forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MaxUnpooling.cu
589 lines (523 loc) · 17.6 KB
/
MaxUnpooling.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/detail/KernelUtils.h>
#include <c10/util/Exception.h>
namespace at {
namespace native {
using namespace at::cuda::detail;
template <typename T>
__host__ __device__ __forceinline__ T ceilDiv(T a, T b) {
return (a + b - 1) / b;
}
template <typename T>
__global__ void max_unpooling2d_forward_kernel(
const int64_t numInputElements,
const T* input,
const int64_t* indices,
const int64_t numChannels,
const int64_t inputHeight,
const int64_t inputWidth,
const int64_t outputHeight,
const int64_t outputWidth,
T* output) {
CUDA_KERNEL_LOOP(linearIndex, numInputElements) {
int c = (linearIndex / inputWidth / inputHeight) % numChannels;
int n = linearIndex / inputWidth / inputHeight / numChannels;
output += (n * numChannels + c) * outputHeight * outputWidth;
int maxind = indices[linearIndex];
output[maxind] = input[linearIndex];
}
}
template <typename T>
__global__ void max_unpooling3d_forward_kernel(
PackedTensorAccessor64<T, 4> input,
PackedTensorAccessor64<int64_t, 4> indices,
T* output,
const int64_t oT,
const int64_t oH,
const int64_t oW,
const int64_t offsetZ) {
int64_t iColumn = blockIdx.x * blockDim.x + threadIdx.x;
int64_t iRow = blockIdx.y * blockDim.y + threadIdx.y;
int64_t iFrame = (blockIdx.z + offsetZ) % input.size(1); // input frame/time
int64_t slice = (blockIdx.z + offsetZ) / input.size(1); // input slice/feature
if (iRow < input.size(2) && iColumn < input.size(3)) {
T val = input[slice][iFrame][iRow][iColumn];
int64_t index = indices[slice][iFrame][iRow][iColumn];
output[slice * oT * oH * oW + index] = val;
}
}
template <typename T>
__global__ void max_unpooling2d_backward_kernel(
const int64_t numInputElements,
const T* input,
const int64_t* indices,
const int64_t numChannels,
const int64_t inputHeight,
const int64_t inputWidth,
const int64_t outputHeight,
const int64_t outputWidth,
T* output) {
CUDA_KERNEL_LOOP(linearIndex, numInputElements) {
int c = (linearIndex / inputWidth / inputHeight) % numChannels;
int n = linearIndex / inputWidth / inputHeight / numChannels;
input += (n * numChannels + c) * outputHeight * outputWidth;
int maxind = indices[linearIndex];
output[linearIndex] = input[maxind];
}
}
template <typename T>
__global__ void max_unpooling3d_backward_kernel(
T* gradOutputData,
int64_t oT,
int64_t oH,
int64_t oW,
PackedTensorAccessor64<int64_t, 4> indices,
PackedTensorAccessor64<T, 4> gradInput,
int offsetZ) {
int iColumn = blockIdx.x * blockDim.x + threadIdx.x;
int iRow = blockIdx.y * blockDim.y + threadIdx.y;
int iFrame = (blockIdx.z + offsetZ) % gradInput.size(1); // output frame/time
int slice =
(blockIdx.z + offsetZ) / gradInput.size(1); // output slice/feature
if (iRow < gradInput.size(2) && iColumn < gradInput.size(3)) {
int64_t index = indices[slice][iFrame][iRow][iColumn];
T grad_val = gradOutputData[slice * oT * oH * oW + index];
gradInput[slice][iFrame][iRow][iColumn] = grad_val;
}
}
Tensor& max_unpooling2d_forward_out_cuda(
Tensor& output,
const Tensor& self_,
const Tensor& indices_,
IntArrayRef output_size) {
TORCH_CHECK(output.is_contiguous(), "output must be contiguous");
TORCH_CHECK(
indices_.scalar_type() == at::ScalarType::Long,
"elements in indices should be type int64");
auto oheight = output_size[0];
auto owidth = output_size[1];
TensorArg output_arg{output, "output", 1}, self_arg{self_, "self_", 2},
indices_arg{indices_, "indices_", 3};
checkAllSameGPU(
"max_unpooling2d_forward_out_cuda", {output_arg, self_arg, indices_arg});
TORCH_CHECK(self_.numel() > 0, "Input must be non-empty tensor");
TORCH_CHECK(
(self_.ndimension() == 3 || self_.ndimension() == 4),
"Input to max_unpooling2d should be a 3d or 4d Tensor",
self_.sizes());
TORCH_CHECK(
self_.sizes() == indices_.sizes(),
"Shape of input must match shape of indices");
TORCH_CHECK(
output_size.size() == 2,
"There should be exactly two elements (width, height) in output_size");
int64_t dimw = 2;
int64_t dimh = 1;
int64_t numBatch = 1;
int64_t numChannels;
int64_t inputHeight;
int64_t inputWidth;
auto self = self_.contiguous();
auto indices = indices_.contiguous();
if (self.ndimension() == 4) {
numBatch = self.size(0);
dimw++;
dimh++;
}
numChannels = self.size(dimh - 1);
inputHeight = self.size(dimh);
inputWidth = self.size(dimw);
output.resize_({numBatch, numChannels, oheight, owidth});
output.zero_();
auto count = self.numel();
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half,
self.scalar_type(), "max_unpooling2d_forward_kernel", ([&] {
max_unpooling2d_forward_kernel<<<
GET_BLOCKS(count),
CUDA_NUM_THREADS,
0,
at::cuda::getCurrentCUDAStream()>>>(
self.numel(),
self.data_ptr<scalar_t>(),
indices.data_ptr<int64_t>(),
numChannels,
inputHeight,
inputWidth,
oheight,
owidth,
output.data_ptr<scalar_t>());
}));
TORCH_CHECK(
cudaGetLastError() == cudaSuccess,
"max_unpooling2d_forward_kernel failed with error code ",
cudaGetLastError());
if (self.ndimension() == 3) {
output.resize_({numChannels, oheight, owidth});
}
return output;
}
Tensor max_unpooling2d_forward_cuda(
const Tensor& self,
const Tensor& indices,
IntArrayRef output_size) {
auto output = at::empty({0}, self.options());
max_unpooling2d_forward_out_cuda(output, self, indices, output_size);
return output;
}
static void max_unpooling3d_shape_check(
const Tensor& input,
const Tensor& gradOutput,
const Tensor& indices,
IntArrayRef output_size,
IntArrayRef stride,
IntArrayRef padding) {
int64_t oT = output_size[0];
int64_t oH = output_size[1];
int64_t oW = output_size[2];
TORCH_CHECK(
indices.scalar_type() == at::ScalarType::Long,
"elements in indices should be type int64");
TORCH_CHECK(
(input.ndimension() == 4 || input.ndimension() == 5),
"Input to max_unpooling3d should be a 4d or 5d Tensor",
input.sizes());
TORCH_CHECK(
output_size.size() == 3,
"There should be exactly three elements (depth, height, width) in output_size");
TORCH_CHECK(
stride.size() == 3,
"There should be exactly three elements (depth, height, width) in stride");
TORCH_CHECK(
padding.size() == 3,
"There should be exactly three elements (depth, height, width) in padding");
TORCH_CHECK(
input.sizes() == indices.sizes(),
"Shape of indices should match shape of input");
TORCH_CHECK(input.numel() > 0, "Input must be non-empty");
TORCH_CHECK(
stride[0] > 0 && stride[1] > 0 && stride[2] > 0,
"strides should be greater than zero, but got stride: ",
stride);
int dimw = 3;
int dimh = 2;
int dimt = 1;
int dimn = 0;
if (input.ndimension() == 5) {
dimw++;
dimh++;
dimt++;
dimn++;
}
int nslices = input.size(dimn);
if (gradOutput.defined()) {
if (oT != gradOutput.size(dimt) || oH != gradOutput.size(dimh) ||
oW != gradOutput.size(dimw)) {
AT_ERROR(
"Inconsistent gradOutput size. oT= ",
oT,
", oH= ",
oH,
", oW= ",
oW,
". gradOutput: ",
gradOutput.size(dimt),
"x",
gradOutput.size(dimh),
"x",
gradOutput.size(dimw));
}
TORCH_CHECK(
gradOutput.ndimension() == input.ndimension() &&
gradOutput.size(dimn) == nslices,
"gradOutput and input Tensors should have same number of dimensions and also the same number of channels/slices");
}
}
Tensor& max_unpooling3d_forward_out_cuda(
Tensor& output,
const Tensor& self_,
const Tensor& indices_,
IntArrayRef output_size,
IntArrayRef stride,
IntArrayRef padding) {
TORCH_CHECK(output.is_contiguous(), "output must be contiguous");
max_unpooling3d_shape_check(
self_, Tensor(), indices_, output_size, stride, padding);
int64_t oT = output_size[0];
int64_t oH = output_size[1];
int64_t oW = output_size[2];
TensorArg output_arg{output, "output", 1}, self_arg{self_, "self_", 2},
indices_arg{indices_, "indices_", 3};
checkAllSameGPU(
"max_unpooling3d_forward_out_cuda", {output_arg, self_arg, indices_arg});
auto self = self_.contiguous();
auto indices = indices_.contiguous();
int64_t batchSize;
int64_t inputSlices;
int64_t inputTime;
int64_t inputHeight;
int64_t inputWidth;
if (self.ndimension() == 4) {
batchSize = 1;
inputSlices = self.size(0);
inputTime = self.size(1);
inputHeight = self.size(2);
inputWidth = self.size(3);
output.resize_({inputSlices, oT, oH, oW});
} else {
batchSize = self.size(0);
inputSlices = self.size(1);
inputTime = self.size(2);
inputHeight = self.size(3);
inputWidth = self.size(4);
output.resize_({batchSize, inputSlices, oT, oH, oW});
}
output.zero_();
// Collapse batch and feature dimensions if needed
if (self.ndimension() == 5) {
self = self.reshape({self.size(0) * self.size(1),
self.size(2),
self.size(3),
self.size(4)});
indices = indices.reshape({indices.size(0) * indices.size(1),
indices.size(2),
indices.size(3),
indices.size(4)});
}
int totalZ = inputTime * inputSlices * batchSize;
int offsetZ = 0;
dim3 block(32, 8);
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half,
self.scalar_type(), "max_unpooling3d_forward_kernel", ([&] {
while (totalZ > 0) {
dim3 grid(
ceilDiv(inputWidth, static_cast<int64_t>(block.x)),
ceilDiv(inputHeight, static_cast<int64_t>(block.y)),
totalZ > 65535 ? 65535 : totalZ);
max_unpooling3d_forward_kernel<<<
grid,
block,
0,
at::cuda::getCurrentCUDAStream()>>>(
self.packed_accessor64<scalar_t, 4>(),
indices.packed_accessor64<int64_t, 4>(),
output.data_ptr<scalar_t>(),
oT,
oH,
oW,
offsetZ);
TORCH_CHECK(
cudaGetLastError() == cudaSuccess,
"max_unpooling3d_forward_kernel failed with error code ",
cudaGetLastError());
totalZ -= 65535;
offsetZ += 65535;
}
}));
return output;
}
Tensor max_unpooling3d_forward_cuda(
const Tensor& self,
const Tensor& indices,
IntArrayRef output_size,
IntArrayRef stride,
IntArrayRef padding) {
auto output = at::empty({0}, self.options());
max_unpooling3d_forward_out_cuda(
output, self, indices, output_size, stride, padding);
return output;
}
at::Tensor& max_unpooling2d_backward_out_cuda(
Tensor& grad_input,
const Tensor& grad_output_,
const Tensor& self_,
const Tensor& indices_,
IntArrayRef output_size) {
int64_t oheight = output_size[0];
int64_t owidth = output_size[1];
TORCH_CHECK(grad_input.is_contiguous(), "grad_input must be contiguous");
TORCH_CHECK(
indices_.scalar_type() == at::ScalarType::Long,
"elements in indices should be type int64");
TensorArg grad_input_arg{grad_input, "grad_input", 1},
grad_output_arg{grad_output_, "grad_output_", 2},
self_arg{self_, "self_", 3}, indices_arg{indices_, "indices_", 4};
checkAllSameGPU(
"max_unpooling2d_backward_out_cuda",
{grad_input_arg, grad_output_arg, self_arg, indices_arg});
TORCH_CHECK(
(self_.ndimension() == 3 || self_.ndimension() == 4),
"Input to max_unpooling2d should be a 3d or 4d Tensor, instead got: ",
self_);
TORCH_CHECK(
self_.sizes() == indices_.sizes(),
"Input should have same shape as indices");
TORCH_CHECK(output_size.size() == 2, "output_size must have two elements");
int64_t nInputCols, nInputRows, nInputPlane, batchSize;
int dimw = 2;
int dimh = 1;
auto self = self_.contiguous();
auto indices = indices_.contiguous();
auto grad_output = grad_output_.contiguous();
if (self.ndimension() == 3) {
nInputPlane = self.size(0);
batchSize = 1;
} else {
++dimw;
++dimh;
nInputPlane = self.size(1);
batchSize = self.size(0);
}
nInputCols = self.size(dimw);
nInputRows = self.size(dimh);
if (oheight != grad_output.size(dimh) || owidth != grad_output.size(dimw)) {
AT_ERROR(
"Inconsistent gradOutput size. output height: ",
oheight,
", output width= ",
owidth,
", gradOutput: ",
grad_output.size(dimh),
"x",
grad_output.size(dimw));
}
grad_input.resize_as_(self);
grad_input.zero_();
int count = self.numel();
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half,
self.scalar_type(), "max_unpooling2d_backward_kernel", ([&] {
max_unpooling2d_backward_kernel<<<
GET_BLOCKS(count),
CUDA_NUM_THREADS,
0,
at::cuda::getCurrentCUDAStream()>>>(
count,
grad_output.data_ptr<scalar_t>(),
indices.data_ptr<int64_t>(),
nInputPlane,
nInputRows,
nInputCols,
oheight,
owidth,
grad_input.data_ptr<scalar_t>());
}));
TORCH_CHECK(
cudaGetLastError() == cudaSuccess,
"max_unpooling2d_backward_kernel failed with error code ",
cudaGetLastError());
return grad_input;
}
at::Tensor max_unpooling2d_backward_cuda(
const Tensor& grad_output,
const Tensor& self,
const Tensor& indices,
IntArrayRef output_size) {
auto grad_input = at::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
max_unpooling2d_backward_out_cuda(
grad_input, grad_output, self, indices, output_size);
return grad_input;
}
at::Tensor& max_unpooling3d_backward_out_cuda(
Tensor& grad_input,
const Tensor& grad_output_,
const Tensor& self_,
const Tensor& indices_,
IntArrayRef output_size,
IntArrayRef stride,
IntArrayRef padding) {
TORCH_CHECK(grad_input.is_contiguous(), "grad_input must be contiguous");
int64_t oT = output_size[0];
int64_t oH = output_size[1];
int64_t oW = output_size[2];
max_unpooling3d_shape_check(
self_, grad_output_, indices_, output_size, stride, padding);
int batchSize = 0;
int inputSlices = 0;
int inputTime = 0;
int64_t inputHeight = 0;
int64_t inputWidth = 0;
TensorArg self_arg{self_, "self_", 1}, indices_arg{indices_, "indices_", 2},
grad_output_arg{grad_output_, "grad_output_", 3},
grad_input_arg{grad_input, "grad_input", 4};
checkAllSameGPU(
"max_unpooling3d_backward_out_cuda",
{self_arg, indices_arg, grad_output_arg, grad_input_arg});
auto self = self_.contiguous();
auto indices = indices_.contiguous();
auto grad_output = grad_output_.contiguous();
if (self.ndimension() == 4) {
batchSize = 1;
inputSlices = self.size(0);
inputTime = self.size(1);
inputHeight = self.size(2);
inputWidth = self.size(3);
} else {
batchSize = self.size(0);
inputSlices = self.size(1);
inputTime = self.size(2);
inputHeight = self.size(3);
inputWidth = self.size(4);
}
grad_input.resize_as_(self);
grad_input.zero_();
// Collapse batch and feature dimensions if needed
auto grad_input_reshaped = grad_input;
if (grad_input.ndimension() == 5) {
grad_input_reshaped =
grad_input.reshape({grad_input.size(0) * grad_input.size(1),
grad_input.size(2),
grad_input.size(3),
grad_input.size(4)});
indices = indices.reshape({indices.size(0) * indices.size(1),
indices.size(2),
indices.size(3),
indices.size(4)});
}
int totalZ = inputTime * inputSlices * batchSize;
int offsetZ = 0;
dim3 block(32, 8);
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half,
self.scalar_type(), "max_unpooling3d_backward_kernel", ([&] {
while (totalZ > 0) {
dim3 grid(
ceilDiv(inputWidth, static_cast<int64_t>(block.x)),
ceilDiv(inputHeight, static_cast<int64_t>(block.y)),
totalZ > 65535 ? 65535 : totalZ);
max_unpooling3d_backward_kernel<<<
grid,
block,
0,
at::cuda::getCurrentCUDAStream()>>>(
grad_output.data_ptr<scalar_t>(),
oT,
oH,
oW,
indices.packed_accessor64<int64_t, 4>(),
grad_input_reshaped.packed_accessor64<scalar_t, 4>(),
offsetZ);
TORCH_CHECK(
cudaGetLastError() == cudaSuccess,
"max_unpooling3d_backward_kernel failed with error code ",
cudaGetLastError());
totalZ -= 65535;
offsetZ += 65535;
}
}));
return grad_input;
}
at::Tensor max_unpooling3d_backward_cuda(
const Tensor& grad_output,
const Tensor& self,
const Tensor& indices,
IntArrayRef output_size,
IntArrayRef stride,
IntArrayRef padding) {
auto grad_input = at::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
max_unpooling3d_backward_out_cuda(
grad_input, grad_output, self, indices, output_size, stride, padding);
return grad_input;
}
} // namespace native
} // namespace at