forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
misc.cpp
83 lines (65 loc) · 1.87 KB
/
misc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include <gtest/gtest.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
#include <functional>
using namespace torch::test;
void torch_warn_once_A() {
TORCH_WARN_ONCE("warn once");
}
void torch_warn_once_B() {
TORCH_WARN_ONCE("warn something else once");
}
void torch_warn() {
TORCH_WARN("warn multiple times");
}
TEST(UtilsTest, WarnOnce) {
{
std::stringstream buffer;
CerrRedirect cerr_redirect(buffer.rdbuf());
torch_warn_once_A();
torch_warn_once_A();
torch_warn_once_B();
torch_warn_once_B();
ASSERT_EQ(count_substr_occurrences(buffer.str(), "warn once"), 1);
ASSERT_EQ(count_substr_occurrences(buffer.str(), "warn something else once"), 1);
}
{
std::stringstream buffer;
CerrRedirect cerr_redirect(buffer.rdbuf());
torch_warn();
torch_warn();
torch_warn();
ASSERT_EQ(count_substr_occurrences(buffer.str(), "warn multiple times"), 3);
}
}
TEST(NoGradTest, SetsGradModeCorrectly) {
torch::manual_seed(0);
torch::NoGradGuard guard;
torch::nn::Linear model(5, 2);
auto x = torch::randn({10, 5}, torch::requires_grad());
auto y = model->forward(x);
torch::Tensor s = y.sum();
// Mimicking python API behavior:
ASSERT_THROWS_WITH(s.backward(),
"element 0 of tensors does not require grad and does not have a grad_fn")
}
struct AutogradTest : torch::test::SeedingFixture {
AutogradTest() {
x = torch::randn({3, 3}, torch::requires_grad());
y = torch::randn({3, 3});
z = x * y;
}
torch::Tensor x, y, z;
};
TEST_F(AutogradTest, CanTakeDerivatives) {
z.backward(torch::ones_like(z));
ASSERT_TRUE(x.grad().allclose(y));
}
TEST_F(AutogradTest, CanTakeDerivativesOfZeroDimTensors) {
z.sum().backward();
ASSERT_TRUE(x.grad().allclose(y));
}
TEST_F(AutogradTest, CanPassCustomGradientInputs) {
z.sum().backward(torch::ones({}) * 2);
ASSERT_TRUE(x.grad().allclose(y * 2));
}