forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
import_source.cpp
491 lines (447 loc) · 17.5 KB
/
import_source.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
#include "import_source.h"
#include <ATen/core/qualified_name.h>
#include <torch/csrc/jit/export.h>
#include <torch/csrc/jit/script/parser.h>
#include <torch/csrc/jit/script/resolver.h>
#include <torch/csrc/jit/script/script_type_parser.h>
namespace torch {
namespace jit {
namespace script {
struct OpsValue : public SugaredValue {
OpsValue(size_t version) : version_(version) {}
std::string kind() const override {
return "ops";
}
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& field) override {
return std::make_shared<BuiltinModule>(field, version_);
}
size_t version_;
};
// Represents nested namespaces, like `foo.bar.Baz`.
// Right now these namespaces can only contain other namespaces or NamedTypes
struct TORCH_API ClassNamespaceValue : public SugaredValue {
/**
* @param name The fully qualified path, which can resolve either to a
* namespace or a NamedType
* @param si The source importer that searches for and loads
* classes/functions.
*/
explicit ClassNamespaceValue(
c10::QualifiedName name,
std::shared_ptr<SourceImporterImpl> si)
: basename_(std::move(name)), si_(std::move(si)) {}
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& name) override;
std::string kind() const override {
return "Class Namespace";
}
private:
c10::QualifiedName basename_;
std::shared_ptr<SourceImporterImpl> si_;
};
// This value maps attributes CONSTANTS.c0 CONSTANTS.c1 to entries
// in the 'constants' vector. This table is will be stored in a container format
// and given to the import_method when restoring the code.
struct ConstantTableValue : public SugaredValue {
ConstantTableValue(const std::vector<at::Tensor>* constants)
: constants_(constants) {}
std::string kind() const override {
return "CONSTANTS";
}
// select an attribute on it, e.g. `this.field`
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& field) override {
const char* field_s = field.c_str();
char* end;
int64_t offset = strtoll(field_s + 1, &end, 10);
if (field.size() < 2 || *end != 0)
throw ErrorReport(loc) << "invalid constant specifier: " << field;
if (offset < 0 || size_t(offset) >= constants_->size()) {
throw ErrorReport(loc) << "constant index " << offset
<< " is out of bounds (constant table has "
<< constants_->size() << " entries)";
}
Value* value = m.graph()->insertConstant(constants_->at(offset), loc);
// specializing tensor type on compilation messes up typing relations
value->setType(unshapedType(value->type()));
return std::make_shared<SimpleValue>(value);
}
private:
const std::vector<at::Tensor>* constants_;
};
struct SourceImporterImpl : public Resolver,
std::enable_shared_from_this<SourceImporterImpl> {
SourceImporterImpl(
const std::shared_ptr<CompilationUnit> cu,
const std::vector<at::Tensor>* tensor_table,
SourceLoader source_loader,
size_t version)
: cu_(cu), source_loader_(std::move(source_loader)) {
env_ = {
{"torch", std::make_shared<BuiltinModule>("aten", version)},
{"ops", std::make_shared<OpsValue>(version)},
// Constants present in the model. Used to resolve "CONSTANTS.n" to the
// actual value
{"CONSTANTS", std::make_shared<ConstantTableValue>(tensor_table)},
{"fork", SpecialFormValue::create(prim::fork)},
{"annotate", SpecialFormValue::create(prim::annotate)},
{"unchecked_cast", SpecialFormValue::create(prim::unchecked_cast)},
{"uninitialized", SpecialFormValue::create(prim::Uninitialized)},
};
}
TypePtr findNamedType(const QualifiedName& name) {
parseSourceIfNeeded(name.prefix());
auto it = to_be_defined_.find(name);
if (it != to_be_defined_.end() && it->second->kind() == TK_CLASS_DEF) {
ClassDef cd(it->second);
to_be_defined_.erase(it);
importNamedType(name.prefix(), cd);
}
return cu_->get_type(name);
}
Function* findFunction(const QualifiedName& name) {
parseSourceIfNeeded(name.prefix());
auto it = to_be_defined_.find(name);
if (it != to_be_defined_.end() && it->second->kind() == TK_DEF) {
Def d(it->second);
to_be_defined_.erase(it);
importFunction(name.prefix(), d);
}
return cu_->find_function(name);
}
void parseSourceIfNeeded(const std::string& qualifier) {
// qualifier may be blank, for instance checking if __torch__ is a class.
if (qualifier == "" || loaded_sources_.count(qualifier)) {
return;
}
loaded_sources_.insert(qualifier);
std::shared_ptr<Source> src = source_loader_(qualifier);
// The importer, when looking for classes/functions doesn't know if 'foo'
// contains definitions or if it is a prefix of 'foo.bar', we only figure it
// out by testing if `foo.py` exists in the source loader. If it doesn't
// then there is nothing to load here
if (!src) {
return;
}
Parser p(src);
parsePossibleVersionNumber(p.lexer());
auto& L = p.lexer();
while (L.cur().kind != TK_EOF) {
parseImports(L);
auto tk = L.cur();
auto kind = tk.kind;
switch (kind) {
case TK_CLASS_DEF: {
auto parsed_treeref = ClassDef(p.parseClass());
to_be_defined_[QualifiedName(
qualifier, parsed_treeref.name().name())] = parsed_treeref;
} break;
case TK_DEF: {
auto parsed_treeref = Def(p.parseFunction(/*is_method=*/false));
to_be_defined_[QualifiedName(
qualifier, parsed_treeref.name().name())] = parsed_treeref;
} break;
default:
throw ErrorReport(L.cur().range)
<< "Unexpected token in code import: " << kindToString(kind);
}
}
}
void LEGACY_import_methods(
const script::Module& mod,
const std::shared_ptr<Source>& src) {
auto self = SimpleSelf(mod.type());
c10::QualifiedName prefix = *mod.type()->name();
Parser p(src);
parsePossibleVersionNumber(p.lexer());
parseImports(p.lexer());
std::vector<Def> definitions;
std::vector<ResolverPtr> resolvers;
while (p.lexer().cur().kind != TK_EOF) {
auto def = Def(p.parseFunction(/*is_method=*/true));
definitions.emplace_back(def);
resolvers.emplace_back(shared_from_this());
}
cu_->define(prefix, definitions, resolvers, &self);
}
std::shared_ptr<SugaredValue> resolveValue(
const std::string& name,
Function& m,
const SourceRange& loc) override {
auto it = env_.find(name);
if (it != env_.end()) {
return it->second;
}
auto graph = m.graph();
if (name == "inf") {
return std::make_shared<SimpleValue>(
graph->insertConstant(std::numeric_limits<double>::infinity(), loc));
}
if (name == "nan") {
return std::make_shared<SimpleValue>(
graph->insertConstant(std::numeric_limits<double>::quiet_NaN(), loc));
}
if (name == "__torch__") {
return std::make_shared<ClassNamespaceValue>(
c10::QualifiedName(name), shared_from_this());
}
return nullptr;
}
TypePtr resolveType(const std::string& name, const SourceRange& loc)
override {
return findNamedType(QualifiedName(name));
}
private:
void importFunction(const std::string& qualifier, const Def& def) {
std::vector<Def> definitions{def};
std::vector<ResolverPtr> resolvers{shared_from_this()};
cu_->define(qualifier, definitions, resolvers, nullptr);
}
void importNamedType(
const std::string& qualifier,
const ClassDef& class_def) {
const auto qualified_name =
QualifiedName(QualifiedName(qualifier), class_def.name().name());
if (!class_def.superclass().present()) {
return importClass(qualified_name, class_def, /*is_module=*/false);
}
const auto& superclass_name =
Var(class_def.superclass().get()).name().name();
if (superclass_name == "Module") {
importClass(qualified_name, class_def, /*is_module=*/true);
} else if (superclass_name == "NamedTuple") {
// NamedTuples have special rules (since they are TupleTypes and not
// ClassTypes)
return importNamedTuple(qualified_name, class_def);
} else if (superclass_name == "Interface") {
cu_->define_interface(qualified_name, class_def, shared_from_this(), /*is_module=*/false);
} else if (superclass_name == "ModuleInterface") {
cu_->define_interface(qualified_name, class_def, shared_from_this(), /*is_module=*/true);
} else {
throw ErrorReport(class_def.range())
<< "Torchscript does not support class inheritance.";
}
}
void importClass(
const QualifiedName& qualified_classname,
const ClassDef& class_def,
bool is_module) {
auto class_type = ClassType::create(
c10::QualifiedName(qualified_classname), cu_, is_module);
std::vector<Def> methods;
std::vector<ResolverPtr> resolvers;
std::vector<Assign> attributes;
std::vector<Assign> constants;
// Module-specific: which attrs are parameters?
std::unordered_set<std::string> parameter_names;
// Process statements, splitting things into attribute and method
// definitions.
for (const auto& statement : class_def.body()) {
switch (statement.kind()) {
case TK_ASSIGN: {
const auto assign = Assign(statement);
switch (assign.lhs().kind()) {
case TK_VAR: {
const auto name = Var(assign.lhs()).name().name();
if (name == "__parameters__") {
// Populate the module parameter list. This is a field that
// looks like:
// __parameters__ = ["foo", "bar", "baz"]
// which tells us which attributes are module parameters.
TORCH_INTERNAL_ASSERT(
is_module,
"Assignments in class body only "
"supported on modules right now");
const auto param_list =
ListLiteral(assign.rhs().get()).inputs();
for (const auto& param : param_list) {
parameter_names.insert(StringLiteral(param).text());
}
} else if (name == "__annotations__") {
// This is to initialize the annotations dict, just ignore.
continue;
} else {
if (assign.rhs().present()) {
// This is a constant assignment, of the form:
// foo : Final[int] = 3
constants.push_back(assign);
} else {
// This is a regular attribute assignment, of the form:
// foo : Tensor
attributes.push_back(assign);
}
}
} break;
case TK_SUBSCRIPT: {
// This is a special attribute assignment where the attribute
// is not a valid python, identifier. Looks like:
// __annotations__["0"] = Tensor
const auto lhs = Subscript(assign.lhs());
TORCH_INTERNAL_ASSERT(
Var(lhs.value()).name().name() == "__annotations__");
TORCH_INTERNAL_ASSERT(lhs.subscript_exprs().size() == 1);
attributes.push_back(assign);
} break;
default: {
TORCH_INTERNAL_ASSERT(
false,
"Unexpected statement kind in module metadata: ",
kindToString(statement.kind()));
}
}
} break;
case TK_DEF: {
methods.emplace_back(Def(statement));
resolvers.push_back(shared_from_this());
} break;
default: {
TORCH_INTERNAL_ASSERT(
false,
"Unexpected statement kind in class body: ",
kindToString(statement.kind()));
}
}
}
// Populate class attributes
ScriptTypeParser type_parser(shared_from_this());
for (const auto& assign : attributes) {
switch (assign.lhs().kind()) {
case TK_VAR: {
const auto name = Var(assign.lhs()).name().name();
TORCH_INTERNAL_ASSERT(name != "__parameters__");
const auto type = type_parser.parseTypeFromExpr(assign.type().get());
const bool is_parameter = parameter_names.count(name);
class_type->addAttribute(name, type, is_parameter);
} break;
case TK_SUBSCRIPT: {
const auto name =
StringLiteral(Subscript(assign.lhs()).subscript_exprs()[0])
.text();
const auto type = type_parser.parseTypeFromExpr(assign.rhs().get());
const bool is_parameter = parameter_names.count(name);
class_type->addAttribute(name, type, is_parameter);
}
}
}
// Populate class constants
for (const auto& assign : constants) {
auto const_val = type_parser.parseClassConstant(assign);
const auto name = Var(assign.lhs()).name().name();
class_type->addConstant(name, const_val);
}
cu_->register_type(class_type);
const auto self = SimpleSelf(class_type);
cu_->define(qualified_classname, methods, resolvers, &self);
}
void importNamedTuple(
const QualifiedName& qualified_name,
const ClassDef& named_tuple_def) {
ScriptTypeParser type_parser(shared_from_this());
std::vector<std::string> field_names;
std::vector<TypePtr> field_types;
for (const auto& statement : named_tuple_def.body()) {
if (statement.kind() != TK_ASSIGN) {
throw ErrorReport(statement.range())
<< "Unexpected statement in NamedTuple body: "
"only attribute annotations are currently supported.";
}
const auto assign = Assign(statement);
auto name = Var(assign.lhs()).name().name();
field_names.emplace_back(std::move(name));
auto type = type_parser.parseTypeFromExpr(assign.type().get());
field_types.emplace_back(std::move(type));
}
auto tt = TupleType::createNamed(qualified_name, field_names, field_types);
cu_->register_type(tt);
}
void parsePossibleVersionNumber(Lexer& L) {
// Older versions of serialization produced an op_version_set string
// per-file We now just use a single version which is handled by
// PyTorchStreamReader. We used to check if op_version_set was _newer_ for
// forward compatibility reasons but now that it doesn't exist there can't
// be a newer one, so we just discard this.
if (L.cur().kind == TK_IDENT && L.cur().text() == "op_version_set") {
auto range = L.cur().range;
L.next();
L.expect('=');
std::string version_text = L.expect(TK_NUMBER).text();
L.expect(TK_NEWLINE);
}
}
// older versions of serialization required import statements,
// and defined classes file-at-a-time in import order.
// The problem is that in Python
// it is possible to construct cyclic dependencies between files even
// when there are none between individual classes. New versions of loading
// just compile class-at-a-time, so we no longer need to follow the import
// order. Future serialization may stop producing the import code.
void parseImports(Lexer& L) {
while (L.nextIf(TK_IMPORT)) {
std::ostringstream s;
while (L.cur().kind != TK_NEWLINE) {
s << L.cur().text();
L.next();
}
L.expect(TK_NEWLINE);
}
}
std::shared_ptr<CompilationUnit> cu_;
std::unordered_map<std::string, std::shared_ptr<SugaredValue>> env_;
SourceLoader source_loader_;
std::unordered_set<std::string> loaded_sources_;
// named types and functions loaded from a file but not yet defined because
// their type has not been requested yet.
std::unordered_map<QualifiedName, TreeRef> to_be_defined_;
};
std::shared_ptr<SugaredValue> ClassNamespaceValue::attr(
const SourceRange& loc,
Function& m,
const std::string& name) {
auto fullName = c10::QualifiedName(basename_, name);
// Could be a ClassType or NamedTuple constructor
if (auto serializable_type = si_->findNamedType(fullName)) {
if (auto classType = serializable_type->cast<ClassType>()) {
return std::make_shared<ClassValue>(classType);
} else if (auto tupleType = serializable_type->cast<TupleType>()) {
return std::make_shared<NamedTupleConstructor>(tupleType);
}
}
// Or it could be a free function
if (auto fn = si_->findFunction(fullName)) {
return std::make_shared<FunctionValue>(fn);
}
// If it's none of those things, assume it's another namespace
return std::make_shared<ClassNamespaceValue>(std::move(fullName), si_);
}
SourceImporter::SourceImporter(
// The compilation unit that will own the imported source
std::shared_ptr<CompilationUnit> cu,
const std::vector<at::Tensor>* tensor_table,
SourceLoader loader,
size_t version)
: pImpl(std::make_shared<SourceImporterImpl>(
std::move(cu),
tensor_table,
std::move(loader),
version)) {}
TypePtr SourceImporter::loadNamedType(const QualifiedName& name) const {
TypePtr t = pImpl->findNamedType(name);
TORCH_INTERNAL_ASSERT(t != nullptr);
return t;
}
void SourceImporter::LEGACY_import_methods(
const script::Module& mod,
const std::shared_ptr<Source>& src) {
pImpl->LEGACY_import_methods(mod, src);
}
SourceImporter::~SourceImporter() = default;
} // namespace script
} // namespace jit
} // namespace torch