forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
EmbeddingBackwardKernel.cu
324 lines (288 loc) · 12.2 KB
/
EmbeddingBackwardKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/TensorUtils.h>
#include <ATen/NativeFunctions.h>
#include <ATen/AccumulateType.h>
#include <THC/THCDeviceUtils.cuh>
#include <THC/THCTensorMathReduce.cuh>
#include <THC/THCTensorSort.cuh>
#include <THC/THCThrustAllocator.cuh>
#include <THC/THCAtomics.cuh>
#include <thrust/execution_policy.h>
#include <thrust/unique.h>
#include <c10/macros/Macros.h>
namespace at {
namespace native {
namespace {
// The maximum block size in CUDA
constexpr int MAX_BLOCK_SIZE = 1024;
/* This code computes the sum of the weights in two-steps:
1) Each GPU warp sums `NROWS_PER_THREAD` number of row given by `indeces`
2) Each partial-sum from 1) are summed and scatter into `grad_weight`
Notice, `NROWS_PER_THREAD` impacts the Achieved Occupancy of the
kernel execution. If it is high, the size of the thread blocks will be
too small to achieve good occupancy. Similarly, a very low value will
make the size of the thread blocks in the final sum in step 2) too small.
*/
constexpr int NROWS_PER_THREAD = 10;
// Fast ceil division (no overflow checking)
__host__ __device__ __forceinline__
int64_t ceil_div(int64_t x, int64_t y) {
return (x + y - 1) / y;
}
__global__
void krn_partials_per_segment(int64_t *ret, const int64_t *segment_offsets,
int64_t num_of_segments, int64_t numel) {
const int id = blockIdx.x * blockDim.x + threadIdx.x;
if(id < num_of_segments) {
const int64_t idx_start = segment_offsets[id];
const int64_t idx_end = (id == num_of_segments-1)?numel:segment_offsets[id+1];
const int64_t size = idx_end - idx_start;
ret[id] = ceil_div(size, NROWS_PER_THREAD);
}
}
__global__
void krn_partial_segment_offset(
int64_t *ret,
const int64_t *partials_per_segment,
const int64_t *partials_per_segment_offset,
const int64_t *segment_offsets,
int64_t num_of_segments) {
const int id = blockIdx.x * blockDim.x + threadIdx.x;
if(id < num_of_segments) {
int64_t idx = partials_per_segment_offset[id];
const int64_t num_partials = partials_per_segment[id];
const int64_t segment_offset = segment_offsets[id];
for (int64_t i=0; i<num_partials; ++i) {
ret[idx++] = segment_offset + i * NROWS_PER_THREAD;
}
}
}
template <typename scalar_t>
__global__ void compute_grad_weight_bags(
int64_t *indices, scalar_t *gradOutput,
int64_t *offset2bag, int64_t *count, ptrdiff_t numel,
int64_t stride, int mode_mean, const int64_t *bag_size,
scalar_t* per_sample_weights, int64_t per_sample_weights_stride,
int64_t* segment_offsets, int64_t num_of_segments,
acc_type<scalar_t, true> *grad_weight_per_segment,
const int64_t stride_warped) {
const int gid = blockIdx.x * blockDim.x + threadIdx.x;
const int id = gid / stride_warped;
const int startFeature = gid % stride_warped;
if (startFeature >= stride) {
return;
}
if (id >= num_of_segments) {
return;
}
const int idx_begin = segment_offsets[id];
const int idx_end = (id == num_of_segments-1)?numel:segment_offsets[id+1];
acc_type<scalar_t, true> weight = 0;
for (int idx=idx_begin; idx < idx_end; ++idx) {
const int origRow = indices[idx];
const int seq_number = offset2bag[origRow];
const int gradOutputRow = seq_number * stride;
acc_type<scalar_t, true> scale = count ? 1.0 / count[idx] : 1.0;
if (per_sample_weights) {
scale *= per_sample_weights[origRow * per_sample_weights_stride];
}
acc_type<scalar_t, true> gradient = gradOutput[gradOutputRow + startFeature];
if (mode_mean) {
gradient /= bag_size[seq_number];
}
weight += gradient * scale;
}
grad_weight_per_segment[id * stride + startFeature] = weight;
}
template <typename scalar_t>
__global__ void compute_grad_weight(
int64_t *indices,
scalar_t *gradOutput,
int64_t *count,
ptrdiff_t numel,
int64_t stride,
int64_t* segment_offsets,
int64_t num_of_segments,
acc_type<scalar_t, true> *grad_weight_per_segment,
const int64_t stride_warped) {
using accscalar_t = acc_type<scalar_t, true>;
const int gid = blockIdx.x * blockDim.x + threadIdx.x;
const int id = gid / stride_warped;
const int startFeature = gid % stride_warped;
if (startFeature >= stride) {
return;
}
if (id >= num_of_segments) {
return;
}
const int idx_begin = segment_offsets[id];
const int idx_end = (id == num_of_segments-1)?numel:segment_offsets[id+1];
accscalar_t weight = 0;
for (int idx=idx_begin; idx < idx_end; ++idx) {
const int64_t target_row = indices[idx];
const accscalar_t scale = count ? (accscalar_t)1.0 / count[idx] : 1.0;
weight += gradOutput[target_row * stride + startFeature] * scale;
}
grad_weight_per_segment[id * stride + startFeature] = weight;
}
// This kernel assumes that all input tensors are contiguous.
template <typename scalar_t>
__global__ void sum_and_scatter(
int64_t *input, scalar_t *gradWeight, int64_t stride,
int64_t* segment_offsets, int64_t num_of_segments,
const acc_type<scalar_t, true> *grad_weight_per_segment,
const int64_t *segment_sizes_offsets, int64_t num_of_partial_segments,
const int64_t padding_idx,
const int64_t stride_warped) {
const int gid = blockIdx.x * blockDim.x + threadIdx.x;
const int id = gid / stride_warped;
const int startFeature = gid % stride_warped;
if (startFeature >= stride) {
return;
}
if (id >= num_of_segments) {
return;
}
const int idx_begin = segment_sizes_offsets[id];
const int idx_end = (id == num_of_segments-1)?num_of_partial_segments:segment_sizes_offsets[id+1];
acc_type<scalar_t, true> weight = 0;
for (int idx=idx_begin; idx < idx_end; ++idx) {
weight += grad_weight_per_segment[idx*stride + startFeature];
}
int64_t target_row = input[segment_offsets[id]];
if (target_row != padding_idx) {
gradWeight[target_row * stride + startFeature] = weight;
}
}
} // anon namespace
Tensor embedding_backward_cuda_kernel(
const Tensor &grad,
const Tensor &orig_indices,
const Tensor &sorted_indices,
const Tensor &count,
int64_t num_weights,
int padding_idx,
bool scale_grad_by_freq,
bool mode_mean,
const Tensor &offset2bag,
const Tensor &bag_size,
const Tensor &per_sample_weights) {
auto stream = at::cuda::getCurrentCUDAStream();
auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA());
auto policy = thrust::cuda::par(allocator).on(stream);
const ptrdiff_t numel = sorted_indices.numel();
auto grad_weight = at::zeros({num_weights, grad.size(-1)}, grad.options());
const int64_t stride = grad_weight.stride(0);
// Compute the number of segments and their start position so that we do not have to
// spawn a warp per index. In this context, a segment is a number of rows that should
// be summarized.
// Unit: index in `sorted_indices` and `orig_indices`
auto segment_offsets = at::empty({numel}, orig_indices.options());
int64_t num_of_segments;
{
auto sorted_indices_dev = thrust::device_ptr<int64_t>(sorted_indices.data_ptr<int64_t>());
auto dummy = at::empty_like(sorted_indices, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto dummy_dev = thrust::device_ptr<int64_t>(dummy.data_ptr<int64_t>());
auto ends = thrust::unique_by_key_copy(
policy,
sorted_indices_dev,
sorted_indices_dev + numel,
thrust::make_counting_iterator(0),
dummy_dev,
thrust::device_ptr<int64_t>(segment_offsets.data_ptr<int64_t>()));
num_of_segments = thrust::get<0>(ends) - dummy_dev;
}
// We split the segments up into sizes of `NROWS_PER_THREAD`
// Compute the number partial-segments per segment (some partial-segments
// may not be the full `NROWS_PER_THREAD` number of rows)
auto partials_per_segment = at::empty({num_of_segments}, orig_indices.options());
{
krn_partials_per_segment<<<ceil_div(num_of_segments, 32), 32, 0, stream>>> (
partials_per_segment.data_ptr<int64_t>(),
segment_offsets.data_ptr<int64_t>(),
num_of_segments,
numel);
}
// In order to compute `partial_segment_offset`, which is the start index
// of each partial-segment in `sorted_indices`, we need to compute the
// start position of each _segment_ in `partial_segment_offset`.
// Unit: index in `partial_segment_offset`
auto partials_per_segment_offset = at::empty({num_of_segments}, orig_indices.options());
thrust::exclusive_scan(
policy,
thrust::device_ptr<int64_t>(partials_per_segment.data_ptr<int64_t>()),
thrust::device_ptr<int64_t>(partials_per_segment.data_ptr<int64_t>()+num_of_segments),
thrust::device_ptr<int64_t>(partials_per_segment_offset.data_ptr<int64_t>()));
// The total number of partial-segments is the sum of `partials_per_segment_offset`
const int num_of_partial_segments = partials_per_segment[num_of_segments-1].item<int64_t>() +
partials_per_segment_offset[num_of_segments-1].item<int64_t>();
// Now we can compute the start position of each partial-segment
// Unit: index in `sorted_indices` and `orig_indices`
auto partial_segment_offset = at::empty({num_of_partial_segments}, orig_indices.options());
{
krn_partial_segment_offset<<<ceil_div(num_of_segments, 32), 32, 0, stream>>> (
partial_segment_offset.data_ptr<int64_t>(),
partials_per_segment.data_ptr<int64_t>(),
partials_per_segment_offset.data_ptr<int64_t>(),
segment_offsets.data_ptr<int64_t>(),
num_of_segments);
}
const int stride_warped = ceil_div(stride, C10_WARP_SIZE)*C10_WARP_SIZE;
const int block = std::min(stride_warped, MAX_BLOCK_SIZE);
const int grid = ceil_div(num_of_partial_segments*stride_warped, block);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad.scalar_type(), "embedding_bag_backward_cuda_compute_grad_weight", [&] {
// For numerical stability, the dtype of `grad_weight_per_segment`
// should match `acc_type`
using partial_weight_t = acc_type<scalar_t, true>;
TensorOptions op;
if(grad.dtype() == at::kHalf) {
op = grad.options().dtype(at::kFloat);
} else {
op = grad.options();
}
auto grad_weight_per_segment = at::empty({num_of_partial_segments, stride}, op);
// Compute the sum of each partial-segment and handle bags
if (offset2bag.defined()) {
compute_grad_weight_bags<scalar_t><<<grid, block, 0, stream>>>(
orig_indices.data_ptr<int64_t>(),
grad.data_ptr<scalar_t>(),
offset2bag.data_ptr<int64_t>(),
count.defined() ? count.data_ptr<int64_t>() : nullptr, numel, stride,
mode_mean, bag_size.data_ptr<int64_t>(),
per_sample_weights.defined() ? per_sample_weights.data_ptr<scalar_t>() : NULL,
per_sample_weights.defined() ? per_sample_weights.stride(0) : 0,
partial_segment_offset.data_ptr<int64_t>(),
num_of_partial_segments, grad_weight_per_segment.data_ptr<partial_weight_t>(),
stride_warped);
} else {
compute_grad_weight<scalar_t><<<grid, block, 0, stream>>>(
orig_indices.data_ptr<int64_t>(),
grad.data_ptr<scalar_t>(),
count.defined() ? count.data_ptr<int64_t>() : nullptr,
numel, stride,
partial_segment_offset.data_ptr<int64_t>(),
num_of_partial_segments,
grad_weight_per_segment.data_ptr<partial_weight_t>(),
stride_warped);
}
THCudaCheck(cudaGetLastError());
// Finally, we sum all the partial-sums and scatter them
// into `grad_weight`.
const int grid2 = ceil_div(num_of_segments*stride_warped, block);
sum_and_scatter<scalar_t><<<grid2, block, 0, stream>>>(
sorted_indices.data_ptr<int64_t>(),
grad_weight.data_ptr<scalar_t>(),
stride,
segment_offsets.data_ptr<int64_t>(),
num_of_segments, grad_weight_per_segment.data_ptr<partial_weight_t>(),
partials_per_segment_offset.data_ptr<int64_t>(),
num_of_partial_segments,
padding_idx,
stride_warped);
THCudaCheck(cudaGetLastError());
});
return grad_weight;
}
}}