-
Notifications
You must be signed in to change notification settings - Fork 0
/
log.txt
1746 lines (1746 loc) · 206 KB
/
log.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
nohup: ignoring input
WARNING:utils.arguments:Overrided MODEL.ENCODER.NUM_CLASSES from 4 to 1
WARNING:utils.arguments:Overrided TEST.BATCH_SIZE_TOTAL from 8 to 4
WARNING:utils.arguments:Overrided TRAIN.BATCH_SIZE_TOTAL from 4 to 4
WARNING:utils.arguments:Overrided TRAIN.BATCH_SIZE_PER_GPU from 4 to 2
WARNING:utils.arguments:Overrided DATASETS.TRAIN from ['dolphin-train'] to ['dolphin-train']
WARNING:utils.arguments:Overrided DATASETS.TEST from ['dolphin-val'] to ['dolphin-val']
WARNING:utils.arguments:Overrided INPUT.PIXEL_MEAN from [92.2797, 154.551, 153.192] to [92.2797, 154.551, 153.192]
WARNING:utils.arguments:Overrided INPUT.PIXEL_STD from [67.1433, 39.6286, 41.3266] to [67.1433, 39.6286, 41.3266]
WARNING:utils.arguments:Overrided SOLVER.MAX_NUM_EPOCHS from 50 to 15
WARNING:utils.arguments:Overrided SOLVER.BASE_LR from 0.001 to 0.001
WARNING:utils.arguments:Overrided SOLVER.STEPS from [0.88889, 0.96296] to [0.88889, 0.96296]
WARNING:utils.arguments:Overrided SOLVER.IGNORE_FIX from ['class_embed', 'mask_embed'] to ['class_embed', 'mask_embed']
WARNING:utils.arguments:Overrided LORA_TARGETS from ['q', 'v'] to ['q', 'v']
WARNING:utils.arguments:Overrided LORA_RANK from 8 to 8
WARNING:utils.arguments:Overrided LORA_ALPHA from 8 to 8
WARNING:utils.arguments:Overrided WANDB_EXP_NAME from SEEM-Adapter to ndd20_lora_alpha-8
WARNING:utils.arguments:Overrided MODEL.ENCODER.NUM_CLASSES from 4 to 1
WARNING:utils.arguments:Overrided TEST.BATCH_SIZE_TOTAL from 8 to 4
WARNING:utils.arguments:Overrided TRAIN.BATCH_SIZE_TOTAL from 4 to 4
WARNING:utils.arguments:Overrided TRAIN.BATCH_SIZE_PER_GPU from 4 to 2
WARNING:utils.arguments:Overrided DATASETS.TRAIN from ['dolphin-train'] to ['dolphin-train']
WARNING:utils.arguments:Overrided DATASETS.TEST from ['dolphin-val'] to ['dolphin-val']
WARNING:utils.arguments:Overrided INPUT.PIXEL_MEAN from [92.2797, 154.551, 153.192] to [92.2797, 154.551, 153.192]
WARNING:utils.arguments:Overrided INPUT.PIXEL_STD from [67.1433, 39.6286, 41.3266] to [67.1433, 39.6286, 41.3266]
WARNING:utils.arguments:Overrided SOLVER.MAX_NUM_EPOCHS from 50 to 15
WARNING:utils.arguments:Overrided SOLVER.BASE_LR from 0.001 to 0.001
WARNING:utils.arguments:Overrided SOLVER.STEPS from [0.88889, 0.96296] to [0.88889, 0.96296]
WARNING:utils.arguments:Overrided SOLVER.IGNORE_FIX from ['class_embed', 'mask_embed'] to ['class_embed', 'mask_embed']
WARNING:utils.arguments:Overrided LORA_TARGETS from ['q', 'v'] to ['q', 'v']
WARNING:utils.arguments:Overrided LORA_RANK from 8 to 8
WARNING:utils.arguments:Overrided LORA_ALPHA from 8 to 8
WARNING:utils.arguments:Overrided WANDB_EXP_NAME from SEEM-Adapter to ndd20_lora_alpha-8
INFO:trainer.distributed_trainer:Setting SAVE_DIR as output
INFO:trainer.distributed_trainer:Setting SAVE_DIR as output
INFO:trainer.distributed_trainer:Using CUDA
WARNING:trainer.utils.mpi_adapter:----------------
WARNING:trainer.utils.mpi_adapter:MPI Adapter data
WARNING:trainer.utils.mpi_adapter:----------------
WARNING:trainer.utils.mpi_adapter:environment info: single-node AML or other MPI environment
WARNING:trainer.utils.mpi_adapter:init method url: tcp://127.0.0.1:36873
WARNING:trainer.utils.mpi_adapter:world size: 2
WARNING:trainer.utils.mpi_adapter:local size: 2
WARNING:trainer.utils.mpi_adapter:rank: 0
WARNING:trainer.utils.mpi_adapter:local rank: 0
WARNING:trainer.utils.mpi_adapter:master address: 127.0.0.1
WARNING:trainer.utils.mpi_adapter:master port: 36873
WARNING:trainer.utils.mpi_adapter:----------------
WARNING:trainer.utils.mpi_adapter:trying to initialize process group ...
INFO:trainer.distributed_trainer:Using CUDA
WARNING:trainer.utils.mpi_adapter:----------------
WARNING:trainer.utils.mpi_adapter:MPI Adapter data
WARNING:trainer.utils.mpi_adapter:----------------
WARNING:trainer.utils.mpi_adapter:environment info: single-node AML or other MPI environment
WARNING:trainer.utils.mpi_adapter:init method url: tcp://127.0.0.1:36873
WARNING:trainer.utils.mpi_adapter:world size: 2
WARNING:trainer.utils.mpi_adapter:local size: 2
WARNING:trainer.utils.mpi_adapter:rank: 1
WARNING:trainer.utils.mpi_adapter:local rank: 1
WARNING:trainer.utils.mpi_adapter:master address: 127.0.0.1
WARNING:trainer.utils.mpi_adapter:master port: 36873
WARNING:trainer.utils.mpi_adapter:----------------
WARNING:trainer.utils.mpi_adapter:trying to initialize process group ...
WARNING:trainer.utils.mpi_adapter:process group initialized
WARNING:trainer.utils.mpi_adapter:process group initialized
INFO:trainer.distributed_trainer:Base learning rate: 0.001
INFO:trainer.distributed_trainer:Number of GPUs: 2
INFO:trainer.distributed_trainer:Gradient accumulation steps: 1
INFO:trainer.utils.hook:Adding global except hook for the distributed job to shutdown MPI if unhandled exception is raised on some of the ranks.
INFO:trainer.distributed_trainer:Save config file to output/conf_copy.yaml
INFO:trainer.distributed_trainer:Base learning rate: 0.001
INFO:trainer.distributed_trainer:Number of GPUs: 2
INFO:trainer.distributed_trainer:Gradient accumulation steps: 1
INFO:trainer.utils.hook:Adding global except hook for the distributed job to shutdown MPI if unhandled exception is raised on some of the ranks.
INFO:trainer.default_trainer:Imported base_dir at base_path ./
INFO:trainer.default_trainer:Imported base_dir at base_path ./
Deformable Transformer Encoder is not available.
Deformable Transformer Encoder is not available.
WARNING:datasets.registration.register_vlp_datasets:WARNING: Cannot find VLPreDataset. Make sure datasets are accessible if you want to use them for training or evaluation.
WARNING:datasets.registration.register_vlp_datasets:WARNING: Cannot find VLPreDataset. Make sure datasets are accessible if you want to use them for training or evaluation.
WARNING:datasets.registration.register_vlp_datasets:WARNING: Cannot find VLPreDataset. Make sure datasets are accessible if you want to use them for training or evaluation.
WARNING:datasets.registration.register_vlp_datasets:WARNING: Cannot find VLPreDataset. Make sure datasets are accessible if you want to use them for training or evaluation.
WARNING:datasets.registration.register_vlp_datasets:WARNING: Cannot find VLPreDataset. Make sure datasets are accessible if you want to use them for training or evaluation.
WARNING:datasets.registration.register_vlp_datasets:WARNING: Cannot find VLPreDataset. Make sure datasets are accessible if you want to use them for training or evaluation.
WARNING:datasets.registration.register_vlp_datasets:WARNING: Cannot find VLPreDataset. Make sure datasets are accessible if you want to use them for training or evaluation.
WARNING:datasets.registration.register_vlp_datasets:WARNING: Cannot find VLPreDataset. Make sure datasets are accessible if you want to use them for training or evaluation.
WARNING:datasets.registration.register_vlp_datasets:WARNING: Cannot find VLPreDataset. Make sure datasets are accessible if you want to use them for training or evaluation.
WARNING:datasets.registration.register_vlp_datasets:WARNING: Cannot find VLPreDataset. Make sure datasets are accessible if you want to use them for training or evaluation.
INFO:trainer.default_trainer:Pipeline for training: XDecoderPipeline
INFO:trainer.default_trainer:-------------------------------------------------------
INFO:trainer.default_trainer:Training on rank: 1
INFO:trainer.default_trainer:Pipeline for training: XDecoderPipeline
wandb: Currently logged in as: david-rohrschneider. Use `wandb login --relogin` to force relogin
wandb: Appending key for api.wandb.ai to your netrc file: /home/hrw/.netrc
wandb: wandb version 0.18.0 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.15.12
wandb: Run data is saved locally in output/focall_unicl_lang_v1.yaml_conf~/run_6/wandb/wandb/run-20240915_192618-fjlrnf58
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run ndd20_lora_alpha-8__run_6
wandb: ⭐️ View project at https://wandb.ai/david-rohrschneider/SEEM-adapter
wandb: 🚀 View run at https://wandb.ai/david-rohrschneider/SEEM-adapter/runs/fjlrnf58
INFO:trainer.default_trainer:-------------------------------------------------------
INFO:trainer.default_trainer:Training on rank: 0
INFO:datasets.dataset_mappers.dolphin_dataset_mapper:[Dolphin DatasetMapper] Full TransformGens used: [RandomFlip(), ResizeScale(min_scale=0.9, max_scale=2.0, target_height=512, target_width=512), Resize(shape=(512, 512))]
INFO:detectron2.data.datasets.coco:Loaded 1500 images in COCO format from /home/hrw/datasets/ndd20/coco/train_1500.coco.json
INFO:datasets.build:Removed 0 images with no usable annotations. 1500 images left.
INFO:datasets.build:Using training sampler TrainingSampler
INFO:base_dir.pipeline.XDecoderPipeline:GeneralizedSEEM(
(backbone): D2FocalNet(
(patch_embed): PatchEmbed(
(proj): Conv2d(3, 192, kernel_size=(7, 7), stride=(4, 4), padding=(2, 2))
(norm): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
)
(pos_drop): Dropout(p=0.0, inplace=False)
(layers): ModuleList(
(0): BasicLayer(
(blocks): ModuleList(
(0): FocalModulationBlock(
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(modulation): FocalModulation(
(f): Linear(in_features=192, out_features=389, bias=True)
(h): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))
(act): GELU(approximate='none')
(proj): Linear(in_features=192, out_features=192, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(focal_layers): ModuleList(
(0): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(1): GELU(approximate='none')
)
(1): Sequential(
(0): Conv2d(192, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), groups=192, bias=False)
(1): GELU(approximate='none')
)
(2): Sequential(
(0): Conv2d(192, 192, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=192, bias=False)
(1): GELU(approximate='none')
)
(3): Sequential(
(0): Conv2d(192, 192, kernel_size=(9, 9), stride=(1, 1), padding=(4, 4), groups=192, bias=False)
(1): GELU(approximate='none')
)
)
)
(drop_path): Identity()
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=192, out_features=768, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=768, out_features=192, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(1): FocalModulationBlock(
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(modulation): FocalModulation(
(f): Linear(in_features=192, out_features=389, bias=True)
(h): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1))
(act): GELU(approximate='none')
(proj): Linear(in_features=192, out_features=192, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(focal_layers): ModuleList(
(0): Sequential(
(0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(1): GELU(approximate='none')
)
(1): Sequential(
(0): Conv2d(192, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), groups=192, bias=False)
(1): GELU(approximate='none')
)
(2): Sequential(
(0): Conv2d(192, 192, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=192, bias=False)
(1): GELU(approximate='none')
)
(3): Sequential(
(0): Conv2d(192, 192, kernel_size=(9, 9), stride=(1, 1), padding=(4, 4), groups=192, bias=False)
(1): GELU(approximate='none')
)
)
)
(drop_path): DropPath()
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=192, out_features=768, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=768, out_features=192, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
(downsample): PatchEmbed(
(proj): Conv2d(192, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
)
)
(1): BasicLayer(
(blocks): ModuleList(
(0-1): 2 x FocalModulationBlock(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(modulation): FocalModulation(
(f): Linear(in_features=384, out_features=773, bias=True)
(h): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))
(act): GELU(approximate='none')
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(focal_layers): ModuleList(
(0): Sequential(
(0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(1): GELU(approximate='none')
)
(1): Sequential(
(0): Conv2d(384, 384, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), groups=384, bias=False)
(1): GELU(approximate='none')
)
(2): Sequential(
(0): Conv2d(384, 384, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=384, bias=False)
(1): GELU(approximate='none')
)
(3): Sequential(
(0): Conv2d(384, 384, kernel_size=(9, 9), stride=(1, 1), padding=(4, 4), groups=384, bias=False)
(1): GELU(approximate='none')
)
)
)
(drop_path): DropPath()
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
(downsample): PatchEmbed(
(proj): Conv2d(384, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
)
(2): BasicLayer(
(blocks): ModuleList(
(0-17): 18 x FocalModulationBlock(
(norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(modulation): FocalModulation(
(f): Linear(in_features=768, out_features=1541, bias=True)
(h): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1))
(act): GELU(approximate='none')
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(focal_layers): ModuleList(
(0): Sequential(
(0): Conv2d(768, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=768, bias=False)
(1): GELU(approximate='none')
)
(1): Sequential(
(0): Conv2d(768, 768, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), groups=768, bias=False)
(1): GELU(approximate='none')
)
(2): Sequential(
(0): Conv2d(768, 768, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=768, bias=False)
(1): GELU(approximate='none')
)
(3): Sequential(
(0): Conv2d(768, 768, kernel_size=(9, 9), stride=(1, 1), padding=(4, 4), groups=768, bias=False)
(1): GELU(approximate='none')
)
)
)
(drop_path): DropPath()
(norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
(downsample): PatchEmbed(
(proj): Conv2d(768, 1536, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
)
)
(3): BasicLayer(
(blocks): ModuleList(
(0-1): 2 x FocalModulationBlock(
(norm1): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
(modulation): FocalModulation(
(f): Linear(in_features=1536, out_features=3077, bias=True)
(h): Conv2d(1536, 1536, kernel_size=(1, 1), stride=(1, 1))
(act): GELU(approximate='none')
(proj): Linear(in_features=1536, out_features=1536, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(focal_layers): ModuleList(
(0): Sequential(
(0): Conv2d(1536, 1536, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1536, bias=False)
(1): GELU(approximate='none')
)
(1): Sequential(
(0): Conv2d(1536, 1536, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), groups=1536, bias=False)
(1): GELU(approximate='none')
)
(2): Sequential(
(0): Conv2d(1536, 1536, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=1536, bias=False)
(1): GELU(approximate='none')
)
(3): Sequential(
(0): Conv2d(1536, 1536, kernel_size=(9, 9), stride=(1, 1), padding=(4, 4), groups=1536, bias=False)
(1): GELU(approximate='none')
)
)
)
(drop_path): DropPath()
(norm2): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1536, out_features=6144, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=6144, out_features=1536, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
)
)
(norm0): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)
)
(sem_seg_head): XdecoderHead(
(pixel_decoder): TransformerEncoderPixelDecoder(
(adapter_1): Conv2d(
192, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): GroupNorm(32, 512, eps=1e-05, affine=True)
)
(layer_1): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): GroupNorm(32, 512, eps=1e-05, affine=True)
)
(adapter_2): Conv2d(
384, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): GroupNorm(32, 512, eps=1e-05, affine=True)
)
(layer_2): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): GroupNorm(32, 512, eps=1e-05, affine=True)
)
(adapter_3): Conv2d(
768, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): GroupNorm(32, 512, eps=1e-05, affine=True)
)
(layer_3): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): GroupNorm(32, 512, eps=1e-05, affine=True)
)
(mask_features): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(input_proj): Conv2d(1536, 512, kernel_size=(1, 1), stride=(1, 1))
(transformer): TransformerEncoderOnly(
(encoder): TransformerEncoder(
(layers): ModuleList(
(0-5): 6 x TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
)
(linear1): Linear(in_features=512, out_features=2048, bias=True)
(dropout): Dropout(p=0.0, inplace=False)
(linear2): Linear(in_features=2048, out_features=512, bias=True)
(norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.0, inplace=False)
(dropout2): Dropout(p=0.0, inplace=False)
)
)
)
)
(pe_layer): Positional encoding PositionEmbeddingSine
num_pos_feats: 256
temperature: 10000
normalize: True
scale: 6.283185307179586
(layer_4): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): GroupNorm(32, 512, eps=1e-05, affine=True)
)
)
(predictor): SEEMDecoder(
(pe_layer): Positional encoding PositionEmbeddingSine
num_pos_feats: 256
temperature: 10000
normalize: True
scale: 6.283185307179586
(transformer_self_attention_layers): ModuleList(
(0-8): 9 x SelfAttentionLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
)
(norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.0, inplace=False)
)
)
(transformer_cross_attention_layers): ModuleList(
(0-8): 9 x CrossAttentionLayer(
(multihead_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
)
(norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.0, inplace=False)
)
)
(transformer_ffn_layers): ModuleList(
(0-8): 9 x FFNLayer(
(linear1): Linear(in_features=512, out_features=2048, bias=True)
(dropout): Dropout(p=0.0, inplace=False)
(linear2): Linear(in_features=2048, out_features=512, bias=True)
(norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
)
)
(decoder_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
(query_feat): Embedding(101, 512)
(query_embed): Embedding(101, 512)
(level_embed): Embedding(3, 512)
(input_proj): ModuleList(
(0-2): 3 x Sequential()
)
(lang_encoder): LanguageEncoder(
(lang_encoder): Transformer(
(token_embedding): Embedding(49408, 512)
(resblocks): ModuleList(
(0-11): 12 x ResidualAttentionBlock(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
)
(ln_1): LayerNorm()
(mlp): Sequential(
(c_fc): Linear(in_features=512, out_features=2048, bias=True)
(gelu): QuickGELU()
(c_proj): Linear(in_features=2048, out_features=512, bias=True)
)
(ln_2): LayerNorm()
(drop_path): Identity()
)
)
(ln_final): LayerNorm()
)
)
(mask_embed): MLP(
(layers): ModuleList(
(0-2): 3 x Linear(in_features=512, out_features=512, bias=True)
)
)
(attention_data): AttentionDataStruct()
)
)
(criterion): Criterion SetCriterion
matcher: Matcher HungarianMatcher
cost_class: 2.0
cost_mask: 5.0
cost_dice: 5.0
losses: []
weight_dict: {'loss_mask_ce_0': 2.0, 'loss_mask_dice_0': 5.0, 'loss_mask_bce_0': 5.0, 'loss_openimage_ce_0': 0.4, 'loss_openimage_dice_0': 1.0, 'loss_openimage_bce_0': 1.0, 'loss_mask_ce_1': 2.0, 'loss_mask_dice_1': 5.0, 'loss_mask_bce_1': 5.0, 'loss_openimage_ce_1': 0.4, 'loss_openimage_dice_1': 1.0, 'loss_openimage_bce_1': 1.0, 'loss_mask_ce_2': 2.0, 'loss_mask_dice_2': 5.0, 'loss_mask_bce_2': 5.0, 'loss_openimage_ce_2': 0.4, 'loss_openimage_dice_2': 1.0, 'loss_openimage_bce_2': 1.0, 'loss_mask_ce_3': 2.0, 'loss_mask_dice_3': 5.0, 'loss_mask_bce_3': 5.0, 'loss_openimage_ce_3': 0.4, 'loss_openimage_dice_3': 1.0, 'loss_openimage_bce_3': 1.0, 'loss_mask_ce_4': 2.0, 'loss_mask_dice_4': 5.0, 'loss_mask_bce_4': 5.0, 'loss_openimage_ce_4': 0.4, 'loss_openimage_dice_4': 1.0, 'loss_openimage_bce_4': 1.0, 'loss_mask_ce_5': 2.0, 'loss_mask_dice_5': 5.0, 'loss_mask_bce_5': 5.0, 'loss_openimage_ce_5': 0.4, 'loss_openimage_dice_5': 1.0, 'loss_openimage_bce_5': 1.0, 'loss_mask_ce_6': 2.0, 'loss_mask_dice_6': 5.0, 'loss_mask_bce_6': 5.0, 'loss_openimage_ce_6': 0.4, 'loss_openimage_dice_6': 1.0, 'loss_openimage_bce_6': 1.0, 'loss_mask_ce_7': 2.0, 'loss_mask_dice_7': 5.0, 'loss_mask_bce_7': 5.0, 'loss_openimage_ce_7': 0.4, 'loss_openimage_dice_7': 1.0, 'loss_openimage_bce_7': 1.0, 'loss_mask_ce_8': 2.0, 'loss_mask_dice_8': 5.0, 'loss_mask_bce_8': 5.0, 'loss_openimage_ce_8': 0.4, 'loss_openimage_dice_8': 1.0, 'loss_openimage_bce_8': 1.0, 'loss_mask_ce_9': 2.0, 'loss_mask_dice_9': 5.0, 'loss_mask_bce_9': 5.0, 'loss_openimage_ce_9': 0.4, 'loss_openimage_dice_9': 1.0, 'loss_openimage_bce_9': 1.0}
num_classes: 1
eos_coef: 0.1
num_points: 12544
oversample_ratio: 3.0
importance_sample_ratio: 0.75
)
INFO:datasets.dataset_mappers.dolphin_dataset_mapper:[Dolphin DatasetMapper] Full TransformGens used: [RandomFlip(), ResizeScale(min_scale=0.9, max_scale=2.0, target_height=512, target_width=512), Resize(shape=(512, 512))]
INFO:detectron2.data.datasets.coco:Loaded 1500 images in COCO format from /home/hrw/datasets/ndd20/coco/train_1500.coco.json
INFO:datasets.build:Removed 0 images with no usable annotations. 1500 images left.
INFO:datasets.build:Using training sampler TrainingSampler
INFO:detectron2.data.common:Serializing 1500 elements to byte tensors and concatenating them all ...
INFO:detectron2.data.common:Serializing 1500 elements to byte tensors and concatenating them all ...
INFO:detectron2.data.common:Serialized dataset takes 1.72 MiB
INFO:detectron2.data.common:Serialized dataset takes 1.72 MiB
INFO:base_dir.pipeline.XDecoderPipeline:num of train samples: 375
INFO:base_dir.pipeline.XDecoderPipeline:num of train samples: 375
INFO:trainer.xdecoder_trainer:Modify Learning rate of model.sem_seg_head.predictor.class_embed: 0.1
WARNING:trainer.utils_trainer:PyTorch AMP GradScaler initialized.
INFO:trainer.xdecoder_trainer:Modify Learning rate of model.sem_seg_head.predictor.mask_embed.layers.0.weight: 0.1
INFO:trainer.xdecoder_trainer:Modify Learning rate of model.sem_seg_head.predictor.mask_embed.layers.0.bias: 0.1
INFO:trainer.xdecoder_trainer:Modify Learning rate of model.sem_seg_head.predictor.mask_embed.layers.1.weight: 0.1
INFO:trainer.xdecoder_trainer:Modify Learning rate of model.sem_seg_head.predictor.mask_embed.layers.1.bias: 0.1
INFO:trainer.xdecoder_trainer:Modify Learning rate of model.sem_seg_head.predictor.mask_embed.layers.2.weight: 0.1
INFO:trainer.xdecoder_trainer:Modify Learning rate of model.sem_seg_head.predictor.mask_embed.layers.2.bias: 0.1
INFO:trainer.xdecoder_trainer:TRAINABLE PARAMS SUMMARY:
Total parameters: 340754169
Sum of trained parameters: 1443328 (0.42%)
Sum of frozen parameters: 339310841 (99.58%)
+------------+----------------------------------------------------------------------------------+-------------+--------------+
| Model name | Module name | Param Name | # Parameters |
+------------+----------------------------------------------------------------------------------+-------------+--------------+
| default | model.sem_seg_head.pixel_decoder.transformer.encoder.layers.0.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.pixel_decoder.transformer.encoder.layers.0.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.pixel_decoder.transformer.encoder.layers.1.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.pixel_decoder.transformer.encoder.layers.1.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.pixel_decoder.transformer.encoder.layers.2.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.pixel_decoder.transformer.encoder.layers.2.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.pixel_decoder.transformer.encoder.layers.3.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.pixel_decoder.transformer.encoder.layers.3.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.pixel_decoder.transformer.encoder.layers.4.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.pixel_decoder.transformer.encoder.layers.4.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.pixel_decoder.transformer.encoder.layers.5.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.pixel_decoder.transformer.encoder.layers.5.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor | class_embed | 262144 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.0.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.0.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.1.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.1.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.2.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.2.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.3.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.3.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.4.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.4.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.5.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.5.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.6.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.6.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.7.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.7.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.8.self_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_self_attention_layers.8.self_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.0.multihead_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.0.multihead_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.1.multihead_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.1.multihead_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.2.multihead_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.2.multihead_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.3.multihead_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.3.multihead_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.4.multihead_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.4.multihead_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.5.multihead_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.5.multihead_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.6.multihead_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.6.multihead_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.7.multihead_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.7.multihead_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.8.multihead_attn | qv_lora_A | 4096 |
| default | model.sem_seg_head.predictor.transformer_cross_attention_layers.8.multihead_attn | qv_lora_B | 12288 |
| default | model.sem_seg_head.predictor.mask_embed.layers.0 | weight | 262144 |
| default | model.sem_seg_head.predictor.mask_embed.layers.0 | bias | 512 |
| default | model.sem_seg_head.predictor.mask_embed.layers.1 | weight | 262144 |
| default | model.sem_seg_head.predictor.mask_embed.layers.1 | bias | 512 |
| default | model.sem_seg_head.predictor.mask_embed.layers.2 | weight | 262144 |
| default | model.sem_seg_head.predictor.mask_embed.layers.2 | bias | 512 |
+------------+----------------------------------------------------------------------------------+-------------+--------------+
INFO:trainer.xdecoder_trainer:TOTAL MODEL SIZE (MB): 1299.874 MB
INFO:trainer.xdecoder_trainer:Calculate MAX_ITER @ 5625 and STEPS @ [5000, 5416]
WARNING:trainer.utils_trainer:PyTorch AMP GradScaler initialized.
INFO:trainer.default_trainer:Loading weights from seem_focall_v1.pt
INFO:trainer.default_trainer:Loading weights from seem_focall_v1.pt
WARNING:utils.model:$UNUSED$ criterion.empty_weight, Ckpt Shape: torch.Size([134])
WARNING:utils.model:$UNUSED$ sem_seg_head.predictor.mask_sptial_embed.0, Ckpt Shape: torch.Size([512, 512])
WARNING:utils.model:$UNUSED$ sem_seg_head.predictor.mask_sptial_embed.1, Ckpt Shape: torch.Size([512, 512])
WARNING:utils.model:$UNUSED$ sem_seg_head.predictor.mask_sptial_embed.2, Ckpt Shape: torch.Size([512, 512])
WARNING:utils.model:$UNUSED$ sem_seg_head.predictor.pn_indicator.weight, Ckpt Shape: torch.Size([2, 512])
WARNING:utils.model:$UNUSED$ sem_seg_head.predictor.spatial_embed.weight, Ckpt Shape: torch.Size([32, 512])
WARNING:utils.model:$UNUSED$ sem_seg_head.predictor.spatial_featured.weight, Ckpt Shape: torch.Size([32, 512])
WARNING:utils.model:*UNMATCHED* criterion.empty_weight, Model Shape: torch.Size([2]) <-> Ckpt Shape: torch.Size([134])
WARNING:trainer.utils_trainer:Load weights from seem_focall_v1.pt...
INFO:trainer.default_trainer:Start epoch: 0 training.
WARNING:trainer.utils_trainer:Load weights from seem_focall_v1.pt...
INFO:trainer.default_trainer:***** Running training *****
INFO:trainer.default_trainer: Num of GPUs = 2
INFO:trainer.default_trainer: Num Epochs = 15
INFO:trainer.default_trainer: Num of Mini Batches per Epoch = 375
INFO:trainer.default_trainer: Total train batch size (w. parallel, distributed & accumulation) = 5625
INFO:trainer.default_trainer: Gradient Accumulation steps = 1
INFO:trainer.default_trainer: Total optimization steps = 5625
INFO:trainer.default_trainer:Start epoch: 0 training.
INFO:trainer.default_trainer:epochs[ 0] optim steps[1] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.10517/0.10517, loss_mask_bce_0: 0.11122/0.11122, loss_mask_dice_0: 0.63130/0.63130, loss_mask_ce_1: 0.12680/0.12680, loss_mask_bce_1: 0.10414/0.10414, loss_mask_dice_1: 0.53660/0.53660, loss_mask_ce_2: 0.13376/0.13376, loss_mask_bce_2: 0.11684/0.11684, loss_mask_dice_2: 0.67742/0.67742, loss_mask_ce_3: 0.04016/0.04016, loss_mask_bce_3: 0.10408/0.10408, loss_mask_dice_3: 0.56467/0.56467, loss_mask_ce_4: 0.06441/0.06441, loss_mask_bce_4: 0.11772/0.11772, loss_mask_dice_4: 0.59594/0.59594, loss_mask_ce_5: 0.52296/0.52296, loss_mask_bce_5: 0.11590/0.11590, loss_mask_dice_5: 0.62119/0.62119, loss_mask_ce_6: 0.16965/0.16965, loss_mask_bce_6: 0.11180/0.11180, loss_mask_dice_6: 0.60412/0.60412, loss_mask_ce_7: 0.49492/0.49492, loss_mask_bce_7: 0.32693/0.32693, loss_mask_dice_7: 1.12268/1.12268, loss_mask_ce_8: 2.10149/2.10149, loss_mask_bce_8: 0.11872/0.11872, loss_mask_dice_8: 0.69802/0.69802, loss_mask_ce_9: 0.86857/0.86857, loss_mask_bce_9: 0.17638/0.17638, loss_mask_dice_9: 1.12140/1.12140] items per batch[4] items per second[2.78] total items[4] mini batches[ 1] memory[2619] epoch remaining[0:08:58]
INFO:trainer.default_trainer:epochs[ 0] optim steps[2] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.21359/0.15938, loss_mask_bce_0: 0.01836/0.06479, loss_mask_dice_0: 0.45305/0.54218, loss_mask_ce_1: 0.23538/0.18109, loss_mask_bce_1: 0.02135/0.06274, loss_mask_dice_1: 0.50857/0.52258, loss_mask_ce_2: 0.21826/0.17601, loss_mask_bce_2: 0.02113/0.06898, loss_mask_dice_2: 0.52714/0.60228, loss_mask_ce_3: 0.14670/0.09343, loss_mask_bce_3: 0.01838/0.06123, loss_mask_dice_3: 0.46789/0.51628, loss_mask_ce_4: 0.17098/0.11769, loss_mask_bce_4: 0.01918/0.06845, loss_mask_dice_4: 0.56790/0.58192, loss_mask_ce_5: 0.52902/0.52599, loss_mask_bce_5: 0.02178/0.06884, loss_mask_dice_5: 0.65128/0.63623, loss_mask_ce_6: 0.18779/0.17872, loss_mask_bce_6: 0.01867/0.06523, loss_mask_dice_6: 0.56229/0.58321, loss_mask_ce_7: 1.03076/0.76284, loss_mask_bce_7: 0.01828/0.17260, loss_mask_dice_7: 0.50586/0.81427, loss_mask_ce_8: 1.33272/1.71711, loss_mask_bce_8: 0.03572/0.07722, loss_mask_dice_8: 0.81960/0.75881, loss_mask_ce_9: 0.89169/0.88013, loss_mask_bce_9: 0.03637/0.10637, loss_mask_dice_9: 1.15123/1.13632] items per batch[4] items per second[7.89] total items[8] mini batches[ 2] memory[2619] epoch remaining[0:06:03]
INFO:trainer.default_trainer:epochs[ 0] optim steps[3] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.90229/0.40701, loss_mask_bce_0: 0.13517/0.08825, loss_mask_dice_0: 1.23648/0.77361, loss_mask_ce_1: 0.77819/0.38013, loss_mask_bce_1: 0.19796/0.10782, loss_mask_dice_1: 1.46613/0.83710, loss_mask_ce_2: 0.96452/0.43884, loss_mask_bce_2: 0.14300/0.09366, loss_mask_dice_2: 1.26411/0.82289, loss_mask_ce_3: 0.55242/0.24643, loss_mask_bce_3: 0.19187/0.10477, loss_mask_dice_3: 1.36748/0.80001, loss_mask_ce_4: 0.65988/0.29842, loss_mask_bce_4: 0.22062/0.11917, loss_mask_dice_4: 1.74340/0.96908, loss_mask_ce_5: 0.64058/0.56419, loss_mask_bce_5: 0.22863/0.12210, loss_mask_dice_5: 1.79705/1.02317, loss_mask_ce_6: 0.44364/0.26702, loss_mask_bce_6: 0.22394/0.11814, loss_mask_dice_6: 1.64218/0.93620, loss_mask_ce_7: 1.58136/1.03568, loss_mask_bce_7: 0.15738/0.16753, loss_mask_dice_7: 1.47876/1.03576, loss_mask_ce_8: 2.22358/1.88593, loss_mask_bce_8: 0.15851/0.10431, loss_mask_dice_8: 1.64160/1.05307, loss_mask_ce_9: 1.27088/1.01038, loss_mask_bce_9: 0.15164/0.12146, loss_mask_dice_9: 2.02679/1.43314] items per batch[4] items per second[7.48] total items[12] mini batches[ 3] memory[2619] epoch remaining[0:05:07]
INFO:trainer.default_trainer:epochs[ 0] optim steps[4] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.71153/0.48314, loss_mask_bce_0: 0.01776/0.07063, loss_mask_dice_0: 1.14755/0.86710, loss_mask_ce_1: 0.46349/0.40097, loss_mask_bce_1: 0.01156/0.08375, loss_mask_dice_1: 0.90023/0.85288, loss_mask_ce_2: 0.76093/0.51936, loss_mask_bce_2: 0.00624/0.07180, loss_mask_dice_2: 1.08464/0.88833, loss_mask_ce_3: 0.70080/0.36002, loss_mask_bce_3: 0.00870/0.08076, loss_mask_dice_3: 1.33478/0.93370, loss_mask_ce_4: 0.65735/0.38815, loss_mask_bce_4: 0.00885/0.09159, loss_mask_dice_4: 0.84007/0.93683, loss_mask_ce_5: 0.81035/0.62573, loss_mask_bce_5: 0.00916/0.09387, loss_mask_dice_5: 1.04092/1.02761, loss_mask_ce_6: 0.22480/0.25647, loss_mask_bce_6: 0.01142/0.09146, loss_mask_dice_6: 1.18597/0.99864, loss_mask_ce_7: 0.23155/0.83465, loss_mask_bce_7: 0.00765/0.12756, loss_mask_dice_7: 1.00156/1.02721, loss_mask_ce_8: 1.65824/1.82901, loss_mask_bce_8: 0.00748/0.08010, loss_mask_dice_8: 1.11548/1.06867, loss_mask_ce_9: 0.97110/1.00056, loss_mask_bce_9: 0.01504/0.09486, loss_mask_dice_9: 2.33259/1.65800] items per batch[4] items per second[26.38] total items[16] mini batches[ 4] memory[2619] epoch remaining[0:04:04]
INFO:trainer.default_trainer:epochs[ 0] optim steps[5] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.18054/0.42262, loss_mask_bce_0: 0.16219/0.08894, loss_mask_dice_0: 0.62104/0.81789, loss_mask_ce_1: 0.22570/0.36591, loss_mask_bce_1: 0.15203/0.09741, loss_mask_dice_1: 0.58017/0.79834, loss_mask_ce_2: 0.26018/0.46753, loss_mask_bce_2: 0.15041/0.08752, loss_mask_dice_2: 0.61190/0.83304, loss_mask_ce_3: 0.10846/0.30971, loss_mask_bce_3: 0.14834/0.09427, loss_mask_dice_3: 0.50538/0.84804, loss_mask_ce_4: 0.17848/0.34622, loss_mask_bce_4: 0.19628/0.11253, loss_mask_dice_4: 0.68555/0.88657, loss_mask_ce_5: 0.25576/0.55173, loss_mask_bce_5: 0.21843/0.11878, loss_mask_dice_5: 0.94600/1.01129, loss_mask_ce_6: 0.09840/0.22485, loss_mask_bce_6: 0.21897/0.11696, loss_mask_dice_6: 0.64248/0.92741, loss_mask_ce_7: 0.55132/0.77798, loss_mask_bce_7: 0.14620/0.13129, loss_mask_dice_7: 0.55992/0.93375, loss_mask_ce_8: 1.79964/1.82313, loss_mask_bce_8: 0.16388/0.09686, loss_mask_dice_8: 1.05751/1.06644, loss_mask_ce_9: 0.91263/0.98297, loss_mask_bce_9: 0.26539/0.12896, loss_mask_dice_9: 1.43537/1.61347] items per batch[4] items per second[21.53] total items[20] mini batches[ 5] memory[2619] epoch remaining[0:03:28]
INFO:trainer.default_trainer:epochs[ 0] optim steps[6] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.11999/0.37218, loss_mask_bce_0: 0.14499/0.09828, loss_mask_dice_0: 0.68780/0.79620, loss_mask_ce_1: 0.20778/0.33956, loss_mask_bce_1: 0.15618/0.10720, loss_mask_dice_1: 0.80988/0.80026, loss_mask_ce_2: 0.12237/0.41000, loss_mask_bce_2: 0.15738/0.09917, loss_mask_dice_2: 0.76839/0.82227, loss_mask_ce_3: 0.15105/0.28326, loss_mask_bce_3: 0.18317/0.10909, loss_mask_dice_3: 0.85017/0.84839, loss_mask_ce_4: 0.15614/0.31454, loss_mask_bce_4: 0.19004/0.12545, loss_mask_dice_4: 0.86923/0.88368, loss_mask_ce_5: 0.13263/0.48188, loss_mask_bce_5: 0.17199/0.12765, loss_mask_dice_5: 0.94350/0.99999, loss_mask_ce_6: 0.21451/0.22313, loss_mask_bce_6: 0.18434/0.12819, loss_mask_dice_6: 0.90163/0.92311, loss_mask_ce_7: 0.10399/0.66565, loss_mask_bce_7: 0.32734/0.16396, loss_mask_dice_7: 1.45222/1.02017, loss_mask_ce_8: 2.56896/1.94744, loss_mask_bce_8: 0.17600/0.11005, loss_mask_dice_8: 0.78397/1.01936, loss_mask_ce_9: 1.19717/1.01867, loss_mask_bce_9: 0.25671/0.15025, loss_mask_dice_9: 1.76869/1.63934] items per batch[4] items per second[25.50] total items[24] mini batches[ 6] memory[2619] epoch remaining[0:03:03]
INFO:trainer.default_trainer:epochs[ 0] optim steps[7] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 1.27286/0.50085, loss_mask_bce_0: 0.61946/0.17274, loss_mask_dice_0: 1.13057/0.84397, loss_mask_ce_1: 0.85507/0.41320, loss_mask_bce_1: 0.60431/0.17822, loss_mask_dice_1: 1.84132/0.94899, loss_mask_ce_2: 0.92584/0.48369, loss_mask_bce_2: 0.56881/0.16626, loss_mask_dice_2: 1.54236/0.92514, loss_mask_ce_3: 0.47248/0.31030, loss_mask_bce_3: 0.57290/0.17535, loss_mask_dice_3: 1.81806/0.98692, loss_mask_ce_4: 0.71641/0.37195, loss_mask_bce_4: 0.62817/0.19727, loss_mask_dice_4: 2.27265/1.08211, loss_mask_ce_5: 0.71095/0.51461, loss_mask_bce_5: 0.52161/0.18393, loss_mask_dice_5: 1.13853/1.01978, loss_mask_ce_6: 0.91627/0.32215, loss_mask_bce_6: 0.51053/0.18281, loss_mask_dice_6: 1.05875/0.94249, loss_mask_ce_7: 0.70414/0.67115, loss_mask_bce_7: 0.72862/0.24463, loss_mask_dice_7: 1.72228/1.12047, loss_mask_ce_8: 1.51179/1.88520, loss_mask_bce_8: 0.40701/0.15247, loss_mask_dice_8: 1.71905/1.11932, loss_mask_ce_9: 1.31849/1.06150, loss_mask_bce_9: 0.39636/0.18541, loss_mask_dice_9: 3.01559/1.83595] items per batch[4] items per second[25.93] total items[28] mini batches[ 7] memory[2619] epoch remaining[0:02:44]
INFO:trainer.default_trainer:epochs[ 0] optim steps[8] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.06233/0.44604, loss_mask_bce_0: 0.17978/0.17362, loss_mask_dice_0: 0.28561/0.77418, loss_mask_ce_1: 0.05521/0.36845, loss_mask_bce_1: 0.18134/0.17861, loss_mask_dice_1: 0.26002/0.86287, loss_mask_ce_2: 0.05945/0.43066, loss_mask_bce_2: 0.18945/0.16916, loss_mask_dice_2: 0.28971/0.84571, loss_mask_ce_3: 0.08540/0.28218, loss_mask_bce_3: 0.18666/0.17676, loss_mask_dice_3: 0.28516/0.89920, loss_mask_ce_4: 0.08455/0.33602, loss_mask_bce_4: 0.18843/0.19616, loss_mask_dice_4: 0.28165/0.98205, loss_mask_ce_5: 0.12529/0.46594, loss_mask_bce_5: 0.18372/0.18390, loss_mask_dice_5: 0.29034/0.92860, loss_mask_ce_6: 0.28838/0.31793, loss_mask_bce_6: 0.19395/0.18420, loss_mask_dice_6: 0.30433/0.86272, loss_mask_ce_7: 0.20134/0.61242, loss_mask_bce_7: 0.22047/0.24161, loss_mask_dice_7: 0.32879/1.02151, loss_mask_ce_8: 0.46413/1.70757, loss_mask_bce_8: 0.21258/0.15999, loss_mask_dice_8: 0.33444/1.02121, loss_mask_ce_9: 1.15255/1.07288, loss_mask_bce_9: 0.34459/0.20531, loss_mask_dice_9: 0.79813/1.70622] items per batch[4] items per second[25.79] total items[32] mini batches[ 8] memory[2619] epoch remaining[0:02:30]
INFO:trainer.default_trainer:epochs[ 0] optim steps[9] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.13049/0.41098, loss_mask_bce_0: 0.25809/0.18300, loss_mask_dice_0: 0.52419/0.74640, loss_mask_ce_1: 0.10321/0.33898, loss_mask_bce_1: 0.32938/0.19536, loss_mask_dice_1: 0.67667/0.84218, loss_mask_ce_2: 0.09659/0.39354, loss_mask_bce_2: 0.30162/0.18388, loss_mask_dice_2: 0.69726/0.82921, loss_mask_ce_3: 0.14399/0.26683, loss_mask_bce_3: 0.29067/0.18942, loss_mask_dice_3: 0.60042/0.86600, loss_mask_ce_4: 0.11367/0.31132, loss_mask_bce_4: 0.29562/0.20721, loss_mask_dice_4: 0.54623/0.93362, loss_mask_ce_5: 0.15736/0.43166, loss_mask_bce_5: 0.30357/0.19720, loss_mask_dice_5: 0.61662/0.89394, loss_mask_ce_6: 0.21330/0.30630, loss_mask_bce_6: 0.27092/0.19384, loss_mask_dice_6: 0.47579/0.81973, loss_mask_ce_7: 0.09570/0.55501, loss_mask_bce_7: 0.25704/0.24332, loss_mask_dice_7: 0.44225/0.95715, loss_mask_ce_8: 1.57100/1.69239, loss_mask_bce_8: 0.27726/0.17302, loss_mask_dice_8: 0.44120/0.95676, loss_mask_ce_9: 0.99788/1.06455, loss_mask_bce_9: 0.34024/0.22030, loss_mask_dice_9: 0.56661/1.57960] items per batch[4] items per second[25.62] total items[36] mini batches[ 9] memory[2619] epoch remaining[0:02:19]
INFO:trainer.default_trainer:epochs[ 0] optim steps[10] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.19782/0.38966, loss_mask_bce_0: 0.27305/0.19201, loss_mask_dice_0: 0.23848/0.69561, loss_mask_ce_1: 0.12484/0.31757, loss_mask_bce_1: 0.29217/0.20504, loss_mask_dice_1: 0.25925/0.78388, loss_mask_ce_2: 0.13673/0.36786, loss_mask_bce_2: 0.26504/0.19199, loss_mask_dice_2: 0.23382/0.76967, loss_mask_ce_3: 0.14700/0.25485, loss_mask_bce_3: 0.28160/0.19864, loss_mask_dice_3: 0.25398/0.80480, loss_mask_ce_4: 0.10566/0.29075, loss_mask_bce_4: 0.29140/0.21563, loss_mask_dice_4: 0.28613/0.86887, loss_mask_ce_5: 0.20606/0.40910, loss_mask_bce_5: 0.31581/0.20906, loss_mask_dice_5: 0.37385/0.84193, loss_mask_ce_6: 0.32840/0.30851, loss_mask_bce_6: 0.27149/0.20160, loss_mask_dice_6: 0.29748/0.76750, loss_mask_ce_7: 0.19670/0.51918, loss_mask_bce_7: 0.28327/0.24732, loss_mask_dice_7: 0.31341/0.89277, loss_mask_ce_8: 0.44481/1.56763, loss_mask_bce_8: 0.35846/0.19156, loss_mask_dice_8: 0.67270/0.92836, loss_mask_ce_9: 0.93543/1.05164, loss_mask_bce_9: 0.29868/0.22814, loss_mask_dice_9: 0.61236/1.48288] items per batch[4] items per second[25.81] total items[40] mini batches[ 10] memory[2619] epoch remaining[0:02:11]
INFO:trainer.default_trainer:epochs[ 0] optim steps[100] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.01109/0.07698, loss_mask_bce_0: 0.14035/0.20911, loss_mask_dice_0: 0.66728/0.50004, loss_mask_ce_1: 0.00865/0.06970, loss_mask_bce_1: 0.15124/0.22384, loss_mask_dice_1: 0.53209/0.50868, loss_mask_ce_2: 0.00876/0.07539, loss_mask_bce_2: 0.14498/0.22250, loss_mask_dice_2: 0.74570/0.50746, loss_mask_ce_3: 0.01010/0.06980, loss_mask_bce_3: 0.14410/0.21582, loss_mask_dice_3: 0.94165/0.53777, loss_mask_ce_4: 0.00455/0.07042, loss_mask_bce_4: 0.13159/0.21908, loss_mask_dice_4: 0.54735/0.52749, loss_mask_ce_5: 0.01711/0.08549, loss_mask_bce_5: 0.14735/0.22440, loss_mask_dice_5: 1.11396/0.53481, loss_mask_ce_6: 0.00553/0.07889, loss_mask_bce_6: 0.15044/0.23684, loss_mask_dice_6: 0.91774/0.51593, loss_mask_ce_7: 0.00679/0.12916, loss_mask_bce_7: 0.14390/0.23867, loss_mask_dice_7: 0.70700/0.52898, loss_mask_ce_8: 0.02757/0.25765, loss_mask_bce_8: 0.14277/0.23991, loss_mask_dice_8: 0.76169/0.57634, loss_mask_ce_9: 0.21136/0.32642, loss_mask_bce_9: 0.14797/0.24567, loss_mask_dice_9: 0.79111/0.79755] items per batch[4] items per second[0.28] total items[400] mini batches[ 100] memory[2619] epoch remaining[0:00:48]
INFO:trainer.default_trainer:epochs[ 0] optim steps[200] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00552/0.06162, loss_mask_bce_0: 0.01276/0.18357, loss_mask_dice_0: 0.27443/0.49803, loss_mask_ce_1: 0.00395/0.06260, loss_mask_bce_1: 0.00976/0.19152, loss_mask_dice_1: 0.21622/0.48752, loss_mask_ce_2: 0.00407/0.05936, loss_mask_bce_2: 0.01399/0.18881, loss_mask_dice_2: 0.28395/0.48820, loss_mask_ce_3: 0.00561/0.05874, loss_mask_bce_3: 0.01765/0.18535, loss_mask_dice_3: 0.29580/0.50423, loss_mask_ce_4: 0.00454/0.05930, loss_mask_bce_4: 0.01634/0.18730, loss_mask_dice_4: 0.30950/0.50508, loss_mask_ce_5: 0.00550/0.06752, loss_mask_bce_5: 0.01320/0.19049, loss_mask_dice_5: 0.23071/0.50811, loss_mask_ce_6: 0.00458/0.06470, loss_mask_bce_6: 0.00738/0.19621, loss_mask_dice_6: 0.17051/0.50128, loss_mask_ce_7: 0.01230/0.09643, loss_mask_bce_7: 0.00919/0.20152, loss_mask_dice_7: 0.21681/0.51443, loss_mask_ce_8: 0.03844/0.17850, loss_mask_bce_8: 0.00892/0.20061, loss_mask_dice_8: 0.22685/0.54054, loss_mask_ce_9: 0.06743/0.23764, loss_mask_bce_9: 0.00813/0.21690, loss_mask_dice_9: 0.34270/0.71207] items per batch[4] items per second[0.26] total items[800] mini batches[ 200] memory[2619] epoch remaining[0:00:29]
INFO:trainer.default_trainer:epochs[ 0] optim steps[300] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.03555/0.05826, loss_mask_bce_0: 0.25851/0.17601, loss_mask_dice_0: 0.48942/0.51226, loss_mask_ce_1: 0.03310/0.05965, loss_mask_bce_1: 0.27243/0.18146, loss_mask_dice_1: 0.51221/0.51388, loss_mask_ce_2: 0.03241/0.05641, loss_mask_bce_2: 0.27316/0.17921, loss_mask_dice_2: 0.52562/0.50509, loss_mask_ce_3: 0.02012/0.05451, loss_mask_bce_3: 0.33782/0.17804, loss_mask_dice_3: 0.56947/0.51440, loss_mask_ce_4: 0.03369/0.05950, loss_mask_bce_4: 0.33101/0.17911, loss_mask_dice_4: 0.56721/0.52381, loss_mask_ce_5: 0.02133/0.06687, loss_mask_bce_5: 0.30922/0.18107, loss_mask_dice_5: 0.56707/0.52298, loss_mask_ce_6: 0.01208/0.06530, loss_mask_bce_6: 0.33776/0.18565, loss_mask_dice_6: 0.60865/0.51992, loss_mask_ce_7: 0.00462/0.09378, loss_mask_bce_7: 0.47107/0.19036, loss_mask_dice_7: 0.63113/0.53662, loss_mask_ce_8: 0.07204/0.15152, loss_mask_bce_8: 0.54774/0.19156, loss_mask_dice_8: 0.62462/0.55813, loss_mask_ce_9: 0.16009/0.20478, loss_mask_bce_9: 0.20872/0.20960, loss_mask_dice_9: 0.32562/0.71232] items per batch[4] items per second[0.25] total items[1200] mini batches[ 300] memory[2619] epoch remaining[0:00:12]
INFO:trainer.default_trainer:Evaluation start ...
INFO:trainer.default_trainer:Evaluation start ...
INFO:datasets.dataset_mappers.dolphin_dataset_mapper:[Dolphin DatasetMapper] Full TransformGens used: [Resize(shape=(512, 512))]
INFO:datasets.dataset_mappers.dolphin_dataset_mapper:[Dolphin DatasetMapper] Full TransformGens used: [Resize(shape=(512, 512))]
INFO:detectron2.data.datasets.coco:Loaded 300 images in COCO format from /home/hrw/datasets/ndd20/coco/val_300.coco.json
INFO:detectron2.data.datasets.coco:Loaded 300 images in COCO format from /home/hrw/datasets/ndd20/coco/val_300.coco.json
INFO:detectron2.data.common:Serializing 300 elements to byte tensors and concatenating them all ...
INFO:detectron2.data.common:Serializing 300 elements to byte tensors and concatenating them all ...
INFO:detectron2.data.common:Serialized dataset takes 0.35 MiB
INFO:detectron2.data.common:Serialized dataset takes 0.35 MiB
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 11/75. Dataloading: 0.0008 s/iter. Inference: 0.1124 s/iter. Eval: 0.3584 s/iter. Total: 0.4716 s/iter. ETA=0:00:30
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 22/75. Dataloading: 0.0014 s/iter. Inference: 0.1124 s/iter. Eval: 0.3578 s/iter. Total: 0.4716 s/iter. ETA=0:00:24
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 33/75. Dataloading: 0.0015 s/iter. Inference: 0.1172 s/iter. Eval: 0.3593 s/iter. Total: 0.4781 s/iter. ETA=0:00:20
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 44/75. Dataloading: 0.0016 s/iter. Inference: 0.1159 s/iter. Eval: 0.3601 s/iter. Total: 0.4776 s/iter. ETA=0:00:14
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 55/75. Dataloading: 0.0016 s/iter. Inference: 0.1151 s/iter. Eval: 0.3605 s/iter. Total: 0.4773 s/iter. ETA=0:00:09
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 66/75. Dataloading: 0.0016 s/iter. Inference: 0.1146 s/iter. Eval: 0.3612 s/iter. Total: 0.4775 s/iter. ETA=0:00:04
INFO:trainer.default_trainer:This epoch takes 0:01:36.662051
INFO:trainer.default_trainer:PROGRESS: 6.67%
INFO:trainer.default_trainer:Config files are at ['configs/seem/focall_unicl_lang_v1.yaml']
INFO:trainer.default_trainer:Start epoch: 1 training.
INFO:detectron2.evaluation.coco_evaluation:Preparing results for COCO format ...
INFO:detectron2.evaluation.coco_evaluation:Saving results to output/coco_instances_results.json
INFO:detectron2.evaluation.coco_evaluation:Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.01s)
creating index...
index created!
INFO:detectron2.evaluation.fast_eval_api:Evaluate annotation type *bbox*
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.evaluate() finished in 0.06 seconds.
INFO:detectron2.evaluation.fast_eval_api:Accumulating evaluation results...
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.accumulate() finished in 0.01 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
INFO:detectron2.evaluation.coco_evaluation:Evaluation results for bbox:
| AP | AP50 | AP75 | APs | APm | APl |
|:-----:|:------:|:------:|:-----:|:-----:|:-----:|
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Loading and preparing results...
DONE (t=0.16s)
creating index...
index created!
INFO:detectron2.evaluation.fast_eval_api:Evaluate annotation type *segm*
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.evaluate() finished in 0.16 seconds.
INFO:detectron2.evaluation.fast_eval_api:Accumulating evaluation results...
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.accumulate() finished in 0.01 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.742
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.956
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.851
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.332
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.581
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.833
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.588
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.780
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.803
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.515
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.704
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.856
INFO:detectron2.evaluation.coco_evaluation:Evaluation results for segm:
| AP | AP50 | AP75 | APs | APm | APl |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 74.162 | 95.631 | 85.070 | 33.220 | 58.105 | 83.338 |
INFO:trainer.default_trainer:{'dolphin-val/coco': OrderedDict([('bbox', {'AP': 0.0, 'AP50': 0.0, 'AP75': 0.0, 'APs': 0.0, 'APm': 0.0, 'APl': 0.0}), ('segm', {'AP': 74.16189070851016, 'AP50': 95.6305818253082, 'AP75': 85.06993480079326, 'APs': 33.22003520453022, 'APm': 58.10488799390387, 'APl': 83.33758505125928})])}
INFO:trainer.default_trainer:This epoch takes 0:01:37.972556
INFO:trainer.default_trainer:PROGRESS: 6.67%
INFO:trainer.default_trainer:Config files are at ['configs/seem/focall_unicl_lang_v1.yaml']
INFO:trainer.default_trainer:Start epoch: 1 training.
INFO:trainer.default_trainer:epochs[ 1] optim steps[400] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.01336/0.05318, loss_mask_bce_0: 0.14737/0.17277, loss_mask_dice_0: 0.47276/0.49663, loss_mask_ce_1: 0.01697/0.05366, loss_mask_bce_1: 0.15319/0.17674, loss_mask_dice_1: 0.55161/0.49999, loss_mask_ce_2: 0.01548/0.05024, loss_mask_bce_2: 0.14313/0.17504, loss_mask_dice_2: 0.70355/0.49373, loss_mask_ce_3: 0.00746/0.04857, loss_mask_bce_3: 0.14082/0.17436, loss_mask_dice_3: 0.42139/0.50292, loss_mask_ce_4: 0.01648/0.05301, loss_mask_bce_4: 0.15142/0.17520, loss_mask_dice_4: 0.51428/0.50722, loss_mask_ce_5: 0.01646/0.05967, loss_mask_bce_5: 0.15543/0.17666, loss_mask_dice_5: 0.25672/0.50779, loss_mask_ce_6: 0.01496/0.05759, loss_mask_bce_6: 0.13687/0.17990, loss_mask_dice_6: 0.35947/0.50761, loss_mask_ce_7: 0.03401/0.08360, loss_mask_bce_7: 0.16062/0.18676, loss_mask_dice_7: 0.41254/0.52098, loss_mask_ce_8: 0.03068/0.13019, loss_mask_bce_8: 0.14171/0.18596, loss_mask_dice_8: 0.43949/0.54203, loss_mask_ce_9: 0.06359/0.18566, loss_mask_bce_9: 0.17074/0.21007, loss_mask_dice_9: 0.44648/0.68651] items per batch[4] items per second[0.08] total items[1600] mini batches[ 400] memory[2452] epoch remaining[0:00:57]
INFO:trainer.default_trainer:epochs[ 1] optim steps[500] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00024/0.04958, loss_mask_bce_0: 0.05416/0.17764, loss_mask_dice_0: 0.18840/0.48878, loss_mask_ce_1: 0.00047/0.05085, loss_mask_bce_1: 0.05300/0.18150, loss_mask_dice_1: 0.17789/0.48857, loss_mask_ce_2: 0.00039/0.04543, loss_mask_bce_2: 0.05048/0.18018, loss_mask_dice_2: 0.16485/0.48423, loss_mask_ce_3: 0.00035/0.04696, loss_mask_bce_3: 0.04815/0.17417, loss_mask_dice_3: 0.16039/0.49295, loss_mask_ce_4: 0.00018/0.05130, loss_mask_bce_4: 0.05291/0.18109, loss_mask_dice_4: 0.18419/0.49736, loss_mask_ce_5: 0.00026/0.05618, loss_mask_bce_5: 0.06206/0.18110, loss_mask_dice_5: 0.20029/0.49489, loss_mask_ce_6: 0.00019/0.05604, loss_mask_bce_6: 0.05997/0.17981, loss_mask_dice_6: 0.22123/0.49478, loss_mask_ce_7: 0.00023/0.07875, loss_mask_bce_7: 0.05486/0.18590, loss_mask_dice_7: 0.19087/0.50955, loss_mask_ce_8: 0.00051/0.11858, loss_mask_bce_8: 0.05755/0.18710, loss_mask_dice_8: 0.20089/0.52794, loss_mask_ce_9: 0.04922/0.17377, loss_mask_bce_9: 0.06242/0.20901, loss_mask_dice_9: 0.17291/0.66928] items per batch[4] items per second[0.26] total items[2000] mini batches[ 500] memory[2452] epoch remaining[0:00:39]
INFO:trainer.default_trainer:epochs[ 1] optim steps[600] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00747/0.04931, loss_mask_bce_0: 0.03084/0.17354, loss_mask_dice_0: 1.10855/0.49019, loss_mask_ce_1: 0.01626/0.04974, loss_mask_bce_1: 0.03571/0.17681, loss_mask_dice_1: 1.06179/0.49167, loss_mask_ce_2: 0.02076/0.04567, loss_mask_bce_2: 0.02921/0.17562, loss_mask_dice_2: 0.86686/0.48558, loss_mask_ce_3: 0.02579/0.04737, loss_mask_bce_3: 0.03245/0.17083, loss_mask_dice_3: 0.96708/0.49032, loss_mask_ce_4: 0.03467/0.05157, loss_mask_bce_4: 0.02905/0.17689, loss_mask_dice_4: 0.88288/0.50091, loss_mask_ce_5: 0.03404/0.05677, loss_mask_bce_5: 0.03294/0.17698, loss_mask_dice_5: 0.95997/0.49536, loss_mask_ce_6: 0.18176/0.05704, loss_mask_bce_6: 0.02397/0.17584, loss_mask_dice_6: 0.63356/0.49330, loss_mask_ce_7: 0.09983/0.07844, loss_mask_bce_7: 0.03763/0.18133, loss_mask_dice_7: 0.91008/0.51181, loss_mask_ce_8: 0.03421/0.11545, loss_mask_bce_8: 0.03127/0.18382, loss_mask_dice_8: 1.16570/0.52724, loss_mask_ce_9: 0.07125/0.16617, loss_mask_bce_9: 0.02903/0.20536, loss_mask_dice_9: 1.17694/0.66178] items per batch[4] items per second[0.25] total items[2400] mini batches[ 600] memory[2452] epoch remaining[0:00:23]
INFO:trainer.default_trainer:epochs[ 1] optim steps[700] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00094/0.04937, loss_mask_bce_0: 0.06984/0.17112, loss_mask_dice_0: 0.35258/0.48513, loss_mask_ce_1: 0.00126/0.04866, loss_mask_bce_1: 0.07521/0.17388, loss_mask_dice_1: 0.31358/0.48867, loss_mask_ce_2: 0.00125/0.04540, loss_mask_bce_2: 0.06814/0.17278, loss_mask_dice_2: 0.29701/0.48238, loss_mask_ce_3: 0.00059/0.04541, loss_mask_bce_3: 0.07112/0.16864, loss_mask_dice_3: 0.24567/0.48630, loss_mask_ce_4: 0.00094/0.04926, loss_mask_bce_4: 0.07819/0.17410, loss_mask_dice_4: 0.27702/0.49551, loss_mask_ce_5: 0.00142/0.05678, loss_mask_bce_5: 0.07094/0.17431, loss_mask_dice_5: 0.25336/0.49132, loss_mask_ce_6: 0.00105/0.05679, loss_mask_bce_6: 0.08168/0.17329, loss_mask_dice_6: 0.33343/0.48896, loss_mask_ce_7: 0.03490/0.07930, loss_mask_bce_7: 0.07075/0.17808, loss_mask_dice_7: 0.27071/0.50984, loss_mask_ce_8: 0.00759/0.11252, loss_mask_bce_8: 0.08235/0.18142, loss_mask_dice_8: 0.29212/0.52265, loss_mask_ce_9: 0.04977/0.16229, loss_mask_bce_9: 0.08098/0.20384, loss_mask_dice_9: 0.28812/0.65257] items per batch[4] items per second[0.25] total items[2800] mini batches[ 700] memory[2454] epoch remaining[0:00:07]
INFO:trainer.default_trainer:Evaluation start ...
INFO:trainer.default_trainer:Evaluation start ...
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 11/75. Dataloading: 0.0009 s/iter. Inference: 0.1136 s/iter. Eval: 0.3646 s/iter. Total: 0.4792 s/iter. ETA=0:00:30
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 22/75. Dataloading: 0.0013 s/iter. Inference: 0.1212 s/iter. Eval: 0.3661 s/iter. Total: 0.4886 s/iter. ETA=0:00:25
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 33/75. Dataloading: 0.0014 s/iter. Inference: 0.1179 s/iter. Eval: 0.3672 s/iter. Total: 0.4866 s/iter. ETA=0:00:20
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 44/75. Dataloading: 0.0014 s/iter. Inference: 0.1165 s/iter. Eval: 0.3679 s/iter. Total: 0.4859 s/iter. ETA=0:00:15
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 55/75. Dataloading: 0.0014 s/iter. Inference: 0.1158 s/iter. Eval: 0.3683 s/iter. Total: 0.4856 s/iter. ETA=0:00:09
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 66/75. Dataloading: 0.0014 s/iter. Inference: 0.1153 s/iter. Eval: 0.3687 s/iter. Total: 0.4855 s/iter. ETA=0:00:04
INFO:trainer.default_trainer:This epoch takes 0:01:36.823317
INFO:trainer.default_trainer:PROGRESS: 13.33%
INFO:trainer.default_trainer:Config files are at ['configs/seem/focall_unicl_lang_v1.yaml']
INFO:trainer.default_trainer:Start epoch: 2 training.
INFO:detectron2.evaluation.coco_evaluation:Preparing results for COCO format ...
INFO:detectron2.evaluation.coco_evaluation:Saving results to output/coco_instances_results.json
INFO:detectron2.evaluation.coco_evaluation:Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.01s)
creating index...
index created!
INFO:detectron2.evaluation.fast_eval_api:Evaluate annotation type *bbox*
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.evaluate() finished in 0.06 seconds.
INFO:detectron2.evaluation.fast_eval_api:Accumulating evaluation results...
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.accumulate() finished in 0.02 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
INFO:detectron2.evaluation.coco_evaluation:Evaluation results for bbox:
| AP | AP50 | AP75 | APs | APm | APl |
|:-----:|:------:|:------:|:-----:|:-----:|:-----:|
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Loading and preparing results...
DONE (t=0.16s)
creating index...
index created!
INFO:detectron2.evaluation.fast_eval_api:Evaluate annotation type *segm*
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.evaluate() finished in 0.17 seconds.
INFO:detectron2.evaluation.fast_eval_api:Accumulating evaluation results...
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.accumulate() finished in 0.01 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.749
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.964
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.852
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.387
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.597
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.841
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.595
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.786
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.810
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.480
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.711
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.865
INFO:detectron2.evaluation.coco_evaluation:Evaluation results for segm:
| AP | AP50 | AP75 | APs | APm | APl |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 74.948 | 96.441 | 85.211 | 38.736 | 59.727 | 84.146 |
INFO:trainer.default_trainer:{'dolphin-val/coco': OrderedDict([('bbox', {'AP': 0.0, 'AP50': 0.0, 'AP75': 0.0, 'APs': 0.0, 'APm': 0.0, 'APl': 0.0}), ('segm', {'AP': 74.94767517514896, 'AP50': 96.44077414738031, 'AP75': 85.21115410195647, 'APs': 38.73570800960421, 'APm': 59.72718515785537, 'APl': 84.14606081733142})])}
INFO:trainer.default_trainer:This epoch takes 0:01:36.740384
INFO:trainer.default_trainer:PROGRESS: 13.33%
INFO:trainer.default_trainer:Config files are at ['configs/seem/focall_unicl_lang_v1.yaml']
INFO:trainer.default_trainer:Start epoch: 2 training.
INFO:trainer.default_trainer:epochs[ 2] optim steps[800] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00059/0.04596, loss_mask_bce_0: 0.09613/0.16742, loss_mask_dice_0: 0.24049/0.47929, loss_mask_ce_1: 0.00049/0.04652, loss_mask_bce_1: 0.08804/0.17001, loss_mask_dice_1: 0.24926/0.48283, loss_mask_ce_2: 0.00092/0.04334, loss_mask_bce_2: 0.08829/0.16920, loss_mask_dice_2: 0.27385/0.47759, loss_mask_ce_3: 0.00074/0.04277, loss_mask_bce_3: 0.09067/0.16583, loss_mask_dice_3: 0.25454/0.48132, loss_mask_ce_4: 0.00044/0.04697, loss_mask_bce_4: 0.10031/0.17042, loss_mask_dice_4: 0.27923/0.48995, loss_mask_ce_5: 0.00104/0.05354, loss_mask_bce_5: 0.11036/0.17100, loss_mask_dice_5: 0.28688/0.48615, loss_mask_ce_6: 0.00241/0.05548, loss_mask_bce_6: 0.09911/0.17054, loss_mask_dice_6: 0.28177/0.48562, loss_mask_ce_7: 0.01605/0.07776, loss_mask_bce_7: 0.09286/0.17525, loss_mask_dice_7: 0.25917/0.50417, loss_mask_ce_8: 0.01288/0.10825, loss_mask_bce_8: 0.11660/0.17767, loss_mask_dice_8: 0.26905/0.51560, loss_mask_ce_9: 0.05507/0.15544, loss_mask_bce_9: 0.12422/0.20133, loss_mask_dice_9: 0.28270/0.64134] items per batch[4] items per second[0.07] total items[3200] mini batches[ 800] memory[2451] epoch remaining[0:00:52]
INFO:trainer.default_trainer:epochs[ 2] optim steps[900] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00026/0.04491, loss_mask_bce_0: 0.04866/0.16920, loss_mask_dice_0: 0.25625/0.47533, loss_mask_ce_1: 0.00043/0.04523, loss_mask_bce_1: 0.04434/0.17142, loss_mask_dice_1: 0.23186/0.47897, loss_mask_ce_2: 0.00048/0.04181, loss_mask_bce_2: 0.04415/0.17155, loss_mask_dice_2: 0.18182/0.47443, loss_mask_ce_3: 0.00024/0.04217, loss_mask_bce_3: 0.04861/0.16767, loss_mask_dice_3: 0.27562/0.47775, loss_mask_ce_4: 0.00024/0.04637, loss_mask_bce_4: 0.04416/0.17251, loss_mask_dice_4: 0.20260/0.48744, loss_mask_ce_5: 0.00021/0.05364, loss_mask_bce_5: 0.04728/0.17273, loss_mask_dice_5: 0.28833/0.48221, loss_mask_ce_6: 0.00013/0.05375, loss_mask_bce_6: 0.04411/0.17241, loss_mask_dice_6: 0.21938/0.48168, loss_mask_ce_7: 0.00069/0.07548, loss_mask_bce_7: 0.04775/0.17788, loss_mask_dice_7: 0.23280/0.49892, loss_mask_ce_8: 0.00141/0.10502, loss_mask_bce_8: 0.04579/0.18132, loss_mask_dice_8: 0.27357/0.51103, loss_mask_ce_9: 0.04477/0.15050, loss_mask_bce_9: 0.04744/0.20394, loss_mask_dice_9: 0.33347/0.63239] items per batch[4] items per second[0.26] total items[3600] mini batches[ 900] memory[2454] epoch remaining[0:00:35]
INFO:trainer.default_trainer:epochs[ 2] optim steps[1000] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00252/0.04495, loss_mask_bce_0: 0.19725/0.16670, loss_mask_dice_0: 0.40048/0.47883, loss_mask_ce_1: 0.00387/0.04537, loss_mask_bce_1: 0.20467/0.16857, loss_mask_dice_1: 0.37355/0.48034, loss_mask_ce_2: 0.00408/0.04292, loss_mask_bce_2: 0.20924/0.16872, loss_mask_dice_2: 0.40370/0.47630, loss_mask_ce_3: 0.00512/0.04340, loss_mask_bce_3: 0.20639/0.16524, loss_mask_dice_3: 0.41592/0.47811, loss_mask_ce_4: 0.00210/0.04675, loss_mask_bce_4: 0.20288/0.16970, loss_mask_dice_4: 0.39659/0.48954, loss_mask_ce_5: 0.00137/0.05444, loss_mask_bce_5: 0.21744/0.17000, loss_mask_dice_5: 0.45692/0.48366, loss_mask_ce_6: 0.00170/0.05300, loss_mask_bce_6: 0.22740/0.16990, loss_mask_dice_6: 0.46120/0.48385, loss_mask_ce_7: 0.00197/0.07401, loss_mask_bce_7: 0.20485/0.17482, loss_mask_dice_7: 0.40102/0.49939, loss_mask_ce_8: 0.00607/0.10274, loss_mask_bce_8: 0.21328/0.17812, loss_mask_dice_8: 0.41840/0.51046, loss_mask_ce_9: 0.06221/0.14829, loss_mask_bce_9: 0.21924/0.19986, loss_mask_dice_9: 0.38914/0.62733] items per batch[4] items per second[0.26] total items[4000] mini batches[ 1000] memory[2454] epoch remaining[0:00:19]
INFO:trainer.default_trainer:epochs[ 2] optim steps[1100] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00065/0.04325, loss_mask_bce_0: 0.09432/0.16573, loss_mask_dice_0: 0.16371/0.47604, loss_mask_ce_1: 0.00088/0.04439, loss_mask_bce_1: 0.10701/0.16765, loss_mask_dice_1: 0.17096/0.47781, loss_mask_ce_2: 0.00094/0.04139, loss_mask_bce_2: 0.10083/0.16776, loss_mask_dice_2: 0.17244/0.47317, loss_mask_ce_3: 0.00132/0.04250, loss_mask_bce_3: 0.10139/0.16448, loss_mask_dice_3: 0.17419/0.47386, loss_mask_ce_4: 0.00158/0.04579, loss_mask_bce_4: 0.10754/0.16896, loss_mask_dice_4: 0.18360/0.48717, loss_mask_ce_5: 0.00064/0.05289, loss_mask_bce_5: 0.09657/0.16886, loss_mask_dice_5: 0.18148/0.48100, loss_mask_ce_6: 0.00065/0.05083, loss_mask_bce_6: 0.09755/0.16895, loss_mask_dice_6: 0.16417/0.48098, loss_mask_ce_7: 0.07165/0.07075, loss_mask_bce_7: 0.09588/0.17443, loss_mask_dice_7: 0.14907/0.49570, loss_mask_ce_8: 0.01852/0.09916, loss_mask_bce_8: 0.11522/0.17732, loss_mask_dice_8: 0.17995/0.50801, loss_mask_ce_9: 0.17070/0.14646, loss_mask_bce_9: 0.26961/0.19908, loss_mask_dice_9: 0.53387/0.62169] items per batch[4] items per second[0.26] total items[4400] mini batches[ 1100] memory[2455] epoch remaining[0:00:03]
INFO:trainer.default_trainer:Evaluation start ...
INFO:trainer.default_trainer:Evaluation start ...
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 11/75. Dataloading: 0.0008 s/iter. Inference: 0.1138 s/iter. Eval: 0.3914 s/iter. Total: 0.5060 s/iter. ETA=0:00:32
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 22/75. Dataloading: 0.0015 s/iter. Inference: 0.1137 s/iter. Eval: 0.3739 s/iter. Total: 0.4891 s/iter. ETA=0:00:25
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 33/75. Dataloading: 0.0016 s/iter. Inference: 0.1136 s/iter. Eval: 0.3712 s/iter. Total: 0.4865 s/iter. ETA=0:00:20
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 44/75. Dataloading: 0.0017 s/iter. Inference: 0.1135 s/iter. Eval: 0.3705 s/iter. Total: 0.4857 s/iter. ETA=0:00:15
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 55/75. Dataloading: 0.0017 s/iter. Inference: 0.1134 s/iter. Eval: 0.3701 s/iter. Total: 0.4853 s/iter. ETA=0:00:09
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 66/75. Dataloading: 0.0017 s/iter. Inference: 0.1133 s/iter. Eval: 0.3700 s/iter. Total: 0.4851 s/iter. ETA=0:00:04
INFO:trainer.default_trainer:This epoch takes 0:01:36.424428
INFO:trainer.default_trainer:PROGRESS: 20.00%
INFO:trainer.default_trainer:Config files are at ['configs/seem/focall_unicl_lang_v1.yaml']
INFO:trainer.default_trainer:Start epoch: 3 training.
INFO:detectron2.evaluation.coco_evaluation:Preparing results for COCO format ...
INFO:detectron2.evaluation.coco_evaluation:Saving results to output/coco_instances_results.json
INFO:detectron2.evaluation.coco_evaluation:Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.02s)
creating index...
index created!
INFO:detectron2.evaluation.fast_eval_api:Evaluate annotation type *bbox*
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.evaluate() finished in 0.06 seconds.
INFO:detectron2.evaluation.fast_eval_api:Accumulating evaluation results...
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.accumulate() finished in 0.01 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
INFO:detectron2.evaluation.coco_evaluation:Evaluation results for bbox:
| AP | AP50 | AP75 | APs | APm | APl |
|:-----:|:------:|:------:|:-----:|:-----:|:-----:|
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Loading and preparing results...
DONE (t=0.15s)
creating index...
index created!
INFO:detectron2.evaluation.fast_eval_api:Evaluate annotation type *segm*
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.evaluate() finished in 0.16 seconds.
INFO:detectron2.evaluation.fast_eval_api:Accumulating evaluation results...
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.accumulate() finished in 0.01 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.742
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.959
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.856
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.588
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.837
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.595
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.785
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.801
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.500
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.697
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.856
INFO:detectron2.evaluation.coco_evaluation:Evaluation results for segm:
| AP | AP50 | AP75 | APs | APm | APl |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 74.213 | 95.878 | 85.553 | 34.518 | 58.756 | 83.726 |
INFO:trainer.default_trainer:{'dolphin-val/coco': OrderedDict([('bbox', {'AP': 0.0, 'AP50': 0.0, 'AP75': 0.0, 'APs': 0.0, 'APm': 0.0, 'APl': 0.0}), ('segm', {'AP': 74.21327933208559, 'AP50': 95.8777929768878, 'AP75': 85.55298585682921, 'APs': 34.51842955160878, 'APm': 58.75576266145568, 'APl': 83.7255528818825})])}
INFO:trainer.default_trainer:This epoch takes 0:01:36.636079
INFO:trainer.default_trainer:PROGRESS: 20.00%
INFO:trainer.default_trainer:Config files are at ['configs/seem/focall_unicl_lang_v1.yaml']
INFO:trainer.default_trainer:Start epoch: 3 training.
INFO:trainer.default_trainer:epochs[ 3] optim steps[1200] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00650/0.04105, loss_mask_bce_0: 0.06453/0.16344, loss_mask_dice_0: 0.85534/0.47372, loss_mask_ce_1: 0.00662/0.04213, loss_mask_bce_1: 0.07122/0.16546, loss_mask_dice_1: 0.99379/0.47553, loss_mask_ce_2: 0.00298/0.03971, loss_mask_bce_2: 0.06619/0.16543, loss_mask_dice_2: 0.88942/0.47081, loss_mask_ce_3: 0.00540/0.04113, loss_mask_bce_3: 0.06678/0.16261, loss_mask_dice_3: 0.89898/0.47112, loss_mask_ce_4: 0.02857/0.04463, loss_mask_bce_4: 0.06957/0.16661, loss_mask_dice_4: 0.95520/0.48264, loss_mask_ce_5: 0.01684/0.05187, loss_mask_bce_5: 0.07972/0.16667, loss_mask_dice_5: 0.87595/0.47692, loss_mask_ce_6: 0.02754/0.04977, loss_mask_bce_6: 0.08216/0.16689, loss_mask_dice_6: 0.81485/0.47837, loss_mask_ce_7: 0.22087/0.06982, loss_mask_bce_7: 0.06981/0.17183, loss_mask_dice_7: 0.88050/0.49229, loss_mask_ce_8: 0.03133/0.09540, loss_mask_bce_8: 0.07740/0.17493, loss_mask_dice_8: 0.99231/0.50451, loss_mask_ce_9: 0.07437/0.14288, loss_mask_bce_9: 0.09494/0.19635, loss_mask_dice_9: 1.83800/0.61444] items per batch[4] items per second[0.07] total items[4800] mini batches[ 1200] memory[2451] epoch remaining[0:00:48]
INFO:trainer.default_trainer:epochs[ 3] optim steps[1300] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00015/0.04137, loss_mask_bce_0: 0.05403/0.16431, loss_mask_dice_0: 0.34077/0.47090, loss_mask_ce_1: 0.00026/0.04165, loss_mask_bce_1: 0.06316/0.16797, loss_mask_dice_1: 0.29807/0.47297, loss_mask_ce_2: 0.00039/0.03938, loss_mask_bce_2: 0.04269/0.16802, loss_mask_dice_2: 0.29904/0.46915, loss_mask_ce_3: 0.00059/0.04073, loss_mask_bce_3: 0.04252/0.16481, loss_mask_dice_3: 0.27228/0.46782, loss_mask_ce_4: 0.00082/0.04453, loss_mask_bce_4: 0.05446/0.16909, loss_mask_dice_4: 0.29063/0.48068, loss_mask_ce_5: 0.00043/0.05266, loss_mask_bce_5: 0.06150/0.16747, loss_mask_dice_5: 0.31868/0.47299, loss_mask_ce_6: 0.00033/0.05138, loss_mask_bce_6: 0.06580/0.16755, loss_mask_dice_6: 0.31803/0.47524, loss_mask_ce_7: 0.00247/0.06974, loss_mask_bce_7: 0.04869/0.17230, loss_mask_dice_7: 0.27559/0.48888, loss_mask_ce_8: 0.07377/0.09337, loss_mask_bce_8: 0.05704/0.17653, loss_mask_dice_8: 0.31031/0.50034, loss_mask_ce_9: 0.05484/0.14093, loss_mask_bce_9: 0.05348/0.19755, loss_mask_dice_9: 0.35093/0.60886] items per batch[4] items per second[0.25] total items[5200] mini batches[ 1300] memory[2453] epoch remaining[0:00:31]
INFO:trainer.default_trainer:epochs[ 3] optim steps[1400] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.03274/0.04135, loss_mask_bce_0: 0.43375/0.16203, loss_mask_dice_0: 0.53511/0.47345, loss_mask_ce_1: 0.03940/0.04225, loss_mask_bce_1: 0.42362/0.16555, loss_mask_dice_1: 0.59308/0.47497, loss_mask_ce_2: 0.03510/0.03992, loss_mask_bce_2: 0.37740/0.16559, loss_mask_dice_2: 0.54474/0.47212, loss_mask_ce_3: 0.03768/0.04130, loss_mask_bce_3: 0.35993/0.16254, loss_mask_dice_3: 0.60116/0.46920, loss_mask_ce_4: 0.03274/0.04478, loss_mask_bce_4: 0.39488/0.16667, loss_mask_dice_4: 0.58846/0.48300, loss_mask_ce_5: 0.03327/0.05302, loss_mask_bce_5: 0.41206/0.16537, loss_mask_dice_5: 0.59695/0.47529, loss_mask_ce_6: 0.02720/0.05191, loss_mask_bce_6: 0.43214/0.16541, loss_mask_dice_6: 0.62187/0.47690, loss_mask_ce_7: 0.04395/0.06986, loss_mask_bce_7: 0.47904/0.17000, loss_mask_dice_7: 0.64176/0.49312, loss_mask_ce_8: 0.06264/0.09316, loss_mask_bce_8: 0.53343/0.17427, loss_mask_dice_8: 0.64240/0.50284, loss_mask_ce_9: 0.06644/0.13974, loss_mask_bce_9: 0.59135/0.19494, loss_mask_dice_9: 0.58945/0.60931] items per batch[4] items per second[0.25] total items[5600] mini batches[ 1400] memory[2453] epoch remaining[0:00:15]
INFO:trainer.default_trainer:Evaluation start ...
INFO:trainer.default_trainer:epochs[ 3] optim steps[1500] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.03139/0.04061, loss_mask_bce_0: 0.11162/0.16095, loss_mask_dice_0: 0.45169/0.47158, loss_mask_ce_1: 0.03866/0.04254, loss_mask_bce_1: 0.10330/0.16433, loss_mask_dice_1: 0.43496/0.47327, loss_mask_ce_2: 0.04122/0.03996, loss_mask_bce_2: 0.09879/0.16407, loss_mask_dice_2: 0.40957/0.46902, loss_mask_ce_3: 0.03076/0.04112, loss_mask_bce_3: 0.09977/0.16136, loss_mask_dice_3: 0.40745/0.46652, loss_mask_ce_4: 0.08657/0.04493, loss_mask_bce_4: 0.10123/0.16545, loss_mask_dice_4: 0.43594/0.48057, loss_mask_ce_5: 0.09939/0.05281, loss_mask_bce_5: 0.09704/0.16420, loss_mask_dice_5: 0.43068/0.47331, loss_mask_ce_6: 0.11478/0.05212, loss_mask_bce_6: 0.10939/0.16430, loss_mask_dice_6: 0.44444/0.47571, loss_mask_ce_7: 0.03626/0.06987, loss_mask_bce_7: 0.09984/0.16832, loss_mask_dice_7: 0.42247/0.49201, loss_mask_ce_8: 0.04704/0.09158, loss_mask_bce_8: 0.08459/0.17299, loss_mask_dice_8: 0.36510/0.50031, loss_mask_ce_9: 0.05934/0.13847, loss_mask_bce_9: 0.09648/0.19437, loss_mask_dice_9: 0.50909/0.60504] items per batch[4] items per second[0.25] total items[6000] mini batches[ 1500] memory[2453] epoch remaining[0:00:00]
INFO:trainer.default_trainer:Evaluation start ...
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 11/75. Dataloading: 0.0008 s/iter. Inference: 0.1138 s/iter. Eval: 0.3610 s/iter. Total: 0.4756 s/iter. ETA=0:00:30
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 22/75. Dataloading: 0.0013 s/iter. Inference: 0.1137 s/iter. Eval: 0.3634 s/iter. Total: 0.4785 s/iter. ETA=0:00:25
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 33/75. Dataloading: 0.0014 s/iter. Inference: 0.1137 s/iter. Eval: 0.3637 s/iter. Total: 0.4788 s/iter. ETA=0:00:20
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 44/75. Dataloading: 0.0014 s/iter. Inference: 0.1135 s/iter. Eval: 0.3635 s/iter. Total: 0.4785 s/iter. ETA=0:00:14
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 55/75. Dataloading: 0.0014 s/iter. Inference: 0.1135 s/iter. Eval: 0.3638 s/iter. Total: 0.4788 s/iter. ETA=0:00:09
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 66/75. Dataloading: 0.0014 s/iter. Inference: 0.1134 s/iter. Eval: 0.3642 s/iter. Total: 0.4791 s/iter. ETA=0:00:04
INFO:trainer.default_trainer:This epoch takes 0:01:37.054705
INFO:trainer.default_trainer:PROGRESS: 26.67%
INFO:trainer.default_trainer:Config files are at ['configs/seem/focall_unicl_lang_v1.yaml']
INFO:trainer.default_trainer:Start epoch: 4 training.
INFO:detectron2.evaluation.coco_evaluation:Preparing results for COCO format ...
INFO:detectron2.evaluation.coco_evaluation:Saving results to output/coco_instances_results.json
INFO:detectron2.evaluation.coco_evaluation:Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.02s)
creating index...
index created!
INFO:detectron2.evaluation.fast_eval_api:Evaluate annotation type *bbox*
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.evaluate() finished in 0.06 seconds.
INFO:detectron2.evaluation.fast_eval_api:Accumulating evaluation results...
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.accumulate() finished in 0.01 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
INFO:detectron2.evaluation.coco_evaluation:Evaluation results for bbox:
| AP | AP50 | AP75 | APs | APm | APl |
|:-----:|:------:|:------:|:-----:|:-----:|:-----:|
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Loading and preparing results...
DONE (t=0.15s)
creating index...
index created!
INFO:detectron2.evaluation.fast_eval_api:Evaluate annotation type *segm*
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.evaluate() finished in 0.16 seconds.
INFO:detectron2.evaluation.fast_eval_api:Accumulating evaluation results...
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.accumulate() finished in 0.02 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.759
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.967
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.864
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.392
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.620
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.833
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.601
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.790
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.808
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.500
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.715
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.859
INFO:detectron2.evaluation.coco_evaluation:Evaluation results for segm:
| AP | AP50 | AP75 | APs | APm | APl |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 75.868 | 96.732 | 86.417 | 39.181 | 62.027 | 83.330 |
INFO:trainer.default_trainer:{'dolphin-val/coco': OrderedDict([('bbox', {'AP': 0.0, 'AP50': 0.0, 'AP75': 0.0, 'APs': 0.0, 'APm': 0.0, 'APl': 0.0}), ('segm', {'AP': 75.86782192130104, 'AP50': 96.73166355667946, 'AP75': 86.41714743883816, 'APs': 39.18096227601329, 'APm': 62.027354228639794, 'APl': 83.32987957225468})])}
INFO:trainer.default_trainer:This epoch takes 0:01:36.929227
INFO:trainer.default_trainer:PROGRESS: 26.67%
INFO:trainer.default_trainer:Config files are at ['configs/seem/focall_unicl_lang_v1.yaml']
INFO:trainer.default_trainer:Start epoch: 4 training.
INFO:trainer.default_trainer:epochs[ 4] optim steps[1600] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00194/0.03970, loss_mask_bce_0: 0.14082/0.16202, loss_mask_dice_0: 1.14103/0.46878, loss_mask_ce_1: 0.00210/0.04121, loss_mask_bce_1: 0.16208/0.16525, loss_mask_dice_1: 0.82075/0.46940, loss_mask_ce_2: 0.00332/0.03883, loss_mask_bce_2: 0.14180/0.16497, loss_mask_dice_2: 0.73431/0.46602, loss_mask_ce_3: 0.00293/0.03991, loss_mask_bce_3: 0.15233/0.16238, loss_mask_dice_3: 1.07076/0.46397, loss_mask_ce_4: 0.00183/0.04439, loss_mask_bce_4: 0.15568/0.16645, loss_mask_dice_4: 1.12379/0.47721, loss_mask_ce_5: 0.01932/0.05315, loss_mask_bce_5: 0.16955/0.16526, loss_mask_dice_5: 1.24799/0.47025, loss_mask_ce_6: 0.02004/0.05226, loss_mask_bce_6: 0.15505/0.16560, loss_mask_dice_6: 1.05365/0.47247, loss_mask_ce_7: 0.09573/0.07080, loss_mask_bce_7: 0.15448/0.16914, loss_mask_dice_7: 0.93603/0.48883, loss_mask_ce_8: 0.01709/0.09045, loss_mask_bce_8: 0.14172/0.17401, loss_mask_dice_8: 0.59226/0.49713, loss_mask_ce_9: 0.12294/0.13707, loss_mask_bce_9: 0.16232/0.19643, loss_mask_dice_9: 0.91921/0.59938] items per batch[4] items per second[0.08] total items[6400] mini batches[ 1600] memory[2452] epoch remaining[0:00:43]
INFO:trainer.default_trainer:epochs[ 4] optim steps[1700] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.01422/0.03917, loss_mask_bce_0: 0.01576/0.16030, loss_mask_dice_0: 0.24606/0.46559, loss_mask_ce_1: 0.01938/0.04028, loss_mask_bce_1: 0.01071/0.16334, loss_mask_dice_1: 0.19298/0.46618, loss_mask_ce_2: 0.00978/0.03858, loss_mask_bce_2: 0.01608/0.16322, loss_mask_dice_2: 0.25794/0.46381, loss_mask_ce_3: 0.00780/0.03960, loss_mask_bce_3: 0.01567/0.16069, loss_mask_dice_3: 0.29167/0.46101, loss_mask_ce_4: 0.01377/0.04373, loss_mask_bce_4: 0.01503/0.16457, loss_mask_dice_4: 0.32971/0.47363, loss_mask_ce_5: 0.01426/0.05228, loss_mask_bce_5: 0.01585/0.16353, loss_mask_dice_5: 0.28841/0.46840, loss_mask_ce_6: 0.01019/0.05344, loss_mask_bce_6: 0.02403/0.16391, loss_mask_dice_6: 0.31329/0.46895, loss_mask_ce_7: 0.02282/0.06998, loss_mask_bce_7: 0.01755/0.16753, loss_mask_dice_7: 0.33947/0.48680, loss_mask_ce_8: 0.00959/0.08948, loss_mask_bce_8: 0.01386/0.17205, loss_mask_dice_8: 0.27377/0.49514, loss_mask_ce_9: 0.05420/0.13585, loss_mask_bce_9: 0.01132/0.19420, loss_mask_dice_9: 0.27039/0.59258] items per batch[4] items per second[0.26] total items[6800] mini batches[ 1700] memory[2455] epoch remaining[0:00:27]
INFO:trainer.default_trainer:epochs[ 4] optim steps[1800] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00924/0.03969, loss_mask_bce_0: 0.23806/0.15974, loss_mask_dice_0: 0.42641/0.46728, loss_mask_ce_1: 0.01146/0.04065, loss_mask_bce_1: 0.26457/0.16290, loss_mask_dice_1: 0.45974/0.46852, loss_mask_ce_2: 0.01569/0.03888, loss_mask_bce_2: 0.26098/0.16286, loss_mask_dice_2: 0.44181/0.46588, loss_mask_ce_3: 0.02090/0.03974, loss_mask_bce_3: 0.26113/0.16022, loss_mask_dice_3: 0.43325/0.46353, loss_mask_ce_4: 0.01138/0.04423, loss_mask_bce_4: 0.23913/0.16413, loss_mask_dice_4: 0.40487/0.47591, loss_mask_ce_5: 0.00345/0.05362, loss_mask_bce_5: 0.19044/0.16316, loss_mask_dice_5: 0.29998/0.47089, loss_mask_ce_6: 0.01753/0.05446, loss_mask_bce_6: 0.21123/0.16371, loss_mask_dice_6: 0.34094/0.47199, loss_mask_ce_7: 0.01326/0.07130, loss_mask_bce_7: 0.18704/0.16731, loss_mask_dice_7: 0.32705/0.49012, loss_mask_ce_8: 0.01725/0.08796, loss_mask_bce_8: 0.31990/0.17176, loss_mask_dice_8: 0.51685/0.49759, loss_mask_ce_9: 0.17928/0.13520, loss_mask_bce_9: 0.21248/0.19361, loss_mask_dice_9: 0.30358/0.59283] items per batch[4] items per second[0.26] total items[7200] mini batches[ 1800] memory[2456] epoch remaining[0:00:11]
WARNING:trainer.utils_trainer:Saving checkpoint...
WARNING:trainer.utils_trainer:Saving checkpoint...
WARNING:trainer.utils_trainer:Finished saving checkpoint and model to output/focall_unicl_lang_v1.yaml_conf~/run_6/00001875.
INFO:trainer.default_trainer:Evaluation start ...
WARNING:trainer.utils_trainer:Finished saving checkpoint and model to output/focall_unicl_lang_v1.yaml_conf~/run_6/00001875.
INFO:trainer.default_trainer:Evaluation start ...
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 11/75. Dataloading: 0.0011 s/iter. Inference: 0.1140 s/iter. Eval: 0.3722 s/iter. Total: 0.4873 s/iter. ETA=0:00:31
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 22/75. Dataloading: 0.0015 s/iter. Inference: 0.1139 s/iter. Eval: 0.3710 s/iter. Total: 0.4864 s/iter. ETA=0:00:25
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 33/75. Dataloading: 0.0016 s/iter. Inference: 0.1139 s/iter. Eval: 0.3709 s/iter. Total: 0.4865 s/iter. ETA=0:00:20
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 44/75. Dataloading: 0.0016 s/iter. Inference: 0.1137 s/iter. Eval: 0.3712 s/iter. Total: 0.4866 s/iter. ETA=0:00:15
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 55/75. Dataloading: 0.0016 s/iter. Inference: 0.1136 s/iter. Eval: 0.3712 s/iter. Total: 0.4865 s/iter. ETA=0:00:09
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 65/75. Dataloading: 0.0017 s/iter. Inference: 0.1135 s/iter. Eval: 0.3740 s/iter. Total: 0.4892 s/iter. ETA=0:00:04
INFO:trainer.default_trainer:This epoch takes 0:01:37.028623
INFO:trainer.default_trainer:PROGRESS: 33.33%
INFO:trainer.default_trainer:Config files are at ['configs/seem/focall_unicl_lang_v1.yaml']
INFO:trainer.default_trainer:Start epoch: 5 training.
INFO:detectron2.evaluation.coco_evaluation:Preparing results for COCO format ...
INFO:detectron2.evaluation.coco_evaluation:Saving results to output/coco_instances_results.json
INFO:detectron2.evaluation.coco_evaluation:Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.02s)
creating index...
index created!
INFO:detectron2.evaluation.fast_eval_api:Evaluate annotation type *bbox*
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.evaluate() finished in 0.07 seconds.
INFO:detectron2.evaluation.fast_eval_api:Accumulating evaluation results...
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.accumulate() finished in 0.01 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
INFO:detectron2.evaluation.coco_evaluation:Evaluation results for bbox:
| AP | AP50 | AP75 | APs | APm | APl |
|:-----:|:------:|:------:|:-----:|:-----:|:-----:|
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Loading and preparing results...
DONE (t=0.13s)
creating index...
index created!
INFO:detectron2.evaluation.fast_eval_api:Evaluate annotation type *segm*
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.evaluate() finished in 0.14 seconds.
INFO:detectron2.evaluation.fast_eval_api:Accumulating evaluation results...
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.accumulate() finished in 0.01 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.752
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.969
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.867
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.371
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.621
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.840
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.601
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.792
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.809
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.495
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.723
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.860
INFO:detectron2.evaluation.coco_evaluation:Evaluation results for segm:
| AP | AP50 | AP75 | APs | APm | APl |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 75.244 | 96.884 | 86.705 | 37.076 | 62.117 | 84.016 |
INFO:trainer.default_trainer:{'dolphin-val/coco': OrderedDict([('bbox', {'AP': 0.0, 'AP50': 0.0, 'AP75': 0.0, 'APs': 0.0, 'APm': 0.0, 'APl': 0.0}), ('segm', {'AP': 75.24402340500616, 'AP50': 96.88429562950228, 'AP75': 86.70492458996807, 'APs': 37.07590684500528, 'APm': 62.11659265375013, 'APl': 84.01589241108954})])}
INFO:trainer.default_trainer:This epoch takes 0:01:36.937213
INFO:trainer.default_trainer:PROGRESS: 33.33%
INFO:trainer.default_trainer:Config files are at ['configs/seem/focall_unicl_lang_v1.yaml']
INFO:trainer.default_trainer:Start epoch: 5 training.
INFO:trainer.default_trainer:epochs[ 5] optim steps[1900] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.07737/0.03914, loss_mask_bce_0: 0.09768/0.15862, loss_mask_dice_0: 0.29533/0.46392, loss_mask_ce_1: 0.08162/0.04022, loss_mask_bce_1: 0.10927/0.16177, loss_mask_dice_1: 0.35835/0.46533, loss_mask_ce_2: 0.06436/0.03828, loss_mask_bce_2: 0.11227/0.16176, loss_mask_dice_2: 0.42598/0.46299, loss_mask_ce_3: 0.03253/0.03863, loss_mask_bce_3: 0.10713/0.15919, loss_mask_dice_3: 0.56574/0.46076, loss_mask_ce_4: 0.03515/0.04359, loss_mask_bce_4: 0.10291/0.16310, loss_mask_dice_4: 0.54802/0.47261, loss_mask_ce_5: 0.03657/0.05328, loss_mask_bce_5: 0.09989/0.16195, loss_mask_dice_5: 0.28626/0.46834, loss_mask_ce_6: 0.06036/0.05488, loss_mask_bce_6: 0.10716/0.16253, loss_mask_dice_6: 0.55236/0.47046, loss_mask_ce_7: 0.03782/0.07177, loss_mask_bce_7: 0.10844/0.16607, loss_mask_dice_7: 0.44862/0.48650, loss_mask_ce_8: 0.04267/0.08669, loss_mask_bce_8: 0.11484/0.17042, loss_mask_dice_8: 0.36095/0.49408, loss_mask_ce_9: 0.05488/0.13381, loss_mask_bce_9: 0.14428/0.19286, loss_mask_dice_9: 0.39582/0.58834] items per batch[4] items per second[0.07] total items[7600] mini batches[ 1900] memory[2450] epoch remaining[0:00:57]
INFO:trainer.default_trainer:epochs[ 5] optim steps[2000] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00022/0.03854, loss_mask_bce_0: 0.04689/0.15887, loss_mask_dice_0: 0.17487/0.46318, loss_mask_ce_1: 0.00031/0.03936, loss_mask_bce_1: 0.04424/0.16188, loss_mask_dice_1: 0.13593/0.46365, loss_mask_ce_2: 0.00034/0.03770, loss_mask_bce_2: 0.05378/0.16174, loss_mask_dice_2: 0.18094/0.46178, loss_mask_ce_3: 0.00039/0.03826, loss_mask_bce_3: 0.05144/0.15931, loss_mask_dice_3: 0.16809/0.45906, loss_mask_ce_4: 0.00050/0.04306, loss_mask_bce_4: 0.04530/0.16359, loss_mask_dice_4: 0.15931/0.47116, loss_mask_ce_5: 0.00155/0.05299, loss_mask_bce_5: 0.05415/0.16216, loss_mask_dice_5: 0.17661/0.46683, loss_mask_ce_6: 0.00148/0.05544, loss_mask_bce_6: 0.04378/0.16256, loss_mask_dice_6: 0.17673/0.46857, loss_mask_ce_7: 0.00079/0.07127, loss_mask_bce_7: 0.04458/0.16617, loss_mask_dice_7: 0.13470/0.48355, loss_mask_ce_8: 0.00111/0.08477, loss_mask_bce_8: 0.05094/0.17050, loss_mask_dice_8: 0.17581/0.49142, loss_mask_ce_9: 0.04347/0.13276, loss_mask_bce_9: 0.04466/0.19283, loss_mask_dice_9: 0.17861/0.58483] items per batch[4] items per second[0.25] total items[8000] mini batches[ 2000] memory[2452] epoch remaining[0:00:39]
INFO:trainer.default_trainer:epochs[ 5] optim steps[2100] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.06311/0.03862, loss_mask_bce_0: 0.03219/0.15821, loss_mask_dice_0: 0.89610/0.46408, loss_mask_ce_1: 0.04568/0.03912, loss_mask_bce_1: 0.03502/0.16122, loss_mask_dice_1: 1.11577/0.46482, loss_mask_ce_2: 0.05697/0.03762, loss_mask_bce_2: 0.02909/0.16121, loss_mask_dice_2: 0.85056/0.46273, loss_mask_ce_3: 0.05288/0.03878, loss_mask_bce_3: 0.03167/0.15883, loss_mask_dice_3: 1.04194/0.46081, loss_mask_ce_4: 0.08215/0.04316, loss_mask_bce_4: 0.02965/0.16276, loss_mask_dice_4: 0.74365/0.47125, loss_mask_ce_5: 0.05431/0.05381, loss_mask_bce_5: 0.02991/0.16144, loss_mask_dice_5: 0.72767/0.46742, loss_mask_ce_6: 0.04015/0.05552, loss_mask_bce_6: 0.03202/0.16217, loss_mask_dice_6: 0.95672/0.46946, loss_mask_ce_7: 0.03923/0.07091, loss_mask_bce_7: 0.04755/0.16566, loss_mask_dice_7: 1.20961/0.48339, loss_mask_ce_8: 0.13094/0.08352, loss_mask_bce_8: 0.03865/0.16993, loss_mask_dice_8: 0.83472/0.49186, loss_mask_ce_9: 0.11418/0.13185, loss_mask_bce_9: 0.02503/0.19186, loss_mask_dice_9: 0.65787/0.58392] items per batch[4] items per second[0.25] total items[8400] mini batches[ 2100] memory[2452] epoch remaining[0:00:23]
INFO:trainer.default_trainer:epochs[ 5] optim steps[2200] learning rate[default: 1.00000e-03] train loss[loss_mask_ce_0: 0.00119/0.03868, loss_mask_bce_0: 0.06100/0.15759, loss_mask_dice_0: 0.24994/0.46330, loss_mask_ce_1: 0.00162/0.03923, loss_mask_bce_1: 0.06921/0.16046, loss_mask_dice_1: 0.22714/0.46423, loss_mask_ce_2: 0.00178/0.03766, loss_mask_bce_2: 0.06769/0.16049, loss_mask_dice_2: 0.26282/0.46223, loss_mask_ce_3: 0.00143/0.03848, loss_mask_bce_3: 0.07162/0.15824, loss_mask_dice_3: 0.26757/0.46020, loss_mask_ce_4: 0.00086/0.04309, loss_mask_bce_4: 0.07299/0.16213, loss_mask_dice_4: 0.23870/0.47084, loss_mask_ce_5: 0.02671/0.05398, loss_mask_bce_5: 0.06900/0.16096, loss_mask_dice_5: 0.31245/0.46645, loss_mask_ce_6: 0.00092/0.05603, loss_mask_bce_6: 0.06564/0.16171, loss_mask_dice_6: 0.25191/0.46866, loss_mask_ce_7: 0.00759/0.07033, loss_mask_bce_7: 0.06391/0.16481, loss_mask_dice_7: 0.21627/0.48220, loss_mask_ce_8: 0.01126/0.08270, loss_mask_bce_8: 0.07923/0.16924, loss_mask_dice_8: 0.27677/0.49093, loss_mask_ce_9: 0.05523/0.13191, loss_mask_bce_9: 0.08343/0.19171, loss_mask_dice_9: 0.33407/0.58249] items per batch[4] items per second[0.25] total items[8800] mini batches[ 2200] memory[2452] epoch remaining[0:00:07]
INFO:trainer.default_trainer:Evaluation start ...
INFO:trainer.default_trainer:Evaluation start ...
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 11/75. Dataloading: 0.0010 s/iter. Inference: 0.1141 s/iter. Eval: 0.3629 s/iter. Total: 0.4781 s/iter. ETA=0:00:30
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 22/75. Dataloading: 0.0015 s/iter. Inference: 0.1138 s/iter. Eval: 0.3644 s/iter. Total: 0.4798 s/iter. ETA=0:00:25
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 33/75. Dataloading: 0.0016 s/iter. Inference: 0.1137 s/iter. Eval: 0.3651 s/iter. Total: 0.4805 s/iter. ETA=0:00:20
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 44/75. Dataloading: 0.0016 s/iter. Inference: 0.1135 s/iter. Eval: 0.3657 s/iter. Total: 0.4809 s/iter. ETA=0:00:14
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 55/75. Dataloading: 0.0017 s/iter. Inference: 0.1134 s/iter. Eval: 0.3656 s/iter. Total: 0.4808 s/iter. ETA=0:00:09
INFO:base_dir.pipeline.XDecoderPipeline:Task dolphin-val. Inference done 66/75. Dataloading: 0.0017 s/iter. Inference: 0.1134 s/iter. Eval: 0.3659 s/iter. Total: 0.4810 s/iter. ETA=0:00:04
INFO:trainer.default_trainer:This epoch takes 0:01:36.886420
INFO:trainer.default_trainer:PROGRESS: 40.00%
INFO:trainer.default_trainer:Config files are at ['configs/seem/focall_unicl_lang_v1.yaml']
INFO:trainer.default_trainer:Start epoch: 6 training.
INFO:detectron2.evaluation.coco_evaluation:Preparing results for COCO format ...
INFO:detectron2.evaluation.coco_evaluation:Saving results to output/coco_instances_results.json
INFO:detectron2.evaluation.coco_evaluation:Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.02s)
creating index...
index created!
INFO:detectron2.evaluation.fast_eval_api:Evaluate annotation type *bbox*
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.evaluate() finished in 0.06 seconds.
INFO:detectron2.evaluation.fast_eval_api:Accumulating evaluation results...
INFO:detectron2.evaluation.fast_eval_api:COCOeval_opt.accumulate() finished in 0.01 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
INFO:detectron2.evaluation.coco_evaluation:Evaluation results for bbox:
| AP | AP50 | AP75 | APs | APm | APl |
|:-----:|:------:|:------:|:-----:|:-----:|:-----:|
| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Loading and preparing results...
DONE (t=0.13s)
creating index...
index created!
INFO:detectron2.evaluation.fast_eval_api:Evaluate annotation type *segm*