A javaScript library for signing and verifying Schnorr Signatures.
It can be used for single and multi signatures.
Blockchain validation via ecrecover is also supported.
Since version 2.0.0, we're moving entirely to Typescript.
sign()
andmultiSigSign()
return an instance ofSignatureOutput
. Each element in it has a buffer property- instead of
e
we returnchallenge
for the Schnorr Challenge. To accces its value, usechallenge.buffer
- instead of
s
we returnsignature
for the Schnorr Signature. To accces its value, usesignature.buffer
- instead of
R
we returnfinalPublicNonce
for the nonce. To accces its value, usefinalPublicNonce.buffer
- instead of
getCombinedPublicKey()
returns aKey
class. To get the actual key, usekey.buffer
- a lot of method become static as they don't keep any state:
verify
sign
sumSigs
getCombinedPublicKey
getCombinedAddress
- Node: >=16.0.0, <20.0.0
- npm (Node.js package manager) v9.x.x
git clone https://github.com/borislav-itskov/schnorrkel.js
cd schnorrkel.js
npm i
npm run test
We refer to Single Signatures as ones that have a single signer.
Sign:
import Schnorrkel from 'schnorrkel'
const privateKey = randomBytes(32) // Buffer
const msg = 'test message'
const {signature, finalPublicNonce} = Schnorrkel.sign(privateKey, msg)
Offchain verification:
const publicKey: Buffer = ... (derived from the privateKey)
// signature and finalPublicNonce come from s
const result = Schnorrkel.verify(signature, msg, finalPublicNonce, publicKey)
Onchain verification:
First, you will need a contract that verifies schnorr. We have it in the repository and it is called SchnorrAccountAbstraction
.
But all in all, you need this onchain:
function verifySchnorr(bytes32 hash, bytes memory sig) internal pure returns (bool) {
// px := public key x-coord
// e := schnorr signature challenge
// s := schnorr signature
// parity := public key y-coord parity (27 or 28)
(bytes32 px, bytes32 e, bytes32 s, uint8 parity) = abi.decode(sig, (bytes32, bytes32, bytes32, uint8));
// ecrecover = (m, v, r, s);
bytes32 sp = bytes32(Q - mulmod(uint256(s), uint256(px), Q));
bytes32 ep = bytes32(Q - mulmod(uint256(e), uint256(px), Q));
require(sp != Q);
// the ecrecover precompile implementation checks that the `r` and `s`
// inputs are non-zero (in this case, `px` and `ep`), thus we don't need to
// check if they're zero.
address R = ecrecover(sp, parity, px, ep);
require(R != address(0), "ecrecover failed");
return e == keccak256(abi.encodePacked(R, uint8(parity), px, hash));
}
We explain how ecrecover works and why it is needed later in this document.
Let's send a request to the local hardhat node. First run in the terminal:
npx hardhat node
Afterwards, here is part of the code:
import { ethers } from 'ethers'
import secp256k1 from 'secp256k1'
const address = 'input schnorr generated address here'
const factory = new ethers.ContractFactory(SchnorrAccountAbstraction.abi, SchnorrAccountAbstraction.bytecode, wallet)
const contract: any = await factory.deploy([address])
const privateKey: Buffer = '...'
const pkBuffer = new Key(Buffer.from(ethers.utils.arrayify(privateKey)))
const msg = 'just a test message';
const sig = schnorrkel.sign(msg, privateKey);
// wrap the result
const publicKey = secp256k1.publicKeyCreate(ethers.utils.arrayify(privateKey))
const px = publicKey.slice(1, 33);
const parity = publicKey[0] - 2 + 27;
const abiCoder = new ethers.utils.AbiCoder();
const sigData = abiCoder.encode([ "bytes32", "bytes32", "bytes32", "uint8" ], [
px,
sig.challenge.buffer,
sig.signature.buffer,
parity
]);
const msgHash = ethers.utils.solidityKeccak256(['string'], [msg]);
const result = await contract.isValidSignature(msgHash, sigData);
You can see the full implementation in tests/schnorrkel/onchainSingleSign.test.ts
in this repository.
Schnorr multisignatures work on the basis n/n - all of the signers need to sign in order for the signature to be valid.
Below are all the steps needed to craft a successful multisig.
Public nonces need to be exchanged between signers before they sign. Normally, the Signer should implement this library as define a getPublicNonces
method that will call the library and return the nonces. For our test example, we're going to call the schnorrkel library directly:
const privateKey1: Buffer = '...'
const privateKey2: Buffer = '...'
const publicNonces1 = schnorrkel.generatePublicNonces(privateKey1);
const publicNonces2 = schnorrkel.generatePublicNonces(privateKey2);
Again, this isn't how the flow is supposed to work. A signer needs to implement the library and when getPublicNonces
is called, the user should be ask whether he is okay to generate and give his public nonces.
After we have them, here is how to sign:
const publicKey1: Buffer = '...'
const publicKey2: Buffer = '...'
const publicKeys = [publicKey1, publicKey2];
const combinedPublicKey = schnorrkel.getCombinedPublicKey(publicKeys)
const {signature: sigOne, challenge: e, finalPublicNonce} = signerOne.multiSignMessage(msg, publicKeys, publicNonces)
const {signature: sigTwo} = signerTwo.multiSignMessage(msg, publicKeys, publicNonces)
const sSummed = Schnorrkel.sumSigs([sigOne, sigTwo])
const px = combinedPublicKey.buffer.slice(1,33);
const parity = combinedPublicKey.buffer[0] - 2 + 27;
const abiCoder = new ethers.utils.AbiCoder();
const sigData = abiCoder.encode([ "bytes32", "bytes32", "bytes32", "uint8" ], [
px,
challenge.buffer,
sSummed.buffer,
parity
]);
const msgHash = ethers.utils.solidityKeccak256(['string'], [msg]);
const result = await contract.isValidSignature(msgHash, sigData);
const result = schnorrkel.verify(sSummed, msg, finalPublicNonce, combinedPublicKey);
You can find reference to this in tests/schnorrkel/onchainMultiSign.test.ts
in this repository.
For the schnorr on-chain verification, we were inspired by the work of noot. Without his work, it would've required a lot more time for RnD to reach this point. You can take a look at his repository here
We utilize Ethereum ecrecover to verify the signature. This is how it works:
Ethereum ecrecover returns an address (hash of public key) given an ECDSA signature.
Given message m and ECDSA signature (v, r, s) where v denotes the parity of the y-coordinate for the point where x-coordinate r
ecrecover(m, v, r, s):
R = point derived from r and v
a = -G*m
b = R*s
Qr = a + b
Q = Qr * (1/r)
Q = (1/r) * (R*s - G*m) //recovered pubkey
Ethereum’s ecrecover returns the last 20 bytes of the keccak256 hash of the 64-byte public key. Given signature (R, s), message m and public key P we can feed values into ecrecover such that the returned address can be used in a comparison to the challenge.
calculate e = H(address(R) || m) and P_x = x-coordinate of P
pass:
m = -s*P_x
v = parity of P
r = x-coordinate of P
s = -e*P_x
then:
ecrecover(m=-s*P_x, v=0/1, r=P_x, s=-e*P_x):
P = point derived from r and v (public key)
a = -G*(-s*P_x) = G*s*P_x
b = P*(-m*P_x) = -P*e*P_x
Q = (1/P_x) (a+b)
Q = (1/P_x)(G*s*P_x - P*e*P_x)
Q = G*s - P*e // same as schnorr verify above
the returned value is address(Q).
- calculate e' = h(address(Q) || m)
- check e' == e to verify the signature.