-
Notifications
You must be signed in to change notification settings - Fork 15
/
run_rsgan-gp_se.py
executable file
·321 lines (274 loc) · 13.5 KB
/
run_rsgan-gp_se.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
"""
Reimplementing segan paper as close as possible.
Deepak Baby, UGent, June 2018.
"""
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib.layers import xavier_initializer, flatten, fully_connected
import numpy as np
from keras.layers import Subtract, Activation, Input
from keras.models import Model
from keras.optimizers import Adam
from keras.layers.merge import _Merge
from keras.callbacks import TensorBoard
import keras.backend as K
from data_ops import *
from file_ops import *
from models import *
from wgan_ops import *
from functools import partial
import time
from tqdm import *
import h5py
import os,sys
import scipy.io.wavfile as wavfile
BATCH_SIZE = 100
GRADIENT_PENALTY_WEIGHT = 10 # need to tune
class RandomWeightedAverage (_Merge):
def _merge_function (self, inputs):
weights = K.random_uniform((BATCH_SIZE, 1, 1))
return (weights * inputs[0]) + ((1 - weights) * inputs[1])
if __name__ == '__main__':
# Various GAN options
opts = {}
opts ['dirhead'] = 'RSGAN_GP' + str(GRADIENT_PENALTY_WEIGHT)
opts ['gp_weight'] = GRADIENT_PENALTY_WEIGHT
##########################
opts ['z_off'] = not False # set to True to omit the latent noise input
# normalization
#################################
# Only one of the follwoing should be set to True or all of can be False
opts ['applybn'] = False
opts ['applyinstancenorm'] = True # Works even without any normalization
##################################
# Show model summary
opts ['show_summary'] = False
## Set the matfiles
clean_train_matfile = "./data/clean_train_segan1d.mat"
noisy_train_matfile = "./data/noisy_train_segan1d.mat"
noisy_test_matfile = "./data/noisy_test_segan1d.mat"
####################################################
# Other fixed options
opts ['window_length'] = 2**14
opts ['featdim'] = 1 # 1 since it is just 1d time samples
opts ['filterlength'] = 31
opts ['strides'] = 2
opts ['padding'] = 'SAME'
opts ['g_enc_numkernels'] = [16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 1024]
opts ['g_enc_lstm_cells'] = [1024]
opts ['d_fmaps'] = opts ['g_enc_numkernels'] # We use the same structure for discriminator
opts ['d_lstms'] = opts ['g_enc_lstm_cells']
opts['leakyrelualpha'] = 0.3
opts ['batch_size'] = BATCH_SIZE
opts ['applyprelu'] = True
opts ['d_activation'] = 'leakyrelu'
g_enc_numkernels = opts ['g_enc_numkernels']
opts ['g_dec_numkernels'] = g_enc_numkernels[:-1][::-1] + [1]
opts ['gt_stride'] = 2
opts ['g_l1loss'] = 200.
opts ['d_lr'] = 2e-4
opts ['g_lr'] = 2e-4
opts ['random_seed'] = 111
n_epochs = 81
fs = 16000
# set flags for training or testing
TRAIN_SEGAN = True
SAVE_MODEL = True
LOAD_SAVED_MODEL = False
TEST_SEGAN = True
modeldir = get_modeldirname(opts)
print ("The model directory is " + modeldir)
print ("_____________________________________")
if not os.path.exists(modeldir):
os.makedirs(modeldir)
# Obtain the generator and the discriminator
D = discriminator(opts)
G = generator(opts)
# Define optimizers
g_opt = keras.optimizers.Adam(lr=opts['g_lr'])
d_opt = keras.optimizers.Adam(lr=opts['d_lr'])
# The G model has the wav and the noise inputs
wav_shape = (opts['window_length'], opts['featdim'])
z_dim1 = int(opts['window_length']/ (opts ['strides'] ** len(opts ['g_enc_numkernels'])))
z_dim2 = opts ['g_enc_numkernels'][-1]
wav_in_clean = Input(shape=wav_shape, name="main_input_clean")
wav_in_noisy = Input(shape=wav_shape, name="main_input_noisy")
if not opts ['z_off']:
z = Input (shape=(z_dim1, z_dim2), name="noise_input")
G_wav = G([wav_in_noisy, z])
G_model = Model([wav_in_noisy, z], G_wav)
else :
G_wav = G(wav_in_noisy)
G_model = Model(wav_in_noisy, G_wav)
d_out = D([wav_in_clean, wav_in_noisy])
D = Model([wav_in_clean, wav_in_noisy], d_out)
G_model.summary()
D.summary()
# ADDING RELATIVISTIC LOSS AT OUTPUT
for layer in D.layers :
layer.trainable = False
D.trainable = False
if not opts ['z_off']:
G_wav = G([wav_in_noisy, z])
else :
G_wav = G(wav_in_noisy)
D_out_for_G = D([G_wav, wav_in_noisy])
D_out_for_real = D([wav_in_clean, wav_in_noisy])
d_outG = Subtract()([D_out_for_G, D_out_for_real])
d_outG = Activation('sigmoid', name="DoutG")(d_outG)
if not opts ['z_off']:
G_D = Model(inputs=[wav_in_clean, wav_in_noisy, z], outputs = [d_outG, G_wav])
else :
G_D = Model(inputs=[wav_in_clean, wav_in_noisy], outputs = [d_outG, G_wav])
G_D.summary()
G_D.compile(optimizer=g_opt,
loss={'model_2': 'mean_absolute_error', 'DoutG': 'binary_crossentropy'},
loss_weights = {'model_2' : opts['g_l1loss'], 'DoutG': 1} )
print (G_D.metrics_names)
# Now we need D model so that gradient penalty can be incorporated
for layer in D.layers :
layer.trainable = True
for layer in G.layers :
layer.trainable = False
D.trainable = True
G.trainable = False
if not opts ['z_off']:
G_wav_for_D = G([wav_in_noisy, z])
else :
G_wav_for_D = G(wav_in_noisy)
d_out_for_G = D([G_wav_for_D, wav_in_noisy])
d_out_for_real = D([wav_in_clean, wav_in_noisy])
# for gradient penalty
averaged_samples = RandomWeightedAverage()([wav_in_clean, G_wav_for_D])
# We will need to this also through D, for computing the gradients
d_out_for_averaged = D([averaged_samples, wav_in_noisy])
# compute the GP loss by means of partial function in keras
partial_gp_loss = partial(gradient_penalty_loss,
averaged_samples = averaged_samples,
gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT)
partial_gp_loss.__name__ = 'gradient_penalty'
d_outD = Subtract()([d_out_for_real, d_out_for_G])
d_outD = Activation('sigmoid', name="DoutD")(d_outD)
if not opts ['z_off']:
D_final = Model(inputs = [wav_in_clean, wav_in_noisy, z],
outputs = [d_outD, d_out_for_averaged])
else :
D_final = Model(inputs = [wav_in_clean, wav_in_noisy],
outputs = [d_outD, d_out_for_averaged])
D_final.compile(optimizer = d_opt,
loss = ['binary_crossentropy', partial_gp_loss ])
D_final.summary()
print (D_final.metrics_names)
# create label vectors for training
positive_y = np.ones((BATCH_SIZE, 1), dtype=np.float32)
negative_y = -1 * positive_y
dummy_y = np.zeros((BATCH_SIZE, 1), dtype=np.float32) # for GP Loss
if TEST_SEGAN:
ftestnoisy = h5py.File(noisy_test_matfile)
noisy_test_data = ftestnoisy['feat_data']
noisy_test_dfi = ftestnoisy['dfi']
print ("Number of test files: " + str(noisy_test_dfi.shape[1]) )
# Begin the training part
if TRAIN_SEGAN:
fclean = h5py.File(clean_train_matfile)
clean_train_data = np.array(fclean['feat_data'])
fnoisy = h5py.File(noisy_train_matfile)
noisy_train_data = np.array(fnoisy['feat_data'])
print ("********************************************")
print (" SEGAN TRAINING ")
print ("********************************************")
print ("Shape of clean feats mat " + str(clean_train_data.shape))
print ("Shape of noisy feats mat " + str(noisy_train_data.shape))
numtrainsamples = clean_train_data.shape[1]
# Tensorboard stuff
log_path = './logs/' + modeldir
callback = TensorBoard(log_path)
callback.set_model(G_D)
train_names = ['G_loss', 'G_adv_loss', 'G_l1Loss']
idx_all = np.arange(numtrainsamples)
# set random seed
np.random.seed(opts['random_seed'])
batch_size = opts['batch_size']
num_batches_per_epoch = int(np.floor(clean_train_data.shape[1]/batch_size))
for epoch in range(n_epochs):
# train D with minibatch
np.random.shuffle(idx_all) # shuffle the indices for the next epoch
for batch_idx in range(num_batches_per_epoch):
start_time = time.time()
idx_beg = batch_idx * batch_size
idx_end = idx_beg + batch_size
idx = np.sort(np.array(idx_all[idx_beg:idx_end]))
#print ("Batch idx " + str(idx[:5]) +" ... " + str(idx[-5:]))
cleanwavs = np.array(clean_train_data[:,idx]).T
cleanwavs = data_preprocess(cleanwavs, preemph=opts['preemph'])
cleanwavs = np.expand_dims(cleanwavs, axis = 2)
noisywavs = np.array(noisy_train_data[:,idx]).T
noisywavs = data_preprocess(noisywavs, preemph=opts['preemph'])
noisywavs = np.expand_dims(noisywavs, axis = 2)
if not opts ['z_off']:
noiseinput = np.random.normal(0, 1,
(batch_size, z_dim1, z_dim2))
[_, d_loss, d_gploss] = D_final.train_on_batch({'main_input_clean': cleanwavs,
'main_input_noisy': noisywavs, 'noise_input': noiseinput},
{'DoutD': positive_y, 'model_4': dummy_y} )
[g_loss, g_dLoss, g_l1loss] = G_D.train_on_batch({'main_input_clean': cleanwavs,
'main_input_noisy': noisywavs, 'noise_input': noiseinput},
{'model_2': cleanwavs, 'DoutG': positive_y} )
else:
[_, d_loss, d_gploss] = D_final.train_on_batch({'main_input_clean': cleanwavs,
'main_input_noisy': noisywavs,},
{'DoutD': positive_y, 'model_4': dummy_y} )
[g_loss, g_dLoss, g_l1loss] = G_D.train_on_batch({'main_input_clean': cleanwavs,
'main_input_noisy': noisywavs},
{'model_2': cleanwavs,
'DoutG': positive_y} )
time_taken = time.time() - start_time
printlog = "E%d/%d:B%d/%d [D loss: %f] [D_GP loss: %f] [G loss: %f] [G_D loss: %f] [G_L1 loss: %f] [Exec. time: %f]" % (epoch, n_epochs, batch_idx, num_batches_per_epoch, d_loss, d_gploss, g_loss, g_dLoss, g_l1loss, time_taken)
print (printlog)
# Tensorboard stuff
logs = [g_loss, g_dLoss, g_l1loss]
write_log(callback, train_names, logs, epoch)
if (TEST_SEGAN and epoch % 10 == 0) or epoch == n_epochs - 1:
print ("********************************************")
print (" SEGAN TESTING ")
print ("********************************************")
resultsdir = modeldir + "/test_results_epoch" + str(epoch)
if not os.path.exists(resultsdir):
os.makedirs(resultsdir)
if LOAD_SAVED_MODEL:
print ("Loading model from " + modeldir + "/Gmodel")
json_file = open(modeldir + "/Gmodel.json", "r")
loaded_model_json = json_file.read()
json_file.close()
G_loaded = model_from_json(loaded_model_json)
G_loaded.compile(loss='mean_squared_error', optimizer=g_opt)
G_loaded.load_weights(modeldir + "/Gmodel.h5")
else:
G_loaded = G
print ("Saving Results to " + resultsdir)
for test_num in tqdm(range(noisy_test_dfi.shape[1])) :
test_beg = noisy_test_dfi[0, test_num]
test_end = noisy_test_dfi[1, test_num]
#print ("Reading indices " + str(test_beg) + " to " + str(test_end))
noisywavs = np.array(noisy_test_data[:,test_beg:test_end]).T
noisywavs = data_preprocess(noisywavs, preemph=opts['preemph'])
noisywavs = np.expand_dims(noisywavs, axis = 2)
if not opts['z_off']:
noiseinput = np.random.normal(0, 1, (noisywavs.shape[0], z_dim1, z_dim2))
cleaned_wavs = G_loaded.predict([noisywavs, noiseinput])
else :
cleaned_wavs = G_loaded.predict(noisywavs)
cleaned_wavs = np.reshape(cleaned_wavs, (noisywavs.shape[0], noisywavs.shape[1]))
cleanwav = reconstruct_wav(cleaned_wavs)
cleanwav = np.reshape(cleanwav, (-1,)) # make it to 1d by dropping the extra dimension
if opts['preemph'] > 0:
cleanwav = de_emph(cleanwav, coeff=opts['preemph'])
destfilename = resultsdir + "/testwav_%d.wav" % (test_num)
wavfile.write(destfilename, fs, cleanwav)
# Finally, save the model
if SAVE_MODEL:
model_json = G.to_json()
with open(modeldir + "/Gmodel.json", "w") as json_file:
json_file.write(model_json)
G.save_weights(modeldir + "/Gmodel.h5")
print ("Model saved to " + modeldir)