forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_custom_ops.py
55 lines (40 loc) · 1.59 KB
/
test_custom_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import unittest
import torch
import torch.utils.cpp_extension
import onnx
import caffe2.python.onnx.backend as c2
import numpy as np
from test_pytorch_onnx_caffe2 import do_export
class TestCustomOps(unittest.TestCase):
def test_custom_add(self):
op_source = """
#include <torch/script.h>
torch::Tensor custom_add(torch::Tensor self, torch::Tensor other) {
return self + other;
}
static auto registry =
torch::RegisterOperators("custom_namespace::custom_add", &custom_add);
"""
torch.utils.cpp_extension.load_inline(
name="custom_add",
cpp_sources=op_source,
is_python_module=False,
verbose=True,
)
class CustomAddModel(torch.nn.Module):
def forward(self, a, b):
return torch.ops.custom_namespace.custom_add(a, b)
def symbolic_custom_add(g, self, other):
return g.op('Add', self, other)
from torch.onnx import register_custom_op_symbolic
register_custom_op_symbolic('custom_namespace::custom_add', symbolic_custom_add, 9)
x = torch.randn(2, 3, 4, requires_grad=False)
y = torch.randn(2, 3, 4, requires_grad=False)
model = CustomAddModel()
onnxir, _ = do_export(model, (x, y))
onnx_model = onnx.ModelProto.FromString(onnxir)
prepared = c2.prepare(onnx_model)
caffe2_out = prepared.run(inputs=[x.cpu().numpy(), y.cpu().numpy()])
np.testing.assert_array_equal(caffe2_out[0], model(x, y).cpu().numpy())
if __name__ == '__main__':
unittest.main()