-
Notifications
You must be signed in to change notification settings - Fork 1
/
gaze_follow.py
255 lines (179 loc) · 8.11 KB
/
gaze_follow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# -*- coding: utf-8 -*-
"""
GazeFollow
Created on Thu Feb 16 17:44:04 2017
@author: debasmit
"""
#from __future__ import print_function
import tensorflow as tf
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Parameters
learning_rate = 0.001
training_iters = 200000
batch_size = 128
display_step = 10
# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units
# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
# Create some wrappers for simplicity
def conv2d(x, W, b, stride,paddings):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, [1, stride, stride, 1],paddings)
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
def maxpool2d(x, k, s,padding):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, s, s, 1],
padding)
def alexnet1st5(x, weights, biases):
#conv1
#conv(11, 11, 96, 4, 4, padding='VALID', name='conv1')
conv1 = conv2d(x, weights['wc1'], biases['bc1'], 4,'SAME');
radius = 2; alpha = 2e-05; beta = 0.75; bias = 1.0;
lrn1 = tf.nn.local_response_normalization(conv1, depth_radius=radius, alpha=alpha, beta=beta, bias=bias);
maxpool1=maxpool2d(lrn1, 3,2,'VALID');
conv2 = conv2d(maxpool1, weights['wc2'], biases['bc2'], 1,'SAME');
lrn2 = tf.nn.local_response_normalization(conv2, depth_radius=radius, alpha=alpha, beta=beta, bias=bias);
maxpool2=maxpool2d(lrn2, 3,2,'VALID');
conv3 = conv2d(maxpool2, weights['wc3'], biases['bc3'], 1,'SAME');
conv4 = conv2d(conv3, weights['wc4'], biases['bc4'], 1,'SAME');
conv5 = conv2d(conv4, weights['wc5'], biases['bc5'], 1,'SAME');
maxpool5=maxpool2d(conv5, 3,2, 'VALID');
return maxpool5
def saliency_ext(x_i, weights, biases):
# x_i is the whole image after postprocessing
alex_out=alexnet1st5(x_i, weights, biases);
saliency_out=conv2d(alex_out, weights['wc6'], biases['bc6'],1,'SAME')
return saliency_out
def gazeFollow(x_i, x_h, x_p, weights, biases):
saliency_out=saliency_ext(x_i, weights, biases)
gaze_out=gaze_ext(x_h, x_p, weights, biases)
salGazeProd=tf.multiply(saliency_out, gaze_out)
#Now the 5 different shifted grided output need to be decided
salGazeProdfc = tf.reshape(salGazeProd, [-1, weights['wSG1'].get_shape().as_list()[0]])
# 1st shifted grid output
fcSG1 = tf.add(tf.matmul(salGazeProdfc, weights['wSG1']), biases['bSG1'])
# 2nd shifted grid output
fcSG2 = tf.add(tf.matmul(salGazeProdfc, weights['wSG2']), biases['bSG2'])
# 3rd shifted grid output
fcSG3 = tf.add(tf.matmul(salGazeProdfc, weights['wSG3']), biases['bSG3'])
# 4th shifted grid output
fcSG4 = tf.add(tf.matmul(salGazeProdfc, weights['wSG4']), biases['bSG4'])
# 5th shifted grid output
fcSG5 = tf.add(tf.matmul(salGazeProdfc, weights['wSG5']), biases['bSG5'])
#fcSG=[fcSG1, fcSG2, fcSG3, fcSG4, fcSG5] # You could do this
# or you could concatenate
f=tf.concat(0,(fcSG1, fcSG2, fcSG3, fcSG4, fcSG5))
return f
#def heatmap(fcSG, alpha):
# fcSG is the input containing the output of the fullyconnected layers
def gaze_ext(x_h, x_p, weights, biases):
# x_h is the head image after post processing
# x_p is the eye postion grid after postprocessing and flattening
alex_out=alexnet1st5(x_h, weights, biases);
# Here g stands for gaze
fc6g = tf.reshape(alex_out, [-1, weights['wf6g'].get_shape().as_list()[0]])
fc6g = tf.add(tf.matmul(fc6g, weights['wf6g']), biases['bf6g'])
fc6g = tf.nn.relu(fc6g)
fc7in=tf.concat([fc6g,x_p],0)
fc7g = tf.add(tf.matmul(fc7in, weights['wf7g']), biases['bf7g'])
fc7g = tf.nn.relu(fc7g)
fc8g = tf.add(tf.matmul(fc7g, weights['wf8g']), biases['bf8g'])
fc8g = tf.nn.relu(fc8g)
fc9g = tf.add(tf.matmul(fc8g, weights['wf9g']), biases['bf9g'])
fc9g = tf.nn.sigmoid(fc9g)
#Then we reshape this into 13 times 13
fc10g = tf.reshape(fc9g, [1,1,13,13,])
#Doing a convolution
gaze_out=tf.nn.conv2d(fc10g, weights['wcg'], strides=[1, 1, 1, 1],'SAME')
gaze_out = tf.nn.bias_add(gaze_out, biases['wcg'])
return gaze_out
# Create model
def conv_net(x, weights, biases, dropout):
# Reshape input picture
x = tf.reshape(x, shape=[-1, 28, 28, 1])
# Convolution Layer
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
# Max Pooling (down-sampling)
conv1 = maxpool2d(conv1, k=2)
# Convolution Layer
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
# Max Pooling (down-sampling)
conv2 = maxpool2d(conv2, k=2)
# Fully connected layer
# Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
# Apply Dropout
fc1 = tf.nn.dropout(fc1, dropout)
# Output, class prediction
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out
# Store layers weight & bias
weights = {
# 5x5 conv, 1 input, 32 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
# 5x5 conv, 32 inputs, 64 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
# fully connected, 7*7*64 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([32])),
'bc2': tf.Variable(tf.random_normal([64])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
#pred = conv_net(x, weights, biases, keep_prob)
pred = gazeFollow(x_i, x_h, x_p, weights, biases)
# Define loss and optimizer
#cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
cost= tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
# Uncomment this section if I want to use GPU
init = tf.global_variables_initializer()
config = tf.ConfigProto(
device_count = {'GPU': 0}
)
print("Training will start now!")
# Launch the graph
with tf.Session(config=config) as sess:
with tf.device("/cpu:0"):
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
keep_prob: dropout})
if step % display_step == 0:
# Calculate batch loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
y: batch_y,
keep_prob: 1.})
print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
step += 1
print("Optimization Finished!")
# Calculate accuracy for 256 mnist test images
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
y: mnist.test.labels[:256],
keep_prob: 1.}))