forked from ocropus/hocr-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hocr-eval-geom
executable file
·154 lines (121 loc) · 4.1 KB
/
hocr-eval-geom
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python
# compute statistics about the quality of the geometric segmentation
# at the level of the given OCR element
from __future__ import print_function
import argparse
import re
from lxml import html
# general utilities
def get_text(node):
textnodes = node.xpath(".//text()")
s = ''.join([text for text in textnodes])
return re.sub(r'\s+', ' ', s)
def get_prop(node, name):
title = node.get('title')
if not title:
return None
props = title.split(';')
for prop in props:
(key, args) = prop.split(None, 1)
if key == name:
return args
return None
def get_bbox(node):
bbox = get_prop(node, 'bbox')
if not bbox:
return None
return tuple([int(x) for x in bbox.split()])
# rectangle properties
def intersect(u, v):
# intersection of two rectangles
r = (max(u[0], v[0]), max(u[1], v[1]), min(u[2], v[2]), min(u[3], v[3]))
return r
def area(u):
# area of a rectangle
return max(0, u[2] - u[0]) * max(0, u[3] - u[1])
def overlaps(u, v):
# predicate: do the two rectangles overlap?
return area(intersect(u, v)) > 0
def relative_overlap(u, v):
m = max(area(u), area(v))
i = area(intersect(u, v))
return float(i) / m
################################################################
# main program
################################################################
# argument parsing
parser = argparse.ArgumentParser(
description=("Compute statistics about the quality of the geometric "
"segmentation at the level of the given OCR element"),
epilog=("The output is a 4-tuple (multiple,missing,error,count) "
"for the truth compared with the actual and then again "
"another 4-tuple in the other direction")
)
parser.add_argument(
"truth", help="hOCR file with ground truth", type=argparse.FileType('r'))
parser.add_argument(
"actual",
help="hOCR file from the actual recognition",
type=argparse.FileType('r'))
parser.add_argument(
"-e",
"--element",
default="ocr_line",
help="OCR element to look at, default: %(default)s")
parser.add_argument(
"-o",
"--significant_overlap",
type=float,
default=0.1,
help="default: %(default)s")
parser.add_argument(
"-c",
"--close_match",
type=float,
default=0.9,
help="default: %(default)s")
args = parser.parse_args()
# read the hOCR files
truth_doc = html.parse(args.truth)
actual_doc = html.parse(args.actual)
truth_pages = truth_doc.xpath("//*[@class='ocr_page']")
actual_pages = actual_doc.xpath("//*[@class='ocr_page']")
assert len(truth_pages) == len(actual_pages)
pages = zip(truth_pages, actual_pages)
# compute statistics
def boxstats(truths, actuals):
multiple = 0
missing = 0
error = 0
count = 0
for t in truths:
overlapping = [a for a in actuals if overlaps(a, t)]
oas = [relative_overlap(t, a) for a in overlapping]
if len([o for o in oas if o > args.significant_overlap]) > 1:
multiple += 1
matching = [o for o in oas if o > args.close_match]
if len(matching) < 1:
missing += 1
elif len(matching) > 1:
raise AttributeError(
"Multiple close matches: your segmentation files are bad")
else:
error += 1.0 - matching[0]
count += 1
return multiple, missing, error, count
def check_bad_partition(boxes):
for i in range(len(boxes)):
for j in range(i + 1, len(boxes)):
if relative_overlap(boxes[i], boxes[j]) > args.significant_overlap:
return 1
return 0
for truth, actual in pages:
tobjs = truth.xpath("//*[@class='%s']" % args.element)
aobjs = actual.xpath("//*[@class='%s']" % args.element)
tboxes = [get_bbox(n) for n in tobjs]
if check_bad_partition(tboxes):
raise ValueError("Ground truth data is not an acceptable segmentation")
aboxes = [get_bbox(n) for n in aobjs]
if check_bad_partition(aboxes):
raise ValueError("Actual data is not an acceptable segmentation")
print(boxstats(tboxes, aboxes), boxstats(aboxes, tboxes))