rb274eXb7BmOt34+jBU7ms5Hv/vLERwvNkEfrsVjV/d3eOzvNwxGrygdTpZW4/kv97brNf/1zT4cMFage0gg5t15odJGCNh/YS57eDT6RofgVFkN7vjvJrcVMX+bXYD5Px8CAMyeOBTD4iPx0sRhCA8KwO4TZViw7nCzz1u77zQ+25oPSQLm3jEcU6/qj9F9u6O61oqnl+1y6hdnTa0Vq3bZPzxvvcgxg3DXJfYi4y+2nXB7p9HSrfmwCeDSvlFNWmkjdBrMrC9mfePHXJxq48tBrdWG5fUBljzd5Ak3Da/vqtnVNaZq3lufh7OVFvTprlN+FpINYXjimiQAQPpX+5SC0Y2Hi1BqqkX3kECkJDZfXA80ZEfkwOWH/adRXlOHuIigVqefOyIsSIPrh8XhjbtHYMlfRiMmrP1BqSRJ+NctQxCmDcDO/NJOdXTJOE3jiMFIM/vRtESuG+nIPjXbjpXgu+yCVqceWlJTa0XO6Qqs3mPE25mH8cznu5XCzcva8Q92UGw41CoJZyrMOF3u3tqHH/efxqyV9umOx6/ur/yyccYtI+Ix9ap+AIBnPs92CP5OlJjw1jr7B/bffj9Q+eYuC9UG4LU7h0Ml2Svy5VRxS77LLsDHm+3f9OfeeWGz35rjIoOxdPJoDI4Lx9lKC+54exM+/e24SwO7A8ZyPL1sFwDgT5cnYuJIe+GeISIIL9w0GADwxk+52HfODsxFlWbMXL4bAPDQFX2R0rc7VCoJ/759GEK1Adh6rATvOrFy6Zp9p1FhrkPPyGBcmuj4s3X1BTGICdPibKUFP7SyYmlnWW0CS+unaO6u/9A7160je+LiPt1QXWvFP+uzZC356UAhzlZa0CNUi6suiHH59bbkumFxUEnArvzSDmWoOkoIgcKKGmw/XoKvdp3Cf9Ydwt9WZOOvy3Zh4+GzHfq5Lao0451f7MHwU2nJDp0xk8f2w+C4cJRV1+K5lXsghMA3yhSNodkpGtmEofbfD7/knEGVuU4pXL31onif268lNiJYCYJf+f5gu7ZJsNlEiwX1lVxnxIHfj8KOZnbqbcnI3t3w4cajTmdGvtx5EtOX2r+hXtInCi/dOrTVhZMAewCyaONRLP7tOI4Xm9Dc7w+VBFwzsO1frsGBaiTFhOKAsQK7TpTCEOF8gNAeO46XYOri7bDaBG6/KB5P1k8XdMRT45JxqLAS3+89jcn/24qVUy9DfDcdMr7dj5paGy5JjMKNw5tPs17UOwpTUvtj/s+HMGvFHozqHQVDMy18+cUmzPjC/kH+8Nh+GDsguskxsh6hWnz6l0sx+aNt2HSkCDOXZ2P1HiNevnVYs+d2RkmVBQ99tBUmixWX9++BmRMucHj85gt74rtsI9bsO43pS3fiq0cvR2CACkIIzFyejbOVFiTrwzC90XjHd9Ph79cPwowvdmPumhykJkfjgvptDVrzhbLQVM8mHwYatQq3j4rHWz8fxqe/HVeWPj9XTa0Vy7bmw1xnQ/+YUPSLDkXPyOB2f7j8knsGp8pqEKnTtBjMSpKEf9w0BNe/uQHf7THim90FTTo2ZMvq1xa5dWRPhw9Rd4sO0+Ky/j2wPvcsXl2bg1G9u8FcZ0VNrQ3mOivMtTZoAlS4J6UX4rs1v6KrM9YdLMTLqw/iyJlKmFvIXC3bdgKD48Lx0BV9cd2w2HaPx5s/HUKVxYqhPSNw3Tn/3zVqFf5923DcOH8Dvt97Git3nlS6rq4f1vpUSLI+DH2663C0yITPsvIb1hYZ2XIXjTfddXECvtp1EpuPFOP/lu/GJ39OaTHzm19swl/+tw0nik144abByhcMmdza25G6mK7Ir4MRS51NWZm0teJVmVzEuq+gHCZLXYvrZjS2dGs+nvliN4SwBw+/HS3GhNfX48lxA/DnyxObfGsQQmDV7gK8vPoATpQ0pJ/DtAFIjA5BYo8Q9Okegr7RIRgWH9lsD35zhsdH4oCxAtknyjqUrWhL3tkq/GnRVtTU2pCaHI2MiUM71ZGgUkmYe8eFuP3tTdhXUI4/L9qK6eMG4NtsI1QS8MKNg1s9/xPXJiEz5wyyT5bhxvkb0Kd7CCJ1GnTTBSIyxP7fb7MLUFFTh5G9IvFUWtuBU3iQBh//OQUfbMjDv9ccRGbOGaS9lokXbhqMmy/s2aH3W2e14bFPdyC/uBoJUcF48+4RTX4mJEnCi7cMxdZjJThgrMAbP+bi6d8l44vtJ7Fm32lo1BLm3jkcQedsQ377qHh8v9eIHw8UYvpnu7By6mWtTumdLq/B+lz7h8G5vzhld13cC2/9fBjrc88iv9jUZFn040UmPPLJNuw9J4MTpFEhsUco+seEIlkfijsv7oXoMG2zr7HkN3um6pYRPZu8p8YGxobj/tF98MGveZi6eDuyjvbB/024wOE5heU1+Pngmfrx8NwUjeymC3tife5ZfL3rFL5uYbrm820nsOiPlyjTwM6y2gRe/yEHb/58SPnSopLs3+R7dgtGfLdgxHfT4WylGcu3n8DeU+WY9tlOvPTdATxwWR/cfUmvJltJNJZfbMInW+zF0M+Mv6DZoHJQXDimXtUfr/+Yi78u2406m0CPRiuttkSSJPxuiAH/zTyCOd8fgE3Y6zP6tPP3mqepVBJemjgM41//BRsPF2Hp1nzceXHT7N22Y8X4y0fbUFS/vcD0pbvwS84Z/PPmIUqNSONde8nPg5H9BeUw19kQEdz8YmfniosIgj5ci9PlZuw+UYZLm2lXa+yTLccwa4V9yuLuS3rhkbH9MGtlNtbnnsVL3x3Aqt2nMOfW4Y1qUYrxz1X7sbO+2lsfrsVT45Jx1QUx6BEa2KkP96HxEfhsa76y0qwrnakw4/4PfkNxlQVDe0bgrUkjXfINNEQbgPfuH4Ub5/+KA8YKTP54GwDgvtF9MDC29V/cGrUKr915ISb+51cUVphR2MIaK+FBAXjj7hHtvl61SsJDV/bFVRdEY/rSXdh9ogxPfrYLq/cY8eItQ9EjtPkP2OZY6mx4/qs92HDoLII1arx73yiHXWAbiw7T4l83D8GUT7ZjQeZhDIoLR/pX9pqYadcOwOC4iCbPkSQJs28dit+99gv2FZRj/k+5mJ6W3OL1rKxfaOqiFhaaAuybG16RZP+2/1lWPp7+XcP5fj5QiCeW7EB5TR2iQgJxSZ8oHDlbiaNnTaiptWF/QTn2F5TjawALfz2Kl24dhnGD9A7nLyyvUYoZW5qiaeyZCcmos9nw0aZj+HDjUfx66Cxeu/NCDKnvIPt8+wlYbQKjendTtoL3pBuGx2L78RIUlpuh1aigDVBBG6C2/1ejwroDZ3DwdAXu/O8mvHv/qDZ/p5zrbKUZTyzZoaxc/IdLe+EvV/RDbGRQsz/Tf01LxidbjuHDjcdgLK/BS98dwJs/5uK2i+Jx+6gEZdwae3XNQdRaBa5I6oHLk1ru3Jt6VX98v9eIA/Xtr78fanCov2rJ+MH2YKSm1p7NaW1tEV/Qp0cInhqXjBe/3Y9/fbMfqckx0Dea3l2x4wSe+TwbFqsNg+PCcVVyDBZkHsbKnaew/Xgp3rh7BIb2jICpfgl71ozYScIX+lQbKS8vR0REBMrKyhAe3vCBU2qy4NPf8nGmwoxbRvRUOkRac7q8Bu+tP4JVuwvsAUd0CPr2CLX/NzoUvx46i39/fxCpydH48I+XtOv6pnyyDd9mG/HX3yUrXRfN+WBDntLx8cCYPnj+hkGQJElZ0Oefq/ahvKYOASoJf76iL44XVynbbOsC1Zh8ZT88dGViu7Iv7bH7RClunP8rInUa7HhuXJuBTbXFimKTBcWVFhSbLNCoJMR30zX5JVdlrsPd727G7hNl6BWlwxePjGnxG29H7Thegjvf2QxLnQ1RIYH4+alUROjal9osqbJgX0E5SkwWlJhqUVpV/1+TBZXmOjwwpg/GtNEa3ZI6qw0L1h3G6z/mos4mEBUSiFm/H4ibR/Rs85fwAWM5nvxsF/YX2DMI/7lnZIvTHo099ukOh2/YF/XuhqWTR7f6et/sLsDUxduhVklY/siYZrvGhBD43bxfkHO6Ehm3DMWklJYDgW+zCzDlk+2ICdNi4/9dDUmS8PqPuUqnxfCESCy4ZyTi6teWqbPacKKkGofPVOJQYSVW7DipfGDddXECnrt+kFL789bPh/Dv7w9iZK9ILJ9yWZvjIVt3sBB//Xw3zlSYoVFLeHLcAPzlir4Y99ovyDtbhTm3DlN2iPYlZdX2NWV+yytGYIAKb9w1AuOHtC9zufVoMR5dvAPG8hoEa9SYPXEobh7RvrZlc50VX+48hffX5+Fgo1bVgbHhuGNUPG66sCeiQgKx91QZrn9zA4QAVj12ebPBSmN7Tpbhprd+hdUm8NlfLm2yk3hzbDaBy17+CQVlNQjSqJA161qf7zCps9pw64KN2HWiDOMG6fHOvRdBCHs3nFyEnjZIj3l3XQhdYAC2HSvG45/uxMnSagSoJEwe2xdv/WyvwTn4r/HQBrScATyftPT53R4+H4ycKDHh/Q15+CwrX4kkAXsq78HLEjFukL5JWvt4kQlv/3IYn289AUs7NjaaPm4AHq+vCG/Le+uP4F/f7IdGLeGKpGhcPywW4wbpHf7xvJ15GC99dwAAMPnKvvi/CRc0+fAvrKjB31fuVarIAXtq9Y5RCZg+boDL2w/NdVYMef571FoF1s+4SkmvV9TU4tdDRfVTGqUoqapFUZVZ+ZZyLpUEGMKDEB+lQ3y3YBwvMmHrsRJEhQTii0fGtHvayFnfZRfgn6v24bnrB2FCOz60PWnvqTI8tXSX8gE7QB+K6eOS8bvBTVfwtNoE3lt/BK+uyYHFag+uZk8c2u6ps5IqC9Lm/YIzFWboAtX47okr0Lt722MuBzE9QrV48PI+uPviXg5ZmOwTZbhh/gYEBtg/DFpL21vqbBg9+0cUVVkw59ZhWJVdoMz1/+HSXnju+kGt/nI111nx6pocvLv+CIQAenfXYe4dF2JEQiRSX1mH48UmzLltmNOdL8VVFvxtebbyb2qAPhQ5pyuhC1Qja9a1TYqdfUVNrRWPf7oDa/adhkoC/nVz68GgEALvb8jDS98dQJ1NoF90CN7+w0XKkuXOEEJgw6GzWJKVj7V7Tyu/LzVqCdcO1ON0eQ22Hy/FDcPj8ObdI9p1zjV7jThVWo37x/Rpdzb3ha/3YuGvRzFxRE/MvfNCp9+HNxwwluOGNzeg1irwyu3D8dOB08oXykdS++GvackOU1pl1bX42/JsfJPd0OodGKBCzr8mePza3cUng5H//Oc/+Pe//42CggIMHjwY8+bNwxVXXNHm8+Q3s+VAPhbvOIOvdxcorYkXGMLQPyYU3+81otZqv69nZDAeGNMHd1ycAGNZDRasO+TwnIv7dMNDV/SFRq3C4TOVOHK2CkfOVOLImSoUVpihVkn4+tHL2z1fayyrwUMfbUV2o+mOwAAVrkqOxg3D45B7uhKv139DfPzq/nhy3IBW/0F+l12Al1YfQGKPEPzfhAvaVWTYUTfO34DdJ8rwdJr9mjJzzmD7sRLUtdDho1FLiAoJRDddIGrrv902VxgXpFHh04cubVdHUldlqbPhvQ1H8Pa6wyivnwseHm9fFfKKpB6QJAn5xSY8tXQXfjtaDAC4dmAMZk8c5nQm6ddDZ/G3Fdl4Ki25xSLec5WaLLjlPxuVBcu0ASrcfGFPPHCZfcor/au9+HDjUVw/LBbzJ41s83yzv9uP/2Y2dOkEaVTIuGVoi7Umzdl0uAhPLd2JU2U1UEnA74fGYtXuAoRpA7Bl1jUdygrKmcf0r/aiqv7Lyx2j4jHntuFOn8uT6qw2PPflHnxavxnh9HED8NjV/ZVsqrG8pn6aqwK/HjqrtPZfPywWL906zCV1B6UmC77ceQrLtuUry70DQIBKwg/Tx7q1jqOiphZLfsvHbRfFtzhV6YteW5uj/L4H7L8zZ08c1uJUkxACS7fmI/2rfaiutaJHaCC2PjvOU5frdj4XjHz22We499578Z///AeXXXYZ/vvf/+K9997Dvn370KtX6/PA8ptJmLYUKq392/tl/btj8pX9lF/qp8tr8PHmY/hky3EU1xcIBWlUDt/mxw6IxtSr+rdaQFVRUwubDe1O+Td2qLACX+8qwNe7T+HImaZte0+nDcCjV7cv2+Ips1Zk45NmlvPu2yMEVw6IxqV9u8MQEYQoXSCiQgMREui4LLYQAmcqzThRUo0TJdXILzbhdHkNfj801um57q6qrLoW7/5yBB/8mqdk8lISozA2ORpv1XckhASq8fcbBuGONpYld7WaWiu+2V2AhRvzHD5sUhKjcPB0BUpNtVj4x4txVXLbHVp5Z6tw1SvrAAB9uuuw4A8XtVnH05yy6lo8/+UerGy0bPofLu2Ff9081OlzNXa8yIS/fm6fBlv68Gi3BvmuIoTA3LU5ePMne5r/6gtiUG2xYr+xHKUmxwX8NGoJz143CPeN7u2Wn6F9p8qxbFs+ftxfiLsuScCU1JanpP2Zuc6KG97cgJzTleim0+C/945qs2gXAA4VVuLFb/YhpW93PDy2nweu1DN8LhhJSUnByJEjsWDBAuW+gQMH4uabb8bs2bNbfa78Zno/uRQ3XNwfk6/s2+I8ZU2tFV/uPIkPNhzFwdMVkCT7fgdTUvu3ObfpKkII7C+owNe7T2HV7lM4WVKNmRMG4qEr+3rk9Z2x7mAhHliYhZBANcb074GxA6IxdkB0k44I6ryzlWb85+fD+HjzMYepwov7dMOrt1+IXt29N+ZCCGw/XoKFvx7Fd3uMShYxOkyLTf93davrQjT24a95OFlajUevTmp1Wqc9vt51Cs+u3IPqWiu+evQylwUPVptoVxGlL/nw1zy8sGqfQzu/WiWhX3QILjCEY2BsOK4ZGOPUcubkPvnFJizdmo/bL0rw6r9rX+BTwYjFYoFOp8OyZctwyy23KPc/8cQT2LlzJzIzMx2ON5vNMJsbOh3Ky8uRkJCAvXkFGNSnffPoQgjsOVmOiGCN13/JV5rrfLr46mylGeFBmjZXbSXXOFVajTd/ysVPBwrxx8sS8dAVfX3qw7GgrBqfbD6ONfuM+PMVfT26Qum5ymtqUWaqZXAM+1TchkNnkdgjBINiw9E/JrTVNmciX+BTwcipU6fQs2dP/PrrrxgzZoxyf0ZGBhYtWoSDBx33G0lPT8cLL7zQ5DwdeTNERETkHZ0JRtz29fjceUwhRLNzmzNnzkRZWZlyy8/Pd9clERERkQ9yea9bjx49oFarYTQaHe4vLCyEXq9vcrxWq4VW69p1KYiIiOj84fLMSGBgIC666CKsXbvW4f61a9c6TNsQERERAW5aDn769Om49957MWrUKIwePRrvvPMOjh8/jocfftgdL0dERETnMbcEI3feeSeKiorwj3/8AwUFBRgyZAi+/fZb9O7d2x0vR0REROcxn18OnoiIiHyfT3bTEBEREbUHgxEiIiLyKgYjRERE5FUMRoiIiMirGIwQERGRVzEYISIiIq9iMEJERERexWCEiIiIvMotK7B2hrwGW3l5uZevhIiIiNpL/tzuyFqqPheMVFRUAAASEhK8fCVERETkrIqKCkRERDj1HJ9bDt5ms+HUqVMICwuDJEntfl55eTkSEhKQn5/v1WXkL774YmRlZXnt9QGORWMciwYciwYciwa+MhaA98eDY9GgI2MhhEBFRQXi4uKgUjlXBeJzmRGVSoX4+PgOPz88PNyrP0RqtdrrP8QyjkUDjkUDjkUDjkUDb48F4DvjwbFo4OxYOJsRkbGA1cWmTp3q7UvwGRyLBhyLBhyLBhwLRxyPBv42Fj43TdNR3O23AceiAceiAceiAceiAceiAceigafHostkRrRaLZ5//nlotVpvX4rXcSwacCwacCwacCwacCwacCwaeHosukxmhIiIiM5PXSYzQkREROcnBiNERETkVQxGiIiIyKsYjBAREZFX+VQw8ssvv+CGG25AXFwcJEnCypUrHR4/ffo0HnjgAcTFxUGn02H8+PHIzc11OCY1NRWSJDnc7rrrLodjSkpKcO+99yIiIgIRERG49957UVpa6uZ35xxXjAUAbNq0CVdffTVCQkIQGRmJ1NRUVFdXK4/7w1gcPXq0yc+EfFu2bJlynD+MBQAYjUbce++9MBgMCAkJwciRI/H55587HOMvY3H48GHccsstiI6ORnh4OO644w6cPn3a4RhfH4vZs2fj4osvRlhYGGJiYnDzzTfj4MGDDscIIZCeno64uDgEBwcjNTUVe/fudTjGbDbjscceQ48ePRASEoIbb7wRJ06ccDjGX8binXfeQWpqKsLDwyFJUrPv0R/Gori4GI899hiSk5Oh0+nQq1cvPP744ygrK3M4jyvGwqeCkaqqKgwfPhzz589v8pgQAjfffDOOHDmCL7/8Ejt27EDv3r1x7bXXoqqqyuHYhx56CAUFBcrtv//9r8PjkyZNws6dO7F69WqsXr0aO3fuxL333uvW9+YsV4zFpk2bMH78eKSlpeG3335DVlYWHn30UYdlev1hLBISEhx+HgoKCvDCCy8gJCQEEyZMUM7lD2MBAPfeey8OHjyIr776CtnZ2Zg4cSLuvPNO7NixQznGH8aiqqoKaWlpkCQJP/30E3799VdYLBbccMMNsNlsyrl8fSwyMzMxdepUbN68GWvXrkVdXR3S0tIc/p/PmTMHc+fOxfz585GVlQWDwYBx48Ype4EBwLRp07BixQosWbIEGzZsQGVlJa6//npYrVblGH8ZC5PJhPHjx+Nvf/tbi6/lD2Nx6tQpnDp1Cq+88gqys7Px4YcfYvXq1fjTn/7k8FouGQvhowCIFStWKH8/ePCgACD27Nmj3FdXVyeioqLEu+++q9w3duxY8cQTT7R43n379gkAYvPmzcp9mzZtEgDEgQMHXPoeXKWjY5GSkiKeffbZFs/rT2NxrgsvvFA8+OCDyt/9aSxCQkLERx995HCuqKgo8d577wkh/Gcsvv/+e6FSqURZWZlyTHFxsQAg1q5dK4Q4P8eisLBQABCZmZlCCCFsNpswGAzipZdeUo6pqakRERER4u233xZCCFFaWio0Go1YsmSJcszJkyeFSqUSq1evFkL4z1g09vPPPwsAoqSkxOF+fxwL2dKlS0VgYKCora0VQrhuLHwqM9Ias9kMAAgKClLuU6vVCAwMxIYNGxyO/eSTT9CjRw8MHjwYTz/9tEPEu2nTJkRERCAlJUW579JLL0VERAQ2btzo5nfhGu0Zi8LCQmzZsgUxMTEYM2YM9Ho9xo4d6zBW/jIW59q2bRt27tzpEN3701hcfvnl+Oyzz1BcXAybzYYlS5bAbDYjNTUVgP+MhdlshiRJDos6BQUFQaVSKcecj2Mhp9CjoqIAAHl5eTAajUhLS1OO0Wq1GDt2rPIetm3bhtraWodj4uLiMGTIEOUYfxmL9vDnsZBXZA0IsG9t56qxOG+CkQsuuAC9e/fGzJkzUVJSAovFgpdeeglGoxEFBQXKcffccw8+/fRTrFu3Ds899xy++OILTJw4UXncaDQiJiamyfljYmJgNBo98l46qz1jceTIEQBAeno6HnroIaxevRojR47ENddco8yb+8tYnOv999/HwIEDMWbMGOU+fxqLzz77DHV1dejevTu0Wi0mT56MFStWoF+/fgD8ZywuvfRShISE4JlnnoHJZEJVVRX++te/wmazKcecb2MhhMD06dNx+eWXY8iQIQCgXKder3c4Vq/XK48ZjUYEBgaiW7durR7jD2PRHv46FkVFRfjnP/+JyZMnK/e5aizOm2BEo9Hgiy++QE5ODqKioqDT6bBu3TpMmDABarVaOe6hhx7CtddeiyFDhuCuu+7C559/jh9++AHbt29XjpEkqcn5hRDN3u+L2jMW8pz35MmT8cc//hEjRozAa6+9huTkZHzwwQfKufxhLBqrrq7G4sWLm8x5Av4zFs8++yxKSkrwww8/YOvWrZg+fTpuv/12ZGdnK8f4w1hER0dj2bJl+PrrrxEaGqrswzFy5EiH8TqfxuLRRx/F7t278emnnzZ57Nzrbc97OPcYfx6Lts7R0fN4givGory8HNdddx0GDRqE559/vtVztHaelgS0+0gfcNFFF2Hnzp0oKyuDxWJBdHQ0UlJSMGrUqBafM3LkSGg0GuTm5mLkyJEwGAxNquUB4MyZM00iRF/W1ljExsYCAAYNGuTwvIEDB+L48eMA4Ddj0djnn38Ok8mE++67z+F+fxmLw4cPY/78+dizZw8GDx4MABg+fDjWr1+Pt956C2+//bbfjAUApKWl4fDhwzh79iwCAgIQGRkJg8GAxMREAOfXz8Vjjz2Gr776Cr/88gvi4+OV+w0GAwD7N1j59wJgn8qV34PBYIDFYkFJSYlDdqSwsFDJIPrLWLSHv41FRUUFxo8fj9DQUKxYsQIajcbhPK4Yi/MmM9JYREQEoqOjkZubi61bt+Kmm25q8di9e/eitrZWGezRo0ejrKwMv/32m3LMli1bUFZW5pC2P1+0NBZ9+vRBXFxck1aunJwc9O7dG4D/jEVj77//Pm688UZER0c73O8vY2EymQDAoaMKsNdTyNk0fxmLxnr06IHIyEj89NNPKCwsxI033gjg/BgLIQQeffRRLF++HD/99JMSSMkSExNhMBiwdu1a5T6LxYLMzEzlPVx00UXQaDQOxxQUFGDPnj3KMf4yFu3hT2NRXl6OtLQ0BAYG4quvvnKowwJcOBbtLnX1gIqKCrFjxw6xY8cOAUDMnTtX7NixQxw7dkwIYa/i/fnnn8Xhw4fFypUrRe/evcXEiROV5x86dEi88MILIisrS+Tl5YlvvvlGXHDBBWLEiBGirq5OOW78+PFi2LBhYtOmTWLTpk1i6NCh4vrrr/f4+21NZ8dCCCFee+01ER4eLpYtWyZyc3PFs88+K4KCgsShQ4eUY/xlLIQQIjc3V0iSJL777rtmX8cfxsJisYj+/fuLK664QmzZskUcOnRIvPLKK0KSJPHNN98ox/nDWAghxAcffCA2bdokDh06JP73v/+JqKgoMX36dIdjfH0sHnnkERERESHWrVsnCgoKlJvJZFKOeemll0RERIRYvny5yM7OFnfffbeIjY0V5eXlyjEPP/ywiI+PFz/88IPYvn27uPrqq8Xw4cPPq9+drhqLgoICsWPHDvHuu+8KAOKXX34RO3bsEEVFRcox/jAW5eXlIiUlRQwdOlQcOnTI4Tyu/rnwqWBEbqM693b//fcLIYR4/fXXRXx8vNBoNKJXr17i2WefFWazWXn+8ePHxZVXXimioqJEYGCg6Nevn3j88ccdfoCEEKKoqEjcc889IiwsTISFhYl77rmnSeuWt3V2LGSzZ88W8fHxQqfTidGjR4v169c7PO5PYzFz5kwRHx8vrFZrs6/jL2ORk5MjJk6cKGJiYoROpxPDhg1r0urrL2PxzDPPCL1eLzQajUhKShKvvvqqsNlsDsf4+lg0NwYAxMKFC5VjbDabeP7554XBYBBarVZceeWVIjs72+E81dXV4tFHHxVRUVEiODhYXH/99eL48eMOx/jLWDz//PNtnscfxqKlf2MARF5ennKcK8ZCqr9oIiIiIq84L2tGiIiIqOtgMEJERERexWCEiIiIvIrBCBEREXkVgxEiIiLyKgYjRERE5FUMRoiIiMirGIwQkUusW7cOkiShtLTU25dCROcZLnpGRB2SmpqKCy+8EPPmzQNg39eiuLgYer3eJ3cuJSLfdV7t2ktEviswMFDZCZSIyBmcpiEipz3wwAPIzMzE66+/DkmSIEkSPvzwQ4dpmg8//BCRkZFYtWoVkpOTodPpcNttt6GqqgqLFi1Cnz590K1bNzz22GOwWq3KuS0WC2bMmIGePXsiJCQEKSkpWLdunXfeKBF5BDMjROS0119/HTk5ORgyZAj+8Y9/AAD27t3b5DiTyYQ33ngDS5YsQUVFBSZOnIiJEyciMjIS3377LY4cOYJbb70Vl19+Oe68804AwB//+EccPXoUS5YsQVxcHFasWIHx48cjOzsbSUlJHn2fROQZDEaIyGkREREIDAyETqdTpmYOHDjQ5Lja2losWLAA/fr1AwDcdttt+N///ofTp08jNDQUgwYNwlVXXYWff/4Zd955Jw4fPoxPP/0UJ06cQFxcHADg6aefxurVq7Fw4UJkZGR47k0SkccwGCEit9HpdEogAgB6vR59+vRBaGiow32FhYUAgO3bt0MIgQEDBjicx2w2o3v37p65aCLyOAYjROQ2Go3G4e+SJDV7n81mAwDYbDao1Wps27YNarXa4bjGAQwRdS0MRoioQwIDAx0KT11hxIgRsFqtKCwsxBVXXOHScxOR72I3DRF1SJ8+fbBlyxYcPXoUZ8+eVbIbnTFgwADcc889uO+++7B8+XLk5eUhKysLL7/8Mr799lsXXDUR+SIGI0TUIU8//TTUajUGDRqE6OhoHD9+3CXnXbhwIe677z489dRTSE5Oxo033ogtW7YgISHBJecnIt/DFViJiIjIq5gZISIiIq9iMEJERERexWCEiIiIvIrBCBEREXkVgxEiIiLyKgYjRERE5FUMRoiIiMirGIwQERGRVzEYISIiIq9iMEJERERexWCEiIiIvIrBCBEREXnV/wPsA5KnCzwDaAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "clipped_india.groupby([pd.Grouper(key='time', freq='Y')]).mean().reset_index().plot(x='time', y='heat_wave_duration_index_wrt_mean_of_reference_period',label = 'India', color = '#1F77B4')" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "87e01444", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGwCAYAAABYazQUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABS3ElEQVR4nO3deXxTVfo/8M/N0nShLRToJgUq+w5FgaKy6LAKLojgMiyijgoIyiBOHfkK4/ysOqiIKDijLC4DqCziMigMu7JDHQSEAoWitFS2pnRJmuT8/kjvTdImadKmtLf5vF+vvGjuPffm5MBMH8957nMkIYQAERERkcpoarsDRERERFXBIIaIiIhUiUEMERERqRKDGCIiIlIlBjFERESkSgxiiIiISJUYxBAREZEq6Wq7A4Fis9lw/vx5REZGQpKk2u4OERER+UAIgYKCAiQmJkKj8W9upd4EMefPn0dSUlJtd4OIiIiq4Ny5c2jWrJlf19SbICYyMhKAfRCioqJquTdERETkC6PRiKSkJOX3uD/qTRAjLyFFRUUxiCEiIlKZqqSCMLGXiIiIVIlBDBEREakSgxgiIiJSpXqTE+MLm80Gs9lc292g6yQkJMTvx/WIiEg9giaIMZvNyMrKgs1mq+2u0HWi0WiQnJyMkJCQ2u4KERHVgKAIYoQQyMnJgVarRVJSEv/rPAjIxQ9zcnLQvHlzFkAkIqqHgiKIsVgsKCoqQmJiIsLDw2u7O3SdNG3aFOfPn4fFYoFer6/t7hARUYAFxZSE1WoFAC4rBBn571v++yciovolKIIYGZcUggv/vomI6regCmKIiIio/mAQQ0RERKrEICYInTlzBpIkISMjo8Y/a9myZWjYsGGN3Ltly5aYP39+jdybiIjqPgYxddjEiRNxzz33VDi+detWSJKEq1evXvc+ERFR/SCEgMWs7gcfGMRQlbDyMRGRum1efgxLZu1EYb6ptrtSZcEZxAgBmAtr5yVEwL5GYWEhoqKi8MUXX7gc/+qrrxAREYGCggIAwN69e9GjRw+EhobipptuwqFDhyrc6+jRoxg+fDgaNGiAuLg4jBs3DhcvXlTODxgwAFOnTsWMGTPQpEkTDBo0CADw5ptvokuXLoiIiEBSUhImT56Ma9euVbj/unXr0LZtW4SGhmLQoEE4d+6ccu7UqVO4++67ERcXhwYNGuDmm2/Gpk2bXK7Py8vDyJEjERYWhuTkZHz66adVHzgiIkJulhGlJVZczims7a5UWVAUu6ugtAh4JbF2PvuF80BIREBuFRERgQceeABLly7F6NGjlePy+8jISBQWFmLEiBG4/fbb8cknnyArKwvTp093uU9OTg769++Pxx9/HG+++SaKi4vx/PPPY8yYMdi8ebPSbvny5Xjqqafwww8/QJQFYxqNBgsWLEDLli2RlZWFyZMnY9asWXjvvfeU64qKivD//t//w/LlyxESEoLJkyfjgQcewA8//AAAuHbtGoYPH46///3vCA0NxfLlyzFy5EgcP34czZs3B2BfWjt37hw2b96MkJAQTJs2DXl5eQEZRyKiYGSz2sr+DNx/XF9vwRnEqMjXX3+NBg0auBxzLt722GOPoW/fvjh//jwSExNx8eJFfP3119i4cSMA4NNPP4XVasWSJUsQHh6OTp064ddff8VTTz2l3GPRokVISUnBK6+8ohxbsmQJkpKScOLECbRt2xYA0Lp1a7z++usufXnmmWeUn5OTk/Hyyy/jqaeecgliSktLsXDhQvTu3RuAPRjq0KED9u7di169eqFbt27o1q2b0v7vf/871q5di/Xr12Pq1Kk4ceIE/vOf/2D37t3KPT788EN06NChSmNKRESA1WIPXmwW9e4pGJxBjD7cPiNSW5/th4EDB2LRokUux/bs2YM//vGPAIBevXqhU6dO+Oijj/CXv/wFH3/8MZo3b45+/foBAI4dO4Zu3bq5bLeQmprqcr8DBw5gy5YtFYIlwL7UIwcxN910U4XzW7ZswSuvvIKjR4/CaDTCYrGgpKQEhYWFiIiwzzjpdDqXa9u3b4+GDRvi2LFj6NWrFwoLCzF37lx8/fXXyjYBxcXFyM7OVr6Dp3sQEVHVcCZGrSQpYEs6NS0iIgKtW7d2Ofbrr7+6vH/sscewcOFC/OUvf8HSpUvxyCOPKNVqhQ85ODabDSNHjsRrr71W4VxCQoJLX5ydPXsWw4cPx5NPPomXX34ZMTEx2LlzJx599FGUlpa6tHVXPVc+9txzz+G7777DvHnz0Lp1a4SFhWH06NFK8rD8HViBl4gocOTgxWpV70xMcCb21jN//OMfkZ2djQULFuDIkSOYMGGCcq5jx4746aefUFxcrBzbvXu3y/UpKSk4cuQIWrZsidatW7u8ygcuzvbv3w+LxYI33ngDffr0Qdu2bXH+fMUZLovFgv379yvvjx8/jqtXr6J9+/YAgB07dmDixIm499570aVLF8THx+PMmTNK+w4dOni8BxERVY21LIhR80yM30HM9u3bMXLkSCQmJkKSJKxbt87lvCRJbl//+Mc/PN5z2bJlbq8pKSnx+wsFo0aNGmHUqFF47rnnMHjwYDRr1kw599BDD0Gj0eDRRx/F0aNH8e2332LevHku10+ZMgWXL1/Ggw8+iL179+L06dP4/vvvMWnSJK+bJ7Zq1QoWiwXvvPMOTp8+jY8//hiLFy+u0E6v1+Ppp5/Gnj17cPDgQTzyyCPo06cPevXqBcCea7NmzRpkZGTgp59+wkMPPQSbzfFfBu3atcPQoUPx+OOPY8+ePThw4AAee+wxhIWFVXfoiIiCVn1YTvI7iCksLES3bt2wcOFCt+dzcnJcXkuWLIEkSbjvvvu83jcqKqrCtaGhof52L2g9+uijMJvNmDRpksvxBg0a4KuvvsLRo0fRo0cP/PWvf62wbJSYmIgffvgBVqsVQ4YMQefOnTF9+nRER0dDo/H8T6R79+5488038dprr6Fz58749NNPkZ6eXqFdeHg4nn/+eTz00ENITU1FWFgYVq5cqZx/66230KhRI/Tt2xcjR47EkCFDkJKS4nKPpUuXIikpCf3798eoUaPwpz/9CbGxsVUZKiKioCeEgK0eJPZKwpekCU8XSxLWrl3rtqqs7J577kFBQQH++9//emyzbNkyPPPMM34tD5hMJphMjgI9RqMRSUlJyM/PR1RUlEvbkpISZGVlITk5ud4GRp9++immT5+O8+fPIyQkpLa7UycEw987EVFV2Kw2LJqyFQBw65g26HZ7Uq31xWg0Ijo62u3v78rUaE7MhQsX8M033+DRRx+ttO21a9fQokULNGvWDCNGjHBbkM1Zeno6oqOjlVdSUu39BdSmoqIiHDlyBOnp6XjiiScYwBARUaWsTktI8oyMGtVoELN8+XJERkZi1KhRXtu1b98ey5Ytw/r167FixQqEhobilltuQWZmpsdr0tLSkJ+fr7ycK8AGk9dffx3du3dHXFwc0tLSars7RESkAs55MM45iGpTo49YL1myBA8//HClU/l9+vRBnz59lPe33HILUlJS8M4772DBggVurzEYDDAYDAHtrxrNmTMHc+bMqe1uEBGRijjnwVhVPBNTY0HMjh07cPz4caxatcrvazUaDW6++WavMzFERERUNS4zMawTU9GHH36Inj17upST95UQAhkZGS6F1oiIiCgwnAvcqfkRa79nYq5du4aTJ08q77OyspCRkYGYmBhlsz6j0YjPP/8cb7zxhtt7jB8/HjfccIPyOO7cuXPRp08ftGnTBkajEQsWLEBGRgbefffdqnwnIiIi8sI5mVfNib1+BzH79+/HwIEDlfczZswAAEyYMAHLli0DAKxcuRJCCDz44INu75Gdne1Sf+Tq1av405/+hNzcXERHR6NHjx7Yvn27UgyNiIiIAqe+LCdVq05MXeLtOXPWCwlO/HsnInLv93MF+Oz/7QMAdLw1EQP/2L7W+lJn68TQ9eFu+4e6auLEiV6LIxIRUc2rLzMxDGJUIDc3F08//TRuvPFGGAwGJCUlYeTIkV6rINdVb7/9trLsSEREtcM1iFHvgkyN1omh6jtz5gxuueUWNGzYEK+//jq6du2K0tJSfPfdd5gyZQp++eWX2u6iX6Kjo2u7C0REQa++1InhTEwdN3nyZEiShL1792L06NFo27YtOnXqhBkzZmD37t1Ku4sXL+Lee+9FeHg42rRpg/Xr17vc5+jRoxg+fDgaNGiAuLg4jBs3DhcvXlTODxgwANOmTcOsWbMQExOD+Pj4CkX0JEnCBx984PFzrFYrHn30USQnJyMsLAzt2rXD22+/7XIPLicREdU+LiepmBACRaVFtfLyJ4/68uXL2LBhA6ZMmYKIiIgK5xs2bKj8PHfuXIwZMwb/+9//MHz4cDz88MO4fPkyAPvO4v3790f37t2xf/9+bNiwARcuXMCYMWNc7rd8+XJERERgz549eP311/G3v/0NGzdudGnj7XNsNhuaNWuGzz77DEePHsX//d//4YUXXsBnn33m83cmIqKaF7R1YuqDYksxev+7d6189p6H9iBcH+5T25MnT0IIgfbtK88anzhxovJI+yuvvIJ33nkHe/fuxdChQ7Fo0SKkpKTglVdeUdovWbIESUlJOHHiBNq2bQsA6Nq1K1566SUAQJs2bbBw4UL897//xaBBg3z6HL1ej7lz5yptk5OT8eOPP+Kzzz6rEDAREVHtqS8zMUEZxKiFPGsjSVKlbbt27ar8HBERgcjISOTl5QEADhw4gC1btqBBgwYVrjt16pRLEOMsISFBuYcvnwMAixcvxgcffICzZ8+iuLgYZrMZ3bt3r7T/RER0/TCxV8XCdGHY89CeWvtsX7Vp0waSJOHYsWOV5pHo9XqX95IkKTuT2mw2jBw5Eq+99lqF65y3dvB2D1/afPbZZ3j22WfxxhtvIDU1FZGRkfjHP/6BPXtqZ6yJiMg9az1J7A3KIEaSJJ+XdGpTTEwMhgwZgnfffRfTpk2rkBdz9epVl7wYT1JSUrB69Wq0bNkSOl3N/ZXv2LEDffv2xeTJk5Vjp06dqrHPIyKiqqkvy0lBmdirJu+99x6sVit69eqF1atXIzMzE8eOHcOCBQuQmprq0z2mTJmCy5cv48EHH8TevXtx+vRpfP/995g0aRKsVmvA+tq6dWvs378f3333HU6cOIHZs2dj3759Abs/EREFhnPgYlXxchKDmDouOTkZBw8exMCBA/HnP/8ZnTt3xqBBg/Df//4XixYt8ukeiYmJ+OGHH2C1WjFkyBB07twZ06dPR3R0tMseVtX15JNPYtSoURg7dix69+6NS5cuuczKEBFR3VBfcmK4dxLVW/x7JyJy76f/nsPOzzMBANGxYfjj33yb2a8J3DuJiIiIfOac2GtTcWIvgxgiIqIgw8ReIiIiUiUrE3uJiIhIjepLYi+DGCIioiDjvIs1l5OIiIhINVxmYpjYS0RERGrhEsTYBNRabYVBDBERUZCxlltCUmteDIMYIiKiIFM+aGEQQ/XSnDlz0L1792rfR5IkrFu3rtr3ISKi6nNO7AVci9+pCYOYOmzixImQJAlPPvlkhXOTJ0+GJEmYOHHi9e9YFeTk5GDYsGG13Q0iIgJnYug6SUpKwsqVK1FcXKwcKykpwYoVK9C8efNa7Jl/4uPjYTAYarsbRESEigXuGMRQjUhJSUHz5s2xZs0a5diaNWuQlJSEHj16KMdatmyJ+fPnu1zbvXt3zJkzR3kvSRLef/99jBgxAuHh4ejQoQN27dqFkydPYsCAAYiIiEBqaipOnTpVoR/vv/8+kpKSEB4ejvvvvx9Xr15Vzu3btw+DBg1CkyZNEB0djf79++PgwYMu13M5iYio7ihfG0attWKCMogRQqDUZK2VV1UeY3vkkUewdOlS5f2SJUswadKkKn33l19+GePHj0dGRgbat2+Phx56CE888QTS0tKwf/9+AMDUqVNdrjl58iQ+++wzfPXVV9iwYQMyMjIwZcoU5XxBQQEmTJiAHTt2YPfu3WjTpg2GDx+OgoKCKvWRiIhqVn1ZTtLVdgdqg8Vswz+nb6uVz/7T2/2hN2j9umbcuHFIS0vDmTNnIEkSfvjhB6xcuRJbt271+/MfeeQRjBkzBgDw/PPPIzU1FbNnz8aQIUMAANOnT8cjjzzick1JSQmWL1+OZs2aAQDeeecd3HnnnXjjjTcQHx+P22+/3aX9+++/j0aNGmHbtm0YMWKE330kIqKaVT6RV62JvUEZxKhNkyZNcOedd2L58uUQQuDOO+9EkyZNqnSvrl27Kj/HxcUBALp06eJyrKSkBEajEVFRUQCA5s2bKwEMAKSmpsJms+H48eOIj49HXl4e/u///g+bN2/GhQsXYLVaUVRUhOzs7Cr1kYiIahZnYlRMF6LBn97uX2ufXRWTJk1SlnnefffdCuc1Gk2FparS0tIK7fR6vfKzJEkej9lsnqNyuY3858SJE/H7779j/vz5aNGiBQwGA1JTU2E2m336bkREdH0xiFExSZL8XtKpbUOHDlWCAnnpx1nTpk2Rk5OjvDcajcjKygrIZ2dnZ+P8+fNITEwEAOzatQsajQZt27YFAOzYsQPvvfcehg8fDgA4d+4cLl68GJDPJiKiwCufyFu+gq9aBGUQo0ZarRbHjh1Tfi7v9ttvx7JlyzBy5Eg0atQIs2fPdtuuKkJDQzFhwgTMmzcPRqMR06ZNw5gxYxAfHw8AaN26NT7++GPcdNNNMBqNeO655xAWFhaQzyYiosCrLzMxQfl0klpFRUUpeSrlpaWloV+/fhgxYgSGDx+Oe+65B61atQrI57Zu3RqjRo3C8OHDMXjwYHTu3Bnvvfeecn7JkiW4cuUKevTogXHjxmHatGmIjY0NyGcTEVHglU/kLV/BVy0kodatK8sxGo2Ijo5Gfn5+hV/0JSUlyMrKQnJyMkJDQ2uph3S98e+diMi95Wk/4NoVEyQJEAK4c3JXtOxatQdGqsvb7+/KcCaGiIgoyMjLR7qy/FAuJxEREZEqyIm8uhCty3u18TuI2b59O0aOHInExES3peTlTQudX3369Kn0vqtXr0bHjh1hMBjQsWNHrF271t+uERERkQ/kmRd9WdmPoJmJKSwsRLdu3bBw4UKPbYYOHYqcnBzl9e2333q9565duzB27FiMGzcOP/30E8aNG4cxY8Zgz549/naPiIiIKmGzlAUxZctJQVOxd9iwYRg2bJjXNgaDQXn81hfz58/HoEGDkJaWBsD+pM22bdswf/58rFixwt8uelRPcpjJR/z7JiJyz1ZuOSloZmJ8sXXrVsTGxqJt27Z4/PHHkZeX57X9rl27MHjwYJdjQ4YMwY8//ujxGpPJBKPR6PLyRK6XwgqywUX++w5UvRwiovrAZhOQ/xtPr/LE3oAXuxs2bBjuv/9+tGjRAllZWZg9ezZuv/12HDhwAAaDwe01ubm5yj4+sri4OOTm5nr8nPT0dMydO9enPul0OoSHh+P333+HXq+HRsN85vrOZrPh999/R3h4OHQ61nQkIpI5V+t1zMQEyXJSZcaOHav83LlzZ9x0001o0aIFvvnmG4waNcrjdfI+PDIhRIVjztLS0jBjxgzlvdFoRFJSksd7JyQkICsrC2fPnvX1q5DKaTQaNG/e3Ou/IyKiYOM866L2xN4a/0/UhIQEtGjRApmZmR7bxMfHV5h1ycvLqzA748xgMHic2XEnJCQEbdq04ZJSEAkJCeGsGxFROXJSL+CoExM0ib3+unTpEs6dO4eEhASPbVJTU7Fx40Y8++yzyrHvv/8effv2DWhfNBoNK7cSEVFQk2vCSBKg0wXZTMy1a9dw8uRJ5X1WVhYyMjIQExODmJgYzJkzB/fddx8SEhJw5swZvPDCC2jSpAnuvfde5Zrx48fjhhtuQHp6OgBg+vTp6NevH1577TXcfffd+PLLL7Fp0ybs3LkzAF+RiIiIZHLAotFqoNEGWRCzf/9+DBw4UHkv56VMmDABixYtwuHDh/HRRx/h6tWrSEhIwMCBA7Fq1SpERkYq12RnZ7tM8/ft2xcrV67Eiy++iNmzZ6NVq1ZYtWoVevfuXZ3vRkREROXISbwarQSN1p4zqNaKvX4HMQMGDPBaf+O7776r9B5bt26tcGz06NEYPXq0v90hIiIiPygzMToJGp3kckxtmPVIREQURKwWN8tJKk3sZRBDREQUROTlJK1WgpYzMURERKQWjsReSclPVWtODIMYIiKiIOJI7NUwJ4aIiIjUw1oWsGh1ErRaBjFERESkEjYm9hIREZEaudSJ4XISERERqYXjEWv1F7tjEENERBREbDZHYq9W5dsOMIghIiIKIjanxF4NE3uJiIhILdwl9lqZ2EtERER1nXPFXib2EhERkWo4J/ayTgwRERGphmMXa6c6MXw6iYiIiOo6x9NJTOwlIiIiFbEysZeIiIjUyDmxV8vEXiIiIlILm9uKvQxiiIiIqI5jYi8RERGpktXqPrFXCPXNxjCIISIiCiLKtgNaSdk7CQIQNgYxREREVIfZrI4NIOWKvfbjDGKIiIioDrO6SewF1JncyyCGiIgoiDh2sXYk9tqPqy+5l0EMERFRELE5J/ZqJEiSfJwzMURERFSHKY9Yly0laXTqrdrLIIaIiCiIOCf22v9Ub9VeBjFERERBxDmx1/lPuZKvmjCIISIiCiLOib0AlFox8u7WasIghoiIKIg4J/Y6/2nlTAwRERHVZVYPib3MiSEiIqI6zbHtgLycJCf2cjmJiIiI6jCbxf1yEhN7iYiIqE5T6sTo5Eesy+rEcCaGiIiI6jKrh8Re5sQQERFRnVa+Yq82mBJ7t2/fjpEjRyIxMRGSJGHdunXKudLSUjz//PPo0qULIiIikJiYiPHjx+P8+fNe77ls2TJIklThVVJS4vcXIiIiIs/KJ/Zqgimxt7CwEN26dcPChQsrnCsqKsLBgwcxe/ZsHDx4EGvWrMGJEydw1113VXrfqKgo5OTkuLxCQ0P97R4RERF54SmxV411YnT+XjBs2DAMGzbM7bno6Ghs3LjR5dg777yDXr16ITs7G82bN/d4X0mSEB8f7293iIiIyA/lK/bKib1BMRPjr/z8fEiShIYNG3ptd+3aNbRo0QLNmjXDiBEjcOjQIa/tTSYTjEajy4uIiIg8E0LAZiuXE8PEXvdKSkrwl7/8BQ899BCioqI8tmvfvj2WLVuG9evXY8WKFQgNDcUtt9yCzMxMj9ekp6cjOjpaeSUlJdXEVyAiIqo3nAMVVuz1orS0FA888ABsNhvee+89r2379OmDP/7xj+jWrRtuu+02fPbZZ2jbti3eeecdj9ekpaUhPz9feZ07dy7QX4GIiKhecQlidK6JvWqsE+N3TowvSktLMWbMGGRlZWHz5s1eZ2Hc0Wg0uPnmm73OxBgMBhgMhup2lYiIKGhYLY5ApcJykgoTewM+EyMHMJmZmdi0aRMaN27s9z2EEMjIyEBCQkKgu0dERBS0XGZiNPLTSepN7PV7JubatWs4efKk8j4rKwsZGRmIiYlBYmIiRo8ejYMHD+Lrr7+G1WpFbm4uACAmJgYhISEAgPHjx+OGG25Aeno6AGDu3Lno06cP2rRpA6PRiAULFiAjIwPvvvtuIL4jERERwRGoaLT2emzyz4Bjd2s18TuI2b9/PwYOHKi8nzFjBgBgwoQJmDNnDtavXw8A6N69u8t1W7ZswYABAwAA2dnZ0Ggck0BXr17Fn/70J+Tm5iI6Oho9evTA9u3b0atXL3+7R0RERB6U3zfJ+Wc1Jvb6HcQMGDAAQnj+ot7OybZu3ery/q233sJbb73lb1eIiIjID3JOjJwHAwRZxV4iIiJSp/L7JgFM7CUiIiIVcAQxTstJKk7sZRBDREQUJKxW132TnH9WY2IvgxgiIqIgUX7fJOef1ZjYyyCGiIgoSJTfwdr5Zy4nERERUZ3lLrFXWU5iYi8RERHVVd4TexnEEBERUR0lJ/ayTgwRERGpiqNir1OdGCb2EhERUV3nSOx1Xk6Sc2I4E0NERER1lNVLYi9nYoiIiKjOUurEOM3EaJnYS0RERHWdzUvFXib2EhERUZ3lLrFXU5bYy20HiIiIqM6yeknstTGxl4iIiOoqdxV7tTom9hIREVEd5y6xV6NhYi8RERHVcW4Te8tmYqxM7CUiIqK6Sk7e1epYJ4aIiIhUxGapuAGkUieGib1ERERUV3lbThICEDZ1zcYwiCEiIgoS7rcdcIQCaltSYhBDREQUJBwzMc7LSY6ARm3JvQxiiIiIgoTNS2Kv83m1YBBDREQUJNwl9koap5kYlSX3MoghIiIKEu4SeyVJUpJ7ORNDREREdZJSJ8YpiAEcMzMMYoiIiKhOcpfYCziCGhsTe4mIiKguUjaA1JWfieFyEhEREdVhVjeJvc7vmdhLREREdZK8XFQ+J0bLxF4iIiKqy2xuKvba3zOxl4iIiOowRxBTfjnJHtSwYi8RERHVScrTSUzsJSIiIjWRE3u1HhJ7bUzsJSIiorrIXcVeIIgSe7dv346RI0ciMTERkiRh3bp1LueFEJgzZw4SExMRFhaGAQMG4MiRI5Xed/Xq1ejYsSMMBgM6duyItWvX+ts1IiIi8sJzYm+Q5MQUFhaiW7duWLhwodvzr7/+Ot58800sXLgQ+/btQ3x8PAYNGoSCggKP99y1axfGjh2LcePG4aeffsK4ceMwZswY7Nmzx9/uERERkQdWD4m9WpU+naTz94Jhw4Zh2LBhbs8JITB//nz89a9/xahRowAAy5cvR1xcHP7973/jiSeecHvd/PnzMWjQIKSlpQEA0tLSsG3bNsyfPx8rVqxwe43JZILJZFLeG41Gf78KERFRUFHqxDCxt6KsrCzk5uZi8ODByjGDwYD+/fvjxx9/9Hjdrl27XK4BgCFDhni9Jj09HdHR0corKSmp+l+AiIionhJCwOapYq+Oib3Izc0FAMTFxbkcj4uLU855us7fa9LS0pCfn6+8zp07V42eExER1W/C5phl8ZwTo66ZGL+Xk3whSa6DI4SocKy61xgMBhgMhqp3koiIKIg4Byieghh5pkYtAjoTEx8fDwAVZlDy8vIqzLSUv87fa4iIiMh3zvku5evEKIm9tiBeTkpOTkZ8fDw2btyoHDObzdi2bRv69u3r8brU1FSXawDg+++/93oNERER+c7m9Pi0x5mY+r6cdO3aNZw8eVJ5n5WVhYyMDMTExKB58+Z45pln8Morr6BNmzZo06YNXnnlFYSHh+Ohhx5Srhk/fjxuuOEGpKenAwCmT5+Ofv364bXXXsPdd9+NL7/8Eps2bcLOnTsD8BWJiIhIXiqSNBIkTbkgpiyx16qyxF6/g5j9+/dj4MCByvsZM2YAACZMmIBly5Zh1qxZKC4uxuTJk3HlyhX07t0b33//PSIjI5VrsrOzodE4JoH69u2LlStX4sUXX8Ts2bPRqlUrrFq1Cr17967OdyMiIqIyciE7rbZivqlaZ2IkIYS6euyB0WhEdHQ08vPzERUVVdvdISIiqlOuXijCpy/tRkioFo/P7+9ybtfakzj4XTa63Z6EW8e0ua79qs7vb+6dREREFARsHqr1Oh+z1fdtB4iIiEh95OUkjc7zcpLVpq7FGQYxREREQcDT5o8AoGXFXiIiIqqr5CCmfI0YQL2JvQxiiIiIgoA8y+JuJkZZTgrmir1ERERUNzGxl4iIiFRJqRPjJbHXxsReIiIiqmuY2EtERESq5H05iYm9REREVEdZvST2yk8s1VRib6mtFKXW0oDfl0EMERFREPBtJibwy0lCCDzw9QMYtX4UrDZrQO/t9waQREREpD62WkrsLbYU48SVEwCAfHM+YkJjAnZvzsQQEREFAW+JvRpdzS0nFVuKlZ9LLCUBvTeDGCIioiBQW8tJJVZH4MIghoiIiPwmJ/ZqvST22mpiJqbUMRPjPCsTCAxiiIiIgoAyE6OrvZkYBjFERETkN7lir9e9k2qgToxLToyVy0lERETkJ58q9tZAEOOcB8OcGCIiIvKbHKBoazGxl8tJRERE5Debl4q9mppM7LUwsZeIiIiqwafEXpuAEIENZLicRERERNXiS2IvEPi8GCb2EhERUbX4ktjr3C5QOBNDRERE1WJTit15Xk4CAp/cy5wYIiIiqhaveyc5HQv0/kl8OomIiIiqRS5kp3WT2CtJEjQa+THrGlxOYk4MERER+cvmJbHX+XhNLicxJ4aIiIj85m05CXA8es3EXiIiIqpTrEqxO/e/+h37JzGxl4iIiOqQymZitPJyEhN7iYiIqC6xeUnsBZy2HmBiLxEREdUllSb26mp+OYk5MUREROS3ShN7a2omhstJREREVB1yYq/n5SQ+Yk1ERER1UK0l9pbLibGJwAVJAQ9iWrZsCUmSKrymTJnitv3WrVvdtv/ll18C3TUiIqKg5Qhirl9ir03YYLKaXI6Vf18duoDdqcy+fftgtVqV9z///DMGDRqE+++/3+t1x48fR1RUlPK+adOmge4aERFR0LJWktirrYHEXnfLRyWWEoTpwgJy/4AHMeWDj1dffRWtWrVC//79vV4XGxuLhg0bBro7REREBF8SewO/d5JzPoxeo0eprRTFlmI0QqOA3L9Gc2LMZjM++eQTTJo0CZLkftBkPXr0QEJCAu644w5s2bKl0nubTCYYjUaXFxEREbkn57pUXicmgDMxZU8mhWpDEa4Ptx8LYHJvjQYx69atw9WrVzFx4kSPbRISEvDPf/4Tq1evxpo1a9CuXTvccccd2L59u9d7p6enIzo6WnklJSUFuPdERET1h68bQFoDmNgrByyhulCEakMBAMXWwD1mHfDlJGcffvghhg0bhsTERI9t2rVrh3bt2invU1NTce7cOcybNw/9+vXzeF1aWhpmzJihvDcajQxkiIiI3LDZBERZbKK9jom9chATpguDQWtwORYINRbEnD17Fps2bcKaNWv8vrZPnz745JNPvLYxGAwwGAxV7R4REVHQcF4iqiyxN5DLSXJOjPNMjCqWk5YuXYrY2Fjceeedfl976NAhJCQk1ECviIiIgo/z7EptJPaGakMRqgt1ORYINTITY7PZsHTpUkyYMAE6netHpKWl4bfffsNHH30EAJg/fz5atmyJTp06KYnAq1evxurVq2uia0REREHHuYCdppLEXrmybyDIib3Oy0l1PojZtGkTsrOzMWnSpArncnJykJ2drbw3m82YOXMmfvvtN4SFhaFTp0745ptvMHz48JroGhERUdBRar9IgEZTScXeGsiJCdWFOnJiAriTdY0EMYMHD4YQ7gdh2bJlLu9nzZqFWbNm1UQ3iIiICI7AxFNSL1Azib3yrIvqEnuJiIiobqjs8WoA0NRgxV6XR6wDuJzEDSCJiIhUzFpqw/cfHsGxH3M8tlGq9eq8BDHXKbFXFU8nERERUc3LPZ2PzH0XcOA/Zzy2kQvYedr8EXBU8rXVUGJvTczEcDmJiIhIxUzFFvufRRaPbeTlJK235aQaTOx1yYkJYGIvZ2KIiIhUrNRkBQCYiy0eH6qpbPNHANBoai6xN1TH5SQiIiIqp7TEPgNjswlYzO6XghyJvV6eTqqBxF7nnJgwXZjLsUBgEENERKRi5hKr4+di90tKVvkRay+JvTVdJ4YzMURERORCXk4CHPkx5dl8SOzVMLGXiIiIrifn2RdPMzE+1YlRYWIvgxgiIiIVM/swE+N4xLryIMZaQ4m9rNhLRERELuTEXsDLTIyt8sRerbLtQM0k9qpmF2siIiK6Pkp9SOy1+ZDYWyPLSW52seZMDBEREQFwfTrJU8E7fxJ7rYFM7FXjLtZERER0fZSa1JXYW2wphhACkuS5L77iI9ZEREQq5lOdmLKZGG/bDgS6ToxN2JRZl1Cdo9gdELjZGAYxREREKmZ2Suz1WCfG6sNyUoATe51zX0K1juWk8ueqg0EMERGRivmU2Cs/nXQdE3udZ1tCdaHQarQI0YTYzzGIISIiCm7WUptL0FF5nRgvj1gHOLFXDlQMWgM0kv3eYfqy/ZOsgXnMmkEMERGRSplNrkFLXUrsdU7qlclbD3AmhoiIKMg5LyUBle+d5C2xN9BBjHO1Xlmgd7JmEENERKRS5nJBjLnY6radP4m91gAl9jpX65UFeidrBjFEREQqJW85oDdoAdifVBK2ijMpynKSj4m9QlR/Nsa5Wq+My0lEREQEwLH5Y4NGZY8vC9cNIWXypo5e68SUJfZCwG0g5C93OTHKchITe4mIiIKbnMgb2kCvzLK4S+51JPZ6W05yBDiByItxlxMT6E0gGcQQERGpVGnZrEtImA6GMPtOQu72T3I8Yu2tYq8jJLAGMohhTgwRERGVJz+dFGLQIqQsiHE/E+NLYq/zTEz1k3udN3+UyctJDGKIiIiCnLzlgD7UMRPjbTlJ6yWxV9JIkPdkDMRykrfEXi4nERERBTl5JkYf6piJcVcrxjET433naE0Aq/Z6S+zlBpBERERBTn4SKcSg9Wkmxttykv184AreMbGXiIiIPCp1Wk7yNhPjS2Iv4EjulSv8Voe7xF7mxBAREREAR8XekFDfEnu1vs7E2AKwnGStmNjLYndEREQEwDETExKqgyHcW05M5RV7gcAuJ7nNieEu1kRERAQ4ZmL0oVqEhHqeibH6ndhbM0EMZ2KIiIgIgFOxuwAtJ2mVmZjqLycxsZeIiIg8UurEGLxX7LVZ5KeTKltOYmIvERERXQcudWLCq1ex137eHuRYA1GxV42JvXPmzIEkSS6v+Ph4r9ds27YNPXv2RGhoKG688UYsXrw40N0iIiKqV4RNOC0nea/Ya60rib0BLnanC8hdyunUqRM2bdqkvNdqtR7bZmVlYfjw4Xj88cfxySef4IcffsDkyZPRtGlT3HfffTXRPSIiItUrNVuVn+0Ve+2/a6tTsVdblthbU0FMoHNiaiSI0el0lc6+yBYvXozmzZtj/vz5AIAOHTpg//79mDdvHoMYIiIiD8zF9iBGkgCdXgNDmB4AYDHbYLXaXJJ4/a4Tcx0Se4UQkCTvQVVlaiQnJjMzE4mJiUhOTsYDDzyA06dPe2y7a9cuDB482OXYkCFDsH//fpSWlnq8zmQywWg0uryIiIiCRamprEZMmA6SJEEf5lj1KC22urT1N7G3uo9Y24TNkRPjJrEXAExWU7U+A6iBIKZ379746KOP8N133+Ff//oXcnNz0bdvX1y6dMlt+9zcXMTFxbkci4uLg8ViwcWLFz1+Tnp6OqKjo5VXUlJSQL8HERFRXabUiDHYgxetVgNdiP3XuqnYdRLA38Te6s7EOAco7urEAIFJ7g14EDNs2DDcd9996NKlC/7whz/gm2++AQAsX77c4zXlp5OEEG6PO0tLS0N+fr7yOnfuXAB6T0REpA7O+ybJHMm9jpkYIQRstrLlpEoSe7UBSux1DlCcl5O0Gi1CNCH2NgFI7q2RnBhnERER6NKlCzIzM92ej4+PR25ursuxvLw86HQ6NG7c2ON9DQYDDAZDQPtKRESkFs77JslCwnQozDe7JPc6ByS+VuytbhAj58MYtAZoJNf5klBdKMxmM4osRdX6DOA61IkxmUw4duwYEhIS3J5PTU3Fxo0bXY59//33uOmmm6DX62u6e0RERKokP14tLycBcFTtLfIQxOiuT50YeSbGeRZGJh+rk8tJM2fOxLZt25CVlYU9e/Zg9OjRMBqNmDBhAgD7MtD48eOV9k8++STOnj2LGTNm4NixY1iyZAk+/PBDzJw5M9BdIyIiqjecN3+UudsE0mpxBCSVPmItLydVM7FX3uDROQdGFsiqvQFfTvr111/x4IMP4uLFi2jatCn69OmD3bt3o0WLFgCAnJwcZGdnK+2Tk5Px7bff4tlnn8W7776LxMRELFiwgI9XExEReeG8+aPM3f5JLjMxGh+3HQjQTIxzUq8skFV7Ax7ErFy50uv5ZcuWVTjWv39/HDx4MNBdISIiqrfMbmZi5CDGNSfG8Xh1ZXVZ5Iq+gUrsdRfEyMcCUfCOeycRERGpUKmbmRh3Ww/4Wq3X3qasTkyAEnu95cTIS07VwSCGiIhIhcwm908nAe6DGG0lSb1A4OrEuNvBWlanE3uJiIio5il1Ygzu6sRUTOz1ZSYmUIm97nawloVpA5fYyyCGiIhIhUo91IkByufElC0nVZLUCwQ+sddtEKMP3E7WDGKIiIhUyN3TSW5nYuTEXl+Wk3RynZjAJPaG68IrnJOXmIpKVVDsjoiIiAJP2QDSUNnTSb4n9mq1ga3Y67XYHWdiiIiIgpO8P5LLTEy4m8TespwYJvYSERFRnWA2+Vonxp9HrMuWk5jYS0RERDXFXZ0YOYixWQQspfbzVUvsrflid1xOIiIiCkLWUpsSaLg8nWTQAmWxiqlsE0g5sdeX5SStLrDLSW63HSibnVHFLtZEREQUWPJSEuC6i7WkkZTlJTkvpioVewM1E6O6XayJiIioZslLSTq9Rgk8ZCFh9qBGTvyVE3t9esT6OiT2BnIXawYxREREKuOuRozMoCT3lgJw1HypK4m9gdzFmkEMERGRysg7WOudnkySOfZP8j+xN1B1YriLNREREbnlbssBWfmqvTY/Ens11zGxl08nERERBSF5JibEy0yM/HRSVRJ7A7XtgLdid5yJISIiCkKlpspzYuRAx+pHYm+gHrH2WuzOKbFXiOoFSwxiiIiIVEZZTjJUDGLKV+2tSsVeWzUSe4UQXvdOkoMYAQGzzVzlzwEYxBAREamOT4m95ZaTtFofcmI01U/sdc51cbeLtUFrUH4uLq3ekhKDGCIiIpVxt+WATN4E0lRsQYmlBCcuZQLwcSambDnJWo3lJOdHp50DFplOo4Neo7e3rWZyL4MYIiIilTGbKl9OMhdb8K/D/8KO7J0A/FxOqs5MTFkQE6IJgVZTsX9A4JJ7GcQQERGpjPz4tNflpBILdp3fBY2wBxK+7Z1U/eWkYqvnfBhZoHayZhBDRESkMvLTSd7qxJQUluLopaNKEGNBaaX3lWdihE1A2KoWyHjbN0kWpg/MTtYMYoiIiFSm1Ic6McVFJliFFRqbPYi5UHKh0vs678NU1dkYeYnIXVKvTK4fw8ReIiKiIOPL3klWkwAEoC2bifmt6NdK76t1ypupanKvLzMxSk6MlUEMERFRUPG2nBRS9nQShAS9zYBGITEAgHOF2ZXe1zn5t6ozMd6q9cqUrQeYE0NERBRclDoxhorLSTq9BlLZZo8hllAkN7gRAPBr4TmYrd6Ly0kaCSiLY6q8nMTEXiIiIvLEW50YSZIgT4I00cahsaGJ/RqYceTSEa/3lSRJmY2Rtyvwl0+JvQHayZpBDBERkYoIm3BaTqo4EwMAVr19xqVTZFeIshkVq8aCAxcOVHp/Obm3uom97nawlgVqJ2sGMURERCoiBzCA+5kYACiSrgEA2ka0VxJ0bZLVpyBGq63eJpDyTIwvQQxnYoiIiIKI/GSSpJGg01f8NW4TNuTjCgAgObSVMqNik2zIyMuA1WatcI2z6lbtVTZ/ZGIvEREROSs1yTVitJCkilsJZF7JRJGmAADQWBsLa9mO1CF6Ha6VXkPm1Uyv969u1V55iciXnBgGMUREREFEqRHjZt8kADiYdxBmrT04sJTYlGWhlo1aAkClS0rVTexVZmJ8eDqJy0lERERBRK7W627fJMAepJi19uDAXGxVZlTaxLRWzntT3cReeXbFa8VeJvYSEREFH3kmxl2hOyEEDl44CLPOHhyYii1KMNK2SRsAwMELByGE5wBFmYmpbsVeH3JiOBNDREQUROSnk9wtJ/1a8Ct+L/4dFp0JgH23a3k5qXVMK+g1elwquYSzxrMe71/txF4fit3V2cTe9PR03HzzzYiMjERsbCzuueceHD9+3Os1W7duhSRJFV6//PJLoLtHRESkauZiz5s/HsizLxU1bdhYaSsn9oaGGNClSRcA9rwZT5TE3hosdicvNdW5mZht27ZhypQp2L17NzZu3AiLxYLBgwejsLCw0muPHz+OnJwc5dWmTZtAd4+IiEjVlJkYN8tJcr5L8ybNAACmIsdMjEYroWdcT5d27gTqEWuvdWK0gZmJcZ8VVA0bNmxweb906VLExsbiwIED6Nevn9drY2Nj0bBhQ58+x2QywWQyKe+NRqPffSUiIlIbed8kdzMxBy/YZ1jaxt2ILNhgLnHkxGi0ElLiUoDDlQUxgUnsrRcVe/Pz8wEAMTExlbbt0aMHEhIScMcdd2DLli1e26anpyM6Olp5JSUlBaS/REREdZmnfZMuFl9EdkE2JEjokNAOQNlykhLEaNC9aXdoJA1+u/YbLhRecHt/LRN77YQQmDFjBm699VZ07tzZY7uEhAT885//xOrVq7FmzRq0a9cOd9xxB7Zv3+7xmrS0NOTn5yuvc+fO1cRXICIiqlPMJvdPJ8mzK20btUWjyGgAFZeTGoQ0QLtG9gDHU15MdZeTfCp2F6BdrAO+nORs6tSp+N///oedO3d6bdeuXTu0a9dOeZ+amopz585h3rx5HpegDAYDDAZDQPtLRERU1yl1Ygyuv8LlIKZnXE8Ywu3nnPdZkhN2e8b1xLHLx3DgwgEMSx5W4f6aaib2+lTsTu8oduftce/K1NhMzNNPP43169djy5YtaNasmd/X9+nTB5mZ3ksjExERBZtSD3Vi5HyYlLgUhIRVnKOQZ1hS4lIAeM6LcdSJ8T+4EEL4lhNTttQkIGC2mf3+HFnAgxghBKZOnYo1a9Zg8+bNSE5OrtJ9Dh06hISEhAD3joiISN3MSsVeRxBjNBtx4soJAPaZFq1OA225zSHl4KRHbA8AwMmrJ5Fvyq9wf201EntNVhME7Nd5C2IMOsdKSnWWlAK+nDRlyhT8+9//xpdffonIyEjk5uYCAKKjoxEWZv9CaWlp+O233/DRRx8BAObPn4+WLVuiU6dOMJvN+OSTT7B69WqsXr060N0jIiJSNaVir9NyUkZeBgQEWkS1QJOwJgAAQ5gORaWOWQ45OGkS1gQto1rijPEMDuUdwoCkAS73d+TE+L+c5ByQGLSeUz70Gj10Gh0sNku1gpiAz8QsWrQI+fn5GDBgABISEpTXqlWrlDY5OTnIzs5W3pvNZsycORNdu3bFbbfdhp07d+Kbb77BqFGjAt09IiIiVVOeTgpzzMTIS0MpsSnKsfJLSnJwAsBrvZjqJPbKSb1ykOJNIHayDvhMjC8JOsuWLXN5P2vWLMyaNSvQXSEiIqp3zKayOjFOMzHO+TAy5yBG0kiQNI4gJiUuBaszVyvXOZMTe6uyi3WRpQiA96ReWZg2DAUoqFatGO6dREREpCLl68SUWErw86WfAQA9Y3sq7eQnlADXWRjAMWNz9NJRFJUWuZyr1kyMD0m9skAUvGMQQ0REpBLWUpsSXMhPJx29dBQWmwVNw5qiWaTjaWDnir7ackHMDQ1uQGx4LCzCgiOXjricq05ib5WCmLqUE0NEREQ1Q15KAhy7WB+/Yt9kuVPjTpAkR7BicMqZkbcSkEmShE6NOwGA8lSTo23ZTEwVlpN8qdYrYxBDREQUROSlJJ1eowQmchDSppHrpskh4XrlZ43OdSYGsFf2db5eaSvXibH5PxNTbK280J0sEIm9DGKIiIhUwl2NGDkIaRvT1qWt60yMlyDmsmsQo61GxV5fqvXKlK0HmBNDRERU/5mVpF57votN2JB5xV7dXg5KZM5PJ5VfTnJuf/LqSVhtVqe2TOwlIiKiACu/5cBvBb+h2FIMg9aA5pHNXdoawjwn9gJAUmQSQrWhKLGW4FyBYxNlTSASe7VM7CUiIiIn8nKS/OSRvJR0Y/SNFYrLVTYTo9Vo0aphK5f72NuW5cRUJbHXhx2sZXLyL4MYIiKiICDvSi3nxCj5MOWWkgDXIEbrJrHX+Tp3QYytKom9/uTE6JnYS0REFDSU5SSDf0GMu8Re5+ucg5hAJPb6khPDxF4iIqIg4ng6yXU5qfyTSYBrToy75SSgkpmYauTE+LScVNbGZDX5/TkyBjFEREQqYXbacqCotEhJyK3qTIxcW+a3a7/hmvkagABV7PUjsVeevakKBjFEREQqUSon9hq0OHn1JAQEmoQ1QUxoTIW2lSX2AkCj0EaIDYsFYH/U2t72+ib2miyciSEiIqr35JmYkDCd13wYANBoJCUB2FNiLwC0ibHPxsj3k6v7ViWx169drMsSezkTQ0REFASUp5MM2kqDGMCRF+NpOcn5eiWIKZu1sVpqttidvOTEnBgiIqIgUOpUJ8aXICZECWI8/7qXr5cr/zoSe6u+ASQr9hIREZELeTlJZ9D4NRPjrmKvzHkmRgjhSOytxkwMd7EmIiIiF/Jy0jUYUWAugE7SITk62WP7EB+Wk5KjkqHT6HCt9BpyCnOqNxPjR2KvPFvDnBgiIqIgINeJOW/+FQDQMrolQrQhHtsrQYzO8697vVaPG6NvBGCfjalOYm9VdrHm00lEVHV5x4B/PwDk/lzbPSGiSsjLSdnFWQC8LyUBviX2Ot/nxJUTynJSVRJ7/anYqywn2bicRERV9d+XgRP/ATa/XNs9ISIvhE3AUracdKrQXtOlsiCmYXw4ACCqsfegwjmIMUTYAx9zsQUFl30PMIQQVUrstQn/l61kDGKIglnRZSDze/vPJzcBhRdrtz9E5JGcDwMAJwqPAag8iOkyoBnGvHAzugxs5rWdcxAT1iAEiW0aAgAy913wuX9mmxkC9tkbfxJ7q4NBDFEwO7IWsJXaf7ZZ7O+JqE6Sl5IkDXD62ikAlQcxGo2Eps0jodH4tpx01ngWJZYStO0VBwA4vicXQvi2rFRc6kjQNegMlbbXa/TQaXSVtvOGQQxRMPvfZ/Y/G7cpe7+q9vpCRF6VmuxJvdoQCVZYEW2IRmx4bEDu3SSsCRoZGsEmbDiVfwqtUmKh0Um4fL4Ql3675tM95CeTdBod9Bq9T9f4sseSNwxiiILV5Szg3G4AEjD6Q/t/3v26D7h0qrZ7RkRuyDMxQm//s22jtpAk7zMsvpIkybGkdPkEQiP0aNmlCQDg+B7flpT8SeqVVXdJiUEMUbA6/IX9zxv7AwndgBsHlh3/vPb6REQeydV6S7X2R5IrW0ryl7yjtVxEr12veAD2vBhfHrf2ZwdrGYMYIvKfEI6lo65jXf/83yr7eSKqU+SZmGKpEEDgg5jy2w+06NwYhnAdCq+acP7ElUqv96fQnYxBDBH57/wh4FImoAsD2o+wH2t/J6APBy6fBn47ULv9I6IK5JmYazACqIEgJsZ+v+NXjtu3H9Br0KqnPefm+N7Kl5TkxF5/AhN/lp7cYRBDFIzkhN72w4HQKPvPhgaOgIYJvkR1jjwTUygVQIKEVg1bBfT+raJbQSNpcNV0FReL7eUW5CWlUwfzYDFbvV2OYqv/OTFM7CUi/1gtwM9l+TDyEpJMfv/zasBaen37RUReyXViSrUlaBHVotqzGOWF6kLRIqoFAEdeTEKraETGhKK0xIqs/3mvI6Vs/sjlJCKqMae3AoW/A+GNgVa3u567cQAQ0RQougSc2lIbvSMiD+R9k8xak5KEG2jORe8AQNJISs2YE5UsKTGxl4hqnrxU1Pk+QFuuloNWZz/u3I6I6oTSEnkmxhTwfBhZ+eReAGhbtqSU/fMlFF8ze7y2Kom9zIkhIt+ZrgG/fG3/ufxSkqzrGPufv3wDmAquT7+IqFJmp+Wkmg5i5JkYAIhJjEDT5pGw2QRO7s/zeK0/O1jLfNmewBsGMUTB5JdvgNIiIOZG4Iae7tskpgCNWwOWYuDY19e3f0TkkbnYnqdm1tT8TMyp/FMotTny4hxLSrker61KsTvOxBCR75xrw3iq9ClJrjVjiKhOyL9mL/+vCRFIbJBYI5+REJGABvoGsNgsOJN/Rjne5uY4SBKQe9qI/N+L3F5brxJ733vvPSQnJyM0NBQ9e/bEjh07vLbftm0bevbsidDQUNx4441YvHhxTXWNKDgVXABOlyXrdrnfe1v5fNY2wJhTs/0iIp9cK7QHD02iGkMj1cyvb5ftB5yWlCKiDWjWIcZ+3EOCb71J7F21ahWeeeYZ/PWvf8WhQ4dw2223YdiwYcjOznbbPisrC8OHD8dtt92GQ4cO4YUXXsC0adOwevXqmugeUXD6eTUgbECzm4HGldSXiEkGknrb2//M/x0S1QUlxfak2oRGgdn00ZPy2w/IKtvZuio5MdVdTqreHtgevPnmm3j00Ufx2GOPAQDmz5+P7777DosWLUJ6enqF9osXL0bz5s0xf/58AECHDh2wf/9+zJs3D/fdd59fn33ql/2IbNCg2t+BqN7Z/zWAOKDZXUD22crbNxsJnDsD7P8WaNirpntHRJUoLbYiBEBSRCRw1f2kQCC0DW0KADiSewDnz+9XjofFCWh1QH5eMQ5t342oplqX667lGdHA1Aj6S6UwZvm2kazuohkRpoZV7qsk3IVT1WA2mxEeHo7PP/8c9957r3J8+vTpyMjIwLZt2ypc069fP/To0QNvv/22cmzt2rUYM2YMioqKoNdX3NLbZDLBZDIp741GI5KSkvCPR9YjLCQikF+JiIiozuieMAO3iKwau3+GIQTjEuPdnrvjxHi0ueThoYAqKjYX4rmldyE/Px9RUVF+XRvwmZiLFy/CarUiLi7O5XhcXBxyc91nNefm5rptb7FYcPHiRSQkJFS4Jj09HXPnzq1w3CqZYZEqBj1EVMZTQq873AiSqE4pCv8VKZo8QKpeLok3Ha1AV1MpjusrhgjH4jfjBmMbhFjcf74EQA9A8vH/OmyS/fd2VdXIchJgTw5yJoSocKyy9u6Oy9LS0jBjxgzlvTwT89Rbg/yO5IiIiNTjsRq9ewiAT2v0ExyEECgoKMBfllTt+oAHMU2aNIFWq60w65KXl1dhtkUWHx/vtr1Op0Pjxo3dXmMwGGAwGALTaSIiIrruvE1u+CLgTyeFhISgZ8+e2Lhxo8vxjRs3om/fvm6vSU1NrdD++++/x0033eQ2H4aIiIioRh6xnjFjBj744AMsWbIEx44dw7PPPovs7Gw8+eSTAOxLQePHj1faP/nkkzh79ixmzJiBY8eOYcmSJfjwww8xc+bMmugeERER1QM1khMzduxYXLp0CX/729+Qk5ODzp0749tvv0WLFvYtvnNyclxqxiQnJ+Pbb7/Fs88+i3fffReJiYlYsGCB349XExERUfAI+CPWtcVoNCI6OrpKj2gRERFR7ajO72/unURERESqxCCGiIiIVIlBDBEREakSgxgiIiJSJQYxREREpEoMYoiIiEiVGMQQERGRKjGIISIiIlViEENERESqVCPbDtQGufCw0Wis5Z4QERGRr+Tf21XZQKDeBDEFBQUAgKSkpFruCREREfmroKAA0dHRfl1Tb/ZOstlsOH/+PCIjIyFJkk/XGI1GJCUl4dy5c7W+39LNN9+Mffv21drncywcOBYOHAsHjoUDx8KBY+FQ1bEQQqCgoACJiYnQaPzLcqk3MzEajQbNmjWr0rVRUVG1/o9Pq9XWeh8AjoUzjoUDx8KBY+HAsXDgWDhUZSz8nYGRMbG3jpgyZUptd6HO4Fg4cCwcOBYOHAsHjoVDMI5FvVlOqorqbP9d33AsHDgWDhwLB46FA8fCgWPhUBtjEdQzMQaDAS+99BIMBkNtd6XWcSwcOBYOHAsHjoUDx8KBY+FQG2MR1DMxREREpF5BPRNDRERE6sUghoiIiFSJQQwRERGpEoMYIiIiUiXVBzHbt2/HyJEjkZiYCEmSsG7dOpfzFy5cwMSJE5GYmIjw8HAMHToUmZmZLm0GDBgASZJcXg888IBLmytXrmDcuHGIjo5GdHQ0xo0bh6tXr9bwt/NPIMYCAHbt2oXbb78dERERaNiwIQYMGIDi4mLlfDCMxZkzZyr8m5Bfn3/+udIuGMYCAHJzczFu3DjEx8cjIiICKSkp+OKLL1zaBMtYnDp1Cvfeey+aNm2KqKgojBkzBhcuXHBpo4axSE9Px80334zIyEjExsbinnvuwfHjx13aCCEwZ84cJCYmIiwsDAMGDMCRI0dc2phMJjz99NNo0qQJIiIicNddd+HXX391aVPXxyNQY/HPf/4TAwYMQFRUFCRJcvsdg2EsLl++jKeffhrt2rVDeHg4mjdvjmnTpiE/P9/lPoEYC9UHMYWFhejWrRsWLlxY4ZwQAvfccw9Onz6NL7/8EocOHUKLFi3whz/8AYWFhS5tH3/8ceTk5Civ999/3+X8Qw89hIyMDGzYsAEbNmxARkYGxo0bV6PfzV+BGItdu3Zh6NChGDx4MPbu3Yt9+/Zh6tSpLqWgg2EskpKSXP495OTkYO7cuYiIiMCwYcOUewXDWADAuHHjcPz4caxfvx6HDx/GqFGjMHbsWBw6dEhpEwxjUVhYiMGDB0OSJGzevBk//PADzGYzRo4cCZvNptxLDWOxbds2TJkyBbt378bGjRthsVgwePBgl7/3119/HW+++SYWLlyIffv2IT4+HoMGDVL2qgOAZ555BmvXrsXKlSuxc+dOXLt2DSNGjIDValXa1PXxCNRYFBUVYejQoXjhhRc8flYwjMX58+dx/vx5zJs3D4cPH8ayZcuwYcMGPProoy6fFZCxEPUIALF27Vrl/fHjxwUA8fPPPyvHLBaLiImJEf/617+UY/379xfTp0/3eN+jR48KAGL37t3KsV27dgkA4pdffgnodwiUqo5F7969xYsvvujxvsE0FuV1795dTJo0SXkfTGMREREhPvroI5d7xcTEiA8++EAIETxj8d133wmNRiPy8/OVNpcvXxYAxMaNG4UQ6hwLIYTIy8sTAMS2bduEEELYbDYRHx8vXn31VaVNSUmJiI6OFosXLxZCCHH16lWh1+vFypUrlTa//fab0Gg0YsOGDUIIdY5HVcbC2ZYtWwQAceXKFZfjwTgWss8++0yEhISI0tJSIUTgxkL1MzHemEwmAEBoaKhyTKvVIiQkBDt37nRp++mnn6JJkybo1KkTZs6c6RJd79q1C9HR0ejdu7dyrE+fPoiOjsaPP/5Yw98iMHwZi7y8POzZswexsbHo27cv4uLi0L9/f5exCpaxKO/AgQPIyMhw+S+JYBqLW2+9FatWrcLly5dhs9mwcuVKmEwmDBgwAEDwjIXJZIIkSS7FvEJDQ6HRaJQ2ah0Leao/JiYGAJCVlYXc3FwMHjxYaWMwGNC/f3/lexw4cAClpaUubRITE9G5c2eljRrHoypj4YtgHgu5iq9OZ9+yMVBjUa+DmPbt26NFixZIS0vDlStXYDab8eqrryI3Nxc5OTlKu4cffhgrVqzA1q1bMXv2bKxevRqjRo1Szufm5iI2NrbC/WNjY5Gbm3tdvkt1+TIWp0+fBgDMmTMHjz/+ODZs2ICUlBTccccdSl5AsIxFeR9++CE6dOiAvn37KseCaSxWrVoFi8WCxo0bw2Aw4IknnsDatWvRqlUrAMEzFn369EFERASef/55FBUVobCwEM899xxsNpvSRo1jIYTAjBkzcOutt6Jz584AoPQ1Li7OpW1cXJxyLjc3FyEhIWjUqJHXNmoaj6qOhS+CdSwuXbqEl19+GU888YRyLFBjUa+DGL1ej9WrV+PEiROIiYlBeHg4tm7dimHDhkGr1SrtHn/8cfzhD39A586d8cADD+CLL77Apk2bcPDgQaWNJEkV7i+EcHu8LvJlLOQ1/SeeeAKPPPIIevTogbfeegvt2rXDkiVLlHsFw1g4Ky4uxr///e8K67lA8IzFiy++iCtXrmDTpk3Yv38/ZsyYgfvvvx+HDx9W2gTDWDRt2hSff/45vvrqKzRo0EDZJyYlJcVlvNQ2FlOnTsX//vc/rFixosK58n325XuUb6Om8Qj0WFR2j6re53oIxFgYjUbceeed6NixI1566SWv9/B2H090PrdUqZ49eyIjIwP5+fkwm81o2rQpevfujZtuusnjNSkpKdDr9cjMzERKSgri4+MrPH0AAL///nuFaLQuq2wsEhISAAAdO3Z0ua5Dhw7Izs4GgKAZC2dffPEFioqKMH78eJfjwTIWp06dwsKFC/Hzzz+jU6dOAIBu3bphx44dePfdd7F48eKgGQsAGDx4ME6dOoWLFy9Cp9OhYcOGiI+PR3JyMgD1/bt4+umnsX79emzfvh3NmjVTjsfHxwOw/xez/P8NgH3ZWf4e8fHxMJvNuHLlistsTF5enjJrqabxqM5Y+CLYxqKgoABDhw5FgwYNsHbtWuj1epf7BGIs6vVMjLPo6Gg0bdoUmZmZ2L9/P+6++26PbY8cOYLS0lLlLyg1NRX5+fnYu3ev0mbPnj3Iz893WV5QC09j0bJlSyQmJlZ4nO7EiRNo0aIFgOAZC2cffvgh7rrrLjRt2tTleLCMRVFREQC4PKEG2PNF5Nm7YBkLZ02aNEHDhg2xefNm5OXl4a677gKgnrEQQmDq1KlYs2YNNm/erARhsuTkZMTHx2Pjxo3KMbPZjG3btinfo2fPntDr9S5tcnJy8PPPPytt1DAegRgLXwTTWBiNRgwePBghISFYv369S64ZEMCx8DkFuI4qKCgQhw4dEocOHRIAxJtvvikOHTokzp49K4SwZ0Rv2bJFnDp1Sqxbt060aNFCjBo1Srn+5MmTYu7cuWLfvn0iKytLfPPNN6J9+/aiR48ewmKxKO2GDh0qunbtKnbt2iV27dolunTpIkaMGHHdv6831R0LIYR46623RFRUlPj8889FZmamePHFF0VoaKg4efKk0iZYxkIIITIzM4UkSeI///mP288JhrEwm82idevW4rbbbhN79uwRJ0+eFPPmzROSJIlvvvlGaRcMYyGEEEuWLBG7du0SJ0+eFB9//LGIiYkRM2bMcGmjhrF46qmnRHR0tNi6davIyclRXkVFRUqbV199VURHR4s1a9aIw4cPiwcffFAkJCQIo9GotHnyySdFs2bNxKZNm8TBgwfF7bffLrp166aq//8M1Fjk5OSIQ4cOiX/9618CgNi+fbs4dOiQuHTpktImGMbCaDSK3r17iy5duoiTJ0+63CfQ/y5UH8TIj7KVf02YMEEIIcTbb78tmjVrJvR6vWjevLl48cUXhclkUq7Pzs4W/fr1EzExMSIkJES0atVKTJs2zeUfnRBCXLp0STz88MMiMjJSREZGiocffrjC43O1rbpjIUtPTxfNmjUT4eHhIjU1VezYscPlfDCNRVpammjWrJmwWq1uPydYxuLEiRNi1KhRIjY2VoSHh4uuXbtWeOQ6WMbi+eefF3FxcUKv14s2bdqIN954Q9hsNpc2ahgLd+MAQCxdulRpY7PZxEsvvSTi4+OFwWAQ/fr1E4cPH3a5T3FxsZg6daqIiYkRYWFhYsSIESI7O9ulTV0fj0CNxUsvvVTpfYJhLDz97wyAyMrKUtoFYiyksk4TERERqUrQ5MQQERFR/cIghoiIiFSJQQwRERGpEoMYIiIiUiUGMURERKRKDGKIiIhIlRjEEBERkSoxiCEiIiJVYhBDRLVm69atkCQJV69ere2uEJEKsWIvEV03AwYMQPfu3TF//nwA9o3jLl++jLi4OEiSVLudIyLV0dV2B4goeIWEhCA+Pr62u0FEKsXlJCK6LiZOnIht27bh7bffhiRJkCQJy5Ytc1lOWrZsGRo2bIivv/4a7dq1Q3h4OEaPHo3CwkIsX74cLVu2RKNGjfD000/DarUq9zabzZg1axZuuOEGREREoHfv3ti6dWvtfFEium44E0NE18Xbb7+NEydOoHPnzvjb3/4GADhy5EiFdkVFRViwYAFWrlyJgoICjBo1CqNGjULDhg3x7bff4vTp07jvvvtw6623YuzYsQCARx55BGfOnMHKlSuRmJiItWvXYujQoTh8+DDatGlzXb8nEV0/DGKI6LqIjo5GSEgIwsPDlSWkX375pUK70tJSLFq0CK1atQIAjB49Gh9//DEuXLiABg0aoGPHjhg4cCC2bNmCsWPH4tSpU1ixYgV+/fVXJCYmAgBmzpyJDRs2YOnSpXjllVeu35ckouuKQQwR1Snh4eFKAAMAcXFxaNmyJRo0aOByLC8vDwBw8OBBCCHQtm1bl/uYTCY0btz4+nSaiGoFgxgiqlP0er3Le0mS3B6z2WwAAJvNBq1WiwMHDkCr1bq0cw58iKj+YRBDRNdNSEiIS0JuIPTo0QNWqxV5eXm47bbbAnpvIqrb+HQSEV03LVu2xJ49e3DmzBlcvHhRmU2pjrZt2+Lhhx/G+PHjsWbNGmRlZWHfvn147bXX8O233wag10RUVzGIIaLrZubMmdBqtejYsSOaNm2K7OzsgNx36dKlGD9+PP785z+jXbt2uOuuu7Bnzx4kJSUF5P5EVDexYi8RERGpEmdiiIiISJUYxBAREZEqMYghIiIiVWIQQ0RERKrEIIaIiIhUiUEMERERqRKDGCIiIlIlBjFERESkSgxiiIiISJUYxBAREZEqMYghIiIiVfr/Lr68BdGczm4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "#clipped_india.groupby([pd.Grouper(key='time', freq='Y')]).mean().reset_index().plot(x='time', y='heat_waves_per_time_period', ax=ax, label = 'India', color = '#1F77B4')\n", + "clipped_hyd.groupby([pd.Grouper(key='time', freq='Y')]).mean().reset_index().plot(x='time', y='heat_wave_duration_index_wrt_mean_of_reference_period', ax=ax, label = 'Hyderabad', color = '#FF7F0E')\n", + "clipped_chennai.groupby([pd.Grouper(key='time', freq='Y')]).mean().reset_index().plot(x='time', y='heat_wave_duration_index_wrt_mean_of_reference_period', ax=ax, label = 'Chennai', color = '#2CA02C')\n", + "#clipped_delhi.groupby([pd.Grouper(key='time', freq='Y')]).mean().reset_index().plot(x='time', y='heat_wave_duration_index_wrt_mean_of_reference_period', ax=ax, label = 'Delhi', color = '#D62728')\n", + "clipped_mumbai.groupby([pd.Grouper(key='time', freq='Y')]).mean().reset_index().plot(x='time', y='heat_wave_duration_index_wrt_mean_of_reference_period', ax=ax, label = 'Mumbai', color = '#9467BD')" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "5aca7bfb-beea-4dab-900e-a4e451b84751", + "metadata": {}, + "source": [ + "## " + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "11f4e96f", + "metadata": {}, + "outputs": [], + "source": [ + "df_mean3 = ds_mean3.to_dataframe().groupby([\"time\", \"lat\", \"lon\"]).sum()\n", + "df1_mean3 = df_mean3.groupby(\"time\").sum()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "41fad60c", + "metadata": {}, + "source": [ + "## Comparing heatwaves using multiple definitions" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "id": "e8399f5a-49b2-4e56-b899-f75893ed8f51", + "metadata": {}, + "outputs": [], + "source": [ + "df_percentile390 = ds_percentile390.to_dataframe().groupby([\"time\"]).sum()\n", + "df_percentile490 = ds_percentile490.to_dataframe().groupby([\"time\"]).sum()\n", + "df_percentile290 = ds_percentile290.to_dataframe().groupby([\"time\"]).sum()\n", + "\n", + "df_mean2 = ds_mean2.to_dataframe().groupby([\"time\"]).sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "id": "4c42558b", + "metadata": {}, + "outputs": [], + "source": [ + "df_mean4 = ds_mean4.to_dataframe().groupby([\"time\"]).sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "id": "cf01ff82", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Number of heatwaves using different definitions of a heatwave')" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAAFuCAYAAABk5hXvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd1jUV9bA8e+doTdBAaUoqKCINAtYsNdoEtNMNdk0UzaJ2WzK7ibZJLt5symbXtx0E1OMJjGJJhpr7L0gCCJFQKQovdeZ+b1/zICAlAEHZsT7eR4eYX7tTkHO3Dn3HKEoCpIkSZIkSZJ0OVKZewCSJEmSJEmSZC4yGJYkSZIkSZIuWzIYliRJkiRJki5bMhiWJEmSJEmSLlsyGJYkSZIkSZIuWzIYliRJkiRJki5bMhiWJCMJIb4UQrxkpmsLIcQXQohiIcTBVrbfJYTYbY6x9UZCiAohxJAeuM40IURWk58ThBDTDN9f8JwLIf4shDhnGF+/7h7fxRJCKEKIACP3bXbfOvMcdLRv08fVEgghrhNCnDGMe9RFnsts/y9JUm8hg2HpkiWEyDD88XRscttiIcR2Mw6ru0wCZgO+iqJE9eSFDY/zrJ68prkpiuKkKEqaGa47UlGU7YYfmz3nQghr4C1gjmF8hT05tu58HbR23zrzHDTdt7XgsMXjagneAB4xjDvG3INpjRDC3/BmxsrcY5Gk7iaDYelSZwX8xdyD6CwhhLqTh/gBGYqiVHbHeCSL1PI57w/YAQldOVkXXnM96aLu2yXIj8vnvkqSxZPBsHSpex14Ugjh2nJDazMbQojtQojFhu/vEkLsEUK8LYQoEUKkCSEmGm4/I4TIE0Lc2eK07kKIzUKIciHEDiGEX5NzBxm2FQkhkoQQNzXZ9qUQ4kMhxHohRCUwvZXxegsh1hqOTxVC3Ge4/V7gM2CC4WPVf7f1YAgh3jB8rJ4uhJjX5PY+QojPhRC5QohsIcRLDcGREGKoEOIPIUShEKJACPFtw+MphPgaGAT8arj234QQy4UQTxi2+xge44cMPwcYxi+EEG5CiN+EEPmGMf0mhPA17HeLEOJwi7H/VQix1vC9reG+ZBpm/z8SQtgbtrkbzlViuNYuIcQF/5cZ8fwHGJ7DUsP9XtVkv8aP9w3P3VIhxDrD835ACDG0yb5zDM93qRDif4ZzLm7j+bE3nK9YCHECiGyxPUMIMauV5/w7IMmwW4kQ4g/D/p16zRleY6sNz0m6EOLRJvv/SwjxvRDiK8P9TBBCjG3rddDG/XvK8BrLEULc02Jbq8+pEGJYG/etM8+BYng+7wcWAX8zjPPXpo9rk3G8YxhjjuF7W8O2aUKILCHEE0L/+58rhLi7yXXmCyFOGMaQLYR4so3HQSWE+KcQ4rThPF8J/e+grRCiAlADsUKIU20c/67Q/x9UJoQ4IoSY3Np+Tbi189i09xq5UggRY7jOGSHEv5qcc2eT56RCCDHBcH/GGI693fC4Bxt+XiyE+MXwfZQQYp/Q/47mCiE+EELYGLZ9JIR4o8X9XSOEeNzwfZuvUUnqNoqiyC/5dUl+ARnALOAn4CXDbYuB7Ybv/QEFsGpyzHZgseH7uwANcDf6P04vAZnAUsAWmAOUA06G/b80/DzFsP1dYLdhmyNwxnAuK2A0UACMbHJsKRCN/k2oXSv3ZwfwP/QzZBFAPjCzyVh3t/NY3AXUA/cZ7sufgRxAGLb/AnxsGKcncBB4wLAtAP3H8baAB/o/gu+0fJyb/HwP8Kvh+9uAU8CqJtvWGL7vB9wAOADOwA/AL4ZtDobHMrDJeQ8Btxi+fwdYC/Q1HPsr8Iph2yvAR4C14Wtyw/1s8Zh09Px/Bzzb8HwAk5rspwABTZ67IiDK8Nx+C6w0bHMHyoDrOf8pRX3DNVoZ06vALsP9GgjEA1mtPdYtn/OW94fOv+YcgCPA84ANMARIA+Ya9v8XUAPMR/8aegXY39broJX7dgVwDggxjG1Fi8exvee0tefKqOegjX1fau3/CsP3LwL70f8eeAB7gf8zbJuG/v+EF9G/tuYDVYCbYXsuMNnwvRswuo3H4h4g1fAYO6H/P+rr1sbbxvG3o//9sQKeAM7Syv8ZRrw+O3qNTANCDa+PMMPzd207z8lXwBOG7z9B/7v/5ybb/mr4fgww3nBNfyAReMywbYphTKLJ41gNeBvG0eZrVH7Jr+76Mu/FYRmQB8Qbuf9NwAn0Hy+tMPeDJ7/M+8X5YDgE/R99DzofDKc02RZq2L9/k9sKgQjD91/S/A+wE6BFH9TcDOxqMb6PgReaHPtVO/dloOFczk1uewX4sslYOwqGU5v87GC4LwPQfwRdC9g32X4rsK2Nc10LxLR8nJv8PBQoMfzh+gh4AENABywHHm/jvBFAcZOfvwGeN3wfiD44dgAEUAkMbbLvBCDd8P2LwBraCSaMfP6/Qv8H3beVY1sGV5812TYfOGn4/k/AvibbBPo/9G0Fw2nAFU1+vp+uB8Odes0B44DMFvs/DXxh+P5fwJYm24KB6rZeB63ct2XAq01+HtbwOBrxnLb2XBn1HLSxb3vB8ClgfpNtc9Gno4A+OKxuMY48YLzh+0z0r3eXDl57W4GHmvw8HP2bJKuW4zXmCygGwtvY1uZj09FrpJVzvQO83c5zci+w1vB9Ivr/bxsC79O0/ebgMeDnJr8jmcAUw8/3AX8Y8xqVX/Kru77MnSbxJfrZhA4JIQLR/1JEK4oyEv0vlyShKEo88Bvwjy4cfq7J99WG87W8zanJz2eaXLcC/YyMN/ocwHGGjwVLhBAl6D+uHdDasa3wBooURSlvcttpwMf4u8LZJmOrMnzrZBibNZDbZGwfo58ZQwjhKYRYafjYtwx9kOre1kUURTkFVKAPbiejf+xzhBDDganoZ7gRQjgIIT42fLRahn7G2VWcz11dgT4oB/0M8y+GcXtgmMVsMt4NhttBnxqTCmwS+tSWrjzvAH9D/4f5oCEl4J529j3b5Psqzr8mvGn+mlCALNrWbH/0z3FXdfY15wd4t9j/GfRvlhq0vJ92wvgFVO3dt46eU2O09Rx0lneLsZ023NagUFEUTRvXugF9sHla6NNhJnTiGlY0f6zbZEjTSBT61JsSoA/t/E7S9mPT7mtECDFOCLHNkJJQCjzYwXV2AJOFEAPQf3qwCogWQvgbxnjMcN5hQp/KdNbwu/9yw3kNvyMraf67/22T8Xb0GpUkkzNrMKwoyk70wUQjoc9f3GDIk9olhAgybLoPWKooSrHh2LweHq5k2V5A/xppGjw2LDxyaHJb00ChKwY2fCOEcEL/kW8O+iBgh6Iork2+nBRF+XOTY5V2zpsD9BVCODe5bRCQfZHjxTC2WsC9ydhcDG8qQT8DrQBhiqK4oP+IVnQw7h3AQsBGUZRsw89/Qv+R5zHDPk+gnxEbZzjvFMPtDefehD4HOwL9H8YVhtsL0L8JGdlkvH0URXECUBSlXFGUJxRFGQJcDTwuhJjZyhjbff4VRTmrKMp9iqJ4o5/t+58wsgxYE7mAb8MPQgjR9Oc29h/Y5OdBnbxeU519zZ1BPxPbdH9nRVHmG3m99l6/0P59a/c5NbGOxpmDPuhqMMhwW8cnVpRDiqJcg/6N5C/A9524hobmb75bZcgP/jv6T0LdFEVxRf/Jl2jvuDZ09BpZgT51ZaCiKH3Qf9LTcJ0LHkdFUVLRB9uPAjsNb97Pov+EY7eiKDrDrh8CJ9GnQbmgD2ibjv87YKHQr7kYB6xuMt6LeY1KUpeYe2a4NZ8ASxRFGQM8iT6HEvQfuQ0T+gVP+4UQRs0oS5cHw3/Sq9D/J91wWz76YPJ2IYTaMPM3tI1TGGu+EGKSYTHI/wEHFEU5g352dJgQ4g4hhLXhK1IIMcLI8Z9Bn7v4ihDCTggRhv4jyW/bP9Koc+eiDzzfFEK4CP3inqFCiKmGXZzRz/SWCCF8gKdanOIc+ty9pnYAj3B+kc12YAn6P4jaJuetNpy3L/o3LE3HpQF+RD/T2xfYbLhdB3wKvC2EaJi99hFCzDV8f5XQL5YS6PN1tYavlve73edfCHGjMCzoQ/8xtNLaeTqwDggVQlxrmEF9mPbfcH0PPC30iwt90T9mXdXZ19xBoEwI8XehX7imFkKECCEi29i/pdZeB019D9wlhAgWQjjQ5Pnu6Dk1sY7G+R3wTyGEhxDCHX1+6jcdnVQIYSOEWCSE6KMoSj3nX3ttXeOvQojBhjfNL6PPq9e0sX9TzugD53zASgjxPOBixHGt6eg14oz+E6kaIUQU+lnaBvmAjrZ/93cYft7e4ueG85YBFYYJraZv0FD05eTy0S8S3agoSolh08W+RiWpSywqGDb8pzER+EEIcQz9R7lehs1W6PMKp6GfRfpMtFJBQLqsvYh+wUhT96EP7gqBkegDzouxAv0f+SL0i0QWgX62Ev2Cu1vQzwqdBV5DvyjNWLeiz9PLAX5Gn9e3+SLH2+BP6BeknEAf+P3I+d+tf6NfWFOKPrj7qcWxr6APHkrE+dXzO9D/wWsIhnejn4Hd2eS4dwB79LOC+9F/LN7SCvR53z+0CBT+jj4VYr/hY9Yt6GeZQf//wBb0Afw+4H9K2zVk23v+I4EDQr+6fy3wF0VR0ts4T6sURSkAbgT+a7hGMHAY/Ux8a/6N/iPzdPRvUL7uzPVaXLtTrznDm5Sr0ae3pKN/Xj5D//G2MVp7HTQ9/+/on/M/0D93f7TYpb3n1JQ+B4IN4/ylle0voX+O4oDjwFHDbca4A8gwjP9B9J+itGYZ+ud2J/rHugbj3/hsBH4HktG/VmpoP8WqTUa8Rh4CXhRClKN/U/B9k2OrgP8AewyP5XjDppa/+y1/Bv1E1m3o1wF8in6ioqXv0P/uN3wiZIrXqCR1ScNqTvMNQJ9r9JuiKCFCCBcgSVEUr1b2+wj9yuYvDT9vBf6hKMqhnhyvJElSW4S+xFsWsEhRlG3mHo8kSZLUMYuaGVYUpQxIF0LcCI3tSMMNm3/BUJvV8NHWMPQrsyVJksxGCDFXCOEq9LVqG3Ij95t5WJIkSZKRzBoMC30h+X3AcKEvdH4v+o+d7xVCxKIvoXaNYfeNQKHQF6rfBjyl9HA7UkmSpFZMQF+uqwD9R7zXKopSbd4hSZIkScYye5qEJEmSJEmSJJmLRaVJSJIkSZIkSVJPksGwJEmSJEmSdNkytrOQybm7uyv+/v7murwkSZIkSZJ0mThy5EiBoiitdr00WzDs7+/P4cOHzXV5SZIkSZIk6TIhhDjd1jaZJiFJkiRJkiRdtmQwLEmSJEmSJF22ZDAsSZIkSZIkXbbMljPcmvr6erKysqipqTH3UKRW2NnZ4evri7W1tbmHIkmSJEmSZBIWFQxnZWXh7OyMv78/QghzD0dqQlEUCgsLycrKYvDgweYejiRJkiRJkklYVJpETU0N/fr1k4GwBRJC0K9fPzlrL0mSJElSr2JRwTAgA2ELJp8bSZIkSZJ6G4sLhiW9d955h6qqqsaf58+fT0lJCQBOTk7tHltTU0NUVBTh4eGMHDmSF154oXFbbGwsEyZMIDQ0lKuvvpqysrLGba+88goBAQEMHz6cjRs3mvYOSZIkSZIkWSAZDJuQRqMx2blaBsPr16/H1dXVqGNtbW35448/iI2N5dixY2zYsIH9+/cDsHjxYl599VWOHz/Oddddx+uvvw7AiRMnWLlyJQkJCWzYsIGHHnoIrVZrsvsjSZIkSZJkiWQw3EJGRgZBQUHceeedhIWFsXDhQqqqqjhy5AhTp05lzJgxzJ07l9zcXACmTZvGM888w9SpU3n33Xc5dOgQEydOJDw8nKioKMrLy9FqtTz11FNERkYSFhbGxx9/DMD27duZNm0aCxcuJCgoiEWLFqEoCu+99x45OTlMnz6d6dOnA/qOfQUFBReM9/XXX288b8MMsBCicfa4vr6e+vr6xhSHpKQkpkyZAsDs2bNZvXo1AGvWrOGWW27B1taWwYMHExAQwMGDB7vxkZYkSZIkSTI/i6om0dS/f03gRE5Zxzt2QrC3Cy9cPbLD/ZKSkvj888+Jjo7mnnvuYenSpfz888+sWbMGDw8PVq1axbPPPsuyZcsAKCkpYceOHdTV1REUFMSqVauIjIykrKwMe3t7Pv/8c/r06cOhQ4eora0lOjqaOXPmABATE0NCQgLe3t5ER0ezZ88eHn30Ud566y22bduGu7t7m+PctGkTKSkpHDx4EEVRWLBgATt37mTKlClotVrGjBlDamoqDz/8MOPGjQMgJCSEtWvXcs011/DDDz9w5swZALKzsxk/fnzjuX19fcnOzu7yYy1JkiRJ0qXt8K8/odVoGHfdTeYeSrey2GDYnAYOHEh0dDQAt99+Oy+//DLx8fHMnj0bAK1Wi5eXV+P+N998M6APor28vIiMjATAxcUF0AetcXFx/PjjjwCUlpaSkpKCjY0NUVFR+Pr6AhAREUFGRgaTJk0yapybNm1i06ZNjBo1CoCKigpSUlKYMmUKarWaY8eOUVJSwnXXXUd8fDwhISEsW7aMRx99lBdffJEFCxZgY2MD6EuntSQXzEmSJEnS5Sl+22Z2fKOf9HPq24+RU2eaeUTdx2KDYWNmcLtLyyDQ2dmZkSNHsm/fvlb3d3R0BPQBZWsBpKIovP/++8ydO7fZ7du3b8fW1rbxZ7Va3am8Y0VRePrpp3nggQfa3MfV1ZVp06axYcMGQkJCCAoKYtOmTQAkJyezbt06QD8T3DBLDPqaz97e3kaPRZIkSZKk3iE7KZEtny1lUEg4ik7Hlk+X4uk/BA+/zvUZ0Om0nNy9gyGjo7DrYPG/Ocmc4VZkZmY2Br7fffcd48ePJz8/v/G2+vp6EhISLjguKCiInJwcDh06BEB5eTkajYa5c+fy4YcfUl9fD+iD0MrKynbH4OzsTHl5ebv7zJ07l2XLllFRUQHoUx3y8vLIz89vrDxRXV3Nli1bCAoKAiAvLw8AnU7HSy+9xIMPPgjAggULWLlyJbW1taSnp5OSkkJUVFSHj5UkSZIkST3vXFoqSft2t/rJ7sUoK8hn7Zv/wbmfB1f99R9c+Ze/YevkxNq3Xqa2qv3YpSmdTsvG/73D70vfIvVQ65OJlkIGw60YMWIEy5cvJywsjKKiIpYsWcKPP/7I3//+d8LDw4mIiGDv3r0XHGdjY8OqVatYsmQJ4eHhzJ49m5qaGhYvXkxwcDCjR48mJCSEBx54oMMZ4Pvvv5958+Y1LqBrzZw5c7jtttsaS6UtXLiQ8vJycnNzmT59OmFhYURGRjJ79myuuuoqQB/cDxs2jKCgILy9vbn77rsBGDlyJDfddBPBwcFcccUVLF26FLVafRGPoiRJkiRJ3SFp3y6+e/4pfnvnVTZ/+gFaTb1JzltfW8PaN/+Dpq6Wa//2HPZOzji6unHVX/5Gad45Nn74rlHBt6LTsfmTpZzYtQ3AZOPrLsLU7yiMNXbsWOXw4cPNbktMTGTEiBFmGU+DjIwMrrrqKuLj4806DktlCc+RJEmSJF2OFEXh0NrV7FrxJd7Dg/EeFsThX3/Cd0QIVz/+NA4ufS7q3Ovee52kfbu49qnnGDqm+afDh3/7mR1ff87U2+9h7NXXt3uerZ9/SOzm9YTPnk/s5vXMuPsBRl1xdZfHZgpCiCOKooxtbZucGZYkSZIkSbJwOq2WrZ9/yK4VXzJswmRu/OdLTL39HuYveZLc1CRWPPs4BZkZXT7/wV9+IGnvTibfeucFgTDAmCuvJXDcRHau+JKsE61PGCqKwvblnxK7eT2R1yxk0i1/Moxd1+Vx9QQZDLfg7+8vZ4UlSZIkSbIY9TU1rHnjJWI3r2fs1ddz1aNPYWWoBjVi0jRu/teraOrqWPHcU5w6cqDT5089fIDdq74mKHoqkQtuaHUfIQRzH3wM1/4D+O3d16gsKW62XVEUdn77BUd/X8vo+dcw+dY7UVnp0y11Ostu4iWDYUmSJEmSJAtVWVLMqn//g/SYI8y89yGm3n4PQtU8fPMKGM6il9+mr7cPv7z+EgfX/Gj0wrqCM6dZ//4b9B88lDkPPtpuWVVbBweufvwZaquq+O3d19AZOtUqisKeVV9z+NefCJ9zJdP+tBghBCqVIRg2YYfe7iCDYUmSJEmSJAtUmJXJin8+QWH2Ga556p9EzJnf5r7O/dy5+V+vMnz8JHat+JINS99CU1fX7vmry8v45fX/w8bOjmue/CfWNrbt7g/gMcif2fc9TNaJeHav+hqA/atXcuDn7wmdOZeZdz/QGFCr1JfGzLDF1hmWJEmSJEm6XJ05cZw1b7yElbUNt/zrNfoPCejwGGtbO678y99wH+jHnu+/If90Ov0G+rW5f8GZ01QUFnDTC6/i3K/tjrctBU+ZQXbSCQ6t+ZGyvHMk7dvFyKmzmL344Waz1g3fW3rOsAyGJUmSJEmSLMy6917HoY8bC595ERcPT6OPE0Iw/oZb6Oc7iD3ff8PZU8kXbG/8XqVm3iNP4D0sqNPjm37n/YZax7sIip7KnAeXXJC+IYRAqFQocmZY6op33nmH+++/HwcHBwDmz5/PihUrcHV1xcnJqbHRRnu0Wi1jx47Fx8eH3377DYDY2FgefPBBKioq8Pf359tvv21sG/3KK6/w+eefo1aree+99y7omCdJkiRJUvfTabVUFhcRNvOKTgXCTQWOm0jguIkmHtl5VjY2XPvUc5w6cpDQGXMa84NbUqutGnOLLZXMGTahzrRS7sg777xDVVVV48/r16/H1dW1U+d49913L6gJvHjxYl599VWOHz/Oddddx+uvvw7AiRMnWLlyJQkJCWzYsIGHHnoIrYW/eCVJkiSpN6qp1E94WXILYwCnvv0Inz2vMTe4NUKtRqeVC+guKRkZGQQFBXHnnXcSFhbGwoULqaqq4siRI0ydOpUxY8Ywd+5ccnNzAZg2bRrPPPMMU6dO5d133+XQoUNMnDiR8PBwoqKiKC8vR6vV8tRTTxEZGUlYWBgff/wxANu3b2fatGksXLiQoKAgFi1ahKIovPfee+Tk5DB9+vTGDnT+/v4UFBRcMN7XX3+98bwvvPBC4+1ZWVmsW7eOxYsXN9s/KSmJKVOmADB79mxWr14NwJo1a7jllluwtbVl8ODBBAQEcPDgQdM/wJIkSZIktaumoiEYdjbzSC6eSq2SOcNd9vs/4Oxx055zQCjMe7XD3ZKSkvj888+Jjo7mnnvuYenSpfz888+sWbMGDw8PVq1axbPPPsuyZcsAKCkpYceOHdTV1REUFMSqVauIjIykrKwMe3t7Pv/8c/r06cOhQ4eora0lOjqaOXPmABATE0NCQgLe3t5ER0ezZ88eHn30Ud566y22bduGu3vbCe2bNm0iJSWFgwcPoigKCxYsYOfOnUyZMoXHHnuM//73v5SXlzc7JiQkhLVr13LNNdfwww8/cObMGQCys7MZP358436+vr5kZ2d3+iGWJEmSJOni1FTo/3Zb+sywMVQqtcWnSVhuMGxGAwcOJDo6GoDbb7+dl19+mfj4eGbPng3oc3G9vLwa97/55psBfRDt5eVFZGQkQGMu7qZNm4iLi+PHH38EoLS0lJSUFGxsbIiKisLX1xeAiIgIMjIymDRpklHj3LRpE5s2bWLUqFEAVFRUkJKSQllZGZ6enowZM4bt27c3O2bZsmU8+uijvPjiiyxYsAAbQ9Hu1uoRtldrUJIkSZKk7lHbkCbh2BtmhtWytFqXGTGD211aBoHOzs6MHDmSffv2tbq/o6MjoA8oWwsgFUXh/fffv2BB2vbt27G1PV/TT61WdyrvWFEUnn76aR544IFmtz/99NOsXbuW9evXU1NTQ1lZGbfffjvffPMNQUFBbNq0CYDk5GTWrVsH6GeCG2aJQZ9m4e3tbfRYJEmSJEkyjV41MywX0F2aMjMzGwPf7777jvHjx5Ofn994W319PQkJCRccFxQURE5ODocOHQKgvLwcjUbD3Llz+fDDD6mvrwf0QWhlZWW7Y3B2dr4gxaGluXPnsmzZssbKEtnZ2eTl5fHKK6+QlZVFRkYGK1euZMaMGXzzzTcA5OXlAaDT6XjppZd48MEHAViwYAErV66ktraW9PR0UlJSiIq6sDe5JEmSJEndq7qX5QwrFh4MW+7MsBmNGDGC5cuX88ADDxAYGMiSJUuYO3cujz76KKWlpWg0Gh577DFGjhzZ7DgbGxtWrVrFkiVLqK6uxt7eni1btrB48WIyMjIYPXo0iqLg4eHBL7/80u4Y7r//fubNm4eXlxfbtm1rdZ85c+aQmJjIhAkTAHBycuKbb77B07PtMizfffcdS5cuBeD666/n7rvvBmDkyJHcdNNNBAcHY2VlxdKlS1G3szpUkiRJkqTucT5NojfMDKstvjqVMLZ3tamNHTtWOXz4cLPbEhMTLygF1tMyMjK46qqriI+PN+s4LJUlPEeSJEmS1Jtt+/IT4rdvYcmX35t7KBfti8f/jLvvIK5+/GmzjkMIcURRlLGtbeswTUIIMVAIsU0IkSiESBBC/KWVfaYJIUqFEMcMX8+bYuCSJEmSJEmXm5qK8l6RLwy9ZwGdBnhCUZSjQghn4IgQYrOiKCda7LdLUZSrTD/EnuXv7y9nhSVJkiRJMpuayopeUUkCLo3Sah3ODCuKkqsoylHD9+VAIuDT3QOTJEmSJEm6HNVUVPSemWErNTqdZTfd6FQ1CSGEPzAKONDK5glCiFghxO9CiJGtbEcIcb8Q4rAQ4nB+fn7nRytJkiRJktTL1VSU94rFc2CYGe5E2VhzMDoYFkI4AauBxxRFKWux+SjgpyhKOPA+8Etr51AU5RNFUcYqijLWw8Oji0OWJEmSJEnqvWoqK3pFWTW4NHKGjQqGhRDW6APhbxVF+anldkVRyhRFqTB8vx6wFkK03UdYkiRJkiRJuoCiKL1sAZ0KnfYST5MQ+pZqnwOJiqK81cY+Awz7IYSIMpy30JQDvdy88847VFVVNf48f/58SkpKAH094fbU1NQQFRVFeHg4I0eO5IUXXmjcFhsby4QJEwgNDeXqq6+mrOz8JP8rr7xCQEAAw4cPZ+PGjaa9Q5IkSZIkdai+tgadVttrZoaFSm3xTTeMmRmOBu4AZjQpnTZfCPGgEOJBwz4LgXghRCzwHnCLYq4CxmbUmVbKHWkZDK9fvx5XV1ejjrW1teWPP/4gNjaWY8eOsWHDBvbv3w/A4sWLefXVVzl+/DjXXXcdr7/+OgAnTpxg5cqVJCQksGHDBh566CGLL5ItSZIkSb1NQytm216SM6y2srr00yQURdmtKIpQFCVMUZQIw9d6RVE+UhTlI8M+HyiKMlJRlHBFUcYrirK3+4fePTIyMggKCuLOO+8kLCyMhQsXUlVVxZEjR5g6dSpjxoxh7ty55ObmAjBt2jSeeeYZpk6dyrvvvsuhQ4eYOHEi4eHhREVFUV5ejlar5amnniIyMpKwsDA+/vhjALZv3860adNYuHAhQUFBLFq0CEVReO+998jJyWH69OlMnz4d0Jd8KygouGC8r7/+euN5G2aAhRCNs8f19fXU19djmLgnKSmJKVOmADB79mxWr14NwJo1a7jllluwtbVl8ODBBAQEcPDgwW58pCVJkiRJaqnG0IrZvhfNDFv6AjqLbcf82sHXOFl00qTnDOobxN+j/t7hfklJSXz++edER0dzzz33sHTpUn7++WfWrFmDh4cHq1at4tlnn2XZsmUAlJSUsGPHDurq6ggKCmLVqlVERkZSVlaGvb09n3/+OX369OHQoUPU1tYSHR3NnDlzAIiJiSEhIQFvb2+io6PZs2cPjz76KG+99Rbbtm3D3b3t1OtNmzaRkpLCwYMHURSFBQsWsHPnTqZMmYJWq2XMmDGkpqby8MMPM27cOABCQkJYu3Yt11xzDT/88ANnzpwBIDs7m/Hjxzee29fXl+zs7C4/1pIkSZIkdV5DMNyrcoZ7U2m1y8XAgQOJjo4G4Pbbb2fjxo3Ex8cze/ZsIiIieOmll8jKymrc/+abbwb0QbSXlxeRkZEAuLi4YGVlxaZNm/jqq6+IiIhg3LhxFBYWkpKSAkBUVBS+vr6oVCoiIiLIyMgwepybNm1i06ZNjBo1itGjR3Py5MnG86rVao4dO0ZWVhYHDx5sbCSybNkyli5dypgxYygvL8fGxgbQJ+y31DCbLEmSJElSz6ip1KdJ9Jac4Uuh6YbFzgwbM4PbXVoGgc7OzowcOZJ9+/a1ur+joyOgDyhbCyAVReH9999n7ty5zW7fvn07tra2jT+r1epO5R0risLTTz/NAw880OY+rq6uTJs2jQ0bNhASEkJQUBCbNm0CIDk5mXXr1gH6meCGWWKArKwsvL29jR6LJEmSJEkXr7flDPea0mqXm8zMzMbA97vvvmP8+PHk5+c33lZfX09CQsIFxwUFBZGTk8OhQ4cAKC8vR6PRMHfuXD788EPq6+sBfRBaWVnZ7hicnZ0pLy9vd5+5c+eybNkyKgwfqWRnZ5OXl0d+fn5j5Ynq6mq2bNlCUFAQAHl5eQDodDpeeuklHnxQvwZywYIFrFy5ktraWtLT00lJSSEqKqrDx0qSJEmSJNPpbTnDKrWVnBm+FI0YMYLly5fzwAMPEBgYyJIlS5g7dy6PPvoopaWlaDQaHnvsMUaObN5oz8bGhlWrVrFkyRKqq6uxt7dny5YtLF68mIyMDEaPHo2iKHh4ePDLL7+0O4b777+fefPm4eXlxbZt21rdZ86cOSQmJjJhwgRAX3Ltm2++obKykjvvvBOtVotOp+Omm27iqquuAvTB/dKlSwG4/vrrufvuuwEYOXIkN910E8HBwVhZWbF06VLUavXFPIySJEmSJHVSTWUFaisrrJp8cnwp09cZtuxgWJirAtrYsWOVw4cPN7stMTGRESNGmGU8DTIyMrjqqqsac2yl5izhOZIkSZKk3mrTJ++TduQgD378tbmHYhJbPltK8oG9PPTpt2YdhxDiiKIoY1vbJtMkJEmSJEmSLERNRXmvyReG3tN047Li7+8vZ4UlSZIkSTKLmoqKXlNJAuQCOkmSJEmSJKkTaiorek2NYTAEw1pZZ1iSJEmSJEkyQk1FOXa9KE1CHwxbdgc6GQxLkiRJkiRZiF6ZJqHVttrcy1LIYFiSJEmSJMkCaDUa6muqe1eahEpfplVRLDdVQgbDZnbvvfcSHh5OWFgYCxcubGygIUmSJEnS5aW2Uh8D9LaZYcCi84ZlMGxmb7/9NrGxscTFxTFo0CA++OADcw9JkiRJkiQzqDa0Yu5tOcOARZdXk8FwCxkZGQQFBbF48WJCQkJYtGgRW7ZsITo6msDAQA4ePEhlZSX33HMPkZGRjBo1ijVr1jQeO3nyZEaPHs3o0aPZu3cvANu3b2fatGksXLiQoKAgFi1a1Jg74+LiAoCiKFRXVyOEMM8dlyRJkiTJrBpaMffGmWGtBS+is9h2zGdffpnaxJMmPaftiCAGPPNMh/ulpqbyww8/8MknnxAZGcmKFSvYvXs3a9eu5eWXXyY4OJgZM2awbNkySkpKiIqKYtasWXh6erJ582bs7OxISUnh1ltvpaHLXkxMDAkJCXh7exMdHc2ePXuYNGkSAHfffTfr168nODiYN99806T3WZIkSZKkS8P5NIneMzMsVA1pEnJm+JIyePBgQkNDUalUjBw5kpkzZyKEIDQ0lIyMDDZt2sSrr75KREQE06ZNo6amhszMTOrr67nvvvsIDQ3lxhtv5MSJE43njIqKwtfXF5VKRUREBBkZGY3bvvjiC3JychgxYgSrVq0ywz2WJEmSJMncahrSJHrhzLCis9ycYYudGTZmBre72NraNn6vUqkaf1apVGg0GtRqNatXr2b48OHNjvvXv/5F//79iY2NRafTYWdn1+o51Wo1Gk3zjwvUajU333wzr7/+OnfffXd33C1JkiRJkixYTa/MGdbPu8qZ4V5m7ty5vP/++415vzExMQCUlpbi5eWFSqXi66+/RtvBE68oCqmpqY3f//rrrwQFBXXv4CVJkiRJskjVhpxhW0dHM4/EdFRq/byrDIZ7meeee476+nrCwsIICQnhueeeA+Chhx5i+fLljB8/nuTkZBw7eDErisKdd95JaGgooaGh5Obm8vzzz/fEXZAkSZIkycLUVlZg6+jYWJu3NzhfWs1yF9AJc3UEGTt2rNKwuKxBYmIiI0aMMMt4JOPI50iSJEmSusf6998gJzmRxe9/bu6hmMzJPTtY997r3PXmh/TzHWi2cQghjiiKMra1bXJmWJIkSZIkyQLUVJT3qsVz0GRmWCfTJCRJkiRJkqR21FRU9LpgWKhlaTVJkiRJkiTJCDWVFb2qkgSA2rCATnagkyRJkiRJktqlT5PoXcGwSmUorSbTJCRJkiRJkqS2KIqinxnurWkSGhkMS5IkSZIkSW2oq65G0el6XZqEXEAnGW3JkiU49bKPRiRJkiRJMk5vbMUMNNZMlgvopHYdPnyYkpIScw9DkiRJkiQzaQiGbXvZxJjKSs4MX3IyMjIICgpi8eLFhISEsGjRIrZs2UJ0dDSBgYEcPHiQyspK7rnnHiIjIxk1ahRr1qxpPHby5MmMHj2a0aNHs3fvXgC2b9/OtGnTWLhwIUFBQSxatKixlbNWq+Wpp57iv//9r9nusyRJkiRJ5lVjaMVs79hbZ4Z1Zh5J26zMPYC27Po+mYIzFSY9p/tAJybfNKzD/VJTU/nhhx/45JNPiIyMZMWKFezevZu1a9fy8ssvExwczIwZM1i2bBklJSVERUUxa9YsPD092bx5M3Z2dqSkpHDrrbfS0GUvJiaGhIQEvL29iY6OZs+ePUyaNIkPPviABQsW4OXlZdL7KkmSJEnSpaOmUh/z9LpqEpdAO2aLDYbNafDgwYSGhgIwcuRIZs6ciRCC0NBQMjIyyMrKYu3atbzxxhsA1NTUkJmZibe3N4888gjHjh1DrVaTnJzceM6oqCh8fX0BiIiIICMjgyFDhvDDDz+wffv2Hr+PkiRJkiRZjl6bJnEJNN2w2GDYmBnc7mJra9v4vUqlavxZpVKh0WhQq9WsXr2a4cOHNzvuX//6F/379yc2NhadToednV2r51Sr1Wg0GmJiYkhNTSUgIACAqqoqAgICSE1N7c67J0mSJEmShemtC+iEIU1CNt3oZebOncv777/fmPcbExMDQGlpKV5eXqhUKr7++mu0HTzxV155JWfPniUjI4OMjAwcHBxkICxJkiRJl6GaygqsrG2wtrHteOdLiLpxAZ3l5gzLYLgLnnvuOerr6wkLCyMkJITnnnsOgIceeojly5czfvx4kpOTcXR0NPNIJUmSJEm6FNRUVPS6fGE4PzNsyWkSomF2s6eNHTtWaVhc1iAxMZERI0aYZTySceRzJEmSJEmmt+aN/1Ccm81db/7P3EMxqYriIj5+8E/MWvwQ4bPnm20cQogjiqKMbW2bnBmWJEmSJEkys5rK8l6XLwyXxgI6GQxLkiRJkiSZWW1FRe8Mhi+BOsMyGJYkSZIkSTKz6sremTMsO9BJkiRJkiRJHaqpKMfOsRcGw5fAAroOg2EhxEAhxDYhRKIQIkEI8ZdW9hFCiPeEEKlCiDghxOjuGa4kSZIkSVLvoqmvR1Nb2zvTJHpJBzoN8ISiKEeFEM7AESHEZkVRTjTZZx4QaPgaB3xo+FeSJEmSJElqR21jK+beFwwLlX7e9ZLOGVYUJVdRlKOG78uBRMCnxW7XAF8pevsBVyGEl8lH2wstWrSI4cOHExISwj333EN9fb25hyRJkiRJUg86332u96VJCCEQKhVKb8kZFkL4A6OAAy02+QBnmvycxYUBM0KI+4UQh4UQh/Pz8zs51N5p0aJFnDx5kuPHj1NdXc1nn31m7iFJkiRJktSDqhuC4V6YMwygVltd2jnDDYQQTsBq4DFFUcpabm7lkAu6eSiK8omiKGMVRRnr4eHRuZH2kIyMDIKCgli8eDEhISEsWrSILVu2EB0dTWBgIAcPHqSyspJ77rmHyMhIRo0axZo1axqPnTx5MqNHj2b06NHs3bsXgO3btzNt2jQWLlxIUFAQixYtamzlPH/+fP27JiGIiooiKyvLbPddkiRJkqSeV1PRe9MkAIRabdHBsDE5wwghrNEHwt8qivJTK7tkAQOb/OwL5FzMwLZ9+Ql5p9Mu5hQX8PQbwvS77u9wv9TUVH744Qc++eQTIiMjWbFiBbt372bt2rW8/PLLBAcHM2PGDJYtW0ZJSQlRUVHMmjULT09PNm/ejJ2dHSkpKdx66600dNmLiYkhISEBb29voqOj2bNnD5MmTWq8Zn19PV9//TXvvvuuSe+zJEmSJEmWrTfnDAOo1KpLOxgWQgjgcyBRUZS32thtLfCIEGIl+oVzpYqi5JpumD1r8ODBhIaGAjBy5EhmzpyJEILQ0FAyMjLIyspi7dq1vPHGGwDU1NSQmZmJt7c3jzzyCMeOHUOtVpOcnNx4zqioKHx9fQGIiIggIyOjWTD80EMPMWXKFCZPntyD91SSJEmSJHOr6eVpEirVpT8zHA3cARwXQhwz3PYMMAhAUZSPgPXAfCAVqALuvtiBGTOD211sbW0bv1epVI0/q1QqNBoNarWa1atXM3z48GbH/etf/6J///7Exsai0+mws7Nr9ZxqtRqN5nyJkX//+9/k5+fz8ccfd9ddkiRJkiTJQtVUlIMQ2Do4mHso3UKlVlt0040Og2FFUXbTek5w030U4GFTDcrSzZ07l/fff5/3338fIQQxMTGMGjWK0tJSfH19UalULF++HK0R74I+++wzNm7cyNatW1GpZA8USZIkSbrcVFdUYOfo1FiGrLdR9ZYFdNJ5zz33HPX19YSFhRESEsJzzz0H6FMdli9fzvjx40lOTsbR0bHDcz344IOcO3eOCRMmEBERwYsvvtjdw5ckSZIkyYLU9tJWzA1UahWKBQfDoqGqQU8bO3as0rC4rEFiYiIjRowwy3gk48jnSJIkSZJMa/XLz1NTUc6il98291C6xbLH7sdzcABX/eVvZhuDEOKIoihjW9smZ4YlSZIkSZLMqKaivNdWkgAQKrVFzwzLYFiSJEmSJMmMaiorenUwbOkL6GQwLEmSJEmSZEY1Fb08Z9jCS6tZXDBsrhxmqWPyuZEkSZIk01J0Ov3McC+tMQygslKj0+nMPYw2WVQwbGdnR2FhoQy6LJCiKBQWFjarnSxJkiRJ0sWpraoCRendaRIWPjNsVDvmnuLr60tWVhb5+fnmHorUCjs7u8YuepIkSZJ0KTqbmszhdb9wxZ8fw8rGxtzDoaaXt2IGQ86wVtPxjmZiUcGwtbU1gwcPNvcwJEmSJEnqpRL37CBp704GDA1k7FXXmXs4ja2YbXtzmoRahabecoNhi0qTkCRJkiRJ6k55GacAOPDLD/oUBTNrCIZ78wI6WVpNkiRJkiTJAig6HXnpaXgNC6KmvIzDv/1s7iE1BsP2vThNQm1lJUurSZIkSZIkmVtp3jnqqqsImTaLYeMncWTdL1SVlph1TDWVlUDvzhkWFr6ATgbDkiRJkiRZhLOpyfz27n+pqajolvM3pEh4+g8l+ubb0dTVcuDn77vlWsa6XHKGZTAsSZIkSZLUjqqyUta89TJJe3dy9Pe13XKNvIw0hEqF+0A/+nr7MnLqLGI3r6csP69brmeMmopyrGxtsbK2NtsYupull1aTwbAkSZIkSWal02lZ//4bVJeV0n9IADEbfqWuptrk1zmXfgp330GNJdUmLLwVhGDvjytMfi1j9fZWzCDbMUuSJEmSJLXrwE/fczouhhl3PcCMux+kpqKcuC0bTH6dvPRTeA4e2vizi7sHEXOu5MSOPyjMyjT59YxRU1GBfS9OkQBQqa3kzLAkSZIkSVJrMuJi2PvjCoInTyd05ly8hwUxcGQYR377GU19vcmuU1FcRFVpCZ7+Q5rdHnXtjVjb2bJn1Tcmu1Zn1FSUY9uLy6qBPmdYllaTJEmSJMms9qz6mvhtm7v1GvV1tSg6ndH7lxcWsP691+nnM5BZix9GCAHoA9SK4iJO7NxqsrHlpRsWzzWZGQZwcOnD2KuuJ+XgXs6mJpvsesaqqSjHzrH3p0loZTAsSZIkSZK5lBXksf/n79n+9Wfd1mhCURSWP/EQX/1tCdlJiR3ur9Vo+O2d19DU13P1409jbWfXuM0vNIL+QwI5tGa1yT5ebwiGPfyGXLBtzJXXYO/Sh13fLTfJtTqj9jLIGZZNNyRJkiRJMquE7VtBUaitrCRuy+/dco3i3BxK885RnJvNyuefYstnS6mpbLtE2q4VX5KTnMic+x+hn8/AZtuEEIy79kZKzuWSvH+3ScaXl5GG6wAvbB0cLthmY+/AuGtvIjM+ltPHj5nkesaqqajo1d3nQC6gkyRJkiTJjBSdjvjtWxgUGsGgkHCOrPsFTV2dya9zNjUJgJteeJUxV15D3JaNfPHXBzm5dyeKojTbN+XAXo6s+4WIuVcRFD211fMFRI6nr7cvB3/54YLju+Jc+ik8Bwe0uT189jyc3T3YvfKrLl+vtqqK3JQk4rdtJvnAng73r6+rRVNfh12vX0CnRqc1Pn2mp1mZewCSJEmSJHWfMyeOU5Z/jkm3/gkH5z78+J9/cmLnH4TNusKk18lNTcLazp4BAYF4DwtixKTpbP70A9a9+18Sdmxl1r1/po/nAIrP5rDhw3cYEDCMqXfc2+b5hEpF1LU3suF/b5Mec5ghoyO7PLaaigrK8s+1e5+tbGyYuPA2Nn70LqmH9hEYNbHV/RRFoaainOLcbArOZFKUnUlh1hkKs85QXpjf5A4IHvr0W+ydXdoZl77hRlfTJBSdDqGy/HlNfTBsuTPDMhiWJEmSpF7s+B+bsHV0JCByPFbWNvpc3LWrCZk+G5VabbLr5KYkM2BoICqV/pz9hwRw23/e5NjGdexe+TVfPvEw42+4haS9O1GpVFz92D86bDQRFD2VvT98y4Gfv2fwqLGNC+w6Ky8jTT8m/wvzhZsKnjKDQ2tXs3vl1zi59aOsII+y/DxK8/MoL8ijNO8cZQX51DepgWxlY0tfH198g0Po5zOQfgP90NbX8ds7r5EZH8fwCZPavF6todNeZ4NhXVUV2Y8/QW1qKr4fvI9dUFCnju9p+mBYg6IoXX4Ou5MMhiVJkiSpl6qpqCDl4F5CZ8zB2sYWgHHX3sjat14mef/uNlMUOktTV0f+6XTGXnVts9tVKjWj5y0gMGoif3zxMbsNC9Su+8cLuHh4dnhetZUVY6++nj+WfUR2YgK+wSFdGl9eeipwYSWJllRqNdG33MGvb73Cin8+0Xi7raMjLh79cR3gjV9oBC4enrgO8KKfrx99PDwvmJ3VabXY2DuQefxYu8FwQ9vpzqRJaIqLOfPgg9Qcj0ft5kbGrbfh/d/XcJk92+hzGKvws8+oSU7GefZsnCZPRtVkkWNnNLxBUhQdQpjuDZipyGBYkiRJknqpk3t3oq2vJ2Ta+UApIHI8bt6+HFzzI8MnTjHJTF1exil0Wg0DAoe3ut25nzvXPPksaTGHqK+pYcgo41MeQqbPZv/qlRz45fuuB8MZaTj17YdDH9cO9w2MmsjVjz+NSm1FHw9PXDw8sXVw7NT1VGo1A0eGcfp4TLv7VVc2pEkYFwzX5+aSufg+6s+cwfe9d7ELCyNryRKylzxK3WN/od8DD5hs5rXkl1/Ie+NNhK0tZWt/RTg44DRlCi5z5+A0ZQoqx/YfE111NXUZGdSfPYtQ9PnCOq2uMTC2JDIYliRJkqReKn7bZjz8BjebERUqFVELbmDjR++ScewIg0eNvejr5Kbo6/N6BbQeDDfoTBDcwNrGltHzr2H3d8s5l5ZK/yFtL4JrS15G2gXNNtoihGDYuOhOX6Mlv9BwTh3eT8m5s7j2H9DqPp1Jk6hNSyPz3sXoyssZ+NmnOEZF6a/z1Vfk/vM58t95l9rkFLxe/k+XZ3AbVMfGcvb5F3AYP56BH39EdUwMZRs3Ur55C+UbNiBsbXGcPAmXuXNxGDOG+txcak+dou5UGrXpadSdSqM+JwcMCxHr77oNQF9erYPUGHOw/KxrSZIkSbrEnTpykNK8sz16zfzT6ZxLSyFk+uwLZgtHTJ6GUz93Dvzyg0mulZuahHM/D5zc+prkfC1FzJmPrYMjB7sw3vraGoqys9qtJNEd/MJGAXA6ru3ZYWMX0FXHxXH6tkUo9fX4ff1VYyAMoLK1xfu/r+Hx+OOU/f47p2+/g/pzeV0ed/25PLIeWYJV//74vP0WKltbHMePx+uFFwjcsR2/b77G9aabqDkeT85TfyN1xkxOL7qds8+/QPGqVWgKCrCPiMB9ySMM+L8X9Sc1VC+x1PJqcmZYkiRJkrrRubRUfvnvi1hZ2zDu+psZe/X1HS4cM4X4bZtRW1kxYtK0C7aprayJvOo6ti3/lOyTJ/AJCr6oa51NTcIrYNhFnaM9tg6ORMy9kgO//EBh9pkL6hK3J/90Boqiw3OwcTPDpuLm5YNTP3cyjx8jfPa8VvepqaxAqFTY2Nu3eZ6K3XvIevRRrPr1Y9Dnn2EzaNAF+wghcL//PmyHDiH7qb+RceON+C79APvQ0E6NWVdbS9aSJegqK/H7/DOs3NyaX0etxmHsWBzGjqX/0/+gOjaWmhMnsBk0CJvBQ7D29mqWP60tK+Psc88jdPoZYq1G06nx9BQ5MyxJkiRd1iqKi7ql7m6DY5vWYWVry+BRY9mz6mu++tsSMuNju+16AJr6ek7s3s7QyAltlvYKnTEXO2cXDq65uNnhqrJSSvPOtZkvbCqj5y3AytqGQ2tXd+q485Uk2l88Z2pCCPxCI8iMj21zRlTfitmpzTzf0nXrOPPnP2MzaBB+337TaiDclPPMmfh/twJhZcXp2++gdN06o8erKApnn3+emrg4vP/7GnbD2n9zI1QqHEaNou+iRThNnoyNr88FCwmFjY3+G0OL7s606u5JMhiWJEmSLltajYblTz7M/p9Wdcv5ayoqOLlnJ8GTprPgiWe4/h//QqfV8MP/Pcu6916nsqS4W6576vABasrLCJ02q819rO3sGD3vatKOHiL/dHqXr5Wbom+20Z0zwwAOfVwJnTGHxF3bKCswPg0gLz0VOydnnN09unF0rfMLjaCmsoK89LRWt+u7z7WeIlG8chU5Tz6FfXgYfl8tx9qz4+obAHbDh+P/4w/YhYSQ88STnHnoYWrTWr9+U0VffEnpmrW4L3kE51ltv246oyEYFtqGBXSWmSYhg2FJkiTpspWXcYqainLOnDjeLedP2LEVTV0t4XPmAzB41FjufGMp42+4lZQDe1j22APEbPjV5LmU8ds349zPg0FhEe3uFzH3Kqzt7Dm45scuX+tsahJCpaJ/D+Tkjr36OgCO/v6r0cc0LJ4zR33bQSHhQNt5wzWVFW2WVct74w0cIiMZ9NlnqF3abtzRGqu+ffH7Yhkef/0rVQcOkHb1AnL//W80BQWt7l+xazd5b7yB85w5uP/5z526VnuESgVWVqgMr28ZDEuSJEmShclJOglAXlqqyfMZFUUhdvN6vIYFNatkYG1jS/RNi/jT60sZEDCMP774mG+fefyiZmebKivIJyP2KCOnzeywjJW9kzNhs64gae8uSs51bYFfbmoy7gP9sL7ICgbGcHH3ZOjYcYY3GR2ntmg1GgoyMzqsL9xdHF3d8BjkT2b8sVa311SUt1pWTVddja6iAsdJk7pcGULY2OD+wP0M3bQRt5tvpuSHHzk1Zy4FH36Irvp805Da9HSyH38c28BAvF952eQd7YSNDTTMDFvoAjoZDEuSJEmXrZykEwBo6usoyMww6bkz42Mpzs0mYs6VrW7v6+3Dwmf/j6se+zsVRYX8+s5rKIZSVBfjxI6toCiMnGrcR91jr7wWlVrF4V87l4sL+hzQs6nJHZZUM6WwWfOoKS8j5eDeDvctzMpEq9GYLRgGGBQ2iuyTJ6ivrblgmz4YvjBNQltUBIBVv4uvzmHVrx8Dnn+OIb+uxTF6IvnvvsepuVdQsvontCUlZD30MMLKCt+lSzusHdwVwtoaYZgR1mlkMCxJkiRJFkNRFHKSE/Eerq+kkJNy0qTnj920Hjtnl3Zr1gohGD5hMpNvu4vinCyyDcF5Vyk6HfE7tjBwZFibtW1bcurbj+CpM4nfvqXTOcxFudnUVlUyILB784Wb8gsJx7W/F7Gbf+9w34bFc8bWGO4OfqERaDUask9e+NzWVLaeM6wxBMNqE5aqsx08GN/338fv22+w8hpA7rPPkjJjJnVnzuDz7jvY+PqY7FpNCZsmwbCcGZYkSZIky1GWn0dFcRFBEyfj6OrGWcNCMFMoLyog9fB+QqfPxqphRX07ho+fhI29PfF/bL6o62YlxlN67iyh0zvXmjfy6uvRabQcWb+mU8edTTWu2YYpCZWK0JlzyT6ZQGFWZrv75mWcwsrWFjcv7x4a3YV8g0aitrLi9PFjzW7X6bTUVlZi20rOsClnhltyGDMG/5Ur8XnnbWz9/fH697+a1S02NZW1DUIjc4YlSZIkyeLkJCcC4D08GK/A4eSmmi4YPr51I4qiEDar9fqyLVnb2TF84hSS9u+itqqqy9eN37YZWwdHAsZN7NRxbl4+BI6PJnbTeuprLvw4vy25KUnY2NvT18e3s0O9KCHTZqFSWxG3ZUO7++Wln8LTb4hZWwBb29nhPWzEBcFwbWUlAPat5AxrCg0zw/36dcuYhBC4XHEFg39ajesNN3TLNRqvZWOD0Onz8RUZDEuSJEmXk+ykRDZ+9J7FfjSanZSItZ09HoP8GRAwnOLcHKrLyy76vFqNhritGxkcPtroVAWA0Olz0NTWkrRvZ5euW1tVSfKBvQRFT8HaxrbTx0fMmU9ddRXJB/YYfUxuahIDhgb2eLDp0MeVwHETSdi5lfq62lb3UXQ68jLSe7zZRmv8wkaRn5FGVWlJ423tdZ/TFhUCXND04lIkbGxAI9MkJEmSeo3KkmI+W3Iv59JSzT0Ui6bodGz9bCnx2zY1fpRuaXKSE/EKGIZKrcbb0DDCFGM9dXg/lcVFhLexcK4tAwKG0c93UJdTJU7u2YmmrpaQaZ1LkWjgOyIE1wFexG837vr1dbUUZGYwoAdTJJoKn3UFtZWVJO/b3er2knO51NdU49nDzTZaMyhUX2KtabOVmsoKoPVgWFNUjLCzQzg49MwAu5GwtgZDpRaZJiFJktQLZJ9MoDTvHFmJ8eYeikVL2reLfEN1hlNHDpp3MK2oq66i4HRG4+K5/kMDEUJlklSJY5vW4+LhyeBRYzp1nBCC0BlzyE1N6lJli/jtm3Ef5E//oYGdPrbh+iHTZpN1Ip7iszkd7p+XdgqdVtuj+cJN+QaH4ubtS+yW1hfSNS6eM2MliQb9hwRg6+jYLFWipkIfDLeaM1xYiLqvm1lqI5uasLFBXOrBsBBimRAiTwjR6v/8QohpQohSIcQxw9fzph+mJEmSZTiXfgqA4tyOg4XLlU6rZe8PK3Af6IdvcAinDh8w95AukJuSjKLo8BkWBICNnT3uAwc1dlPrqsKsM5xJiCNs5hVdSh0YMXk6KrUVx7d1bnY4OymRs6nJhEybfVEBVPCUGQihImH71g73bXjj4NXNbZjbIoQgfNYV5CafbLVG87n0U6jUVrgPbL+FcU9QqdQMGhnO6bhjjeXzzqdJtJIzXFyEVd/uyRfuac3SJC7VYBj4Eriig312KYoSYfh68eKHJUmSZJnyGoPhbDOPxHIl7NxKcW42E2++nYCx4ynMyuxyQ4fukp10AoTAyxAMAwwIHM7Z1GQUna7L543dsh6V2orQGXO6dLyDSx8CIsdzYtc2NPX1Rh2j6HRs+/JjnPr2I2zm3C5dt4FzP3f8w0eRsGNLh/mduanJOLt74OhqvrzW4KkzUVtbE9vKQrq89FP0GzgItZW1GUZ2Ib+wCMoL8xvfSDekSdi3ljNcWIS676WfLwwtZoYv1ZxhRVF2AkU9MBZJkiSLpijK+ZlhIz5Gvhxp6uvZ9+N3DBgaSMDY8QwdMw6AtCOWNTuck5yI+0A/bB3ONxnwChxOTWVFl5/b+poaErZvZdj4aBz6uHZ5bKHTZ1NTXmb0jHr8ji2cS0tlyqK7TdIFLmTGHCqKCjkd23oL4QZnU5PMliLRwN7JmeHjJ5G4a1uzKhiKopCXkUZ/C0iRaDAoNAKATEOqRMPMcGtpEpqiXjQzbG2NqG9Ik+j6G83uZKqc4QlCiFghxO9CiJEmOqckSZJFqSgupLqsFIc+rpQXFhjVDvZyc/yPjZQX5BN98x0IIXAd4EVfn4EWlTes02nJTTmJz/ARzW5vCOy6miqRuGcHddVVhM+Zf1HjGxQWgXM/D+K3bepw39qqSnZ/9xXew4MJip56UddtMHRMFPbOLsS3k6pRWVJMWX4eXgE912yjLWGz5lFXXcXJveercFQU6X9XzdlsoyXX/l64ePTn9HH9m4yaigqs7exRW1k1209RFLRFRai7ocawOQgbGzB8ytGbS6sdBfwURQkH3gd+aWtHIcT9QojDQojD+fn5Jri0JElSz8lL1y/ICRwXDYpCyblcM4/IstTX1nDgp1X4jgjBL2xU4+1Dx44jKzGe2qpKM47uvMIzmdRVV+M9rHkw3M9nIDb2Dl0KhhVF4dimdbgP8sfHsCivq1QqNSOnzSIjLoay/Lx29923eiVVZaXMuOt+ky22UltZM2LydFIPH6CqrLTVfXINVTcGmClfuCnv4SPo5zuoWUe6vAz9JziWUEmigRACv9BwziQcR6fVGloxXzgrrKusQqmtxapvbwmGrRuDYa1WY+bRtO6ig2FFUcoURakwfL8esBZCuLex7yeKooxVFGWsh4fHxV5akiSpR+WlnwIhGtvrylSJ5o5tXEdlSTHRt9zRLDAbOjoKnVZL+rEjZhzdedlJ55ttNCVUKgYMDexSMJybkkR+Rhrhs+ebJCgNmTYLgPjtW9rcpygni5jf1xIybTb9hwRc9DWbXX/6bHRaDSd3b291+9nUJIRKZRFpCEIIwmfP41xaSmPJw7z0NBACD//BZh5dc35ho6itquTsqZQ2WzFriw0NN3pLmoSNDcLwKVqvnRkWQgwQht98IUSU4ZyFF3teSZIkS5OXcQo3L5/GIv4lsqJEo9qqKg6u+RH/iDH4BjXPlvMaNhx7ZxeLqSqRk5yIQx9X+nj2v2CbV2AQ+Znp1Nca34UNIHbTOqzt7AmePM0kY+zj2R+/0AgSdmxpc0Hf9q8+w8rGlkm33GGSazblMcifAUMDOb5tc2P1g6ZyU5LwGDQYa9uLz1E2hRGTp2NlY9vYke5cuv531cbO3swja27gyDAQgszjx6ipqMCujbJqAFa9ZAGdysbmfM7wRSxO7U7GlFb7DtgHDBdCZAkh7hVCPCiEeNCwy0IgXggRC7wH3KK09psjSZJ0iTuXfgpP/yHYOTph7+wiZ4abOLLuF2oqypl084WBmUqlZsjoSNKPHUarMf/HpDlJJ/AZHtzqDK5X4DAUna5TTVWqykpJ2r+b4CkzsLE3XZOEkOmzKcvP43STRg0N0mIOkR5zmAk33NJt1RxCps+mIDPjgsdC0ek4eyoFr0Dz5ws3sHN0YvjEySTu3k5tVRV5GacsKl+4gYNLHzz9h3A6/libaRKaomKgF80MW1tDvX5m+JItraYoyq2KongpimKtKIqvoiifK4rykaIoHxm2f6AoykhFUcIVRRmvKMre7h+2JElSz6ouL6O8IL/xY2FXL285M2xQXV7GkXU/Exg1sc2P64eOGUdtZSU5SSd6eHTNVRQXUZp3Du8mJdWaalxE14lOdAk7tqKtryd89jyTjLFBQOQE7Jycif+j+UI6raae7cs/w83bl1HzrjbpNZsaPnEKVtY2FyykK8rJoq66ymyd59oSPnse9bU1xGz4tdnvqqXxC40gJ+kklcVF7bdi7iUzw8LGBuou8WBYkiRJOr94rmFBTl8vHzkzbHBo7WrqamqYeNOiNvfxCx+F2srK7FUlcpJbzxdu0JA+kZty0qjzKTodcVt+xycoGI9B/qYaJgBW1taMmDyN1EP7qC4va7w95vdfKc7NZvqfFndrDV07RycCx03k5J4d1NfVNt7ekFNt7rJqLQ0YOgwP/yEc+Pl7wLIWzzXlFzoKnVZDbVVl662YCxtyhnvJAjprG6jTL6DT9dYFdJIkSZeDxtXphnxh1wHeVBQVdjq3tLepLCkmZsNvjIieivtAvzb3s7GzZ2BIOKeOHGg1B7Wn5CQlora2pv+QtgMlr8Ago2eGM+PjKDmbS9gs084KNwidPgetRkPirm2A/vHet3olQ0ZHMnjU2G65ZlMh0+dQW1VJ6sF9jbflpiZh6+BIX2+fbr9+ZzR0pNMYAveG31VL4x00ArW1/k1MqznDRUWoHBxQ2VtWvnNXCRubxmCzt9cZliRJ6tXOpZ/CxcMTe2cXANy8vAEoOXt5l1c78PP3aDX1TLjxtg73HTo6ipKzuRTlZPXAyFqXk5TIgKGB7c6oegUMo6KwgPKigg7PF7fld+ycnBsrjJiah99g+g85v5Bt98qv0NTVMfWOxd1yvZYGBofQx7N/s1SJ3NRk+g8NRKgsL4QYMWka1nb2OLt7NP6uWhprG1t8DItMW88ZLuo1s8JgaLpheAN8yXagkyRJkvRl1ZouyHEdoA+GL+dUibKCPOK2/E7I9Nm4GR6P9gwZEwVAmplSJerrajmXfqrNFIkGXoH6fOKzKe3PDlcUF5F6eD8jp83CysbGZONsKXTGHAoyM4jb8jvx27cwev6CHpuVFSoVI6fNIjM+ltK8s9TX1lCQmWFxKRINbOwdmLLobiKvvt7cQ2mXn6EbXes5w72n4QYYSqsZPgySOcOSJEmXqLrqKorP5uDZZEGO2wAvAIpzss01rB6lqa+nKCeLtKOHOLp+DVuXfcQvr70IwPjrbzHqHC7uHnj4D+GUmVoznzuVgk6ruaDZRkse/kNQW1mR00HecPy2zei0WsJmXmHKYV4gKHoKVja2bPnsfzi49DH68TaVkVNnghDEb9/KubRUFJ3OoipJtBQxZz6jrui+hYWmEBA5AUdXt1ZTizRFRVi59bZgWB8NW2qdYauOd5EkSbq85Z1OB0VptiDHxt4BR1e3XjszrOh0HPj5e86cOE7JuVzKCvKhSa6vjb0DrgO8mHnvQ7i4G99EaeiYcRz4aRVVZaU4uPTpjqG3KSdZH9y2VUmigZW1NZ7+QznbTt6wTqfl+B8bGRQS1u2ztLYOjgwbH82JnX8w+dY7sXUwXfk2Y7i4e+IfNoqE7VuwtrUFLG/x3KWmr7cPD378davbtIWF2AW3/4btUiJsbGgoYqiVwbAkSdKlqaGSRMtSTa4DvCnppcFwZkIce77/Bg+/wfgMD2bkVC9cB3jj2t8L1wFe2Du7dKnT2tAxUexf/R3pMYf1M449KDvpBG5ePkYF4QMCh3H8j03otFpUavUF2zNij1KWn8eURfd0x1AvMGHhbfTzHdTjj1mDkOmz+e2d14jZ8CsuHv1x6ONqlnH0doqioCku7jWtmEHfjlmgT7lRLDRnWAbDkiRJHchLP4VDH1ccW3x06eblTdrRQ2YaVfeK2/w7ds4u3PbSmybNh+0/eChObn1JO3KwRwM7RVHIST7JUEPecke8AoOI+f1XCs6cbrV5Q+zm33Ho40pA5DhTD7VVrv0HEHXNwh65VmuGjh2PnZMzFUWFDJ8w2Wzj6O105eVQX99rGm6AoekGoFKpZM6wJJlD8dkczqWfMvcwpEtcXsYpPAcPvWAm1HWAN1WlJdRWVZlpZN2jsqRYvzBs6kyTLwwTKhVDRkeRHnsUTX29Sc/dnuLcbGrKyzrMF27Q2HyjlbzhsoJ80o8eJnTGnG6t82tJGmoeA3gFyhSJ7qIt0tcYtuplC+hABsOS1OO0Gg37V69k+RMP8eN/njNrXVPp0qapr6cwK7PV2cHz5dV6V6pEdy8MGzp2HPU11WSdON4t529NTpK+2YZPB5UkGvTx7I+9S5/GBhNNHf9jEwoKoTPmmnSMli589nxcPPrjHzHG3EPptTSGYFjdixbQqQzBsBAqWVpNknrK2VMpfPv0Y+z5/htcPDypMbTRlaSuKDxzGp1W22prV7deWF5Np9MSt7V7F4YNDAnDysa2R6tKZCclYufoZPR9EkLgFTDsgmBYp9US/8dGBoePpo9n/+4YqsXq5zOQ+z74nH4+A809lF6rd88MC3QaGQxLUreqr61hxzfLWPHsE1SXl3HNU89xxUN/BSAvI83Mo5MuVefSU4HWW7u6GsqrleT2nmD4dGwMZfnnuq2jGuibDviFjeLUkYM99qlNTnIi3sNHdKpRhFdgEEU5WdRUVDTeduroQSqKiwibPb87hild5npbK2ZokjMsZ4YlqXudSYjjq78t4fCvPxE6Yw53vfUhAWPH4TFoMAghg2Gpy/LS07B1cKRP/wEXbLO2tcOpb79eNTMcu2WDYWHY+G69ztAxUZQX5JN/Or1brwNQXVFOUfYZo/OFGzTkDZ89db7EWtzm33Hq586QHmiFLF1+tEWFQC8LhhvTJITMGZaMl33yBMe3bTL3MC4JtVWVbP70A75/8RlQ4MbnXmb2/Y9g6+AIgLWdHW5ePuSflsGw1DV56afw8B/cZhkxNy+fXhMMlxcWkHb0ICHTZnX7wrAhoyNBiB7pRpfbUF94eOeC4QEBgSBEY6pEybmzZMQeJXT6nFbLrUnSxdIUFaNycmrMs+0NGtMkhLDYphsyGLZA25Z/wuaPP6CsIM/cQ7FoOp2Wlc//jeNbNzH26uv50+vvMygk7IL9PP0Gy5lhqUt0Wi35p9NbzRdu4DbAu9ekSRz/YxOKTkdoN3dUA3B0dcNr6LAeyRvOTjqBSq1mwNDATh1n6+BIP5+B5Kbqg+G4rRsQKhWhM+d0xzAlCW1hYa9qxQwtZoZ1OjOPpnUyGLYw+ZkZ+naXio64LRvMPRyLlh5zhIIzp7nioceYevs9WNvatbqfh/8QyvLzmuX9SZIxinKy0NTX4Tk4oM19XL28qS4vo6by0n596bRajm/bhH/4aFxbSQnpDkPHjuPsqRQqiou69To5yYl4+g9p8/+I9ngFDic3NRlNfT3x2zYzdEwUzn3du2GUkgSa4iKselGNYWgyM4xAp9GYeTStk8GwhUnYsRWV2grfESHEbd3Yo3U4LzXHNv6GU99+DJ84pd39GkpimStVQlEU6mqqzXJt6eLkGWpUt1ZWrUFDRYlLfXY4LeYwFYUFhM3q/lnhBg15ybGbf++2a2g1Gs6mpnQ6X7iBV8BwasrLOPzrT1SXlRLejQsLJUlbWNSr8oXh/AI6AXIBndQxrUZD4q5tDB0Txbjrb6a6rJTk/bvNPSyLVJSTTUbsUcJnzUNt1X4jxYZAJi+j+xfqtObk3p18dP8dVBgWRkiXjryMU1jZ2NLX27fNfRpqDRfnZht9Xq1GQ121ZTXqiNvyO45ufRky2rgObabQz3cQwydM5vCvP1HWTeUP044eRFNX2+l84QYNDSb2/7SSPp798QsbZcrhSVIzmqKiXtWKGZrnDMsFdFKHMmKPUlVawshpM/ELCcfNy4djG38z97As0rFNv6FSWxE6s+Oi946ubji6upltZjjtyEHqa2tIPbTfLNeXuu5c+ik8Bvm3u1iqj+cAEKJTi+h2rfiSL5942GL+MJTmnSP92BFDR7X231ya2pTb7wZFYdeKL01+7qyTCax//008/AYzZFRkl87Rb+AgrG3t0NbXEzrzik6VZpOkzlB0OrTFxb1vZrghZ1hB5gxLHUvYsQWHPq74h49BqFREzJlPbkoS59JSzT00i1JXXUXC9q0MnzAJR1c3o47x8B9ilkV0iqKQlRgPQMrBvT1+fanrFJ2OvPQ0PNtZPAdgZWODi7sHxUamSSiKQvL+PZQX5nMmoec6sLXn+B+bEAhCZ/T8wjAXd0/GLriek3t2kG3oEmcKZ0+l8POr/8bZ3YOFz/4f1nadzxcGUKn0C+9UaitCps0y2fgkqSVtaSlotb2q4Qa0SJOwkAmAlmQwbCGqy8s4dfggIyZNa5yZCZ46EytbW2Lk7HAzJ3Ztp666ioi5Vxl9jKffYAqzMns8B7s07xwVRYU4uvXlzInjVFeU9+j1e5uqslKO/r62R/LOSvPOUVddhefgtvOFG7gO8Da6JXPhmdOUF+pTAiwhDUqr0RC/bRODR43Bxd3TLGOIWrAQp7792PblJygmmDkqyMxg9cvPY+fkzI3/fAmHPq4Xdb6JNy5izgNLjH7zLUldoS0uBnpXK2bQV5HA2hoBsrSapbDUBWkn9+xAp9UwcurMxtvsHJ0InjydpD07qS4vM+PoLIeiKBzb+Bv9hwQ05vIZw8N/CDqtlsKszG4c3YWyTuhn/ibd8icUna5Haqr2ZrGb17Pty09IjznS7dfKy9AvnuvfTiWJBm4DvCk+m2NUN7W0mMMA+I4IIeXgXrPPlJw6coDKkuJu7TjXEWs7Oybfdhfn0lI4sWvbRZ2rODebH//zHGpra27850s497v4yg++wSHN/m+WpO6gLdSvK+ltM8MAKmtrVIqCVgbD5leUk8UXf32A9GPd/4e0sxJ2bMXTfygefoOb3R4x9yo09XXEb99ippFZljMJxynMymTUFVe32QShNY0VJXo4VSIrMQE7ZxdGTpmBUz93Ug7u69Hr9zan444B+nqv3e1c+ilUajX9Bvp1uK+blze1lZVGvWlNjzmMh/8QRs9fQHV5mdlTJeK2bMC5nweDR40x6zhGRE9lQMAwdn23vMvVV8oK8vjhpX+i02q58Z8vNbbLlqRLgabIMDPcr3eVVgN93rBQFDkzbAlc3D2xtrVj08fvWVRN0IbawiOnXTjz4DHIH5+gkcRuXm+xJUl6UsyGX7FzdmH4hMmdOs51gBfWtnbk9fAiuqzE4/gGjUSoVARGTuB07FHqa2p6dAy9RV11FbkpJ7GxdyD96GHKiwq69Xp5GWn08x2ElXXHndhcG8qrdZAqUVNRQXbSCYaMGot/xBis7ezNmipRfDaH03ExhM6cg0pl3o5qQqVi+p33U1lcxMFffuj08ZUlxfz40j+prazkhmdepJ/voG4YpSR1n8ZWzG69Lx1HHwzL0moWwcrGhiv+/BiVJcVsX/6puYfTqKG2cFD01Fa3j7riKkrPnSXj2NEeHpllKSvI49ThA4TNmINVJ1tVqlRq3P38ye/B8mplBfmU5p1jYHAIAAGRE9DU15Eea3mfTFwKzpw4jk6rZeod96AoOhK2dd+nJYqicC4tFU//9hfPNThfXq39YDgj7iiKTsfgUZFY29gyZHSkWVMljm/dqO+oNt0yOqp5DwtixKRpHP7tZ0rzzhp9XHVFOT/+5znKiwq5/ul/039Ix6ktkmRpNIX65jNWvTYYVsyeFtaWyyoYBhgQMIyoa24kYcfWHmkD2pGG2sJDRkfi4NKn1X0CIifg6Nb3si+z1lCYP3z2/C4d7+mnryhhTF6nKWQbqkj4jNAHw74jRmLn7ELqJZoqUVVWSsGZ0xd1jtyUpC5/KnM67hhWNrYET5nJoJBwjm/bZJLFVq2pKC6kuqy0w0oSDfp49keoVB3ODKfHHMbOyRmvwGEADJ8wyWypEk07qjlZUMerybfdhVCp2PnNF0btX1tVxU8vP09xThbXPvkcPl2sJyxJ5qYtKkLVp09j9YXeRFhby2DY0kxYeAseg/zZ/MkHZl+Ydr62cNsle9RWVoTNnEt67FFKzub24Ogsh6aujuNbNzJ0bBQuHl1b8e7pP4S66ipK886ZeHStO5MYj62DIx5+/gCo1GqGjoki7eghtBrLXMjZnp3ffsF3zz3V5bFXV5Sz8oW/sfu7r7p0/Om4GHxHjMTK2prQmXMpy8/jdFxMl87Vkbx0fTqNMZUkANRW1vTx6N/uzLCi05F+7Aj+4aMbUxIaUiWS9u+6+EF30sFffqC6vMziOqo593MnasFCkg/s4cyJtt8kaDX1xG5ez5ePP8i59FNc9den8QuL6LmBSpKJ9caGGw2EjQ1Cp5PBsCVRW1lzxcOPU11exh9ffGzWsSTs2IK9Sx8GR7S/eCVs5hWoVCqObV7fQyOzLEn7dlFdXtapcmotefjrFyf21CK6rMQEfIKCm+ViBkZNoLaqkjPxcT0yBlM6kxCnz9tNTura8fGx6LRafVpAJ/PGygryKcrJwi80AtB/WmLn7ELcHxu7NJaO5KWfAiHwbLGgtT2uXt7tNt44eyqF6rJShow+3/zB2saWoWOiSD24r8f+SCiKwt4fvmXfjysIip5qkR3Vxl59Hc79PNi2/NMLXis6nZYTu7bxxeN/Zstn/8PFcwA3v/AqAWPHmWm0kmQa2qLOtWLWanTUVF4aEyuNaRIyZ9iyePoPYfz1t3Byzw5SDpinGUJ1eRlpRw4SPHlah12fnPr2IyBqIvHbNlFfe3ktwFIUhZgNv9HXZyCDQsK7fB73Qf4IoeqRRXSVJcUU52Tha0iRaOAXOgprW7tLrqpEWX4eZfl5AGR0cTa24biq0hJyTnauucLp4/pj/cJHA2Blbc3IqTM5dVhfFszU8jJO4eblg429g9HHuBlqDbeVhpMWcxghVPgb7kODYeOjeyxVQlEUdn+3nH0/fsfIqbOY98jjFtlRzdrWjimL7iI/I414Q264oiikHNrHV08t4fcP3sTG3oHr/vECt/z7NXyCgs08Ykm6eJqiQqNnhqvL61j93yMsf3oPRzeeRqu1zM5uDeTMsAWLuvZGPAcPZfNnS6kqK+3x65/cuxOtRsPIqcZ1NRo150pqKys5uWdnN4/MspxNTeZcWgqj5l7VqXJqLVnb2NLXx7dHOtFlJSYAXBAMW9nYMHjUWFIP77fYd8itaeii59DHldNxnV/IqSgKp+NiGBQagdramuSDezp1/Om4Yzi6uuHepMxZ6Iw56LRaEnZs7fR4OnIu/VRjOT5juQ7wpq66mqrSkla3p8ccwitwOPbOLs1u76lUCUVR2P7VZxxc8yNhM69g7oOPmr2CRHuGT5yC9/Bg9qz6mtRD+1nx7OOsfeM/6LRarnrs79zxyjsMGRV5Uf8nSJIl0RYWoTaixnB5UQ0/vXGU4txKvAJc2ffzKVa9dIicFNNPDOh0iklmn4W1NUKnk6XVLJHayop5D/2V2spKtn7+YY9fP2F767WF2+IzYiTuA/2I2fhbu4vAFEWhLD/PYt+BdVbMxt+wsbcneMr0iz6Xh9/gHqkokZV4HGtbu1YXYAVGTaCqtKTL6QbmkJUYj52jE+Gz53E2LbXTufbFuTmU5ecxbNxE/MNHk3Jwn9GL3xSdjszjxxgUGtEs8OnnMxCfoJEc/2OjSRdFVpeXUV6QT38jF881OF9RIvuCbRXFRZxLS22WItGgIVUipRtTJRSdjq2ff8jR9WsYNe9qZt33sEXOCDclhGD6nfdRVVrCmjdeorK0hLkP/oW73vwfwydMtvjxS1JnKFot2pKSDmeGi89W8tPrR6gqq2PBXyJY8GgEVz4UhqZWy89vxrD1yxNUl9eZZEw1lfWseukgnz+xiy//sYd1S2M5sDaNtJh8ygqqO/X/rrCxRmh16Lpp0fPFav+z+cuA+yB/Jt54G7tXfsXJvTsJmjilR65bkJnBubQUpt95n9HHCCGImHsVWz5bSk7yyWarputrashMiCU95jBpMYcpL8gn+qbbGX/DLd0x/B5TWVJM8r5dhM2a16mPrNvi6T+Ek3t2UF1edsEMnSllJSbgPXxEq+kvg0dForayIuXg3kvm492sxHh8RozEP3wM+378jsz42E7Vem6YTfYLG421rR2nDh8gNzUZ72FBHR6bdzqd6vKyxnzhpsJmzuX3pW9xJuE4g0LCjB5Pu9drWDxnZFm1Bm6GWsPFZ3Mu+EQgw9DoZ/Cosa0eO2x8NCf37CAzIQ5/E+fw6nRaNn+ylPhtmxh79fVMWXT3JTObOmBoILMWP4ROpyN0xlyjaj5L0qVIW1ICioK6ncou+ZnlrH3vGELAdU+Mwt3XGQD/MHd8gtw4vD6DY5sySY8rYMJ1QwmO9kaouva7rq3X8ftHxynJq2LsfH/KCqrJP1PB6fhCGmJgWwcr3H2d6OvjhL2TNfZO1tg6WmPnZI2do+HLyRprG/X5NAmNpkvj6W6XfTAMELngBlIP72fr5x8yMDi0R/rPJ+z8A5VaTdCkaZ06bsTkaez89guObfwNOycnMo4dIf3YEbJOHEer0WBta8eg0Ahs7R2I37GFcdff3G1/+BRF6fY/qsf/2IRWoyF8TtfKqbXkYfjoOy8jrdXgyhSqy8soyMxoM1i0dXBgUEg4qYf2MfWOey0+MKkoLqI4N4ewmVcwYGggto6OZMTGdCoYzoiLwbW/F679B2Dn5IRKrX8zYEww3FAxorXnK3B8NH98+THH/9jY5WBYURSKss+QGR9LZnysvoKBEEZXkmjg4uGJSq2mpJWKEmkxh3Dq26/NT4GaNuAwZTCs02rZ8OE7JO7axvgbbmHijYss/vXWUldLKUrSpURbZKgx3Lf1+CM7uZh1/4vDzsGaBX+JwLV/88khaxs1E64dyvCoAez4Lont3yZxcl8uU28b3hg0G0vRKWxZfoKclBJm3xvMsMgBjds0dVoKsyvJP1NOwZly8s9UkLQvl7qatj/VsrZTM049AKFNs9j0QBkMoy95dcWf/8rX/3iUzZ8u5Zonn+3WPxg6rZYTO/9ot7ZwW2zs7Bk5bSYxv//KyT07AOjrM5CIK65mcMQYfIL0pacSdmxlw//eJjflJN7DTFN3U9HpyM/MICP2KKfjjpKdlIhzX3f6DwkwfAXSf8hQbB0cTXI9nVZL7Ob1+IWNop/PQJOcs2lb5u4KhrNPngD0dYXbEhA1kc2fvE/+6fRO56b2tIZ8Yd8RIajUagaFhHM6LsboN0NaTT1nEo4TPFmf5mLn6IRfaDjJ+/cYNUt5Oi4G94F+rdbCtbaxJXjyDOK2/E51+QNGz/aX5ec1Br+ZCXFUFuv/ELl49CcwKprAqAmd/uRApVbTx3PABRUltJp6TsfFMHzilDbva9NUiVn3PoRKffG5vFqNhvXvv0Hy/t1E33wH46+/+aLPKUlS92houNHazHB6XAEbP4nHxd2OBX8ZhZObbZvn6evtyLWPjyLpwFn2rk7l+5cPM/7aIYyaPcjouGbfz6dIPZzHhOuGNguEAaxs1PQf7EL/wc3/f2yobFFTWU9Nxfl/K4prObw+g3I7N4RWi85CF/rJYNign+9AJt18Bzu+WcbJ3dsZMfni81Pb0lhb2MiFcy1FLriBuupqBgwdxuCIMfTx7H/BPgGRE7Cy+R8ndm2/qGC4oriI03Ex+q/jxxoXB7kP8id0xhwqS4rJTU0iad/5xT9uXj70HxLAgKGBDBs/Ced+7l269tHf11JRVMisxQ93efwtObj0walvP/JOd1/ecFbicaysbRgQMLzNfQLGjmPLp0tJObjvEgiGE7C2s2/Mf/YPG03Kgb0UZWfRz7fjNym5yUnU11TjF35+xjNwXDTpH79HXvqpdruF1dfVkp10goh2PhkInTmXmA2/cmLnH4y58tp2x1JdUc5vb79CpqG0nUMfVwaODGNQSDh+oeH08RzQ7vEdcfPyvmBmOPtkInXV1QwZdWG+cFPDJkwyaarEls/+R/L+3Uy9/R7GXn39RZ9PkqTu09iKucXMcNKBs2xdnojHQCeuWhKOvVPH3VeFEASN98I/1J3t355k30+nOHuqlJl3jsDWof1Uo7htWcRsziRkqg+j5hjf0lxtpcKxjy2OfZoH6nU1Gg6vz0CrNuQMW+haJhkMNzH6yms4uXcXe3/Q19809QINRVEozs3hyPo1+trCbeQPdsS5rztX/PmxdvexdXBg6NhxJO3bxfQ7F6O26lyuXX5mBr9/8Cb5hqDR3qUP/mGj8AsbhV9oxAWzdFVlpeSlpXI2LZVzaSlknUzg5J4dxGz4lTteex9bh87l+xbnZrNn5dcMHTuu1UVHF8PTf0i31ho+cyIer8Dh7eY3OvRxxScomNSDe4m+aVG3jcUUshPj8Rk+onG2sqGxwem4o0YFwxlxMQiVikEjz6cxDB07DvGpipSDe9sNhrMTE9DW1+MX2nZw6DHIH6+A4cRt3cjo+de0OftRlp/H6pefpzTvLJNu+RNDxkThPtDPpJ8CuQ7wJjMhrtmseVrMIdRWVgwKbb8soH/4aJOlSmSdiCd+2yYiF9wgA2FJugRoivSVIKz6nf/bGr8jix3fJeMz3I35fw7Fxq5zIZudozVz7wsh7o8swyzxIa64PxSPQa2nTaTF5LPr+2QGh7sz+eZhJvm/0cpG/3dDq7IBrdZi0yTkctwmVCo1Y666lpJzuZw+fswk5yzLzyN+22bWf/Amn/z5Tr746wNkHj/G6Cuu7rC28MUKnjydmvIyMmI7Xwpr93fLKS/IZ/Jtd3HHa+/x54+/Zv6SJxk5dWarH1c7uPTBP2IM46+/mWue/CcP/O9Lbn7hVcoK8tm6rHOVOhSdjk0fv4/a2ppZ9z5k8pQVD78hFGafQVNnmhW3TdVWVZKfkd7Ygrk9AZETKDhzut1GDebW0IK56YKwPp4DcPPyNrre8Om4o3gFBjVLn3Fw6cPA4FCS9+9pd0Xy6ePHUFtZXbAgraXQWXMpyj5DTlLr9YvzMtJY8dyTVJYUc8Oz/8e4627CY5C/yV9bbgO80dTWUlFc2Hhb+tFD+AaHYmNn3+6xTVMltBexyESr0bB12Yc4u3sw4YZbu3weSZJ6jraoEIRA7eoK6CfP9vx0Cp/hblz1SFinA+EGQgjCZw7kuidHo9MqrP7vERJ2ZV/w/+7ZtFI2LUugv78Ls+8diaqLC+9aUqkEamsVWmGN0GrBQhtvyGC4hcCoiTj0ceXYpq51elMUhZQDe9n08Xt89uhiPn3kHjZ+9C4ZsUfxCRrJ7Pse4Z53P2FcD+Tv+YWNwt7ZhRO7tnfquKKcLNKOHmLUvKuJumYhnv5DujRL7hscwoQbbiVx1zZO7Npm9HGxm38nKzGeaX9a3GrgfbE8/Qej6HQUZmWa/NzZSSdQFB0DgzsOhgOjJgCQ2kMNOOpqqjt9THZSQ/5zi+YhYaM4c+I4mvr2609Wl5dxNi211ZnOwHHRFOdmU3jmdJvHn46LwXvYCKzt7Nq9TtCEKdjY23O8lY50p48fY9W//o5Qqbjl368xMDi03XNdDDcvH4DGVImSc2cpysliiJGfAg2bMIma8rJ22xB35NjGdRScOc30u+7v8HGTJMkyaIqKULu6IgyfwNVWatDUahkc5o6V9cWvIRgwpA83PRuJ9zBXtn+bxNYvE6mv1QelJeeqWLc0DkdXW658KAxrG9PWH7ey0QfDGN7kW2LesAyGW7CytiZk+mzSjhykrCCv08ef3LODtW+9TPKBPXgM8mf6Xfdz5+sf8OdPvuGqx/5O2KwrcBvg3SMrutVWVgyfOIW0wweorao0+rij69egtrIyySrucdfdhE9QMFs//x8l5852uH9p3jl2fvsFfmGjGDmtaznVHWmoKHEu/ZTJz52VmIBKbYVXYNv5wg1cPDzxHDyUlIPd3wHxdNwxlt5zS2OJL2NlJ8ZjZW1D/6GBzW73CxuNpra2zZnYBpnxsaAorbb8DYyaAEKQfKD1BhyVJcXkn043ql2wtZ0dQdFTSdq3m5rKisbbE3dt46dX/oWLuye3/d8buA/y7/BcF6Ox1rBhtj895hDQdkm1lpqmSnRFRVEhe3/4hsERYwgYO75L55Akqee1bLhRXqzvNNveYrnOsney4apHwom6ejBJB8/y42uHyUkp5tf3j4GAq5eEY+/ccU5yZ1nbqNEKK1SGINgSG2/IYLgV4bPmoaBwfOuFs0zt0em07P9pFe4D/Xjo0xVc8+Q/GT1vgaENsHnKGQVPmY6mvs7oltPV5WUk7PiDEZOnm6TEnEqtZv4jTyKEivXvvd7ux7+KorD50w9ACOY8sKTbHjNXzwHY2NuT3w1tmbNOHGfA0ECsbY2bkQuMnEBuShIVRYUd79xFtVVVbPz4XXRaLcc2/96pY9vKfx4YHIpKre6wG11GbAy2jo4MaBFMAzi6uuEzPLjN12amIVXJmGAYIGzmFWjqakncvR1FUTi45kfWf/AmPsNHcPO/X+vyQs7OcO7njtrammLDzHBazGHcvLwbZ4w7crGpEju+WYZWo2H63Q9cciXUJOlypikuwsrtfDBcUVwLgKMJg2HQpy1EXjmYBUsiqCqr4+c3Y6gqrePKh8Jw9bz4Wv6tsbJRo0WNMKRmXJJpEkKIZUKIPCFEfBvbhRDiPSFEqhAiTggx2vTD7FkuHp4MGR1J3NaNaDXGtyHUr7A/w/gbbjFJaSRTGDB0GG5e3iTuNi5NIW7LBjR1tYyZf43JxuDi4cns+x8hNzWJ/au/a3O/+O2bOR0Xw9Tb78bF3dNk129JqFR4+A0mz8Sd6OprajiXltpuSbWWAsdNBCD10H6TjqWpnd8uo6KwEL+wUaQdPUhliXEtOxvyn31bSfmwdXDAKzCo3bzhxhbMIeFt/j4MGx9NwZnTFOVkXbDt9PFj2Dk5G13vt/+QADwHD+X4lg1s+/ITdq34kuETJnP9My9i5+hk1DkullCpcO3vRcnZHOpraziTEMfgDqpItNTVVIkzCXGc3LODyAULGxuASJJ0adDPDJ9PC6w0zAw7u3VPqtPA4L7c/GwkgZH9ueKBUAYM6VyZ186wtlWjxQqBIRi+RGeGvwSuaGf7PCDQ8HU/0PN9jbtBxOz5VJWWkGJkPqei07H/p1X09RnYGOBYAiEEIyZNJzPhOOWFBe3uq9XUE7PxN/zCRpn84+ThEyYzctos9v/8fat/5MuLCtjx1ecMDA4lbGZ7LzfT8PAbQv7pdKNbAhsjJ/kkOq0W307kpPb1GYiblw8ph7onb/h03DHitmxgzFXXMv3O+1F0OhKNzN/OSUpEUXRtLl7zDxtFXvopqspKW91elJNFeWE+/mFtvz8OjNL/rrScHW4WSKuMf2MZNnMu+ZkZxGz4lTFXXceVjz7V413LXAd4U5ybQ2Z8HNr6+k5XjWlMlWhSrrAj+kVzH+Hi0Z+oaxd2dsiSJJmZpqioWcON8uJaVCqBvYvp0xYaOLnZMefekfiFmH5tTlNWNio0igphWLN3SQbDiqLsBIra2eUa4CtFbz/gKoTwMtUAzcU/fDR9PPsTu9m4hXSph/dTkJnB+Otu6tQf754wYtI0UJTGJh1tSdq7i8riog5rtXbVjLsfwG2AF+s/eJOaivN5nYqisOXTpWg1GuY88KjJS9q1xtN/CPU11ZTkdZzHbKysk/EIoepUXWchBIFREziTEEd1RbnJxgJQV13Fpk/ew83Lh4k3LaKf70C8hgURv32LUT3lzyTGt5v/7B+uD3LbqrzS2DnOUIqtNc793PEKHH5B3nBR9hkqiovaPbY1QdHT8B4ezPS77mfaHff2yGupJTcvb0rO5ZJ25CDWtnYdVsJoqTFV4tB+o1Mljv6+lsKsTGbcfT/WNqb9WFWSpO6l1NejKy1t1nCjorgGB1cbk1V1MCdrGzVaRXU+TeJSDIaN4AOcafJzluG2S5pQqQibNY+sE/EUtLPaHfTB3P7Vq3Dz8mb4xCk9NELjuQ7wwmtYULszgoqicHjdL/T1GdgY5JiajZ0985c8RVVJMZs/eb8xIDu5eztpRw8x6ZY/4TqgZ95HNe1EZypZJ+LxHDy00zWVA6ImoOh0LHvsAb7++1/4+bV/s+mT99n7w7fEbd1A2tFDnEs/1WHlhpZ2fvslZQX5zP3zY40BUsi0WRRmZXI2Nbnj+5MY327+s+eQodg5OXM6tvVUidNxMbh5eXfYyCJwXDR56aeaLbDMiG1owdy5eru2Dg7c+uJ/GT1vQaeOMyW3Ad5o6+s5uXcHfmERXZqZDoqeSk15Gatffr7DqiflhQXs+2EFQ8ZEMXTMuK4OW5IkM9EUN9QYPp8zXFlc220pEj3NykaNRqfCrbKGKdfciI199+QmXwxTBMOtvW1pddpJCHG/EOKwEOJwfn6+CS7dvUKmz0ZtbU1sB4uO0o4eIi/jFOOuu9licoVbCp40nfzMjMYmGi1lnThOfkYaY65su2mBKQwYGkj0zXeQfGAP8ds2U1lSzB9ffoLXsCBGzbuq267bUj/fQQiVijwTBcOaujpyU5M6lS/cYMDQYUy/6wECoybg1LcvFUVFnDp8gH2rV7L5kw/4+bV/880//sLyJx5q8/lrKTM+ltjN6xkz/xp8hp+fqR4+YQpWNrbEb9/c7vH1NTWcO5XS7v1RqdQMCo3gdNzRC2aaNfX1ZCbEGbX4bZghrahpVY3TxxsC6Qu7K1o6V0O+bl11dZcb6wwZHcmsxQ+Tn5HGV39bws5vv2izNN72rz9H0emYcdf9XR6zJEnmozUEw2q3ptUkak1aScKcrGxVaHUC59p6wqKiOz1h1BNM0fUhC2jahsoXaLWLgKIonwCfAIwdO7bjz2nNzMGlD8PGT+LEzq1Mvu3OVovm62eFv6OPZ3+CoqeaYZTGGTZhEtuWf0Li7u14+A2+YPvhdb9g7+zSrW2oG0RefT2n447yx5cfk7h7O/W1Ncx98C89ml5iZWNDP99BJguGz6Ymo62v71S+cAMhBKPnXX3B7VqNhsqSYiqLiyg5m8OOb79gxT+fZM4DS/SpL22oq6lm40fv4eblTfTNtzfbZuvgwLBxEzm5ZyfT/rS4zVnfnBTj8p/9w0aRvG8XhVmZuA/0a7w9NzkRTW0tfu3kCzfo4zlAX2LuwB4ir74eraaerBPxBE+d2eGxlqihvBoYX1KtJSEE4bPnEThuIrtWfMmhtatJ3LOD6X9aTOC46MY3rKfjjpG8bxcTb1p00a2kJUkyD22hvppQw8ywoihUFtfiGOFhzmGZjJWNGo1W/3+W0g3NrkzBFDPDa4E/GapKjAdKFUXJNcF5LULEnPnUVVeTuGt7q9szYo9y9lQKUdfe1O0d5S5GQ4e4xN3bL1g0VpSTTdrRQ4TPmd8j+YZCpeKKhx/HysaWMwlxTFh4G/18Om7ra2qefoNNliZxJvE4CIFvUOdnhtuitrLCxd0Dr8DhjJg8nTtefZf+QwJY//4b/PHlx23mk+5a8SVlBXnMefAvrQa7IdNnU1dd1W6zj6zEBKPyn8+3Zm6eKpERF4NKrTa6wcWwcdHkpiRRXlhATvJJ6mtrOp0vbCmc3PpiZWOLh/8QnPteXDk3B5c+zH3wL9zy4uvYOznz69uvsvrl5ynOzUarqWfrFx/h2t+LyKtvMNHoJUnqaZpC/bIsdV99MFxdXo9Wo+s1M8PWvSEYFkJ8B+wDhgshsoQQ9wohHhRCPGjYZT2QBqQCnwIPddtozcArMAgP/yHEblp3wUfBiqKwb/V3OLt7MHLqDDON0HjBk6dTUVTImRPNq+Qd/X0tarWaiDlX9thYnPu6s+Cv/2DUvKuJvPr6HrtuUx7+Q6goLqKqtOSiz5WVmIDHQD/snLqvhJejqxs3Pvcfxlx5DTG//8r3Lz5DRXHzta1nEuI4tnEdo+ctaDMw9x0RQp/+A9pNlchKPI7n4CEdfpzl4u5JX2/fC0qsnY6LMbRgNu7jsMBx0YA+VeJ03DGESsWgkWFGHWtphErF2KuvZ9y1N5rsnD7DR3D7K+8w/a77yU1JYvmTD/PTKy9QnJPFjLsfwMqm+1acS5LUvbTFzYPhyhJ9jeHekjNsbatGo9Hnz+ou1WBYUZRbFUXxUhTFWlEUX0VRPlcU5SNFUT4ybFcURXlYUZShiqKEKopyuPuH3XOEEETMnk9+ZgY5ySebbcuMjyU3+SRR19yI2qpnyzd1xZAxUdjY2zerOVxdUU7Cji0ERU8zSZONzhg4MowZdz1gtjzrhkV0eUbm4bZFq9GQk5zYpRSJzlJbWTHtT/dx5aNPkZdxim/+8ReyEvVvbupratj40bu49vdi0i13tHkOoVIxcupMMuPjKG2lmoamvp7clCSjqyD4hY8i60Q8GsN/clVlpZxLP9VqC+a29PX2wX2gH8n793A67igDAoZh6+Bo9PGWJvqmRQyfMNmk51Sp1Yyet4C73/6IYeMnkRkfR0DkhC6nYkiSZBk0hUWgVqPuo6/1W15k6D7Xt3fMDFvZ6ENNncoKpZMLwXuK7EBnhKBJU7GxdyB207pmt+9fvRKnvv0ImT7bTCPrHGsbWwLHRZO8fw/1dfp3nnFbNqCprWXMlaZrsnGpaMidbitVQqfVknxgDz+9+i/WvvUyB37+nvRjRy6YST6XloqmtrZLi+e6Kih6KoteehMbe3t++L9nObp+DTtXfElpfh5z/9x6ekRTI6fOBCFI2LH1gm1nTxnyn40Mhv3DRqOpqyU76QRg6BynKPiFd64SROC4aLKTTnA2LbVTgfTlxsmtL/OXPMldb/6P+UueMPdwJEm6SNqiItRubo2lIBu7z7n2lmBYP+GlU9labJqE5Sa5WhAbO3uCp8zg+NYNTLvzPhxc+nDmxHGyEuOZftf9PV7U/2IET55OwvYtpB05SEDkeI5t+JVBoRGtLqrr7eydXXDu53HBIrqaigqOb9tEzIZfKS/Ix9ndA7XaqlljCKe+/fD0H4Ln4ADK8s8BdLqe7MVyH+TPopff5velb7Nt+acAjJp3tVHjcHH3xC80gvjtW5hww63N6vFmGdJofIKCjRqHb3AIKrUVp+Ni8AuNICMuBjtHJ/oPCejU/Rk2biL7flwBdL6k2uWon+8gcw9Bki5J5du2kf/2Owz89FOs+3dft1Nj6RtuNCmrVlKDSi1wcO4d6U/WhmBYq7ZGqbPMmWEZDBspYs58jm38jfhtm4m6ZiH7V6/EoY8roTPnmntoneIbHIJT336c2LUNnUZDRXERsx9YYu5hmY3n4CGNwXBh9hlifv+VhJ1b9TO9wSFMv/M+ho4dh0qlpqaygvyMNPIy0jiXfoq89FOkxxxBUXS4D/TDoY9rj4/f1sGRa554hkO//kRWYjyTb7nT6GNDps1i3Xuvkxkf12yxWlZiPO6D/LF3djHqPDZ29vgMH0FGXAyTb7urS53jAPoN9MPN25fK4kIGBAzr1LGSJEnGKvv1V2qTk8l9+mkGfvapWZrzNKUtKmrMFwYoL9KXVRO9oOEG6EurAWjVcmb4ktfPdxC+wSHEbfkd7+EjyIyPZeod915y3Z5UKjVB0VM5un4NJWdz6evty+DwMeYeltl4+A0h7cghVr/8PBmxR1FbWxMUPZXR8xY05hQ3sHN0YuDIMAY2WdhVX1tDQeZpswTCDYRKRdQ1C4m6pnNteAMiJ2Dr6Ej89s2NwbBWoyEnKZGR0zpX1swvbBS7V37FmYTjVBQVdjpFAvT5+dPvvI+q0hKLrswiSdKlS9FqqdyzF6v+/ancu5fir7+m753GTyJ0B01RIfYjz3+iV1Fc02tSJACsrBvSJGxkznBvEDHnSkrzzrHu3f9i7+xC+Kx55h5SlwRPno5Oq6Uo+wyj519j9nfF5uQVMAxF0ZGfmUH0Tbdz//++5Io/P3ZBINwWa1s7vAKHX5LNIaxsbAiKnkbKwb2N7bHzMk5RX1vT6ZSPhq6Fu1Z8AXQ9zWFwxBh9PrMkSVI3qDmRiLa0FM8nn8Bpxgzy3niTmqQks45JW9h8ZriypBanXlJJAvTVJAC0ahuLnRm+fKOgLgiIHI+jqxsVRYWMvfp6rO0uzRerh99g3Af5Y+fsQvCU7m+yYckGjxrLbf95k/s++JzxN9yCg0sfcw+pR4VOn21oHbwT0JeIg87nP3v6D8HO2YWzp1Jw8/K5JN8cSJJkfvXn8ij49FN01a13XLxYlXv2AOA4YQJeL/0fKtc+5Dz5JLqamm65Xkd0dXXoKirON9zQKVQU1+LcSypJwPkFdFqVDIZ7BbWVNaPnX4NTP3ci5sw393AuypWPPsX1/3ihw6oDvZ0QAq+A4ZdEabzu4Dl4KB6D/Ekw1BzOOnEcNy+fTpfZEyoVfqERAEa1YJYkqedpKyotts4r6APDrCVLyH/zLc7+698X1PY3hco9e7AdMQIrd3es+vbF++VXqE1JJe+NN01+LWNoiww1hg2tmKvK69BpFRxde8/fZuvGnGEblHrLfP3JYLiTIhfcwP0fLMPG3vJ6a3eG+0A/vAKGm3sYkpkJIRg5bTZnT6WQfzqd7JMnulwirqEcmn8X8oUlSepeSn09GTfcQPZfHzf3UNqU99p/qYmLw3HqFErXrKH4u+9Men5tRSVVx47hFD2x8TanyZPoe+efKP7mGyp27DDp9YwaU0Mw3K95w43e0n0OmuQMyzSJ3kMIcVnn2Eq9z4jJ01Cprdj+1WfUVlV2uXnIiMnTmPfw47IJhCRZoNLf1lF3+jQVW7dSefCguYdzgdJ16yj+9lv63nUXAz/8EMepUzj3yqtUxcR0fLCRqg4dhPp6HKOjm93u8fjj2A4bRs4zz6IpLDTZ9YzR0IrZql8/ACqKDN3n+vammeGGNAlbuYBOkiTL5ODSh6FjosiMjwXo8syw2sqa4CkzOl1STZKk7qVotRR+8gm2w4ZhNWAAeW+82S0pCF1Ve+oUuc89j/3o0Xg+8ThCpcLnv//FesAAsv/yGJr8fJNcp3LvPoSdHfajRze7XWVri/cbr6MrLyf3mWd79LHRFumDb7WbPjWtvFifu9yrqkk0dKCzsZczw5IkWa6GLoouHp64uJu/CL0kSaZTvmkTdenpuD/0ZzyWLKEmLo7yTZvNPSwAdJWVZD36F1T29vi8/RbC0MRK3acPvu+/h7asjOy/Pm6SGcXKPXtwiIxEZXthoGk3bBieTz1FxY4dJk/PaI+mqBg4PzNcWVyL2kqFvXPvWcdi1TAzbGNvsTnrMhiWJAn/8NG4ePRvLJEmSVLvoCgKBR9/gs3gwTjPnk2fa6/BNjCA/LffNvtH1oqikPv8C9Slp+Pz5htY929ehcYuKAivF/9N1eHDF73ArT4nh7q0NByb5Au35Hb7IhwnTybvtf9Se+rURV3PWNqiQrC2RuXsDBhqDLvZIkTvaLgBoFarUKkEOms7OTMsSZLlUqnV3PHau0y/835zD0WSJBOq2L6d2pMn6Xf//Qi1GqFW4/HXx6nLyKBk9U9mHVvxd99Rtm4dHo8+iuP48a3u02fBAtwWLaJo+XJK163r8rUq9+4FwHFi28GwEALvl/+DytGR7Cee7HJ5t7qMDLIff4KM22/v8A2HpqgIKze3xuC3orgW5160eK6Bla0anZWd2d+AtUUGw5IkAfoOe1Y2NuYehiT1uNLf1lGXkWHuYZicoigUfPQR1j4+9LnqysbbnaZPw37MGPKXfoCuqsqk1yzfto3yP/5AV1vb7n7VcXGce+VVnKZOpd/997W7b/+//w37UaPI/edz1KakdGlcFXv2YOXhgW1gYLv7WXl44PWfl6g9eZLUmbPIf/8DoxfV1Z89S+5zz3Pqyqso27yZ6sNHKN/cfjpKy4YbFcW1OPbGYNhGhdbKFqVOBsOSJEmSZFHq8/LIefJJ8t58y9xDMbmq/fupiY2j332LG3NxQT8D6vnkE2jzCyhavtxk16s/l0fWw4+Q9dDDpEyYSPbjj1O2YeMFAbemuJisxx7D2tMT79de7bBCk7Cxweedd1A5OZL1yBK05eWdGpei1VK1dx+O0dFGpR84T5+O37ffYB8RQcH//kfq9Bnk/POf1Kamtrq/priYc6/9l1Nz5lLyyy+43XorAVu3YOPnR2EHj6+muAgrQzCs0ym9rvtcA2sbNTq1TJOQJEmSJItT8ccf+n937EBraEveHbRlZShabbedvzUFH32MlYcHfa677oJtDqNG4Tx7FoWffY7GUOv2YpX+8gvodHi9/DIuV15J5f4DZD/2GMkTo8lasoTSX39FW1ZGzt/+jja/AJ933kHt6mrUua37e+L79tvUZWeT84+nUXQ6o8dVc+IE2tLSC0qqtcdhzBgG/m8pQ9avo88N11P22zrSrrqazPvup2LPHhRFQVdZSf7//sep2XMoWr4cl/nzGfr77wz457NYe3ri9qc7qImNo/rYsTavoy0sQm1YPFddVodOp/TONAkbtWzHLEmSJEmWqHzLVoSDA0pdHRVbt3bLNarjE0iZMpWUqdPI/fe/qdy/H0Wj6ZZrNag6GkPVgQP0vfeeVqsnAHj89a/oqqsp+Oiji76eoiiU/LQah7Fjcb3+Orz+70UCd+5g0Jdf4nr99VQfiyXnqb+RPH4Clbt20f/ZZ7AP7Vzbd4exY+n/t79RsXUrxd+uMPq4xhbMEyd06noAtoMH4/XCCwRs+wOPx/5CzclEzty7mPQF15A6ew4F772P44TxDFm7Bu9XX8HG16fxWNdrr0Xl4kLRV1+1eX5NURFWfVuUVeuNM8O2KhkMS5IkSZKl0ZaXU3ngAG4334yVtxdl6383/TVKS8l+7DHUrq44jBlD6c+/kHnX3aRMmUru8y9QuXdvtwTGBR9/hNrNDbebbmpzH9shQ3C94QaKv1tJXVbWRV2v6tAh6k9n0mfhDY23CSsrHMePY8DzzxGwYzt+K1bQ9847cV/yCK4339yl67jdcTuOEydQsHSp0ekSlbv3YBs8orF8WVdYubnh/uCDBGzditfLLyPs7LALDsZ/1Up8338f24CAC45ROTrieuNCyjZuoj4394LtuupqlKoq1H3Pl1WD3tV9roGVjRqtylouoJMkSZIkS1KxcyfU1+M8exYu8+ZRsWcP2pISk51fURRynn6G+rNn8X3nbXzffYdhe/fg8847OI4fR+lvv5F5z72kTJpM7nPPUZOUbJLr1pw4QeWOnfS980+oHBza3df9kUcQajX577x7UdcsXb0alZMTLnPntrpdqFQ4jB5F/7//DY+HH+5y6TAhBB6PP4G2pITCZcs63F9bUUlVbCxOnUiRaI/KxgbX669j8A/fM+izT7EPD293/76LFgFQvOLCmezGVsyGmeEKQzDs3Atnhq1s1OiEtZwZliRJ6g20FRVkP/74Rc+kSeZX8f/snXd8FNX6h5/ZvpvspiekkRBK6FWqoCBSxN69Yu9eu6JXf1ev96rXcq+i2LvY+1VBpAiCIr33nkp632T77pzfH7MJCYQUCCTAPJ/MZyazM3POnj1z5nvOvOd9Fy1CGxWFecAAbFOmgN+PvZnZ/62h/MMPqfntN+IeeRjzwIEAaCwWbJMnkTh9uiKMX3uVkNGjsc/5hdxbbmkT7w6l77yLxmolIijEmkIfF0vk9ddj//ln3Nu3H1F6gepq7PMXYDv3XDRm8xFdozWY+/bBNmUK5TM/xldc3OSxhwvBfLzQJyRgnTCBim++PXQi4UEBN6or3Gj1GowhuuOez2ON3qAhoIphFRUVlZOD6vnzsf8yF/vPP7d3Vk4IOurDT/Z6qfn9D6xnjUPSajH17o0hJQX7L7+0yfWda9ZQPP1lrJMmEXHttY0eozGZsE2YQOKL/yX5/ffxl5RQ9kHzo51N4dm3j+oFC4iYejXaYCCH5oi65Wa0YWFH7FHDPmcOwu0mvJ6JxLEm5r57ET4fpW+91eRxjmXLGw3BfDyJvO465Koqqn76qcH+g0MxOyo8hJ5kATdq0Rm1BCQdwtcx2wNVDKuoqKi0Avv8+QA4V69u55x0bIQQFD7zb/aMHddm3graEueqVcgOB6HjxwPK63frlHNwrlqNv7T0qK7tLy0l78GHMCQlEf/vZ1okbiyDB2E9ZzJlH3yAr6joiNMue/ddJJOJyOuvb/E5WquVqDvvwLFsWV1witZQ+d33GHv0wNS3dRPijgZDSgoRV1xB5TffNukjui4Eczv6UDcPGoipXz/KP/m0gRcMf5lyX9SODNdUuE9Kt2qgmEn40anhmFVUVFROdAJVVThWrETS63Gu39BhG/aOQPnMj6n47DMC5eVUfPFle2fnEGq9SISMPOBhIGzKFJDlug7PkSACAfIemkbAbifx1RloQ0NbfG7sQw9BIEDJ9JePKG1vbi5VP89RJgQGRxtbSsTVV6NPSKDoxRdb5QLOvWsX7q1bCb/s0uM+ohn91zuRjEaKZzRu7+zLy8ObmdlkCObjgSRJRF53Hd7MTBx//lm3P1BRazNcK4Y9J+XkOVD8DAfQqhPoVFRUVE50qhcvBp+PyBtvRLjduLdsae8sdUiqFy6k+D//wTpxIqFnnknF558ju93tna06hCxT/dsiQseMaeB2zNi9O8bu3Y/Kq0TJa6/hXLWKTk8+iSk9vVXnGpKSiLz+Oqp++gnXlq2tTrvsvfeRNBoib7yx1edqDAZiH56GZ/sOyj8+vCuwg6n87nskvR7b+ee3Os2jRRcdTdQNN1A9dx6uRu7FmuAod1tNnjsabJMmoouNbVC2/rJyJIMBTYgFOSDjqPKetGJYZ9Ag0BDwHl9f2y1FFcMqKioqLaR6wa/o4uOJvPEGkCQcq1a1d5Y6HK4tW8mb9jCm/v1I+M8LRN1yM4GKCiUgQwfBvXkzgZJSrGePP+Qz25RzcK1bh6+wsNXXrfnjD8refoewyy4l/JJDA120hKjbb0cbEUHxCy8ghGjxee5du6j64QfCLr0EfVzsEaVtnTyZ0LPOomTGDLzZ2c0eL3u92GfNIvTs8a0eiW4rIm+6USmvl6YfUl6OZcvRxcZiaMTt2fFGMhiImDoVx7JldSGlA+VKwA1JknDavQhZnLRmEnqjFoCAv+V1+niiimEVFRWVFhCoqcHx55/YJk5AFxGBsWdPnKvXtHe2OhS+vDxy/3onuqgokt94A43JhPm00zD170/5RzOPewS2w1G9aBHodISeccYhn9nOOQcA+9x5rbqmLy+P/IcfwdizJ50ef/yI86a1Wom59x6ca9dSvXBhi9POveVWtJGRRN/51yNOW5IkOj35JJLBQMHjTzQb5a1m4UICVVWEX3rZEad5tGhDQ4m+806cK1fiWHbA3lkEAjhWtDwE8/Eg/IrLkYxGyj/5FAB/eVldJ6KmlT6G/bKfJ5c/yfhvxvPgkgf5cueX7Kvc16oO1PFEZ1DEsD/QMX6Lg1HFsIqKikoLqFnyO8LrxRr0oxoybBiuDardcC2B6mpy77gT4faQ/M7b6KKjAUVgRd10I97sbGoWL27nXCpUL1xEyLChaMPCDvnMkJqKqU+fVnmVEF4v+x94EBEIkPTKy2hMRze6F3755Ri6daX4vy82640jUFlJzm23I7vdJL/77hGPCteij4sl7m+P4Fyzhspvvmny2MrvvkeXEH9Ekd3akvCrrkSfmEjxSy/VCXj39u3IrQzBfKzRRUQQduGFVM2ahb+igkB5RV0o5gNiuPm645f9PLb0Mf6353/0iOzBltItPLvqWS766SLGfTOOh39/mG92fUNmVeYxFcf7Kvfx6vpXeeSPR8i2N/0mQW/QBPOuimEVFRWVE5bq+fPRxcTU+Yu1DB+G8Hhwb9rUvhnrAAifj7z7H8CTmUnSqzMOicZlPfts9ElJlH34UTvl8ACejAy8mZl1XiQawzblHNxbtuDNyWnRNYv++yLuzZuJ//e/MaSmHnUeJZ2OuL/9DV9ODuWNBGuoRXa7yf3rXfhyckh6/XVM6T2OOm2AsEsvJWTUSIr/+2KjkdNAGY12rFhB+MWXIGnaV0poDAZi7r8Pz44ddfbeRxOC+VgSed21CI+Hyq+/UUaG6wJuKDb1zY0M+2U/jy59lHlZ83hoyEO8dfZbLLh0Ab9c8gv/GvUvRiSMYH3Rep5e+TQX/HgBk76fxLzMeW0migsdhczcOpPLZ1/ORT9dxAdbP2BJ7hKu/PlK5mUe/m2KrtZMAl2HeUNUH1UMq6ioqDSD7HBQ88cfWCdOrHvwW4YMUeyGT3EXa7Uu1BzLlhH/zycbeGeoRdLpiLz+elzr1+PcsKEdcnmA6oWLALA2JYYnTwZaZiphn7+Aik8/JeK6a7FNmtg2mQRCx4whZPRoSt98C39FxSGfi0CA/IcfwbVhAwn/eYGQ4cPaLG1Jkuj01FMIWabgyScbFVKV//sB4Ihto9sa27nnYuzZk5IZMxBeL44/l2Hq3RtdZGR7Z60Bxm7dCDn9dCo+/5xAWfkBTxLlHnRGLUbL4QNu+GQff/vjb8zPms+006ZxQ98bAOX3SrYmc0n3S3h+zPMsvHwhP1/8M0+OfJJIUyQP//Ew9y++nxJnyRHlucpTxfe7v+em+Tcx8buJvLTuJfQaPY8Oe5RFly/ipwt/olt4Nx7+42GeXvE0noDnkGvUmknIWkOH9D2uimEVFRWVZqhZuhTh8WCtJ3a0YWGYevXCuerUFsPlH35E5ddfE3XbbYRfdnjb0fBLLkYTFkb5RzOPX+YaoXrRQkz9+qHv1Omwx+gTEzEPGtSsqYQ3N5eCv/8dU//+xE2b1tZZJfaRh5Fraih9s2FgCSEERf9+lupffyXusUfr7JzbEkNSErEPPIDjj6XYZ81qmH4gQOUP/yNk5Ej0iYltnvaRIGk0xD70IL7cXMo+molz48Z2d6l2OCKvvw5/SQnC40EXpYj1mko3oeGHD7hRK4QXZC9g2mnTuL7P4f1IS5JEii2Fy3pcxmdTPuPBIQ+yLH8ZF/50IT/t/alFo8SykFlZsJIHlzzIuG/G8c8V/6TEWcKdA+/k54t/5otzv2Bqr6lEm6OJD43no8kfcWPfG/lm9zdMnTP1ELMJfVAMB1QxrKJy/PHs3Ytn7972zobKCY59/ny0UVHKaHA9LMOG4dq4Edlz6EjIyU7Abqf8s88pfvFFrOdMJub++5o8XhMSQsRVV1H9668tNj9oa3xFxbg3bW5yVLgW25QpeHbtwrNvX6Ofy14vefc/ABoNidOnIx2DoA6mHj0Iv/xyKr78Ek9GZt3+svffp+KLL4i86SYir7uuzdOtJeKaqZgHDaLo2ecaBCJxrFiJP7/guEacawkho0djGT6ckhkzwO/vUPbC9QkZPRpDly4AaCOCYrgJH8O1QvjX7F+bFcIHo9PouLHvjXx3/nd0D+/O48se585Fd1JQ07j5S4W7gplbZ3L+D+dz64JbWVO4hivTr+Src79i1kWzuHPAnaTYUg45T6/R8+CQB3lj/BsUOgu5YvYVzM084KJQF7QZDmhUMayiclzwZGRQ8sYbZJx/PhnnnU/W1VNPSbGi0jbILpcStnfC2UhabYPPLMOGIbxeXKeI3bAnM5Oyj2aSff0N7B51OkXPPIN58GASnnuuRXajEVOvRtLpKJ8589hnthFqFv8G0KhLtYOxTpoIknRYn8PFz7+Ae9s2Ep5/DkPSsRsdjbnnbjRGI8UvvghA1U8/UfLSdGznnkvstIeOWbqgjLbG//sZZJeLwqefqdtf+f13aMPCCD377GOafmuRJInYhx4EWW73EMxNIWk0RF6vdGJ0McpE05pyN6GRh06eqy+EHz7t4VYJ4fqkhqXy0eSPeGzYY6wvWs9FP13EN7u+QRYyQgjWFa3j0aWPMv7b8by07iWizdE8N+Y5Fl6+kL8N+xt9ovu0yCvHGUln8N3535Eemc4jfzzCUyuewu13H3CtpjV0yMAbhzdOUVE5gfBmZ2OfOxf73Hl4du0CScIyZAgRU6dS8fnnOJYuxdrBGm6VE4OaP/9EOJ3Ygl4k6mM5bQhoNDhXrSZkWNvZbHYUhM+Hc916ahYvpmbJkjrfs8YePYi66SZCx47FPKD/IZ2Ew6GPjcV24QVU/u8Hou+557j7pq1euAhDSgqGrl2bPVYfG4tl2DDsv/xC9N13NRAC9rlzlZHZG27AetZZxzLLSmCJ22+nZPp0Sl59ldJ338MyYgTxzz17XCauGdPSiL7rLkpefhn7ggVYhg6lZuEiwq+6ql1DHB8Oc//+RFz9F0DqkPmrJfySS5D0ekJGjCAQkHHYvYSGNxwZ9sk+Hvn9ERbmLOTh0x7muj5H9xZAI2m4utfVnJl8Jv9c/k+eXvk0P2f8TLW3mr2Ve7HqrVze43Iu73E53SKO3Ddzp5BOfDDpA97Y8AYfbP2ATSWbePm01wGI/dcz6OLjj+p7HAtUMaxyQlP5449UfPIp7u3bATAPGkTc//0f1kkT0cfFIXw+7L/8QtWcOaoYVjkiqucvQBsejmXo0EM+09psit3wSTiJzpubS/bUa/AXFyPp9VhGjCDi+uuwnnnmUdmJRt1wA1XffU/Fl18S89cj94nbWgLV1ThWrSLyumtb7HfWNmUKhU8+iWfnTky9egFKx7vg8ScwDxigjEIeByKvv47Kr76i9M23MKank/Taq8dV6EXddCP2+fMofOppIq68EuHzdTgTifp0+sc/2jsLzSIZDIRfqpShs9wN4lBPEk8se4KFOQt5ZOgjXNv72jZLOzE0kXcnvMsPe39gxvoZJIQk8NSop5iUOgmL3tImaeg1eu4fcj/9Yvpx/+L7WV78JxCFX2g7jN/n+qhiWOWExbV5MwWP/R/G9HRi//Y3bJMnoT+oxynp9VgnT6Lqhx+RHQ40ISHtlFuVExHZ46Fm8WKs50xG0jXeXFqGD6fi00+R3e4W+5f15eXhzd1PyIjhbZndNiNQU0PunXciPB4SX51B6Omnt9m9Y+zWTQnR/NnnRN18c4NwyMeSmt//AJ8P6/iWd4qtEydQ+NRT2H/5BVOvXsgeD/vvfwBJpyPx5elIev0xzPEBNEYjnf71T8o+/JCE519Aa7Uel3RrkfR6Ev79bzIvv4LSN97A1Ldvq0NNqxyemvKgW7V6ZhKegIe5mXO5Kv2qNhXCtUiSxCXdL+GS7pe0+bXrMyZxDAB2uQqIwq+GY1ZRaTtEIEDhU0+ji44m5bPPiLrxhkOEcC1h556LcLup/u2345xLBdnlwrFiRbukrXJ0OJYtR3Y4GjWRqMUybCjC58O1seV2w/mPPkbOLbe0KOTt8UYEAuQ/NA1vVjaJM2ZgmzixzTuRkTfdRKC8nKqffmrT6zZF9aKFaKOjMQ/o3+JzdBERhIwahf2XuYoHh+eew7NjB/HPP4c+IeEY5vZQQseMIeWjj446qMaRYurVi6hbbgbo0KPCJyJ1ATfqmUlk27ORhcyg2EHtla02waA1YNaZsfsrQQK/t+mohu2FKoZVTkgqv/se99atxD7yCNrQph/U5sGD0XXqhH1OyyNKtSUlr79Ozo03URN0Aq9y4lA9fz4am42Q4YcfwbUMCdoNt9BUwrlhA841a8Dvp+TV19oqq21G8fTp1Pz+O50e//sxG7m2DBuKqU8fJURzMyF/2wLZ68Xx+x9Yx41rsX1zLbYpU/Dl5VH8/AtUfvU1kTffhHXcuGOU045NzF//SsILzxN+ybEdTTzVqBPD9UaGM6oyAEgLT2uXPLUlYcYwKr2V6AxafOrIsEpLqVm2jPJPPu2wMcbbG39FBSXTp2MZOhTbeec2e7yk0WA75xxqli0jUFl57DNYj0B1NZVffQ3QIFSoSsdHeL1UL16M9ayzmnSbpbVaMfXpg2P1qhZdt+z9D9CGhRFx7bXY58zBvWNHW2X5qKn84UfKP/iQiKuvJuKqq45ZOpIkEXnTjXgzM6lZsuSYpVOLc+VKZKezRV4kDsZ69ngkvZ7yjz/GPGgQsfff3/YZPEGQDAbCLrzwmLiRO5WpqXCjN2kxmg+YYmVWZiIhNerG7EQjzBBGlbcKvUGD36OKYZUWUPPnMnLvuJOiZ5+lZPrL7Z2dDknJKzMI1NQQ98TjLZ8Ic+654PNhX7DgGOeuIRVffYXscBB50014tu/APmfOcU1f5chxrFqFbLc3CLRxOCzDhuLetBnZ5WryOM+ePdQsWkTENdcoLrPCwih+uWPc5871Gyj8xz+wjBxB3GOPHvP0bJMmoU9IoOzDD495WtULF6GxWLCMGNHqc7VWK6HjxqENDydx+kvHzU5Y5dRB8THccL5BZlUmCaEJmHXmdspV2xFuDMfusaMzaFUziY5CRx5tda7fwP577sGYlkbYpZdQ9t57lL79Tntnq0Ph2rKVym++IfKaqZh69GjxeaY+vTGkpBxXUwnZ66X8k08IGTWK2GkPYerdm5JXZiB3QIfjJwquLVvJvf0OvFlZxzwt+/z5aEJCWuS4P2T4cMVuuBl/w2Xvf4BkNhNxzVS0NhvRt92K44+l7R7S2Zefz/577kGXEE/Syy8fF8En6XRE3nA9rrXrKP/4Y4Tf3+prCL+fiq++Ju/BByn4178oefU1yj/7HPsvv+BYuRL3rt34ioup/u03Qs4444gn68U/+yxps2cddl6CisrRUFPhPsSTREZVBl3CurRTjtoWm9FGlacKvbHjmkm0yJuEJEmTgRmAFnhfCPH8QZ+PBX4CakPk/E8I8VTbZbNtCFRXk33d9UTdcjO2KVM6lHsP965d5N5xB7rYGDp/8D7ayEiE10fJK6+gsViIvK7tZ5OeaAhZpvDpp9FGRxF9992tOleSJGznnkvpW2/hKy5GH3vsJ6FU/fQTgZJSol54QQkVOu0hcm66mYovviDqhhuOefonG0IIip5/Hte6dbi2baPz++9h6tnz2KTl81Hz60JCzzqrRS6szIMHg1aLY9UqQg4z+ujLy6Nqzhwip15d5183YupUyj/5lJKXpmP56st2aZNkh4Pcv96F8HpJfusTtOHhxy3t8Msuo2bJEoqee57K774n7u//d9jyO5iapUspeuEFvHv3oYuPR7hcBKqq4DADHtbxR+4PWBsaAs3MTVA5cfD7AhRnVZPQPby9swIoI8NRSaF1/wfkAFn2LIbHd0xvM60lzKiYSej0J7CZhCRJWuAN4BygN/AXSZJ6N3LoUiHEwODS4YQwgGy3Ixn05D80jbx778VfUtLeWQLAm5VFzs23oLFYSPnwQ3TR0UgaDQnPPUvo2eMpevZZKr//vr2z2e5Ufv897s2biXv44SNyLWQ7dwoIQfW8eccgdw0Rskz5Bx9i6t0by8iRAISMGkXI6adT9tbbBOz2Y56Hkw3H8uW41q0j8vrrkXQ6sq+7Huf6DcckLeeaNQSqqrC1wEQCQBsaiqlPH5yr1xz2mLKZHwMQWa8jpDGZiL77LlybNlHTDt5OhCyT/+hjeHbvJnH6SxjTju9kHY3FQvIHH5D42qvILhc5N9zI/nvuxZube9hz3Lt3k3PLreTeehvC5yPp9dfo9tsieqxcQc+tW+i+7E/SZs+i88cfk/jKy8T94wniHnu0SY8gKqcWq2Zl8sNL61k/v/29uQT8Ms5qbwMziQJHAZ6A56QZGQ4zhFHlqULXgUeGW2ImMQzYK4TIEEJ4ga+AC49tto4N+sREUr/4gtiHp1Hz+x9knHc+VbN/blfTCV9hIdk33QSBAJ0//KCBM3tJpyNx+nRCTj+dgif+gX1u42FBTwUClZWUvDQd82lDsJ1//hFdw9i1K8aePak6Dna7Nb/9hjcri6hbbm4w2hc77SECdjtl771/zPPQ1rh37cb+S/t45BBCUPrqa+ji44l56EFSP/8MbUQ4OTfffEy8dNjnL0CyWAgZPbrF54QMH4Zrc+N2w/7yciq//Zaw888/5FV7+MUXY0hNpfjllxGB4/ugKH39dap//ZXYRx4mdMyY45p2LZIkYZswgbQ5PxNz//3ULFtGxrnnUfzyK8gOR91x/rIyCp78J5kXXYxr82biHnuUrrNnYz377Lp7TNJq0UVFYezenZDhw7BNnkzk1VcrHSh10tcJgSwLyvJqjtn1Az6ZncsL0Bk0rPhhH1v/yDtmabUER6XnkIAbdZ4kwk58TxKgjAz7ZB8a3YntWi0RqN9N3x/cdzAjJUnaJEnSXEmS+jR2IUmSbpMkaa0kSWtL2mlUVtJqibr5Zrr8+AOG1FTyH36Y/ffc0y6jxP7ycnJuuhnZXk3y++81OiqjMRhIev01zIMGkffwI1QvXtzkNb378yh9+20yL7u83YTLsaB4xgwC1dV0euKJo3qVbDt3Cu5Nm5sceTpahBCUvfc++qQkrBMbjiyaevXCdv55lH/yCb7CwmOWh7ZGyDL5f/sbeQ9Nw71z53FP3/Hnn7g2bSL69tvRGAxKx/bzzzGkpJB7x53Y57fdxEgRCFD966+EnnlGi4NoAFiGDQOfD9eGQ0erKz77DOHx1PlprY+k0xFz//149+6jatbso8p7cwgh8GZlUf7Jp+Tcehulb75F2KWXEHn99cc03ZagMRqJvuN2us79Bds5kyl75x32TT6Hyh9+pPS999g3cRKV339PxNSpdJ0/TxW4R4CQRYeeNwPw59e7+erp1Sz/395jkteMjSW4HT4m3dqX1H5R/P7lLnavbr+2uM6tWj0xnFmlWJyeNCPDxjAAhC7QYYNutMRmuDHlcXANXQ+kCCFqJEmaAvwIdD/kJCHeBd4FOO2009r1jjSmpZHyxeeUf/wJJTNmsO+88+n0+N+xnXfecbHbC1RXk3vLrfjy8uj8/nuY+zTafwBAYzaT/PZb5NxwI3n33U/yu+80sKsLVFVhnzefqtmzcK1dB4A2LIyCfzyJedCgNpv0EaiuxrVxI87163Gt34B7xw6MaWmEjB5N6OjTMfXr12ofni3BtW0blV99TcQ11xx11KOwKVMoeWk69l/mEn37bW2Uw4a41q3DtWkTcf94otGoZTH33kf13HmUvPoaCc/++5jkoa2pXrgQz86doNFQ/OJLdH7/veOWthCCkldfQ5+QQPglF9ft10VHk/LJx+Tefgd5DzyA/PTThF/atP9TIQTejAx8BYUInxfh8ymL11f3vy8/n0B5eatfq5sHBe2GV68mZNSouv2BGgfln3+B9ezxGLt2bfRc66SJmPr0oeS1V7GdO6VNQ+3KTieOVatwLP2TmqVL8QU7gobUVKJuuZnoe+/tUPMn9HFxJLzwAhF/+QuFzz5HwWOPARB61lnETpuGMe3kEAjHG583wI8vrScyPoSzru/VoX7zWnatLGDL73lExIewYUEOHoePM6f2RKNpu7xu+zMfW7SJlD5RJKVH8PMbm1g4cwd6o5YuA2LaLJ2WUlMRjD5Xz0wisyqTCGMEEaaI456fY0GYQRHDss6Pz9MxR4ZbIob3A8n1/k8C8usfIISw19v+RZKkNyVJihZClLZNNo8NklZL1E03Ejp2LAX/93/kP/wI9rnziP/XP9HFHLubQna5yL3zTty7d5P8xutYhg5t9hyt1Ury+++Rc9115P71LpLffksRwbNmU7NkCcLnw5CWRsz992M77zwQMhkXXkTB3x8n+YP3j6jh8+7fj2vdOpzrN+DasAHPnj3K5BStFlN6OtaJE/Ds3kPpG29Q+vrraMLCCBk1ktDRowk5/XT0nTodSfE0QMgyRU89jTYykph7WjdprjH0iYmYBw3CPmfOMRPDZe9/gDYigvCLL270c0NSYnDi1CdE3nB9q7xiHCn+sjJK33qbqJtvanXnSMgypa+/gSE1lfDLLqX4xZdwLF/eQPC16Dp+P0XPPU/ouHGEjm7eQ0MtNUuW4N6yhfhnnj5kJFBrs9H5g/fZf8+9FPz97wSq7YdMTvQVFOBYsRLHyhU4V6xs0VsgbXR0q80GtKEhmPv2xbmqoWeIym++Qa6qIuqWWw57riRJxD70IDk33UzlV18Red11rUq7Mey//krll1/hXLMG4fMhmc2EDB9O5I03EDpmDIbk5OYv0o6YBw4k9asvqVmyBK3NhuW009o7Syc0K/63j+Lsaoqzq+ncJ4ruQ+PaO0sNKN1fw5LPd5HQPZwL7h/I2jlZrP0lC48rwIQbe6PVH73zq8oiJ3m7Khh+YRqSRkJn0DLlzv789MpG5r+3jXPv7k9yz8g2+DYtp7GR4ZPJkwQo3iQA/Boffm/H64RBy8TwGqC7JEldgDzgKuDq+gdIktQJKBJCCEmShqGYX5S1dWaPFca0LqR8/pkyq/uVV8i+/gZSv/mm2chmrcFfVoZryxbcW7dRs3gx7u3bSXzpRULPPLPF19BFRJD8wQdkX3stOdcprzW10dFEXP0XbBdcgKl37waiN+7haRT+6ykqv/661Q70S954g9LXXgdAExKCeeBArJMmYhk8GHP//g3Cs/orKnAsX47jz2U4/vyT6rnKBDVj926EXXQRkddee8SvM6t++AHXpk3EP/8cWpvtiK5xMLYpUyj697/x7NmDsfshLzCOCvfu3dQsWUL0vfegMR/eP2TU7bdR+f33lLw0neR33m7TPByM8PvJe/AhnKtW4c3NIfntt1vVOape8Cue3btJ+O9/sE6aRMWXX1H04ot0+e47JE3LH1Bl779PxeefU/nDD6R+9WWLOgFCCEpfex19cjJhFzY+VUFjsZD01pvkT3uY4udfIFBZial3b5wrV+JYvqLODZs2MpKQESMIGTUSQ1oakt6AZNAj6estBgOSXo/GZDoi92KWYcMo++gjZKcTjcWiuNebORPL8OGYBwxo8tyQUaMIGTWS0rfeJuySS4+4/ZGdTgr//W+qvv8f+pTOREydSugZYzAPGXLErsXaC0mjwXrWkXuBUFHI3lbGliX76TcuieIsO79/tYuEHuGEhHWM+uBx+pj7zhaMFh2Tbu2LVqth+AVpGC06ln23F6/bzzm390NvPLo3j9uX5SNpJHqNOjAgYDDpOP+eAfzw0np+eWsLF94/kE5dwo72K7WYmgoPBrMOg6lewI2qTMZ3bn2AmI5KuDEcAJ/Gi8/bIidmxx8hRLMLMAXYDewD/h7cdwdwR3D7bmAbsAlYCYxq7ppDhgwRHZGalavE9t59RO499wpZlo/oGn67XdQsXy5K3n1X5N5zr9g9bpzYnt5TWXr2EnvPPVdU/vjjEefRm5cnCp97XlT/8YeQfb7DHifLssi+8UaxY9Bg4cnJafH1K777XmxP7yn2P/CgcO3YIWS/v8XnyrIsXDt3idL3PxBZU68R29N7ir3nTBE1K1a0+Bq1OFavFrtGjhKZf7n6iH+LxvCVlIjtvXqLopdfbrNr1pL3t0fFjoGDhK+8vNljS959V2xP7ylqVq067DGy3y+q5s4VmVdcKfZPe7jJ3/twFP33v2J7ek+RfdPNYnt6T2H/9dcWnysHAmLfeeeLvedMqasHlbNmie3pPUXlrFktvo5r5y6xvW8/kX3rrWL36DFiz9kThL+iotnz7AsXiu3pPUXF9/9rPq8+n8j7v/+ru9d2DBossm+7TZR+9JFw7dwp5ECgxfk9UqqX/im2p/cU1Uv/FEIIUfHtt8r/f/7ZovOdmzeL7ek9RfGrrx1R+q5t28TeyeeI7T17iaLpLwvZ6z2i66icPDirPeLDh5eKL/61Uvi8flFeUCPeunux+PmNTW3arh4pckAWP7+xSbx5528if2/lIZ9v+zNPvHHHIvHdC2uEq+bI67PfFxAfTPtD/PLW5kY/r6l0i08eXy7ee+B3UZJbfcTptJY5b24SX/xrZd3/Za4y0XdmX/Hx1o+PWx6ONUWOItF3Zl/x4Uezxeu3LxJyoH3qHbBWHE7nHu6DY710VDEshBClH3wotqf3FKXvvdfqcyt//lns6Nuv7oG8Z8JEsf+BB0TpBx8Kx+rVwl9dcwxyfHi8eXli55DTRNY117ZIDNQsWya29+krsm+8Ucgez1Gnb1+8WOw5e0KduPYWFjZ5vCzLovqPpSLz6qlie3pPsWv0aOHateuo83Ew2TfeKPZMmNimDwNvfr7Y3qevKPj3v1t0fMDlErvPHCsyLr/ikHwE3G5R/tXXYs/EiWJ7ek+x+8yxYnt6T5H3yN9aJeqq5s0X29N7ivwnnxSy1yv2nX+B2D12nAg4HC07/5dfFOE7++e6fXIgIPZdfLHYM+4sEXC7m72G7PWKjIsvEbtGjhK+sjLh3LBB7OjbT2TfdHPTnblAQOy78CKxZ+LEFncCZFkW9kWLhGPt2japv60lUFMjtvfpK4pemi5kv1/snTRZZFx8SavqWe6994mdgwYLX2lpi8+RZVmUzZwpdvTtJ3aPOeOIOp+nMlUlTuHztLzTf6Igy7L45e3N4s2//iZKcu11+zf8mi1ev32R2Lkivx1zp7BmTqZ4/fZFYtNvuYc9Zu/6IvHmXb+JL59aKWoqm29zGmPP2iLx+u2LRNbWw99XVSVO8dHf/hQfPLxUVBS2rI08HD6vv0V5/frfq8WsVzfU/b+2cK3oO7OvWLp/6VGl35Fw+Vyi78y+4q2Z34jXb18kPK7WD+q0BU2J4VMuAl1LiLzxBqznTKZ4+ss4Vqxo8Xn2X34h/+FHMA3oT/L779Nj5Qq6LZhP4vTpRN10I5ahQ9vU9KIl6BMSiHvsUZxr1lDx2WdNHuvetZv9996HMS2NxBkz2mSmtnXsWNJmzyL67rupXriQjHOmUPbRTITP1+A4IctUL1xI1mWXk3vrrfjy84l74nG6/frrMbGptZ17Lr6cHNxbt7bZNcs//gSEIKqFM/M1JhMx99yDe/NmqufPB5RJiqXvvcfes8+m8Mkn0VptJM6YQbdFC4m+526qfvqJon8/26JZ1p6MDAoeewzTgP7E/d//Ien1dHryH/gLCih9661mzxeBACVvvIGha1ds50yu2y9pNMQ9/DC+/Hwqvviy2euUvf8+7u3b6fTkk+giIzEPHEinJ/+BY9kyipsIOV79qzJpL+auuxqdiNgYkiRhPessLEOGtIunAU1I0G549Wqqf12ouNe77dZWmaXE3HcfssdD6Tstiz7pLysj9447KHrueULGjKHLTz+2OHCFCrhrfHz59GoWf378vaQca3auKCRjQwnDL0wjOumAb/b+ZyUT3zWMpd/sqbNZbQ9ytpexanYG3YfG0W9sY06qFLoOiuW8uwZQVermfy+ux17adNjzxti2NA9rpInkXoe3CbZFm7ngvoEIWfDTjA3k761stUeLQEBm29I8PntiJZ89sYKKQkeTxyvR5w5Mnqt1q3Yy2QybdCZMWhNuyQl0TPdqqhhuBEmSSHjmGQxpXch78CF8+fnNnmOfO5e8hx/BMngwnd99l9DRpx/XSE5NEXbJJYSceQbF01/Gk5nZ6DG+oiJyb79dcYL/zttHFNTicGhMJmLuvou0n2djHnoaxS+8QOYllyoTewIBqubMIfPCi9h/9z0EqquJf+Zpus2fR+TUqa1ybdUarGefDXo99p/bxudwoKqKym++wTZlSgNf0c0RdtGFGLt3p/jllyl+6SX2jjuLkpemY+reg84ffUjqt99gmzQRSasl+q9/JfKGG6j4/HNKXn216fzUONh/9z1IJhNJM2bUeSewDBlC2CWXUPbRTDx79zZ5Dfu8eXj37iP6r3ce4iUkZORIQkaPpvTtt5WoX4fBvWsXJW++hW3KOQ0CWIRfdhkRV19N+YcfUjX7UHdiyqS91zF06YLt3HObzGdHwzJ8OK6tWyl9800MKSlYJ0xo1fnGtC6EX3IxFV9+Rd6DD1Hy6mtUzZ6Na8uWQ4K11CxbRsZFF+FcsZK4Jx4n6Y3X66LbqbSM7cvy8XsC7F5dROn+6mOWjhyQj6tbs6oSF0u/3k1C93AGnt25wWcajcRZ1/Ui4JNZ/NnOdnG3Zi91seCDbUTGhzDump7NdhiTe0Vy4f0D8Th8fP/fdc2KzPpUlTjZv7OCXqfHN+uZIjI+hAvuHUjAJ/PDi+v57oV17FlbhBxoWsAJWbBnTRFf/nMVSz7fhTXSiE6v5dcPtxPwN35uwCfjqvY1nDxXmYFJayI+5OQK/W0z2nBK1Zit+sOWR3uiiuHDoAkJIem11xA+H/vvVUZqDod93jzypj2MedBAkt95G43Fchxz2jySJBH/1NNIRiMFj/3fIY79AzUOcm+/A9luJ/mdt9vMFdvBGDp3Jvntt0l643Vkh4Psa69j79hx5D80DSFkEv77H7r+Mofwyy475qN62rAwQseMwT53bpsEOqj48itkp7NRP7JNIWm1xDz0IL7sHMo++JCQMaNJ/e47On/4ASEjRzZ4QEiSROzfHiHsskspe+ttyj74sNFrCiEo+Pvf8WZlkTh9+iFePWKnPYQmJITCfz112IegCAQofeNNDN26Yps8udFjYqc9hGy3U/ruu41fw+cj/7HH0NpsxD3xxCGfxz32KJahQyl4/AlcW7c1+Kx6/nw8e/YQfdddx8Rd37HEMmwo+P14du8m8pabjyj/Mffdh3Xsmbi2bKH07bfJf/gRsi6/gt3DhrP79NFkTb2G3LvuJvfmW9CGhZH67TdETp3aId1ldWTkgMyWJfuJ62LDaNax8qeMNk9DCMH2P/N578GlfPJ/y1n8+U4yNpbgdfvbPK1aZFmwaOZ2JAnG39CrUQEYHmdh5CVdydlWxo7lBW2Wtt8XaFY4+n0B5r27FREQrZoY16lLGBc/NBghC+a+vaXFZbh9WQGSBL1GJbTo+JjOVq59ZhRnXNUDj8PHgve38dkTK9m0KPeQNIUQZG8t45vn1rDgg23oDBrO/Wt/Lnl4CGOvSackp5o1Pzc+CFVT2YhbNXsmqWGpaKSTS56FGcMoStzDTf8dgzXy2AxyHQ0ddFpfx8DYpQsJLzzP/rvupuiZZ4h/+ulDjrHPm0feQ9MwDxxI53feaeBloSOhj4ul0+N/J//hRyj/6KM6N0/C5yPv/vvx7NlD8ttvY+rV65jmQ5IkrOPHEzJqFGXvvYdr8xbinnhciSLVCs8EbYHt3CnU/PYbznXrCBk27IivI3s8lH/6KSFjxhyRH+TQM88k8bVXMXXvjiE1tcljJUki/l//QnY4KP7vf9FYQ4m44ooGx5R/NJPq+fOJfXgaISMOjW2vi4wk9qEHKfzHk9hnzybsggsOOcY+dx7ejAwSX55+WDFn6tmTsAsvpOLTz4icOhV9QsMHTel77+HZvoPEV2c0Olop6fUkzniFzMsuY/8999Dlu2/RRUUp5hmvv6EI8XMaF+LtiRCCwn1VxKWFNSoyLIMGgV6PLjz8sB4wmkMXHU3Sa68BIHu9+HJz8WZlHVgys3Bv3074X64i7pFHmvRconJ4MjeXUlPhYcyVPagscrLih33k76kkoXt4m1zf6/Kz5POd7FlbTGKPcIwhevasKWL70nw0OonE7uGk9I0mpW8UYbHmNuvMrJ+fTcG+Ks6+sTe2qMPXjX5nJrFvfQnLvt1Dcq/IoxYprhovXz+9GpfDR0RcCFGJIUQmhBCVEEpkQgjWSBOSRmLpV7spyanmnDv6ER7XusGjqMRQJtzch1kzNvLHl7sZf0PTPpMDAZkdywtI6RfdYAS2OfRGLf3GJtHnjESyNpeycWEOf367h9WzM+g9JpH+45KoKXez4sd9FOytwhZt4uwbe9N9aFxdu9B1UCy9RsWzbn42nftEHVKvGg24UZnJgNimPc+ciIQZwqjyHv4tYnujiuFmsI4fT9Ttt1P2zjuY+vVrIDzs8+YrQnjAAJI7sBCuxXbeeVQvWEDJjFcJPfNMDN26UfjUUzj+/JNOTz9F6JiWh549WjRmMzH33nvc0msM67hxSGYz9jm/tEgMi0CAgN2ObLcTsNsJVNmR7VU4164jUFbWpB/ZpqgNR9vi47VaEl94gVyHg8In/4kmJISwoCmBY9Vqil96CevEiUTedNNhrxF+2WVUfv89RS/8h9CxYxu4rROBAKVvvomxe3eszQSeiLn3Huy//ELJjFdJeOH5uv3uXbsofettbFOmYDsoCl99dJGRJL/+OllXT2X/ffeR8uGH2OcvwLtvX5NCvD3J3FjK3He2MObK7vQfd6ivXo3FQux992Lo0qVNgmdoDAYllPhhAnZ0ZPasLSJvVwVjrujRJn5i25rNv+3HGmUitX80Ab/Mpt9yWfnjPi6eNviohWlxtp3572+juszN8AvTGDIpBUkjEfDLFOyrIntLKdlby/jz2z38+e0ebDFmBo5Ppt/YpKNOd83sTLqdFkuPYU37EpaC5hJfPbOaxZ/u4Px7Bx7V9/7jq924anz0PTORyiIX+Xsq2b26qO5zvVGLLcZM2f4ahkxOIW3gkfnzT+4ZydBzu7Dm50wSeoTT+/TDj/hmbS7FZffSZ0zLRoUPRqORSBsYQ9rAGIoy7WxclMOmRblsWpiDEGC2GTjjqh70Hp2AVndoHR99RXfydlew8KPtXPnEMIzmA7LrYDHs9DnJd+RzcVjjPupPZMKMYWTbs9s7G4dFFcMtIObee3Bv3UrR089g6tkTc//+2OcvIO+hhxQh/O67x31i3JEgSRKd/vlPMs47n/xHHyP0rHFUfvsdUXfcTsTll7d39o47GosF61lnUT1vHsbu3QnYq5Dt1YrgrbYTqN0Oil+5+vD2hCGnn668Hj9OSAYDSTNmkHPrreT/7VE0ISGYevYk74EHMKSkEP/ss00+1CSNhvgnnyTzssspeWUGnf5xwIzB/ssvyqjwK680O1qvT0gg8rprKfvgQyJvvAFTz54HmUc83ux3MfXuTfwzz5A/bRqF/34W5+rVLRLi7YEckFnx4z4AtizJo9+ZSUiNjA4facfoZMHr9rP0693sXKGEuTWF6hlxYccS86X7a8jfU8moS7qh0UhoDFqGntuF37/YRfaWMlL7Rx/RdYUQbP5tP8v/txeLzcDFDw4ivlt43edanYak9AiS0iM4/bLu2EtdZG8tY8/aIv74ajcarUSfMS2fd1AfnzfAwo+2Y7YZOPMv6S0StmExZk6/tBu/f7GLbUvz6XvGkaW9d10xe9cWM/zCNE47J7Vuv8flpzzfQXl+DWX5DsrzauhzRiLDLkg7onRqOW1KKgV7K/njq93EptiITgpt9LjtS/MJjTDSuU/UUaUHENfFxqRb+mIvdbHtz3yMFh39zkxq0szDYNIx4aY+/O+/61j69W7OvqF33WcHR5+rFYsn0+S5WsKN4WzxbGnvbBwWVQy3AEmrJeHF/5J12eXsv/c+ov96J4VPPY25f/8TRgjXoouKotOTT5J3//24t23DdsH5xNx3X3tnq90Iu+gi7HPmUPTMMwBIFgtaqxWtzYbGZkPfqRPaHt3R2MLQ2mxow5T9WlsY2jBb8LgwdNFRx91eUwnT/TY5199A3n33Y+icjHC7SXrt1RbVSVPv3kRMnUrFZ58RdvHFmPv1Rfj9lL7xJsZghMGWEHXbbVR++11dmObSd99VzCNee7XFk7nCzjsX947tlAftoBNfnXHczWZawo7lBVQWOel2Wix71xaTu6O8TR6yJxPF2XYWfLANe4mL06akUl3uZv38HLoMiCEutW0C57QFWxbnojNo6HX6gTkSvU6PZ+OvOaz4cR+d+0a1Ogywu8bHok92kLW5lNT+0Yy/vhemkKaDt9iizfQbm0TvMQnMfWsLv3+xC3OogbRBrR81XfH9XioKnVxw/8Bm061PnzEJ7FtfzLLv99K5dyS26NaZ3TjtXn7/chexKVYGT2w4Wc9o1hHfNYz4rm0byEKjkZhwUx++fmY189/byuWPndYgcAUok/RydpQz9NwubRrS2RZtZuRFLe/cdUoLY8iUVNbOySKlbxTdT1NG7GsqPBgtujoxXetJIi3s6DoKHRGb0aaaSZwM6CIiSHx1BtlXT6XwH09iHjiQ5PdOLCFci23yJJzXXIO/qIiEZ545pSfdhI4ZTbfflyDp9WhDQ9vFHdfRoA0NJfn998i+5lo8e/aS+MorrXqdHnPvPdjnzaXwX/8i9euvsM+Zo0y8a4UY1dpsRN1xB8UvvEDZhx8p5hHnntsq0w+A2AcfxJeTS6CyUvH20cHweQOs+TmTTmk2zr6+N3m7K9m8ZL8qhoMIWbBxkWJmYLEZuOjBQSR0j8Dj9LF/ZwWLPt7BFf93Gjp9+5u+uGt87FpdRM8RnRqIRq1Ww/AL01jw/jb2rCkifXjLQ8rn76nk1w+34az2MvqK7vQfl9SqtlWr1TDp1r789MoGFnywjQvuG0BC95Z1JmVZsGpWBlt+z2PAWcmtDiksSYq5xJdPrWLhzO1ccN/AFv9OQgj++HIXXref8df3RqM9fp1Yi83AxFv68NPLG1jy+S4m3NQwCuv2ZflI0CDiXHtx2pRUcraV8/sXu4jvGkZohImaCk/DyXNVmWgkDSm2lGavF5AFT/+8nT92lzCwczgjukQxrEskKVGWDvlMDzOE4Ql4cPldmHUdb45Dxxt66cCY+/Qh4T//wXb++SS//x7a0MZfy5wIdHr87yS99uoJJ/6OBfq4OHSRkSdsWegiIkj57FM6f/IxtsmtMy3QWq3E/e1R3Fu3UvHFl5S8+SbGnj1bLUYjpl6NPjGR4v/8B214OHGP/71V54PyBibptVfp/MnHHXJUePNvuTiqvIy8uCtavYY+oxPI3lpGVYmzvbPW7jiqPMx+fRPLv99Lar9ornx8WJ2QM1r0jLu2JxUFDtb8nNW+GQ2yfVk+AZ/cqH1ut8GxxHS2smpWRotdQG1Zsp8fp69Hq9Nw6cNDGHBW8hEJEr1Ry3l3DcAWbWLOm1so3V/T7Dkep485b2xm/bxseo9JYOQlR2aOYo00MfbqdAr2VTHnjc34PC3zsrN3bTH7NpQw/Pw0IhOO/+BQYo8Ihp2fxp41RWxbesANqhycONe5b1SH8F6g1WqYcGNvAn6ZRR/vQMhC8TEcWc+tWlUGSaFJGLRNP4u8fpl7vlzPzOVZxFiNLNlVwiPfb2bsi0sY8dwi7vlyA5+uzGZ3UXW7uM1rjDCj8magytMxR4fVkeFWYps0sYG/VBWVjoAuIgLdEXrEsJ07hcrvvqPouedAlkl6/bVWi1GNwUDstIfIe/gR4v/1z6PyddsRRzXcDh/r5+eQ0i+qTuT1PSOR9fOy2fJ7HqMv697OOWw/sreVsWjmdrzuAGdenU6fMQmH/IYpfaLofXo8GxZk02VgNJ26tO0r89ZQ604tMT2CqMRDBzQkjcSIi9KY/eomti3Np/+4w09oE7JgxY/72LAgh9T+0Uy4sTcG89E9Vk2hes6/dyD/++86Zr+2kUsfHnJYs4XyAge/vLWZ6lI3Z16dfsT2vrX0GNYJIQsWfbyD2a9u5Ly7BzT5fRxVHn7/ahdxXWwMPPvQyaTHiyGTU8jfW8mf3+whLtVGTGcrWVvKcFZ56TP6yCbOHQvC4yyMvrw7Sz7fxabfcqmp8DQwHcqsymzWRMLlDXDHZ+v4fXcJj5/bi1vGpCGEYG9xDasyy1mdWc6qzDJmb1I6BtGhBi4bkszU4Z1Jjjw6t681Hj9ZpQ6yyhxklTrILHWSVebA4w9wy+g0LhiQcFhzlPpiuFNIy9+4HC9UMayicoojSRKd/vEEGRdehLFnOqHjxx/RdWznnEPImDEn9BuTw7FuXjZet7+BnWBIuJG0wTHsXF7A8PPTWuwr9WTBUeVh7Zwstv6RR2RCCBc+0IeohMP/9qdf1p2c7eX89vEOrvi/oegM7VNe9d2pHY7kXpEkpoez9pdMeo7sdIgtKlA3wrdnTRF9zkjkjCu7t5mJgDXSxHn3DOCHF9cz+7VNXDJtMGZrw9HCzE0l/PrRdnR6DRc+OIiEepP0job0EfFo9Vp+/WAbP72ygfPvbdz+WAjB71/swu+RGX99r+NqHnEwkkZiwo296+yHr/i/oWz/M5+QMAMpfTuWGVPv0QlkbSljxY/7kP2izkzCL/vJtmczJnHMYc+1u33cMnMta7LLeeHSflw5VLHPliSJ7nFWusdZuWZECkIIcsqdrMosZ+H2It79Yx/v/LGP8T1juXZkKmO6RTdrQ13j8bMqo4yle0rZll9FZqmT0pqG8RbibEZSo0JwBAT3f72R95Zm8Ng5vRjd/dDJp2EGRQzbvfZDPusIqGJY5YSmpsJDZZGDQEAQ8MnIAUHALxPwB7d9MjEp1jZ7UJysGNPSSPnkY/SdOh3VyOzJKISry91sWbyf9OGdDhlJ7Dc2ib1ri9m9uvCIPQCcaLhrfKxfkM2WxfsJBAT9xyUx8uKuzYpbg1nHWdf2YtarG1k1O5PTL+12nHLckPru1A6HJEmMuKgr37+wjs2/5XLalIaz+z0uP3Pf3kLergpGXJTG4Ekpbf5GIyohlHPvGsCsVzbw8+ubuPCBQRhMOoQsWDs3i9WzM4npbOWcO/q1uRlAtyGxaPUa5r27hR+nb+CC+wZisTUU47tXF5G5qZRRl3YjolP7z50xWw1MvKUvP768gbnvbGH/rgpOOye1XUV6Y0iSxFnX9uTLp1fjsnvrzCTyavLwyb7DepIod3i57sNV7Cyo5tWrBnH+gMOPeEuSREpUCClRIVxxWjL5lS6+WJXDV2tyWLhjNV2iQ5g6vDOXD0kmzKJ0dPwBmU37q/hzTyl/7i1hQ04lfllg0mvolxjGWT1jSI0OoUtUCKnRIaREWbAYFAkpy4JZm/L57/xdXPPBKs7oEcOjk3vSO+HAqLdqJqGicowoyanmh5fWN2vbptFIXPn4sHaxZzuRsAwa1N5Z6JCs/jkTgWDY+Yc+pOK7hhGdHMrmxfvpPfpQ84DD4ajyUF3ubldzgdbicfnZuFDxserzBOgxLI6h53YhPLblr16Te0fSZ0wCGxfmkDYwps09DDRH6f7qBu7UmqJTlzDSBsawYUEOfc5IxByqiMGaCg8/v76JigIHZ9/Qi/QRx25yVnzXMCbe2pe5b29h3rtbmXhzHxZ/qkSwSx/eibFT04/ZCHuX/tGc99cB/PLWZn6cvp4L7htU5w/XUelh6de76ZQWxoDx7WcecTAJ3cMZfkEXVv6YARINPIV0JMxWA+Ov68Xcd7bUuYTLqAx6kgg/1EyisMrNtR+sIqfcybvXDeGsnk37jz6YhHAz0yalc8/4bszbWsgnK7J5Zs4OXlywi/P6J2B3+ViRUUa1248kQb/EMG47I43R3aMZkhKBUdd0HdNoJC4alMjkvp34bGU2r/22l3NfW8rFgxJ5aGI6ieFmVQyrqBwL7GUufn59E8YQHefcoYTz1Oo0aLSSstYpa783wLfPreX3L3dx0YOD2sUeVQiBo9LbquhHKh2D8nwHu1YU0P+s5EYjeUmSRL+xSSz+dCf5eypJ7NG8rbTX5efH6RuoKnYy+fZ+Rxx44HjhdfvZsmQ/Gxbk4HH66To4hqHndWnSJKIpRl3ajZxt5Sz6eDtXPj4M/XE0l9i8eP8h7tSaYvgFaWRuKmH9vGxOv6w7Zfk1/PzaJjwuP+fdPYDk3q3z2nAkdOkfzbhr0vntk518/H/LCfhkRl/enf5ntc5bxZGQ3DuS8+8dyM+vb+KHl9Zx4f2DsEaZWPz5TgK+oHlEG7osawsGT0yhotCJVq9pMvpee5PSN4pbXzkDbXDkOtOuhGw+eGQ4p8zJ1A9WUl7j5eObhjEi7cjNPow6LRcOTOTCgYlsy6/i0xXZ/Lgxj+hQI+f1j2d0txhGdY0iIuTIJpOb9FpuGZPG5UOSefP3vXy0LIufNxdww6hU7jpL6TR1VPdqqhhWOeHwOH38/Ppm/D6ZS+8f0uyI78iLu7Lk813sWlVIz2M4inM4/vhyN1uX5jHhxt70GNbxJg6oHJ6VP+1Db9Qy5JzDuzrqMTSO5f/by5bF+5sVw0IIFn2yg6oSF+FxFhZ8sI0L7x903EdIW0LAJ7P1jzzWzcvCVe0jpV8Uw89PI6az9aiuazDpGHddT2a9spFVP2Uw+vLjM/nQXeNjdyPu1JoiMiGE9JHxbFmSR3SylaVf70ar13DxQ4OJST66cmgNvUYl4Hb42bw4l7Ou69Vq12lHQ0L3cC68fxCzX9vIDy+tp9eoeLK3lDH68u6tDqV8PJA0UoPAFh0ZbT0TjozKDKLN0dgMB0wLdhdVc837q/AGZL64dQQDksPbLO0+CWE8f2l/nr24H5LUthOXwyx6HjunF9ePTOXFBbt4948MukRZMGgMVHoq2yydtqRjGdOoqDRDwCcz9+0tVBU7OeeOfi0yfeh9egJxXWws/34vbofvOOTyADtXFrD1jzxMIXoWzdxB1pbS45r+yUZNhYe1c7NwVHqaP/goKdhbSeamUgZNTKl7Rd4YOoOW3qcnkLGplOpyd5PX3LAgh4wNJYy8uCsXPzSY0Agjc97cREWho62zf8QIIdi3oZgvnlrFn9/uITIhlEsfGcJ5dw04aiFcS3LPSPqemcim33LJ31N5VNeqKnFRmFHVrAupOndqTXiHaIxh53VBIFj40XYsNgOXPjLkuArhWgZN6Mz1z55+XIVwLXFdbFz4wCD8Ppk1c7KI7xbWpJcNldaTaW/oSSIgC274cDUAX982sk2FcH00GumYvWFICDfz4mUDMOk17C1xEGYMw+7pmBPoVDHcwSjOtjP3nS38+PIGirM7ZqVpL4QQ/PbpDvJ2V3LWdb1ISm+Z+y5JI3Hm1em4a3ysDIbSPR6U5Faz5PNdJPYIZ+q/RhCVFMq8d7eSv7fyuOXhZMLnDTDnzU2s+imDz55YwYofjl3nRgjFZZbFZmiRTWTfMxJBCLb9kXfYY/bvLGflj/voOjiWgWcnY7YaOP+egWg0ErNf3YSj6tgL/OYoyanmx+kbmPfOVrQ6DeffM4CLHhhEp7S2H7keeXFXbFEmFn2yg9L91chyy/2hOqo8bFqUy7fPr+WzJ1bw/X/W8cU/V7FpUW6jdaKBO7VWmndYI00MvyCNLgOiueThIR361fuxJCbZysUPDqb70DjOvqF3o2HIVY4MIQSZlZkNTCTWZpWTX+XmH+f3Jr3T8e98tRUajURqVAhZpYoYVm2GVZqkMKOKNXOyyNlWhtGiQ6PT8N3za+l/VjLDzu/SqGufU41VszLYvbqI4RemtSoyFCgNef9xyWxanEvPUfHHfOKS2+Fj3jtbMFl0TLylL6YQPefdPYAfXlrPnDc2c/FDg4hOOnEbuOONEILFn+6kdH8N467pSd6eCtYvyGHb0nwGT0qh37ikNrU9zdpSRsHeKs68Or1FLtNs0WZS+0ez7c98Tjs39ZDoXdXlbua/v43wOAtnXdezbiQmLMas1IvpGxQXWg8NPmo/tUeCo9LDyh/3sXNVIaYQPWdenU7v0+OP6Ux8gynoXWLGRr5+Zg0Gk5ZOXcOI7xpOfLcwYlNtDX5Tt8NHxsYS9qwpIm9XBUJAdHIoIy/uitlqYPufefz57R5W/riPbkPj6HdmIrEpyivnzE3Nu1NrisETm48IdioQmRDCxJv7tHc2TjpKXaVU+6obiOF52wox6DSMS49tx5y1DalRIewuriY5ruOGZD6lFJbH6ePzf64itrOVmBQrcSk2YlKshIS138SmvN0VrP0li/07KzCF6Bl+YRr9xyYFR6Yy2LQol30bijnzL+mk9ju8K6D6+LwBijLtRCeFtio+fUdm29I81s3NpvfoBIZMPrIH07ALurB3XRG/f7GLyx897Zg96IUsWDRzOzUVHi5+aHCdSyKLzcAF9ynO9Ge9qvgObc1M/PamLK+GikIn3YYc/8Z548Jc9qwpYsRFafQenUDv0QkMmtCZlT9lsOKHfWz+LZeh53Wh16jGBZwQAmeVl/ICBxWFDgI+gSlUh9GixxSqxxSiLMYQHZIksfLHfYTFmls1G73fuCQyN5Wyd20xPUceOC/gk5n37lYCfplz7uh3SMc2NsXGObf1Zc4bm5n7zhbOu3sAWt3R1U0hCzI3l1JR6MBsNWCx1S5GzDZ9na2izxNg48Ic1s/PRpYFg87uzJApqRiPkyBPTI/gmmdGkr+nkoK9lRTsq2LVLGVWvUYjEZNipVNaGPZSF9nbypD9grAYM0POSaX70Dgi4w+YSfUaFU9JbjVb/8hj9+oidi4vIDbFSt8zE9mxvKBZd2oqKu1FZpUyea7WTEIIwYJtRYzpFk2I8cSXaanRISzaWUQfQxj5jsO/PWtPTvxSbgV+r0xKn0iKs6vJ2VZGrYlZSLiR2BQrsSk2YlOsxHcLP6YO9IUQ7N9RwZpfMinYW4XZZmDUJd3oc0ZCgwfl2KvTSR8Wx+LPdzHnjc10GxLL6Cu6NyrevS4/WVtK2behhJytZfh9MqGRRs65vV/d6MjR4nX5qSx2KkuRC3upC783gJAVP4NCCISsLLIMCEF4pxDSh8XRqWvYEdslZW0p5fcvd9O5TyRn/qXHEV/HYNIx+ooezH9vK1t+z2PAWcfGJdC6eVlkbSnjjKt6HPJ62Rpp4vx7B/LDi+uZNWMjl0wb0qyXCVkW5O2swBJmaDRiVkvxuPxHLHKKMu3MmrEBrztASU4KIy5KO26eOXJ3lLPif3vpOjiGwZMOdISik6ycd9cA8vdUsuKHfSz5fBcbF+Yy9LxUDCYdFQVOKgodigAucOB1tyy8rM6oxe8JMOnWvg0muDRHUnoEEZ0sbF68n/QRB/w1L/12D8VZdibf3vew/lg794li3HU9WTRzB799suOIX0MHAjK7VxWxYUE2FYWHDxNtCtFjCTPgrvHhtHvpOjiGkRd3Iyzm+JsAWCNNpA/vVPe2x+3wUZhRRcHeKgr2VbLl9/2YQ/T0OzOJ7kPjiE2xHrbuxSRbGTe1J6Mu6caulYVs/SOP3z7ZCdAid2oqKu1BRpXSAawdGd6Wbyev0sV9Z58ckS27RFvwBQR6KUQ1k+gIhIQbGX+9MsvU6/ZTur+GkuxqirLslORUk7lJmdwUGmFk7DU9Selz9JFr/N4AlcVOKgqdVBQ4qCh01o2whYQbGX1Fd/qMTjisr8j4buFc+fehbFiQw9pfssjZXs6oS7rS+/QEPE4/GZtKyNhYQu6OcmS/wBJmUMwA0sJY+eM+/vff9Yydmt5gpKol1FS42b2miMoiJ1XFLiqLnDjt3gMHSBAabkRv1CIFDfAlTdAYv/Z/CXatLGDbH3nYYsykD4sjfUQnwmJaPhpaklPN/Pe3EZUYwqRb+x71aG7XwTF07h3JqlkZdBscS0h4274VyNlexqrZmfQYFkffMxsPwhAZH8L59w7gx+kbmP3aRi5+aHCjI/iVxU52Li9g58pCHJUedAYNU+7sT3Kv1k+gWb8gmxX/20ffMxIZfWX3Vom8wswqZs/YiClUT9rAGNbPz8bj8nPGVT1aLS6cdi/GEF2L068qcTH//a1ExIdw1nW9GhVBCd3DueThwWRtKWPlj/v49YPtdZ+ZbQYi4y30GN6JyPgQIjpZiIgPQW/U4q7x4Xb48Dj8uB2+BovRrKPr4Na5PKt1s/bHV7spyrTTKS2MHcuV+j9oYme6Dmp6RL3niPiguUIGIeFGRl3S8qAUPm+AHcvy2fBrDjXlHqISQ5lwc29S+0XXCd7axVXtxVmlbIsYwcCzO5PQPbxV3/VYYgrRk9ovuu5NWCAgo5GkVnUOjGYd/ccl0W9sIgV7K8ndWUGfMzpOWF4VlfpkVGVg0VmIsyj+g+dtLUQjwdm9WudPuKOSGqUMAsh+S4cVw1JzM3CPFaeddppYu3Ztu6R9ODwuPwV7K1n+v31UFDjoOSqe0Zd1w2hpualBRaGDHcsLKM9XXsfay9xQW8QS2KJMRHQKIbV/NL1GxqPVt1yUVBY5WfLFTvJ2VWKLNlFd7kHIAmukibTBMXQdFEunLra6h4ar2sv897eRt6uCvmcmMvry7s2+fvW6/WxYkMPGX3Pw+2TMNgPhsWbCYy2Ex1kIj7UQFmsmLMbcImfvXrefjA0l7FpVyP5dFSCgU5qN9BHxdBsSWycCAwGZmnIP1WUu7GVuqoNL9rYydAYNlz1yWpsJ18piJ189tZouA6OZdEvfNrkmKL6Pv3l2DaHhRi595LRm3y7s31nO7Nc3EZNs5YL7BmIw6fC6/exbX8KO5fkU7K1CkpRRw+5D45TRviInk27p22LftEIWLP9hHxt/zSEqMZSyvBoS0yOYfFvfFpnQFGZUMftVRQhf9KDi/WDljxmsn59N99NiGX9j7xYJ24BfZu3cLNbPzSYs1syYK3s0K+p9ngDf/2ctNRUeLn/stBZ1omRZsH9HOXqjloj4kONuJuR1+/n40WWk9Itm0ITOfP+fdXTqGsYF9w5oUUdOCMEfX+1m6+95jL68O/3GJTXZ4fA4fWxZksfmxbm4qn3Edw1j8OQUUvpGtYtPbRUVldZz64JbqfZW89V5XwEwYfrvRIUa+Oq2kU2fWFMMRVshJBZC48ASBZqO5xeh2O5m2LOLmDJ6O0vLPmHN1DWYdG0bNbElSJK0TghxWqOfqWL4UAI+mTVzMlm/IAeLVc/Ya3o2a69blGln/fxsMjaVoNFIRNSOQnU6sA6PbZmAbAohBDtXFLJrZQFxaWF0HRRDTOfDvzaUAzIrfsxg4685dEqzMfm2fo2KSlkW7FxewKpZGTjtXrqfFsuIi7pii26716Y1FW52ry5i16pCyvMdaHQS0UlWnFUeHJUe6ldFSYKQCCPhsRbGXNGjzaPHrZmTyerZmVxw78A2cZzv9wX44cX1VBa7uPyx01psC5yxsYR572whoUcEtmgTe9cW4/MEFHvVUfH0HBFf93u5HT5+fn0TxdnVjL++V7OTCAMBmcWf7mTXykL6jU1izBXd2bWqkMWf78QaYeLcu/o3GUa1MKOKWa9uxGw1cPGDgwiNONB4rZ+fzYof9pHSN4pJt/VtcvJaUZad3z7ZQXm+g66DYyjJrcFe4qLroBhOv7x7o6FkhRAseH8b+9YXc97dA+jcBm9pjhdLv1HErCXMAAIuf2zoIaFsm0KWBfPf3UrGxhIA9EYtBrNOWUxajMFtjVYic3MpPneAzn2iGDI5pUON8KqoqLSM8d+OZ3in4Tw75lkySmo466XfefL83tx4euOhmQn4YfU7sPhZ8NYc2C9pISQGrHGKOA6NBVsSdD0Lkk4DTRuZfwoBVfuhYBMUbARXBQy5ATr1O8zhgj5Pzue0frvY4HyfRZcvItZy/OeeqGL4CCnOtrPoY+Uh3nNEJ06/vHuDkSYhBLnby1m/IJu8XZUYLTr6jU2i39ikVj38jgd71hbx26c7MRi1TLq1b4OHZu72cpZ9v4eyPAed0sI4/fJux9TbghCC0twadq0spHR/NaERJqxRJmzRJqxRZmxRJkIijK16ld9aAj6ZL59eBQKu+sewQ2b/t5bFn+1k+5/5TLmzH10GtO71+o7l+fz2yU50Ri3dh8TSc1Q88Yexsfa6/fzy1mbydldy5lU96Htm474+fd4A89/bSvaWMoad34XTpqTWXa9gXxVz395MwC+YdEufRoVmrRC2WA1cdJAQrmXrH3n8/uUu4ruGce5dAw6xR/Z7A6yencnGhTlYwoyMnapMAvX7Amz8NZd1c7MAGHJOKgMnJDf4DWrF9siLuzawEz4RqCxy8vmTK9HoJC55aAhxXVpvs+/3Bdi5ohBnlQevK4DX7cfr8uNx+fG6A3hdfnxuP/Hdwxk8KaVd/N6qqKgcPQ6fgxFfjOC+wfdxS79beGvJPl6Yt5Plj55FQngjg1E5K2HOQ8qIcLcJMPIucFcpo8Q1RVBTeGC7uggcxSBkRST3mATpUyBtLBhaOMAkBFRkHRC+BZuUxVmmfC5pQWsAv0u59hkPQ+LgQy5zzoylhNnKuGikm3PTzsVqOP5tliqGj4KAT3m9u25eNmarnrFTe5LSJ5J9G0pYPz+b0twaQsIMDDi7M33GJHRoF2hleTXMfXsL1WVuTr+8G4npESz/fh8528qwRZsYeXE3ug6OOWVer+buKGfWjI0MPa8Lw847TA+8ETwuPzXlbqrL3dRUeCjNrWbb0nyGTE5hxEVdjygvZfk1WCNNLao/fl+A+e9uJWtLWaNi0e3wMeeNzRRlVnHGX9IVH7gHYS9z8cubWyjPr+H0yxqGdi3Yp5hGWMIMXPTA4CYn+O1ZU8TCj7YTlRTK+fcMwGxVOoH5eyr57dMdVBW76D06gVGXdjtELFeXu1n23R72rS/BFmNmzBXdSe0XTfa2Mn5+fRPdhsQy8eY+J2R93LgwB1u0ucOHWlZRUWlftpZu5S9z/sIrY19hfMp4LnxjGUIIZt09uuGBjjJY+A/Y8BnYEmHy89DrfOU1alO4KmHvQtg1F/b8Cp4q0JkUQZw+RRHIkhYqc6AyO7iuv52rCF0AjR5ie0H8AGVJGASxvSHghVXvwMo3wV0J3c6GMx6BzsPrsvHXz9exo6CaxdPGtmHptQ5VDLcBJTnVLPp4O2V5DsxWPa5qH+FxFgZN7Ez6sE6tsv1tTzxOHwtn7iBrszJZ0GDWcdqUVPqPTTphvkNbsuD9rXViTKvXoNNr0OqC69pFp8Fd41PEb7n7EK8EGo1E2qAYJtzc57jNVg8EZBZ9tJ09a4sZPDmFERcq3h1qKtzMfm0TlcVOJt7Uh66DD/8qyuv2s/Cj7WRuKqX36ATOuKoHxVl2Zr+2qUVCuJasLaXMe3crtigT59zRjy1L8tiyZD+2aBNjr+nZbMSs3O3lLP1mNxWFTjr3iaIos4rQCBOXPjLkmHp1UVFRUWlvZu2bxd///Ds/XfQTFhIY8dwiHp6Uzl3jghNoZRk2fAoLnwRPNYz4K5z5NzAegWehgA+ylyvCeNccRew2hjkSwjsfWKK6QcJARfjqmngmuO2w5n1Y8boyctzlDEUUp47mP/OVsMw7n56M7hi+9W0KVQy3EQG/zLp52RRn2el9egJdBkSfkFF4hCzYsDAHd7WPwZNSMIWeHL6IjwRXtZc1c7Jw1XgJ+GQCPhm/Tybgl/F7g2tfAFOIHmukidBIE9YIE6GRRqyRJqyRJsw2Q7u4bJJlwe9f7GL7n/n0OzORvmOTmP3aRjxOP1Pu7N+iCH1CFqyalcG6ednEdbFRnu8gJNzIRQ8MatWExfw9lcx5Y5PSUZCg/7gkRlzYtcViNuCX2fzbftbMyUSjk7jisaFtaq+uoqKi0hGZsX4GM7fOZPU1q/lyVR7/+GkbCx88g26xVijcCj8/APtXQ+eRcO50iOvdNgkLAcXbYe8iReDWF7/GozRh8Dpg7Uew/FXFXKPzKGb1eIZ7fy5kybSxpEa37RyglqKKYRWVkxQhBMu/38vGhbloNBLGEB3n3zOQmM6ta8x2rSpk8ac7sUaZWi2EaynJqWbdvCwGjO9MfNcjszl3VXsJ+EWLRqRVVFRUTnTu++0+Mu2ZzLpoFlPfX0lhlZtFD42FmhJ4bTBo9TDxGRjwl+ZNIjoaPhes/xTmPUp+vzsZtXoUH904tN2i6jUlhjuugauKikqzSJLEqEu7YQrVk7GxlAk39T6iqHbpwzsR3y0Mk0V/xOGAYzpbmXxb47OJW0qtzbGKiorKsWJn+U7mZc7jhj43EG4Kb9e8ZNozSQtLo8LhZWVGObefoUSh4/cXlBHWv66EmCMLI97u6M0w/DbY+h0xxcuAUWSVOiC9vTN2KKeekaiKykmGJEkMmZzK5Y+23KVbY9iizEcshFVUVFROBLaUbOGmeTfxwdYPuHTWpazIX9FuefHJPnLtuXQJ68KincUEZMGkPp2gdC+s+0hxV3aiCuH6dB2PrnAjSUanIoY7IKoYVlFRUVFRUTnp2VSyidt+vY0wYxivn/U6oYZQbvv1Nv6z5j94Ap7jnp9cey5+4SctLI352wqJDzPRPykMFv1T8fgw9tHjnqdjQtezkBCcF7qbzLLDh4lvT1QxrKKioqKicpJT5aniy51fMi9zHgE50PwJ7YTT52RlwUqcvrYVTRuLN3L7r7cTaYrko8kfcWbymXx13ldclX4Vn27/lL/M+Qu7K3a3aZrNkVmVCUCCpTN/7C5hUp9OSLmrYcdsOP0+JWjGyUDiYDCFc6Z2c4cdGVbfiaqoqKi0EJ/s45td3/DFji+4c+CdnJd2XntnSaUNyKzKJNoc3S6BAI41mVWZfL7jc2btm4Ur6C821ZbK7QNu55zUc9C2VVSyo0QWMnMy5vDKulcodhVj0poYlzyOKWlTOD3hdPTaI/d6tL5oPXcuvJNYSyzvT3yfuJA4AMw6M38f8XfGJI3hH8v+wV9+/gv3D7mfqb2mopGO/VhhRlUGADlFoXj8MhN7x8KC+5XocSPvOubpHzc0WkgbS989y9hf48DrlzHoOtZYrCqGVVRUVFrA8rzlvLDmBTKqMog0RfLY0seo8dZwVc+r2jtrHZZydznFzmLSI9I7ZPAUX8DHaxtfY+bWmYQZw7hjwB1c0eOKoxJeHQEhBCvyV/Dpjk/5M+9PDBoDU9KmcHXPq8mryeOtTW/x2NLHeGfTO9zW/zbO6XIOOk37yYFNJZt4YfULbCndQr/ofjw89GHWFq1lftZ85mbNJcwYxsSUiUzpMoXBcYNbJVTXFq7lr4v+Spwljg8nfUiM5dBAOGckncH3F3zPP5f/k/+s+Q9L9y/lmdHP1IUMdvqclLnKKHOXHVi7y4gwRjAodhDdI7ofkXjOqMogzhLH7zvtRFj0DHcvV9yonT+j5RHiThS6jce6/Ue6kkd+pavd3KsdDtW1moqKikoTZNuzeXHNiyzZv4RkazKPDH2EkQkjmfb7NJbkLuHeQfdyS79bOqTYaw9KnCUsylnEr9m/srZoLbKQ6RXZixv63MDE1IntKrrqs69yH48ufZSd5Tu5qNtFFDgKWFWwis7Wztw/5H7O7nz2Uf+mhY5CNpVsYlPJJraXbSfSFEl6RDo9I3uSHplOnCWuTeuNy+9i9r7ZfL7jczKqMog2R3Nl+pVc3uNyoswHwq7LQua3nN94a9Nb7K7YTaottV1EcZGjiFfWv8LPGT8TY47h/iH3c17aeXXC0if7WJG/gjkZc1icuxiX30WcJY4pXaYwJmkMfaP7YtYd3h/56oLV3P3b3cSHxPPBpA+INkc3mR8hBN/u/pb/rvkveo0em9FGubu8bkT9cFj1VgbGDmRw3GAGxw6mb3RfDNrmPeNc9fNVhOqtrFpxGVN6R/NC4a2KK7U7loG2Y9wnbUbVfni5D97xT2MYc2+7ZEH1M6xyyuCTfeyp2MPW0q1sLd3KltIt6DV6bu1/a5s83FROHWq8Nby7+V0+3fEpRq2R2/vfztReU+secj7Zxz+W/YOfM37mxj438sCQB07Z+lVQU8DCnIX8mv0rG4s3IhB0CevChJQJRJuj+WLHF2TZs0gISeDa3tdySfdLsOiP3PPJ0SCE4MudXzJ93XQsOgv/GvUvxnUehxCCP/P+ZPq66eyt3MvAmIFMGzqNATEDWnRdb8DLjvIdbCreVCeAi5xFABi1RtIj0qnwVJBbnVt3TpgxjPSIdHpE9CA9Mp3BsYPpbOvc6u+Ubc/mm13f8OPeH7F77fSO6s01va5hcurkJke5ZSGzOGcxb256k90Vu0mxpXBd7+sYET+CZGvyMavPbr+bmdtm8uHWDwnIAa7vcz239LulyTrh9DlZnLuYXzJ/YXnecvzCj06jo3dUb4bEDmFQ7CAGxw0mzKj4OF9ZsJJ7Ft1DkjWJ9ya+16wQrk9mVSZvbXoLCYkocxRRpqhD1pHmSIocRWwo3sC6onVsKN5QZ/Zg0BjoG92X/jH9SbYm09nWmWRrMp0snerMUoQQjPhiBEOjJ/Hz4uHMG7mTnhuegr98DemTj6J0OzCvD4OwRLj2h3ZJXhXDKictBTUFrCteVyd+d5bvrJsVHG4Mp290X/Jq8sisyqRPVB/uG3wfIxNGHrf8+WQfW0q2kFOdw7BOw0gITThuaZ+M+AI+Mu2ZhOhDCDeGY9FZWv3A9gV8eGUvARFAlmVlLZS1EIKACLCmcA0z1s+gzF3GRd0u4r7B9zX6MJWFzHOrnuOrXV9xafdLeWLEEx3GBvNoqfHWkFmVid1rx+V34fK7cAfcuHzBdXDfpuJNbC3bCkCPiB5MSJnAhJQJdA3vWnctWcgsyV3CzG0z2VC8AZvBxpXpV3J1r6tbJVKOllJXKY8ve5xlecsYnTiap09/+pD0/bKfn/b+xOsbX6fUVcrElIncP/h+km3JADh8DrKqssi0Z5JZpSxZ9iyyqrLwyT4AEkISGBAzgAGxAxgQM4D0iPQ6UVrjrWFP5R52le9iV8UudpXvYk/FHtwBNwDpEelKGaZOIC0s7bDfxS/7WZK7hK93fc3KgpXoJB3jU8YztddUBsYMbNV9USuK39r0FrsqdgEQY46pG+kcEjekSVMAp89JoaOQAkcBBY4CnD4nAREgIAL4ZB8BWdn2y378sp/fcn4j35HPhJQJPDjkQZKsSS3OK4Dda2dj8UbWFa1jfdF6tpZtxS/7AegW3o2+0X2ZmzmXzrbOvD/xfSJNTYeEbyvK3eVsLN7I+qL1bCjewI7yHXV1AkCn0ZEUmkSSNYk4Sxzf7/mefqYb2bMtldWhDyPF9oLrZ594wTVayrzHYO2H8LcsxQfxcUYVwycI1d5qtpdtZ1vZNio9lSSGJJJoTSQhNIHE0ESM2sajclV7q9lXuY89lXvYW7GXvZV76yaE9IrqRa/IXvSK6kWPiB5NvlI6UXD6nPya/Ss/7v2RtUVKHTLrzPSK7EW/6H70je5L3+i+JIYmIkkSftnP7H2zeWvTWxQ4ChjeaTj3Dr6X/jH92zxvQghyqnNYnr+c5fnLWVO4BofvwOzZ9Ih0xiaPZVzyOHpF9WrWzswv+8mqymJ3xW7MOnODkY9TBbffzbL8ZSzMXsjvub9T7auu+0yn0RFmCCPcGE6YMYwwYxg2gw2f7MPhc1Djq8Hpc1Ljq1H+99bglb0tSndAzAAeHfYofaP7NnmcEILXNrzGe1veY3LqZJ4d/WyTo3GegIf1RespchaRGJpIsjWZWEtsq2wOvQEvpa5S5fsbww7bNrT0WplVmXXtR+0635Hf5HlaSYtZZybVlsrZKWczIWVCi0Y1NxZv5ONtH7MoZxE6jY7z0s5jRPwIukd0J9WWeszsdX/L+Y1/Lv8nTr+TaadN48r0K5sUjE6fk4+3fcxH2z7CJ/voH92f/TX7KXYW1x2jlbQkW5NJtaXSJbwL/aP7MyBmQKN2qU0RkANkV2ezLG8Zv2b/yobiDYAi7Go7F93CuyFJEkWOIr7f8z3f7/6eYlcx8SHxXNbjMi7pfslRdyyEEOyr3Mf64vWsLVpbV08BrAYrg2IH0TeqL3avnQJHAfk1+RQ4Cqj0VDZ7bZ1Gh16jRytpSbWl8uBpDzK009Cjym8tbr+bLaVb2FC8gfVF69lYspGuYV15ffzrRJiaD0t/rAjIAYqdxeRW55JbnUtOdQ651bnsr95PTnUOLr8LXeEDPGNczTkVn8OtixXPCycr+36DP16Ci96EiJTjnrwqhoNUuiuZ9sc0QvWhymIIJUQfglVvJcQQXOtDCNGHYNKZMOvMmHVmTFoTZr0Zg8bQZq+NnD4nO8t3sq1sG1tLt7K9bDtZ9qy6z3UaXV1Pt5YYcwyJoYpAjjBGkG3PZk/lHgodhXXHWHQWukV0I9WWSqmrlB1lO6jwVACgkTSkhaXRO6o3vSJ7kWxNxqgzKt9PZ8aoNdZ9b6PWiE6jw+l34vQpi8PnwOF34PA56va5A248AQ9uv7KuW/zKWqvREqoPlrNBKd9QfWhdeYcZw0i2Jjcr8GQhs65oHT/t/YkF2Qtw+V2k2FK4sOuFnJF0Bl3DuzZr6+YNePlm1ze8t+U9yt3lnJV8FvcMuoduEd1a+esdwOlzUuYuY2f5TpbnL2dF/gryavIASAxNZFTCKEYljKKzrTMr8lewOHcxG4o3IAuZWHMsZyafydjksQyPH47b72Z3xe4GI0b7Kvc1EG8SEj0jezK001CGdhrKkLghx20GfG1bcTxMAZw+J3/k/cHC7IX8sf8PXH4XNoONccnjGJEwAl/AR6WnkipPVd26yqts2z12DFpDXb0L1Ydi0Vvq6l2ITrm/JSS0Gi0aSYNWariONkczKmFUq77rzK0zeWndS4xOHM30sdPrOp5CCHZX7GZlwUqW5y9nXdG6Q3yaGjQGEq2JJIUmkWxNrhPIlZ5Kip3FlLhKKHIWUeIsocRZUndP12LWmbEZbHUdgjCDstZr9PhkH96AF0/Ag1f24gv46rarvdXk2HMICMXVlk7SkRqWSvfw7nSP6E7X8K5EmiLr2oXattCsNaPT6I6qLmTbs/lk2yf8tO+nuvKon363iG51a4PGQIWngnJ3ORXuCircwW2Psu32uzFqjRh1xgNtmdaESWfCqDWSUZXBrH2z6BXZi+fHPE9a+OFHXA+mxFlSZ1ubYkuhS1gXZbF1IdmafEzEe5GjqM7uel3ROgSCVFsqydZklucvRxYypyeezpXpVzImccwxexshhCDfkc/6ovWsK1rHuqJ1ZNmzMOvMJIQkEB8aX7eODzmwhBpC0UpaRfwG77HjiSzkRtP0B2RWZpQze1M+O4uqGZQczvAukQzrEklU6PENAS+EYFVWEfe98yvLQqah63UeXPbBcc3DqYYqhoMUO4t5aMlD1PhqlMWrjBYJWlYGGkmDSas0rrUPTkmSDjxI6z1YhRDIyAghEAhkcWA7IJTeoixkAGItsfSN6kuf6D70jepL76je2Iw2Spwl5NXkkVeTx/6a/eTX5Cv/V+dR4amgs7Uz3SK60S38wEMjPiS+QSMghKDIWcT2su3sKN/BjjJlKXYVH+5rHhEaSaM8jIKLSWfCoDUQkAN1o3L1R0gPxmqw0tnauU4I1NpZ2Qw2FuYs5Ke9P5FXk0eIPoTJqZO5qNtFDIgZcEQPY4fPwafbP+XjbR/j8DmYmDqRhJAENJLmkN+xdl+Nt4ZydzllrjJl7S47ZGJFiD6E4Z2GMyphFCMTRh7W5q7SXcnSvKUszl3Mn3l/KqMDB3V+Ik2Rih1hRDrpkYpNYbW3mjVFa1hTuIZNxZvwyl40koaekT0Z1mkYPSJ64Al46sr64FFRl99FqD60bvT0YOFkM9hwB9yK4HKVKCLMWUKxq7hunxCCbuHdSI9U8tUzsic9InoQoj90ZnBADpBXk0dGVQaZVZlkVGWQVZWFLGSMOmOdYKntkNUKl8yqTJbnL8cT8BBpimR85/GcnXI2QzsNRa9p31n+/oBMod1NcbWHbrGh2EwN8/Pd7u94asVTDIodxKU9LmVl/kpWFKyg1FUKQFpYWl396GztTL4jn/3V++tGi2pHkJz+Az5Wa+0WY8wxxFniiLHEEGuJJcYcQ0AEsHvtDTsFnqq6fV7Zi0FjwKANLsFtvUaPUWvEoreQFpZG94judAvvdkxHZg+HN+Aly57Fnoo97K3cWzc6XdupPBwaSUO4MZwIYwRmnRmPrHTC3X53XSe9VmRrJA039rmRuwbedcj3c/sC7C6qJsJiICnC3OHsvktdpfyW8xsLsheQY89hcpfJXN7jcpKtyS063+n1k1XqJKvMQWapA6NOQ/c4K91iQ0kIM7X6+3oCnjYdGKrF7Quwq7Ca7QV28ipcdAozkRoVQkqUhfgwEzrtkQlqWRaszirn5835zN1SSJnDS4hBS694G9vy7bh8SkcwPc7KiLRIhqdFMfw4ieN/z9lOj1WPcZl+OdLdayAi9ZineSpz1GJYkqTJwAxAC7wvhHj+oM+l4OdTACdwgxBifVPX7ChmErKQ6wRDjVcRyU6/E7dfsYmrbVjrbOaCI6C1doa1y8H2h5IkoZE0SEgNtmuFakJoAn2i+tAnqk+rX6m1BCFEk41VqauUQkfhgQeH34MrEPy+wX0+2YdFZ6kbLbfoLFj0Df836UyYtKYWjRI1Vtbl7vI6AVC75Nfk141UgSIGhscP58JuFzK+8/hGTT28fpkyh4eyGi8lNR5Kqz2UObyUVnsQQLfYULrHhtItNpRwizIBqtJdyQdbP+CHvT/g8Xsa2I4ejFbSEmmKrFuizFENtlNsKfSN7tuoWPP4A7i9MlaTDo2mYRl5Ah7WFK5hZf5KIs2RdeI3yhTVZHl6Ah42l2xmTeEaVheuZnPJ5ga2aUCD3672bYfT56wbRW2qcwJg0poU0WWJIdasrGUhK6PXFbuo8lTVHZtsTSY9Ip1kazL5jnwyqjLIrspuMKodbY6mS1gXDBoDLr+rTqzU3lO19a6+AB4cO7hNRr1kWeANyHj8Mh5/AH9AEJCDi6i3HVwcXj95FS721y1O9le4KLS7CchKm6mRoE9CGMO7KA/QYamRhFn0zMucx2NLH8Mv/EQYIxgRP4KRCSMZmTCSTiGdms2rEIIKTwXFzmLCjeFEmaPavRNwMAFZ4PIFcHr8OLwBHB4/Do8fpzdAjceP0+vH4Qng9PoJyBBjNRJrNRJnMxFnMxIVakSrabq9cPgc7Kvcx97KvfhlP5GmSCJMEUSYIog0RmIz2podcZSFjCfgQQiBRW/BF5DZVVjN5v1VbMmrZFNuFbuLqvEHf9MIi55+SeEMSAqjf1I4/ZPCiLOZjqiM3L4AdpePSpePSqcPu8uHRgMmnRajXotJr8Gk1yqLTtk267WHtBHNIcuCMoeXIrubvEoX2WUOMkudZJbWkFXqpNDuPuy5IQYtXYPtotJGWkmNshAZYiDMrD9iAdoc5Q4vOwrsbMuvYnu+ne0FdvaVOOruLUmC+tJEp5FIjrTQOdJCSpSyjgwxYDHoCDFq69YhBh0Wg/L/jkI7szfl88uWAorsHkx6DeN7xXF+/3jGdrFg8lXhNUSwpcTHyoxyVmaUsTarok4cd40JwWLQ4QvI+AIyflngD4i6bZ9fJsSoIy7MRLzNRKew4GI7sI4MNaCVJLQaCU3dWnm7JoTgxhdm8qH7QTQj/wqT/n1MylrlAEclhiVJ0gK7gQnAfmAN8BchxPZ6x0wB7kERw8OBGUKI4U1dtz3EsMPjZ/amfKRgZZQgKFSVm08RriALgS+gVHy/LAe3gzdAQEYIMOg0GHUajHqtstZpMOqU7Vpn0rIQCBFcA4gD+1w+5QFS4/FT7fbXbdcuAVlg1muxGLSY625w5Sa3GLTotRqqXD4qnV7KHV7sDhcuRxVepx2f007AU4Ok0aM1WdAbQzCYQzCaQzGbQ7BaDNhMekKMOnQaCb1Wg16nQV9v26BVbt6ALJRGQJaD5RFcAsr/Hn8At0/G7Qvg9gdweWXc/gAen7Jfo5GwBL+HxXgg/3XfS6+tK0tDcNFqBNX+Yso9+VT5ykmxDED4wymr8VJa46G0pp7oDW7bXR4M+DHiw4AfAz4Mkg+rThmNr/AZcGDCgZlwawjdYkLpHqcI5NToEHSaA42+LGQEcoPOjoQBn1/g8ct4/QdEVe22w+unyqk89CpdXqodLtwuB16XA/xODPjxSiYsIVZCrTbCrFZirCZirEaiQw1EhRrx+GWqXD6qXMqD0+70UuNy4XY6cLscIIHRFILZEkqIxYzNpMNm1mMz6TEbA3gow6yzYNFZMGot6DVaNJraOq7U8/r4A36cgWocPjsOfzVOvx2j1kSkKYYoczQhulD0Wg1ajYROK6HTSGg1muAaKjwlZFXvIcO+h32Vu9lduZv8mjw6hcTTOTSVxNBU4s2diTF1JsqQhJYQXF7lQaOtvV7wAaHTKtfWShIef4Diag8ltYvdTUV1DY7qShw1djwuB7KkQ9bokCUtQtIhNDpkSYfQ6JElHX5ZJuD34wsE8PkDyHIADSK4yGjrloCylhr+ryOABQ8WyUOCRSYhRNDJLBNjDBBl8BGildnvNrC50sjaMj0FfhtlhBEXl8iwrtGkxbswGnyEaVOpcQewu33YXf7gWvmN/bIg1Kgj1KTDatQRatRhNekINekJNSr3idsXwOkN4PD6g4JTEZgOryJENRqprl2obS/qtxk6jdTwng2KfX+9h3vtvVt3H/sO3MMuXwCX90AenB5l7fbJSMgY8KOvWwIYpAP/G4L3ogYZDwY86JVF6PFJekJDQgm32Yi2WQgz67GZ9VhNShnYTHqsJj02sw6rSY+E0ma6fAHc3kDdtssbwO1T7kNZEHwLp7Sz9dtbp9fPvvwSCgrzCQlUEy7VEG9w0yciQDernySzB0dAxz6HmW1VBrZV6SmWbZQLK0ZrFP2SI0mKMNeJIW9AeS74/HLd/x7fgfu30uXF66tfNn50BBBo8KMhgBZfsLb5g7USlA5WuMVAuEVPhMVAhEVPeL21UaehuNpDQZWbwioXBVVuSu0O9AE3JjyYJS8huIkzB+hihRSrIDEkQCdTgBhTgEidDz8air1G8twGchw69lXr2FUhkenQYRdmnJjwowUkwsx6IkOU9JW1IpL9tZ1Ln/Ldvf5Ag7bRF1C2vf7g574AcsCPP+AnEJDRBNyESQ7CcNAl1EvvcJmuVj+dLV46GbxYtR6csp4Kv4FSr55Cj558p5bcGg1Z1RIlXgMedAfKUWjxB8vSjw4/Gmw46aorYUK8i1GR1XTVlaCryoGKTHCUHGgI9SEQEg2hsciWaMoIJ9ttYY/DhE9o0QTbJY1GQqPRHFhLGhwBDSUuDYVuDQUOiVKvDhdG3MKAEyM+dIrOQEYCNMjKry0J9JLgWe27jDJmYHhwM1iOzyS/U5mjFcMjgX8KISYF/38MQAjxXL1j3gGWCCG+DP6/CxgrhCg43HXbQwwX5GVT+c65zR5X+zDUE0Av+YPbSmOvCzZdPnTBRaushQ4vuuANqUVwQHlIB5lh1N4UOgLKItWmFUCHjE4KICEa3OA+ocWHBr+ofVxLWPAQKrmxSG6M+Ggpbgw4hQEvegJokIWGAA0XObjWItfdwIdsS/VFhYzuIEGhQTEDqZUhATQEhHRIGn60BERwHXxQ1D4wlDwEMNT9Bn6MGj9GKVD3INYJ5bHSUvySDidmamQjNcKIE2OD71f7fWq3NdKB308I5dcUSMFF2dZJMhbJixkvxmAz3RQBNMHfwYhLGHBhREcAk+TFRPA6kg9tsAwP+Q5o8KLHJQy4MeAWBrzBGDq1Na+23h1c/5pCICHXPbAP/EaB4G8kB793Y+cpyGgRyiIFgo8rucFaBB8NyrU09baVRVtPiIag1G/dYcqh3ZC00MgbhAAayoSNEhGGD10DMaSXlHpcKxg1CAJogu2HFi9a/HX3vFL364v3ujZDEmglGV3QwMuHRrl/xKH3sEyw0x/8hQ7UWOqVOEiSIsc0UnCp3SeBDjko5vzohB+t8KMVvrr7+2ipLYNaoexFV7f2oqwlqBPXRrwYJEVsG4Oiu/59cmhrq3wXfVP3pEYPcuNtqIyGSsmKQzYFy0mglWo7VuKAwKlr05Uyak35yGgQkhZZ0iolLSl1wSe0eIUGr9DiExoEkiJ4NcE2QnjQ4W8+gSNARktAqhXsurrnkF8og0YHngP1nw0HykISIthytLKeaA2gt4DfrSxtgaQBWxJEpiqmCBGpYIkGVznUlCji2FEMjlKoKQZnKYjj0+Z4z/oXhjPuPy5pneo0JYZb4tU5Ecit9/9+lNHf5o5JBBqIYUmSbgNuA+jcufW+FI+WGJuF8O79gv8dGK2tt1LMCzRa0OrRaA1IOj2SVo9Gp2xrtQblxvJ70fi96H0eAn4vwu9FDq5FINioSnVNcfDvgIjQarVodQZ0ej1avQGNVg8andIoa3TKULXsV5aAD+QAQvYS8PsJ+LwIIaMzhaI1WZGMoWCwKhFrjKFgCFW25QD4nOBzBRdl2+RzYvS5kH1uhOxHDii9diEHEAE/shxAyH6ELCNpNEgaLZJGhyRpkLRaZa3RodFq0Wh1aDRaJK1OEQgaHcpwpFYJwQhohazkJbgWsh+/PzhK4PcjBw4sIuBX0g6ukf1KORmMGAxGDEYTWp1RcUyuNRxY64yNrI2gMyjv27yO4FKNzuvA5qnB6q3B7bDjcVYrsiCYfyEp+ReSBqHRgqRFkkBbb6kVDcq2QKPRgcGiNOI6k7LWm4OLRcln7W/gdaD1OQnxOrF4HXjdNXhdDjRaHTqjBb0pBI3eDHoT6GrXwVe1fjf4c5MstAAAEMVJREFU3Oj8LnQ+N2afC7/Hic8b/D2RUAbFpLp6XSeJG+n4HmyJIYSAQACE8jtJcgAhAiAHgtuycucER9wEKPuC1xYC0OiU+qJVFjQ6pZ5o9Wi0tT42ZZDlhmuhrCWNDp05FKPFhsFiRWMIVcq2tl7rTAfdG7Vr34H/kZT7VKNR1ocswfqpCdbZ+v9Lyv2P3qKkV/tb1m1blOM81cpDtKZIeYDWFKOtKSKquhhD2X5EwI9WZ0RrMKLXG9DpjWh0hmC9NRy4x4N5D/h9+H1e/D4fAb+XQMCHVqNFq9Wh1enQ6vRotVqlrtXeYwiQZZCV+zcQ8CuL30cgoNzDGo1GeRNWt2iQNAfMt5RRruDrsdo2qnZbkpQ2Sas7kG9Nve26/fXvyfr35YH2UhE3nkPWWr8Lrd+DKeBF+D34ve66JeDzIPvcIElIOiOSzoSkN6LVG9HqTWj0JnQGIxqtXjEralDH629LYAoDc0Tji96s/BbOcuU3dZYqwshRisZZSqSjlEhvjVLmdXVIOrReafUNy6F+WWmCv1fAf6D+ykrbrgnWA63sR1+/XtfbDvi9BGQZvSkEqbYe1rYvhuC2LlhPDSEH7pcG945Z6cR5qsFdCW47uKvAYz+w7XNAwI9G9qGR/egDtfk88Cyq+/4a7YH7SdLU+1/T8LP6+yWNcg+bw8EUfuhabz7QMAV84K1R2m5PTV0bjqcmeL83krfa/w0hENFFEb5hyUpdbClyAFyVwbakViQEW9P664C33vPVoay9jgP7Ap4D37m2Tapfb8wRGHqd3/J8qRwzWiKGGzNgOvip2pJjEEK8C7wLyshwC9JuU3TWGHTXftk21+L4x7KW2jBdCcUAvD2QAH1waU8kwBxc2jMPxuBypOd3hLI8JTHZlCWqa4PdWiD8CC6nDS5HUxfao11qS9q1Pmv1YI1Tlg5Ibf04ejTKK/kT4bW8Vn+gw3I80WghJKr541ROGlpiHb8fqD9tNQk42AFlS45RUVFRUVFRUVFR6VC0RAyvAbpLktRFkiQDcBUw66BjZgHXSQojgKqm7IVVVFRUVFRUVFRUOgLNvlETQvglSbobmI/yluZDIcQ2SZLuCH7+NvALiieJvSiu1W48dllWUVFRUVFRUVFRaRtaZF4mhPgFRfDW3/d2vW0B3NW2WVNRUVFRUVFRUVE5thzfGIkqKioqKioqKioqHQhVDKuoqKioqKioqJyyqGJYRUVFRUVFRUXllEUVwyoqKioqKioqKqcsqhhWUVFRUVFRUVE5ZVHFsIqKioqKioqKyimLKoZVVFRUVFRUVFROWSTFRXA7JCxJJUB2uyTePNFAaXtn4iRBLcu2Qy3LtkMty7ZDLcu2Qy3LtkMty7bjZCnLFCFETGMftJsY7shIkrRWCHFae+fjZEAty7ZDLcu2Qy3LtkMty7ZDLcu2Qy3LtuNUKEvVTEJFRUVFRUVFReWURRXDKioqKioqKioqpyyqGG6cd9s7AycRalm2HWpZth1qWbYdalm2HWpZth1qWbYdJ31ZqjbDKioqKioqKioqpyzqyLCKioqKioqKisopiyqGVVRUVFRUVFRUTllUMayioqKionKckCRJau88nCyoZdl2nOpleUqL4VP9x29L1LJsO9SybDvUsmw71LJsM/TtnYGTCLUs245TuixPOTEsSVIfSZLGAgh19uBRoZZl26GWZduhlmXboZZl2yFJ0khJkr4FXpQkqbckSdr2ztOJilqWbYdalgqnjDcJSZI0wOvAWUAOsAr4SQixVpIkjRBCbtcMnkCoZdl2qGXZdqhl2XaoZdm2SJIUC8xFKdNkIBFYK4R4T5IkSe1otBy1LNsOtSwPcCqNDEcAVqAXMBUoAx6SJClUbdhbjVqWbUcYalm2FWq9bDvCgVDUsmwrBgC7hRAfAS8B/wMulCSphxBCqCYoraIvalm2FWq9DHJSi2FJkiZIkjQh+K8NGAlYhBAlwPdAOXBX8NhT5kc/EiRJukySpL8G/1XL8iiQJOkSSZJeDv4bhVqWR4wkSYMlSeoR/DcMGIValkeEJEldJEkyBf+NRC3LI0aSpL9IkvQvSZIuCO7aAJwmSVJXIYQDWAOsBW4H1QSlKSRJOlOSpOH1dm1CKcs0tSxbhyRJF0mS9H+SJJ0b3LURtV4CJ6kYDtq5fQX8H1ABIITIBJYB9wcPK0DpBQ2SJCnhVPrRW4MkSaGSJH0PTAMqJEnSqWV5ZATtsb4AngDuC5bVXmAFalm2iqBwmwO8AXwqSdIEIUQGsBy1LFuFJEmpkiTNBd4HPpckqXewXv4BPBg8TC3LFiAp3AE8AmQB/5Uk6RagBvgEuC94aCWwELBIkhTfDlnt8EiSZJUk6X/AD8DtkiRFAAghyoCvgXuDh1ailmWTSJIUI0nSjyj3cznwkSRJl9Xr6N4TPLSSU7QsTxoxXDtSIUlSJEojXi6EGCeEWFvvsJnA6ZIkdRFC+IEiwA2Yj3d+OzIHjfokA0VCiBFCiC+BQHD/TJSyTFPL8vDUq5dnAO8BK4UQg4AZQO1oxweo9bJZDqqX04CNQoiRwE/ATcH9H6KWZbM0UparhBDjgcXAvyRJ6o1yj49Q7/GWE+wkjASeD756vgsYC4wHfgG6SZJ0dtDUpAzFRrOqnbLb0fECvwHXAPnA5fU++x7oKUnSeLUsW0RXYJkQ4gwhxNvAQ8ADwc++RC3Lk0cMAyYAIUQ58F/ACCBJ0g2SJE2SJClFCLEY5XXVf4PHbgVSAE/7ZLnDYqq33R9IAgiaSTwpSdJoYDvKKNyLoJZlE9QKh+3ARCHEq5IkGYBuQK3t5SZgPfAfUMuyCUxQJ+QcgC+43wbskCSpG8obizWo9bI5astSF/x/G4AQ4nVgGHAVigBZg1ovm0SSpOuCr/Ijg7t2AInBt2gLga3ACKAE+AJ4JVhXxwMSYGiPfHdE6pVluBDCg/K2YiGwG+V1fnrw0E3AV6hleViCZTlWkiQLsA7lzQSS4i1ie3AB2IJSljNO5bI84cVw0C74V5TXUVcFd88AhkqSVABcAEwBZkuS1BX4F0pD9ZokSVuBbKBKtYFrUJb/kSTpL8Hd64ECSZI+RBnxqAT+DlwITAdiJUl6XS3LhhxUllcJIUqFEA5JkkxCCC9KAzQVQAhRATwFJKn18lAOusevCI6+/Ql0lyRpAzAZ0KIIjTOB54B4tV4eSiNl6Ud5bTpIkqQBkiQNQBFvXVDK9BnUenkIQXOIeEmSFgPXo9zLr0mSZANygViUDi8oQqMvECWE+Az4HHgUpcPxiBCi8njnvyNxmLJ8Q5KkaCGEO9hergCKgSsAhBCyEGIm8CnwGGpZAo2W5dUobyTDhBBFkiRphRABlImxYdCgLD/hVK6XQogTdkFpbFahCLNBKI3M/wU/Ox+4vt6xHwIvBLfjUCaHXNDe36GjLIcpy4cAHcos03WAPnjstcC7we1YtSybLcvP6tXL2jI8M7g/pt55MWpZNluWXwDTgp+lA/+rd+wTwOvBbfUeb74svwT+iuKB4wngZ5ROxmnBcr5fLctGy1EbXPcAPgtu64A3gY9Rghd8GGwnw4KfzwT+Xe8ahvb+Hh1haaIsXwO+P+jYi4Nl3A0IATRqWba4LP+/vXsP/WuO4zj+fJuhofiDpDD5a1oYmVo0KyL/kFshl225tGz8YfEfTTK0tRQiy61cIktD0tzviVyj2H4uI3e25ScZL3+8P99t1vD7fn+n7zln5/Wo07638+29V9/v9/c557zP5zy61WvuBc4st/fZ4j06m2XvEFlrRM5/ibK35SjgLUmPleeeAZZGxJ2SVvZeX177BHBcWfdbsv+t0/4ny2fJQfBysidzGtmzdT95iOq0ku135BZ7p40hy97nspfVRHLL/OfeeyhPZvh+qIU30P9kuYrM8j5yj+aXETFF0kdkv+vlERH+jqcxZLkEeFjStaU3eE157hU2t0N8V/LstNJSsgiYEBFPku05fwJI2hgRl5InGh5M/k6eQraYXU+2RL3aey/l3s7OGkOWC4CvI2KmpBfK4ysiYgrwFDnt3yzgI2fZf5bkCZ0jEbEIODUiTpS0tstZtqpNIiJmA2uBa8tD7wNnRcTkcn8isJrSLwj5RyAizgeuJr9Expiy3BEYAW6U9CKwjJxn9ErysN/L5X06fbgUBv5criL3wM0YXqXNN8Ys15TnN5BTgC2IiMuA28n+QmPM3/HVQG+av5Gy3kXAXLJFCpVdRl0WETPJo2N7Ap+Smf4BzIqI6bBpg2MReQRyFXAHcHREvFHWe76G0htnjFmKzPKaLdY7g2zRew44pGwAd9ogWUb2DM8BHiEHzrMkrR168Q3TmivQRcRu5GHlTb0wkj6OiGXkYbz9yR/zG4DFwGxy6+gq4EhgoaQ3ayi9cfrM8gZgjqRvIuJI4HDgPUmv1VJ8wwzwuZxbspxIfkaflvRZHbU3TZ9Z3gicXh47jtywuE3S6zWU3jgDfC7nKHsKLyd7Nuf593KziDgGmCzpvnL/VnLj4jdgvqQjyl74vcnD0gslfRYRewC7SvqqptIbp88sbwaulDRS1kPSSzWV3jgDZLmQ3AieD9wr6e16Km+guvs0+lmA/cu/i4GHyu0J5N6ho8v9/cj+rB3LckDddTdx6TPLXequt8lLH1neBexcd71NXvrI8h463N9WcZZ39z6X5EU2aq+9aQswiZyhqNdzeQ5wfbn9DjnwgNwoe6Duepu8OMvasnyw7nqbvLSqTULSF+XmMuDAiDhBeWbkOkkvl+cuAUbL6zdK+nz4lTZfn1n+sY23sKKPLH8DNtZQYmv0keWvbJ7z2rahz+/4xrLO6NALbQFJo5J+L/kBHM/m/v7ZwJSIeJw8KdF72/6Ds6xOn1m+BW5t/DetaZPYWkRcTB76m1nuTyf7iSZSDuvXWV+bOMvqOMvqOMvqOMtqlH5LkSdkz5f0aeTcrD+Q06eNyC0RY+Isq+Msx6+Vg+HeDBER8Qh59u7v5Ikzn0haXW917eIsq+Msq+Msq+Msq1P2qu1EXgxiBXki0o/kAGR9nbW1jbOsjrMcv9ZNrQabZoiYRDaFHwsskuSZIgbgLKvjLKvjLKvjLKsjSRExjezNPBC4S9LymstqJWdZHWc5fq0cDBfzyH6i45WXbbTBOcvqOMvqOMvqOMvqrCVbTJY6y3FzltVxluPQyjYJ+MfFNGycnGV1nGV1nGV1nKWZ2b9r7WDYzMzMzGy8WjW1mpmZmZlZlTwYNjMzM7PO8mDYzMzMzDrLg2Ezs5pFxB4RMa/c3rfMCWxmZkPgE+jMzGoWEZOBxyVNrbsWM7OuafM8w2Zm24vFwEER8Q7wCTBF0tSIuAA4BZhAXlZ1CXmlqXPJK8mdJOmniDgIuAXYCxgFLpT08bD/E2ZmbeQ2CTOz+l0FrJZ0GLBwq+emAmcD04HrgFFJ04DXgPPKa+4gL716BHAFcOswijYz2x54z7CZWbM9J2kDsCEi1gEry+PvA4dExG7ADODhiOits/PwyzQzaycPhs3Mmm3LS6v+tcX9v8jf8B2AX8peZTMz65PbJMzM6rcB2H2QFSWtB0Yi4gyASIdWWZyZ2fbMg2Ezs5pJ+hF4JSI+AG4a4C3OAeZGxLvAh8DJVdZnZrY989RqZmZmZtZZ3jNsZmZmZp3lwbCZmZmZdZYHw2ZmZmbWWR4Mm5mZmVlneTBsZmZmZp3lwbCZmZmZdZYHw2ZmZmbWWR4Mm5mZmVln/Q31vIoEIUI7gQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1, sharex=True, sharey=True, figsize=(12, 6))\n", + "df_percentile390[[\"heat_waves_per_time_period\"]].plot(ax=ax, label=\"percentile390\")\n", + "df_percentile490[[\"heat_waves_per_time_period\"]].plot(ax=ax)\n", + "df_percentile290[[\"heat_waves_per_time_period\"]].plot(ax=ax)\n", + "\n", + "df_mean3[[\"heat_waves_per_time_period\"]].plot(ax=ax)\n", + "df_mean4[[\"heat_waves_per_time_period\"]].plot(ax=ax)\n", + "df_mean2[[\"heat_waves_per_time_period\"]].plot(ax=ax)\n", + "\n", + "plt.legend(\n", + " (\"percentile390\", \"percentile490\", \"percentile390\", \"mean3\", \"mean4\", \"mean2\"),\n", + " loc=\"upper left\",\n", + ")\n", + "plt.title(\"Number of heatwaves using different definitions of a heatwave\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + }, + "vscode": { + "interpreter": { + "hash": "60ccb5338a3084842c00a66d8f5afe05849727d7c6630fa72612a56be257ddb9" + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/measuring-heatwaves/extract-era5-relative-humidity.ipynb b/notebooks/measuring-heatwaves/extract-era5-relative-humidity.ipynb new file mode 100644 index 0000000..c35859e --- /dev/null +++ b/notebooks/measuring-heatwaves/extract-era5-relative-humidity.ipynb @@ -0,0 +1,115 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Requirements" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import cdsapi\n", + "\n", + "# Replace UID:ApiKey with your UID and API key\n", + "# c = cdsapi.Client(key=\"UID:ApiKey\")\n", + "c = cdsapi.Client()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Extract temperature and Humidity data from ERA5\n", + "\n", + "This notebooks extracts data from the [CDSAPI](https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-indicators?tab=form) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Extract Relative Humidity Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Extracting humidity" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "years = list(range(1979, 2024))\n", + "months = ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12']\n", + "\n", + "for year in years:\n", + " for month in months:\n", + " c.retrieve(\n", + " 'sis-agrometeorological-indicators',\n", + " {\n", + " 'variable': '2m_relative_humidity',\n", + " 'year': str(year),\n", + " 'month': month,\n", + " 'day': [\n", + " '01', '02', '03',\n", + " '04', '05', '06',\n", + " '07', '08', '09',\n", + " '10', '11', '12',\n", + " '13', '14', '15',\n", + " '16', '17', '18',\n", + " '19', '20', '21',\n", + " '22', '23', '24',\n", + " '25', '26', '27',\n", + " '28', '29', '30',\n", + " '31',\n", + " ],\n", + " 'time': [\n", + " '06_00', '09_00', '12_00',\n", + " '15_00', '18_00'\n", + " ],\n", + " 'area': [\n", + " 117.17427453, 5.58100332277, 126.537423944, 18.5052273625, # Bounding box for Philippines\n", + " ],\n", + " 'format': 'zip',\n", + " },\n", + " f'../../data/remotesensing/era5/idn_cli_era5ag_rh2m_{year}{month}01.zip'\n", + " )\n", + "\n", + " print(f'idn_cli_era5ag_rh2m_{year}{month}.zip downloaded.')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "heatwaves", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/measuring-heatwaves/extract-era5.ipynb b/notebooks/measuring-heatwaves/extract-era5.ipynb new file mode 100644 index 0000000..b33fa57 --- /dev/null +++ b/notebooks/measuring-heatwaves/extract-era5.ipynb @@ -0,0 +1,127 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Requirements" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import cdsapi\n", + "\n", + "# Replace UID:ApiKey with your UID and API key\n", + "# c = cdsapi.Client(key=\"UID:ApiKey\")\n", + "c = cdsapi.Client()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Extract temperature and Humidity data from ERA5\n", + "\n", + "This notebooks extracts data from the [CDSAPI](https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-indicators?tab=form) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Extract Temperature Data" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2023-07-26 17:52:18,561 INFO Welcome to the CDS\n", + "2023-07-26 17:52:18,563 INFO Sending request to https://cds.climate.copernicus.eu/api/v2/resources/sis-agrometeorological-indicators\n", + "2023-07-26 17:52:18,709 INFO Request is queued\n", + "2023-07-26 17:52:19,934 INFO Request is running\n", + "2023-07-26 17:52:21,585 INFO Request is completed\n", + "2023-07-26 17:52:21,587 INFO Downloading https://download-0010-clone.copernicus-climate.eu/cache-compute-0010/cache/data0/dataset-sis-agrometeorological-indicators-8d536d6a-be96-4e1f-b421-ce2859179a44.tar.gz to ../../data/remotesensing/era5/idn_cli_era5ag_t2m_20230101.tar.gz (35.3M)\n", + "2023-07-26 17:52:44,884 INFO Download rate 1.5M/s \n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "idn_cli_era5ag_temp_rh_202301.zip downloaded.\n" + ] + } + ], + "source": [ + "years = list(range(1979, 2024))\n", + "months = ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12']\n", + "\n", + "for year in years:\n", + " for month in months:\n", + " c.retrieve(\n", + " 'sis-agrometeorological-indicators',\n", + " {\n", + " 'variable': '2m_temperature',\n", + " 'day':['01'],\n", + " 'statistic':['day_time_mean', 'day_time_maximum', 'night_time_minimum', 'night_time_mean', '24_hour_maximum', '24_hour_minimum', '24_hour_mean'],\n", + " 'year': str(year),\n", + " 'month': month,\n", + " 'day': [\n", + " '01', '02', '03',\n", + " '04', '05', '06',\n", + " '07', '08', '09',\n", + " '10', '11', '12',\n", + " '13', '14', '15',\n", + " '16', '17', '18',\n", + " '19', '20', '21',\n", + " '22', '23', '24',\n", + " '25', '26', '27',\n", + " '28', '29', '30',\n", + " '31',\n", + " ],\n", + " 'area': [\n", + " 117.17427453, 5.58100332277, 126.537423944, 18.5052273625, # Bounding box for Philippines\n", + " ],\n", + " 'format': 'zip',\n", + " },\n", + " f'../../data/remotesensing/era5/idn_cli_era5ag_t2m_{year}{month}01.zip'\n", + " )\n", + "\n", + " print(f'idn_cli_era5ag_t2m_{year}{month}.zip downloaded.')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "heatwaves", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/measuring-heatwaves/weather-tomorrow.io.ipynb b/notebooks/measuring-heatwaves/weather-tomorrow.io.ipynb new file mode 100644 index 0000000..04dd1bb --- /dev/null +++ b/notebooks/measuring-heatwaves/weather-tomorrow.io.ipynb @@ -0,0 +1,6752 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Historical Max Temperature from Tomorrow.io API \n", + "\n", + "We retrieve the max temperature (i.e., `temperatureMax`) for Delhi, India on [H3 resolution 7](https://h3geo.org) from the [Historical](https://docs.tomorrow.io/reference/historical) data layer of the [Tomorrow.io API](https://docs.tomorrow.io/reference/api-introduction)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:utilities:Initializing custom packages\n" + ] + } + ], + "source": [ + "%reload_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import asyncio\n", + "import json\n", + "import os\n", + "from typing import Optional\n", + "\n", + "import geopandas\n", + "import h3\n", + "import pandas as pd\n", + "import shapely\n", + "from aiohttp import ClientSession\n", + "from shapely.geometry import Polygon\n", + "\n", + "from utilities import weatherFunctions" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following are auxiliary function(s). Ideally, these will be packaged in an opportune moment." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def get_h3_tessellation(\n", + " gdf: geopandas.GeoDataFrame, name=\"shapeName\", resolution=10\n", + ") -> geopandas.GeoDataFrame:\n", + " mapper = dict()\n", + " tiles = set()\n", + "\n", + " # TODO: vectorize, if possible\n", + " for idx, row in gdf.iterrows():\n", + " geometry = row[\"geometry\"] \n", + " match geometry.geom_type:\n", + " case \"Polygon\":\n", + " hex_ids = h3.polyfill(\n", + " shapely.geometry.mapping(geometry),\n", + " resolution,\n", + " geo_json_conformant=True,\n", + " )\n", + "\n", + " tiles = tiles.union(set(hex_ids))\n", + " mapper.update([(hex_id, row[name]) for hex_id in hex_ids])\n", + "\n", + " case \"MultiPolygon\":\n", + " for x in geometry.geoms:\n", + " hex_ids = h3.polyfill(\n", + " shapely.geometry.mapping(x),\n", + " resolution,\n", + " geo_json_conformant=True,\n", + " )\n", + "\n", + " tiles = tiles.union(set(hex_ids))\n", + " mapper.update([(hex_id, row[name]) for hex_id in hex_ids])\n", + " case _:\n", + " raise (Exception)\n", + "\n", + " tessellation = geopandas.GeoDataFrame(\n", + " data=tiles,\n", + " geometry=[Polygon(h3.h3_to_geo_boundary(idx, True)) for idx in tiles],\n", + " columns=[\"hex_id\"],\n", + " crs=\"EPSG:4326\",\n", + " )\n", + "\n", + " return tessellation" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# create the Tomorrow.io API token at https://app.tomorrow.io/development/keys\n", + "TOMORROW_API_KEY = " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Area of Interest: Chennai" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "# PHILIPPINES = geopandas.read_file('../../data/shapefiles/philippines/phl_adminboundaries_candidate_exclude_adm3/phl_admbnda_adm2_psa_namria_20200529.shp')\n", + "# MANILA = PHILIPPINES[PHILIPPINES['ADM2_EN'].isin(['NCR, City of Manila, First District', 'NCR, Second District', 'NCR, Third District', 'NCR, Fourth District'])]\n", + "#PHILIPPINES_ADM3 = geopandas.read_file('../../data/shapefiles/philippines/phl_adminboundaries_candidate_adm3/phl_admbnda_adm3_psa_namria_20200529.shp')\n", + "#Manila_Neighbors = PHILIPPINES_ADM3[PHILIPPINES_ADM3['ADM3_EN'].isin(['Rodriguez', 'San Mateo', 'City of San Pedro', 'Obando'])]\n", + "\n", + "#PHILIPPINES_ADM3 = geopandas.read_file('../../data/shapefiles/philippines/phl_adminboundaries_candidate_adm3/phl_admbnda_adm3_psa_namria_20200529.shp')\n", + "ZAMBOANGA = PHILIPPINES_ADM3[PHILIPPINES_ADM3['ADM3_EN'].isin(['Zamboanga City'])]\n", + "\n", + "# SAN_MATEO=PHILIPPINES_ADM3[PHILIPPINES_ADM3['ADM3_EN'].isin([])]\n", + "# SAN_PEDRO=PHILIPPINES_ADM3[PHILIPPINES_ADM3['ADM3_EN'].isin([])]\n", + "# OBANDO=PHILIPPINES_ADM3[PHILIPPINES_ADM3['ADM3_EN'].isin([])]\n", + "#MANILA2 = PHILIPPINES[PHILIPPINES['ADM2_EN'].isin(['NCR, Second District'])]\n", + "#MANILA3 = PHILIPPINES[PHILIPPINES['ADM2_EN'].isin(['NCR, Third District'])]\n", + "#MANILA4 = PHILIPPINES[PHILIPPINES['ADM2_EN'].isin(['NCR, Fourth District'])]\n", + "\n", + "\n", + "# DAVAO = PHILIPPINES_ADM3[PHILIPPINES_ADM3['ADM3_EN'].isin(['Davao City'])]\n", + "# ZAMBOANGA = PHILIPPINES_ADM3[PHILIPPINES_ADM3['ADM3_EN'].isin(['Zamboanga City'])]\n", + "# CEBU = PHILIPPINES_ADM3[PHILIPPINES_ADM3['ADM3_EN'].isin(['Cebu City'])]" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Tessellation in H3\n", + "\n", + "In this step, we generate a tessellation layer for the **area of interest** using [H3 resolution 7](https://h3geo.org)." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "TESSELLATION = get_h3_tessellation(ZAMBOANGA, name='ADM3_EN', resolution=7)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Make this Notebook Trusted to load map: File -> Trust Notebook
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "TESSELLATION.explore()" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "TESSELLATION['centre'] = TESSELLATION['geometry'].apply(lambda x: x.centroid)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [], + "source": [ + "TESSELLATION[\"geojson\"] = TESSELLATION[\"geometry\"].apply(\n", + " lambda x: json.dumps(shapely.geometry.mapping(x))\n", + ")\n", + "\n", + "TESSELLATION[\"centre_geojson\"] = TESSELLATION[\"centre\"].apply(\n", + " lambda x: json.dumps(shapely.geometry.mapping(x))\n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "## Retrieve `Historical` from Tomorrow.io API\n", + "\n", + "> Tomorrow.io's Historical Weather API allows you to query weather conditions (limited to historical data layers ]) by specifying the location (GeoJSON of a Point, LineString or Polygon), fields (\"temperature\", \"windSpeed\", ...), timesteps (\"1h\", \"1d\") and the startTime and endTime, such that the response include a historical timeline.\n", + "\n", + " Polygon and Polyline limits:\n", + "\n", + " Polygon - 10,000 square km and no more than 70km per segment.\n", + " Polyline - 2,000 km long.\n", + " Max number of vertices - 550.\n", + " Timerange is limited to up to 30 days per API call.\n", + "\n", + " If the location is a Polygon or a Polyline, you can specify whether you want the min/max/avg values throughout that coverage area by adding them as a suffix to any of the available fields (temperatureMax, temperatureMaxTime) and if not specified the response will default to Max.\n", + "\n", + " The historical archive is based on a reanalysis model that blends past short-range weather forecasts with observations through advanced data assimilation techniques. The historical archive data deviates from the recent historical data -7 days since it is based on a different observation data assimilation system that incorporates a larger set of final observational records.\n", + " Please note that our reanalysis model takes between 7 to 90 days to calculate the data fields. Please see the historical data field Availability.\n", + "\n", + " See also: https://docs.tomorrow.io/reference/historical-overview" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "class TomorrowAPIClient:\n", + " \"\"\"An Asynchronous API client for Tomorrow.io API\"\n", + "\n", + " Parameters\n", + " ----------\n", + " token : str\n", + " Tomorrow.io API token\n", + "\n", + " Notes\n", + " -----\n", + " For more information, please see https://docs.tomorrow.io\n", + " \"\"\"\n", + "\n", + " BASE_URL = \"https://api.tomorrow.io/v4\"\n", + "\n", + " def __init__(\n", + " self, session: Optional[ClientSession] = None, token: Optional[str] = None\n", + " ):\n", + " self.session = session or ClientSession()\n", + " self.semaphore = asyncio.BoundedSemaphore(4)\n", + " self.token = token or os.getenv(\"TOMORROW_TOKEN\")\n", + "\n", + " async def __aenter__(self):\n", + " return self\n", + "\n", + " async def __aexit__(self, *args):\n", + " await self.close()\n", + "\n", + " async def close(self):\n", + " await self.session.close()\n", + "\n", + " async def post(self, url, json, params={}, headers={}):\n", + " params[\"apikey\"] = self.token\n", + " async with self.semaphore, self.session.post(\n", + " url, json=json, params=params, headers=headers\n", + " ) as response:\n", + " return await response.json()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating `intervals`\n", + "\n", + "Let's start in 2021, from January 1st to December 31th. The Tomorrow.io API limits the date range to 30 days. Thus, we create 13 periods of 28 days and add 1 day to the last period." + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [], + "source": [ + "date_range = pd.date_range(\"2023-04-01 12:00:00\", \"2023-04-30 12:00:00\", periods=30)\n", + "intervals = list(zip(date_range, date_range[1:]))" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(Timestamp('2023-04-01 12:00:00'), Timestamp('2023-04-02 12:00:00')),\n", + " (Timestamp('2023-04-02 12:00:00'), Timestamp('2023-04-03 12:00:00')),\n", + " (Timestamp('2023-04-03 12:00:00'), Timestamp('2023-04-04 12:00:00')),\n", + " (Timestamp('2023-04-04 12:00:00'), Timestamp('2023-04-05 12:00:00')),\n", + " (Timestamp('2023-04-05 12:00:00'), Timestamp('2023-04-06 12:00:00')),\n", + " (Timestamp('2023-04-06 12:00:00'), Timestamp('2023-04-07 12:00:00')),\n", + " (Timestamp('2023-04-07 12:00:00'), Timestamp('2023-04-08 12:00:00')),\n", + " (Timestamp('2023-04-08 12:00:00'), Timestamp('2023-04-09 12:00:00')),\n", + " (Timestamp('2023-04-09 12:00:00'), Timestamp('2023-04-10 12:00:00')),\n", + " (Timestamp('2023-04-10 12:00:00'), Timestamp('2023-04-11 12:00:00')),\n", + " (Timestamp('2023-04-11 12:00:00'), Timestamp('2023-04-12 12:00:00')),\n", + " (Timestamp('2023-04-12 12:00:00'), Timestamp('2023-04-13 12:00:00')),\n", + " (Timestamp('2023-04-13 12:00:00'), Timestamp('2023-04-14 12:00:00')),\n", + " (Timestamp('2023-04-14 12:00:00'), Timestamp('2023-04-15 12:00:00')),\n", + " (Timestamp('2023-04-15 12:00:00'), Timestamp('2023-04-16 12:00:00')),\n", + " (Timestamp('2023-04-16 12:00:00'), Timestamp('2023-04-17 12:00:00')),\n", + " (Timestamp('2023-04-17 12:00:00'), Timestamp('2023-04-18 12:00:00')),\n", + " (Timestamp('2023-04-18 12:00:00'), Timestamp('2023-04-19 12:00:00')),\n", + " (Timestamp('2023-04-19 12:00:00'), Timestamp('2023-04-20 12:00:00')),\n", + " (Timestamp('2023-04-20 12:00:00'), Timestamp('2023-04-21 12:00:00')),\n", + " (Timestamp('2023-04-21 12:00:00'), Timestamp('2023-04-22 12:00:00')),\n", + " (Timestamp('2023-04-22 12:00:00'), Timestamp('2023-04-23 12:00:00')),\n", + " (Timestamp('2023-04-23 12:00:00'), Timestamp('2023-04-24 12:00:00')),\n", + " (Timestamp('2023-04-24 12:00:00'), Timestamp('2023-04-25 12:00:00')),\n", + " (Timestamp('2023-04-25 12:00:00'), Timestamp('2023-04-26 12:00:00')),\n", + " (Timestamp('2023-04-26 12:00:00'), Timestamp('2023-04-27 12:00:00')),\n", + " (Timestamp('2023-04-27 12:00:00'), Timestamp('2023-04-28 12:00:00')),\n", + " (Timestamp('2023-04-28 12:00:00'), Timestamp('2023-04-29 12:00:00')),\n", + " (Timestamp('2023-04-29 12:00:00'), Timestamp('2023-04-30 12:00:00'))]" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "intervals" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fix by adding last day, " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create `payloads`" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "payloads = [\n", + " {\n", + " \"location\": location,\n", + " \"fields\": [\"temperatureMin\", 'humidityMin'],\n", + " \"timesteps\": [\"1d\"],\n", + " \"startTime\": startTime.isoformat(),\n", + " \"endTime\": endTime.isoformat(),\n", + " \"units\": \"metric\",\n", + " }\n", + " for location in TESSELLATION[\"geojson\"]\n", + " for (startTime, endTime) in intervals\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7975" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(payloads)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Just checking the cardinality," + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(payloads) == len(TESSELLATION) * len(intervals)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02348215151316, 14.436437723433103], [121.02588986118877, 14.42383751951722], [121.03813526771623, 14.420163571446368], [121.04797426844507, 14.429091146114983], [121.04556640603099, 14.441692561869724], [121.03331969545023, 14.445365191213625], [121.02348215151316, 14.436437723433103]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06085075111193, 14.603344361547915], [121.06325929341511, 14.59075606623248], [121.07551234145109, 14.587093781354504], [121.0853581504601, 14.596021109784846], [121.08294945655366, 14.608610607901383], [121.07069510506479, 14.612271574884895], [121.06085075111193, 14.603344361547915]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00140332766922, 14.4311818746626], [121.00381088389358, 14.418582884059878], [121.01605349835482, 14.414910046432972], [121.02588986118877, 14.42383751951722], [121.02348215151316, 14.436437723433103], [121.01123823227873, 14.44010924104793], [121.00140332766922, 14.4311818746626]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08294945655366, 14.608610607901383], [121.0853581504601, 14.596021109784846], [121.09761398478429, 14.592357704167382], [121.1074624277528, 14.601285113370354], [121.10505358295818, 14.61387581281312], [121.09279644590634, 14.61753790182541], [121.08294945655366, 14.608610607901383]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97291305992488, 14.700742842427331], [120.97532142253812, 14.688169910810768], [120.98756554160946, 14.684522280113685], [120.99740260468191, 14.693448905102672], [120.99499408756964, 14.706023040445546], [120.98274866170782, 14.709669347171445], [120.97291305992488, 14.700742842427331]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00201543564339, 14.609049694429581], [121.00442364248897, 14.596466364536402], [121.01666962142187, 14.592808757968726], [121.02650869878669, 14.601735802877117], [121.0241003384273, 14.614320338672458], [121.0118530540406, 14.617976623755105], [121.00201543564339, 14.609049694429581]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99418047250266, 14.468971117316254], [120.99658812196587, 14.456375992377724], [121.00883055254856, 14.452706906593956], [121.01866663865596, 14.461634266622065], [121.01625883549015, 14.474230603720745], [121.00401509974347, 14.477898368727764], [120.99418047250266, 14.468971117316254]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03153211382144, 14.635830536157869], [121.03394059751578, 14.623247353236355], [121.04619067467381, 14.619589947674276], [121.05603357252927, 14.628517045058963], [121.05362493626559, 14.641101431096253], [121.04137355453929, 14.644757516731493], [121.03153211382144, 14.635830536157869]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.92154300664261, 14.72788302264928], [120.92395115061146, 14.715316435364524], [120.93618947824905, 14.711674822632311], [120.94602097035371, 14.72060112454844], [120.94361267021095, 14.733168917318325], [120.93137303396162, 14.736809202784945], [120.92154300664261, 14.72788302264928]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00221954560736, 14.668296705933525], [121.00462796940475, 14.655718644255671], [121.01687507023847, 14.652066123430927], [121.02671505277931, 14.66099298633479], [121.02430647544729, 14.673572251436804], [121.01205806893277, 14.677223450309146], [121.00221954560736, 14.668296705933525]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97973392366022, 14.54451472371958], [120.9821417593877, 14.531927359407193], [120.99438382097554, 14.52826578677065], [121.00421935260525, 14.537192900833967], [121.00181136267241, 14.549781474993264], [120.98956799513917, 14.553441725339407], [120.97973392366022, 14.54451472371958]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02430647544729, 14.673572251436804], [121.02671505277931, 14.66099298633479], [121.03896494758034, 14.657339343406125], [121.04880756983297, 14.666266286344035], [121.04639883967988, 14.678846753400606], [121.03414763991876, 14.682499075663344], [121.02430647544729, 14.673572251436804]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9506380700333, 14.636240239069405], [120.95304606050705, 14.623663234289301], [120.96528625822813, 14.620011630028593], [120.97511977257919, 14.628938355440223], [120.97271162691567, 14.64151656789548], [120.96047012191492, 14.645166847361466], [120.9506380700333, 14.636240239069405]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.10526714755345, 14.673152731738497], [121.10767620938245, 14.660567304082576], [121.11993595138888, 14.656907847462955], [121.12978793361575, 14.66583513438319], [121.12737872159438, 14.678421759417956], [121.11511767736144, 14.682079900253132], [121.10526714755345, 14.673152731738497]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0317389392319, 14.695076979094505], [121.03414763991876, 14.682499075663344], [121.04639883967988, 14.678846753400606], [121.05624264337257, 14.687773655057772], [121.05383379009575, 14.700352759127032], [121.0415812855396, 14.704003760999923], [121.0317389392319, 14.695076979094505]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00903523913878, 14.512011864002517], [121.0114431357237, 14.499419403495981], [121.02368817647039, 14.495752959003793], [121.03352662529171, 14.504680295366713], [121.03111857546538, 14.517273965406169], [121.01887222988293, 14.520939089646925], [121.00903523913878, 14.512011864002517]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.06807628400563, 14.565575573883228], [121.07048473227715, 14.552983379012172], [121.08273796064665, 14.549317339374221], [121.09258404362835, 14.558244811850281], [121.09017544400537, 14.570838210677648], [121.07792091257538, 14.574502933170846], [121.06807628400563, 14.565575573883228]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.93618947824905, 14.711674822632311], [120.93859765409515, 14.699105664682186], [120.9508374779144, 14.695461603210905], [120.96067043377148, 14.70438802604891], [120.95826210223275, 14.716958389338293], [120.94602097035371, 14.72060112454844], [120.93618947824905, 14.711674822632311]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05362493626559, 14.641101431096253], [121.05603357252927, 14.628517045058963], [121.06828643981855, 14.624858518070821], [121.0781319745127, 14.633785695857593], [121.07572318639393, 14.646371283538416], [121.06346901525939, 14.650028491887603], [121.05362493626559, 14.641101431096253]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.04577445785961, 14.50101273622578], [121.04818253714996, 14.488416521589691], [121.06043185534247, 14.48474652891852], [121.07027439762614, 14.493674068923578], [121.0678661662903, 14.506271491458712], [121.05561554453978, 14.509940166187167], [121.04577445785961, 14.50101273622578]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08316099081324, 14.667882650929563], [121.08556990173393, 14.655298422127538], [121.09782685963008, 14.6516400901168], [121.10767620938245, 14.660567304082576], [121.10526714755345, 14.673152731738497], [121.09300888670347, 14.67680974667396], [121.08316099081324, 14.667882650929563]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.9869573377619, 14.50674874342791], [120.98936508039279, 14.494157493926085], [121.00160732668436, 14.490492163143612], [121.0114431357237, 14.499419403495981], [121.00903523913878, 14.512011864002517], [120.99679168729249, 14.515675873248814], [120.9869573377619, 14.50674874342791]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.0903876292884, 14.630126046497004], [121.09279644590634, 14.61753790182541], [121.10505358295818, 14.61387581281312], [121.1149032057759, 14.622803184904532], [121.11249423850157, 14.635392529586877], [121.10023579888892, 14.639053302266042], [121.0903876292884, 14.630126046497004]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.02368817647039, 14.495752959003793], [121.02609610300159, 14.483157953741264], [121.03834263128958, 14.479489075370951], [121.04818253714996, 14.488416521589691], [121.04577445785961, 14.50101273622578], [121.03352662529171, 14.504680295366713], [121.02368817647039, 14.495752959003793]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.00944472362926, 14.63055860209003], [121.0118530540406, 14.617976623755105], [121.0241003384273, 14.614320338672458], [121.03394059751578, 14.623247353236355], [121.03153211382144, 14.635830536157869], [121.01928352414531, 14.639485500027032], [121.00944472362926, 14.63055860209003]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99479062849902, 14.646791863804868], [120.99719892864049, 14.634212445141227], [121.00944472362926, 14.63055860209003], [121.01928352414531, 14.639485500027032], [121.01687507023847, 14.652066123430927], [121.00462796940475, 14.655718644255671], [120.99479062849902, 14.646791863804868]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.99458720630435, 14.587539407467304], [120.99699528951405, 14.57495472939053], [121.00923996282901, 14.571295801067844], [121.01907785837601, 14.580222872674566], [121.01666962142187, 14.592808757968726], [121.00442364248897, 14.596466364536402], [120.99458720630435, 14.587539407467304]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.08273796064665, 14.549317339374221], [121.08514643757783, 14.536722595926474], [121.09740114853567, 14.533054121061776], [121.10724868488697, 14.54198170586635], [121.10484005708767, 14.554577653108893], [121.09258404362835, 14.558244811850281], [121.08273796064665, 14.549317339374221]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03070518699452, 14.398633252484204], [121.03311280310885, 14.386029191545848], [121.04535839190766, 14.382351496440975], [121.05519766807774, 14.391279180327752], [121.05278989947637, 14.403884454254328], [121.04054300701563, 14.407560831402295], [121.03070518699452, 14.398633252484204]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.05404268179963, 14.759582689881812], [121.05645175212862, 14.747008891657714], [121.06870686577861, 14.743360529730243], [121.07855421322117, 14.752287285679087], [121.07614499099631, 14.764862280590105], [121.06388857304798, 14.768509322965041], [121.05404268179963, 14.759582689881812]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03132532590269, 14.576562826444224], [121.0337335926435, 14.563974387966438], [121.04598254740381, 14.560311903432213], [121.05582453958846, 14.56923917692572], [121.05341612029885, 14.581828820993133], [121.04116586119694, 14.585489986075325], [121.03132532590269, 14.576562826444224]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.03111857546538, 14.517273965406169], [121.03352662529171, 14.504680295366713], [121.04577445785961, 14.50101273622578], [121.05561554453978, 14.509940166187167], [121.05320734218526, 14.522535044286341], [121.04095820550235, 14.526201284461811], [121.03111857546538, 14.517273965406169]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.94341391315264, 14.67396341839106], [120.94582199634819, 14.661390332194943], [120.9580620073247, 14.65774249778779], [120.96789524259954, 14.66666907520508], [120.96548700396279, 14.679243367909587], [120.95324568531652, 14.682889876786195], [120.94341391315264, 14.67396341839106]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-15T12:00:00',\n", + " 'endTime': '2023-04-16T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-16T12:00:00',\n", + " 'endTime': '2023-04-17T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-17T12:00:00',\n", + " 'endTime': '2023-04-18T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-18T12:00:00',\n", + " 'endTime': '2023-04-19T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-19T12:00:00',\n", + " 'endTime': '2023-04-20T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-20T12:00:00',\n", + " 'endTime': '2023-04-21T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-21T12:00:00',\n", + " 'endTime': '2023-04-22T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-22T12:00:00',\n", + " 'endTime': '2023-04-23T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-23T12:00:00',\n", + " 'endTime': '2023-04-24T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-24T12:00:00',\n", + " 'endTime': '2023-04-25T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-25T12:00:00',\n", + " 'endTime': '2023-04-26T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-26T12:00:00',\n", + " 'endTime': '2023-04-27T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-27T12:00:00',\n", + " 'endTime': '2023-04-28T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-28T12:00:00',\n", + " 'endTime': '2023-04-29T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[120.97210754687683, 14.46371061950496], [120.97451504192543, 14.45111670819823], [120.9867546766171, 14.447448733556223], [120.99658812196587, 14.456375992377724], [120.99418047250266, 14.468971117316254], [120.98193953192938, 14.472637769897812], [120.97210754687683, 14.46371061950496]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-29T12:00:00',\n", + " 'endTime': '2023-04-30T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-01T12:00:00',\n", + " 'endTime': '2023-04-02T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-02T12:00:00',\n", + " 'endTime': '2023-04-03T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-03T12:00:00',\n", + " 'endTime': '2023-04-04T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-04T12:00:00',\n", + " 'endTime': '2023-04-05T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-05T12:00:00',\n", + " 'endTime': '2023-04-06T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-06T12:00:00',\n", + " 'endTime': '2023-04-07T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-07T12:00:00',\n", + " 'endTime': '2023-04-08T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-08T12:00:00',\n", + " 'endTime': '2023-04-09T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-09T12:00:00',\n", + " 'endTime': '2023-04-10T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-10T12:00:00',\n", + " 'endTime': '2023-04-11T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-11T12:00:00',\n", + " 'endTime': '2023-04-12T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-12T12:00:00',\n", + " 'endTime': '2023-04-13T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-13T12:00:00',\n", + " 'endTime': '2023-04-14T12:00:00',\n", + " 'units': 'metric'},\n", + " {'location': '{\"type\": \"Polygon\", \"coordinates\": [[[121.01728607962383, 14.770516854263796], [121.0196949675531, 14.75794682631387], [121.03194580214416, 14.754302040066253], [121.04178905420821, 14.763228603715248], [121.03938001318535, 14.775799829972799], [121.02712787301553, 14.779443294373111], [121.01728607962383, 14.770516854263796]]]}',\n", + " 'fields': ['temperatureMin', 'humidityMin'],\n", + " 'timesteps': ['1d'],\n", + " 'startTime': '2023-04-14T12:00:00',\n", + " 'endTime': '2023-04-15T12:00:00',\n", + " 'units': 'metric'},\n", + " ...]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "payloads" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let's call the Tomorrow.io API!" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "async with TomorrowAPIClient(token=TOMORROW_API_KEY) as client:\n", + "\n", + " url = f\"https://api.tomorrow.io/v4/historical\"\n", + " headers = {\"Accept\": \"application/json\", \"Content-Type\": \"application/json\"}\n", + "\n", + " futures = [client.post(url, json=payload, headers=headers) for payload in payloads]\n", + " zamboanga = await asyncio.gather(*futures)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "def get_values(x, field):\n", + " if x is None:\n", + " return None\n", + " elif len(x[0]['intervals'])==0:\n", + " return 0\n", + " elif len(x[0]['intervals'])==1:\n", + " #print(x[0]['intervals'])\n", + " return x[0]['intervals'][0]['values'][field]\n", + " else: \n", + " return np.mean([x[0]['intervals'][0]['values'][field], x[0]['intervals'][1]['values'][field]])" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "def data_manipulation(manila, humidity, temperature):\n", + " df = pd.json_normalize(manila).reset_index().merge(TESSELLATION.merge(pd.json_normalize(payloads), left_on = 'geojson', right_on ='location').reset_index())\n", + " df = df[~df['data.timelines'].isna()]\n", + " df[humidity] = df['data.timelines'].apply(lambda x: get_values(x, humidity))\n", + " df[temperature] = df['data.timelines'].apply(lambda x: get_values(x, temperature))\n", + " df = df[['geometry', 'startTime', 'endTime', humidity, temperature, 'hex_id', 'centre_geojson']]\n", + "\n", + " ftemp = temperature+'_F'\n", + "\n", + " df[ftemp] = df[temperature].apply(lambda x: weatherFunctions.convert_celcius_to_fahrenheit(x))\n", + " \n", + " # Make a change to use this convert function from the weatherFunctions module\n", + " df['heat_index'] = df.apply(lambda x: weatherFunctions.calculate_heat_index(x[ftemp], x[humidity]), axis=1)\n", + " df['heat_index_C'] = df['heat_index'].apply(lambda x: weatherFunctions.convert_fahrenheit_to_celcius(x))\n", + "\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "zamboanga_heatindex_min= data_manipulation(zamboanga, 'humidityMin', 'temperatureMin')" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "zamboanga_heatindex_min.to_csv('../../data/tomorrow.io/zamboanga_april2023_min_heat_index.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [], + "source": [ + "from utilities.weatherFunctions import *" + ] + }, + { + "cell_type": "code", + "execution_count": 192, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_csv('../../data/tomorrow.io/manila_20230420_20230427.csv')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + }, + "vscode": { + "interpreter": { + "hash": "15a24df50aad89762b44c55dbfccf1a441e09a49c35bfde0e81545326154b02b" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebooks/socio-economic-indicators/census.ipynb b/notebooks/socio-economic-indicators/census.ipynb new file mode 100644 index 0000000..8095021 --- /dev/null +++ b/notebooks/socio-economic-indicators/census.ipynb @@ -0,0 +1,536 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Access to Cooling in NCR\n", + "\n", + "This notebook explores the census dataset to understand access to cooling in different provinces of NCR\n", + "\n", + "## Data\n", + "\n", + "The data for this was obtained from the census dataset provided by the Filipino govt. The locations of the latest barangays are taken from an open repository on [GitHub](https://github.com/altcoder/philippines-psgc-shapefiles?tab=readme-ov-file). \n", + "\n", + "## Description of the Census Data\n", + "There are 17 provinces, 30 municipalities and 1299 barangays in the NCR region. There are 13.4 million responses in the NCR file of the Census which is roughly the population of the region. In the Form 3 responses, which captures 10% of the representative population, there are 2.5 million responses. The access to cooling data is obatined from the representative sample. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import pyreadstat\n", + "from matplotlib import pyplot as plt\n", + "import geopandas" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "source": [ + "Reading shapefiles of Manila" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "PHILIPPINES = geopandas.read_file('../../data/shapefiles/philippines/phl_adminboundaries_candidate_exclude_adm3/phl_admbnda_adm2_psa_namria_20200529.shp')\n", + "MANILA = PHILIPPINES[PHILIPPINES['ADM2_EN'].isin(['NCR, City of Manila, First District', 'NCR, Second District', 'NCR, Third District', 'NCR, Fourth District'])]\n", + "#PHILIPPINES_ADM3 = geopandas.read_file('../../data/shapefiles/philippines/phl_adminboundaries_candidate_adm3/phl_admbnda_adm3_psa_namria_20200529.shp')" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "PHILIPPINES_BARANGAY = geopandas.read_file('../../data/shapefiles/philippines/phl_adm4_barangay/PH_Adm4_BgySubMuns.shp.shp')\n", + "PHILIPPINES_ADM4 = geopandas.read_file('../../data/shapefiles/philippines/phl_adminboundaries_candidate_exclude_adm3/phl_admbndl_admALL_psa_namria_itos_20200529.shp')\n", + "MANILA_BARANGAY = PHILIPPINES_BARANGAY.to_crs('EPSG:4326').sjoin(MANILA)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "PHILIPPINES_MUNICIPALITY = geopandas.read_file('../../data/shapefiles/philippines/phl_adm3_municipality/PH_Adm3_MuniCities.shp.shp')\n", + "MANILA_MUNICIPALITY = PHILIPPINES_MUNICIPALITY.to_crs('EPSG:4326').sjoin(MANILA)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\sahit\\AppData\\Local\\Temp\\ipykernel_3860\\1089649819.py:1: UserWarning: Column names longer than 10 characters will be truncated when saved to ESRI Shapefile.\n", + " MANILA_BARANGAY.to_file('../../data/shapefiles/philippines/manila_barangay.shp', format = 'ESRI Shapefile')\n" + ] + } + ], + "source": [ + "MANILA_BARANGAY.to_file('../../data/shapefiles/philippines/manila_barangay.shp', format = 'ESRI Shapefile')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "form3 , meta = pyreadstat.read_dta('../../data/census/ncr_cph2020_form3.dta')\n", + "#form2 , meta = pyreadstat.read_dta('../../data/census/ncr_cph2020_form2.dta')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "source": [ + "Read Census data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "building_type_questions = ['b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8']\n", + "education = ['p16']\n", + "pii = ['reg', 'prv', 'prv_name', 'mun', 'mun_name', 'bgy', 'bgy_name',\n", + " 'psgc_prv', 'psgc_mun', 'psgc_bgy', 'urb', 'husn', 'hsn']\n", + "\n", + "occupation = ['p21']" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "MANILA_BARANGAY.rename(columns = {'adm4_psgc':'psgc_bgy', 'adm3_psgc': 'psgc_mun'}, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "PHILIPPINES_MUNICIPALITY.rename(columns = {'adm4_psgc':'psgc_bgy', 'adm3_psgc': 'psgc_mun'}, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "air_conditioning = form3.groupby(['prv_name', 'h15e']).size().unstack(fill_value=0).reset_index()\n", + "fan_cooling_equipment = form3.groupby(['prv_name', 'h15f']).size().unstack(fill_value=0).reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "air_conditioning['psgc_mun'] = air_conditioning['psgc_mun'].astype(np.int64)\n", + "fan_cooling_equipment['psgc_mun'] = fan_cooling_equipment['psgc_mun'].astype(np.int64)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "air_conditioning.rename(columns = {1:'AC_Access', 2:'No_AC_Access', 9:'Unknown_AC'}, inplace=True)\n", + "fan_cooling_equipment.rename(columns = {1:'Cooling_Equipment_Access', 2:'No_Cooling_Equipment_Access', 9:'Unknown_CE'}, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "form3['psgc_mun']=form3['psgc_mun'].astype(np.int64)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "MANILA_MUNICIPALITY.to_file('../../data/shapefiles/philippines/manila_municipality.shp', file_format = 'ESRI Shapefile')" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "df = air_conditioning.merge(fan_cooling_equipment)#.to_csv('../../data/census/access_to_cooling.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "air_conditioning['total_AC'] = air_conditioning['AC_Access'] + air_conditioning['No_AC_Access'] + air_conditioning['Unknown_AC']\n", + "air_conditioning['% without AC Access'] = 100*air_conditioning['No_AC_Access']/air_conditioning['total_AC']\n", + "air_conditioning['% with AC Access'] = 100*air_conditioning['AC_Access']/air_conditioning['total_AC']" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "fan_cooling_equipment['total_CE'] = fan_cooling_equipment['Cooling_Equipment_Access'] + fan_cooling_equipment['No_Cooling_Equipment_Access'] + fan_cooling_equipment['Unknown_CE']\n", + "fan_cooling_equipment['% without CE Access'] = 100*fan_cooling_equipment['No_Cooling_Equipment_Access']/fan_cooling_equipment['total_CE']\n", + "fan_cooling_equipment['% with CE Access'] = 100*fan_cooling_equipment['Cooling_Equipment_Access']/fan_cooling_equipment['total_CE']" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "df['prv_name']= df['prv_name'].str.title()" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": { + "tags": [ + "remove-input" + ] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + " \n", + " Loading BokehJS ...\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\nconst JS_MIME_TYPE = 'application/javascript';\n const HTML_MIME_TYPE = 'text/html';\n const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n const CLASS_NAME = 'output_bokeh rendered_html';\n\n /**\n * Render data to the DOM node\n */\n function render(props, node) {\n const script = document.createElement(\"script\");\n node.appendChild(script);\n }\n\n /**\n * Handle when an output is cleared or removed\n */\n function handleClearOutput(event, handle) {\n const cell = handle.cell;\n\n const id = cell.output_area._bokeh_element_id;\n const server_id = cell.output_area._bokeh_server_id;\n // Clean up Bokeh references\n if (id != null && id in Bokeh.index) {\n Bokeh.index[id].model.document.clear();\n delete Bokeh.index[id];\n }\n\n if (server_id !== undefined) {\n // Clean up Bokeh references\n const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n cell.notebook.kernel.execute(cmd_clean, {\n iopub: {\n output: function(msg) {\n const id = msg.content.text.trim();\n if (id in Bokeh.index) {\n Bokeh.index[id].model.document.clear();\n delete Bokeh.index[id];\n }\n }\n }\n });\n // Destroy server and session\n const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n cell.notebook.kernel.execute(cmd_destroy);\n }\n }\n\n /**\n * Handle when a new output is added\n */\n function handleAddOutput(event, handle) {\n const output_area = handle.output_area;\n const output = handle.output;\n\n // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n return\n }\n\n const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n\n if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n // store reference to embed id on output_area\n output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n }\n if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n const bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n const script_attrs = bk_div.children[0].attributes;\n for (let i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n }\n\n function register_renderer(events, OutputArea) {\n\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n const toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[toinsert.length - 1]);\n element.append(toinsert);\n return toinsert\n }\n\n /* Handle when an output is cleared or removed */\n events.on('clear_output.CodeCell', handleClearOutput);\n events.on('delete.Cell', handleClearOutput);\n\n /* Handle when a new output is added */\n events.on('output_added.OutputArea', handleAddOutput);\n\n /**\n * Register the mime type and append_mime function with output_area\n */\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n /* Is output safe? */\n safe: true,\n /* Index of renderer in `output_area.display_order` */\n index: 0\n });\n }\n\n // register the mime type if in Jupyter Notebook environment and previously unregistered\n if (root.Jupyter !== undefined) {\n const events = require('base/js/events');\n const OutputArea = require('notebook/js/outputarea').OutputArea;\n\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n }\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"21211\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-2.4.3.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"21211\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));", + "application/vnd.bokehjs_load.v0+json": "" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": "(function(root) {\n function embed_document(root) {\n const docs_json = {\"a685e4ac-7fc7-45fa-83ce-f7aecd09dd05\":{\"defs\":[],\"roots\":{\"references\":[{\"attributes\":{\"below\":[{\"id\":\"21223\"}],\"center\":[{\"id\":\"21225\"},{\"id\":\"21229\"}],\"height\":500,\"left\":[{\"id\":\"21226\"}],\"renderers\":[{\"id\":\"21236\"}],\"title\":{\"id\":\"21213\"},\"toolbar\":{\"id\":\"21230\"},\"toolbar_location\":\"above\",\"width\":1000,\"x_range\":{\"id\":\"21215\"},\"x_scale\":{\"id\":\"21219\"},\"y_range\":{\"id\":\"21217\"},\"y_scale\":{\"id\":\"21221\"}},\"id\":\"21212\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{\"data\":{\"% with AC Access\":{\"__ndarray__\":\"kQ7xKgvtNUAivECrpfpCQNajiBkWgURABu5MSCe0NUB7iHXIfFNDQDtbG+5Uf0BATdRxl+TVQkC4m4Z9NJY+QBAEQRAEQTJAa8FN4CzkQkA10Wns6bdAQPL6tWhGyUhAMtRFEXiqO0BzI6MNClY3QE9b5t08f0FAoVq1T0+7QUBrJS2o9bE+QA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[17]},\"% with CE Access\":{\"__ndarray__\":\"QfMtHB7JV0C2ADIymTFYQCHTpfH4rlVA5F2FEC7dV0DnwURpR9ZXQJORFiNVsVdAdEf2M1UTWEC4uJ2mRAhYQFOxcSALtVdADzSB9akWWECxIJ+j99ZXQEVaTvuoBFhAHunayWGMV0D+sfe7bNVXQLRmALc0u1dAaMkBGl4EWECwYIjG9U1XQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[17]},\"% without AC Access\":{\"__ndarray__\":\"jU1aODSCU0AmDuE/UwBPQBqh6uI8uklAycCdCemEU0BmXIB9OV5OQPm4nYa0qFBAyTKCCaYYT0DdT+MF7hhRQFjq+R1/aVRAfAHqqw8YT0BIYJDAw5xQQBNcDR+iw0hAEae/p6wAUkCc32pJUClTQGYgDW5WFlBAgWvHHVwgUEBN7DKKO9JQQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[17]},\"% without CE Access\":{\"__ndarray__\":\"VXGMT11IE0DNjdxraHwJQG/1PMkI6xZAWfpKNTNXEUBWMAknQiIQQGpL/2NdchNA0IJ3kAN+DEBdwufUz8YGQIWghxlQSxRAn6xVE4ruDEA2CDbL7B4SQLgnahJpOQhAtgemoYnrFUCqZ78NYZYSQKB1/l8CrBFAJO0JdLU0D0AUyrXcBgwTQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[17]},\"AC_Access\":[71959,45420,36288,16311,28375,115910,34524,31252,8786,50116,47924,11247,46941,33004,27913,4573,182898],\"Cooling_Equipment_Access\":[312249,115799,76750,71738,69996,332928,88257,98220,45643,127807,136675,21797,159819,134831,75717,12388,555443],\"No_AC_Access\":[256102,74191,45532,58677,44587,234091,56997,69877,39299,82488,95240,11237,122181,108399,51328,8318,400919],\"No_Cooling_Equipment_Access\":[15821,3812,5070,3258,2961,17079,3264,2909,2442,4797,6493,687,9298,6572,3524,503,28373],\"Unknown_AC\":[130,47,6669,165,449,1297,125,1046,47,39,163,204,549,26,524,4,12036],\"Unknown_CE\":[121,47,6669,157,454,1291,125,1046,47,39,159,204,554,26,524,4,12037],\"index\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],\"prv_name\":[\"City Of Caloocan\",\"City Of Las Pi\\u00f1as\",\"City Of Makati\",\"City Of Malabon\",\"City Of Mandaluyong\",\"City Of Manila\",\"City Of Marikina\",\"City Of Muntinlupa\",\"City Of Navotas\",\"City Of Para\\u00f1aque\",\"City Of Pasig\",\"City Of San Juan\",\"City Of Taguig\",\"City Of Valenzuela\",\"Pasay City\",\"Pateros\",\"Quezon City\"],\"total_AC\":[328191,119658,88489,75153,73411,351298,91646,102175,48132,132643,143327,22688,169671,141429,79765,12895,595853],\"total_CE\":[328191,119658,88489,75153,73411,351298,91646,102175,48132,132643,143327,22688,169671,141429,79765,12895,595853]},\"selected\":{\"id\":\"21670\"},\"selection_policy\":{\"id\":\"21669\"}},\"id\":\"21231\",\"type\":\"ColumnDataSource\"},{\"attributes\":{\"axis\":{\"id\":\"21223\"},\"coordinates\":null,\"group\":null,\"ticker\":null},\"id\":\"21225\",\"type\":\"Grid\"},{\"attributes\":{},\"id\":\"21227\",\"type\":\"BasicTicker\"},{\"attributes\":{},\"id\":\"21224\",\"type\":\"CategoricalTicker\"},{\"attributes\":{\"coordinates\":null,\"group\":null,\"text\":\"% Respondents with Access to Air Conditioning by Province\",\"text_font_size\":\"18pt\"},\"id\":\"21213\",\"type\":\"Title\"},{\"attributes\":{},\"id\":\"21664\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"coordinates\":null,\"data_source\":{\"id\":\"21231\"},\"glyph\":{\"id\":\"21233\"},\"group\":null,\"hover_glyph\":null,\"muted_glyph\":{\"id\":\"21235\"},\"nonselection_glyph\":{\"id\":\"21234\"},\"view\":{\"id\":\"21237\"}},\"id\":\"21236\",\"type\":\"GlyphRenderer\"},{\"attributes\":{},\"id\":\"21667\",\"type\":\"CategoricalTickFormatter\"},{\"attributes\":{\"axis\":{\"id\":\"21226\"},\"coordinates\":null,\"dimension\":1,\"group\":null,\"ticker\":null},\"id\":\"21229\",\"type\":\"Grid\"},{\"attributes\":{},\"id\":\"21669\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"factors\":[\"City Of Caloocan\",\"City Of Las Pi\\u00f1as\",\"City Of Makati\",\"City Of Malabon\",\"City Of Mandaluyong\",\"City Of Manila\",\"City Of Marikina\",\"City Of Muntinlupa\",\"City Of Navotas\",\"City Of Para\\u00f1aque\",\"City Of Pasig\",\"City Of San Juan\",\"City Of Taguig\",\"City Of Valenzuela\",\"Pasay City\",\"Pateros\",\"Quezon City\"]},\"id\":\"21215\",\"type\":\"FactorRange\"},{\"attributes\":{\"fill_color\":{\"value\":\"#1f77b4\"},\"line_color\":{\"value\":\"#1f77b4\"},\"top\":{\"field\":\"% with AC Access\"},\"width\":{\"value\":0.5},\"x\":{\"field\":\"prv_name\"}},\"id\":\"21233\",\"type\":\"VBar\"},{\"attributes\":{},\"id\":\"21665\",\"type\":\"AllLabels\"},{\"attributes\":{},\"id\":\"21670\",\"type\":\"Selection\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.2},\"fill_color\":{\"value\":\"#1f77b4\"},\"hatch_alpha\":{\"value\":0.2},\"line_alpha\":{\"value\":0.2},\"line_color\":{\"value\":\"#1f77b4\"},\"top\":{\"field\":\"% with AC Access\"},\"width\":{\"value\":0.5},\"x\":{\"field\":\"prv_name\"}},\"id\":\"21235\",\"type\":\"VBar\"},{\"attributes\":{},\"id\":\"21230\",\"type\":\"Toolbar\"},{\"attributes\":{},\"id\":\"21668\",\"type\":\"AllLabels\"},{\"attributes\":{},\"id\":\"21221\",\"type\":\"LinearScale\"},{\"attributes\":{\"source\":{\"id\":\"21231\"}},\"id\":\"21237\",\"type\":\"CDSView\"},{\"attributes\":{\"axis_label\":\"% Respondents\",\"axis_label_text_font_style\":\"bold\",\"coordinates\":null,\"formatter\":{\"id\":\"21664\"},\"group\":null,\"major_label_policy\":{\"id\":\"21665\"},\"ticker\":{\"id\":\"21227\"}},\"id\":\"21226\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"21219\",\"type\":\"CategoricalScale\"},{\"attributes\":{\"end\":100,\"start\":0},\"id\":\"21217\",\"type\":\"DataRange1d\"},{\"attributes\":{\"axis_label\":\"Provinces\",\"axis_label_text_font_style\":\"bold\",\"coordinates\":null,\"formatter\":{\"id\":\"21667\"},\"group\":null,\"major_label_orientation\":45,\"major_label_policy\":{\"id\":\"21668\"},\"major_label_text_font_size\":\"10pt\",\"ticker\":{\"id\":\"21224\"}},\"id\":\"21223\",\"type\":\"CategoricalAxis\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"hatch_alpha\":{\"value\":0.1},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"top\":{\"field\":\"% with AC Access\"},\"width\":{\"value\":0.5},\"x\":{\"field\":\"prv_name\"}},\"id\":\"21234\",\"type\":\"VBar\"}],\"root_ids\":[\"21212\"]},\"title\":\"Bokeh Application\",\"version\":\"2.4.3\"}};\n const render_items = [{\"docid\":\"a685e4ac-7fc7-45fa-83ce-f7aecd09dd05\",\"root_ids\":[\"21212\"],\"roots\":{\"21212\":\"c1b49ef1-4206-458d-9d75-5f49d00f8b81\"}}];\n root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n }\n if (root.Bokeh !== undefined) {\n embed_document(root);\n } else {\n let attempts = 0;\n const timer = setInterval(function(root) {\n if (root.Bokeh !== undefined) {\n clearInterval(timer);\n embed_document(root);\n } else {\n attempts++;\n if (attempts > 100) {\n clearInterval(timer);\n console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n }\n }\n }, 10, root)\n }\n})(window);", + "application/vnd.bokehjs_exec.v0+json": "" + }, + "metadata": { + "application/vnd.bokehjs_exec.v0+json": { + "id": "21212" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "from bokeh.io import show\n", + "from bokeh.plotting import figure\n", + "from bokeh.palettes import Category10\n", + "from bokeh.transform import factor_cmap\n", + "from bokeh.plotting import figure, show, output_notebook\n", + "import pandas as pd\n", + "\n", + "output_notebook()\n", + "\n", + "# Define the provinces and stack categories\n", + "provinces = df['prv_name'].tolist()\n", + "stack_categories = ['AC_Access', 'No_AC_Access',\n", + " 'Unknown_AC']\n", + "\n", + "# Define the colors for each stack category\n", + "colors = Category10[len(stack_categories)]\n", + "\n", + "# Create a figure\n", + "p = figure(x_range=provinces, title=\"% Respondents with Access to Air Conditioning by Province\", tools=\"\", width=1000, height=500, toolbar_location='above')\n", + "\n", + "# Stack the bars\n", + "p.vbar(x='prv_name', top='% with AC Access', width=0.5, source=df)\n", + "\n", + "# Configure legend\n", + "#p.legend.location = \"top_right\"\n", + "\n", + "# Add labels\n", + "p.xaxis.axis_label = \"Provinces\"\n", + "p.yaxis.axis_label = \"% Respondents\"\n", + "\n", + "p.xaxis.major_label_orientation = 45\n", + "# Set font style for x-axis labels\n", + "p.xaxis.major_label_text_font_size = \"10pt\"\n", + "p.xaxis.axis_label_text_font_style = \"normal\"\n", + "\n", + "p.yaxis.axis_label_text_font_style = \"normal\"\n", + "\n", + "p.yaxis.axis_label_text_font_style = \"bold\"\n", + "p.xaxis.axis_label_text_font_style = \"bold\"\n", + "\n", + "p.title.text_font_size = \"18pt\"\n", + "\n", + "\n", + "# Set y-axis range from 0 to 100\n", + "p.y_range.start = 0\n", + "p.y_range.end = 100\n", + "\n", + "# Show the plot\n", + "show(p)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": { + "tags": [ + "remove-input" + ] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + " \n", + " Loading BokehJS ...\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\nconst JS_MIME_TYPE = 'application/javascript';\n const HTML_MIME_TYPE = 'text/html';\n const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n const CLASS_NAME = 'output_bokeh rendered_html';\n\n /**\n * Render data to the DOM node\n */\n function render(props, node) {\n const script = document.createElement(\"script\");\n node.appendChild(script);\n }\n\n /**\n * Handle when an output is cleared or removed\n */\n function handleClearOutput(event, handle) {\n const cell = handle.cell;\n\n const id = cell.output_area._bokeh_element_id;\n const server_id = cell.output_area._bokeh_server_id;\n // Clean up Bokeh references\n if (id != null && id in Bokeh.index) {\n Bokeh.index[id].model.document.clear();\n delete Bokeh.index[id];\n }\n\n if (server_id !== undefined) {\n // Clean up Bokeh references\n const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n cell.notebook.kernel.execute(cmd_clean, {\n iopub: {\n output: function(msg) {\n const id = msg.content.text.trim();\n if (id in Bokeh.index) {\n Bokeh.index[id].model.document.clear();\n delete Bokeh.index[id];\n }\n }\n }\n });\n // Destroy server and session\n const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n cell.notebook.kernel.execute(cmd_destroy);\n }\n }\n\n /**\n * Handle when a new output is added\n */\n function handleAddOutput(event, handle) {\n const output_area = handle.output_area;\n const output = handle.output;\n\n // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n return\n }\n\n const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n\n if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n // store reference to embed id on output_area\n output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n }\n if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n const bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n const script_attrs = bk_div.children[0].attributes;\n for (let i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n }\n\n function register_renderer(events, OutputArea) {\n\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n const toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[toinsert.length - 1]);\n element.append(toinsert);\n return toinsert\n }\n\n /* Handle when an output is cleared or removed */\n events.on('clear_output.CodeCell', handleClearOutput);\n events.on('delete.Cell', handleClearOutput);\n\n /* Handle when a new output is added */\n events.on('output_added.OutputArea', handleAddOutput);\n\n /**\n * Register the mime type and append_mime function with output_area\n */\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n /* Is output safe? */\n safe: true,\n /* Index of renderer in `output_area.display_order` */\n index: 0\n });\n }\n\n // register the mime type if in Jupyter Notebook environment and previously unregistered\n if (root.Jupyter !== undefined) {\n const events = require('base/js/events');\n const OutputArea = require('notebook/js/outputarea').OutputArea;\n\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n }\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"
\\n\"+\n \"

\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"

\\n\"+\n \"
    \\n\"+\n \"
  • re-rerun `output_notebook()` to attempt to load from CDN again, or
  • \\n\"+\n \"
  • use INLINE resources instead, as so:
  • \\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"\\n\"+\n \"
\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"21843\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-2.4.3.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"21843\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));", + "application/vnd.bokehjs_load.v0+json": "" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": "(function(root) {\n function embed_document(root) {\n const docs_json = {\"b8624492-7ed8-4ee6-9028-f9637c59c6b0\":{\"defs\":[],\"roots\":{\"references\":[{\"attributes\":{\"below\":[{\"id\":\"21855\"}],\"center\":[{\"id\":\"21857\"},{\"id\":\"21861\"}],\"height\":500,\"left\":[{\"id\":\"21858\"}],\"renderers\":[{\"id\":\"21868\"}],\"title\":{\"id\":\"21845\"},\"toolbar\":{\"id\":\"21862\"},\"toolbar_location\":\"above\",\"width\":1000,\"x_range\":{\"id\":\"21847\"},\"x_scale\":{\"id\":\"21851\"},\"y_range\":{\"id\":\"21849\"},\"y_scale\":{\"id\":\"21853\"}},\"id\":\"21844\",\"subtype\":\"Figure\",\"type\":\"Plot\"},{\"attributes\":{},\"id\":\"21853\",\"type\":\"LinearScale\"},{\"attributes\":{},\"id\":\"21859\",\"type\":\"BasicTicker\"},{\"attributes\":{\"axis_label\":\"% Respondents\",\"axis_label_text_font_style\":\"bold\",\"coordinates\":null,\"formatter\":{\"id\":\"22305\"},\"group\":null,\"major_label_policy\":{\"id\":\"22306\"},\"ticker\":{\"id\":\"21859\"}},\"id\":\"21858\",\"type\":\"LinearAxis\"},{\"attributes\":{},\"id\":\"21856\",\"type\":\"CategoricalTicker\"},{\"attributes\":{},\"id\":\"22309\",\"type\":\"AllLabels\"},{\"attributes\":{\"axis_label\":\"Provinces\",\"axis_label_text_font_style\":\"bold\",\"coordinates\":null,\"formatter\":{\"id\":\"22308\"},\"group\":null,\"major_label_orientation\":45,\"major_label_policy\":{\"id\":\"22309\"},\"major_label_text_font_size\":\"10pt\",\"ticker\":{\"id\":\"21856\"}},\"id\":\"21855\",\"type\":\"CategoricalAxis\"},{\"attributes\":{},\"id\":\"22310\",\"type\":\"UnionRenderers\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.2},\"fill_color\":{\"value\":\"#1f77b4\"},\"hatch_alpha\":{\"value\":0.2},\"line_alpha\":{\"value\":0.2},\"line_color\":{\"value\":\"#1f77b4\"},\"top\":{\"field\":\"% with CE Access\"},\"width\":{\"value\":0.5},\"x\":{\"field\":\"prv_name\"}},\"id\":\"21867\",\"type\":\"VBar\"},{\"attributes\":{\"end\":100,\"start\":0},\"id\":\"21849\",\"type\":\"DataRange1d\"},{\"attributes\":{\"axis\":{\"id\":\"21858\"},\"coordinates\":null,\"dimension\":1,\"group\":null,\"ticker\":null},\"id\":\"21861\",\"type\":\"Grid\"},{\"attributes\":{\"coordinates\":null,\"group\":null,\"text\":\"% Respondents with Access to Other Cooling Equipment by Province\",\"text_font_size\":\"18pt\"},\"id\":\"21845\",\"type\":\"Title\"},{\"attributes\":{},\"id\":\"22306\",\"type\":\"AllLabels\"},{\"attributes\":{},\"id\":\"21851\",\"type\":\"CategoricalScale\"},{\"attributes\":{\"data\":{\"% with AC Access\":{\"__ndarray__\":\"kQ7xKgvtNUAivECrpfpCQNajiBkWgURABu5MSCe0NUB7iHXIfFNDQDtbG+5Uf0BATdRxl+TVQkC4m4Z9NJY+QBAEQRAEQTJAa8FN4CzkQkA10Wns6bdAQPL6tWhGyUhAMtRFEXiqO0BzI6MNClY3QE9b5t08f0FAoVq1T0+7QUBrJS2o9bE+QA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[17]},\"% with CE Access\":{\"__ndarray__\":\"QfMtHB7JV0C2ADIymTFYQCHTpfH4rlVA5F2FEC7dV0DnwURpR9ZXQJORFiNVsVdAdEf2M1UTWEC4uJ2mRAhYQFOxcSALtVdADzSB9akWWECxIJ+j99ZXQEVaTvuoBFhAHunayWGMV0D+sfe7bNVXQLRmALc0u1dAaMkBGl4EWECwYIjG9U1XQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[17]},\"% without AC Access\":{\"__ndarray__\":\"jU1aODSCU0AmDuE/UwBPQBqh6uI8uklAycCdCemEU0BmXIB9OV5OQPm4nYa0qFBAyTKCCaYYT0DdT+MF7hhRQFjq+R1/aVRAfAHqqw8YT0BIYJDAw5xQQBNcDR+iw0hAEae/p6wAUkCc32pJUClTQGYgDW5WFlBAgWvHHVwgUEBN7DKKO9JQQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[17]},\"% without CE Access\":{\"__ndarray__\":\"VXGMT11IE0DNjdxraHwJQG/1PMkI6xZAWfpKNTNXEUBWMAknQiIQQGpL/2NdchNA0IJ3kAN+DEBdwufUz8YGQIWghxlQSxRAn6xVE4ruDEA2CDbL7B4SQLgnahJpOQhAtgemoYnrFUCqZ78NYZYSQKB1/l8CrBFAJO0JdLU0D0AUyrXcBgwTQA==\",\"dtype\":\"float64\",\"order\":\"little\",\"shape\":[17]},\"AC_Access\":[71959,45420,36288,16311,28375,115910,34524,31252,8786,50116,47924,11247,46941,33004,27913,4573,182898],\"Cooling_Equipment_Access\":[312249,115799,76750,71738,69996,332928,88257,98220,45643,127807,136675,21797,159819,134831,75717,12388,555443],\"No_AC_Access\":[256102,74191,45532,58677,44587,234091,56997,69877,39299,82488,95240,11237,122181,108399,51328,8318,400919],\"No_Cooling_Equipment_Access\":[15821,3812,5070,3258,2961,17079,3264,2909,2442,4797,6493,687,9298,6572,3524,503,28373],\"Unknown_AC\":[130,47,6669,165,449,1297,125,1046,47,39,163,204,549,26,524,4,12036],\"Unknown_CE\":[121,47,6669,157,454,1291,125,1046,47,39,159,204,554,26,524,4,12037],\"index\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],\"prv_name\":[\"City Of Caloocan\",\"City Of Las Pi\\u00f1as\",\"City Of Makati\",\"City Of Malabon\",\"City Of Mandaluyong\",\"City Of Manila\",\"City Of Marikina\",\"City Of Muntinlupa\",\"City Of Navotas\",\"City Of Para\\u00f1aque\",\"City Of Pasig\",\"City Of San Juan\",\"City Of Taguig\",\"City Of Valenzuela\",\"Pasay City\",\"Pateros\",\"Quezon City\"],\"total_AC\":[328191,119658,88489,75153,73411,351298,91646,102175,48132,132643,143327,22688,169671,141429,79765,12895,595853],\"total_CE\":[328191,119658,88489,75153,73411,351298,91646,102175,48132,132643,143327,22688,169671,141429,79765,12895,595853]},\"selected\":{\"id\":\"22311\"},\"selection_policy\":{\"id\":\"22310\"}},\"id\":\"21863\",\"type\":\"ColumnDataSource\"},{\"attributes\":{},\"id\":\"21862\",\"type\":\"Toolbar\"},{\"attributes\":{\"fill_color\":{\"value\":\"#1f77b4\"},\"line_color\":{\"value\":\"#1f77b4\"},\"top\":{\"field\":\"% with CE Access\"},\"width\":{\"value\":0.5},\"x\":{\"field\":\"prv_name\"}},\"id\":\"21865\",\"type\":\"VBar\"},{\"attributes\":{},\"id\":\"22311\",\"type\":\"Selection\"},{\"attributes\":{},\"id\":\"22305\",\"type\":\"BasicTickFormatter\"},{\"attributes\":{\"fill_alpha\":{\"value\":0.1},\"fill_color\":{\"value\":\"#1f77b4\"},\"hatch_alpha\":{\"value\":0.1},\"line_alpha\":{\"value\":0.1},\"line_color\":{\"value\":\"#1f77b4\"},\"top\":{\"field\":\"% with CE Access\"},\"width\":{\"value\":0.5},\"x\":{\"field\":\"prv_name\"}},\"id\":\"21866\",\"type\":\"VBar\"},{\"attributes\":{},\"id\":\"22308\",\"type\":\"CategoricalTickFormatter\"},{\"attributes\":{\"axis\":{\"id\":\"21855\"},\"coordinates\":null,\"group\":null,\"ticker\":null},\"id\":\"21857\",\"type\":\"Grid\"},{\"attributes\":{\"coordinates\":null,\"data_source\":{\"id\":\"21863\"},\"glyph\":{\"id\":\"21865\"},\"group\":null,\"hover_glyph\":null,\"muted_glyph\":{\"id\":\"21867\"},\"nonselection_glyph\":{\"id\":\"21866\"},\"view\":{\"id\":\"21869\"}},\"id\":\"21868\",\"type\":\"GlyphRenderer\"},{\"attributes\":{\"source\":{\"id\":\"21863\"}},\"id\":\"21869\",\"type\":\"CDSView\"},{\"attributes\":{\"factors\":[\"City Of Caloocan\",\"City Of Las Pi\\u00f1as\",\"City Of Makati\",\"City Of Malabon\",\"City Of Mandaluyong\",\"City Of Manila\",\"City Of Marikina\",\"City Of Muntinlupa\",\"City Of Navotas\",\"City Of Para\\u00f1aque\",\"City Of Pasig\",\"City Of San Juan\",\"City Of Taguig\",\"City Of Valenzuela\",\"Pasay City\",\"Pateros\",\"Quezon City\"]},\"id\":\"21847\",\"type\":\"FactorRange\"}],\"root_ids\":[\"21844\"]},\"title\":\"Bokeh Application\",\"version\":\"2.4.3\"}};\n const render_items = [{\"docid\":\"b8624492-7ed8-4ee6-9028-f9637c59c6b0\",\"root_ids\":[\"21844\"],\"roots\":{\"21844\":\"eb0c00bf-258c-4583-bf01-d40aa6b29be7\"}}];\n root.Bokeh.embed.embed_items_notebook(docs_json, render_items);\n }\n if (root.Bokeh !== undefined) {\n embed_document(root);\n } else {\n let attempts = 0;\n const timer = setInterval(function(root) {\n if (root.Bokeh !== undefined) {\n clearInterval(timer);\n embed_document(root);\n } else {\n attempts++;\n if (attempts > 100) {\n clearInterval(timer);\n console.log(\"Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing\");\n }\n }\n }, 10, root)\n }\n})(window);", + "application/vnd.bokehjs_exec.v0+json": "" + }, + "metadata": { + "application/vnd.bokehjs_exec.v0+json": { + "id": "21844" + } + }, + "output_type": "display_data" + } + ], + "source": [ + "from bokeh.io import show\n", + "from bokeh.plotting import figure\n", + "from bokeh.palettes import Category10\n", + "from bokeh.transform import factor_cmap\n", + "from bokeh.plotting import figure, show, output_notebook\n", + "import pandas as pd\n", + "\n", + "output_notebook()\n", + "\n", + "# Define the provinces and stack categories\n", + "provinces = df['prv_name'].tolist()\n", + "stack_categories = ['AC_Access', 'No_AC_Access',\n", + " 'Unknown_AC']\n", + "\n", + "# Define the colors for each stack category\n", + "colors = Category10[len(stack_categories)]\n", + "\n", + "# Create a figure\n", + "p = figure(x_range=provinces, title=\"% Respondents with Access to Other Cooling Equipment by Province\", tools=\"\", width=1000, height=500, toolbar_location='above')\n", + "\n", + "# Stack the bars\n", + "p.vbar(x='prv_name', top='% with CE Access', width=0.5, source=df)\n", + "\n", + "# Configure legend\n", + "#p.legend.location = \"top_right\"\n", + "\n", + "# Add labels\n", + "p.xaxis.axis_label = \"Provinces\"\n", + "p.yaxis.axis_label = \"% Respondents\"\n", + "\n", + "p.xaxis.major_label_orientation = 45\n", + "# Set font style for x-axis labels\n", + "p.xaxis.major_label_text_font_size = \"10pt\"\n", + "p.xaxis.axis_label_text_font_style = \"normal\"\n", + "\n", + "p.yaxis.axis_label_text_font_style = \"normal\"\n", + "\n", + "p.yaxis.axis_label_text_font_style = \"bold\"\n", + "p.xaxis.axis_label_text_font_style = \"bold\"\n", + "\n", + "p.title.text_font_size = \"18pt\"\n", + "\n", + "\n", + "# Set y-axis range from 0 to 100\n", + "p.y_range.start = 0\n", + "p.y_range.end = 100\n", + "\n", + "# Show the plot\n", + "show(p)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "heatwaves", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/src/heatwaves/geographic.py b/src/heatwaves/geographic.py index 93f1f32..57da6d3 100644 --- a/src/heatwaves/geographic.py +++ b/src/heatwaves/geographic.py @@ -1,5 +1,7 @@ def clip_area(ds, area): + + ds.rio.write_crs("EPSG:4326", inplace=True) - clipped_area = ds.rio.clip(area.geometry.values, all_touched=True, drop=True) + clipped_area = ds.rio.clip(area.geometry.values,all_touched=True, drop=True) return clipped_area diff --git a/src/heatwaves/weather.py b/src/heatwaves/weather.py index 277c8fe..4e381f9 100644 --- a/src/heatwaves/weather.py +++ b/src/heatwaves/weather.py @@ -1,88 +1,74 @@ import math from .geographic import * - def convert_kelvin_to_fahrenheit(k): - return 1.8 * (k - 273.15) + 32 + return 1.8*(k-273.15) + 32 +def convert_kelvin_to_celcius(k): + return k-273.15 def convert_celcius_to_fahrenheit(c): - return 9 * (c / 5) + 32 - + return 9*(c/5)+32 def convert_fahrenheit_to_celcius(f): - return (5 / 9) * (f - 32) + return (5/9)*(f-32) + -def calculate_heat_index(T, RH): - ## Taken from the NWS 2011 definition of a heatwave - if T <= 40: - return T +def calculate_heat_index(temperature:float, relative_humidity:float): + ## Taken from the NWS (2011) definition of a heatwave + if temperature<=40: + return temperature else: - A = -10.3 + 1.1 * T + 0.047 * RH - if A < 79: + A = -10.3 + 1.1*temperature + 0.047*relative_humidity + if A<79: return A else: - B = ( - -42.379 - + 2.04901523 * T - + 10.14333127 * RH - - 0.22475541 * T * RH - - 0.00683783 * T * T - - 0.05481717 * RH * RH - + 0.00122874 * T * T * RH - + 0.00085282 * T * RH * RH - - 0.00000199 * T * T * RH * RH - ) - if RH <= 13 and T >= 80 and T <= 112: - return B - (math.abs(13 - RH) / 4) * ( - math.sqrt((17 - math.abs(T - 95)) / 17) - ) - elif RH > 85 and T >= 80 and T <= 87: - return B + 0.02 * (RH - 85) * (87 - T) + B = -42.379+2.04901523*temperature + 10.14333127*relative_humidity -0.22475541*temperature*relative_humidity- .00683783*temperature*temperature - .05481717*relative_humidity*relative_humidity + .00122874*temperature*temperature*relative_humidity + .00085282*temperature*relative_humidity*relative_humidity - .00000199*temperature*temperature*relative_humidity*relative_humidity + if relative_humidity <= 13 and temperature>=80 and temperature<=112: + return B - (math.abs(13-relative_humidity)/4)*(math.sqrt((17-math.abs(temperature-95))/17)) + elif relative_humidity>85 and temperature>=80 and temperature<=87: + return B + 0.02*(relative_humidity-85)*(87-temperature) else: return B - # HI = -42.379 + 2.04901523*T + 10.14333127*RH - .22475541*T*RH - .00683783*T*T - .05481717*RH*RH + .00122874*T*T*RH + .00085282*T*RH*RH - .00000199*T*T*RH*RH - # return HI - + #HI = -42.379 + 2.04901523*T + 10.14333127*RH - .22475541*T*RH - .00683783*T*T - .05481717*RH*RH + .00122874*T*T*RH + .00085282*T*RH*RH - .00000199*T*T*RH*RH + #return HI def combine_tmax_rh(tmax, rh): - tmax = tmax.to_dask_dataframe() - tmax["Tasmax_F"] = tmax["Tasmax"].apply( - lambda x: convert_kelvin_to_fahrenheit(x), meta=("Tasmax", "float64") - ) + tmax=tmax.to_dask_dataframe() + tmax['Tasmax_F'] = tmax['Tasmax'].apply(lambda x: convert_kelvin_to_fahrenheit(x), meta = ('Tasmax', 'float64')) rh = rh.to_dask_dataframe() - hi = tmax.merge(rh, on=["time", "lat", "lon"]) + hi = tmax.merge(rh, on = ['time', 'lat', 'lon']) + return hi def classify_heat_index(x, t=0, rh=0): - if x == 103 and rh < 95 and t > 86 and t < 90: + + if x==103 and rh<95 and t>86 and t<90: return 3 - elif x > 125: + elif x>125: return 4 - elif x >= 104: + elif x>=104: return 3 - elif x > 90: + elif x>90: return 2 - elif x > 80: + elif x>80: return 1 else: return 0 - + def get_heat_index(ds_tasmax, ds_rh, shapefile): tmax = clip_area(ds_tasmax, shapefile) rh = clip_area(ds_rh, shapefile) hi = combine_tmax_rh(tmax, rh) - hi["heat_index"] = hi.apply( - lambda x: calculate_heat_index(x["Tasmax_F"], x["RH_f_inst"]), - meta=(None, "float64"), - axis=1, - ) + + hi['heat_index'] = hi.apply(lambda x: calculate_heat_index(x['Tasmax_F'], x['RH_f_inst']), meta = (None, 'float64'), axis=1) hi = hi.compute() return hi + diff --git a/utilities/tomorrowioFunctions.py b/utilities/tomorrowioFunctions.py new file mode 100644 index 0000000..80f86f0 --- /dev/null +++ b/utilities/tomorrowioFunctions.py @@ -0,0 +1,82 @@ +import geopandas + +class TomorrowAPIClient: + """An Asynchronous API client for Tomorrow.io API" + + Parameters + ---------- + token : str + Tomorrow.io API token + + Notes + ----- + For more information, please see https://docs.tomorrow.io + """ + + BASE_URL = "https://api.tomorrow.io/v4" + + def __init__( + self, session: Optional[ClientSession] = None, token: Optional[str] = None + ): + self.session = session or ClientSession() + self.semaphore = asyncio.BoundedSemaphore(4) + self.token = token or os.getenv("TOMORROW_TOKEN") + + async def __aenter__(self): + return self + + async def __aexit__(self, *args): + await self.close() + + async def close(self): + await self.session.close() + + async def post(self, url, json, params={}, headers={}): + params["apikey"] = self.token + async with self.semaphore, self.session.post( + url, json=json, params=params, headers=headers + ) as response: + return await response.json() + + +def get_h3_tessellation( + gdf: geopandas.GeoDataFrame, name="shapeName", resolution=10 +) -> geopandas.GeoDataFrame: + mapper = dict() + tiles = set() + + # TODO: vectorize, if possible + for idx, row in gdf.iterrows(): + geometry = row["geometry"] + match geometry.geom_type: + case "Polygon": + hex_ids = h3.polyfill( + shapely.geometry.mapping(geometry), + resolution, + geo_json_conformant=True, + ) + + tiles = tiles.union(set(hex_ids)) + mapper.update([(hex_id, row[name]) for hex_id in hex_ids]) + + case "MultiPolygon": + for x in geometry.geoms: + hex_ids = h3.polyfill( + shapely.geometry.mapping(x), + resolution, + geo_json_conformant=True, + ) + + tiles = tiles.union(set(hex_ids)) + mapper.update([(hex_id, row[name]) for hex_id in hex_ids]) + case _: + raise (Exception) + + tessellation = geopandas.GeoDataFrame( + data=tiles, + geometry=[Polygon(h3.h3_to_geo_boundary(idx, True)) for idx in tiles], + columns=["hex_id"], + crs="EPSG:4326", + ) + + return tessellation \ No newline at end of file diff --git a/utilities/visualizationFunctions.py b/utilities/visualizationFunctions.py new file mode 100644 index 0000000..e081492 --- /dev/null +++ b/utilities/visualizationFunctions.py @@ -0,0 +1,88 @@ + +import bokeh +from bokeh.layouts import * +from bokeh.models import * +import matplotlib as mpl + +from bokeh.core.validation.warnings import EMPTY_LAYOUT, MISSING_RENDERERS +bokeh.core.validation.silence(EMPTY_LAYOUT, True) +bokeh.core.validation.silence(MISSING_RENDERERS, True) +from bokeh.plotting import figure, output_file, show, output_notebook +from bokeh.models import Span + + +color_palette = [ '#4E79A7', # Blue + '#F28E2B', # Orange + '#E15759', # Red + '#76B7B2', # Teal + '#59A14F', # Green + '#EDC948', # Yellow + '#B07AA1', # Purple + '#FF9DA7', # Pink + '#9C755F', # Brown + '#BAB0AC', # Gray + '#7C7C7C', # Dark gray + '#6B4C9A', # Violet + '#D55E00', # Orange-red + '#CC61B0', # Magenta + '#0072B2', # Bright blue + '#329262', # Peacock green + '#9E5B5A', # Brick red + '#636363', # Medium gray + '#CD9C00', # Gold + '#5D69B1', # Medium blue +] + + +bokeh.core.validation.silence(EMPTY_LAYOUT, True) + +def get_line_plot(heatwaves,title, source, markers=False, subtitle=None, measure = 'heat_index', category = 'city'): + + p2 = figure(x_axis_type = 'datetime', width = 1000, height = 400, toolbar_location='above') + p2.add_layout(Legend(), "right") + + for id, city in enumerate(heatwaves['city'].unique()): + df = heatwaves[heatwaves[category]==city].groupby('time').mean().reset_index()[['time', measure]] + p2.line(df['time'], df[measure], line_width=2, line_color = color_palette[id], legend_label=city) + + # p2.legend.click_policy='hide' + # if subtitle is not None: + # p2.title = subtitle + + p2.title = title + # title_fig = figure(title=title, toolbar_location=None,width=1000, height=40, ) + # title_fig.title.align = "left" + # title_fig.title.text_font_size = "20pt" + # title_fig.border_fill_alpha = 0 + # title_fig.outline_line_width=0 + + # #with silence(MISSING_RENDERERS): + sub_title = figure(title=source, toolbar_location=None,width=1000, height=40, ) + sub_title.title.align = "left" + sub_title.title.text_font_size = "10pt" + sub_title.title.text_font_style="normal" + sub_title.border_fill_alpha = 0 + sub_title.outline_line_width=0 + + layout = column(p2, sub_title) + +# if markers: +# p2.renderers.extend([ +# Span( +# location=datetime(2020, 3, 15), +# dimension="height", +# line_color='#7C7C7C', +# line_width=2, +# line_dash=(4,4) +# ), +# Span( +# location=datetime(2021, 2, 15), +# dimension="height", +# line_color='#7C7C7C', +# line_width=2, +# line_dash=(4,4) +# ), +# ] +# ) + + return layout \ No newline at end of file