-
Notifications
You must be signed in to change notification settings - Fork 2
/
x80.cxx
1999 lines (1860 loc) · 79.9 KB
/
x80.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// 8080 and Z80 emulator.
// Written by David Lee
// useful: https://pastraiser.com/cpu/i8080/i8080_opcodes.html
// https://altairclone.com/downloads/manuals/8080%20Programmers%20Manual.pdf
// http://popolony2k.com.br/xtras/programming/asm/nemesis-lonestar/8080-z80-instruction-set.html
// https://www.zilog.com/docs/z80/um0080.pdf
// http://www.z80.info/z80time.txt
// http://www.z80.info/zip/z80-documented.pdf
// http://www.z80.info/z80undoc.htm
// http://www.z80.info/z80sflag.htm
// http://www.righto.com/2012/12/the-6502-overflow-flag-explained.html
// https://mdfs.net/Software/Z80/Exerciser/
// https://onlinedisassembler.com/odaweb/
// symbols that start with z80_ are (unsurprisingly) Z80-specific. 80% of this code is Z80-specific.
// 8080 emulation would be >20% faster if not for the z80 checks
// Validated 100% pass for 8080 with 8080ex1.com, 8080pre.com, Microcosm v1.0, and cputest.com Diagnostics II V1.2 in 8080 mode.
// Validated 100% pass for Z80 with zexall.com, zexdoc.com, and cputest.com in Z80 mode.
#include <stdio.h>
#include <memory.h>
#include <assert.h>
#include <vector>
#include <cstring>
#include <bitset>
#include <djl_os.hxx>
#include <djltrace.hxx>
using namespace std;
#include "x80.hxx"
uint8_t memory[ 65536 ];
registers reg;
static const char * reg_strings[ 8 ] = { "b", "c", "d", "e", "h", "l", "m", "a" };
static const char * rp_strings[ 4 ] = { "bc", "de", "hl", "sp" };
static const char * z80_math_strings[ 8 ] = { "add", "adc", "sub", "sbb", "and", "xor", "or", "cp" };
static const char * z80_rotate_strings[ 8 ] = { "rlc", "rrc", "rl", "rr", "sla", "sra", "sll", "srl" };
static uint32_t g_State = 0;
const uint32_t stateTraceInstructions = 1;
const uint32_t stateEndEmulation = 2;
void x80_trace_instructions( bool t ) { if ( t ) g_State |= stateTraceInstructions; else g_State &= ~stateTraceInstructions; }
void x80_end_emulation() { g_State |= stateEndEmulation; }
enum z80_value_source { vs_register, vs_memory, vs_indexed }; // this impacts how Z80 undocumented Y and X flags are updated
const uint8_t cyclesnt = 6; // cycles not taken when a conditional call, jump, or return isn't taken
// instructions starting with '*' are undocumented for 8080, and not implemented here. They also signal likely Z80 instructions
static const char i8080_instructions[ 256 ][ 16 ] =
{
/*00*/ "nop", "lxi b, d16", "stax b", "inx b", "inr b", "dcr b", "mvi b, d8", "rlc",
/*08*/ "*nop", "dad b", "ldax b", "dcx b", "inr c", "dcr c", "mvi c, d8", "rrc",
/*10*/ "*nop", "lxi d, d16", "stax d", "inx d", "inr d", "dcr d", "mvi d, d8", "ral",
/*18*/ "*nop", "dad d", "ldax d", "dcx d", "inr e", "dcr e", "mvi e, d8", "rar",
/*20*/ "*nop", "lxi h, d16", "shld a16", "inx h", "inr h", "dcr h", "mvi h, d8", "daa",
/*28*/ "*nop", "dad h", "lhld a16", "dcx h", "inr l", "dcr l", "mvi l, d8", "cma",
/*30*/ "*nop", "lxi sp, d16", "sta a16", "inx sp", "inr m", "dcr m", "mvi m, d8", "stc",
/*38*/ "*nop", "dad sp", "lda a16", "dcx sp", "inr a", "dcr a", "mvi a, d8", "cmc",
/*40*/ "mov b, b", "mov b, c", "mov b, d", "mov b, e", "mov b, h", "mov b, l", "mov b, m", "mov b, a",
/*48*/ "mov c, b", "mov c, c", "mov c, d", "mov c, e", "mov c, h", "mov c, l", "mov c, m", "mov c, a",
/*50*/ "mov d, b", "mov d, c", "mov d, d", "mov d, e", "mov d, h", "mov d, l", "mov d, m", "mov d, a",
/*58*/ "mov e, b", "mov e, c", "mov e, d", "mov e, e", "mov e, h", "mov e, l", "mov e, m", "mov e, a",
/*60*/ "mov h, b", "mov h, c", "mov h, d", "mov h, e", "(hook)", "mov h, l", "mov h, m", "mov h, a",
/*68*/ "mov l, b", "mov l, c", "mov l, d", "mov l, e", "mov l, h", "mov l, l", "mov l, m", "mov l, a",
/*70*/ "mov m, b", "mov m, c", "mov m, d", "mov m, e", "mov m, h", "mov m, l", "hlt", "mov m, a",
/*78*/ "mov a, b", "mov a, c", "mov a, d", "mov a, e", "mov a, h", "mov a, l", "mov a, m", "mov a, a",
/*80*/ "add b", "add c", "add d", "add e", "add h", "add l", "add m", "add a",
/*88*/ "adc b", "adc c", "adc d", "adc e", "adc h", "adc l", "adc m", "adc a",
/*90*/ "sub b", "sub c", "sub d", "sub e", "sub h", "sub l", "sub m", "sub a",
/*98*/ "sbb b", "sbb c", "sbb d", "sbb e", "sbb h", "sbb l", "sbb m", "sbb a",
/*a0*/ "ana b", "ana c", "ana d", "ana e", "ana h", "ana l", "ana m", "ana a",
/*a8*/ "xra b", "xra c", "xra d", "xra e", "xra h", "xra l", "xra m", "xra a",
/*b0*/ "ora b", "ora c", "ora d", "ora e", "ora h", "ora l", "ora m", "ora a",
/*b8*/ "cmp b", "cmp c", "cmp d", "cmp e", "cmp h", "cmp l", "cmp m", "cmp a",
/*c0*/ "rnz", "pop b", "jnz a16", "jmp a16", "cnz a16", "push b", "adi d8", "rst 0",
/*c8*/ "rz", "ret", "jz a16", "*jmp", "cz a16", "call a16", "aci d8", "rst 1",
/*d0*/ "rnc", "pop d", "jnc a16", "out d8", "cnc a16", "push d", "sui d8", "rst 2",
/*d8*/ "rc", "*ret", "jc a16", "in d8", "cc a16", "*call a16", "sbi d8", "rst 3",
/*e0*/ "rpo", "pop h", "jpo a16", "xthl", "cpo a16", "push h", "ani d8", "rst 4",
/*e8*/ "rpe", "pchl", "jpe a16", "xchg", "cpe a16", "*call a16", "xri d8", "rst 5",
/*f0*/ "rp", "pop psw", "jp a16", "di", "cp a16", "push psw", "ori d8", "rst 6",
/*f8*/ "rm", "sphl", "jm a16", "ei", "cm a16", "*call a16", "cpi d8", "rst 7",
};
// instructions starting with '*' are Z80-specific, generally multi-byte, and handled separately.
// instructions listed here are the overlap with 8080 but with the Z80 naming.
static const char z80_instructions[ 256 ][ 16 ] =
{
/*00*/ "nop", "ld bc, d16", "ld (bc), a", "inc bc", "inc b", "dec b", "ld b, d8", "rlca",
/*08*/ "*'", "add hl, bc", "ld a, (bc)", "dec bc", "inc c", "dec c", "ld c, d8", "rrca",
/*10*/ "*", "ld de, d16", "ld (de), a", "inc de", "inc d", "dec d", "ld d, d8", "rla",
/*18*/ "*", "add hl, de", "ld a, (de)", "dec de", "inc e", "dec e", "ld e, d8", "rra",
/*20*/ "*", "ld hl, d16", "ld (a16), hl", "inc hl", "inc h", "dec h", "ld h, d8", "daa",
/*28*/ "*", "add hl, hl", "ld hl, (a16)", "dec hl", "inc l", "dec l", "ld l, d8", "cpl",
/*30*/ "*", "ld sp, d16", "ld (a16), a", "inc sp", "inc (hl)", "dec (hl)", "ld (hl), d8", "scf",
/*38*/ "*", "add hl, sp", "ld a, (a16)", "dec sp", "inc a", "dec a", "ld a, d8", "ccf",
/*40*/ "ld b, b", "ld b, c", "ld b, d", "ld b, e", "ld b, h", "ld b, l", "ld b, (hl)", "ld b, a",
/*48*/ "ld c, b", "ld c, c", "ld c, d", "ld c, e", "ld c, h", "ld c, l", "ld c, (hl)", "ld c, a",
/*50*/ "ld d, b", "ld d, c", "ld d, d", "ld d, e", "ld d, h", "ld d, l", "ld d, (hl)", "ld d, a",
/*58*/ "ld e, b", "ld e, c", "ld e, d", "ld e, e", "ld e, h", "ld e, l", "ld e, (hl)", "ld e, a",
/*60*/ "ld h, b", "ld h, c", "ld h, d", "ld h, e", "(hook)", "ld h, l", "ld h, (hl)", "ld h, a",
/*68*/ "ld l, b", "ld l, c", "ld l, d", "ld l, e", "ld l, h", "ld l, l", "ld l, (hl)", "ld l, a",
/*70*/ "ld (hl), b", "ld (hl), c", "ld (hl), d", "ld (hl), e", "ld (hl), h", "ld (hl), l", "halt", "ld (hl), a",
/*78*/ "ld a, b", "ld a, c", "ld a, d", "ld a, e", "ld a, h", "ld a, l", "ld a, (hl)", "ld a, a",
/*80*/ "add a, b", "add a, c", "add a, d", "add a, e", "add a, h", "add a, l", "add a, (hl)", "add a, a",
/*88*/ "adc a, b", "adc a, c", "adc a, d", "adc a, e", "adc a, h", "adc a, l", "adc a, (hl)", "adc a, a",
/*90*/ "sub b", "sub c", "sub d", "sub e", "sub h", "sub l", "sub (hl)", "sub a",
/*98*/ "sbc b", "sbc c", "sbc d", "sbc e", "sbc h", "sbc l", "sbc (hl)", "sbc a",
/*a0*/ "and b", "and c", "and d", "and e", "and h", "and l", "and (hl)", "and a",
/*a8*/ "xor b", "xor c", "xor d", "xor e", "xor h", "xor l", "xor (hl)", "xor a",
/*b0*/ "or b", "or c", "or d", "or e", "or h", "or l", "or (hl)", "or a",
/*b8*/ "cp b", "cp c", "cp d", "cp e", "cp h", "cp l", "cp (hl)", "cp a",
/*c0*/ "ret nz", "pop bc", "jp nz, a16", "jp a16", "call nz, a16", "push bc", "add a, d8", "rst 0",
/*c8*/ "ret z", "ret", "jp z, a16", "*", "call z, a16", "call a16", "adc a, d8", "rst 1",
/*d0*/ "ret nc", "pop de", "jp nc, a16", "out (d8), a", "call nc, a16", "push de", "sub d8", "rst 2",
/*d8*/ "ret c", "*", "jp c, a16", "in a, (d8)", "call c, a16", "*", "sbc d8", "rst 3",
/*e0*/ "ret po", "pop hl", "jp po, a16", "ex (sp), hl", "call po, a16", "push hl", "and d8", "rst 4",
/*e8*/ "ret pe", "jp (hl)", "jp pe, a16", "ex de, hl", "call pe, a16", "*", "xor d8", "rst 5",
/*f0*/ "ret p", "pop af", "jp p, a16", "di", "call p, a16", "push af", "or d8", "rst 6",
/*f8*/ "ret m", "ld sp, hl", "jp m, a16", "ei", "call m, a16", "*", "cp d8", "rst 7",
};
// base cycles. 8080 conditional calls take 11 (not 17) if not taken. conditional returns take 5 (not 11) if not taken.
typedef uint8_t acycles_t[ 256 ];
static const acycles_t i8080_cycles =
{
/*00*/ 4, 10, 7, 5, 5, 5, 7, 4, 4, 10, 7, 5, 5, 5, 7, 4,
/*10*/ 4, 10, 7, 5, 5, 5, 7, 4, 4, 10, 7, 5, 5, 5, 7, 4,
/*20*/ 4, 10, 16, 5, 5, 5, 7, 4, 4, 10, 16, 5, 5, 5, 7, 4,
/*30*/ 4, 10, 13, 5, 10, 10, 10, 4, 4, 10, 13, 5, 5, 5, 7, 4,
/*40*/ 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 7, 5,
/*50*/ 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 5, 7, 5,
/*60*/ 5, 5, 5, 5, 0, 5, 7, 5, 5, 5, 5, 5, 5, 5, 7, 5,
/*70*/ 7, 7, 7, 7, 7, 7, 7, 7, 5, 5, 5, 5, 5, 5, 7, 5,
/*80*/ 4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4,
/*90*/ 4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4,
/*a0*/ 4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4,
/*b0*/ 4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4,
/*c0*/ 11, 10, 10, 10, 17, 11, 7, 11, 11, 10, 10, 10, 17, 17, 7, 11,
/*d0*/ 11, 10, 10, 10, 17, 11, 7, 11, 11, 10, 10, 10, 17, 17, 7, 11,
/*e0*/ 11, 10, 10, 18, 17, 11, 7, 11, 11, 5, 10, 5, 17, 17, 7, 11,
/*f0*/ 11, 10, 10, 4, 17, 11, 7, 11, 11, 5, 10, 4, 17, 17, 7, 11,
};
static const acycles_t z80_cycles =
{
/*00*/ 4, 10, 7, 6, 4, 4, 7, 4, 4, 11, 7, 6, 4, 4, 7, 4,
/*10*/ 0, 10, 7, 6, 4, 4, 7, 4, 0, 11, 7, 6, 4, 4, 7, 4,
/*20*/ 0, 10, 16, 6, 4, 4, 7, 4, 0, 11, 20, 6, 4, 4, 7, 4,
/*30*/ 0, 10, 13, 6, 11, 11, 10, 4, 0, 11, 13, 6, 4, 4, 7, 4,
/*40*/ 4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4,
/*50*/ 4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4,
/*60*/ 4, 4, 4, 4, 0, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4,
/*70*/ 7, 7, 7, 7, 7, 7, 4, 7, 4, 4, 4, 4, 4, 4, 7, 4,
/*80*/ 4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4,
/*90*/ 4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4,
/*a0*/ 4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4,
/*b0*/ 4, 4, 4, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 7, 4,
/*c0*/ 11, 10, 10, 10, 17, 11, 7, 11, 11, 10, 10, 0, 17, 17, 7, 11,
/*d0*/ 11, 10, 10, 11, 17, 11, 7, 11, 11, 0, 10, 11, 17, 0, 7, 11,
/*e0*/ 11, 10, 10, 19, 17, 11, 7, 11, 11, 4, 10, 4, 17, 0, 7, 11,
/*f0*/ 11, 10, 10, 4, 17, 11, 7, 11, 11, 5, 10, 4, 17, 0, 7, 11,
};
static uint16_t mword( uint16_t offset ) { return * ( (uint16_t *) & memory[ offset ] ); }
static void setmword( uint16_t offset, uint16_t value ) { * (uint16_t *) & memory[ offset ] = value; }
static uint8_t pcbyte() { return memory[ reg.pc++ ]; }
static uint16_t pcword() { uint16_t r = mword( reg.pc ); reg.pc += 2; return r; }
static void pushword( uint16_t val ) { reg.sp -= 2; setmword( reg.sp, val ); }
static uint16_t popword() { uint16_t val = mword( reg.sp ); reg.sp += 2; return val; }
bool is_parity_even( uint8_t x )
{
#if defined(_M_AMD64) && !defined(__GNUC__)
return ( ! ( __popcnt16( x ) & 1 ) ); // less portable, but faster
#else
return ( ! ( std::bitset<8>( x ).count() & 1 ) );
#endif
} //is_parity_even
void set_parity( uint8_t x ) { reg.fParityEven_Overflow = is_parity_even( x ); }
void set_sign_zero( uint8_t x )
{
reg.fSign = ( 0 != ( 0x80 & x ) );
reg.fZero = ( 0 == x );
} //set_sign_zero
void set_sign_zero_parity( uint8_t x )
{
set_sign_zero( x );
set_parity( x );
} //set_sign_zero_parity
void z80_set_sign_zero_16( uint16_t x )
{
reg.fSign = ( 0 != ( 0x8000 & x ) );
reg.fZero = ( 0 == x );
} //z80_set_sign_zero_16
uint8_t op_inc( uint8_t x )
{
x++;
reg.fAuxCarry = ( 0 == ( x & 0xf ) );
set_sign_zero( x );
if ( reg.fZ80Mode )
{
reg.fParityEven_Overflow = ( x == 0x80 );
reg.fWasSubtract = false;
reg.z80_assignYX( x );
}
else
set_parity( x );
return x;
} //op_inc
uint8_t op_dec( uint8_t x )
{
uint8_t result = x - 1;
set_sign_zero( result );
if ( reg.fZ80Mode )
{
reg.fParityEven_Overflow = ( x == 0x80 );
reg.fWasSubtract = true;
// Aux / Half carry returns the opposite value on Z80 as on 8080
reg.fAuxCarry = ( 0xf == ( result & 0xf ) );
reg.z80_assignYX( result );
}
else
{
set_parity( result );
reg.fAuxCarry = ( 0xf != ( result & 0xf ) );
}
return result;
} //op_dec
force_inlined void op_add( uint8_t x, bool carry = false )
{
uint16_t carry_int = carry ? 1 : 0;
uint16_t r16 = (uint16_t) reg.a + (uint16_t) x + carry_int;
uint8_t r8 = r16 & 0xff;
reg.fCarry = ( 0 != ( r16 & 0x0100 ) );
// low nibble add + carry overflows to high nibble
reg.fAuxCarry = ( 0 != ( ( ( 0xf & reg.a ) + ( 0xf & x ) + carry_int ) & 0x10 ) );
set_sign_zero( r8 );
// if not ( ( one of lhs and rhs are negative ) and ( one of lhs and result are negative ) )
if ( reg.fZ80Mode )
{
reg.fParityEven_Overflow = ( ! ( ( reg.a ^ x ) & 0x80 ) ) && ( ( reg.a ^ r8 ) & 0x80 );
reg.fWasSubtract = false;
reg.z80_assignYX( r8 );
}
else
set_parity( r8 );
reg.a = r8;
} //op_add
void op_adc( uint8_t x )
{
op_add( x, reg.fCarry );
} //op_adc
force_inlined uint8_t op_sub( uint8_t x, bool borrow = false )
{
// com == ones-complement
uint8_t com_x = ~x;
uint8_t borrow_int = borrow ? 0 : 1;
uint16_t res16 = (uint16_t) reg.a + (uint16_t) com_x + (uint16_t) borrow_int;
uint8_t res8 = res16 & 0xff;
reg.fCarry = ( 0 == ( res16 & 0x100 ) );
set_sign_zero( res8 );
reg.fAuxCarry = ( 0 != ( ( ( reg.a & 0xf ) + ( com_x & 0xf ) + borrow_int ) & 0x10 ) );
if ( reg.fZ80Mode )
{
// if not ( ( one of lhs and com_x are negative ) and ( one of lhs and result are negative ) )
reg.fParityEven_Overflow = ! ( ( reg.a ^ com_x ) & 0x80 ) && ( ( reg.a ^ res8 ) & 0x80 );
reg.fWasSubtract = true;
reg.fAuxCarry = !reg.fAuxCarry; // opposite meaning on z80 for subtract
reg.z80_assignYX( res8 );
}
else
set_parity( res8 );
// op_sub is the only op_X that doesn't update reg.a because it's also used for op_cmp
return res8;
} //op_sub
force_inlined void op_sbb( uint8_t x )
{
reg.a = op_sub( x, reg.fCarry );
} //op_sbb
force_inlined void op_cmp( uint8_t x )
{
op_sub( x, false );
if ( reg.fZ80Mode )
reg.z80_assignYX( x ); // done on operand, not the result or reg.a
} //op_cmp
void op_ana( uint8_t x )
{
reg.fAuxCarry = ( 0 != ( 0x8 & ( reg.a | x ) ) ); // documented for 8080, not true for 8085
reg.fCarry = false;
reg.a &= x;
set_sign_zero_parity( reg.a );
if ( reg.fZ80Mode )
{
reg.fWasSubtract = false;
reg.fAuxCarry = true;
reg.z80_assignYX( reg.a );
}
} //op_ana
void op_ora( uint8_t x )
{
reg.a |= x;
reg.fAuxCarry = false;
reg.fCarry = false;
set_sign_zero_parity( reg.a );
if ( reg.fZ80Mode )
{
reg.fWasSubtract = false;
reg.z80_assignYX( reg.a );
}
} //op_ora
void op_xra( uint8_t x )
{
reg.a ^= x;
reg.fAuxCarry = false;
reg.fCarry = false;
set_sign_zero_parity( reg.a );
if ( reg.fZ80Mode )
{
reg.fWasSubtract = false;
reg.z80_assignYX( reg.a );
}
} //op_xra
void op_math( uint8_t opcode, uint8_t src )
{
uint8_t math = ( opcode >> 3 ) & 7;
assert( math <= 7 );
if ( 7 == math ) op_cmp( src ); // in order of usage for performance
else if ( 6 == math ) op_ora( src );
else if ( 4 == math ) op_ana( src );
else if ( 5 == math ) op_xra( src );
else if ( 0 == math ) op_add( src );
else if ( 2 == math ) reg.a = op_sub( src ); // sub doesn't update reg.a
else if ( 1 == math ) op_adc( src );
else op_sbb( src ); // 3
} //op_math
void op_dad( uint16_t x )
{
// add x to H and set Carry if warranted
uint32_t result = (uint32_t) reg.H() + (uint32_t) x;
reg.fCarry = ( 0 != ( 0x10000 & result ) );
if ( reg.fZ80Mode )
{
uint32_t auxResult = ( reg.H() & 0xfff ) + ( x & 0xfff );
reg.fAuxCarry = ( 0 != ( auxResult & 0xf000 ) );
reg.fWasSubtract = false;
reg.z80_assignYX( (uint8_t) ( result >> 8 ) );
}
reg.SetH( (uint16_t) ( result & 0xffff ) );
} //op_dad
void op_cma()
{
reg.a = ~reg.a;
if ( reg.fZ80Mode )
{
reg.fAuxCarry = true;
reg.fWasSubtract = true;
reg.z80_assignYX( reg.a );
}
} //op_cma
void op_cmc()
{
reg.fCarry = !reg.fCarry;
if ( reg.fZ80Mode )
{
reg.fWasSubtract = false;
reg.fAuxCarry = !reg.fCarry; // some docs say !reg.fAuxCarry
reg.z80_assignYX( reg.a );
}
} //op_cmc
not_inlined void op_daa()
{
if ( reg.fZ80Mode ) // this BCD add logic pulled from Sean Young's doc
{
uint8_t diff = 0x66;
uint8_t hn = ( ( reg.a >> 4 ) & 0xf );
uint8_t ln = ( reg.a & 0xf );
if ( reg.fCarry )
{
if ( !reg.fAuxCarry && ln <= 9 )
diff = 0x60;
}
else
{
if ( hn <= 9 && !reg.fAuxCarry && ln <= 9 )
diff = 0;
else if ( ( hn <= 9 && reg.fAuxCarry && ln <= 9 ) || ( hn <= 8 && ln > 9 ) )
diff = 6;
else if ( hn > 9 && !reg.fAuxCarry && ln <= 9 )
diff = 0x60;
}
bool newCarry = reg.fCarry;
if ( !reg.fCarry )
{
if ( ( hn <= 9 && ln <= 9 ) || ( hn <= 8 && ln > 9 ) )
newCarry = false;
else if ( ( hn >= 9 && ln > 9 ) || ( hn > 9 && ln <= 9 ) )
newCarry = true;
}
bool newAuxCarry = reg.fAuxCarry;
if ( reg.fWasSubtract )
{
if ( !reg.fAuxCarry )
newAuxCarry = false;
else
newAuxCarry = ( ln < 6 );
}
else
newAuxCarry = ( ln > 9 );
if ( reg.fWasSubtract )
reg.a -= diff;
else
reg.a += diff;
set_sign_zero_parity( reg.a );
reg.z80_assignYX( reg.a );
reg.fCarry = newCarry;
reg.fAuxCarry = newAuxCarry;
}
else
{
uint8_t loNibble = reg.a & 0xf;
uint8_t toadd = 0;
if ( reg.fAuxCarry || ( loNibble > 9 ) )
toadd = 6;
bool carry = reg.fCarry;
uint8_t hiNibble = reg.a & 0xf0;
if ( ( hiNibble > 0x90 ) || ( hiNibble >= 0x90 && loNibble > 0x9 ) || carry )
{
toadd |= 0x60;
carry = true;
}
op_add( toadd );
reg.fCarry = carry; // this doesn't change regardless of the result
}
} //op_daa
uint8_t * dst_address_rm( uint8_t rm )
{
assert( rm <= 7 );
if ( 6 != rm )
return reg.regOffset( rm );
return & memory[ reg.H() ];
} //dst_address_rm
uint8_t * dst_address( uint8_t op )
{
uint8_t rm = 7 & ( op >> 3 );
return dst_address_rm( rm );
} //dst_address
uint8_t src_value_rm( uint8_t rm )
{
if ( 6 != rm )
return * ( reg.regOffset( rm ) );
return memory[ reg.H() ];
} //src_value_rm
uint8_t src_value( uint8_t op )
{
uint8_t rm = 0x7 & op;
return src_value_rm( rm );
} //src_value
void z80_ni( uint8_t op, uint8_t op2 )
{
x80_hard_exit( "bugbug: not-implemented z80 instruction: %#x, next byte is %#x\n", op, op2 );
} //z80_ni
void z80_op_bit( uint8_t val, uint8_t bit, z80_value_source vs )
{
assert( bit <= 7 );
reg.fAuxCarry = true; // per doc
reg.fWasSubtract = false;
reg.fSign = ( ( 7 == bit ) && ( 0 != ( 0x80 & val ) ) ); // Zilog doc says fSign is "unknown", but hardware does this
uint8_t cmp = ( 1 << bit );
reg.fZero = ( 0 == ( val & cmp ) );
reg.fParityEven_Overflow = reg.fZero; // non-documented
// Y and X are set from the source value, not as 4.1 from "The Undocumented Z80 Documented"
// has from the value resulting from the bit operation. But only if the source is a register.
if ( vs_register == vs )
reg.z80_assignYX( val );
} //z80_op_bit
void z80_op_rlc( uint8_t * pval )
{
// rotate left carry. 7 bit to both C and 0 bit. flags: S, Z, H reset, Parity, N reset, and C
uint8_t x = *pval;
bool bit7 = ( 0 != ( x & 0x80 ) );
x <<= 1;
reg.fCarry = bit7;
if ( bit7 )
x |= 1;
else
x &= 0xfe;
set_sign_zero_parity( x );
reg.fAuxCarry = false;
reg.fWasSubtract = false;
reg.z80_assignYX( x );
*pval = x;
} //z80_op_rlc
void z80_op_rl( uint8_t * pval )
{
// rotate left. 7 bit to C. Old carry bit to 0. flags: S, Z, H reset, Parity, N reset, and C
uint8_t x = *pval;
bool bit7 = ( 0 != ( x & 0x80 ) );
x <<= 1;
if ( reg.fCarry )
x |= 1;
else
x &= 0xfe;
reg.fCarry = bit7;
set_sign_zero_parity( x );
reg.fAuxCarry = false;
reg.fWasSubtract = false;
reg.z80_assignYX( x );
*pval = x;
} //z80_op_rl
void z80_op_rrc( uint8_t * pval )
{
// rotate right carry. 0 bit to both C and 7 bit. flags: S, Z, H reset, Parity, N reset, and C
uint8_t x = *pval;
bool bit0 = ( 0 != ( x & 1 ) );
x >>= 1;
reg.fCarry = bit0;
if ( bit0 )
x |= 0x80;
else
x &= 0x7f;
set_sign_zero_parity( x );
reg.fAuxCarry = false;
reg.fWasSubtract = false;
reg.z80_assignYX( x );
*pval = x;
} //z80_op_rrc
void z80_op_rr( uint8_t * pval )
{
// rotate right. 0 bit to C. Old C to 7 bit. flags: S, Z, H reset, Parity, N reset, and C
uint8_t x = *pval;
bool bit0 = ( 0 != ( x & 1 ) );
x >>= 1;
if ( reg.fCarry )
x |= 0x80;
else
x &= 0x7f;
reg.fCarry = bit0;
set_sign_zero_parity( x );
reg.fAuxCarry = false;
reg.fWasSubtract = false;
reg.z80_assignYX( x );
*pval = x;
} //z80_op_rr
uint16_t z80_op_sub_16( uint16_t lhs, uint16_t rhs, bool borrow = false )
{
// com == ones-complement
uint16_t com_rhs = ~rhs;
uint16_t borrow_int = borrow ? 0 : 1;
uint32_t res32 = (uint32_t) lhs + (uint32_t) com_rhs + (uint32_t) borrow_int;
uint16_t res16 = res32 & 0xffff;
reg.fCarry = ( 0 == ( res32 & 0x10000 ) );
z80_set_sign_zero_16( res16 );
// if not ( ( one of lhs and com_rhs are negative ) and ( one of lhs and result are negative ) )
reg.fParityEven_Overflow = ! ( ( lhs ^ com_rhs ) & 0x8000 ) && ( ( lhs ^ res16 ) & 0x8000 );
reg.fWasSubtract = true;
if ( borrow )
rhs++;
reg.fAuxCarry = ( ( rhs & 0xfff ) > ( lhs & 0xfff ) );
reg.z80_assignYX( res16 >> 8 );
return res16;
} //z80_op_sub_16
uint16_t z80_op_add_16( uint16_t a, uint16_t b )
{
uint32_t resultAux = ( (uint32_t) ( a & 0xfff ) + (uint32_t) ( b & 0xfff ) );
reg.fAuxCarry = ( 0 != ( resultAux & 0xfffff000 ) );
reg.fWasSubtract = false;
uint32_t result = ( (uint32_t) a + (uint32_t) b );
reg.fCarry = ( 0 != ( result & 0x10000 ) );
reg.z80_assignYX( (uint8_t) ( result >> 8 ) );
return (uint16_t) result;
} //z80_op_add_16
uint16_t z80_op_adc_16( uint16_t l, uint16_t r )
{
uint16_t carryOut, result, resultAux;
if ( reg.fCarry )
{
carryOut = ( l >= ( 0xffff - r ) );
result = r + l + 1;
resultAux = ( 0xfff & r ) + ( 0xfff & l ) + 1;
}
else
{
carryOut = ( l > ( 0xffff - r ) );
result = r + l;
resultAux = ( 0xfff & r ) + ( 0xfff & l );
}
reg.z80_assignYX( result >> 8 );
reg.fAuxCarry = ( 0 != ( 0xf000 & resultAux ) );
uint16_t carryIns = result ^ l ^ r;
z80_set_sign_zero_16( result );
reg.fParityEven_Overflow = ( carryIns >> 15 ) ^ carryOut;
reg.fCarry = ( 0 != carryOut );
reg.fWasSubtract = false;
return result;
} //z80_op_adc_16
void z80_op_sla( uint8_t * pval )
{
uint8_t val = *pval;
reg.fCarry = ( 0 != ( val & 0x80 ) );
val <<= 1;
set_sign_zero_parity( val );
reg.clearHN();
reg.z80_assignYX( val );
*pval = val;
} //z80_op_sla
void z80_op_sll( uint8_t * pval ) // not a documented opcode
{
uint8_t val = *pval;
reg.fCarry = ( 0 != ( val & 0x80 ) );
val <<= 1;
val |= 1;
set_sign_zero_parity( val );
reg.clearHN();
reg.z80_assignYX( val );
*pval = val;
} //z80_op_sll
void z80_op_sra( uint8_t * pval )
{
uint8_t val = *pval;
reg.fCarry = ( 0 != ( val & 1 ) );
val >>= 1;
val |= ( ( *pval ) & 0x80 ); // leave high bit unchanged
set_sign_zero_parity( val );
reg.clearHN();
reg.z80_assignYX( val );
*pval = val;
} //z80_op_sra
void z80_op_srl( uint8_t * pval )
{
uint8_t val = *pval;
reg.fCarry = ( val & 1 );
val >>= 1;
val &= 0x7f;
set_sign_zero_parity( val );
reg.clearHN();
reg.z80_assignYX( val );
*pval = val;
} //z80_op_srl
uint16_t z80_emulate( uint8_t op ) // this is just for instructions that aren't shared with 8080
{
uint16_t opaddress = reg.pc - 1;
uint8_t op2 = memory[ reg.pc ];
uint8_t op3 = memory[ reg.pc + 1 ];
uint8_t op4 = memory[ reg.pc + 2 ];
int op3int = (int) (int8_t) op3;
uint16_t cycles = 4; // general-purpose default
switch ( op )
{
case 0x08: // ex af and af'
{
swap( reg.a, reg.ap );
reg.materializeFlags();
swap( reg.f, reg.fp );
reg.unmaterializeFlags();
break;
}
case 0x10: // djnz
{
uint8_t offset = pcbyte();
reg.b = reg.b - 1;
if ( 0 != reg.b )
{
reg.pc = opaddress + 2 + (int16_t) (int8_t) offset;
cycles = 13;
}
else
cycles = 8;
break;
}
case 0x18: // jr n
{
uint8_t offset = pcbyte();
reg.pc = opaddress + 2 + (int16_t) (int8_t) offset;
cycles = 12;
break;
}
case 0x20: // jr nz, n
{
uint8_t offset = pcbyte();
if ( !reg.fZero )
{
reg.pc = opaddress + 2 + (int16_t) (int8_t) offset;
cycles = 12;
}
else
cycles = 7;
break;
}
case 0x28: // jr z, n
{
uint8_t offset = pcbyte();
if ( reg.fZero )
{
reg.pc = opaddress + 2 + (int16_t) (int8_t) offset;
cycles = 12;
}
else
cycles = 7;
break;
}
case 0x30: // jr nc, n
{
uint8_t offset = pcbyte();
if ( !reg.fCarry )
{
reg.pc = opaddress + 2 + (int16_t) (int8_t) offset;
cycles = 12;
}
else
cycles = 7;
break;
}
case 0x38: // jr c, n
{
uint8_t offset = pcbyte();
if ( reg.fCarry )
{
reg.pc = opaddress + 2 + (int16_t) (int8_t) offset;
cycles = 12;
}
else
cycles = 7;
break;
}
case 0xcb: // rotate / bits
{
pcbyte(); // get past op2
if ( 0x20 == ( op2 & 0xf8 ) ) // sla
{
cycles = 8;
uint8_t rm = op2 & 0x7;
if ( 6 == rm )
cycles += 2;
uint8_t * pdst = dst_address_rm( rm );
z80_op_sla( pdst );
}
else if ( 0x28 == ( op2 & 0xf8 ) ) // sra
{
cycles = 8;
uint8_t rm = op2 & 0x7;
if ( 6 == rm )
cycles += 2;
uint8_t * pdst = dst_address_rm( rm );
z80_op_sra( pdst );
}
else if ( op2 >= 0x30 && op2 <= 0x3f )
{
uint8_t rm = op2 & 0x7;
uint8_t * pdst = dst_address_rm( rm );
if ( op2 <= 0x37 )
z80_op_sll( pdst );
else
z80_op_srl( pdst );
}
else if ( 0x38 == ( op2 & 0xf8 ) ) // srl r = shift right logical
{
cycles = 8;
uint8_t rm = op2 >> 4;
if ( 6 == rm )
cycles += 2;
uint8_t * pdst = dst_address_rm( rm );
z80_op_srl( pdst );
}
else if ( op2 >= 0x40 && op2 <= 0x7f ) // bit #, rm
{
cycles = 8;
uint8_t rm = op2 & 0x7;
if ( 6 == rm )
cycles += 4;
uint8_t bit = ( op2 >> 3 ) & 0x7;
uint8_t val = src_value_rm( rm );
z80_op_bit( val, bit, ( 6 == rm ) ? vs_memory : vs_register );
}
else if ( op2 >= 0x80 && op2 <= 0xbf ) // res bit #, rm AKA reset
{
cycles = 8;
uint8_t rm = op2 & 0x7;
if ( 6 == rm )
cycles += 7;
uint8_t bit = ( op2 >> 3 ) & 0x7;
uint8_t val = src_value_rm( rm );
uint8_t mask = ~ ( 1 << bit );
val &= mask;
* dst_address_rm( rm ) = val;
}
else if ( op2 >= 0xc0 && op2 <= 0xff ) // set bit #, rm
{
cycles = 8;
uint8_t rm = op2 & 0x7;
if ( 6 == rm )
cycles += 7;
uint8_t bit = ( op2 >> 3 ) & 0x7;
uint8_t val = src_value_rm( rm );
uint8_t mask = 1 << bit;
val |= mask;
* dst_address_rm( rm ) = val;
}
else if ( op2 <= 0x1f ) // rlc, rrc, rl, rr on rm
{
cycles = 8;
uint8_t mod = op2;
uint8_t rot = ( mod >> 3 ) & 0x3;
uint8_t rm = mod & 0x7;
if ( 6 == rm )
cycles += 2;
uint8_t * pval = dst_address_rm( rm );
if ( 0 == rot )
z80_op_rlc( pval );
else if ( 1 == rot )
z80_op_rrc( pval );
else if ( 2 == rot )
z80_op_rl( pval );
else // if ( 3 == rot )
z80_op_rr( pval );
}
else
z80_ni( op, op2 );
break;
}
case 0xd9: // exx B, D, H with B', D', H'
{
swap( reg.b, reg.bp );
swap( reg.c, reg.cp );
swap( reg.d, reg.dp );
swap( reg.e, reg.ep );
swap( reg.h, reg.hp );
swap( reg.l, reg.lp );
break;
}
case 0xdd: case 0xfd: // ix & iy operations
{
reg.r++;
pcbyte(); // consume op2: the dd or fd
if ( 0x21 == op2 ) // ld ix/iy word
* reg.z80_indexAddress( op ) = pcword();
else if ( 0x22 == op2 ) // ld (address), ix/iy
{
cycles = 20;
uint16_t address = pcword();
setmword( address, reg.z80_getIndex( op ) );
}
else if ( 0x23 == op2 ) // inc ix/iy
{
cycles = 10;
* reg.z80_indexAddress( op ) = reg.z80_getIndex( op ) + 1; // no flags are affected
}
else if ( 0x26 == op2 ) // ld ix/iy h. not documented
* reg.z80_getIndexByteAddress( op, 0 ) = pcbyte();
else if ( 0x2a == op2 ) // ld ix, (address)
{
cycles = 20;
uint16_t address = pcword();
reg.z80_setIndex( op, mword( address ) );
}
else if ( 0x2b == op2 ) // dec ix/iy
{
cycles = 10;
* reg.z80_indexAddress( op ) = reg.z80_getIndex( op ) - 1; // no flags are affected
}
else if ( 0x2e == op2 ) // ld ix/iy l. not documented
{
cycles = 20; // guess
* reg.z80_getIndexByteAddress( op, 1 ) = pcbyte();
}
else if ( 0x34 == op2 ) // inc (i + index)
{
cycles = 23;
uint16_t i = reg.z80_getIndex( op ) + (int16_t) (int8_t) pcbyte();
uint8_t x = memory[ i ];
memory[i] = op_inc( x );
}
else if ( 0x35 == op2 ) // dec (i + index)
{
cycles = 23;
uint16_t i = reg.z80_getIndex( op ) + (int16_t) (int8_t) pcbyte();
uint8_t x = memory[ i ];
memory[ i ] = op_dec( x );
}
else if ( 0x36 == op2 ) // ld (ix/iy + index), immediate byte
{
cycles = 19;
uint16_t i = reg.z80_getIndex( op ) + (int16_t) (int8_t) pcbyte();
uint8_t val = pcbyte();
memory[ i ] = val;
}
else if ( ( ( op2 >= 0x40 && op2 <= 0x6f ) || ( op2 >= 0x78 && op2 <= 0x7f ) ) && // ld [bcdeIhIla][bcdeIhIla]
( ( ( op2 & 0xf ) != 6 ) && ( ( op2 & 0xf ) != 0xe ) ) )
{
uint8_t fromval = op2 & 0xf;
if ( fromval >= 8 )
fromval -= 8;
uint8_t tmp = ( 0 == fromval ) ? reg.b :
( 1 == fromval ) ? reg.c :
( 2 == fromval ) ? reg.d :
( 3 == fromval ) ? reg.e :
( 4 == fromval ) ? reg.z80_getIndexByte( op, 0 ) :
( 5 == fromval ) ? reg.z80_getIndexByte( op, 1 ) :
reg.a;
if ( op2 <= 0x47 )
reg.b = tmp;
else if ( op2 <= 0x4f )
reg.c = tmp;
else if ( op2 <= 0x57 )
reg.d = tmp;
else if ( op2 <= 0x5f )
reg.e = tmp;
else if ( op2 <= 0x67 )
*reg.z80_getIndexByteAddress( op, 0 ) = tmp;
else if ( op2 <= 0x6f )
*reg.z80_getIndexByteAddress( op, 1 ) = tmp;
else
reg.a = tmp;
}
else if ( 0x46 == ( op2 & 0x47 ) ) // ld r, (i + #)
{
cycles = 19;