-
Notifications
You must be signed in to change notification settings - Fork 0
/
verifier.sol
601 lines (571 loc) · 23.7 KB
/
verifier.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
// This file is LGPL3 Licensed
/**
* @title Elliptic curve operations on twist points for alt_bn128
* @author Mustafa Al-Bassam ([email protected])
*/
library BN256G2 {
uint256 internal constant FIELD_MODULUS = 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47;
uint256 internal constant TWISTBX = 0x2b149d40ceb8aaae81be18991be06ac3b5b4c5e559dbefa33267e6dc24a138e5;
uint256 internal constant TWISTBY = 0x9713b03af0fed4cd2cafadeed8fdf4a74fa084e52d1852e4a2bd0685c315d2;
uint internal constant PTXX = 0;
uint internal constant PTXY = 1;
uint internal constant PTYX = 2;
uint internal constant PTYY = 3;
uint internal constant PTZX = 4;
uint internal constant PTZY = 5;
/**
* @notice Add two twist points
* @param pt1xx Coefficient 1 of x on point 1
* @param pt1xy Coefficient 2 of x on point 1
* @param pt1yx Coefficient 1 of y on point 1
* @param pt1yy Coefficient 2 of y on point 1
* @param pt2xx Coefficient 1 of x on point 2
* @param pt2xy Coefficient 2 of x on point 2
* @param pt2yx Coefficient 1 of y on point 2
* @param pt2yy Coefficient 2 of y on point 2
* @return (pt3xx, pt3xy, pt3yx, pt3yy)
*/
function ECTwistAdd(
uint256 pt1xx, uint256 pt1xy,
uint256 pt1yx, uint256 pt1yy,
uint256 pt2xx, uint256 pt2xy,
uint256 pt2yx, uint256 pt2yy
) public pure returns (
uint256, uint256,
uint256, uint256
) {
if (
pt1xx == 0 && pt1xy == 0 &&
pt1yx == 0 && pt1yy == 0
) {
if (!(
pt2xx == 0 && pt2xy == 0 &&
pt2yx == 0 && pt2yy == 0
)) {
assert(_isOnCurve(
pt2xx, pt2xy,
pt2yx, pt2yy
));
}
return (
pt2xx, pt2xy,
pt2yx, pt2yy
);
} else if (
pt2xx == 0 && pt2xy == 0 &&
pt2yx == 0 && pt2yy == 0
) {
assert(_isOnCurve(
pt1xx, pt1xy,
pt1yx, pt1yy
));
return (
pt1xx, pt1xy,
pt1yx, pt1yy
);
}
assert(_isOnCurve(
pt1xx, pt1xy,
pt1yx, pt1yy
));
assert(_isOnCurve(
pt2xx, pt2xy,
pt2yx, pt2yy
));
uint256[6] memory pt3 = _ECTwistAddJacobian(
pt1xx, pt1xy,
pt1yx, pt1yy,
1, 0,
pt2xx, pt2xy,
pt2yx, pt2yy,
1, 0
);
return _fromJacobian(
pt3[PTXX], pt3[PTXY],
pt3[PTYX], pt3[PTYY],
pt3[PTZX], pt3[PTZY]
);
}
/**
* @notice Multiply a twist point by a scalar
* @param s Scalar to multiply by
* @param pt1xx Coefficient 1 of x
* @param pt1xy Coefficient 2 of x
* @param pt1yx Coefficient 1 of y
* @param pt1yy Coefficient 2 of y
* @return (pt2xx, pt2xy, pt2yx, pt2yy)
*/
function ECTwistMul(
uint256 s,
uint256 pt1xx, uint256 pt1xy,
uint256 pt1yx, uint256 pt1yy
) public pure returns (
uint256, uint256,
uint256, uint256
) {
uint256 pt1zx = 1;
if (
pt1xx == 0 && pt1xy == 0 &&
pt1yx == 0 && pt1yy == 0
) {
pt1xx = 1;
pt1yx = 1;
pt1zx = 0;
} else {
assert(_isOnCurve(
pt1xx, pt1xy,
pt1yx, pt1yy
));
}
uint256[6] memory pt2 = _ECTwistMulJacobian(
s,
pt1xx, pt1xy,
pt1yx, pt1yy,
pt1zx, 0
);
return _fromJacobian(
pt2[PTXX], pt2[PTXY],
pt2[PTYX], pt2[PTYY],
pt2[PTZX], pt2[PTZY]
);
}
/**
* @notice Get the field modulus
* @return The field modulus
*/
function GetFieldModulus() public pure returns (uint256) {
return FIELD_MODULUS;
}
function submod(uint256 a, uint256 b, uint256 n) internal pure returns (uint256) {
return addmod(a, n - b, n);
}
function _FQ2Mul(
uint256 xx, uint256 xy,
uint256 yx, uint256 yy
) internal pure returns(uint256, uint256) {
return (
submod(mulmod(xx, yx, FIELD_MODULUS), mulmod(xy, yy, FIELD_MODULUS), FIELD_MODULUS),
addmod(mulmod(xx, yy, FIELD_MODULUS), mulmod(xy, yx, FIELD_MODULUS), FIELD_MODULUS)
);
}
function _FQ2Muc(
uint256 xx, uint256 xy,
uint256 c
) internal pure returns(uint256, uint256) {
return (
mulmod(xx, c, FIELD_MODULUS),
mulmod(xy, c, FIELD_MODULUS)
);
}
function _FQ2Add(
uint256 xx, uint256 xy,
uint256 yx, uint256 yy
) internal pure returns(uint256, uint256) {
return (
addmod(xx, yx, FIELD_MODULUS),
addmod(xy, yy, FIELD_MODULUS)
);
}
function _FQ2Sub(
uint256 xx, uint256 xy,
uint256 yx, uint256 yy
) internal pure returns(uint256 rx, uint256 ry) {
return (
submod(xx, yx, FIELD_MODULUS),
submod(xy, yy, FIELD_MODULUS)
);
}
function _FQ2Div(
uint256 xx, uint256 xy,
uint256 yx, uint256 yy
) internal pure returns(uint256, uint256) {
(yx, yy) = _FQ2Inv(yx, yy);
return _FQ2Mul(xx, xy, yx, yy);
}
function _FQ2Inv(uint256 x, uint256 y) internal pure returns(uint256, uint256) {
uint256 inv = _modInv(addmod(mulmod(y, y, FIELD_MODULUS), mulmod(x, x, FIELD_MODULUS), FIELD_MODULUS), FIELD_MODULUS);
return (
mulmod(x, inv, FIELD_MODULUS),
FIELD_MODULUS - mulmod(y, inv, FIELD_MODULUS)
);
}
function _isOnCurve(
uint256 xx, uint256 xy,
uint256 yx, uint256 yy
) internal pure returns (bool) {
uint256 yyx;
uint256 yyy;
uint256 xxxx;
uint256 xxxy;
(yyx, yyy) = _FQ2Mul(yx, yy, yx, yy);
(xxxx, xxxy) = _FQ2Mul(xx, xy, xx, xy);
(xxxx, xxxy) = _FQ2Mul(xxxx, xxxy, xx, xy);
(yyx, yyy) = _FQ2Sub(yyx, yyy, xxxx, xxxy);
(yyx, yyy) = _FQ2Sub(yyx, yyy, TWISTBX, TWISTBY);
return yyx == 0 && yyy == 0;
}
function _modInv(uint256 a, uint256 n) internal pure returns(uint256 t) {
t = 0;
uint256 newT = 1;
uint256 r = n;
uint256 newR = a;
uint256 q;
while (newR != 0) {
q = r / newR;
(t, newT) = (newT, submod(t, mulmod(q, newT, n), n));
(r, newR) = (newR, r - q * newR);
}
}
function _fromJacobian(
uint256 pt1xx, uint256 pt1xy,
uint256 pt1yx, uint256 pt1yy,
uint256 pt1zx, uint256 pt1zy
) internal pure returns (
uint256 pt2xx, uint256 pt2xy,
uint256 pt2yx, uint256 pt2yy
) {
uint256 invzx;
uint256 invzy;
(invzx, invzy) = _FQ2Inv(pt1zx, pt1zy);
(pt2xx, pt2xy) = _FQ2Mul(pt1xx, pt1xy, invzx, invzy);
(pt2yx, pt2yy) = _FQ2Mul(pt1yx, pt1yy, invzx, invzy);
}
function _ECTwistAddJacobian(
uint256 pt1xx, uint256 pt1xy,
uint256 pt1yx, uint256 pt1yy,
uint256 pt1zx, uint256 pt1zy,
uint256 pt2xx, uint256 pt2xy,
uint256 pt2yx, uint256 pt2yy,
uint256 pt2zx, uint256 pt2zy) internal pure returns (uint256[6] memory pt3) {
if (pt1zx == 0 && pt1zy == 0) {
(
pt3[PTXX], pt3[PTXY],
pt3[PTYX], pt3[PTYY],
pt3[PTZX], pt3[PTZY]
) = (
pt2xx, pt2xy,
pt2yx, pt2yy,
pt2zx, pt2zy
);
return pt3;
} else if (pt2zx == 0 && pt2zy == 0) {
(
pt3[PTXX], pt3[PTXY],
pt3[PTYX], pt3[PTYY],
pt3[PTZX], pt3[PTZY]
) = (
pt1xx, pt1xy,
pt1yx, pt1yy,
pt1zx, pt1zy
);
return pt3;
}
(pt2yx, pt2yy) = _FQ2Mul(pt2yx, pt2yy, pt1zx, pt1zy); // U1 = y2 * z1
(pt3[PTYX], pt3[PTYY]) = _FQ2Mul(pt1yx, pt1yy, pt2zx, pt2zy); // U2 = y1 * z2
(pt2xx, pt2xy) = _FQ2Mul(pt2xx, pt2xy, pt1zx, pt1zy); // V1 = x2 * z1
(pt3[PTZX], pt3[PTZY]) = _FQ2Mul(pt1xx, pt1xy, pt2zx, pt2zy); // V2 = x1 * z2
if (pt2xx == pt3[PTZX] && pt2xy == pt3[PTZY]) {
if (pt2yx == pt3[PTYX] && pt2yy == pt3[PTYY]) {
(
pt3[PTXX], pt3[PTXY],
pt3[PTYX], pt3[PTYY],
pt3[PTZX], pt3[PTZY]
) = _ECTwistDoubleJacobian(pt1xx, pt1xy, pt1yx, pt1yy, pt1zx, pt1zy);
return pt3;
}
(
pt3[PTXX], pt3[PTXY],
pt3[PTYX], pt3[PTYY],
pt3[PTZX], pt3[PTZY]
) = (
1, 0,
1, 0,
0, 0
);
return pt3;
}
(pt2zx, pt2zy) = _FQ2Mul(pt1zx, pt1zy, pt2zx, pt2zy); // W = z1 * z2
(pt1xx, pt1xy) = _FQ2Sub(pt2yx, pt2yy, pt3[PTYX], pt3[PTYY]); // U = U1 - U2
(pt1yx, pt1yy) = _FQ2Sub(pt2xx, pt2xy, pt3[PTZX], pt3[PTZY]); // V = V1 - V2
(pt1zx, pt1zy) = _FQ2Mul(pt1yx, pt1yy, pt1yx, pt1yy); // V_squared = V * V
(pt2yx, pt2yy) = _FQ2Mul(pt1zx, pt1zy, pt3[PTZX], pt3[PTZY]); // V_squared_times_V2 = V_squared * V2
(pt1zx, pt1zy) = _FQ2Mul(pt1zx, pt1zy, pt1yx, pt1yy); // V_cubed = V * V_squared
(pt3[PTZX], pt3[PTZY]) = _FQ2Mul(pt1zx, pt1zy, pt2zx, pt2zy); // newz = V_cubed * W
(pt2xx, pt2xy) = _FQ2Mul(pt1xx, pt1xy, pt1xx, pt1xy); // U * U
(pt2xx, pt2xy) = _FQ2Mul(pt2xx, pt2xy, pt2zx, pt2zy); // U * U * W
(pt2xx, pt2xy) = _FQ2Sub(pt2xx, pt2xy, pt1zx, pt1zy); // U * U * W - V_cubed
(pt2zx, pt2zy) = _FQ2Muc(pt2yx, pt2yy, 2); // 2 * V_squared_times_V2
(pt2xx, pt2xy) = _FQ2Sub(pt2xx, pt2xy, pt2zx, pt2zy); // A = U * U * W - V_cubed - 2 * V_squared_times_V2
(pt3[PTXX], pt3[PTXY]) = _FQ2Mul(pt1yx, pt1yy, pt2xx, pt2xy); // newx = V * A
(pt1yx, pt1yy) = _FQ2Sub(pt2yx, pt2yy, pt2xx, pt2xy); // V_squared_times_V2 - A
(pt1yx, pt1yy) = _FQ2Mul(pt1xx, pt1xy, pt1yx, pt1yy); // U * (V_squared_times_V2 - A)
(pt1xx, pt1xy) = _FQ2Mul(pt1zx, pt1zy, pt3[PTYX], pt3[PTYY]); // V_cubed * U2
(pt3[PTYX], pt3[PTYY]) = _FQ2Sub(pt1yx, pt1yy, pt1xx, pt1xy); // newy = U * (V_squared_times_V2 - A) - V_cubed * U2
}
function _ECTwistDoubleJacobian(
uint256 pt1xx, uint256 pt1xy,
uint256 pt1yx, uint256 pt1yy,
uint256 pt1zx, uint256 pt1zy
) internal pure returns(
uint256 pt2xx, uint256 pt2xy,
uint256 pt2yx, uint256 pt2yy,
uint256 pt2zx, uint256 pt2zy
) {
(pt2xx, pt2xy) = _FQ2Muc(pt1xx, pt1xy, 3); // 3 * x
(pt2xx, pt2xy) = _FQ2Mul(pt2xx, pt2xy, pt1xx, pt1xy); // W = 3 * x * x
(pt1zx, pt1zy) = _FQ2Mul(pt1yx, pt1yy, pt1zx, pt1zy); // S = y * z
(pt2yx, pt2yy) = _FQ2Mul(pt1xx, pt1xy, pt1yx, pt1yy); // x * y
(pt2yx, pt2yy) = _FQ2Mul(pt2yx, pt2yy, pt1zx, pt1zy); // B = x * y * S
(pt1xx, pt1xy) = _FQ2Mul(pt2xx, pt2xy, pt2xx, pt2xy); // W * W
(pt2zx, pt2zy) = _FQ2Muc(pt2yx, pt2yy, 8); // 8 * B
(pt1xx, pt1xy) = _FQ2Sub(pt1xx, pt1xy, pt2zx, pt2zy); // H = W * W - 8 * B
(pt2zx, pt2zy) = _FQ2Mul(pt1zx, pt1zy, pt1zx, pt1zy); // S_squared = S * S
(pt2yx, pt2yy) = _FQ2Muc(pt2yx, pt2yy, 4); // 4 * B
(pt2yx, pt2yy) = _FQ2Sub(pt2yx, pt2yy, pt1xx, pt1xy); // 4 * B - H
(pt2yx, pt2yy) = _FQ2Mul(pt2yx, pt2yy, pt2xx, pt2xy); // W * (4 * B - H)
(pt2xx, pt2xy) = _FQ2Muc(pt1yx, pt1yy, 8); // 8 * y
(pt2xx, pt2xy) = _FQ2Mul(pt2xx, pt2xy, pt1yx, pt1yy); // 8 * y * y
(pt2xx, pt2xy) = _FQ2Mul(pt2xx, pt2xy, pt2zx, pt2zy); // 8 * y * y * S_squared
(pt2yx, pt2yy) = _FQ2Sub(pt2yx, pt2yy, pt2xx, pt2xy); // newy = W * (4 * B - H) - 8 * y * y * S_squared
(pt2xx, pt2xy) = _FQ2Muc(pt1xx, pt1xy, 2); // 2 * H
(pt2xx, pt2xy) = _FQ2Mul(pt2xx, pt2xy, pt1zx, pt1zy); // newx = 2 * H * S
(pt2zx, pt2zy) = _FQ2Mul(pt1zx, pt1zy, pt2zx, pt2zy); // S * S_squared
(pt2zx, pt2zy) = _FQ2Muc(pt2zx, pt2zy, 8); // newz = 8 * S * S_squared
}
function _ECTwistMulJacobian(
uint256 d,
uint256 pt1xx, uint256 pt1xy,
uint256 pt1yx, uint256 pt1yy,
uint256 pt1zx, uint256 pt1zy
) internal pure returns(uint256[6] memory pt2) {
while (d != 0) {
if ((d & 1) != 0) {
pt2 = _ECTwistAddJacobian(
pt2[PTXX], pt2[PTXY],
pt2[PTYX], pt2[PTYY],
pt2[PTZX], pt2[PTZY],
pt1xx, pt1xy,
pt1yx, pt1yy,
pt1zx, pt1zy);
}
(
pt1xx, pt1xy,
pt1yx, pt1yy,
pt1zx, pt1zy
) = _ECTwistDoubleJacobian(
pt1xx, pt1xy,
pt1yx, pt1yy,
pt1zx, pt1zy
);
d = d / 2;
}
}
}
// This file is MIT Licensed.
//
// Copyright 2017 Christian Reitwiessner
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
pragma solidity ^0.5.0;
library Pairing {
struct G1Point {
uint X;
uint Y;
}
// Encoding of field elements is: X[0] * z + X[1]
struct G2Point {
uint[2] X;
uint[2] Y;
}
/// @return the generator of G1
function P1() pure internal returns (G1Point memory) {
return G1Point(1, 2);
}
/// @return the generator of G2
function P2() pure internal returns (G2Point memory) {
return G2Point(
[11559732032986387107991004021392285783925812861821192530917403151452391805634,
10857046999023057135944570762232829481370756359578518086990519993285655852781],
[4082367875863433681332203403145435568316851327593401208105741076214120093531,
8495653923123431417604973247489272438418190587263600148770280649306958101930]
);
}
/// @return the negation of p, i.e. p.addition(p.negate()) should be zero.
function negate(G1Point memory p) pure internal returns (G1Point memory) {
// The prime q in the base field F_q for G1
uint q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
if (p.X == 0 && p.Y == 0)
return G1Point(0, 0);
return G1Point(p.X, q - (p.Y % q));
}
/// @return the sum of two points of G1
function addition(G1Point memory p1, G1Point memory p2) internal returns (G1Point memory r) {
uint[4] memory input;
input[0] = p1.X;
input[1] = p1.Y;
input[2] = p2.X;
input[3] = p2.Y;
bool success;
assembly {
success := call(sub(gas, 2000), 6, 0, input, 0xc0, r, 0x60)
// Use "invalid" to make gas estimation work
switch success case 0 { invalid() }
}
require(success);
}
/// @return the sum of two points of G2
function addition(G2Point memory p1, G2Point memory p2) internal pure returns (G2Point memory r) {
(r.X[1], r.X[0], r.Y[1], r.Y[0]) = BN256G2.ECTwistAdd(p1.X[1],p1.X[0],p1.Y[1],p1.Y[0],p2.X[1],p2.X[0],p2.Y[1],p2.Y[0]);
}
/// @return the product of a point on G1 and a scalar, i.e.
/// p == p.scalar_mul(1) and p.addition(p) == p.scalar_mul(2) for all points p.
function scalar_mul(G1Point memory p, uint s) internal returns (G1Point memory r) {
uint[3] memory input;
input[0] = p.X;
input[1] = p.Y;
input[2] = s;
bool success;
assembly {
success := call(sub(gas, 2000), 7, 0, input, 0x80, r, 0x60)
// Use "invalid" to make gas estimation work
switch success case 0 { invalid() }
}
require (success);
}
/// @return the result of computing the pairing check
/// e(p1[0], p2[0]) * .... * e(p1[n], p2[n]) == 1
/// For example pairing([P1(), P1().negate()], [P2(), P2()]) should
/// return true.
function pairing(G1Point[] memory p1, G2Point[] memory p2) internal returns (bool) {
require(p1.length == p2.length);
uint elements = p1.length;
uint inputSize = elements * 6;
uint[] memory input = new uint[](inputSize);
for (uint i = 0; i < elements; i++)
{
input[i * 6 + 0] = p1[i].X;
input[i * 6 + 1] = p1[i].Y;
input[i * 6 + 2] = p2[i].X[0];
input[i * 6 + 3] = p2[i].X[1];
input[i * 6 + 4] = p2[i].Y[0];
input[i * 6 + 5] = p2[i].Y[1];
}
uint[1] memory out;
bool success;
assembly {
success := call(sub(gas, 2000), 8, 0, add(input, 0x20), mul(inputSize, 0x20), out, 0x20)
// Use "invalid" to make gas estimation work
switch success case 0 { invalid() }
}
require(success);
return out[0] != 0;
}
/// Convenience method for a pairing check for two pairs.
function pairingProd2(G1Point memory a1, G2Point memory a2, G1Point memory b1, G2Point memory b2) internal returns (bool) {
G1Point[] memory p1 = new G1Point[](2);
G2Point[] memory p2 = new G2Point[](2);
p1[0] = a1;
p1[1] = b1;
p2[0] = a2;
p2[1] = b2;
return pairing(p1, p2);
}
/// Convenience method for a pairing check for three pairs.
function pairingProd3(
G1Point memory a1, G2Point memory a2,
G1Point memory b1, G2Point memory b2,
G1Point memory c1, G2Point memory c2
) internal returns (bool) {
G1Point[] memory p1 = new G1Point[](3);
G2Point[] memory p2 = new G2Point[](3);
p1[0] = a1;
p1[1] = b1;
p1[2] = c1;
p2[0] = a2;
p2[1] = b2;
p2[2] = c2;
return pairing(p1, p2);
}
/// Convenience method for a pairing check for four pairs.
function pairingProd4(
G1Point memory a1, G2Point memory a2,
G1Point memory b1, G2Point memory b2,
G1Point memory c1, G2Point memory c2,
G1Point memory d1, G2Point memory d2
) internal returns (bool) {
G1Point[] memory p1 = new G1Point[](4);
G2Point[] memory p2 = new G2Point[](4);
p1[0] = a1;
p1[1] = b1;
p1[2] = c1;
p1[3] = d1;
p2[0] = a2;
p2[1] = b2;
p2[2] = c2;
p2[3] = d2;
return pairing(p1, p2);
}
}
contract Verifier {
using Pairing for *;
struct VerifyingKey {
Pairing.G1Point a;
Pairing.G2Point b;
Pairing.G2Point gamma;
Pairing.G2Point delta;
Pairing.G1Point[] gammaABC;
}
struct Proof {
Pairing.G1Point A;
Pairing.G2Point B;
Pairing.G1Point C;
}
function verifyingKey() pure internal returns (VerifyingKey memory vk) {
vk.a = Pairing.G1Point(uint256(0x255ce4887ecb81193eb78197f44b1188d5456d870298b4fe47b1573b849c8adc), uint256(0x000fc0dec92c2a63966799c3f52fef48e4da3089064dc0d4278bacf56a8d1317));
vk.b = Pairing.G2Point([uint256(0x11891983a6696662486fc2093704e651ccf4c62bbbdf976b46cd219a80867995), uint256(0x2d525bfe68133905b7f71d9bc597c9e1e4e60471740b4a492bd63da1c1d0096b)], [uint256(0x0a66a05e61e748123050277e42f5a02c2209b1f57d773abe163d550fb4679437), uint256(0x22a048d49c870b5923abf4989c3aca3a4f15055c9b834b36b2a2597bfef00dfa)]);
vk.gamma = Pairing.G2Point([uint256(0x152ca571deb1518a698a3d1073c3864449a93338eae1b9489f2932f4b9624a53), uint256(0x11b44b53647a9f4b212c25e6e5d292c6c044b687ffcf7ddc3584fc5ce11324af)], [uint256(0x1d9c23b5c34be7016da90fa092640aba05cc868d23908258369e652f67dbc4a7), uint256(0x2fa39419dcdf7a61399695229c51c4783c63135ae592e4fb4f9d3eecd509bd4c)]);
vk.delta = Pairing.G2Point([uint256(0x0c3cfe3e4f335596690fb7acb948b34f231aa55be5ff2a7cfc28c9a087156bd0), uint256(0x154cdaa7da14b8b950ebfd11576a4a13834dadaafe7433fd945d5cf938996372)], [uint256(0x256f7c168d4e5dcf8a12d215ad8e9855b3ea0dc1256d339d314596146f698607), uint256(0x0113eda080ce191115a2b47ebde61749f1922bce2164fcd52e3a74b6e04f85fb)]);
vk.gammaABC = new Pairing.G1Point[](3);
vk.gammaABC[0] = Pairing.G1Point(uint256(0x221e6a88575cbb53d869a231823512e6ba0eb971cb5d191667b489a630b20797), uint256(0x09c8509ae54649aaf5b9104661e6fb50fceb0a23ae476aab325ce1926f6014b8));
vk.gammaABC[1] = Pairing.G1Point(uint256(0x136a7146d48490024c41544973b51d5653ed96d74fd630c8718a902a003ffa00), uint256(0x082630ca0721d201a0d693eeca501bd4a7aaad8373b0ba132e587abab4754fb2));
vk.gammaABC[2] = Pairing.G1Point(uint256(0x1b0b1ab57aeaca0ec85c2c47c9ebc45ce666600422fc3547e5b7bde188f0f9e0), uint256(0x10ecbf8a8f0a001f3c724c462a1b5e4f72c987481e15d2286bfa57712eb71fbd));
}
function verify(uint[] memory input, Proof memory proof) internal returns (uint) {
VerifyingKey memory vk = verifyingKey();
require(input.length + 1 == vk.gammaABC.length);
// Compute the linear combination vk_x
Pairing.G1Point memory vk_x = Pairing.G1Point(0, 0);
for (uint i = 0; i < input.length; i++)
vk_x = Pairing.addition(vk_x, Pairing.scalar_mul(vk.gammaABC[i + 1], input[i]));
vk_x = Pairing.addition(vk_x, vk.gammaABC[0]);
if(!Pairing.pairingProd4(
proof.A, proof.B,
Pairing.negate(vk_x), vk.gamma,
Pairing.negate(proof.C), vk.delta,
Pairing.negate(vk.a), vk.b)) return 1;
return 0;
}
event Verified(string s);
function verifyTx(
uint[2] memory a,
uint[2][2] memory b,
uint[2] memory c,
uint[2] memory input
) public returns (bool r) {
Proof memory proof;
proof.A = Pairing.G1Point(a[0], a[1]);
proof.B = Pairing.G2Point([b[0][0], b[0][1]], [b[1][0], b[1][1]]);
proof.C = Pairing.G1Point(c[0], c[1]);
uint[] memory inputValues = new uint[](input.length);
for(uint i = 0; i < input.length; i++){
inputValues[i] = input[i];
}
if (verify(inputValues, proof) == 0) {
emit Verified("Transaction successfully verified.");
return true;
} else {
return false;
}
}
}