forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
graph_executor.cpp
752 lines (665 loc) · 24.7 KB
/
graph_executor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
#include <torch/csrc/jit/graph_executor.h>
#include <ATen/core/ivalue.h>
#include <c10/util/Exception.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/jit/argument_spec.h>
#include <torch/csrc/jit/autodiff.h>
#include <torch/csrc/jit/custom_operator.h>
#include <torch/csrc/jit/graph_executor_impl.h>
#include <torch/csrc/jit/interpreter.h>
#include <torch/csrc/jit/ir.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/pass_manager.h>
#include <torch/csrc/jit/passes/batch_mm.h>
#include <torch/csrc/jit/passes/canonicalize_ops.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/create_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/decompose_ops.h>
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <torch/csrc/jit/passes/inline_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/inplace_check.h>
#include <torch/csrc/jit/passes/loop_unrolling.h>
#include <torch/csrc/jit/passes/lower_grad_of.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/quantization.h>
#include <torch/csrc/jit/passes/remove_expands.h>
#include <torch/csrc/jit/passes/requires_grad_analysis.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/specialize_autogradzero.h>
#include <torch/csrc/jit/profiling_graph_executor_impl.h>
#include <torch/csrc/jit/profiling_record.h>
#include <torch/csrc/jit/resource_guard.h>
#include <torch/csrc/jit/tracer.h>
#include <torch/csrc/autograd/edge.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/jit/script/logging.h>
#include <cstdint>
#include <iterator>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <utility>
#include <vector>
namespace torch {
namespace jit {
namespace {
c10::OperatorOptions aliasAnalysisInternalSpecialCase() {
c10::OperatorOptions options;
options.setAliasAnalysis(AliasAnalysisKind::INTERNAL_SPECIAL_CASE);
return options;
}
} // namespace
// for debugging it is helpful to be able to force autodiff subgraphs
// to be created, to check their correctness, even when the
// size of the of the subgraph is too small to be profitable.
thread_local bool autodiff_subgraph_inlining = true;
void debugSetAutodiffSubgraphInlining(bool state) {
autodiff_subgraph_inlining = state;
}
bool getAutodiffSubgraphInlining() {
return autodiff_subgraph_inlining;
}
thread_local std::weak_ptr<Graph> last_executed_optimized_graph;
std::shared_ptr<Graph> lastExecutedOptimizedGraph() {
return last_executed_optimized_graph.lock();
}
namespace {
using tensor_list = std::vector<at::Tensor>;
using Variable = autograd::Variable;
using autograd::variable_list;
struct CaptureList {
CaptureList(size_t capture_size) {
capture_types_.reserve(capture_size);
var_captures_.reserve(capture_size); // var_captures_.size() might be
// greater than capture_size
ivalue_captures_.reserve(capture_size);
}
void captureTensor(const at::Tensor& tensor, bool is_output) {
var_captures_.emplace_back(Variable(tensor), is_output);
}
void capture(const IValue& val, bool is_output) {
if (val.isTensor()) {
capture_types_.emplace_back(CAPTURE_TENSOR);
captureTensor(val.toTensor(), is_output);
} else if (val.isTensorList()) {
// For TensorList, we have to flatten it to Tensors during saving and
// unflatten it back to TensorList when using it in backward apply().
// This is to avoid any implicit mutation to TensorList happened
// between forward & backward.
capture_types_.emplace_back(CAPTURE_LIST);
auto tensors = val.toTensorList();
sizes_.push_back(tensors.size());
for (const at::Tensor& tensor : tensors) {
captureTensor(tensor, is_output);
}
} else {
capture_types_.emplace_back(CAPTURE_IVALUE);
ivalue_captures_.push_back(val);
}
}
size_t size() const {
return capture_types_.size();
}
void unpack(
Stack& stack,
const std::shared_ptr<autograd::Node>& saved_for) {
auto var_capture_it = var_captures_.begin();
auto ivalue_capture_it = ivalue_captures_.begin();
auto size_it = sizes_.begin();
for (Capture capture_type : capture_types_) {
switch (capture_type) {
case CAPTURE_TENSOR: {
stack.emplace_back(var_capture_it->unpack(saved_for));
++var_capture_it;
} break;
case CAPTURE_LIST: {
c10::List<at::Tensor> lst;
auto size = *size_it++;
for (size_t i = 0; i < size; i++) {
lst.emplace_back(var_capture_it->unpack(saved_for));
var_capture_it++;
}
stack.emplace_back(std::move(lst));
} break;
case CAPTURE_IVALUE: {
stack.push_back(*ivalue_capture_it++);
} break;
}
}
}
private:
enum Capture : uint8_t {
CAPTURE_TENSOR,
CAPTURE_LIST,
CAPTURE_IVALUE,
};
std::vector<Capture> capture_types_;
std::vector<autograd::SavedVariable> var_captures_;
std::vector<IValue> ivalue_captures_;
std::vector<size_t> sizes_;
};
// how do we turn a flattened list of tensors back into the ivalues that
// the DifferentiableGraphBackward expects
struct UnpackInstructions {
UnpackInstructions(size_t num_inputs) {
insts_.reserve(num_inputs);
}
void pushTensor() {
insts_.emplace_back(PUSH_TENSOR);
}
void pushTensorList(size_t size) {
insts_.emplace_back(PUSH_LIST);
sizes_.push_back(size);
}
void unpack(variable_list&& inputs, Stack& stack) {
auto input_it = std::make_move_iterator(inputs.begin());
auto sizes_it = sizes_.begin();
for (Inst inst : insts_) {
switch (inst) {
case PUSH_TENSOR: {
at::Tensor t = *input_it++;
stack.emplace_back(std::move(t));
} break;
case PUSH_LIST: {
std::vector<at::Tensor> lst(input_it, input_it + *sizes_it++);
stack.emplace_back(lst);
} break;
}
}
}
private:
enum Inst : uint8_t {
PUSH_TENSOR,
PUSH_LIST, // consumes one size
};
std::vector<Inst> insts_;
std::vector<size_t> sizes_;
};
// unpack values packed by `packReturnValuesIntoTuple`
static void unpackReturnTuple(Stack &stack) {
auto tuple = pop(stack).toTuple();
stack.insert(stack.end(), tuple->elements().begin(), tuple->elements().end());
}
struct DifferentiableGraphBackward : public autograd::Node {
DifferentiableGraphBackward(
GraphExecutor executor,
size_t input_size,
size_t capture_size)
: executor(std::move(executor)),
captures_(capture_size),
input_instructions_(input_size) {}
variable_list apply(variable_list&& inputs) override {
Stack stack;
stack.reserve(captures_.size() + inputs.size());
input_instructions_.unpack(std::move(inputs), stack);
captures_.unpack(stack, shared_from_this());
GRAPH_DEBUG("Running DifferentiableGraphBackward for ", &executor);
executor.run(stack);
unpackReturnTuple(stack);
// NB: stack.size() == num_outputs() is not always true
// after we added TensorList support.
// Example: aten::stack(Tensor[] tensors, int) where
// tensors = [x, x]
// Here stack.size()[=1] with a TensorList IValue of
// backward graph output.
// num_outputs()[=2], however, is the number of outputs of
// grad_fn (an autograd::Node). grad_fn's outputs are
// grads with regard to Tensor/Variables `x`, but not
// graph input TensorList [x, x]. These two grads will
// be accumulated to x.grad later using autograd::InputBuffer.
variable_list outputs;
outputs.reserve(num_outputs());
size_t output_index = 0;
for (IValue& v : stack) {
if (v.isTensorList()) {
for (const at::Tensor& tensor : v.toTensorList()) {
produceOutput(output_index++, std::move(tensor), outputs);
}
} else if (v.isTensor()) {
produceOutput(output_index++, std::move(v).toTensor(), outputs);
} else {
// Input grad can also be None even if it requires grad
// Example: `other` in expand_as(self, other)
outputs.emplace_back();
}
}
return outputs;
}
void capture(const IValue& val, bool is_output) {
captures_.capture(val, is_output);
}
void addOutputForTensor(const at::Tensor& tensor) {
auto v = Variable(tensor);
add_next_edge(v.defined() ? torch::autograd::impl::gradient_edge(v) : autograd::Edge{});
}
void addOutputForIValue(const IValue& value) {
if (value.isTensorList()) {
for (const at::Tensor& tensor : value.toTensorList()) {
addOutputForTensor(tensor);
}
} else {
addOutputForTensor(value.toTensor());
}
}
void addInputVariable(Variable output) {
// NB: since our requires_grad setting is only a heuristic we might end
// up wanting to differentiate through integral tensors, which is
// generally a hard error in autograd.
if (at::isFloatingType(output.scalar_type())) {
autograd::create_gradient_edge(output, shared_from_this());
output.set_requires_grad(true);
} else {
add_input_metadata(autograd::Node::undefined_input{});
}
}
void addInputIValue(const IValue& v) {
if (v.isTensorList()) {
auto tensors = v.toTensorList();
input_instructions_.pushTensorList(tensors.size());
for (const at::Tensor& tensor : tensors) {
addInputVariable(tensor);
}
} else if (v.isTensor()) {
input_instructions_.pushTensor();
addInputVariable(v.toTensor());
}
}
private:
void produceOutput(size_t i, at::Tensor output, variable_list& outputs) {
if (should_compute_output(i)) {
const auto& edge = next_edge(i);
if (output.defined()) {
outputs.emplace_back(std::move(output));
} else if (edge.is_valid()) {
outputs.emplace_back(
edge.function->input_metadata(edge.input_nr).zeros_like());
} else {
outputs.emplace_back();
}
} else {
outputs.emplace_back();
}
}
friend struct ExecutionPlan;
GraphExecutor executor;
CaptureList captures_;
UnpackInstructions input_instructions_;
};
// an optimized way of executing the subgraph computed directly on
// tensors rather than Variables.
// This will unwrap Variables, run the plan, and re-wrap them.
// It can optionally also have a gradient which is hooked up
// to the output Variables if present.
struct DifferentiableGraphOp {
DifferentiableGraphOp(Gradient grad)
: f(grad.f),
grad(std::move(grad)),
grad_executor(this->grad.df),
num_inputs(this->grad.f->inputs().size()),
num_outputs(this->grad.f->outputs().size()) {}
// XXX: keep in mind that stack can be larger than the inputs we need!
int operator()(Stack& stack) const {
auto grad_fn = std::make_shared<DifferentiableGraphBackward>(
grad_executor,
grad.df_input_vjps.size(),
grad.df_input_captured_inputs.size() +
grad.df_input_captured_outputs.size());
{
auto inputs = last(stack, num_inputs);
// hook up the outputs of df to the gradient functions of the inputs that
// require gradients
for (auto idx : grad.df_output_vjps) {
grad_fn->addOutputForIValue(inputs[idx]);
}
captureInputs(*grad_fn, inputs);
}
detachVariables(stack);
InterpreterState(f).run(stack);
{
auto outputs = last(stack, num_outputs);
// hookup the gradients for the output tensors that require gradients
// to the inputs to our gradient function df
// TODO - XXX - if any output is the same tensor multiple times, views
// have to be setup here. We need to refactor autograd until it is safe
// for tensors to be constructed without all the viewing infrastructure.
// this is currently intentionally not done here so we can get an idea of
// our perf before introducing overhead for correctness
for (auto idx : grad.df_input_vjps) {
grad_fn->addInputIValue(outputs[idx]);
}
captureOutputs(*grad_fn, outputs);
// drop the temporary outputs so that we return the same number of
// outputs as if we were not also calculating gradient
const size_t num_temporary_outputs = num_outputs - grad.f_real_outputs;
stack.erase(stack.end() - num_temporary_outputs, stack.end());
}
return 0;
}
private:
friend GraphExecutor* detail::getGradExecutor(Operation& op);
at::Tensor detach(at::Tensor t) const {
if (!t.defined()) {
return t;
}
return autograd::as_variable_ref(t).detach();
}
void detach(IValue& v) const {
if (v.isTensor()) {
v = IValue(detach(std::move(v).toTensor()));
} else if (v.isTensorList()) {
c10::List<at::Tensor> lst = std::move(v).toTensorList();
for (size_t i = 0; i < lst.size(); ++i) {
lst.set(i, detach(lst.extract(i)));
}
v = std::move(lst);
}
}
void detachVariables(Stack& stack) const {
// It would be nice to use an ArrayRef here, but unfortunately those can
// only return const references, so we need to do a bunch of indexing
// ourselves.
const int64_t stack_size = stack.size();
const int64_t stack_offset = stack_size - num_inputs;
for (int64_t i = stack_offset; i < stack_size; ++i) {
detach(stack[i]);
}
}
// Capture (save) inputs that would be required to subsequently run backwards
void captureInputs(
DifferentiableGraphBackward& grad_fn,
at::ArrayRef<IValue> inputs) const {
for (size_t offset : grad.df_input_captured_inputs) {
grad_fn.capture(inputs[offset], /*is_output*/ false);
}
}
void captureOutputs(
DifferentiableGraphBackward& grad_fn,
at::ArrayRef<IValue> outputs) const {
for (size_t offset : grad.df_input_captured_outputs) {
grad_fn.capture(outputs[offset], /*is_output*/ true);
}
}
Code f;
Gradient grad;
GraphExecutor grad_executor;
const size_t num_inputs;
const size_t num_outputs;
};
Gradient getGradient(const Node* n) {
AT_ASSERT(n->kind() == prim::DifferentiableGraph);
Gradient grad;
grad.f = n->g(attr::Subgraph);
grad.df = n->g(attr::ReverseSubgraph);
grad.f_real_outputs = n->i(attr::f_real_outputs);
grad.df_input_vjps = fmap<size_t>(n->is(attr::df_input_vjps));
grad.df_input_captured_inputs =
fmap<size_t>(n->is(attr::df_input_captured_inputs));
grad.df_input_captured_outputs =
fmap<size_t>(n->is(attr::df_input_captured_outputs));
grad.df_output_vjps = fmap<size_t>(n->is(attr::df_output_vjps));
return grad;
}
} // anonymous namespace
RegisterOperators reg_graph_executor_ops({Operator(
prim::DifferentiableGraph,
[](const Node* n) -> Operation {
return DifferentiableGraphOp(getGradient(n));
},
aliasAnalysisInternalSpecialCase())});
namespace detail {
GraphExecutor* getGradExecutor(Operation& op) {
if (auto diff_op = op.target<DifferentiableGraphOp>()) {
return &diff_op->grad_executor;
}
return nullptr;
}
} // namespace detail
void GraphExecutorImplBase::run(Stack& stack) {
TORCH_CHECK(
stack.size() >= num_inputs,
"expected ",
num_inputs,
" inputs, but got only ",
stack.size());
C10_LOG_API_USAGE_ONCE("torch.graph_executor.run");
logging::getLogger()->addStatValue(
logging::runtime_counters::GRAPH_EXECUTOR_INVOCATIONS, 1.0);
ExecutionPlan plan =
getPlanFor(stack, GraphExecutor::getDefaultNumBailOuts());
InterpreterState(plan.code).run(stack);
last_executed_optimized_graph = plan.graph;
}
// a Graph can be created via tracing, or via a language-based frontend
// GraphExecutor runs it. It can run the same graph on many different sizes
// and different requires_grad states, and handles specializations for each
// situation. GraphExecutor is completely unaware of tracing or module
// parameters to keep the tracing concerns separated.
struct GraphExecutorImpl : public GraphExecutorImplBase {
GraphExecutorImpl(const std::shared_ptr<Graph>& graph)
: GraphExecutorImplBase(graph), arg_spec_creator_(*graph) {
logging::getLogger()->addStatValue(
logging::runtime_counters::GRAPH_EXECUTORS_CONSTRUCTED, 1.0);
}
ExecutionPlan getPlanFor(Stack& stack, size_t remaining_bailout_depth)
override {
return getGraphExecutorOptimize() ? getOrCompile(stack)
: getOrCompileFallback();
}
GraphExecutorState getDebugState() override {
GraphExecutorState state;
state.graph = graph.get();
if (fallback) {
state.fallback = fallback;
}
for (auto& entry : plan_cache) {
state.execution_plans.emplace(entry.first, entry.second);
}
return state;
}
protected:
friend struct GraphExecutor;
const ExecutionPlan& getOrCompileFallback() {
std::lock_guard<std::mutex> lock(compile_mutex);
if (!fallback) {
auto graph_ = graph->copy();
runRequiredPasses(graph_);
fallback = ExecutionPlan(graph_);
}
return fallback;
}
const ExecutionPlan& getOrCompile(const Stack& stack) {
// outside lock guard, to minimize the time holding the lock on the fast
// path ArgumentSpec even computes its hashCode here.
ArgumentSpec spec =
arg_spec_creator_.create(autograd::GradMode::is_enabled(), stack);
{
std::lock_guard<std::mutex> lock(compile_mutex);
auto it = plan_cache.find(spec);
if (it != plan_cache.end()) {
logging::getLogger()->addStatValue(
logging::runtime_counters::EXECUTION_PLAN_CACHE_HIT, 1.0);
return it->second;
}
auto plan = compileSpec(spec);
auto r = plan_cache.emplace(std::move(spec), std::move(plan));
logging::getLogger()->addStatValue(
logging::runtime_counters::EXECUTION_PLAN_CACHE_MISS, 1.0);
return r.first->second;
}
}
ExecutionPlan compileSpec(const ArgumentSpec& spec) {
auto opt_graph = graph->copy();
SOURCE_DUMP("Optimizing the following function:", opt_graph);
arg_spec_creator_.specializeTypes(*opt_graph, spec);
// Phase 0. Inline functions, then clean up any artifacts that the inliner
// left in that may inhibit optimization
Inline(*opt_graph);
LowerGradOf(*opt_graph);
specializeAutogradZero(*opt_graph);
LowerSimpleTuples(opt_graph);
ConstantPooling(opt_graph);
// Phase 1. Specialize to input definedness (this is very important for
// gradient graphs), and run required passes to bring the graph
// to an executable form.
runRequiredPasses(opt_graph);
// Phase 2. Propagate detailed information about the spec through the
// graph (enabled more specializations in later passes).
// Shape propagation sometimes depends on certain arguments being
// constants, and constant propagation doesn't need shape
// information anyway, so it's better to run it first.
ConstantPropagation(opt_graph);
PropagateInputShapes(opt_graph);
PropagateRequiresGrad(opt_graph);
// Phase 3. Run differentiable optimizations (i.e. simple graph rewrites
// that we can still execute using autograd).
runOptimization(opt_graph);
// Phase 4. If this graph will be differentiated, we need to slice out the
// symbolically differentiable subgraphs for further optimizations.
// Phase 5. Apply non-differentiable optimizations to the graphs we've found
// (or the whole graph if we know we won't need its derivative).
if (needsGradient(opt_graph)) {
auto diff_nodes = CreateAutodiffSubgraphs(
opt_graph,
autodiff_subgraph_inlining ? autodiffSubgraphNodeThreshold : 1);
for (Node* dnode : diff_nodes) {
auto diff_graph = std::move(dnode->g(attr::Subgraph));
Gradient gradient = differentiate(diff_graph);
// Run post differentiation optimizations, Autodiff will replace some
// parts of graph with new graph, these new graphs usually consists of
// control flows and miss shape information on nodes, so we run shape
// prop and differentiable optimizations to ensure the graph is
// optimized
PropagateInputShapes(gradient.f);
runOptimization(gradient.f);
// run non diff optimization on the forward graph
runNondiffOptimization(gradient.f);
packGradient(gradient, dnode);
}
InlineAutodiffSubgraphs(
opt_graph,
autodiff_subgraph_inlining ? autodiffSubgraphInlineThreshold : 1);
} else {
runNondiffOptimization(opt_graph);
}
// Make sure there are no leftovers from any passes.
EliminateDeadCode(opt_graph);
return ExecutionPlan(opt_graph);
}
~GraphExecutorImpl() override = default;
ArgumentSpecCreator arg_spec_creator_;
// Populated only when optimize is false (and in that case plan_cache will be
// unused). The compiled version of graph.
ExecutionPlan fallback;
// Mapping from argument configurations to optimized versions of the graph
// that are specialized to the spec.
std::unordered_map<ArgumentSpec, ExecutionPlan> plan_cache;
};
GraphExecutor::GraphExecutor(std::shared_ptr<Graph> graph)
: pImpl(
getExecutorMode() ? dynamic_cast<GraphExecutorImplBase*>(
new ProfilingGraphExecutorImpl(graph))
: dynamic_cast<GraphExecutorImplBase*>(
new GraphExecutorImpl(graph))) {}
void GraphExecutor::run(Stack& inputs) {
return pImpl->run(inputs);
}
size_t GraphExecutor::getDefaultNumBailOuts() {
return getProfilingMode() ? 1 : 0;
}
ExecutionPlan GraphExecutor::getPlanFor(
Stack& inputs,
size_t remaining_bailout_depth) {
return pImpl->getPlanFor(inputs, remaining_bailout_depth);
}
std::shared_ptr<Graph> GraphExecutor::graph() const {
return pImpl->graph;
}
GraphExecutorState GraphExecutor::getDebugState() {
return pImpl->getDebugState();
}
void runRequiredPasses(const std::shared_ptr<Graph>& g) {
// implicit inserted expand nodes are not necessarily always valid
// when used inside script methods that might have unstable shapes
// we remove the implicitly created ones, and have shape analysis
// add valid expand nodes when the shapes are stable
RemoveExpands(g);
CanonicalizeOps(g);
EliminateDeadCode(g);
}
void packGradient(const Gradient& gradient, Node* dnode) {
AT_ASSERT(dnode->kind() == prim::DifferentiableGraph);
dnode->g_(attr::Subgraph, gradient.f)
->g_(attr::ReverseSubgraph, gradient.df)
->i_(attr::f_real_outputs, gradient.f_real_outputs)
->is_(attr::df_input_vjps, fmap<int64_t>(gradient.df_input_vjps))
->is_(
attr::df_input_captured_inputs,
fmap<int64_t>(gradient.df_input_captured_inputs))
->is_(
attr::df_input_captured_outputs,
fmap<int64_t>(gradient.df_input_captured_outputs))
->is_(attr::df_output_vjps, fmap<int64_t>(gradient.df_output_vjps));
}
static bool mayIntroduceGradient(const Block* b) {
for (const Node* n : b->nodes()) {
if (n->kind() == prim::PythonOp)
return true;
for (const Block* bb : n->blocks()) {
if (mayIntroduceGradient(bb))
return true;
}
}
return false;
}
bool needsGradient(const std::shared_ptr<const Graph>& graph) {
if (!autograd::GradMode::is_enabled()) {
return false;
}
if (mayIntroduceGradient(graph->block())) {
return true;
}
for (const Value* input : graph->inputs()) {
if (input->type()->requires_grad()) {
return true;
}
}
return false;
}
void runNondiffOptimization(std::shared_ptr<Graph>& graph) {
// decomposition pass, decompose certain ops that will be used in the
// following passes (like batchmm and jit fusion)
DecomposeOps(graph);
// TupleConstruct / TupleUnpack pairs can still be present at this point
// and must be removed for fusion.
LowerSimpleTuples(graph);
// Rewrite subgraphs with many MMs into expressions that batch them.
BatchMM(graph);
// Fuse the dequant - op - quant patterns into quantized ops
QuantFusion(graph);
FuseGraph(graph);
// Run custom passes that different backends can register.
// This is done last to give internal optimization passes priority.
for (const auto& pass : getCustomPasses()) {
pass(graph);
}
}
void runOptimization(std::shared_ptr<Graph>& graph) {
// Basic graph preprocessing to eliminate noise.
EliminateDeadCode(graph);
EliminateCommonSubexpression(graph);
PeepholeOptimize(graph);
ConstantPropagation(graph);
ConstantPooling(graph);
// Unroll small loops, and eliminate expressions that are the same at every
// iteration.
UnrollLoops(graph);
EliminateCommonSubexpression(graph);
CheckInplace(graph);
}
} // namespace jit
} // namespace torch