-
Notifications
You must be signed in to change notification settings - Fork 4
/
enhance.R
456 lines (411 loc) · 15.9 KB
/
enhance.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
## Enhancements to functionality from package 'escalation'
prependClass <- function(preclass, object) {
class(object) <- unique(c(preclass, class(object)))
object
}
setOldClass(c("u_i","tox_selector_factory","selector_factory"))
u_i <- function(selector_factory) {
stopifnot("Class 'u_i' applies only to a (tox|derived_dose)_selector_factory"
= is(selector_factory,"tox_selector_factory") ||
is(selector_factory,"derived_dose_selector_factory")
)
prependClass("u_i", selector_factory)
}
#' Get a function that simulates dose-escalation trials using latent `u_i`
#'
#' Overrides \code{\link[escalation:simulation_function]{simulation_function.tox_selector_factory}}
#' to return a [phase1_sim()] that employs latent `u_i` in place of
#' the version native to package \CRANpkg{escalation}, which merely invokes
#' `rbinom`.
#'
#' This function is exported for the purpose of effecting this override,
#' and is not meant to be invoked directly by the user.
#'
#' @param selector_factory Presently, this must be a `tox_selector_factory`;
#' no equivalent for `simulation_function.derived_dose_selector_factory`
#' is yet implemented.
#'
#' @importFrom escalation simulation_function
#' @export
simulation_function.u_i <- function(selector_factory) {
return(phase1_sim) # returns an override defined in this package
}
#' Override \code{\link[escalation]{cohorts_of_n}} to include latent toxicity tolerances
#'
#' The original function in package \CRANpkg{escalation} recognizes that individual
#' trial participants arrive at distinct times. Building upon this acknowledgment
#' of individuality, this override adds an extra line of code to draw as well a
#' latent toxicity tolerance `u_i` for each individual participant.
#'
#' @seealso [phase1_sim()], which this package also overrides with similarly
#' minute changes in order to incorporate `u_i`.
#'
#' @param n integer, sample arrival times for this many patients.
#' @param mean_time_delta the average gap between patient arrival times. I.e.
#' the reciprocal of the rate parameter in an Exponential distribution.
#' @return `data.frame` with columns `u_i` and `time_delta`
#' containing respectively the uniformly-distributed latent toxicity tolerance
#' and arrival-time increment for each trial participant.
#'
#' @importFrom stats rexp runif
#' @examples
#' cohorts_of_n()
#' cohorts_of_n(n = 10, mean_time_delta = 5)
#' @export
cohorts_of_n <- function(n = 3, mean_time_delta = 1) {
u_i <- runif(n = n)
time_delta <- rexp(n = n, rate = 1 / mean_time_delta) %>% round(1)
data.frame(u_i = u_i, time_delta = time_delta)
}
#' Override `escalation:::phase1_sim` to incorporate latent toxicity tolerances
#'
#' @param selector_factory A \code{\link[escalation]{selector_factory}} object
#' @param true_prob_tox A vector of toxicity probabilities for the doses
#' defined in `selector_factory`
#' @param sample_patient_arrivals A function implementing an arrivals process
#' for trial enrollment
#' @param previous_outcomes This may or may not apply in applications of
#' package `precautionary`
#' @param next_dose Undocumented
#' @param i_like_big_trials I didn't choose this parameter name
#' @param return_all_fits Don't do this
#'
#' @importFrom magrittr %>%
#' @importFrom utils tail
#' @importFrom escalation recommended_dose continue parse_phase1_outcomes
phase1_sim <- function(
selector_factory,
true_prob_tox,
sample_patient_arrivals = function(df) cohorts_of_n(n=3, mean_time_delta=1),
previous_outcomes = '',
next_dose = NULL,
i_like_big_trials = FALSE, # Safety net if stop_trial_func is mis-specified...
return_all_fits = FALSE
) {
spruce_outcomes_df <- function(df) { # TODO: Request 'escalation' export this fun
df$dose <- as.integer(df$dose)
df$tox <- as.integer(df$tox)
if('cohort' %in% colnames(df)) df$cohort <- as.integer(df$cohort)
if('patient' %in% colnames(df)) df$patient <- as.integer(df$patient)
df
}
if(is.character(previous_outcomes)) {
base_df <- parse_phase1_outcomes(previous_outcomes, as_list = FALSE)
} else if(is.data.frame(previous_outcomes)) {
base_df <- spruce_outcomes_df(previous_outcomes)
} else{
base_df <- parse_phase1_outcomes('', as_list = FALSE)
}
dose <- base_df$dose
suppressWarnings(u_i <- base_df$u_i) # RStudio "Unknown or uninitialised column"
tox <- base_df$tox
cohort <- base_df$cohort
next_cohort <- ifelse(length(cohort) > 0, max(cohort) + 1, 1)
if('time' %in% colnames(base_df)) {
time <- previous_outcomes$time
} else {
time <- rep(0, length(dose))
}
i <- 1 # loop counter
max_i <- 30
time_now <- 0
fit <- selector_factory %>% fit(base_df)
if(is.null(next_dose)) next_dose <- fit %>% recommended_dose()
fits <- list()
fits[[1]] <- list(.depth = i, time = time_now, fit = fit)
while(fit %>% continue() & !is.na(next_dose) &
(i_like_big_trials | i < max_i)) {
current_data = data.frame(
cohort = cohort,
patient = seq_along(dose),
dose = dose,
tox = tox,
time = time
)
new_pts <- sample_patient_arrivals(current_data)
arrival_time_deltas <- cumsum(new_pts$time_delta)
n_new_pts <- nrow(new_pts)
new_dose <- rep(next_dose, n_new_pts)
new_tox <- ( new_pts$u_i < true_prob_tox[next_dose] )
new_cohort <- rep(next_cohort, n_new_pts)
dose <- c(dose, new_dose)
u_i <- c(u_i, new_pts$u_i)
tox <- c(tox, new_tox)
cohort <- c(cohort, new_cohort)
time <- c(time, time_now + arrival_time_deltas)
new_data = data.frame(
cohort = cohort,
patient = 1:length(dose),
dose = dose,
u_i = u_i,
tox = tox,
time = time
)
time_now <- time_now + max(arrival_time_deltas)
i <- i + 1
fit <- selector_factory %>% fit(new_data)
next_cohort <- next_cohort + 1
fits[[i]] <- list(.depth = i, time = time_now, fit = fit)
next_dose <- fit %>% recommended_dose()
}
# Warn about i_like_big_trials if sim stopped because of too big i.
if(!i_like_big_trials & i >= max_i) {
warning(paste(
"Simulation stopped because max depth reached.",
"Set 'i_like_big_trials = TRUE' to avoid this constraint. "))
}
if(return_all_fits) {
return(fits)
} else {
return(tail(fits, 1))
}
}
#' @importFrom escalation prob_recommend
prob_recommend.precautionary <- function(x, ...) {
prob_recs <- NextMethod()
names(prob_recs)[-1] <- paste0(x$dose_levels, x$dose_units)
prob_recs
}
#' @importFrom escalation prob_administer
prob_administer.precautionary <- function(x, ...) {
prob_admin <- NextMethod()
names(prob_admin) <- paste0(x$dose_levels, x$dose_units)
prob_admin
}
#' Specialize print method for objects of class \code{\link[escalation]{simulations}}
#'
#' @param x An object of class c("precautionary","simulations")
#'
#' @param ... Additional arguments; ignored
#'
#' @importFrom escalation num_patients num_tox trial_duration
print.precautionary <- function(x, ...) {
cat('Number of iterations:', length(x$fits), '\n')
cat('\n')
cat('Number of doses:', length(x$dose_levels), '\n')
cat('\n')
cat('True probability of toxicity:\n')
print(x$true_prob_tox, digits = 3)
cat('\n')
cat('Probability of recommendation:\n')
print(prob_recommend(x), digits = 3)
cat('\n')
cat('Probability of administration:\n')
print(prob_administer(x), digits = 3)
cat('\n')
cat('Sample size:\n')
print(summary(num_patients(x)))
cat('\n')
cat('Total toxicities:\n')
print(summary(num_tox(x)))
cat('\n')
cat('Trial duration:\n')
print(summary(trial_duration(x)))
cat('\n')
}
#' Specialize print method defined for class \code{\link[escalation]{simulations}}
#'
#' @param x An object of class c("hyper","precautionary","simulations")
#'
#' @param ... Additional arguments; ignored
#'
#' @importFrom escalation num_patients num_tox trial_duration
print.hyper <- function(x, ...) {
cat('Number of iterations:', length(x$fits), '\n')
cat('\n')
cat('Number of doses:', length(x$dose_levels), '\n')
cat('\n')
cat('Average probability of toxicity:\n')
print(x$avg_prob_tox, digits = 3)
cat('\n')
cat('Probability of recommendation:\n')
print(prob_recommend(x), digits = 3)
cat('\n')
cat('Probability of administration:\n')
print(prob_administer(x), digits = 3)
cat('\n')
cat('Sample size:\n')
print(summary(num_patients(x)))
cat('\n')
cat('Total toxicities:\n')
print(summary(num_tox(x)))
cat('\n')
cat('Trial duration:\n')
print(summary(trial_duration(x)))
cat('\n')
}
#' Convert an object of class c('precautionary','simulations') to a data.table
#'
#' @param x An object of class c('precautionary','simulations')
#'
#' @param keep.rownames Unused; retained for S3 generic/method consistency
#' @param ordinalizer If not NULL, this is a function mapping the threshold
#' dose ('MTDi') at which an individual experiences a binary toxicity (as
#' recognized by the dose-escalation design) to a named vector giving dose
#' thresholds for multiple grades of toxicity. The names of this vector will
#' be taken as designations of the toxicity grades.
#' @param ... Additional parameters passed to the `ordinalizer`
#'
#' @export
as.data.table.precautionary <- function(x, keep.rownames = FALSE
, ordinalizer = getOption('ordinalizer')
, ...) {
extractor <- ifelse(is(x$fits[[1]][[1]]$fit, "derived_dose_selector")
,function(.) .[[1]]$fit$parent$outcomes
,function(.) .[[1]]$fit$outcomes
)
ensemble <- rbindlist(lapply(x$fits, extractor), idcol = "rep")
if( is.null(ordinalizer) )
return(ensemble)
# TODO: Do add these columns to 'ensemble', so that the whole table
# may later be inspected by user to improve understanding.
MTDig <- t(sapply(ensemble$MTDi, ordinalizer, ...))
if( is.null(colnames(MTDig)) ) {
warning("Ordinalizer returns unnamed vector; using default names for toxicity grades.")
colnames(MTDig) <- paste("Grade", 1:ncol(MTDig))
}
tox_grades <- colnames(MTDig)
# Compare with actual dose to obtain toxicity grade indicator matrix
tox_ind <- ( x$dose_levels[ensemble$dose] > MTDig )
# Tally the thresholds crossed to obtain integer toxgrade
ensemble$toxgrade <- rowSums(tox_ind)
# Convert toxgrade to an ordered factor Tox
ensemble$Tox <- ordered(ensemble$toxgrade+1
, levels=seq(1+length(tox_grades))
, labels=c('None', tox_grades))
ensemble
}
#' Specialize a method defined in package 'escalation' for class 'simulations'
#'
#' Simulations produced by package `precautionary` incorporate a \sQuote{u_i}
#' latent toxicity tolerance that characterizes the toxic dose-response of each
#' simulated individual trial participant. In conjunction with an
#' \sQuote{ordinalizer} function, these extra data enable questions to be asked
#' about trial safety, in terms of the probabilities of high-grade toxicities.
#' This function specializes the `escalation:::summary.simulations` method
#' accordingly.
#'
#' @param object An object of class c('precautionary','simulations')
#'
#' @param ordinalizer An ordinalizer function
#' @param ... Additional parameters passed to the ordinalizer
#'
#' @importFrom dplyr mutate rename_with select everything
#' @importFrom stats xtabs addmargins sd var
#' @importFrom rlang .data
#' @export
summary.precautionary <- function(object, ordinalizer = getOption('ordinalizer'), ...) {
summary <- NextMethod()
dose_units <- paste0("dose (", object$dose_units, ")")
# For an explanation of the .data 'pronoun' used below,
# see https://dplyr.tidyverse.org/articles/programming.html.
summary <- summary %>%
mutate("real_dose" = c(0, object$dose_levels)[as.integer(.data$dose)]) %>%
select(.data$dose, .data$real_dose, everything()) %>%
rename_with(.fn = function(.) dose_units, .cols = .data$real_dose)
ensemble <- as.data.table(object, ordinalizer = ordinalizer, ...)
if( !is.null(ordinalizer) ){
summary <- list(escalation = summary, safety = NULL)
toxTab <- xtabs(~ rep + Tox, data=ensemble) %>%
addmargins(margin = 2, FUN = list(Total=sum))
expectation <- rbind("Expected participants" = colMeans(toxTab)
,"MCSE" = apply(toxTab, MARGIN = 2, FUN = sd) / sqrt(nrow(toxTab))
)
summary$safety <- prependClass("safetytab", expectation)
summary$toxTab <- toxTab # (for DEBUGGING purposes)
}
summary
}
#' Format a phase 1 trial safety tabulation to show significant digits only
#'
#' The essential insight of package [precautionary] is distilled into the
#' *safety tabulation* which it generates from trial simulations, reporting
#' the expected number of patients who will experience each grade of toxicity.
#' To render this table for easy interpretation, these expectations are simply
#' displayed with a number of significant digits appropriate to their Monte Carlo
#' standard errors (MCSEs).
#'
#' @param x A safety tabulation as found in the `safety` component of the
#' list returned by [summary.precautionary].
#'
#' @param ... Unused; included for compatibility with generic signature
#'
#' @note The MCSEs of safety tabulations remain available for inspection
#' (see example), but are omitted from standard displays because they may lend
#' themselves to misinterpretation as *confidence bounds* on the number
#' of patients who will experience each toxicity grade *in any given trial*.
#'
#' @examples
#' mtdi_gen <- hyper_mtdi_lognormal(CV = 1
#' ,median_mtd = 5
#' ,median_sdlog = 0.5
#' ,units="mg/kg")
#' ordinalizer <- function(MTDi, r0 = 1.5)
#' MTDi * r0 ^ c(Gr1=-2, Gr2=-1, Gr3=0, Gr4=1, Gr5=2)
#' old <- options(dose_levels = c(0.5, 1, 2, 4, 6)
#' ,ordinalizer = ordinalizer)
#' get_boin(num_doses = 5, target = 0.25) %>%
#' stop_at_n(n = 24) %>%
#' simulate_trials(
#' num_sims = 60
#' , true_prob_tox = mtdi_gen) -> boin_hsims
#' safety <- summary(boin_hsims)$safety
#' safety # The print method invokes 'format.safetytab' ..
#' # .. but we can also inspect the underlying matrix by indexing:
#' safety[,] # indexing strips 'safetytab' class, returning plain matrix
#' # Note that, by extend()ing the simulation we can increase precision:
#' if (interactive()) { # may run a bit too long for CRAN servers' taste
#' boin_hsims %>% extend(target_mcse = 0.1) -> boin_hsimsX
#' summary(boin_hsimsX)$safety
#' }
#' options(old)
#' @export
format.safetytab <- function(x, ...){
sigtenths <- x['MCSE',] < 0.1
mapply(function(x, d) format(round(x, digits=d), nsmall=d), x[1,], 0+sigtenths)
}
#' @importFrom stringr str_pad
#' @export
print.safetytab <- function(x, ...) {
fx <- format(x, ...)
width <- 2 + nchar(names(fx))
writeLines(paste(str_pad(names(fx), width=width, "left"), collapse=""))
writeLines(paste(str_pad(unname(fx), width=width, "left"), collapse=""))
invisible(x)
}
#' Output a `kable` for a simulation summary of class `safetytab`
#'
#' @param safetytab An object of S3 class `safetytab`
#'
#' @param ... Additional parameters passed to [knitr::kable]
#'
#' @importFrom knitr kable
#' @importFrom kableExtra kable_styling add_header_above
#' @export
safety_kable <- function(safetytab, ...) {
safetytab %>% format() %>% t() %>%
kable(align='r', ...) %>% kable_styling(position = "left", full_width = FALSE) %>%
add_header_above(c("Expected counts per toxicity grade"=6, " "=1))
}
#' @export
t.safetytab <- function(x) t(x[,]) # plain-matrix transpose (drops 'safetytab' class)
#' @importFrom escalation num_doses
num_doses.three_plus_three_selector_factory <- function(x, ...) {
return(x$num_doses)
}
num_doses.dfcrm_selector_factory <- function(x, ...) {
return(length(x$skeleton))
}
num_doses.boin_selector_factory <- function(x, ...) {
return(x$num_doses)
}
#' @importFrom escalation dose_indices
#' @export
dose_indices.default <- function(x, ...) {
n <- num_doses(x)
if(n > 0) {
return(1:n)
} else {
return(integer(length = 0))
}
}